Edited by
A.J. Gaston and R.D. Elliot

Studies of

high-latitude seabirds.
2. Conservation biology of Thick-billed Murres in the Northwest Atlantic

Edited by

Studies of high-latitude seabirds.

2. Conservation biology of

Thick-billed Murres in the

Northwest Atlantic

Reçu le 20 JuIN 1991

Occasional Paper
 Number 69
 Canadian Wildlife Service

Papers derived from the Population Biology and
Conservation of Marine Birds Symposium held at Memorial University of Newfoundland, St. John's, Newfoundland, in April 1989 and jointly sponsored by the Ocean Sciences Centre and the Canadian Wildlife Service

Published for the Ocean Sciences Centre
by the Canadian Wildlife Service

$$
\begin{aligned}
& 5 K \\
& 471 \\
& C 33 \\
& N_{0} 69
\end{aligned}
$$

Cover photo
Thick Murres on an ice pan
G. Donaldson)

Published by Authority of the
Minister of Environment
Canadian Wildlife Service
©Minister of Supply and Services Canada 1991
Catalogue No. CW 69-1/69E
ISBN 0-662-18823-3
ISSN 0576-6370
Design: Wendesigns, Ottawa

Canadian Cataloguing in Publication Data

Main entry under title:
Studies of high-latitude seabird
(Occasional paper, ISSN 0576-6970; no. 68, no. 69) ncludes abstracts in French
"Pludes abstracts in French.
Conservation of Marine Birds Symposium held at
Memorial University of Newfoundland, St. John's,
Newfoundland, in April 89."
To be complete in 3 v
Parial contents: 1. Behavioural, energetic, and
oceanographic aspects of seabird feeding ecology/edited by
W.A. Montevecchi and A.J. Gaston. 2. Conservation
iology of Thick-billed Murres in the Northwest Atlantic
dited by A. Gaston and R.D. Elliol
ISBN 0-662-18312-6 (v. 1), 0-662-18823-3 (v. 2
DSS cat. no. CW69-1/68E, CW69-1/69E

1. Sea birds - Canada - Ecology - Congresses. 2. Water birds - Canada - Ecology - Congresses. Richard Donald) 1946-. IV Canadian Wildlife Service V. Series: Occasional paper (Canadian Wildlife Service);
no. 68, no. 69.
QL671.S78 1991
598.2971
C91-098535-9

Contents

Acknowledgements	4
Introduction 5 A.J. Gaston and R.D. Elliot Recent changes in Thick-billed Murre populations in West Greenland P.G.H. Evans and K. Kampp	
Mortality of Thick-billed Murres in Greenland inferred from band recovery data K. Kampp	15
The by-catch of Thick-billed Murres in salmon drift nets off West Greenland in 1988	23
K. Falk and J. Durinck	

Acknowledgements

The editors would like to thank Hugh Boyd, Dick Brown, Brian Collins, Anthony Erskine, Peter Evan Michael Harris, Kaj Kampp, Clare Lloyd, Bill Timothy Stowe, and Steve Wendı for their assistance int refereeing this document. Marla Sheffer was responsible for the careful and thoughtful editing.

Introduction

Anthony J. Gaston and Richard D. Ellio

Canadian Wildlife Service, National Wildlife Research Centre, Ottawa, Ont. K1A OH3

The Thick-billed Murre Uria lomvia is one of the most numerous seabirds breeding in the northern hemisphere. In the North Atlantic and adjacent part of the Arctic Ocean, it breeds in large numbers in Novaya Zemlya, Franz Josef Land, Spitsbergen, Bear Island, Iceland, and Greenland and over most of the Arctic coasts of eastern Canada (Tuck 1961). All of these populations winter in Arctic or sub-Arctic waters of the North Atlantic. They have been harvested for centuries over most of their ran
by native peoples in the western Atlantic at breeding colonies in Greenland and the eastern Canadian Arctic, colonies in Greenland and the eastern Canadian Arctic,
and by local nonnatives on their wintering grounds off Newfoundland and Labrador. In West Greenland, in parts of the eastern Canadian Arctic, and in parts of
Newfoundland, they still form an important part of the cal diet at certain seasons.

Since the 1960 s , when the introduction of a gill-net lishery for salmon off West Greenland resulted in the Mrowning of hundreds of thousands of Thick-billed
Murres, there have been concerns about the status of the Murres, there have been concerns aboul the status of Christensen and Lear 1977; Nettleship 1977; Evans and Nettleship 1985). In addition to death by hunting and drowning in gill nets, Thick-billed Murres suffer heavy unnatural mortality from oiling, especially around outhern Newfoundland. Our knowledge of th ragmentary, but what we know, combined with extrapolations from the closely related Common Murre Uria aalge, suggests that mortality from various unnatura causes may exceed the sustainable yield. A number of projects are currently under way in Canada and Greenland 6 evaluate the status, the levels of unnatural mortality, and he present population dynamics of the species.

Because Thick-biled Murse probly live a lons me under natural conditions, any study of their We are very fortunate that two individuals, Leslie Ty and Finn Salomonsen, had the foresight, more than four decades ago, to initiate (and, in Tuck's case, to undertake personally) the large-scale banding of Thick-billed Murres Without their pioneering work, in Canada and Greenland, espectively, we would be much farther than we are from oderstanding the dynamics of Thick-billed Murre populations.
mposium held at Memorial University of Newfoundland, St. John's, in April 1989. Contributions by Evans and Kampp and by Kampp deal with the current dynamics of the Thick-billed Murre population in West Greenland. Evans and Kampp
rovide clear evidence of a substantial decline in numbers ver the past 50 years. Kampp's detailed analysis of band coveries points to shooting at breeding colonies as a or cause of mortality, and one that affects the most
 reeders. He also examines the weaknesses of haphazar banding in attempting to answer certain demographic questions. His results provide a convincing explanation fo he southern colonies, many of which have all but
he southern and the northern colonies, where declines have been less drastic. The paper by Falk and Durinck addresses the question of the threat posed to Thick-billed Murres by the salmon drift-net fishery of Greenland, which ppears to be small at present

Turning to Canada, Elliot reviews the history and cioeconomic context of the winter harvest of Thick-billed he 1970 s is weak, but it appears that the total kill increased considerably with the advent of faster boats and better weapons. Elliot, Collins, Hayakawa, and Métras show that participation in the Newtoundland hunt remains steady, and harvest levels remain high. Their results indicate that he Newfoundland hunt is probably the main cause of mortality for all age-classes of Thick-billed Murres in the orthwest Allantic.

There are indications that Thick-billed Murre populations in the eastern Canadian Arctic declined 985). Unfortunately, there is no consensus among tho active in the field about the magnitude of the decline or about the current status of the species at Canadian Arctic colonies. However, there probably has been no decline in numbers at some colonies since the 1970 s (AJG, pers. obs.)

For Coats Island, a fairly small colony in northern not declined since 1981, Noble, Gaston, and Elliot describe some preliminary demographic parameters. These may eventually provide an understanding of how current populations are being maintained. The authors also present evidence that, in addition to the effects of hunting mortality, year-to-year variation in conditions on the wintering grounds may affect the recruitment of young Thick-biled Murres. Despite the promising level of population modeling shows that even a slight deterioratio in any demographic parameter could initiate a decline in the population (Nettleship and Chardine 1989).
In West Greenland, recent changes in regulations and in the economics of hunting give some hope that the
decline of Thick-billed Murre populations there can be arrested and perhaps reversed. Elliot argues for a similar nforcem in the kill in Newfoundland, partly by better the imposition of bag limits and a reduction in the legal season. Because of the complexity of altering the Migratory Birds Convention between Canada and the United States, progress on introducing new regulations in Newfoundland now established among hunters in support of harvest reductions may weaken before new regulations are in pace

Although we believe that Canadian Thick-billed Murre populations are mainly stable at present, this may be no more than a breathing space provided by a period of highly favourable environmental conditions. In the concluding paper, Harris describes changes in populations of Allantic Puffins Fratercula arctica and Common Murres monitoring than is available for Thick-billed Murres. He demonstrates that underlying environmental changes, causing changes in food availability to auks and operating on a scale of decades, may ultimately determine the dynamics of seabird populations.

If conditions for Thick-billed Murres in the wester Atlantic deteriorate over the next few years, as they did ecently in the Barent's Sea, we have inadequate regulatory distressing prospect for hunters and managers alike.

This Occasional Paper is the second of three to be ocused on research on high-latitude seabirds. An earlier volume dealt with seabird feeding ecology. A large-scale energetics model, which estimates the spatial and temporal prey harvests of seabirds throughout the year, was also presented during the symposium and will be published as a absequent contribution in this series

Recent changes in Thick-billed Murre populations in West Greenland

Peter G.H. Evans ${ }^{1}$ and Kaj Kampp ${ }^{2}$

Edward Grey Institute, Department of Zoology, South Parks Road Oxford U.K. OX1 3PS

Copenhagen 0, Denmark

Abstract

Numbers of Thick-billed Murres Uria lomvia breeding in West Greenland have decreased over the past several decades. The decline has been most severe between Prmerly lard southern Upernavik District, wher settlements. Hunting of breeding birds at their colonies during the breeding season has probably been a major factor in the observed decline. The recent Game Act, dopted by the Greenland Home Rule government in 1988, prohibits hunting at most colonies during June through Mure population in West Greenland may depend on the success of this management strateg

Résumé

Le nombre de Marmettes de Brïnnich Uria lomvia, qui nichent dans l'Ouest du Groënland a diminué au cou des dernières décennies. Cest dans la région qui s'etend baisse a été la plus prononcée, précisément là où il y avait uparavant de grandes colonies, à proximité des grandes collectivités. La chasse des oiseaux nicheurs, dans leurs colonies, pendant la saison de nidification, a probablement été un des grands facteurs responsables de cette baisse. La Loi sur la chasse, récemment adoptée par l'Administration du Groënland, en 1988, interdit la chasse dans la plupart ment des populations de Marmettes de Briinnich dans l'Ouest du Groënland pourrait dépendre du succès de cetue mesure de gestion.

1. Introduction

West Greenland has long held large populations of Thick-billed Murres (Brünnich's Guillemot) Uria lomvia Although early population estimates were crude, the some indication of form size. On the basis of visits, mainly in 1925 and 1936, supplemented by discussions with local people, Finn Salomonsen estimated that about 2 million pairs bred in Greenland, with about 63% concentrated in Upernavik District of Northwest Greenland (Salomonsen 1950). Substantial declines in the population were noted by Evans recently (Evans 1984; Kampp 1988c). In this paper we summarize information on trends in Thick-billed Murre
populations in West Greenland, as well as biological data obtained by the 1987 joint U.K./Denmark/Greenland Canada survey (Evans 1987)

Because many Greenland murre colonies are very emote, they have been visited rarely, and most have been with the difficulty of accurately enumerating breeding populations, this has hindered the monitoring of changes in status. Some observers did not describe their census methods, and it is sometimes unclear how their populatio estimates were derived. Moreover, some observers used "pairs" and "individuals" interchangeably, assuming off-
duty birds to be absent during the count. Salomonsen (per commun.) did this, and it is likely that earlier authors, such as Bertelsen (1921) and Pedersen (1930), did likewise. Today some observers convert counts of individuals on the colony to pairs by applying a correction factor (k), generally taken to be about 0.75 (Gaston and Nettleship 1981). However, the use of such a correction factor needs to be stated explicitly; otherwise, the basis for the estimate is unclear (Netleshi and Evans 1985; Evans 1986). In this paper, we express on the colony.

With Greenland Home Rule, there is a general trend towards the adoption of Greenlandic names instead of the previous Danish or English names. To avoid confusion, the alternative names for each colony are listed in Appendix 1, together with coordinates; these are crosslealder the stil

2. Evidence for population chang

Some colonies have clearly declined over the past 50 years (Table 1). Several colonies (e.g., Angissoq Kingigtuarssuk III, Umiasugssuk, Qörnoq Kitdleq), each formerly numbering 100-1500, are now extinct. The colony at Sagdleq, Umanaq District, thought to number "hardly
less than 500,000 pairs" during the 1910 (Bertelsen 1921) is how virtually extinct, with only a handful of birds present in 1987 (T. Lash, pers. commun.). Counts made in the early part of this century may have been less reliable than more ecent counts because census techniques had not been developed. Consequently, some early figures may be overestimates. However, in the case of colonies in Upernavik District, apparent declines have been greatest in below by district.

Area	Year of surveys									
Thule District										
Hakluyt island										
Carey islands				20000	5700					
Saunders island	＂Small coionies＂ $\begin{gathered}\text { 20000 }\end{gathered}$									
Parker Snow Bay										
Agpat agpai	$100000 \quad 48000$									
Upernarik District	1936 ${ }^{\prime \prime}$	$1965{ }^{\text {c }}$	$1974{ }^{\text {d }}$	$1988 \times$	88					
${ }^{\text {Agparssuii }}$	1000000	970000		112000	187000					
Torgussâq（South）										
Kingiguarssuk III	100－1500	1000	0							
Kingigtuarsuk 11	10000	3500	500	25						
Angissoq	100－1 500	200								
Upernavik Agparssuit	100000	27200	18000	5000	3800					
Kingigloq Agparssuit	100000	6415	130009	9700	8450					
${ }_{\text {a }}{ }_{\text {Agpasisiait }}$	10000	8700	5300	1200	17					
Qornoq ${ }_{\text {Tingmakuleq }}$	${ }^{100-1500}$	525	${ }^{\circ}$	${ }^{\circ}$						
U̇mañaq		50	${ }^{6}$	${ }_{0}$						
Umanaq DistrictSagdieq										
7 colonies near Umanaq		14000	Present	0						
5 colonies near Aveprinsen＇s stand s．and										
Sermilinguaq		100000	5000	19600	11500					
Qeqertarsuay										
Ravis＇s Storí ${ }^{\text {a }}$ Small colony										
U⿴囗口⿺辶rarmiut－ 30										
Kingigtuarssuk （Hellefiske lsland）										

 Noee：All counts are presented here e as number of individuals atuending the colony．
Some of hhese were originally yexpesed as spars but al least int the case of
Salomonsen＇s figures，had been direcly convered from counts of individuls see Some of
Salomo．
fext）．

```
\begin{subarray}{c}{\mathrm{ Salomonsen 1950}}\\{\mathrm{ Kampp 1990}}\end{subarray}
M,
Jonsen and Preuss 1972
K. Kampp, unpulbl. data
i= K...ampp, un
```

\author{
T．Lash，pers．commun

N．Andesen，in Evans 198
 | N．Andersen，in Evans 19 |
| :--- |
| Kampp $19888,1988 \mathrm{c}$ |
 $\underset{\substack{\text { F．Satomonosen，unpubl．data } \\ \text { Salomonsen } 1979}}{\text { and }}$

}

2．1．Thule（Avanersuaq）District

The Thick－billed Murre population was estimated at 350000 in 1936，although Parker Snow Bay was not visited，and the colony on Hakluyt Island was simply described as＂tairly large＂（Salomonsen 1950）．Counts made from photographs taken in 1987 estimated the population at 285000 （Kampp 1990），suggesting little change over the

2．2．Upernavik District
Counts are available for colonies in this district from surveyed region of Greenland．In 1936 ． surveyed region of Greenland．In 1936，Salomonsen（1950）
colony was at Kap Shackleton，or Agparssuit，where he stimated 1 million birds．In 1965，Joensen and Preus （1972）counted a similar number： 970000 ．

The next count，from photographs taken from the sea，was made by Kampp（unpubl．data）in July 1983， giving 112000 birds．Because the distribution of the bird remained unchanged from earlier counts，Kampp considered that previous estimates must have exaggerated gave 187000 birds（Evans 1987）．However，the observers con sidered that some birds were missed by surveys from a boat and，on the basis of additional land－based counts，estimated the total present to be about 200000 ．
Salomonsen＇s count is hard to evaluate，but Joensen and Preuss（1972）provided a clear breakdown of their counts，marked on photographs．When counts for individ ual sites are compared with those made in 1987，the expected if there had been no change（Fig．2）．Moreover，th linear relationship suggests that rates of change were similar at different sites．Unfortunately，one site holds the bulk of the population，so a counting error for that site would have a disproportionate effect on the total estimate．

Changes in population have probably occurred at different rates in different parts of the district（Table 2）．In northern and 1965 ，however，if Agparssuit was correctly estimated in 1965，a steep decline occurred thereafter．The apparent increase during the 1980s may be due to differences in counting methods．Nevertheless，the earlier decline has probably halted．

In southern Upernavik，the major decline took place during the 1970 s ，averaging a little over 10% per annum between 1974 and 1983 ．Since then，the decline seems to have slowed．Counts given in Table 2 for 1987－88 are thos
given by Evans（1987），except at Upernavik Agparssuit （Sanderson＇s Hope）just south of Upernavik town whe we use a figure of 3800 ，obtained by Kampp in 1988．The resulting 1987－88 estimate for the whole district is 214000 ， suggesting a decline of approximately 83% over the past 50 years and an 80% decline over the past 25 years．The number of colonies has been reduced from 12 in 1936 to eight in 1987

2．3．Umanaq（Ũmánaq）District
Formerly，most murres bred at Sagdleq，close to the settlement of Umanaq，where Bertelsen（1921）reported 500000 pairs．Salomonsen was told by locals in 1949 that the colony had decreased by 50% ．He recorded 130000 in his field notes，later rounded to 150000 ，but many chicks had already departed－hence his figure of $150000-250000$ and only about 50 were seen in 1987 Salomonsen（1950） also noted seven other colonies of up to 3000 pairs，all of which are now believed to be extinct．Thus，the population of Umanaq has fallen from a total in excess of 100000 to zero in less than 40 years，with a decline already having occurred over the previous 30 years．
2．4．Jakobshavn（Ilulissat）District
Several colonies existed in Disko Bay，the largest being at Ivnaq，on Arveprinsen＇s sland．Salomonsen（ 1950 small colonies of from 10 to 200 pairs nearby．His unpub lished field notes record that all the small colonies later disappeared．In 1980，Ivnaq was reduced to no more than 10000 birds，probably $5000-6000$（N．Andersen，in Evans

 Mount of selected areas of the Agparssuit（Kap）Shackleten）colonn in 1965 and
1987，showing the actual regsession solid line）and the expected regression if here

Table 2 Lstimated sizes or Thick－billed Murre populations in Upernavik Distric （xpressed as individuals） expressed as individuals）

1984）；in 1984，Kampp（1988a，1988c）counted 4500 birds． Hence，the population of the district declined by 91% in 40 years．

2．5．Sukkertoppen（Manîtsoq）Distric The main colony，at Sermilínguaq，supported 00000 birds in 1925 but only 5000 in 1946 （Salomonsen 950）．Other colonies existed at Evighedsfjorden and Søndre Isortoq，although counts were not reported（Salomonsen
967）Since then，counts by Kampp（unpubl．data），from photographs taken by F ．Wille in $1987-88$ ，indicate 9000 birds at Tâterât in Evighedsfjorden， 11500 at Sermilínguaq，and 2200 at Søndre Isortoq．These estimates correspond fairly well with notes made by Salomonsen in 1960 and 1977．The total population apparently declined by about 80% over 60 years，with most of the decline occurring prior to 1946.
2．6．Godthåb（Nûk）District
Small colonies were reported in this district by alomonsen（1950），Holboll（1846）and Oldendow（1935） Salomonsen＇s field notes for 1977－78 indicate about 1000 at Nūngarússuit and 50 at Qeqertarsuaq．These may be the only colonies existing at present．
2．7．Frederikshåb（Pâmiut）District
On the basis of secondhand observations，
Salomonsen（1950）estimated the colony at Kangeq South （but possibly referring to Agparssuit inât on Kanged
North）at 4000 ，and that on a small islet just west of Sermersût Island at 1000 birds in 1949．In 1971，both colonies were extinct，but a new colony had become estab－ ished at Foxfaldet，in Arsuk Fjord（Ilorput），where local sources reported 100 present in 1973，increasing to 250 in 1974 （Salomonsen 1979，boerman 1979 ）．Kampp（19888 This total for the district represents an overall decline of about 46% in 37 years．

2．8．Julianehåb（Qaqortoq）Distric
The southernmost Thick－billed Murre colony in Greenland used to be on Qioqê Islet，just south of Nunârssuit Foreland，where Salomonsen（1950）estimated 1982） 982）．

Other colonies occur on at least 11 islands in the group known as Ydre Kitsigsut．This site has been 1200 birds in 1971 1950．Salomonsen（1979）estimated and the amount of available cliff，it seems unlikely that numbers could have been so large．Kampp（unpubl．data）
counted 4500 birds on 12 June 1983, when many ledges were still covered in snow. In 1985, the colony was Common Murres Uria aalge (Kampp 1988a, 1988c). Salomonsen misplaced the colony locations, probably as result of foggy conditions at the time, and he may have combined both species in his estimates.
2.9. Scoresbysund (Ittoqqortoormiit) District

Salomonsen (1950) gave estimates for two colonies in this district, based on reports by local people given in
Pedersen (1930): Raffles Island off the Liverpool coast (5000), and Kap Brewster (10000), including the coast south of there. Meltofte (1976) estimated about 33000 birds at Kap Brewster in 1974 and, from secondhand information, reported a small colony on Stewart Island. Korte (1973) estimated 4000 birds on Raffles Island in 1973. The recent estimates suggest a total population for the district of about his century
2.10. Total population estimate

The current distribution of the Thick-billed Murre population of West Greenland is summarized in Figure 3 The total of colony estimates is a little over half a million individuals, indicating about 400000 breeding pairs. An
3. The current situation in Upernavik District
3.1. Biological studies in Upernavik District

Between I July and 8 September 1987, studies of Thick-billed Murres were carried out in Upernavik District by a team of 13 (mainly from the United Kingdom, but including members from Denmark and Canada, as well a wo Greenlanders). All colonies in the district were diet, and feeding rates were carried out simultaneously at wo colonies: Agparssuit (7 July - 25 August), where there was little human disturbance, and Kípako (7 July 2 September), which suffered moderate disturbance from gging and other sources. Boat surveys were carried out to collect information on foraging ranges.

Reproductive success was studied at 10 study plots (six on Agparssuit, four on Kipako), each comprising laid eggs and lost them before the start of observations, we assumed that all sites occupied on more than 85% of daily hecks were used for breeding (Gaston et al. 1983). Eggs were seen on practically all sites that qualified by this riterion. Correction factors (k) for converting counts of individuals to breeding pairs were derived from daily counts of the breeding study plots (i.e., $\mathrm{k}=$ breeding and Kípako are given in Table 3 and are similar to those obtained in the eastern Canadian Arctic by Gaston and Vettleship (1981). It is worth noting that the most disturbed plot (No. 2 at Kipako) gave the rather low value of 0.58 .

Reproductive success was determined by checks made every 1-2 d (see Evans 1987 for details). Most eggs were laid in the fourth week of June, and the young probably replacement layings, remained until early September. Hatching success was higher on Agparssuit than on Kípako, but fledging success was similar on both Overall reproductive success was 0.82 chicks $/$ pair at

\section*{| |
| :---: |
| Figure 3 |
| The curren |
| (c. mid 1980 |}

ding distribution of the Thick-billed Murres in Greenland

Agparssuit and 0.73 chicks/pair at Kípako (Table 4), again similar to values obtained in the eastern Canadian Arctic
(Gaston and Nettleship 1981). These values are used to (Gaston and Nettleship 1981). These values are used to District. Our estimates for reproductive success and k-ratios suggest that 160000 breeding pairs in Upernavik District produced 128000 chicks to the age of departure from the colony. If 100 pairs produce 80 fledged young and annua adult mortality is 10%, then $25 \%(2 \times 10 / 0.8)$ of fledged young must be recruited to the breeding population to maintain stability.
3.2. Hunting in Upernavik District

During July-September 1987, we made visits to practically all settlements in Upernavik District to interview hunters about the importance of murres in thei diet, the main periods and areas of hunting, and the M. Heubeck in Evans (1987)

Intensive hunting oceurs from June especially in late May Fewer birds are shot in July and August. Most birds are shot at sea, near settlements. In spring, they may be shot at the edge of land-fast ice. Most hunting is opportunistic and incidental to seal hunting, except at three settlements in southern Upernavik, where people make special trips to hunt murres in spring. Most are eaten locally, but a cooperative at Ivnârssuit freezes murres for export to Nûk; about 1000 were sent in 1987. Some selling also takes place in Upernavik town, mainly of basis of our interviews, we estimated that 400 permitholding hunters shoot an average of four or five murres

each per week during spring and summer. This yields a minimum estimate of $20000-30000$ murres harvested $p e$ ear but takes no account of fall hunting, hunting by persons without permits, or birds hit
Additional mortality occurs from egg collecting. This activity is much less important than in the past, when colonies were larger and eggs constituted a greater propor ion of family diet. A combined total of about 1000 eggs was estimated to be taken annually, now mainly from en taken from Kap Shackleton. Re-laying often takes lace, although the resulting young fledge late in the eason and so may have reduced survival in their first winter.

We estimate the number of breeding adults in
navik District at about 320000 , with an additional Upernavik District at about 320000 , with an additional 30000 nonbreeding subadults (40% of the breeding population). A summer harvest of $20000-50000$ murres hat $72-79 \%$ of the birds shot are of breeding age (Kampp 982), in which case the harvest represents $3-8 \%$ of the breeding population. This compares with average annual mortality rates of 6% per annum for murre populations no subject to hunting (Mead 1974; Harris, this volume).

. Causes of population changes

4.1. Hunting

Thick-billed Murre populations in West Greenland have declined substantially over the past 50 years. In pernavik District, most of the decline has taken place in he last 25 years, but some colonies in Central and g, So Greenland were declimin

Salomonsen (1955 1970) was). , atention to the population declines, atributing them to meat over the last 4000 years, it is unlikely that the harvest had any great impact until this century. Local communiies were small and scattered, and hunting was by the raditional method of bow and arrow from a kayak. During his century, the human population increased rapidy, and motorboats and firearms were introduced. Human impact n major prey species, such as Thick-billed Murres, must have increased greatly. By 1974 , many formerly large concern with respect to the effects of hunting and the associated disturbance (Evans and Waterston 1976).

Kampp (1982, and this volume) presents evidence rom band recovery data, that hunting at the breeding In Upernavik, between 1.2% (n source of adult mon 4.0% southern colonies) of breeders were recovered in summer, indicating that a similar or somewhat higher percentage was being killed. The hunting pressure in Jakobshavn seemed similar to that in southern Upernavik, whereas it was much higher in Umanaq. In comparison, only 0.5% of anded adult murres were recovered in winter. Com ot banded at other colonies.

The differing rates of
ith the rates of decline in different districts. The majo discrepancy concerns northern Upernavik, perhaps because he size of Agparssuit, and hence overall decline rates, was verestimated in the past. If Agparssuit did decline by mor han 80% between 1965 and 1983, it seems unlikely that unting was the main cause, and is stil

Other evidence that summer hun
Ont in colony declines comes froming has been ates of decline among colonies. Data from Upernavik District, which has the largest number of available counts, how a significant negative relationship between the average annual rate of decline and the distance from th colony to the nearest settlement (Fig. 4). Colonies in have suffered the worst. During the period $1965-75$, murres were traded commercially in Upernavik, where a freezer was in operation, processing about 15000 murres annually the peak. The additional pressure on the local murre population created by the commercial operation wa eflected both in the banding recoveries (Kampp, this volume) and in the timing of major colony declines in the strict (see Fig. 1).
Until 1978,

Until 1978, hunting regulations in Greenland were ciefly the responsibility of local authorities, and they differed among districts. Salomonsen (1955, 1970) campaigned for improved regulations and influenced local observed (Evans and Waterston 1976; Salomonsen 1979). A major breakthrough occurred in 1977, when general regulations were adopted for West Creenland, largely as a during the period 15 June - 15 August, except in Upernavik and Umanaq districts. The harvesting of eggs was allowed in Upernavik District until 10 July

Rates of decine (\% per annum) of Thick-billed Murte colonies in Upernavik
District in relacion lo distance from the nearest permane

AVERAGE ANNUAL RATE OF DECLINE

25

4.2. Drowning in gill nets

Large numbers of Thick-billed Murres are known to have been killed by a drift-net fishery for salmon and cod, which began in 1965. Most birds were caught during nigh fishing, particularly in September and October, in the
Disko Bay area (Christensen and Lear 1977). Tull et al. (1972) estimated annual mortality at 500000 birds and expressed concern that this might exceed production. Christensen and Lear (1977), using a larger data set, revised his estimate down to 215000-350000.

Analysis of band recoveries showed that birds killed by drift nets included many from outside West Greenland, ncluding the eastern Canadian Arctic, Spisbergen, and iming of the by-catch (Salomonsen 1967. Kampp 1982). Moreover, Kampp (1982, and this volume) showed that most of those drowned belonged to the prebreeding ageclasses (less than five years old).

In 1976, fishing by foreign vessels was terminated, and salmon quotas were set to regulate the fishery. This effectively ended the fishing season in mid-September, Waterston 1977; Kampp 1982; Evans 1984). The current situation is reviewed by Falk and Durinck (this volume). As indicated by the analysis of banding recoveries (Kampp 1982, and this volume), it seems unlikely that net drowning has had more than a negligible impact on Greenland

As a result of the biological studies and hunter s carried out in Upernavik District, several ew Condations were formulated that contributed to a . Game Act adopted by the Greenland Home Rule in Bisko 1988 . Thick-billed Murres are now protected south of Greenland (Disko Bay and Umanaq and Upernavik districts), the closed season is restricted to 1 June 31 August, but this includes most of the period when the murres are present in these areas. Only in Thule and coresbysund districts is there a year-round open season. Hunting is reserved for residents with subsistence as a primary or secondary occupation, and all egg collecting is anned. There are also special stipulations for activities within 5 km of bird cliffs, compared with a previous limit of 2 km .

Breeding reserves will be set up at Agparssuit, Torqussâq, Kingigtuarssuk, and Upernavik Agparssui Upernavik District). Other reserves include Sagdleq vnaq, and Ydre Kitsigsut. At those sites, all trespassing June to 31 August.

These regulations are welcome, but their success depends on the extent to which they are observed. This is where problems have occurred in the past. Continued murre colonies themselves, will be essential.

Acknowledgements

We thank all those who helped with the biological tudies in Upernavik District in 1987: Clare Ditchburn, uan Dunn, Martin Heubeck, Fiona Hunter, Tim Las discussions in the settlements, we particularly thank Martin Heubeck, Nuka Kleemann, Aqqalu Olsvig and Hans Meltofte. The project was made possible by the generous sponsorship of World Wide Fund for Nature (WWF)/Denmark, WWF/Canada, WWF/U.K., The Commission for Scientific Research in Greenland, Greenland Home Rule, The Scandinavian Tobacco Company, and the Canadian Wildlife Service. We provided through the Canadian Wildlife Service; and, within Greenland, Henning Thing, Bodil Deen Petersen, Povl Sørensen, Preben and Nora Grossmann, and the Mayor and others from the Upernavik District. We also thank all those hunters from Upernavik District who so readily gave up their time to talk to u.

Appendix 1 List of Thick-billed Murre colonies with locations and Greenlandic and English/Danish names ${ }^{\text {a }}$			Location
Colony	Location	Colo	
Thule (Avanersuaq) District		Sukkeroppen (Maniitsoq) District21. Sermilinnguaq, Sermilinguaq	$65^{\circ} 400^{\prime} \mathrm{N}, 52^{\circ} 98^{\prime} \mathrm{W}$
Kitissul (Carey islands). Kitissut			$65^{\circ} 41^{\prime} \mathrm{N}, 52^{\circ} 5^{3} \mathrm{~W}$ $66^{\circ} 00^{\mathrm{N}} \mathrm{N}, 52^{22} 2^{\prime} \mathrm{W}$ $65^{\circ} 27 \mathrm{~N}, 52^{\circ} 09^{\prime} \mathrm{W}$
Appat (Saunders sland), Agpat	$76^{\circ} 94{ }^{\circ} \mathrm{N}, 70^{\circ 000}{ }^{\circ} \mathrm{W}$	22. Taateral, Tâterât	
4. Issuvissuup appai, Parker Snow Bay	$7^{76^{\circ} 10} 0^{\circ} \mathrm{N}, 68^{8} 440^{\circ} \mathrm{W}$	23. Sondre Isortoq	
5. Appat appai, Agpat agpai	$76^{\circ 095} 5^{\prime} \mathrm{N}, 68^{\circ} 25^{\circ} \mathrm{W}$	dthàb (Nuuk) Distrí	
Upernavik District		Qeqertarsuaq, Qeqerrarssuaq	$63^{\circ 5} 44^{\prime} \mathrm{N}, 51932^{\prime} \mathrm{W}$
6. Kuup apparsui, Agparssuit, Kap Shackleton		25. Nunngarussuit, Nüngarússuit	
7. Kippaku, Kípako	$77^{\circ} 43^{\prime} \mathrm{N}, 56^{6} 38^{\prime} \mathrm{W}$	26. Simiütat Islands	$63^{4} 47^{\prime} \mathrm{N}, 51^{1} 44^{\prime 2} \mathrm{~W}$
Toqqussaq, Torqussâq	$73^{\circ} 26^{\prime} \mathrm{N}, 56^{6} 35^{\prime \prime} \mathrm{W}$	27. Ravn's Store	$\sim 62^{4} 41$ N, $500^{\circ 95}$
Kingituarsuk (III), Kingigtuarsuk	$73^{\circ} 15^{\prime} \mathrm{N}, 56^{\circ} 51{ }^{\prime} \mathrm{W}$	28. Utorqarmiut	$6^{63} 40{ }^{\prime} \mathrm{N}, 519288^{\prime \prime} \mathrm{W}$
10. Kingituarsuk (II), Kingigtuar		29. Kingituarsuk (off Hellefiske is	${ }^{63^{\circ} 05^{\prime} \mathrm{N}, 50^{\circ} 40^{\circ} \mathrm{W}}$
Angissoq	${ }^{72} 2^{\circ 5}{ }^{5} 4^{\prime} \mathrm{N}, 55^{60^{\circ} 5^{\prime} \mathrm{W}}$	Kingigtuarssuk	
12. Upernaviup apparsui, Upernavik Agparssuit,	$72^{\circ} 44^{2} \mathrm{~N}, 56^{\circ} 20^{\prime} \mathrm{W}$	Frederikshab (Paamiut) District	
13. Kingilup apparsui, Kingigtoq Agparssuit	$72^{\circ} 400^{\prime} \mathrm{N}, 55^{\circ} 53^{\prime} \mathrm{W}$	30. Sondre Kangeq	$61^{\circ} 21^{\prime} \mathrm{N}, 48^{\circ} 59^{\prime} \mathrm{W}$ $61^{\circ} 16^{\prime} \mathrm{N}, 48^{\circ} 57^{\prime} \mathrm{W}$ $61^{\circ} 20^{\prime} \mathrm{N}, 48^{\circ} 00^{\prime} \mathrm{W}$
Appatsiaat, Agpatsiait	$72^{\circ} 42^{\prime} \mathrm{N}, 55^{5} 999^{\prime} \mathrm{W}$	32. Foxfaldet (Arsuk Fjord)	
15. Qoorroq Killeq Qobrnoq Kidleq			$60^{\circ} 46^{\prime} \mathrm{N}, 48^{\circ} 28^{\prime} \mathrm{W}$
17. Uummannaq, Ümänaq	$72^{\circ 988}{ }^{\circ} \mathrm{N}, 55^{\circ} 53^{\prime} \mathrm{W}$	33. Kitisisut avalliit, Ydre Kitsissut,	
Umanaq (Uummannaq) District 18. Salleq, Sagdleq		34. Qrioqui, Qioqêe (Nunârsuit Foreland)	$60^{\circ} 41^{\prime} \mathrm{N}, 47^{7} 45^{\prime} \mathrm{W}$
	$20.38 \mathrm{~N}, 52 \mathrm{~T}$		
Appat, Agpat, Innaq, Iveaq (Ritenbenk)	$69^{69488^{\prime} N, 51913^{\prime} \mathrm{W}}$	36. Kangikajik, Kap Brewster	${ }_{70} 0^{2090} \mathrm{~N}, 220066^{\prime} \mathrm{W}$
Other colonies near Arveprinsen's Island		37. Sewart siland	

See Figures A.1 and A. $\overline{\text { an }}$ ior loct locaions of colonies

Figure A. 1
Map showing the location of Thick-billed Murre colonies in Greenland (numbers

Map showing the location of Thick-billed Murre colonies in Upermavik Distric
(numbers refer 10 Appendix ()

Mortality of Thick-billed Murres in
 Greenland inferred from band
 recovery data

Kaj Kampp

Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark

Abstract

Data on 2453 recoveries from 38119 Thick-billed Murres Uria lomivia banded in four regions of West Greenland in 1946-80 were analyzed to extract information on mortality and recovery rates for different age-classes and suited for this purpose; the methods used to estimate the parameters are therefore explained and discussed at some length, and the uncertainties of the estimates are stressed. Nonetheless, it seems safe to conclude that hunting had a measurable effect on mortality, particularly hunting during summer near the breeding colonies, where from 1.3% to winter, hunters took mainly birds in their first year of life (recovery rate about 1.5%, but this is certainly an underestimate) and relatively few adults (recovery rate about 0.5%). The conclusions are consistent with regional differences in observed population declines during the las 50 years. Qualitatively, they undoubtedly hold true even oday, but recently introduced legal regulations may gradually reduce the huntin

Résumé

Les données tirées de la récupération de 2453 des 38119 bagues de Marmettes de Briunnich Uria lomuia, quatre régions de baguées dans l'Ouest du Groënland entre 1946 et 1980 , ont été analysées afin d'évaluer les taux de classes d'âge. La structure des données se prêtait mal à cette in; nous avons donc expliqué et décrit assez longuement les méthodes utilisées pour évaluer les paramètres, et expliqué dans quelle mesure les évaluations étaient imprécises. Néanmoins, on peut conclure avec une certaine certitude que la chasse a eu un effet mesurable sur la mortalité, en particulier la chasse en été près des colonies de nicheurs, prélevant entre $1,3 \%$ et peut-être 12% des adultes, chaque année. En hiver, les chasseurs ont capture
principalement les oiseaux de moins d'un an (taux de récupération denviron $1,5 \%$, mais ce pourcentage est certainement sous-estimé) et peu d'adultes (taux de récupération d'environ $0,5 \%$). Les conclusions concordent avec les différences régionales dans les baisses de populations observées au cours des cinquante dernières années. Qualitativement, elles sont toujours valables, même raient faire diminuer les pressions exercées par la chasse et renverser les tendances à la baisse chez les populations.

1. Introduction

The Thick-billed Murre Uria lomvia breeds along most of the coast of West Greenland, in the Thule area in North Greenland, and at Scoresby Sound in East
Greenland (Fig. 1). Many of these birds stay in Greenland waters during the winter. In addition, many murres of western (Canadian high Arctic) and eastern (mainly Spitsbergen) origin occur in Greenland outside the breeding season (cf. Kampp 1988b).

The murres in Greenland provide a reliable and important meat resource for the human population. Thi has been so since the first Eskimos settled in the country
more than 4000 years ago. Despite the rapid modernization of the community since World War II, many people still live as full-time hunters, and almost everyone does at least some hunting.

Murre populations are charactenzed by very slow urnover rates, which limit the hunting pressure they are capable of sustaining. Until this century, the human population was quite small, and their mobility and fire-
power were limited. Consequently the risk of overexploit power were limited. Consequently, the risk of overexploitthe number of Greenlanders has increased almost threefold to more than 50000 , and they are now equipped with modern firearms and outboard-powered dinghies. This development has jeopardized the murre population. Hunting in the breeding season near the colonies is particularly harmful, as most birds killed are adults. Also, no relationship between kill per unit effort and population ize exists to regulate the harvest wis.
Teoal reoplations aimed at pre

Legal regulations aimed at protecting murre populations were introduced in Greenland in 1978. Thes regulations remained in force after Greenland obtained Home Rule in 1979, but they have not been sufficient to halt the decline of murre numbers. In the spring of 1988, he regulations were revised, and stricter limitations wer placed on murre hunting both within and outside the banned between 15 March and 15 October in West Greenland south of Disko Bay, and between I June and 31 August farther north (including Umanaq and Upernavik districts, where no restrictions were in force previously). By that time, however, the formerly large murre population in Umanaq district was virtually extinct, and other populations were much reduced (in particular in

Rational management of Thick-billed Murres in
land requires reliable data on population sizes, harvest levels, and population dynamics. Population sizes

$\underset{\substack{\text { Figure I } \\ \text { Breeding }}}{ }$
 Breeding distribution of the Thick-billed Murre in Greenland

have been dealt with elsewhere (Evans 1984; Kampp 1988a; Evans and Kampp, this volume); in the present paper, the existing banding data are examined to extract information on survival rates and hunting pressure. Much of the contents has previously appeared in an informal report of
limited distribution (Kampp 1982) but has here been reexamined and revised.
2. Material
2.1. The Greenland bird-banding system The Greenland bird-banding system, as it existed between 1946 and 1984, was essentially the accomplishment of one person: the late Dr. Finn Salomonsen. Before World
War II, only about 1000 birds (of 20 species had been banded (Bertelsen 1948). After 1946, under the system devised and organized by Salomonsen, banding increased enormously; by 1984 , about 240000 birds of 50 species had been reported banded, with the number of recoveries totaling more than 12000

The system producing these impressive figures was described by Salomonsen (1956) and Mattox (1970). Local which they received payment according to numbers and species banded. The local representatives of the governmen (later the Greenland Trade Department KNI, formerly KGH) forwarded banding reports and recovered bands to the Zoological Museum in Copenhagen, which managed the program. A modest reward was given for bands practice of returning both the band and the leg of the bird pracice to correct errors that unavoidably occur when banders are nonprofessional and often inexperienced.

Payments and rewards were paid by the Ministry for Greenland, together with costs needed to maintain the ment were paid for by the Carlsberg Foundation. The existence of this system also enhanced th rting of foreign-banded birds recovered in Greenland. However, knowledge of the system among Greenlanders dwindled from the 1960s onwards, by which time a ransition from a subsistence to a cash-based economy had aken place in the country. Consequently, the payment for banding birds became rather insignificant. Under these changed circumstances, banding efforts could be sustained
only in a few places and were directed mainly towards only in a few places and were directed mainly towards
colonially breeding species, of which many birds could be banded rapidly. In 1984, after banding for cash had practically ceased, the system was abandoned. Banding in Greenland now takes place only at a modest level when opportunities arise. Rewards for recovered bands are stil paid by the Home Rule government.

2.2. Murre bandings

Thick-billed Murres were banded, mostly as chicks, hroughout the period in which the banding system existed hroughout the period in which the banding system existed
Table 1). From the start in 1946, murres were banded at the Ritenbenk colony in Disko Bay, and soon afterwards banding was initiated in Umanaq district. Banding activities later concentrated on the murre population in southern Upernavik district (Upernavik S); from the mid1960s on, large numbers of murres were banded in northern Upernavik district (Upernavik N), whereas efforts were
slight or discontinued elsewhere. Banding efforts in all areas varied greatly among years. Apart from Scoresby Sound in 1970, no banding of murres took place in other parts of the country until after the termination of the cash banding system (southernmost West Greenland, 1985; Thule district, 1987), and these bandings have not yet produced recoveries useful in the present context.

Unfortunately, the reported numbers of murres banded are far from accurate. Almost all murres were band series suggests that bands were used on chicks too small to retain them. To some extent, this may have been the case even in band series displaying more normal recovery patterns (on which the present analysis is based). Furthermore, particularly during the later years, many band series produced few or no recoveries, presumably because most or all of the bands were never used. Problems On the other hand, it was the only way to achieve largescale bandings in remote and inaccessible places.

In addition to chicks, a limited number of adult urres were also banded (Table 1), and the recoveries from hese play a major role in calculations of harvest levels. These calculations are necessarily rough but will probably yield estimates within reasonable orders of magnitude.

3. Method

3.1. Adult annual survival

During the past 10-15 years, several sophisticated models for calculating survival and recovery rates from bird-banding data have been developed, most notably those of Brownie et al. (1985). Nevertheless, studies using simple methods are still frequently published, because most data schemes. To obtain reasonably accurate age-specific parameter values, the number of bands recovered must be

fairly large, which will normally be the case only in hunted species. Furthermore, accurate banding numbers from bandings of adults as well as chicks through several consecutive years are required. The need for banding adults must be stressed, because age-specific survival and recovery ates cannot be estimated from the banding of young only made, as fully discussed by Brownie et al. (1985).

The present data do not meet the criteria for applying advanced methods. Almost all data are from birds banded as chicks, the number of birds banded is very imperfectly known, and some banded chicks probably died during the banding operations (losses occur even when banders are highly experienced). Of the simpler methods that might be considered, Haldane's (1955) classic formula appears most satisfactory from a theoretical point of view.
It is also fairly robust. Unfortunately, it allows the calcula tion of adult survival rate only; survival of young birds and recovery rates for all age-classes are not obtainable. The consideration of these parameters has to be based on the limited data from birds banded as adults following methods explained under Results.

Haldane's method assumés age- and yearindependent survival and recovery rates. These requirebut they may be approximately fulfilled for adult birds. The assumption of a constant recovery rate is probably the most doubtful, and the consequences of relaxing it are nvestigated in the discussion, supported by simulated ecovery data.

As the Haldane scheme assumes that all parameters re constant, it naturally follows that recoveries from further recoveries from any of them can be expected. This procedure can be combined neatly with another modificaion: truncating the recoveries by ignoring those made after certain number of years. This is necessary when dealing with long-lived species like murres in order to correct for band loss. Inspection of the Greenland murre data suggests hat band loss becomes important after 11-12 years. This is 982) upported by the weight loss of the bands (Kampp 1982).

Figure 2
Semilogari
 expected numbers of recoveries according to Haldane's model. Some numbers used
in calculating recovery rates are defined.

Common experience and inspection of the present data show that survival and recovery rates (vulnerability to hunting) differ between young and adult birds. It is therefore necessary to exclude the first few years of recover when applying Haldane's method to data from birds the first three years should be excluded from the Greenland murre data

To summarize, the calculation of adult survival is here based on Haldane's method, modified for "truncated recovery data, applied to a single row of recovery numbers different banding years combined) including the fourth to 10th year after banding. This very conservative use of the Only shot birds (the vast majority of recoveries; cf. Kampp 1988b) are included.
3.2. Symbols and definitions

In the present context, "year" means "year of life" (or "year after banding") reckoned from September to August. "Summer" includes the months May-September, i.e., the part of the year when adult and most immatu 1988b); "winter" includes the months October-April. Symbols used in formulas are as follows:
Adult annual survival rate, i.e., the probability that bird alive at the beginning of the year survives to the beginning of the following year
Annual survival rate for the i'th age-clas
f Adult seasonal recovery rate during summer, i.e.,
the probability that a banded bird alive at the
eginning of the summer will be shot and the
band returned during the same summer
$f^{\prime} \quad$ Adult seasonal recovery rate during winter
$f_{i}, f_{i}^{\prime} \quad$ Seasonal recovery rates during summer and winter, respectively, for the i 'th age-class
$\mathrm{N}, \mathrm{N}_{\mathrm{a}}$ Number of birds banded as chicks and adults, respectively
$R_{i}, R_{i} \quad$ Number of banded birds recovered during the i 'th year after banding (summer and winter,
respectively; cf. Fig. 2)

Table 2 Aduht survival rate for Disko Bay，Umanaq，Upernavik S，and Upernavik N								
Regior	No．of birds shot			SE				
	45							
Disko Bay	1417177^{17412} 18				0.049			
U⿴囗十a木aq				0.8	0.034			
Upernavik				08	0			
Upernavik				0.8	0			
Upermavik ${ }^{\text {d }}$				0.875	0.0	2.83		
：Shown are the number of chick－ringed birds shot during the th－10th summers annual survival and standard error（Haldane estimates），and result of goodness． of－fit test． b All bandings included． － 1966 bandings excluded ＊ $1979-80$ bandings exchuded because they may still produce recoveries．								
Table 3 Recovery rates of adul－banded murres，together with figures used to compure them（see text）：number banded N_{i} ，recoveries R_{i} and $\mathrm{R}_{\mathrm{i}}^{\prime}$ through the first 10 years． and estimated annual survival								
		$2 \mathbb{R}_{i}$sumer	winter	very rate（\％）				
Region				Recover			Win	
Upernavik ${ }^{\text {S }}$	318	64	9	0.83				
Upernavik N	390	30	14	0.87				

With these symbols，Haldane＇s formulas in the present modification become（see Appendix 1 for derivation of formulas 1 and 2）：
$\sum_{i=1}^{n} R_{i} / R-1 /(1-s)+n s^{n} /\left(1-s^{n}\right)=0$
$\mathrm{SE}^{-2}=\mathrm{R}\left[1 /\left(\mathrm{s}[1-\mathrm{s}]^{2}\right)-\mathrm{n}^{2} \mathrm{~s}^{\mathrm{n}-2} /\left(1-\mathrm{s}^{\mathrm{n}}\right)^{2}\right]$
where $\mathrm{SE}=$ the standard error of the estimate，
$R=$ the total number of recoveries $\left(\sum R_{i}\right)$ ，and $\mathrm{n}=$ the number of terms in the sums（ $\mathrm{n}=7$ in the
present case）．

4．Results
The recoveries of banded Thick－billed Murres for the four regions where banding has been performed are given in Table 1，and the corresponding Haldane estimates of adult survival rates are given in Table 2．The recovery rates of adult murres can be tentatively estimated from the recoveries of birds banded as adults．Recoveries from single years are very few；in order to utize a larger
recoveries，the recovery rates are calculated as：

$$
\begin{equation*}
\mathrm{f}=\sum_{i=1}^{n} \mathrm{R}_{i} / \sum_{i=1}^{n} \mathrm{~N}_{\mathrm{i}} \cdot \mathrm{~s}^{\mathrm{s}}=\left(\sum_{i=1}^{n} \mathrm{R}_{i} / \mathrm{N}_{\mathrm{a}}\right) \cdot\left[(1-\mathrm{s}) /\left(\mathrm{s} \cdot\left[1-\mathrm{s}^{n}\right]\right)\right] \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{f}^{\prime}=\sum_{i=1}^{n} \mathrm{R}_{i} \cdot / \sum_{i=0}^{n-1} \mathrm{~N}_{i} \cdot \mathrm{~s}^{i}=\left(\sum_{i=i}^{n} \mathrm{R}_{i}^{\prime} \mathrm{N}_{\mathrm{a}}\right) \cdot\left[(1-\mathrm{s}) /\left(1-\mathrm{s}^{n}\right)\right] \tag{4}
\end{equation*}
$$

where recoveries from the summer of banding are excluded Only 10 years are included to avoid the effects of band loss． The results are given in Table 3．Similar estimates cannot were banded there． Recovery rates durng be used to correct for different banding＂efficiencies＂（i．e．，the proportion of bands put on chicks of the correct age）．From this it appears that efficiencies have been roughly equal in all areas except Umanaq，where it was only about half as good．Assuming for efficiencies in this way，it appears that summer recovery rates in Upernavik S and Disko Bay have been similar， about 4% ，or three times the rate in Upernavik N ，and that the recovery rate in Umanaq may have been as much as
18 three times as high again

Figure 3 ， sunderest recovery rates

Of the 297 adult murres that I banded in Disko Bay in 1984， 12 were shot during the summers of 1985－88， hunting pressure or reporting probability，or both have decreased during the past 30 years． summer after banding of chicks is given by：

$$
\begin{equation*}
\mathrm{R}_{4}=\mathrm{Ns}_{1} \mathrm{~s}_{2} \mathrm{~s}_{5} \mathrm{~s}_{4} \mathrm{f} \tag{5}
\end{equation*}
$$

Hence，the total survival through the first four years of life is

$\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{9} \mathrm{~s}_{4}=\mathrm{R}_{4}^{*} / \mathrm{Nf}$

c．Fig． 2 ；the＂smoothed＂number of recoveries R_{4}^{*} is used instead of the actual number R_{4} in order to reduce the effect of random fluctuations）．Because the number of banded birds is not accurately known，this estimate is burdened with a substantial uncertainty but may provide a minimum value．

The expected numbers of first－，second－，and third－ summer recoveries are $\mathrm{Ns}_{1} \mathrm{f}_{1}, \mathrm{Ns}_{1} \mathrm{~s}_{2} \mathrm{f}_{2}$ ，and $\mathrm{Ns}_{s_{1}, s_{5} s s_{5} \mathrm{f}_{3} \text { ，}}$ expectations are $\mathrm{Nf}^{\prime}, \mathrm{Ns}_{\mathrm{I}^{\prime}} \mathrm{f}^{\prime}$ ，and $\mathrm{Ns}_{1} \mathrm{~s}_{2} \mathrm{f}^{\prime}$ ．Taking ratios， and using the not unreasonable assumption that

$$
\begin{equation*}
s_{2} \approx s_{3} \approx s_{4} \approx s \tag{7}
\end{equation*}
$$

stimates may even be obtained for the recovery rates of immatures：

$\mathrm{f}_{1}=\left(\mathrm{R}_{1} / \mathrm{R}^{*} \cdot{ }^{*} \cdot \mathrm{~S}^{3} \cdot \mathrm{f}\right.$

$\left.\mathrm{t}_{2}=\left(\mathrm{R}_{2} / \mathrm{R}^{*}\right)^{*}\right) \cdot \mathrm{s}^{2} \cdot \mathrm{f}$
$\mathrm{f}_{\mathrm{t}}=\left(\mathrm{R}_{3} \mathrm{R}^{*}\right) \cdot \mathrm{f} \cdot \mathrm{f}$
$=\left(R_{3} / R^{*}\right) \cdot$ s．f．
1
$=R_{1} / N==\left(R_{1}\right.$
$\mathrm{B}_{1}^{\prime}=\mathrm{R}_{1}{ }^{\prime} / \mathrm{N}=\left(\mathrm{R}_{1}{ }^{\prime} / \mathrm{R}_{4}{ }^{*}\right) \cdot \mathrm{S}_{1} \mathrm{~s}^{3} \cdot \mathrm{f}$
$\mathrm{f}_{2}^{\prime}=\left(\mathrm{R}_{2}{ }^{\prime} / \mathrm{R}_{4}^{*}\right) \cdot s^{3} \cdot \mathrm{f}$
$\mathrm{f}_{3}^{\prime}=\left(\mathrm{R}_{2}^{\prime} / \mathrm{R}_{4}^{*}\right) \cdot s^{2} \cdot \mathrm{f}$

In this approximation，only the estimate of first winter recovery rate（formula 11）depends on the banding otal N （or，equivalently，the undetermined parameter s_{1} ） formula 7 is a poor approximation for s_{2}（second－year survival appreciably less than adult survival），even f_{1} and f_{2} are underestimated，but this is probably rather unimpor－ ant considering the rough character of the calculations．

Table 4
Recovery rates during summer（f）and winter（f）for young murres（1st－3d years），
together wilh numbers banded and recovery numbers sused to compute the recovery

The values obtained for survival up to an age of four years（formula 6）are 0.143 and 0.153 for Upernavik N and S，respectively．The estimated recovery rates are summarized in Figure 3，with numbers used to compute them given in Table 4

5．Discussion

5．1．Adult survival rate
I tested the goodness of fit between the recovery data and Haldane＇s model（Table 1）．Only in Upernavik S was the deviation significant，and that result can be altered by this is discussed below．

Because Haldane＇s model is a robust one，the correspondence between data and model may be mislead ing；the test has low power．In particular，the data suggest only partly＂smoothed out＂by combining data from different banding years．

In order to obtain some idea of how varying recovery rates influence recovery patterns，a number of imulations were run on a micro－computer．In these simulations，a cohort banded and alive at the beginning of its fourth summer was followed through seven years，with probability $p_{s} p_{r}$ of being recovered and reported each year
and probability $(1-\mathrm{p}) \cdot \mathrm{s}_{n}$ of surviving to the next year．The values of s_{a} and p_{r}（probability of being reported if recov－ ered）were kept constant at 0.90 and 0.50 ，respectively．The value of p_{s}（probability of being shot）was obtained for each summer from a gamma distribution with parameters giving the desired expectation and a coefficient of variation of 50% ．
The initial numbers of banded birds were chosen to approximately reproduce the actual summer recovery simulations for each region，together with similar simulations where p_{s} was kept constant，are summarized in Table 5 and Figure 4.

For runs where the recovery rate（hunting pressure） was kept constant from year to year，the standard deviation naturally approximates the Haldane estimate（mainly determined by the model structure and sample size），and chosen significance level．As expected，the introduction an additional component of stochastic variation increases he variance on the calculated survival rates．At the same time，most runs still give patterns consistent with the Haldane model，although this tendency is weakened as the extent to which the recovery data are dominated by a single year increases（in the following sequence：Disko Bay
Umanaq，Upernavik N，Upernavik S）．There is no relationship between goodness of fit and survival estimate

These results confirm that the Haldane method is robust and that the standard error of the estimated survival rate may well be too low，making the estimate appear more accurate than is actually the case．However，they also

Table 5 Summary of		lations，${ }^{2}$	of 100			
Region	Expectaion		$\underset{\substack{\mathrm{CV} \text { of } \\ \mathrm{p}_{8}\left(\psi_{0}\right.}}{ }$	$\mathrm{s}_{\text {model }}$	s \pm SD	$\begin{array}{r} \text { \% runs } \\ \text { deviating } \\ \text { from model } \\ \text { (5\% level) } \end{array}$
Upernavik N	（1）	0.03	50	0．873．	0.867 ± 0.042	24
	（2）	0.03		${ }^{0.873}$	0.875 ± 0.039	2
Upermavik ${ }^{\text {S }}$	（1）	0.07	50	0.837	0.840 ± 0.047	48
	（2）	0.07		0.837	$0.832 \pm \pm 0.022$	
Umanaq	（1）	0.08	50	0.828	0.829 ± 0.049	19
Disko Bay	（2）	0.08	0	0.828	$0.826 \pm \pm 0.033$	6
	（1）	0.08	50	0.828	0.837 ± 0.057	
	（2）	0.08		0.828	0.823 ± 0.044	
${ }^{\text {a }}$ In the model，a number of banded cohorts are followed through seven years， with initial numbers of birds chosen so that fecovery matrices from simnations resemble those observed．Birds are recovered with probability $0.5 \cdot p_{s}$ and survive to next year with probability $\mathrm{s}_{\text {model }}=\left(1-\mathrm{p}_{\mathrm{s}}\right)$ ．0．9．The probability that a bird willbe shot during the summer（ \mathbf{p} ）is for each year taken from a gamma distribution with a coefficient of variation（CV）of either 50% or 0%（constant hunting pressure and recovery rate）．						

Figure 4 Distibutions of survival rates obtained from the simulations summarized in Table 5

suggest that the estimated survival rate may be quite good such violations involve only the random fluctuation of parameters and if recoveries are combined from different banding years.

A systematic trend in parameter values could seriously bias the estimate. Such a trend, specifically an
increasing recovery rate in the late 1960s and early 1970s, increasing recovery rate in the late 1960s and early 1970s, mailized commercially during 1965 -75, when a freezer operated in the town. Most of the approximately 15000 birds processed annually (Kampp 1988a) were undoubtedly taken near the town, i.e., in the southern part of the district. Furthermore, even though birds from the northern part were involved, banding in Upernavik N took place later than in Upernavik S, so recoveries from most banding years were not affected. The effect would be more recoveries of "old" birds banded some years before and of "young explain the poor fit between data and model, the improved fit when 1966 (or 1965 and 1966) is omitted, and the simultaneous increase in apparent survival (Table 2)

One further complication adds to uncertainty about the validity of the estimated survival rates. Estimates based on band recoveries tend to be low when compared with "safer" methods. In the past, this tendency was commonly niques (cf. Seber 1972). In the present case, the failure of general assumption underlying all estimating schemes the assumption of homogeneous parameter values (probabilities) - could be a problem. It appears quite likely that individual birds differ in "quality" and that this even affects survival. If so, the population segment that has supplied the present data - i.e., birds at most 10 years old - will have lower average survival than the adult
population in general (note that the average age of breeders population in general ($\mathrm{k}+\mathrm{s}$ (1 -s) for that the average age of breeders survival s and age at first breeding k). This is another difficulty caused by banding chicks only.

Estimates of survival rates for adult Common Murres Uria aalge have been obtained from banding data Birkhead 1974; Mead 1974), from controls of individually marked birds (Birkhead and Hudson 1977), and from the turnover at sites of birds belonging to the bridled morph
(Birkhead et al. 1985). The results lie between 0.88 and 0.94 , with the more reliable estimates in the upper half of this range. The populations involved were exposed to little, or no, hunting.

A comparison of these values with those obtained here suggests that Thick-billed Murres in Greenland suff reduced adult survival rates, i.e., higher than normal mortality. For reasons discussed above, this cannot be tested extent of murre hunting in Greenland and the observed population declines.
5.2. Survival of young birds

The total survival from banding through to the start of the fourth summer was estimated above for the two parts of Upernavik district, using recovery rates obtained from
bandings of adults. The estimated four-year survivals, about 15% in both cases, appear very low. To maintain population, total survival β through to breeding age in the present model is given by
$\beta=(1-\mathrm{s}) / \mathrm{m}$
here m is production of young per adult. Breeding probably first takes place in the fifth summer (cf. Birkhead and Hudson 1977 for U. aalge), so if $2 \mathrm{~m} \approx 0.7$ (Gaston and Nettleship 1981), β should be $0.37-0.49$ with the s val
btained here (0.87 and 0.83). In unexploited murre populations, with $s \approx 0.92, \beta$ should be at least as high as .23 to balance adult mortality. With $\mathrm{s}_{5} \approx \mathrm{~s}$, the estimated alues here become 0.13 for both populations.

It is very probable that recruitment in Greenland's all, the populations have gone down. Nonetheless, the stimated values probably represent serious underestimates mainly because effective banding numbers are much lower than reported numbers. This could be caused, for example y banding chicks too young to retain the bands, or by heavy mortality in the banded sample owing to disturbance rom the banding activities.

Another point is that survival and reporting rates in young birds, at least during the first year of life, may be
much more variable than corresponding parameters for much more variable than corresponding parameters for
adults in that case, a simple model as used here would be less suited to describe this part of the population process. There are strong indications that the recovery rate during the first winter is far from being constant (Kampp 1988b); hat first-year survival in some years may be very poor is suggested by the recovery pattern of the 1970 cohort
(Upernavik N), showing "normal" recovery numbers hrough to February 1971 but very few later on, even in subsequent years.
All factors taken together, immature survival is the most elusive of parameters describing the population dynamics of wild bird species. Owing to confounding with ispersal, mortality of young birds cannot be derived from tudies of individually marked birds either, and the surviva Hudson (1977) (recalculated at 0.23) is therefore a minimum value. Only under special circumstances can the effect of dispersal be approximately corrected for (e.g., Harris 1983, for the Atlantic Puffin Fratercula arctica).

One reason to stress the problems in obtaining good or even approximate estimates of immature survival rates that a very simple scheme to make such estimations from banding data has been published (Birkhead and Hudson最; Hudson 1985). The method was simply to put classical formula (Lack and Schifferli 1948):
$s=1-\sum_{i=1}^{\infty} R_{i} / \sum_{i=1}^{\infty} i R_{i}$
However, this formula demands complete data and is supposed to yield annual survival (not total survival hrough five years). It also assumes constant survival and recovery rates. So, for three separate reasons, the method
will not produce useful estimates, even in an approximate sense.
5.3. Recovery rates

Like immature survival, recovery rates (see Fig. 3) were obtained for Upernavik N and S by use of the meagre data on murres banded as adults. The estimates could therefore be poor; except for the first-winter recovery rate, so there is no reason to regard them as grave underestimates.

If all recovered bands were reported, recovery rate But the reporting probability must surely be less than one;
it may also vary somewhat between different parts of the country, so summer and winter rates are not strictly comparable. It is comforting that the two independent data sets, from Upernavik N and S , respectively, produce similar probably share the same winter range.

Despite the stated reservations, it is likely that Figure 3 , in relative terms, approximately reflects the actual situation, which could then be summarized as follows: the higher in the southem colonies near the town of Upernavik than in the more remote northern colonie Summer hunting affects mainly adult murres, with relative ly little impact on yearlings, which do not concentrate in any particular area at this time. Winter hunting takes mainly young-of-the-year, for which the rates in Figure 3 are certainly underestimated, but relatively few older birds. Young birds appear to be more vulnerable to hunting
older birds; this is known to be the case even in other hunted species. The depicted pattern of heavy shooting mortality in the breeding season is consistent with the observed pattern of geographically differentiated population decline rates, with colonies in densel inhabited areas faring worse than those situated farther from densely inhabited areas.

For Umanaq and Disko Bay, summer recovery rates were very roughly estimated relative to the Upernavik estimates. In Disko Bay, the magnitude was apparenty
similar to that in Upernavik S; in Umanaq, it was much higher, perhaps about 12%, which would suggest that about $15-20 \%$ of the birds were shot annually. It is not surprising that this population was wiped out.

The age distribution of shot birds cannot be calculated from the recovery rates, because the agedistribution in the population is not known with any pre recovery data either, because, owing to loss of older bands, adults will be underrepresented. By using only the ages up to 10 years and correcting the number of adults using the survival rate $s=0.85$, the proportions of first-year birds, older immatures, and adules become 8:40:52 in summer and 71:19:10 in winter; the proportions are rathe sensitive to the value of s adopted in the correction. Thick-billed Murres from Greenland winter both in central West Greenland and off Newlound land recoveries from Newfoundland are included in the calculations above. They comprise 40% of all winter recoveries. If reporting probabilities from Newfoundland and Greenland were similar, this would imply that winter hunting in the two regions killed similar proportions of the Greenland murre population. Considering that a reward system exists in Greenland, however, it may well be so, hunting of murres in Newfoundland has a somewhat larger impact on the populations in Greenland than is apparent immediately from the numbers available.

6. Conclusions

The Ministry for Greenland supported bird banding in order to obtain information useful in managing the living resources of the country. However, banding is not a very efficient method to obtain such data unless the project is carefully designed. Considering the magnitude of the
surprisingly vague. Excluding migrants and visitors, it seems certain that more murres are shot in summer than in winter, albeit with regional differences in hunting pressure during summer; and that summer hunting takes mainly dults and winter hunting mainly immatures (in particular young-of-the-year). Quantitative estimates are less certain. Hunting seems to have a measurable effect on survival; harvest levels amount to at least a few percent of the murres annually and, depending on reporting probabilities, may consistent with observed population declines

Acknowledgements

I would like to thank P.G.H. Evans and A.J. Gaston for helpful and constructive comments on the manuscript.

Appendix 1

Derivation of formulas 1 and 2
The modified Haldane formulas 1 and 2 may be derived in several ways. If one follows the origina derivation by Haldane (1955), all that is needed is that the

$$
\mathrm{s}^{\mathrm{i}-1}(1-\mathrm{s}) \quad(\mathrm{i}=1,2, \ldots)
$$

must be normalized so as to add up to unity:

$$
\frac{s^{i-1}(1-s)}{1-s^{n}} \quad(i=1,2, . ., n)
$$

yielding the \log-likelihood:

$$
\begin{equation*}
L=\sum_{i=1}^{n} R_{i} \ln \frac{\mathrm{~s}^{j-1}(1-s)}{1-\mathrm{s}^{n}} \tag{Al}
\end{equation*}
$$

The ML-estimate of s is obtained by solving:

$$
\begin{equation*}
\frac{d L}{d s}=\sum_{i=1}^{n} R_{i}\left(\frac{i-1}{s}-\frac{1}{1-s}+\frac{n s^{n-1}}{1-s^{n}}\right)=0 \tag{A2}
\end{equation*}
$$

i.e. (with $\sum_{i=1}^{n} R_{i}=R$):

$$
\begin{equation*}
\frac{1}{s}\left(\sum_{i=1}^{n} R_{i}-R\right)-\frac{R}{1-s}+\frac{R n s^{n-t}}{1-s^{n}}=0 \tag{A3}
\end{equation*}
$$

or, after multiplication by s / R (and using the identity or, atter multiplication
$1+s /[1-s]=1 /[1-s]):$

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} i R_{i}}{R}-\frac{1}{1-s}+\frac{n s^{n}}{1-s^{n}}=0 \tag{A4}
\end{equation*}
$$

which is formula 1.
The standard error is estimated by:
$\mathrm{SE}^{-2}=\frac{-\mathrm{d}^{2} \mathrm{~L}}{\mathrm{ds}^{2}}=-\sum_{i=1}^{n} \mathrm{R}_{\mathrm{i}}\left(-\frac{\mathrm{i}-1}{\mathrm{~s}^{2}}-\frac{1}{(1-\mathrm{s})^{2}}+\right.$

$$
\begin{equation*}
\left.\frac{\mathrm{n}(\mathrm{n}-1)^{\mathrm{n}-2}\left(1-\mathrm{s}^{\mathrm{n}}\right)+\left(\mathrm{ns}^{\mathrm{n}} 1\right)^{2}}{\left(1-\mathrm{s}^{\mathrm{n}}\right)^{2}}\right) \tag{A5}
\end{equation*}
$$

Formula A2 may be rewritten as:

$$
\begin{equation*}
\sum_{i=1}^{n} R_{i} \frac{i-1}{s^{2}}=\frac{R}{s}\left(\frac{1}{1-s}-\frac{n s^{n-1}}{1-s^{n}}\right) \tag{A6}
\end{equation*}
$$

which, inserted in formula A5, yields.

$$
\begin{align*}
\mathrm{SE}^{-2}= & \frac{\mathrm{R}}{\mathrm{~s}}\left(\frac{1}{1-s}-\frac{n s^{n-1}}{1-s^{n}}+\frac{s}{(1-s)^{2}}-\right. \\
& \left.\frac{\mathrm{n}(\mathrm{n}-1) s^{n-1}-n^{2} \mathrm{~s}^{2 n-1}+n s^{2 n-1}+n^{2} s^{2 n-1}}{\left(1-s^{n}\right)^{2}}\right) \\
= & R\left(\frac{1}{s(1-s)^{2}}-\right. \\
& \left.\frac{\mathrm{ns}^{n-2}-n s^{2 n-2}+n(n-1) s^{n-2}+n s^{2 n-2}}{\left(1-s^{n}\right)^{2}}\right) \tag{A7}
\end{align*}
$$

which is equivalent with:

$$
\begin{equation*}
\mathrm{SE}^{-2}=\mathrm{R}\left(\frac{1}{\mathrm{~s}(1-\mathrm{s})^{2}}-\frac{\mathrm{n}^{2} \mathrm{~s}^{n-2}}{\left(1-\mathrm{s}^{\mathrm{n}}\right)^{2}}\right) \tag{A8}
\end{equation*}
$$

which is formula 2.
In this paper, the method was applied to birds banded as chicks, and the first few years of recovery had to be excluded. When the recoveries so included are from should be replaced by $\mathrm{R}_{\mathrm{i}+\mathrm{m}-1}$, with everything else being unchanged.

In the present case, only a single row of recoveries was considered, and the method might just as well be scheme for incomplete recovery data may be modified for truncation in a similar way.

The by-catch of Thick-billed
 Murres in salmon drift nets off
 West Greenland in 1988

Knud Falk and Jan Durinck

Ornis Consult Ltd., Vesterbrogade 140, DK-1620 Copenhagen V, Denmark

Abstract

The by-catch of Thick-billed Murres Uria lomvia in the domestic salmon fishery in West Greenland was surveyed in 1988. Based on interviews with 51 fishermen (of 893 licensees), by-catch rates, fishing effort, and fish determined. Among the large vessels, 56% fished outside baseline ("offshore," max. $9-10 \mathrm{~km}$), whereas only 12% of the small boats fished in this area. Most (65%) of the fish were landed by small vessels. Fishing effort had two peaks: late August - early September, and early October. Because of a new quota system in 1988, this pattern differs from that of earlier years, when fishing effort was concentrated at the Monofilament drift nets set in long chains were the most common gear
About 1150 murres were reported drowned. Seven of 27 drowned murres were Common Murres Uria aalge probably of local origin. By-catch was almost exclusively observed in the northern part of the fishing area, between Nuuk and Disko Bay. It is estimated that less than 3000 100 times less than the losses estimated in the early 1970 s. The problem has been reduced because large foreign ocean going vessels were excluded from salmon fishing in Greenlandic waters after 1975, and because the domestic Greenland fleet never shifted significantly towards larger vessels and offshore fishery. Furthermore, the reduced salmon quotas are usually met early in the autumn before the murres approach the coast and enter the fjords.

Résumé

On a étudié les prises accidentelles de Marmettes de Brünnich Uria lomvia, dans le cadre de la pêche nationale du saumon de l'Ouest du Groënland, en 1988. On a pu déterminer, d'après les entrevues avec 51 pêcheurs (sur 893 titulaires de permis), les taux de prises accidentelles, l'effort de pêche et les zones de pêche des grands $(>9 \mathrm{~m})$ et des bateaux ont pêché en dehors de la limite de base («en haute mer», max. $9-10 \mathrm{~km}$), tandis que seulement 12% des petits bateaux ont pêché dans cette zone. La grande partie (65% du poisson est débarqué par les petits bateaux. L'effort de pêche a connu deux périodes de pointe: fin août/débu septembre, et début octobre. Un nouveau système de contingents ayant été introduit en 1988, ces dates diffèren concentrée au début de la saison de pêche du saumon, soit avant la mi-septembre. L'engin de pêche le plus commun
est le filet dérivant en monofilament rattaché à d'autres pour former une longue chaîne.

Les donneés recueillies font état d'environ
1150 marmettes noyées. Sept d'un groupe de 27 marmettes noyées étaient des Marmettes de Troill Uria aalge, probablement d'origine locale. Les prises accidentelles on pêche, entre Nuuk et Disko Bay. Il semble que moins 3000 marmettes se seraient prises dans les filets en 1988. Cette évaluation approximative est cent fois moins grande qu'au début des années soixante-dix. Le problème a diminué à la suite de l'exclusion des grands navires océaniques étrangers de la pêche du saumon dans les eaux du Groënland, après 1975, et parce que la flottille nationale les gros bateaux et la pêche hauturière. De plus, les contingents de saumon sont réduits et sont atteints aus les début de l'automne, avant que les marmettes s'approchent de la côte et entrent dans les fjords.

1. Introduction

In the early 1970 s, huge numbers of seabirds, mainly Thick-billed Murres Uria lomvia, were killed annually in the intense drift-net fishery for salmon Salmo salar off West Greenland. Tull et al. (1972) estimated that $230000-$ 820000 murres drowned annually between 1969 and 1971. In a more rigorous study, Christensen and Lear (1977) estimated a by-catch of approximately 200000 murres in 972 for the nondomestic fishing fleet. This high gill-net mortality probably contributed to marked declines in the populations of murres in W
Waterston 1976; Evans 1984).

The non-Greenlandic (Norwegian, Faroese, and Danish) fishing fleet was phased out by 1975, and that largely eliminated the net-mortality problem (Evans and Waterston 1977). However, it was later predicted that changes in the domestic fishery would lead to an increase in the by-catch of murres off West Greenland (Piatt and Reddin 1984).

Because no fieldwork on the mortality of murres due to net entanglement had been conducted in West Greenland since 1972 (Christensen and Lear 1977), a survey of the seabird by-catch in the domestic salmon fishery was carried out by the authors in 1988. In this paper, we report on the entanglement of murres in fishing nets and estimate practised in recent years is described in detail to aid in the interpretation of the by-catch data obtained in 1988 and to xplain changes in the potential risk of the fishery to the murres.

2. Method

Fieldwork was conducted during the autumn of 198 and the winter of 1989. Information on the salmon fishery was obtained from licence and trade statistics from the The GFLCA supplied data on salmon quotas distributed in 1988, daily trade of salmon reported from the salmon processors, and fishery development during the 1980 s. Throughout this paper, quotas and amounts of salmo anded are given in tonnes.

Inuit place names are used throughout this paper, but readers may be more familiar with the Danish names, which are listed in Appendix 1.

Data on murre by-catch in fishing gear were obtained by interviewing fishermen at fishing wharves or by telephone at the end of the season. With help from a Greenlandic interpreter, we called fishermen in the following districts: Qaqortoq, Paamiut, Nuuk, Maniitsoq,
Kangaatsiaq, Sisimiut, Aasiaat, and Qeqertarsuaq (Fig. 1) Fifty-one fishermen supplied information included in this paper. The fishermen were asked to provide details on: 1) numbers of murres drowned in their nets;
2) number and length of nets used
(3) number of fishing days in the periods before
(period 1) and after (period 2) 25 September (see Results); and
(4) location of fishing effort inside or outside baseline (cf. Christensen and Lear 1977; in this paper, called who fished offshore were asked to specify distance from the coast.
The sample of interviewed licensees was biased in favour of those fishermen using larger vessels. To minimize the influence of this bias on the estimate of total by-catch, arge- and small-vessel by-catch rates were calculated eparately. The term "large" vessels is applied here to boat $\leq 9 \mathrm{~m}$ long.

On three occasions, we boarded salmon boats to investigate by-catch: JD fished on a 14-m cutter in Paamiut district during 24-25 August, and KF tished from dinghies at Qeqertarsuaq on 5 September and at Nuuk on 4 October Vessels landing their catch were observed in the harbours of Arsuk (Paamiut district) on 24-26 August, Nuuk on
$24-26$ August, Maniitsoq on $16-22$ October, Sisimiut on 30 August - 4 September, and Qeqertarsuaq on 5-8 September.

Christensen and Lear (1977) and Piatt et al. (1984) estimated total by-catch from the total fishing effort and number of birds caught per unit effort in different areas In calculating the by-catch in West Greenland, Tull et al. (1972) used the ratio of salmon to murres caught on research vessels. A similar approach is necessary here, and
extrapolations are based on data supplied by the interviewed fishermen on murre by-catch rates, fishi effort, catch of salmon per unit effort, and the trade statistics on fish landed in each district and period Estimates were made by multiplying the murre by-catch rates (birds/net $\cdot \mathrm{km} \cdot \mathrm{d}$) by the fishing effort per tonne of salmon (net $\cdot \mathrm{km} \cdot \mathrm{d} / \mathrm{t}$), by the amount of salmon caught (t) and by the share of the quotas taken by large and small
vessels inshore and offshore, respectively. Specific by-catch rates for small and large boats for inshore and offshore fisheries in each of the two fishing periods were applied.

Figure 1 in West Greenland. Greenlandic and Danish names are listed in
Dispendix 1.

. Results
3.1. Regulation and timing of the salmon fishery After 1975, only fishermen living or registered in a Greenlandic community could obtain a licence. Since 1974,
the annual salmon quota has been divided into a "free" quota, which all licensees can exploit in free competition, and "local" quotas, reserved for fishermen with small vessels (Table 1). The total quota has been almost halved since foreign vessels were excluded from the salmon fishery in West Greenland in 1975.

Since 1979, there has been an upper limit to the size of vessels allowed to fish salmon, and the legal limit has radually decreased to the present 50 Gross Register Tonnage (GRT, Table 1).
since the introduction of an official salmon season in 1975, the opening date has varied between 1 and 25 August, with no clear trend (Table 1)

In 1988, 893 fishermen had a personal or "boat" quota, to be met before 25 september. After that date, the licensess could fish for the remaining local quota in free district (except Narsaq) were distributed quotas in each

$\overline{\text { Tabie } 1}$								
Year	$\begin{aligned} & \text { Opening } \\ & \text { (August) } \\ & \text { (aus) } \end{aligned}$	Maximumsize of boat(GRT)	Quotas (1)					
				ocal				
			Free	District ${ }^{\text {b }}$	Foreign	Total		
1973	-		1100		852	1952		
1974	-		1050	5	846	1946		
1975	20	-	841	350	731	1922		
1976	10		900	291		1191		
1977	10	-	990	291		1191		
1978	10		959	232		1191		
1979	1	150 c	959	232		1270		
1980	1	150	958	232		1253		
1981	25	150	1038	232		1270		
1982	25	150	1021	232		1253		
1983	10	150	958	232		1190		
1984	18	150	638	232		870		
1985	1	150	620	232		852		
1986	15	80	649	260		909		
1987	25	50	533	356		889		
1988	$25^{\text {d }}$	50	${ }_{800}$	104		${ }_{994}$		
a Data are from the Ministry for Greenland and the Greenland Home Rule official - regulations. - After the free quota was fished out, only vessels with a total iength less than ${ }^{8-9 \mathrm{~m} \text { were allowed to continue fisting for the district quotas. }}$ c Vessels between 80 and 150 GRT that had shrimp quotas as well were limited to a total salmon catch of 15 t . d Opening date for salmon fishery is 1 August for the three southernmost districts (see Fig. 1).								

with small vessels, and most of those were outboardpowered dinghies. Overall, about 72% of the personal quotas were given to "small-boat" fishermen, who comprised about 90% of all licensees.

The introduction of "personal" quotas in 1988 (October) and has prolonged the fishing season (Fig. In 1985 and 1986, when the seasons started earlier (Table 1), the fishery ended by late August in some districts and during early September in others (Bфllehus 1986; Thorsфe 1989). In some years, the fishery failed. For example, in 1983 and 1984 , only 33% and 26%, respectively, of the total quota but the later fishing effort was probably minimal (Pedersen 1984).
3.2. Fishing areas and gear

The southern region of the west coast between Maniitsoq and Nanortalik (Fig. 1) is the main salmon fishing area, and 86% of the total catch of salmon in 1988 taken in this region
From Paamiut, the composition of the fishing fleet is known: salmon licences were given to 49 outboard-
powered dinghies, 14 cutters of $20-22$ feet, nine cutters of 23 -29 feet, 18 cutters 30 feet long, and 20 vessels longer than 30 feet. Among 362 tishermen from all along the west coast, 65% of the total landings derived from small vessels.

About half (44%) of the interviewed fishermen operating from large vessels fished offshore (Table 2). The remaining large vessels fished within the outer skerries dinghies fished. In total, 88% of small vessels fished in inshore waters. Offshore fishing was more common in northern areas and usually took place within about 3.5 km of the coast, although a tew fishermen fished up to $9-10 \mathrm{~km}$ offshore.

A few fishermen used multifilament gill nets, but monofilament nets were much more common. Since 1982, nets had a length of about 30 m (range $15-60 \mathrm{~m}$). For drift

 beginning of the season. The year 19888 differs because of the introduction of

netung, many nets were linked together in a chain. Larg vessels used an average of 101 nets ($\mathrm{SD}=38, \mathrm{n}=15$) p chain, for an average total length of about 2800 m
$(\mathrm{SD}=1400 \mathrm{~m}$. Small vessels and dinghies used an averag of 55 nets (SD) $=29, \mathrm{n}=24$) totaling about 1850 m ($\mathrm{SD}=930 \mathrm{~m}$), excluding six that used single nets fixed to the shore.
3.3. Reported murre by-catch

The fishermen we interviewed reported a total of 84 murres drowned during the entire salmon fishing season in 1988. Only two vessels reported catching more than caught about 300 birds, giving a total known by-catch of about 1150 birds. In South Greenland, by-catch was minimal: only one large vessel in Paamiut reported 30 murres, and no birds were reported taken in the three southernmost districts by the two interviewed fishermen. Other sources confirmed then sels in southern districts.

During our visits to fishing harbours, we saw only 27 drowned murres: eight in Sisimiut at the beginning of
the salmon season, and 19 in Nuuk in early October. Seven of the 27 observed drowned murres were Common Murres Uria aalge. Except for two Common Eiders Somateria mollissima, no other species were observed entangled, but some fishermen reported that nets fixed to the shore caugh Black Guillemots Cepphus grylle foraging along the coastline.

All of the "major"' incidents of net entanglement occurred in the two northernmost of the important salmon fishing districts - Maniitsoq and Sisimiut. Two-thirds of the birds were caught offshore (Table 3). The murres caught inshore derived mainly from a single vessel from Sisimiut, which caught 200 birds in October. Calculated by-catch rates were thus low. For those by-catch incident for which we have data on timing, the number of murres caught per unit effort was higher after 25 September and
was especially high for the large vessels fishing offshore (Table 4).

Table 3 By-catch							
Distric	No. of licensees			No. of murres in by-cath			\% of tota murres inby-cath
	$\begin{aligned} & \text { Iner } \\ & \text { viewed } \end{aligned}$	Reporting by-catch		Oo. of m	Inshore	Total	
	${ }^{2}$	0		0		0	
PAM	13	1		30	0	30	3.5
NUK	8	3	37.5		20	70	8.3
man	19	7	36.8	430	析	478	
S	6	4	66.7	8	200	218	,
QEQ	3	2	66.7	52	0	52	6.1
Total	51	17	33.3	580	268	848	100.0

3.4. Estimated total murre mortality

Because most murre by-catch occurred in Nuuk, Maniitsoq, and Sisimiut districts, only these areas are included in the extrapolation. In those districts, about
2500 murres were drowned in salmon gill nets in 1988 (Table 5). The sample of interviewed fishermen in Paamiut and Qeqertarsuaq is too small to warrant extrapolation, but the data from Qeqertarsuaq suggest that about 300 birds were drowned west of the island Disko.

4. Discussion

Among the few drowned birds observed, a rather large proportion (7/27) were Common Murres, all recorded only about in late August. We believe this is fortuitous, as West Greenland during September were Common Murres (Falk and Durinck 1989). In the offshore by-catch survey in 1972, only two of 926 identified murres were Common Murres (Christensen and Lear 1977).

The presence of Common Murres may give a hint about the origin of the birds drowned in the early salmon
fishery season. In Greenland, the Common Murre breeds only in small numbers near Maniitsoq and Paamiut, and murres (both species) from those colonies may be vulnerable as they move northwards along the coast, after leaving the cliffs just before the salmon fishery starts. At present, net entanglement may be a greater problem to the small Greenlandic population of the Common Murre than o the Thick-billed Murre.
origin of the drowned murres that can update the summary by Evans and Nettleship (1985).

Table 4 By-catch rates of murres (murres/net $\cdot \mathrm{km} \cdot \mathrm{d}$)			
Boat size/ fishing zone		Period 1	Period 2
Boats >9 m Offshore Inshore		${ }_{0}^{0.65}$	6.48 0
Boats $\leq 9 \mathrm{~m}$ Offshore Inshore		NA ${ }^{\text {a }}$ (0.23	NA 0.90
${ }^{\text {a }} \mathrm{NA}=$ not applicable.			
Table 5 Total estimated by-catch of murres in West Greenland, $1988^{\text {a }}$			
District/fishing zone	Estimated murre by-catch		
	Period 1	Period 2	Total
$\overline{\text { PAM }}$ $\begin{aligned} & \text { Offshore } \\ & \text { Inshore } \end{aligned}$			${ }_{30}^{0}$
$\begin{aligned} & \begin{array}{l} \text { NUK } \\ \text { Offshore } \\ \text { Inshore } \end{array} \end{aligned}$	$\begin{gathered} 21 \\ 143 \end{gathered}$	72 192	$\begin{array}{r}935 \\ \\ \hline 35\end{array}$
$\begin{aligned} & \hline \text { MAN } \\ & \text { Offshore } \end{aligned}$ Inshore	$\begin{gathered} 30 \\ 380 \end{gathered}$	${ }_{947}^{190}$	220 1327
SI Offshore Inshore	$\begin{array}{r} 50 \\ 116 \\ \hline \end{array}$	162 148	212 264
$\begin{aligned} & \text { OEQ } \\ & \text { Ofshore } \\ & \text { Onshore } \end{aligned}$			300 0
Total	740	1711	2780

Based on by-catch rates (Table 4) and proporion of quotas fished inshore
offshore by large and small vessels in each period and area, respectively.

In some areas, stationary nets at skerries and along hores may take some Black Guillemots, as pointed out by Christensen and Lear (1977). Our fieldwork focused on the murres and did not intend to quantify all seabird mortalit

Because of our limited data on fishing and by-ca
the by-catch estimate determines only the order of magnitude of the problem. Our evidence indicates that a reduction in murre by-catch by two orders of magnitude, from 10^{5} to 10^{3} murres, has occurred in Greenlandic waters since the early 1970 s. It might be suspected that fishermen underreported by-catches because they considered it prudent not to emphasize the problem. However, most
fishermen seemed open to the issue, and, in a few cases where double-checking was possible, their by-catch report were generally confirmed. Furthermore, our observations in the harbours revealed few drowned birds, and we saw none in the nets we helped to haul.

Other anecdotal information supports our conclusion. In Nuuk, many of the large foreign salmon boats used to have a number of special metal forks installed on the deck to which the murres were attached while they
were being disentangled from the nets. Today, no vessels have similar gear. Residents of Sisimiut and Qeqertarsuaq informed us that in the early 1970s, truckloads of drowned murres were fed to the numerous sled dogs, whereas in recent years only birds shot for human consumption have been obtainable at high prices in local markets.

What accounts for the dramatic decline in by-catch over the last 20 years? The main factor appears to be the
very reduced fishing activity in offshore waters. Further, owing to reduced quotas, the fishery stops earlier in the autumn, although the 1988 season was a slight exception
because of the new quota system. Even in years with late opening dates, the fishing effort has been concentrated in offshore and have not yet entered inshore waters where most salmon are caught. This is consistent with the conclusion of Piatt and Reddin (1984) who, based on the data from Christensen and Lear (1977), considered the timing of the season to be "probably the most significan (change in domestic fishery) in terms of murre netoffshore even in late September (Falk and Durinck 1989), as he murres from East Greenland and the Northeast Atlantic have not yet reached their wintering quarters (Kampp
1988b).
Besides time shift of fishing effort, Piatt and Reddin (1984) listed a number of changes in the domestic fishery that could lead to an increased murre by-catch:

1) a shift from multifilament nets set in fjords and
as offshore;
(2) a shift from small "open boat" fishing vessels to many mid-sized and some large ocean-going vessels;
(3) a shift from daylight fishing to day and night
fishing; and
(4) a northward displacement of fishery instead of fishing effort widely distributed along the coas Below we will address each of these four points.
(1) Shift to monofilament nets - Light-coloured monofilament nets certainly are the most common gear used today. However, because the murres and the salmon and space since the mid-1970s (see below), the shift in fishing gear towards monofilament nets does not seem to have had the negative effect that had been expected, although these effects are known from other areas, such as (Piatt et al. 1984; Evans and Nettleship 1985; Atkins and Heinemann 1987; Piatt and Nettleship 1987). Further, "ghost nets" are unlikely to cause many problems because fishermen have to keep a relatively close watch on nets set in coastal waters.
2) Shift to larger vessels - In accordance with legislation, large vessels were allowed to fish salmon until recently. However, few large Greenlandic vessels ever participated in the fishery. In 1981, 1982, and 1983, vessels of more than 80 GRT took less than 2% of the total catch each year. Therefore, the reduced maximum size of vessels set by the domestic fishing fleet (Pedersen 1983; Thorspe 1989). It is unknown to what extent small cutters have replaced dinghies since the 1970s, but most boats are still small cutters and dinghies
(3) Shift to day and night fishing - The vessels operating offshore in large fiords and bays usually fish overnight. However, most fishermen still fish inshore, so there is no reason to suspect that day and night fishing fishery than previously.
(4) Northward displacement of fishery - Based mainly on data from 1979 and 1979, when 67% and 29% of the Salmon, respectively, was landed south of Nuuk, Piatt and considerably nothward, which is significant in terms of
murre net entanglement. In the years between 1985 and $1988,51 \%, 56 \%, 59 \%$, and 62%, respectively, of the salmon was landed in Nuuk and southwards. One exception wa salmon was landed south of Nuuk. In general, however, the southern and central part of the west coast is the main fishing area. From Sisimiut northwards, the small quotas are rarely met.

Fortunately, most of the predictions made by Piatt and Reddin (1984) did not materialize. Although the domestic fishery did change in some respects, the anticipated expansion to an offshore, large-vessel fishery has not occurred, and, consequently, the by-catch of murres mortality. The observed by-catch is minimal compared with that in other areas. For example, off eastern Newfoundland, more than 22000 murres, mostly Common Murres, were estimated drowned annually in fishing gear between 1981 and 1984 (Piatt and Nettleship 1987). Ou estimated mortality from net entanglement is almost negligible compared with the numbers that are currently Greenland and Newfoundland coasts (Elliot 1987; Falk and Durinck 1990).

It appears that the regulations for the 1988 fishery were an experiment, because the personat quotea wish effort back to the start of the season. As the salmon is a resource reserved for the small fishermen, most of the fishing probably will continue to take place in inshore shifted towards a later date, we expect that net net erious source of mortality

Acknowledgements

The work was part of the project entitled "A quantitative description of the extent and effect of the winter hunting and gill-net fishery upon the Thick-billed Museums Greenland Investigations, Copenhagen, and unded by The Commission for Scientific Research in Greenland, with additional support from the Nuna Fund and World Wide Fund for Nature (WWF)/Denmark. We wish to thank Prof. B. Muus, who was responsible for the project, the supervisors J. Fjeldså, K. Kampp, H. Meltoft (Zoological Museum), H. Thing, H. Ettrup (Greenland interpreter Nuka Kleemann.

We are grateful to the Danish Defence Command for supplying aerial transportation between Denmark and Greenland, to Greenland Fishing Licence Control Authority, which provided valuable data on the salmon fishery, and to all the fishermen and hunters who willingly shared their knowledge. The Greenland Home Rule, Department of Environment and Wildlife Management
provided facilities during our stay in Greenland. This manuscript was greatly improved by comments by J.F. Piatt and R.D. Elliot

Appendix 1 Greenlandic and Danish geographic names and their abbreviations used in the tables		
Greenlandic name	Abbreviation	Danish name
Nanortalik		Nanoralik
	QAQ	Julianehab
Arsuk		Arsak
Paamiur	pam	Frederikshåb
Nuuk	NUK	Godthab
Maniiisoc	MAN	Sukkerıoppen
Sisimiut	Sis	Holsteinsborg
Kangaatiaq Assiaat		Kangaatsiaq
Qasigiannguit		Chrissianshab
Iluissat		Jakobshavn
Qeqeerarsuaq	Qeq	Godhavn
Uummannaq		Umanak
Upernavik		Upernaxik

Abstract

Thick-billed Murres Uria lomvia, known locally as turrs, are harvested during the late fall and winter in coastal waters of Newfoundland by hunters in small boats powered by outboard motors. The hunt was historically a valuable subsistence source of winter meat and remains an mportant winter activity. Present regulations that limit the permitted the development of substantial illegal commercial sale. Harvest levels apparently increased until the 1980 as hunting equipment and access improved, and current harvest estimates of between 600000 and 900000 birds appear to exceed the sustainable yield. Although population declines have occurred at Greenland colonies affected by additional summer hunting, recent decreases have not been confirmed at major Canadian colonies. A public information program explaining the numbers, resulted in widespread support among Newfoundland hunters for practical harvest restrictions, such as daily and season bag limits and shorter open seasons. Enforcement agencies and wildlife conservation groups also back the need for effective controls to be developed with input from
concerned parties. concerned parties

Résumé

La Marmette de Brünnich Uria lomvia est chassée, vers la fin de l'automne et en hiver, dans les eaux côtières de Terre-Neuve à partir de petites embarcations munies de moteurs hors-bord. Historiquement, la chasse était une mportante source de subsistance pendant l'hiver et ell demeure une importante activité de cette saison. Le reglement actuel, qui restreint la saison de chasse à sept
mois, sans toutefois limiter les prises quotidiennes, a permis l'établissement d'un important commerce illég Les niveaux de captures ont augmenté apparemment jusqu'aux années quatre-vingt, grâce à l'amélioration du matériel de chasse et de l'acces, et les prises actuelles, qui seraient de l'ordre de 600000 à 900000 oiseaux, semblent dépasser le rendement soutenu. Bien que les populations de autorisée en été aient diminué, on n'a pas confirmé de baisse récente des principales colonies canadiennes. Un programme d'information publique, décrivant le nombre,
les sources et les caractéristiques de reproduction des marmettes a suscité chez les chasseurs de Terre-Neuve un soutien général aux restrictions pratiques de la chasse, telles que les limites de prises quotidiennes et saisonnieres d'application des règlements et les groupes de conservation de la faune sont aussi en faveur de la mise en place de moyens de contrôle efficaces avec la participation des parties concernées.

1. Introduction

Large numbers of murres, locally called turrs, are raditionally harvested for winter food from small boats in Newfoundland's coastal waters. Their winter distribution is primarily affected by the movements of pack ice and the availability of food (Elliot et al. 1990). Most birds shot are or northern turrs), although smaller numbers of Common Murres U. aalge (Newfoundland turrs, murres, or Baccalieu birds) are also taken. I refer to populations of murres and harvests of turrs in keeping with the terminology used by the people primarily concerned with the birds - the biologists and hunters, respectively

Most hunters leave small outport communities at dawn, in crews of two or three men, one of whom drives flocks that collect to feed on small fish or crustaceans (Elliot et al. 1990). Hunters shoot most birds on the surface of the water and pick them up with dip nets. They spend the afternoon or evening in a shed or basement, "picking" plucking) or skinning the birds, cleaning them, and dividing up the harvest among the crew. The turrs are usually gutted and the feathers removed after loosening in oiling water. Most turrs are either consumed fresh by the illegally sold.
Althoug
seasonestersent in appreciable numbers only for two or three months in most areas. Turrs are taken in Labrador in October-November, along the Northern Peninsula of Newfoundland and Notre Dame Bay in November-December, from Bonavista Bay to December to February along the south coast (Fig. 1)

The long season and a lack of other harvest restrictions reflect the present classification of murres as nongame birds under the Migratory Birds Convention. However, current harvest levels appear to be close to th sustainable yields of the populations (Nettleship and
多

Chardine 1989), and new regulations are being considered to reduce the annual kill. This paper discusses the historical background and cultural role of the turr hunt, the characteristics of the hunt, and its effects on murre
populations, all of which must be considered in manag populations, all of which must be considered in managing
2. The history of Newfoundland turr hunting and management
2.1. Prior to Confederation with Canada in 1949 Newfoundlanders traditionally harvested a variety of seabirds, including Common Murres, Black-legged arctica from local colonies, Sooty Shearwaters Puffitercula griseus and Greater Shearwaters P. gravis when fishing inshore and on the Grand Banks, and Thick-billed Murres along with smaller numbers of Common Murres, Black Gund Domots Cepphus grylle, Razorbils Alca torda, puffins, and Dovekies Alle alle during the winter months (Montevecchi and Tuck 1987). These were part of an annual cycle of harvest of wild food, along with waterfowl
caribou, hares, seals, and fish. The hunting of seabirds was legal, with some restrictions, until Newfoundland joined Canada in 1949 (Montevecchi and Tuck 1987), and murres and their eggs were specifically protected from 1 June to 31 August (Tuck 1953).

In most outport communities, Thick-billed Murres were a staple for two or three months in late fall or winte because of their large size (about 1 kg) and relative was relatively low in areas where large sea ducks, such Common Eiders Somateria mollissima, were available
(Tuck 1953). Where turrs were plentiful, they were or imes used as food for sled dogs and bait for codfish.

As recently as the early 1940 s , turrs were harvested by fishermen who rowed out in small wooden boats. These
trips often lasted most of the day, with risks to the hunter of being caught by shifting pack ice or changes in weather However, older hunters who used these techniques suggest that the birds then fed closer to land, often within several hundred metres of the shore, so that the distances that hunters traveled were usually shorter than today.

Motorboats powered by two-cycle motors became common in the mid-1940s and had largely supplanted the smaller hand-rowed dories by the early 1950 s (Tuck 1953).
Four men usually hunted from each boat as a community activity. Although slow in comparison with today's boats, they were faster than rowing or sailing boats and very reliable, and they extended the turr hunter's range and harvesting capacity.

Prior to the 1960 s, most turrs were killed with large nuzzle-loading shotguns. Although reports of many bird being killed in one shot are common, it is likely that few was limited by such factors as the time needed to locate and approach feeding birds and collect the shot turrs from the water. Most older hunters say they averaged $15-30$ birds per boat on a successful day and that kills of over 100 turrs were rare, although this varied among regions.

Tuck (1953) quoted newspaper articles to indicate the extent of the daily kill. Some examples: extraordinary numbers on the northeast coast with up to 150 per day (13 February 1947); up to 1000 per boat during the fall hooting in Notre Dame Bay (16 January 1948); plentiful with up to $30-48$ per trip near Nipper's Harbour
19 December 1951); fairly good supplies in Conception Bay, with two boats bagging 40 per day (9 April 1952); and Tuck's observations of 64 men in 18 boats shooting an 28 March 1952 birds per boat from Hants Harbour on March 1952.
Although

Although some turrs were cooked fresh, most were preserved in a brine solution, by cooking and bottling in lass jars, or by freezing in a shed, a snowbank, or the open iir. Preservation meant turrs could be consumed beyond he period that birds were present and could be accumuated for sale. Salted and canned turrs were sold legally and upported a minor canning industry, with one company elling up to 300 cases of Newfoundland turr annually, customarily bartered for other food or services within ommunities, and some were sold to those who were unable to hunt.

The relative isolation of most outports on the ortheast coast because of winter ice suggests that the number of birds sold may have been relatively small in the first half of this century, before winter road connections had been established. However, Tuck (1953) reported an by steamer to sell for 50 cents each, and he estimated that up to 50000 were sold annually this way
2.2. The effects of Newfoundland joining Canada:

1949-56
On 1 April 1949, Newfoundland became the 10th Canadian province and subject to the restrictions of the The Act implemented the Migratory Birds Convention agreed between the United States and Canada in 1916 to
onserve populations of birds shared between the two countries. It prohibited the hunting of murres, which people. Continued access to the turr harvest by Newfoundlanders was not a condition of entering Confederation, and the change in the status of murres was not discussed prior to the union (Higgins, in Hansard 1951:1241). L.M. Tuck, the first federal wildlife biologist in Newfoundland, stated in November 1949 that MBCA regulations prohibiting the shooting of turrs would not be the hunting of other nongame seabirds would be prohibited (St. John's Evening Telegram, 8 November 1949). Murres were apparently singled out because they were the most valued group in providing fresh meat in the winter when it was most needed.

Turr-hunting privileges were to be removed in southern Newfoundland beginning with the 1950-51 season (St. John's Daily News, 20 October 1950). This area, which ice and thus had access to steamship service and fishing in winter. The hunt was to stop around the northeastern part of the island the next year. This plan resulted in much anger, little compliance among hunters, and an intensive petitioning campaign with over 15000 signatures (Hansard 1951:1244). An unsuccessful motion was presented in the Canadian House of Commons in March 1951 to amend the MBCA to permit the taking of seabirds in Newfoundland (Hansard 1951). Arguments centred on the need of rural hunters assumed that murre populations could not be hur because their numbers were so great. As a result of the campaign, the prohibition of the hunting of murres was not enforced pending further study (St. John's Daily News, 22 June 1951).

Tuck set out to investigate the hunt, and the biology, distribution, and population size of the murres, to He concluded that almost all turrs harvested were Thickbilled Murres, and that the United States had little at stake in the management of the hunt, as few wintered south of Nova Scotia (e.g., Tuck 1953). He later showed that breeding numbers were high at the Arctic colonies he visited, including Akpatok Island, Digges Island, and Cape Hay (e.g., Tuck 1955, 1957). He estimated an annual 1950s, from about 5 million wintering off Newfoundland (Tuck 1953, 1961). This would have been within the sustainable yield of the population of Thick-billed Murres in the eastern Canadian Arctic and western Greenland, then estimated at 10 million individuals (Tuck 1961).

As a result of Tuck's work and continued pressure from rural Newfoundlanders, an agreement was reached to authorize subsistence hunting of murres. A federal order-inof Newfoundland and Labrador could hunt turrs if they resided and hunted in rural areas, if they were "in need," and if they took them for human food only and did not offer them for sale, between 1 September and 31 March inclusive. This gave protection to breeding birds and set the guidelines for the hunt as it is today.

2.3. Changes since 1956

The requirement to demonstrate "need" was late 950 s, and the restriction to rural areas was removed in 1969, thus enabling all Newfoundland
esidents to hunt turrs. As murres were still technically nongame birds, turr hunters were not required to purchase
he Migratory Game Bird Hunting (MGBH) Permit when was introduced in 1966 . This exception has since made it difficult to monitor the turr harvest. The equipment used to hunt turrs has improved steadily since 1949. By the early 1970 s , motorboats were largely replaced by 4.5 - to $6-\mathrm{m}$ wooden speedboats powere by $10-$ to 30 -horsepower outboard motors, with advantages of increased range and speed. Many of these were replace in the mid- 1980 s by larger 5.5 - to $6.5-\mathrm{m}$ fibreglass speedThese boats can operate almost unimpeded through thin slob or new ice and can travel up to 50 km from the home port in search of turrs. In calm water conditions, hunters can now travel almost as fast as turrs can fly.
The ammunition and guns used to hunt turrs have also improved. By the early 1950s, shotguns were used with nexpensive homemade cartridges that made loading much easier (Tuck 1953). The plastic shells available since the well suited for use in open boats. Most hunters now use pump-action or semiautomatic shotguns and, as they a not restricted to the game bird maximum of three shells at time, often have five shells ready to fire

The subsistence need that had formed the basis of he argument to maintain the hunt became less important hrough the 1970 s . All-weather roads now connect all but dozen or so Newfoundland communities. Thus, alterna ccess to at least unemployment or welfare benefits, they an buy adequate food in local stores. The costs of huntin trips have increased so much that turrs are seldom the heapest meat available, after considering expenses for gasoline, shotgun shells, and equipment maintenance. Th ubsistence value of wild game is greater in southem Labrador, but turrs play a minor role there in comparison ith other game (Northland Associates Ltd. 1986).
an still contribute significant amounts of high-qualit protein to the diets of many rural Newfoundlanders. The hunt also has an important cultural and social role in maintaining traditional links with the sea. It remains an mportant winter activity, eagerly anticipated by many Newfoundland men.

Some Newfoundlanders have come to rely on turrs a source of revenue, and illegal selling has become big elling continue, most turrs are sold now to people from large communities and cities. The resettlement of isolated outports in the 1960s and the movement of people to cities in search of jobs have created an urban market of people with money but little opportunity to hunt. Many obtain urrs from family members in outports, whereas others visi oastal communities especially to buy turrs. Turrs are also Although it is well known that selling is illegal, sellers defend it as a traditional way to supply those who are unable to get birds themselves. They ignore the volum of birds sold and are reluctant to believe the consequent effects on murre populations. They now fear that mpending harvest restrictions will adversely affect thei activities.

The present magnitude of selling is difficult to determine because of its illegal nature. However, some community meetings I presented my estimate that one-

too low.

3. Current harvest characteristics and trends

3.1. The species of concern

The conservation of Thick-billed Murres is of primary concern, although Common Murres are also hunted in Newfoundland. Tuck (1953) estimated that Common Murres made up about 2% of the kill in the early 1950 s , and they now comprise about 5% of the harvest Elliot 1987, 1989). Field observations, particularly in Common Murres were highest in harvests in northern areas in October and November (up to about 15%) and through the winter along the south coast (up to 30%) (Elliot 1985, 1986). Few Common Murres are taken during the peak of the season in major hunting areas, such as Bonavista Bay.

In the fall, hunters who can identify Common Murres avoid them, as they are likely to be moulting. However, the relative harvest primarily reflects the availability of the two species, as Common Murres Band returns suggest that many of those shot come from only a few large or northern colonies, such as Funk Island or the Gannet Islands, although insufficient banding has been done to confirm this.

Canadian Wildife Service surveys show that Common Murre breeding numbers have increased dramatically at major Canadian colonies, such as Witless 1972) especially since about 1940 (Nettleship and Evans 1985; D.N. Nettleship, pers. commun.). This is despite large numbers being killed annually in fishing nets (Piatt et al. 1984) and by oil at sea (Piatt et al. 1985). Consequently, the following sections address the management of Thick-billed Murre populations only.
illegally by turr huers of other seabirds are still taken illegally by turr hunters (Gaston et al. 1984). Although
difficult to assess, I estimate that the overall numbers are less than 5% of the turr harvest. Different species are favoured in different areas - e.g., guillemots in southern Labrador, puffins in the Northern Peninsula and Notre Dame Bay, Dovekies in the Northern and Avalon peninsulas, and kittiwakes in Bonavista Bay. The numbers killed are probably not high enough to affect most populations. they overwinter, as they are difficult to distinguish from murres. This harvest could affect the small Canadian population if Razorbills from certain colonies make up a large proportion of those killed.
3.2. The magnitude of the Newfoundland turr harvest The Canadian Wildlife Service conducted eight mailed questionnaire surveys of murre hunters holding
MGBH Permits from 1977-78 to 1987-88 (Wendt and Cooch 1984; Elliot et al., this volume). Their results indicate that about $300000-725000$ Thick-billed Murres were shot annually by permit holders, with no overall upward or downward trend.

Preliminary surveys in 1985-86 and 1987-88, to account for the harvest by murre hunters who do not purchase permits, suggest that the total harvest may be estimates for crippling losses, which are difficult to esti-
mate but may be in the order of 5-10\%. Revised surveys tha more accurately estimate the harvest by hunters without An indsex of harvest per unit effort did not indicate clear trends in the availability of murres (Elliot et al., this volume).

Changes in harvest levels prior to the survey period are difficult to evaluate. Tuck (1961:214-215) stated that "it was estimated in 1949 that approximately 200,000 murres were shot annually for food in Newfoundland. In conse quence of a more favourable economic situation since confederation with Canada, only half that number are now an estimate of 202000 that Tuck derived for the $1951-52$ season from discussions, educated guesses, and interviews, aggregated from estimates for 15 districts (Tuck 1953). Tuck's second estimate was interpreted by Inder and Gillespie (1974) to refer to years just prior to 1959 .
The only subsequent harvest estimate was for The only subsequent harvest estimate was for
1960-61, when murres were included on the list sampled from provincial small game licence stubs; Inder and
Gillespie (1974) estimated that 82000 turrs were killed in Gillespie (1974) estimated that 82000 turrs were killed in
Newfoundland in that season. I believe that they greatly Newfoundland in that season. I believe that they greatly not have been sampled by their methods, and the survey response rate was low. All estimates prior to 1977-78 may be low, as band return data suggest no increase in harve level since the 1950 s , assuming that the likelihood of hunters reporting banded birds has not changed (A.J. Gaston, pers. commun.). It is significant that all and adjusted estimates from recent surveys.

The levels of Thick-billed Murre mortality from hunting must be considered in comparison with other causes of death, even though these are much harder to estimate. The number shot in Newfoundland is in the order of three times the total that die from oil pollution, Greenland and Inuit hunting, gill-netting, predation, and other natural sources (Table 1). Despite the great the turr harvest could greatly lower annual mortality.
3.3. Age structure of the turr harvest

First-year murres can be separated from older birds by the degree of development of superorbital ridges on the skull (Gaston 1984) and by four measurements of bill and skull (Elliot and Gaston 1986). Thick-billed Murres less than one year old made up about 53% of samples of Thick
billed Murres harvested in 1984-85 and $1985-86$ ($\mathrm{n}=1261$) (Elliot and Gaston 1986). First-year birds predominated in northern areas before 1 January, and older birds predominated in harvests from areas in the southeast later in the season (Fig. 1). The inexperienced young birds are apparently at greater risk of being harvested; they may winter close to the coast in higher proportions than do older murres, as first-year birds probably make up less than 4. Effects of the harvest on Thick-billed Murre populations
4.1. Current estimates of Thick-billed Murre colony size Banding recoveries in Newfoundland suggest that northeastern Canada, with smaller numbers from West Greenland (Tuck 1961; Gaston 1980; Kampp 1982, 1988b)

The most recent colony surveys indicate that about 1440000 pairs breed in the eastern Canadian Arctic and commun.) and 410000 pairs breed in West Greenland (Evans and Kampp, this volume). More precise photo surveys and ground-truthing have resulted recently in higher population estimates for colonies such as Akpatok Island (Chapdelaine et al. 1986), and these may be needed at several other colonies to determine whether past estimates were low.

The estimate of 1850000 pairs is the equivalent of about 3700000 breeders, plus 1470000 subadult nonbreeders and 1290000 juvenile murres in late summer, for a ta of first sucut 6450000 birds. This assumes that the average this volume).
4.2. The numbers and sources of murres wintering off Newfoundland
About 5 million Thick-billed Murres are probably present at some time during the winter in coastal or of these are first-year birds, and 60% are of breeding age o more than five years. This assumes that 25% of chicks that fledge die before reaching Newfoundland. The estimate of 60% calculated by Gaston and Nettleship (1981) has been rejected, as it was based on unsound assumptions (A.J. Gaston, pers. commun.), and more research is needed to Ieterm i stimate actual proportion.
res that currently winter off News of all Thick-billed Canadian low-Arctic colonies in Hewfoundland are from Minarets (Reid Bay), and Labrador, 20% are from high Arctic colonies in Lancaster Sound, and only about 14% are
from West Greenland from West Greenland.

Band recoveries in Newfoundland indicate that most of the murres from Hudson Strait and the Canadian low the Canadian high Arctic and West Greenland are apparently harvested over a longer period, from Oc March (A.J. Gaston, pers. commun.). About 40000 pairs of Thick-billed Murres from Labrador and Newfoundland colonies probably all overwinter in Newfoundland waters.

One Thick-billed Murre shot in Bonavista Bay in January 1986 had been banded as a breeding adult in on Miquelon in March 1990 had been banded as a breeding
 No.b ${ }^{\text {b }}$ leaving
colonies $\quad \begin{gathered}\text { No.b reaching } \\ \text { Newfoundland }\end{gathered}$

Age	Calculation		$\underset{\substack{\text { No. } \\ \text { colonies } \\ \text { coloving }}}{ }$	No.b reaching Newfoundland		
Hudson Strait, Minarets, and Labrador (all murres of all ages)						
Year 1	$1030 \times 70 \%$ (fledging rate)		${ }^{721}$			
Year 2-4			${ }^{824}$	${ }^{82}$		
Year 5t	${ }^{1030}$ (pairs	in colonies) $\times 2$	2060	2060		
Lancaster Sound						
(73\% of m	${ }^{5} \mathbf{4} \mathbf{4} \times 70 \%$ (fledging rate)					
Year 1			284			
Year 2-4	$812 \times 40 \%$		325			
Year $5+$	${ }^{406}$ (pairs in	a colonies) $\times 2$	812	${ }_{609}$		
				1066		
West Greenland						
Year 1	$410 \times 70 \%$ (fledging rate)		287	14		
Year 2-4	$820 \times 40 \%$ m		328	16		
Year $5+$	410 (pairs in	colonies) $\times 2$	${ }_{820}$	41		
				718		
Newfound	ribution					
Year 1	898 (17\%)	Hudson Suai	it, Minarets,	dd Labrador 66%		
Year 2-4	1232 (24\%)	Lancaster So				
Year 5+	3079 (59\%)	West Greenl		$\begin{aligned} & 2000 \\ & 14 \% \end{aligned}$		

adult in Iceland the preceding year (Etcheberry 1990). adult in Iceland the preceding year (Etcheberry 1990).
About 1.6 million pairs, close to the combined breeding population of Canada and Greenland, may breed there (Nettleship and Evans 1985). Additional banding is needed at Iceland colonies to determine whether they are
important sources of murres wintering off Newfoundland.
A first-year Thick-billed Murre shot in Twillingat in November 1989 had been banded in Spitsbergen three months previousio (J.W. Chardine, pers. commun.). This is roughly estimated to include 1 million breeding pairs (Nettleship and Evans 1985), occasionally reach Newfoundland waters.
4.3. Recent population trend

Breeding numbers of Canadian Thick-billed Murres may have declined between the early 1950s and 1970s (Netleship and Evans 1985). Colony monitoring programs
initiated from 1971 onwards suggest that those in Hudson Strait and Lancaster Sound are stable at present (A.J. Gaston, pers. commun.).

Most West Greenland colonies have dedined severely in the last 50 years, with estimated decreases of $20-100 \%$ at some colonies (e.g., Nettleship and Evans 1985 ; Evans and Kampp, this volume). Declines were probably (aused primarily by hunting and egging at colonies Greenland outside the breeding period and losses in salmon gill nets (Kampp, this volume) also contributed declines. These sources of mortality have been addressed by policy and regulatory changes in Greenland (Evans and Kampp, this volume).

Continued hunting in Newfoundland would also have contributed to the decline, as up to $40-50 \%$ of time when populations were high. The turr harvest may
now be limiting the rate at which these populations can recover. Continued declines in Greenland mean that tewer
turrs are available to be shot in Newfoundland waters, and that the overall sustainable yield has decreased.
5. Public awareness of the effects of the turr hunt

By the early 1980s, it was apparent that harvest levels could be contributing to declines in Canadian and Greenland breeding populations of Thick-billed Murres, and that realistic harvest restrictions could herp to halt
decline. Such a change would require the understanding dechine. Such a change would require the of Newfoundland hunters. In late 1983, the Canadian Wildlife Service began a program to give hunter accurate information about the murres and the turr hunt. interested to find out more. With better information, their attitudes towards hunting changed, and many now suppor harvest controls to conserve the turrs and maintain the hunt.

Prior to this program, most rural Newfound anders had assumed that hunting had little effect on the huge populations of turrs. The effects of oil pollution and gull predation were often considered more important as of mortality. Few people understood the differences
between Thick-billed Murres and Common Murres and between Thick-billed that turr numbers were increasing, as local Common Murre colonies had grown through the 20th century. Apparent declines were often dismissed as changes in behaviour in response to boat activity, changing distribution, or simply year-to-year variation. Most hunter were unaware that murres do not breed until they are five years of age and lay only one egg per year

Tunt (and even a market hunt) was rarely acknowlspored, and selling turrs was tolerated in most hunting communities. The differences between the regulations governing turr hunting and those that apply to the hunting of migratory game birds were seldom clearly understood. The lack of bag limits was often interpreted to mean that the turr hunt had little effect on murre populations.

The information program was designed to take several years of open exchange to modify the traditional titudes of Newfoundlanders. Over five winter seasons, visited more than 175 coastal communities with an assistant, spoke to over 1900 hunters individually and in small groups, and gave about 40 illustrated talks to communities and schools. We left information bookle (Gaston and Jones 1984) and fact sheets to maintain information exchange. We reinforced our messages with posters in stores and post offices, radio and television interviews, newspaper articles, announcements of upcoming meetings, and letters to 300 hunters who sent in turr bands.

We emphasized the importance of knowing hunters' perceptions of trends in turr numbers, the cultural value of he hunt, their uses of the birds, the effects of selling, a contribute to the management process. We concentrated on xchanging information in the first two seasons, on soliciting their suggestions for reducing the harvest the next two years, and on presenting the approach of dail bag limits and shorter seasons in the final year

Among the important information we conveyed ere the differences between Thick-billed Murres and Common Murres, and why most turrs shot were Thick billed Murres; the age of first breeding; the clutch size of ind the proportion shot each year: and evidence for opulation declines in Greenland and Canada. This was balanced with details of the birds' movements and feeding and breeding habits, and of our experiences banding and studying the murres, to emphasize how we obtained this nformation.

Most hunters were fishermen with a basic
nowledge of fish population dynamics and sustainable ields. Once they knew the correct turr population were shooting too many birds. We spoke in nonscientific rms and used comparisons with familiar subjects and local.returns of our colour-banded turrs to help explain aspects of wintering and breeding areas, migration patterns, age-specific mortality, and breeding age

Suggestions from hunters to reduce the harvest included issuing numbered turr tags to each hunter populations rebuild, shortening the season, and bringing in season or daily bag limits. After discussing each option, most hunters concluded that a solution involving shorter seasons and bag limits, similar to those for other game birds, would be the most practical and effective.

As a result of this public information program, most urr hunters are now better informed about the character stics of the birds they shoot and the concerns of overharvesting. Those who hunt turrs for enjoyment, needed, if only to prevent future population declines and to maintain the turr hunt for their children. However, up to 10% feel they have a right to shoot large numbers of turrs, despite the effects this could have on populations, and are reluctant to accept the need for restrictions. Many of these hunters sell many birds and could lose considerable income if harvests were controlled.

Reduced harvests are favoured by most community leaders and older respected hunters, who serve as influeninal allies in carrying public opinion. Many admit they a
ulikely to reduce their personal harvests voluntarily if their neighbours continue to kill many turs and thus ask for firmly enforced bag limits. This has become the option preferred by most hunters, as well as by wildlife managers.

The information program also extended to loca Canadian nongovernment conservation and wildife ing a management framework. Consultations were also conducted to gain the backing of the Royal Canadian Mounted Police and other agencies that enforce the Migratory Bird Regulations. Their task would be easier and more effective if turr hunters were required to purchase a hunting licence and adhere to restrictions such as those that apply to migratory game bird hunters, including
bag and possession limits. Details of proposed harvest restrictions will be hat hunters the puand the reasons for the regulations and emphasizing the input that hunters had in their development. Proposed restrictions may be modified in response to legitimate concerns of those involved, again increasing the chances of widespread compliance.

Turr management requirements

A goal of the Canadian Wildlife Service is to rebuild nd conserve the affected Thick-billed Murre populations, Population modeling exercises using available parameter ustainable yield (Nettleship and Chardine 1989) However population changes occur slowly because of the longevity f these birds. Because of their low reproductive potential it is prudent to reduce the harvest immediately while these inconsistencies are investigated.

Target harvest levels must be sufficiently below the sustainable yield to prevent excessive mortality when overall rates may increase as a result of such factors as net drowning or oiling losses. The effects of these poorly documented mortality sources may exceed the estimates presented earlier. Harvest levels also must be low enough or depleted Greenland populations to rebuild, rather than just to stabilize, to prevent future declines.

The turr hunt is one of the last major unregulated wildife harvests in North America. Conservation groups, as well as management agencies and the hunters themack of effective regulations has contributed to inadequate control of the harvest and reduced perceptions of the value of turrs, leading to excessive sale and occasional shooting of birds for target practice. Practical restrictions would thus add to the quality of the hunt while protecting populations of murres.

The overall harvest could be reduced most effectively hrough daily bag limits and restrictions on the number of o permit most hunters to shoot enough turrs to justify the effort of hunting and to meet family needs, while making it no longer profitable to sell excess birds.

Further limitations could be achieved by shortening he season to the few months when most murres are present. This would effectively reduce the illegal kill of other seabirds, most of which are now taken in early fall before the arrival of most of the murres. It would also but turr hunting is permissible, with corresponding benefits to ducks, especially Newfoundland-breeding Common Eiders, whose numbers have decreased greatly in some areas. Different seasons and bag limits should be set or distinct hunting zones to reflect local differences in the periods when murres are avallable and in the importance rrs to the needs of local hunters.
Hunters should be required to purchase a hunting ermit to enable wild ife agencies to monitor hunter harvest levels. The understanding and compliance of hunters could be improved by ensuring that turr hunting regulations are similar to those governing migratory game birds, such as the sea ducks. This would also increase the
These objectives could be achieved by agencies.
These objectives could be achieved by effectively regime familiar to most Newfoundland hunters. Although such a change would likely require an amendment to the Migratory Birds Convention, which may be difficult to achieve (Thompson 1991), a regime using comparable egulations would be supported by most hunters and could atisfy management and conservation goals

Acknowledgements

I would like to acknowledge the help of the many people. who contribued to the design and conplet , and analysis, Wayne Turpin, who worked to increase the effectiveness of the enforcement and public education program, and especially Pierre Ryan, who accompanied me on most field trips to outport communities, assisted in the collection and analysis of data, and helped develop my appreciation for the Newfoundland way of life. The following also contributed to the information and ideas included in this paper: Hugh Boyd, Dick Brown, David Knud Falk, George Finney, Ian Goudie, Ellen Hayakawa Bill Montevecchi, David Nettleship, John Piatt, Peter Stockley, Neil Wakely, and Steve Wendt.

I am also indebted to the many turr hunters and heir families who opened their homes to us and have become lasting friends, and who have recognized the need o care for the turrs they value.

The harvest of murres in

Newfoundland from

1977-78 to 1987-88

Richard D. Elliot, Brian T. Collins, Ellen G. Hayakaw

 and Lucie MétrasMigratory Birds Surveys Division, National Wildlife Research Centre, Canadian Wildlife)Service, Ottawa Ont. KIA 0H3

Abstract

Eight questionnaire surveys were conducted during he period 1977-88 to assess the characteristics and harves evels of the Newfoundland murre hunt. Samples were game Bith lists of hunters who purchased Migratory re not required to buy MGBH Permits, special surveys were conducted in 1985-86 and 1986-87 to assess the error caused by sampling permit holders only. We estimate that a mean of about 7300 permit holders hunted murres, shooting approximately $300000-725000$ murres annually with each hunter averaging about 6.3 murres per hunting day or 60 murres each season. Although based on small samples that were not selected representatively, the specia surveys indicated that $40-50 \%$ of murre hunters did no purchase permits, and that overall harvest levels could therefore be twice those estimated for permit holders. Results are presented to show hunting trends hrough the average hunting season.

Résumé

Huit enquêtes ont été réalisées au moyen de questionnaires entre 1977 et 1988 , en vue d'évaluer les caractéristiques et les niveaux de prises de la chasse de la
marmette à Terre-Neuve. Pour les enquêtes, les chasseurs ont été sélectionnés au hasard des listes de détenteurs de permis de chasse aux oiseaux migrateurs considérés comme gibier. Étant donné que les chasseurs de marmettes ne sont pas tenus de se procurer ce permis, on a fait des enquêtes spéciales, en 1985-1986 et en 1986-1987, afin de déterminer le pourcentage d'erreur causé par l'échantillonnage des détenteurs de permis seulement. Nous évaluons à environ les marmettes, les prises ayant varié entre 300000 et 725000 par année, ce qui représente une moyenne de 6,3 marmettes par jour de chasse par chasseur, ou 60 marmettes par saison. Bien qu'elles aient été basées sur un échantillonnage restreint qui n'était pas nécessairement représentatif, les enquêtes spéciales ont révelé que 40 à 50% des chasseur de marmettes ne se sont pas procuré de permis et que le total des prises pouvait donc atteindre le double de ce qui présentés servent à illustrer les tendances de la chasse pendant la période d'enquête et à décrire les caractéristiques d'une saison de chasse moyenne.

1. Introduction

Thick-billed Murres Uria lomvia and Common Murres U. aalge are harvested in a traditional fall and winter hunt off the coasts of Newfoundland and La
Tuck (1961) concluded that about 5 million murres Tuck (1961) concluded that about 5 million murres
wintered off the Newfoundland coast, based on the result wintered off the Newfoundland coast, based on the results
of banding at colonies in the eastern Canadian Arctic and of banding at colonies in the eastern Canadian Arcic
West Greenland, and showed that most birds shot were Thick-billed Murres. Recent field observations in Newfoundland have confirmed that Common Murres make up only about 5% of the total harvest (Elliot, this volume). Thick-billed Murres reach southern Labrador and the northern portions of the island of Newfoundland by October and November (Gaston 1980) and move south through the winter as pack ice advancing from the north in March and April. Inshore distribution of murres is also influenced by local ice formation and ice movements.

Tuck (1961) calculated that between 100000 and 0000 murres were harvested annually in Newfoundland. The first figure probably referred to the years just prior to 1959 (Inder and Gillespie 1974) and the second to 1951-52 (Tuck 1953). Tuck considered those levels to be within th sustainable yield of populations. The only other estimate of the Newfoundland harvest, of 82000 birds, calculated game licence stubs for 1960-61 (Inder and Gillespie 1974) probably greatly underestimated the actual harvest. These data were subject to reporting bias, as they were collected incidentally rather than in a well-designed survey, and murre hunters would have been poorly represented, as they were not required to buy the small game licence. As knowledge of population sizes and trends expanded during the 1970 s , and with it information on breeding biology and about the unknown magnitude of this harvest.and its possible effects on source populations.

A standardized survey was initiated in 1977-78 to assess the timing, extent, and characteristics of the harves and to monitor annual trends (Wendt and Cooch 1984). This questionnaire survey used as a sampling frame the lis of purchasers of the Migratory Game Bird Hunting Canada. The survey was conducted for three years with additional questions on the sea duck harvest, and for fiv years on the murre harvest alone. As murre hunters are no specifically required to purchase the MGBH Permit, the standard survey was supplemented by an experimental one in two seasons to evaluate the effect of sampling only from
he MGBH Permit sales file. An assessment of the questionnaire surveys is presented by Elliot et al. (1991)

We present estimates of hunter numbers, hunting Labrador, based on these questionnaire surveys. The results re interpreted in the context of field studies and interviews with hunters conducted in Newfoundland from 1983-84 to 1987-88 (Elliot 1989, and this volume)

2. Methods

2.1. Standard surveys

A questionnaire was mailed to a stratified sample selected from purchasers of MGBH Permits in the province Table 1). Thand for eight seasons over an 11-year period and muric The questionnaire asked about both sea couling 1978; Wendt and Cooch 1984; Flliot et al 1991). Several additional questions were added in 1981-82 when the survey addressed only murre hunting, and the format then mained essentially the same throug al. 1991). Places where differences in the wording of questions between years may have affected the responses are

The province was divided into 13 geographical zones, based largely on inshore fisheries surveys areas, to ratify the permit sales lists to account for presumed differences in hunting characteristics between sampl ncluded for 1977-78 and 1978 by date of purchase was hose purchasing permits after the 30 November end of rovincial sport duck hunting seasons were more likely to be active murre hunters. However, as the kill by late purchasers accounted for only 3% of the total harvest, this grou was not sampled sepanately in subsequent surveys Wendt and Cooch 1984). Samples were selected ystematically by taking permit numbers at regular The number selected from each stratum was roughly in proportion to the number of permits sold, with some adjustments made to ensure enhanced representation from coastal zones with low permit sales. This procedure was modified after 1978-79 to optimize the allocation of the sample among strata, based on the results from the first wo surveys (Cochran 1977)

Samples were selected from the current year's MGBH Permit sales list for the first five surveys, with the lthough late permit purchasers would have been underrepresented because the permit sales file was often incomplete when the sample was selected. Beginning in 1985-86, samples were selected from the previous year's list to ensure the inclusion of some late purchasers, although this meant those who did not hunt the previous year were not sampled

The questionnaires were mailed in April for the firs three years (Wendt and Cooch 1984) and in mid- to late March in subsequent years. Second questionnaires were sent to those who did not respond to the first one within the survey was included in the first three years, after which the survey forms themselves were considered selfexplanatory.
esponses were analyzed on the assumption that in the who did not specify their hunting locations hunted
confirm that this assumption is generally valid, except fo (eg. sample zone 5) or murre hunters who live inland (e.g., sample zo
zone 9 . (

Field observations have shown that some of the mple zones grouped areas with quite different hunting characteristics, such as the north and south portions of , the east and west segments of zone 4 , and the portions of zone 7 on opposite sides of the Northern Peninsula (RDE, pers. obs.) (Fig. 1). The results are herefore presented by nine more appropriate managemen zones that were selected to group communities and huntin murres and sea ducks, based on field observations during the 1980 s (RDE and R.I. Goudie, pers. obs.) (Fig. 2). They were defined for this analysis by regrouping subdivisions of he sample zones.

Sample zone 5 is included in management zone IV o the north, and sample zone 9 (St. John's) is part of management zone VI. Results from management zone northern Labrador) are combined here with those from were received from zone I, where relatively few murres wer harvested, and the timing of hunting was similar along th hole Labrador coast.

The survey samples were selected from the MGBH Permit sales files on a simple stratified random basis. The numbers of hunters, hunting days, and birds harvested were estimated using standard survey procedures, excep that special techniques were required for incomplete
questionnaires (Elliot et al. 1991). These arose when a respondent reported hunting murres but did not provide information on the number of days spent hunting or the number of murres harvested. The harvest of each of these hunters was assumed to equal the average for hunters from variance of the final estimate (Elliot et al. 1991) The variance of the final estimate (Elliot et al. 1991). The estimation by management zone was done using the theor fomains of study (Cochran 1977).
2.2. Special surveys

Sh Parre hunters are not legally required to MGBH Permits, it was initially unknown whether the number of hunters not purchasing permits was large number of murre hunters. It was thought that the downward bias in harvest estimates resulting from the incomplete sampling frame might have been reduced by an separating individual kill from party kill (Wendt and Cooch 1984).

However, field observations indicated that many hunters did not buy permits. The likelihood of purchase was related to such factors as the local popularity of sea duck hunting, for which a permit is required, and the possession of a permit. Elliot (1987) found only 19 of 46 murre hunters' names in permit sales files in 1983-84, 132 of 267 in 1984-85, and 138 of 293 in 1985-86, an indication that only about 44% of murre hunters may have purchased permits (corrected for hunters sampled in more than one year). Although he considered this to be a minimum estimate, owing to inabilities to match misspelled names, it indicated that the initial sampling frame was inadequate

Thate 1
Charace

Survey year	$\begin{gathered} \text { Size of } \\ \text { permin } \\ \text { samper } \\ \text { samped } \end{gathered}$	Sample seleceded	$\begin{gathered} \text { Sample } \\ \text { intensity } \\ \text { (\%) } \end{gathered}$	$\begin{aligned} & \text { No. } \\ & \text { responding } \end{aligned}$	Response as \% of sample	$\begin{gathered} \text { No. of acive } \\ \text { murre hunters } \\ \text { responding } \end{gathered}$	Est. no. of permit holders hunting murres	$\begin{gathered} \text { Est. no. of of } \\ \text { huting days } \\ \text { by permil } \\ \text { holders } \end{gathered}$	$\begin{gathered} \text { Est no or } \\ \begin{array}{c} \text { Euruse kilied } \\ \text { by percit } \\ \text { hodders } \end{array} \end{gathered}$	$\underset{\substack{\text { No. of } \\ \text { permits } \\ \text { sold }}}{ }$	Est. \% of all permit holders hunding murres
1977-78	36458	4693	12.9	2681	57.1	-	9005	118913	541764	${ }^{36188}$	25
1978-79	37523	4695	12.5	2345	49.9	-	6829	81972	${ }^{353559}$	${ }^{37297}$	18
1979-80	37155	3990	11.2	1990	49.9	-	8025	${ }_{88982}$	${ }^{4785991}$	35490	22
1981-82	31330	3000	9.6	1182	39.4	300	7020	${ }_{58739}$	${ }_{379550}$	31466	${ }^{22}$
1992-83	${ }_{31} 163$	3000	9.6	1020	34.0	305	8798	${ }_{98} 9310$	725887	31215	28
							(547)	(17035)	(78646)		
$1985-86$	${ }^{25616}$	3000	11.7	1257	1.9	381			${ }^{412483}$	25652	28
1986 -87	25616	зяо	11.7	1194	39.8	376	6963	59470	298976	25998	27
							${ }^{(382)}$	${ }^{(5384)}$	(24913)		
1987-88	20394	3000	14.7	1175	39.2	370	(18868)	${ }_{(8234)}^{61325}$	375919 $46973)$	21080	34

Additional special surveys were conducted in 1985-86 and 1987-88 to assess how seriously the incomplete sampling frame affected the estimates. Questionnaires were sent to all hunters contacted during fieldwork in hunting
communities in years immediately preceding these surveys whose names, addresses, and approximate ages were known (Table 2). The sample in 1987-88 was not selected independently but included most of the hunters sampled in 1985-86. The samples selected for the regular survey were checked to ensure that hunters were not sent two questionnaires. The names and ages of those responding were matched with lists of current purchasers of MGBH and those for non-permit holders. The data were then analyzed as for permit holders to estimate overall harves characteristics based on these small samples.

The sample used in the special survey was assumed to be a simple random selection from the murre hunters in each management zone. The special survey provided estimates of the proportion of murre hunters with MGBH Permits and the number of hunting days and size of estimation procedures are given by Flliot et al. (1991).
2.3. Characteristics of an average hunting season

The five surveys conducted during the 1980s were analyzed in more detail to give a picure of specfic characteristics of the murre hunt needed to make appropriate conservation decisions on regulations to of the harvest, both temporally and geographically, and of the activity and success of murre hunters were averaged for these surveys and presented on the basis of management zones.

The information from the survey is presented in the context of possible management restrictions, such as the obligatory 10 March end of migratory game bird hunting distribution of the age structure of harvested murres through the season (Elliot, this volume).

3. Results

3.1. Response to the survey
duck 19197-78, 1978-79, and 1979-80, the combined sea
38 duck and murre harvest questionnaires were sent to
aproximately $4000-4700$ permit holders, for a sampling intensity of over 10% of permit holders (Table 1). All ubsequent questionnaires were sent to 3000 permit nder 10° in the early 1980 s to a maximum of 14.7% in 1987-88, as permit sales declined.

The response rate averaged above 50% in the three combined surveys, dropping to about 40% in subsequent ears, when questions on sea ducks were omitted (Table 1). The response rate to the special surveys was in the same ange (Table 2). There was no indication of a declining response rate through the 1980 s as a result of response hunters were being sampled annually for the National Harvest Survey (e.g., Dickson 1989)

The questionnaires for 1978-79, 1979-80, and 1980-81 asked whether the respondent hunted sea ducks or murres, whereas later questionnaires asked about murres only. Thus, the estimates of the numbers of permit-holding nurre hunters for the first three seasons (Tables 1 and 3, ig. 3) are inflated by unknown amounts, reflecting
3.2. Standard surveys

A comparison of the harvest estimated from responses to the first questionnaire only with that estimated from responses to either the first or second reminder) questionnaire gives an indication of the effect of nonresponse bias. This was investigated for the 1977-78 rate gave an estimate of nonresponse bias of -1% for murre kill (Wendt and Cooch 1984). This low value suggested tha his source of bias could be ignored in comparison with sampling errors.
Although the estimated numbers of permit holders hunting murres varied annually within management zones particularly in those with few hunters (Table 3), the total numbers varied comparatively little (Table 1, Fig. 3), with cimates in the range of about 680-9B Permit hold hey represented increased gradually after 1978-79, from bout 18% to 34% (Table 1). The figures for the three combined surveys in the late 1970s averaged about 8% higher than those in the 1980s, probably due in part to the inclusion of respondents who hunted sea ducks but not murres.

The number of days spent hunting by permit holders, an indication of the amount of effort expended in management zones, even between consecutive years and in zones where murre hunting was an important activity Table 4). The annual estimates for the number of huntin 4). As with the estimated number somat since 1977-78 (Fig.). As with the estimated number of hunters, estimates of

The estimated kill of murres by permit holders 1)
The estimated kill of murres by permit holders highest harvest estimate was about 725000 ($\mathrm{SE}=79000$) murres in 1982-83, about twice the level estimated for the previous year (Table 1, Fig. 5). This was also the peak arvest year in six of the eight management zones during he 1980 s surveys (Table 5). The greatest numbers of murres were shot in zones IV, V, and VII, in different years, with

The index of harvest per unit effort, obtained by dividing estimated annual harvest by the estimated total number of hunting days each year, does not show a consistent rising or falling trend over the complete surve period, although it appeared to rise gradually in the early arvey years (Fig. 6).
3.3. Special surveys

The special surveys were sent to comparatively small ome management which were not selected representatively management zones were sampled poorly (e.g., south estime at (west coast). Thus, the resulting estimates are not very precise but indicate the type of effects

Table 2
Characterisicics of he samples and responses to the special surveys conducted in
1985-86 and $1987-88$

| |
| :---: | :---: | :---: | :---: | :---: | :---: |

hat can be attributed to the present sampling frame. In both years, the overall estimate of the number of murre hutders was close to twice that derived using permit
holders only (Table 6). The estimated proportion of hunters who bought permits ranged from 37% in Bonavist Bay in 1987-88 to 86% on the south coast in 1985-86. The simates of the proportion buying permits were within 0% of each other in both years, in all zones except for rimity-Conception bays and the south coast, where

There was corresponding va87-88.
There was corresponding variation among were spent hunting by permit holders (Table 7) The proportion of days spent hunting by permit holders was slightly higher than the estimated proportion that they made up of all hunters. This suggests that permit holder may tend to hunt on more days than non-permit holders.

The estimated proportion of the harvest taken by between years in zones such as Bonavista Bay (Table 8)
 managemen
parentileses

Managen	Surey year				
	1981-82	1982-83	1985-86	1986-87	1987-88
İIII. Labrador	301	${ }^{426}$	405	339	${ }^{357}$
	(71)	(73)	(55)	(56)	${ }^{(55)}$
mi. Nothem Peninsula	914	1074	907	1064	834
	(95)	(118)			
IV. White-Notre Dame	1759	1815	1211	1793	1748
bays	(184)	(207)	(140)	(192)	(197)
v. Bonavista Bay	1423	1788	881	1080	1487
	(297)	${ }^{(986)}$	(220)	(252)	(272)
VI. Trinity-Conception	442	547	471	235	549
	(104)	(122)	(97)	(71)	(92)
VII. Souther Avalon-	1012	1339	1628	1021	143
Burin	(169)	(291)	(224)	(132)	(215)
VIII. South coast	954	1482	1315	1251	696
	(160)		(178)	(171)	
IX. West coast	180	177	195	${ }^{181}$	54
	(59)	(65)	(50)	(50)	(25)

Figure 3 The estimated numbers of permit holders huning murres in Newfoundland in

The stiunated numbers of p
eight survey ycars $\pm 1 \mathrm{SE}$)

The overall proportion of the estimated harvest apparently taken by permit holders was appreciably lower than the although non-permit holders may have hunted on fewer days, their overall harvest rates were higher than those for permit holders. In both years, the overall harvest estimated from the special surveys was more than twice that of permit holders only, although the standard errors of these
estimates are high. estimates are high
3.4. Characteristics of an average hunting season The characteristics of hunting activity and harvests by permit holders, shown in Table 9 by management zones, give a general picture of an average hunting year during non-permit holders, which vary between zones (e.g., Table 6,7 , and 8), must be kept in mind when considering these data.

The peak hunting period occurred in late fall in northern zones (I\&II, III, and IV) and was earliest in Labrador (Table 9). Along the east and south coasts (zones V, VI, VII, and VIII), most hunting activity took place after January. The timing of activity of the small number of

Table 4
The estima
The estimaed numbers of days spent hunting annually by permit holders in each
management zonce. and the standard eror associaed widt besin management
parentheses)

Management zone	Survey year				
	1981	2-88	1985-86	986-1	1987
I8\%II Labrador	2396	6271	3954	2756	
		(1972)	(23)	(677)	
ili. Northern Peninsula	7460 (1040)	${ }^{94763}$	${ }^{8040}$	8249 (1094)	
IV., White-Notre Dame	15713	13699	8885	11465	1324
bays	(2415)	(2433)	(1572)	(1489)	
Bonavista Bay	6963	10481	${ }_{6672}$	6493	
	(1749)	${ }_{\text {(2716) }}$	(3025)	(1904)	(1937)
VI. Trinity-Conception	3359	5626	2092	4173	
bays	(1030)	${ }^{(1679)}$	${ }^{(683)}$	(2399)	
Southern Avalon-	7049	${ }^{28886}$	18825	10991	160
Burin South coast	(1487)	(15506)	(5139)	(1989)	$(670$
South coast	${ }_{(13441)}^{11874}$	${ }^{20884} \begin{aligned} & \text { (5467) }\end{aligned}$	18311 (2678)		
IX. West coast	3690 (2145)	3781 (3640)	2987 (1340)	4124 (1650)	

Figure 4 . Thestimated numbers of days spent haning murres by permii holders in Newfound ind in eight survey years (\pm SE)

periods of peak harvest were similar, although the peak
month occurred later than the peak of hunting effort in cones I\&III, V, and VIII

The mean monthly estimated harvest for all zones combined shows the general pattern of annual harvest during the 1980s (Fig. 7). The harvest peaked in November and leveled off at lower numbers through the rest of the season. The approximate proportions of first-winter murres in the harvest each month (from Elliot 1989) show that juveniles made up the majority of the kill before
1 January, and that older birds comprised most of the harvest from January to March (Fig. 7).

The proportion of hunting effort and harvest that occurred after 10 March, the last allowable date for a migratory game bird hunting season, is presented to consider the effect that adhering to the existing timing of game bird seasons could have on murre hunting. About 9 of all hunced after efort and 12% of the overall harvest (Table he three eastern zones (V, VI and VII) and in the relatively insignificant west coast zone (IX).

The degree to which the harvest was concentrated in a short period is indicated by the number of months taken o kill 60% of the harvest (Table 9). Labrador (zones I\&II) and the northeastern zones (IV, V, and VI) had relatively

Table 5 5mated numbers of murres killed annually by permit holders in each
The esitamen
manaemen zone, and the slandard error associated with the estimate (iin
parentheses)

ajement zone	Survey year				
	1981-82	2-83	1985-86	1986-87	1987-88
Ixill Labrador	10139	23336	21978	18201	18.561
II. No	${ }^{(27085}$	${ }^{(5947)}$	(4485)	(3116)	(5117)
iII. Northern Peninsula	5856	73519	72200	48607	41814
	${ }^{(9781)}$	(115473)	(17550)	(5409)	(5987)
bays	(22502)	(21 369)	(11600)	(11508)	${ }^{(11016)}$
Bonavista Bay	3073	133691	20679	${ }_{38660}$	93975
	(8212)	(37887)	(5669)	(13031)	(45897)
Trinity-Concep	28684	85331	32877		
bays	(84)	(38928)	(10742)	(8786)	(12653)
vi. Southern Avalon-	49328	100057	114177	55595	57803
	(10218)	(27774)	(41196)	(8752)	(13007)
South coast	71006	158473	78367		${ }^{28285}$
West coa	(2309)	${ }^{(36882)}$	(19388)	(12144)	${ }^{6} 4079$
	(2399)	${ }^{(2677)}$			3099 $11888)$

$\xlongequal[\substack{\text { Figure } 5 \\ \text { The estima }}]{ }$
The estimated numbers of murres killed by permit holders in Newfoundiand in
eight survey years (\pm ISE)

brief hunting seasons, whereas the Northern Peninsula (zone III) and southern and western zones (VI, VIII, and IX) had access to murres for several months.

Overall hunting success is shown by the overal
60 murres/hunter. There was no and averaged almost zones, where annual kill ranged from less than 30 murres hunter on the west coast (zone IX) to about 95 murres/ hunter in Trinity-Conception bays (zone VI).

Harvest per unit effort, as indicated by overall
kill/day in Figure 6, is shown by management zone in Table 9. The rate was above the average level of $6.3 \mathrm{birds} /$ in Trinity-Conception bays (zone VI), Comparable estimates for kill/day during the peak hunting mon each zone followed a similar pattern (Table 9).

4. Discussio

4.1. Sampling frame limitation

The relatively high response rate and low likelihood of nonresponse bias together suggest that the respondents are valid representatives of Newfoundland hunters who
buy permits. The low variance of the estimutes for the number of permit holders hunting murres (95% confidence

The est mated kill of murres per unit effer in eigh survey years, derived by ays dey

YEAR

Table 6 The estimated total numbers of murre hunters in each management zone, derived from special surveys in 1985-86 and 1987-88, and the estimated proporions of huniers with permits				
	1985-86		1987-88	
Management zone	$\begin{gathered} \text { Tolal } \\ \text { Tho or } \\ \text { huncres } \\ \text { (SE) } \end{gathered}$		$\begin{gathered} \text { Total } \\ \text { Tho. } \\ \text { huners } \\ \text { hund } \\ \text { (SE) } \end{gathered}$	$\begin{gathered} \text { No, with } \\ \text { pemits } \\ \text { compot total } \\ \hline \end{gathered}$
İll. Labrador	479	${ }^{85}$	${ }_{476}$	
III. Northem Peninsula	${ }^{1889}$			
III. Northert Peninsula	$\begin{array}{r}1269 \\ (218) \\ \hline(29\end{array}$	71	(1174)	
IV. White-Norre Dame bays	2967	${ }^{11}$	${ }_{3} 440$	
v. Bonavista Bay	- ${ }_{2}^{(619)}$	42	${ }^{\text {(584) }}$	
VI. Trinit-Conception bays	(243) 660	7	$12933)$ 1200	
	(165)		${ }^{(502)}$	
VII. Southern Avalon-Burin	2664	61	2130	
vil. South coast	(513) 1534	86	${ }_{1}^{5148}$	
IX. West coast	$\begin{aligned} & 195^{\circ} \\ & (50) \end{aligned}$	[100]	$\begin{aligned} & 544_{4} \\ & (25) \end{aligned}$	[100]
Provincial total	$\begin{aligned} & 118888 \\ & (11139) \end{aligned}$	60	$\begin{aligned} & 13583 \\ & (1447) \end{aligned}$	51

As no hunters were sampled in management zone IX in either special survey, it is
assumed here hau hhe eloal number of murre hunners in that zone cquals the
number with permis.
interval of about $10-13 \%$) indicates that an estimated annual mean of about 7300 hunters is valid. The estimate of about 1000 hunters, with and without permits, for each of the two special survey years is also relatively reliable, as
 sample size and variation between zones. Similarly, the confidence limits on estimates for the overall number of hunting days by permit holders (about $15-35 \%$) indicated hunters had relatively large degrees of error (confidence intervals of about 40%).

Unfortunately, the harvest estimates, which are most important from a biological point of view, showed the least precision. The confidence intervals for the harvest of al permit holders ranged from about 14% to 25% and were much higher within management zones (Table 8), wherea bout 67% in 1985-86 and just over 100% in $1987-88$. As

Table 7 The estimated total numbers of days spent hunting murres by all hunters in each management rone, derived from special surveys in $1985-86$ and $1987-88$, and the estimated proportions of hunting days used by permii holders				
	1985-86		$1987-88$	
Management zone	$\begin{array}{r} \text { Total } \\ \text { days hy all } \\ \text { huncers } \\ \text { (SE) } \end{array}$	$\begin{gathered} \text { Days by } \\ \text { permit } \\ \text { holders as } \\ \text { \% of total } \end{gathered}$	$\begin{gathered} \text { Tatoal } \\ \begin{array}{c} \text { Tays by all } \\ \text { huncers } \\ \text { (SEE) } \end{array} \end{gathered}$	$\begin{gathered} \text { Days by } \\ \text { permit } \\ \text { holders as } \\ \text { oof total } \\ \hline \end{gathered}$
1811. Labrador	4359	91	4002	79
	(1857)		(1619)	
III. Northem Peninsula	${ }_{(41969} 1197$	${ }^{67}$	($\begin{array}{r}7046 \\ \text { (4078) }\end{array}$	63
IV. White-Notre Darne bays	2435	${ }^{37}$	- 26975	49
v. Botavista Bay	20434	3\%	29380	45
	(13772)		(13845)	
Vi. Trinity-Conceplion b	($\begin{array}{r}2720 \\ \text { (125) }\end{array}$	${ }^{7}$	(5411)	
vil. Southern Avalon-Burin	26150	${ }^{72}$	21988	73
	$\begin{array}{r}(8666) \\ \substack{4887} \\ \hline\end{array}$		${ }^{(7977)}$	
VIII. South co	14887 (5147)	${ }^{94}$	11222 (6833)	${ }^{61}$
IX. West coast	$\begin{aligned} & 29877 \\ & (1340) \end{aligned}$	[100]	$\begin{gathered} 9500^{2} \\ (309) \end{gathered}$	[100]
Provincial ıtal	$\begin{aligned} & 107329 \\ & (20331) \\ & (2030 \end{aligned}$	62	$\begin{aligned} & 110764 \\ & \\ & \hline 12969) \end{aligned}$	55

As no hunters were sampled in manazementen zone IX in either special survey it is
assumed here that the torl number of days spent hunning in that zone equals the
number of days spent hunting by permit holders.
survey was stratified on the basis of permit sales, the effects of extrapolating the results for non-permit holders to
estimate harvests for the whole province are uncertain Although the values for permit holders provide useful trend data and an indication of their actual harvest, the estimates for all hunters merely point out that the total annual harvest is very high, and that more accurate approximations are needed.

A better control over the bias introduced by the incomplete sampling frame could be achieved by sending the regular survey to both a sample of permit hold sample selected from another universe containing do not purchase permits. This will soon be undertaken using a sample from a file of applicants for Newfoundland big game hunting licences, which is likely to include most murre hunters. This should quantify the effects that the sampling frame has had on the results to date, but a requirement that all murre hunters purchase permit would provide a better long-term sampling frame
4.2. Management implications of murre hunt

Since the reports on the murre hunt by Gaston et al (1984) and Wendt and Cooch (1984), much additional information has been gained on the murre harvest and on the breeding characteristics and population sizes of source populations. The survey results are interpreted here in
light of this knowledge and the need to manage the hunt light of this knowledge and the need to manage the hunt
regulate the harvest.

The number of
The number of permit holders who hunt murres However, they represented an increasing proportion of all permit holders, as the overall numbers of MGBH Permit sales in Newfoundland fell by 43% from a peak in 1978 to 1987 (Dickson 1989). If indications from the special surveys are correct, about equal numbers of Newfoundlanders Dickson 1989; Table 6). Together with the consistently high efforl spent hunting murres (the number of hunting days),

Table 8
he stimated total numbers of murres Killed by ayl hunters in each managemen
one derived rom special survers in $1985-86$ and $1987-88$, and the stimated zone derived from special surveys in
proporions killed by permit holders

Managememi zone	${ }_{1985-86}$		198	
	$\begin{gathered} \text { Toral } \\ \begin{array}{c} \text { harvest by } \\ \text { all huners } \\ \text { (SE) } \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Harvest } \\ & \text { by permit } \\ & \text { holders as } \\ & \text { \%of total } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { harrest by } \\ & \text { all huners } \\ & \text { (SEE) } \end{aligned}$	$\begin{aligned} & \text { Harves } \\ & \text { by permi } \\ & \text { holder a a } \\ & \text { o of coral } \end{aligned}$
18II. Labrador	22420	98	21605	
	(4857)			
III. Northern Peninsula	1188.877 (41185) (1828)	61		
Iv. White-Noure Dame bays	158150	37	192599 (8954) 189	
v. Bonavista Bay	169187	13	387616	
VI. Trinity-Conception bays	(148820)	74		
	(21471)		(118984)	
vil. Southeru Avalon-Burin	${ }^{288087}$	40	132940 (158) 188$)$	
	(221 555)		(153 178)	
VIII. South coast	$\begin{gathered} 93 \\ (7792 \\ \hline 7793) \end{gathered}$	84	(28999)	
IX. West coast	$\begin{aligned} & 406 \mathrm{l}^{\mathrm{a}} \\ & (2710) \end{aligned}$	[100]	$\begin{array}{r} 30992 \\ (\mathrm{I} 888) \end{array}$	$[100$
Provincial total	891786	46	965317	

As no henters were sampled in management zone IX in either special survey, it assumed here that he
hunters with permis.
these data confirm that interest in this activity remains high, despite concerns about the status of murre tions (Elliot 1989).
Newfoundland has twice the Canadian average participation in wildlife hunting (Filion et al. 1989). Although the population of the province comprises only about 2.2% of the Canadian population, the harvest of murres there is one of the largest harvests of any species taken in the country. Harvest levels by permit holders alone during the survey period consistently exceeded the (e.g., Wendt and Hyslop 1981; Métras and Wendt 1986; Dickson 1989). At the national level, the murre harvest by permit holders averaged higher than the total Canadian take of Canada Geese Branta canadensis, a migratory game bird whose harvest levels in recent years have been exceeded only by those of the Mallard Anas platyrhynchos.

Total murre harvest levels are less certain but are likely comparable with the Canadian kill of Mallards in years such as 1982, when the estimated Mallard harvest was
1.2 million (Métras and Wendt 1986) and the estimated murre harvest by permit holders was about 725000 (SE $=79000$, Table 1), although both are subject to the effects of biases and incomplete sampling frames. Doubling the latter value, as suggested by the special surveys, would indicate an overall kill by all hunters in the order of .5 million murres that season.

Eliot's (1987) estimate that only 5% of murres harvested were Common Murres is smaller than the degre of ese estimates approximate the kill of Thick-billed Murres. Recent population modeling by Nettleship and Chardine (1989) suggests that harvest levels of Thick-billed Murres should not exceed 400000 if populations are to be maintained. The consistently higher harvest levels stimated over the survey period suggest that some inputs populations, the numbers dying outside the hunting season, or adult survival, may be too conservative; that the biases in these surveys have combined to produce

Table 9
The main charackerisics of hunting acuivity and murre harvest of permit-lolding
humeres by mana
hunners by management
conduced in in the 1988s

Management zone	$\begin{array}{r} \text { (1) } \\ \text { Est } \\ \text { y or } \\ \text { permits } \end{array}$		$\begin{gathered} \begin{array}{c} (3) \\ \% \text { H huting } \\ \text { dass> } \\ \text { March } \end{array} \end{gathered}$	$\begin{gathered} \text { (4) } \\ \text { Overall } \\ \text { Kill } \\ \text { hunter } \end{gathered}$	$\begin{aligned} & \text { Esi } \\ & \text { Esti } \\ & \text { kill } \end{aligned}$	$\begin{array}{r} (6) \\ \text { Peak } \\ \text { kont } \\ \text { konthas } \end{array}$	$\begin{gathered} \text { (7) } \\ \text { \% } 711 \\ \text { sil } \\ \text { March } \\ \hline \end{gathered}$	$\begin{gathered} \text { No, } \begin{array}{c} \text { (8) } \\ \text { month } \\ \text { oil } \\ \text { kill } 60 \% \end{array} \end{gathered}$	$\begin{gathered} \text { (9) } \\ \begin{array}{c} \text { Ovalil } \\ \text { kill } \\ \text { day } \end{array} \end{gathered}$	$\begin{gathered} \text { (10ak } \\ \text { Peak } \\ \text { nill } \\ \text { kild day } \end{gathered}$
IstII. Labrador	5	son	5	${ }^{48}$		sON	6	1.8	5	
III. Northern Peninsula	13 28	ONd	1	60 55	${ }_{21}^{14}$	ONd	${ }_{1}^{4}$	${ }^{2.2}$	8	
v. Bonavista Bay	18	${ }_{\mathrm{j}}^{\mathrm{Fm}}$	15	48	15	јғM	26	1.8	7	12
vi. Trinity-Conception bays	${ }^{6}$	jFM	16	95	10	jEM	${ }^{24}$	1.7	12	18
VII. Southern Avalon-Burin	17	${ }^{\mathrm{JFm}}$	14	${ }_{61}^{61}$	17	${ }_{\text {jF }} \mathrm{M}$	16	${ }^{2.4}$	5	
VIII. South coast	${ }_{2}^{16}$	${ }^{\text {d }} \mathrm{F}$	9	${ }_{17}^{69}$	18	djF	11	2.5	${ }^{6}$	
Provincial total	100	-	9	59	100	-	12	-	6.3	

(1) Percentage of mean total estimate of 7293 permit holders (2) Months with highest mean number of hunting days: HIGHEST, SECOND, hird (8) Estimated percentage of mean number of hunting days after 10 March	
Mean toal annual kill/mean	
Percentage of mean total estimated harvest of 431870	
Months with highest mean kill: HIGHEST, SECO	
-imated percentage of mean kill shot after Io	
Minimum number of consecutive months to stoot 60% of mean toal harvest	

(10) Mean total kill in peak month/mean number of hunter-days in month

appreciable overestimates; or that the harvests ar eed excessive.
kill per unit effort is often a useful index of population change, with declines indicated by either an increase in the amount of effort needed to take the same effort. Although harvest per unit effort appeared to increase until 1982-83 and then decline (Fig. 6), it should not be assumed that the availability of murres followed the same pattern. This index of availability is valid only if the characteristics of effort do not change. It seems likely th
hunters' efficiency increased through the 1980s as a consequence of a continued move to larger boats and motors (Elliot, this volume). Many hunters also reported that they hunted only when they knew that murres were within range, as they perceived that birds were becoming scarcer (Elliot 1989, and pers. obs.). The 1982-83 hunting season was acknowledged to be exceptional in many area when weather and ice conditions combined with large numbers of murres quite close to shore likely r
reduction in the effort needed to shoot murres.

Thus, kill-per-unit-effort data do not preclude the possibility that the harvested populations are declining. Severe declines have occurred in West Greenland (Evans and Kampp, this volume), and smaller declines may have taken place in the eastern Canadian Arctic (Nettleship and Evans 1985). Murres from both areas make up most of the volume). Data from the harvest surveys are useful in, describing the present hunt and pointing to ways to effective reductions to conserve breeding populations.

The timing and other characteristics of the hunt
varied appreciably among management zones. This is in keeping with Gaston's (1980) interpretation, from banding data, of the movement of birds south through the winter and Elliot et al.'s (1990) interpretation of the effects of ice food species. Management zones can be further grouped into three areas on the basis of timing and characteristics of the hunt during the survey periods (Table 9). The age structure of the murres taken also varies among these areas.

rigure 7
Che man

The peak of harvest occurs along the coast of Labrador (zones I\&II) in early fall (September - early November), and most murres taken are birds-of-the-ye
(Elliot, this volume). The length of the peak hunting (Elliot, this volume). The length of the peak hunting
period - the time required to take 60% of the harvest period - the time required to take 60% of the harvest - is less than two months here, as murres are often pushed Labrador hunters account for only about 5% of the total provincial harvest.

In mid- to late fall (late October - December), mo hunting takes place along northern and western parts of
the island of Newfoundland, including the Northern the island of Newfound and, including, and the west coast
Peninsula, White Bay, Notre Dame Bay, and Peninsula, White Bay, Notre Dame Bay, and the west coast
(zones III, IV, and IX). About 35% of the total harvest is (zones III, IV, and IX). About 35% of the tola hes two
taken in these zones. The hunting peak is less than two months in White and Notre Dame bays but longer on the Northern Peninsula, where it extends into early winter in some years, and first-year birds are again predominanly one IV, before this species has moved out of northern coastal waters (Elliot, this volume).

The hunt then shifts to the south and east coasts in winter (January-March), along Bonavista, Trinity, and Conception bays, the Avalon and Burin peninsulas, and
the south coast of the island (zones V, VI, VII, and VIII). The south coast and southern peninsulas have a relatively long hunting season, with murres present from late fall on and a 2.5 -month hunting peak. The peak is less than two
months long in Bonavista, Trinity, and Conception bays, where murres arrive well into the winter and are still present when the season ends on 31 March. The latter zones would be most affected if the season closing were advanced to 10 March, in line with migratory game bird seasons, as about 15% of the hunting days and 25% of the harvest occur southern peninsulas are older than one year (Elliot, this volume), and thus a 10 March closing date would preferentially conserve older birds, including many Thickbilled Murres of breeding age.

Hunting success (kill/day) was highest in the eastern zones in both the peak month and through the season (Table 9). Although Trinity and Conception bays accounted for only about 6% of permit holders, the high success rates there brought their harvest share to about 10%. Murre colonies had quite high proportions of this species in the March harvests as birds returned to breeding areas That species also occurred in harvests along the south coast and Burin Peninsula through much of the winter (Elliot 1987).

When a murre harvest management regime is developed, data from these surveys will enable managers to select practical zones and hunting seasons to meet harvest
reduction target levels, considering the numbers of murres taken in each zone and, to a lesser extent, their age and species composition. Although not reported here, the comments noted in these surveys document the attitudes of murre hunters and show that most now support practical harvest limits. If the harvest by non-permit holders can be successfully estimated using an amended sample selection process, these surveys will continue to provide importan data so hunters and the possible effects of their harvests on murre populations.

Acknowledgement

 design, operation, and improvement of the murre harves surveys, including Hugh Boyd, Graham Cooch, Len Maurice Gratton, and Steve Wendt. We are also grateful for comments received on earlier drafts of this paper from Hugh Boyd, Dick Brown, John Chardine, Graham Cooch Kathy Dickson, Tony Erskine, Tony Gaston, Hélène Lévesque, Pierre Ryan, and Steve Wendt.Finally, we express our gratitude to the many Newfoundland hunters who took time to respond to our questionnaires and participate in the regular and special survey

Preliminary estimates of survivorship and recruitment for Thick-billed

 Murres at Coats Island
D.G. Noble, ${ }^{1}$ A.J. Gaston ${ }^{2}$ and R.D. Elliot ${ }^{2}$

Department of Biology, Queen's University, Kingston Ont. K7L 3N6

Canadian Wildlife Service, Ottawa, Ont. KlA 0H3

Abstrac

Recruitment by Thick-billed Murres Uria Lomvia was investigated at a colony on Coats Island in northern Hudson Bay. We used resightings of birds banded as chicks at the colony to estimate survivorship. The influences of emigration, site attachment of prospectors, band loss, and banding mortality on the estimates are discussed. A minimum of 2% of the three-year-olds and 16% of the four-year In 1989, at least 8% of the four-year-olds and 31% of the five year-olds attempted to breed. Rates of resightings at the colony were compared with rates of recoveries of banded birds in Newfoundland and Labrador. We conclude that differences in winter conditions between years have a significant effect on cohort-specific survivorship curves.

Résumé

Le recrutement de la Marmette de Brünnich Uria lomvia a tete étudié dans une colonie de l'ille Coats, dans le nord de la baie d Hudson. De nouvelles observations d'oiseaux bagués au stade d'oisillons, dans la colonie, ont ervi à évaluer le taux de survie. On decrit les influences, sur les évaluations, de l'émigration, de la préférence accordée au lieu par les prospecteurs, de la perte de bague de la mortalite des oiseaux bagues. Au moins 2% des tenté de se reproduire en 1988, presque tous sans succees. En 1989, au moins 8% des oiseaux de quatre ans et 31% des oiseaux de cinq ans ont tenté de se reproduire. Les taux des nouvelles observations à la colonie ont ensuite été comparés au taux de récuperation des oiseaux bagues a Terre-Neuve et au Labrador. Nous en concluons que les differences des conditions mééorologiques en hiver, d'une de survie des différentes cohorte

Introduction

Thick-billed Murres Uria lomvia, like other alcids, do not breed for several years after their initial return to the colony. The age of first breeding in other alcids ranges aleuticus (Speich and Manuwal 1974) and Black Guillemots Cepphus grylle (Asbirk, in Hudson 1985) to five to eight ears in the Atlantic Puffin Fratercula arctica (Harris 198 Although there have been some preliminary estimates of urvival to recruitment (reviewed in Hudson 1985), ver ittle is known of age-specific survival rates in alcids.

Thick-billed Murre populations in the eastern Canadian Arctic are subject to significant mortality Newfoundland, Labrador, and Greenland (Elliot et al., this volume). The annual kill in Canada is likely between 500000 and 1000000 birds, close to half of which are in heir first winter. Goodman (1974) showed theoretically that demographic variables such as survivorship and fecundity hould respond to changes in other demographic variab位ained by western Alantic Thick billed Murres have resulted in compensatory adjustments in other emographic parameters, such as the age of first breeding.

In this paper, we report the age of first return and recruitment to breeding status of Thick-billed Murres at Coats Island. Our main aims are:

1) to demonstrate the degree of philopatry among young birds returning to Coats Island;
estimate survivorship for each age cohorty to
2) to estimate the minimum proportion of each as cohort that attempts to breed; and
(4) to examine the evidence for age-specific or cohortspecific mortality patterns provided by comparing the resightings of banded birds at the colony with the rates of banded bids recovered from Newfoundland and Labrador

2. Methods

2.1. Field methods

Each year from 1984 to 1989, we banded between 1454 and 2686 Thick-billed Murre chicks at Coats Island, Northwest Territories $\left(62^{\circ} 57^{\prime} \mathrm{N}, 82^{\circ} 00^{\prime} \mathrm{W}\right)$. This relatively small colony is divided into two subcolonies separated by 8000 pairs, the east colony about 7000 pairs (Gaston et al 1987). All banding was carried out within a well-defined rea including about one-quarter of the population of the west subcolony. All birds in 1984 and 50% of chicks in 198 were banded with standard stainless steel U.S. Fish and Wildlife Service (USFWS) bands, the inscriptions of which are difficult to read, even at close range. In 1985 , half of the rainess stel murre bands. These haw the number upis on both sides of the band, making it comparatively easy to read with a telescope at distances up to 30 m . After 1985, we used only the special bands. Each chick also received a coloured darvic band indicating the year of banding. All bands were placed on the right leg

During the 1988 and 1989 breeding seasons, we known age as possible concentrating our efforts on specific parts of the colony, all of which were necessarily close to the top of the cliff. Different areas were identified by letters and individual ledges by numbers, so that obe position of were made daily from 10 June to 17 August. The exact time spent in recording band numbers was not recorded but was in excess of 350 person-hours. In 1989, observations were made daily from 28 July to 19 August in watches of 1 h , amounting to 45 person-hours. We recorded the behaviour of all known-age individuals (i.e., those banded as chicks), their breeding status where possible, and whether the colou From 1986 presen

From 1986 onwards, we conducted periodic counts of known-age birds during the period from 23 July to observers, using observation points spread along the entire west subcolony, two within and two outside the banding area. Observers counted all visible right tarsi every 10 min , recording the total number seen and the numbers of each year-class. Proportions of different year-classe

Most birds for which the right tarsus was visible were standing up; hence, this sample included a disproportionately high number of prospecting birds. Consequently, these counts cannot be used to compare the strengths of different cohorts in a single year. However, they can be used to compare cohorts of the same age among years and the relative abundance of given cohorts within and outside the banding area.
2.2. Estimating survival

It was possible to read bands only over a fraction of the banding area. Moreover, our banding efforts varied in their extent from year to year (see Table 1). Consequently, we have based our survival estimates on the numbers of survivors of a given cohort that returned to two areas. "NG" in 1988 and 1989, and "S 1 in these two areas were
between 1984 and 1989.

Survival (S_{i}) was estimated by comparing the estimate of the total number of survivors (N_{s}) with the number of chicks originally banded that fledged (C), as follows
2.2.1. The original cohort

The initial size of the cohort (C) was estimated by the equation:
$\mathrm{C}=\left[\mathrm{N} \cdot \mathrm{k} \cdot \mathrm{RS} \cdot \mathrm{p} \cdot\left(1-\mathrm{M}_{\mathrm{i}}\right)\right]$ pair),
$\mathrm{p}=$ proportion of chicks that were of bandable age, and
The estimate of C depends on the assumption that the number of adults breeding in the area has not changed since the hatching year of the cohort in question. In area
NG, the number of breeding pairs was determined by the product of the count of adult murres (N) and the mean
ratio determined at a breeding plot D during the same time period. The actual count (N) has no error attached; and , has been nound to vary slightly during the chick-rearing period and among plots (Gaston et al. 1985).
In area S, the number of breeding pairs was calculated differenily, by counting eggs and chicks present just after the start of hatching and assuming a 208
eggs to that stage (Gaston and Nettleship 1981). As the reproductive success (RS) of birds breeding in he NG and S areas was not monitored in any year of the lot D in 1988. The range of breeding success found among lots and years on Digges Island was used to estimate the
error. The pepresents the proportion of chicks in the are
hat were banded. We banded only once on each ledge; some chicks were too small to band, and a few eggs remained unhatched at the time of banding. Although never measured directly, we believe that the proportion ranged between 85% and 95%.
Banding mortality for each year $\left(M_{i}\right)$ was estimated, the estimate of the number of chicks banded for the proportion surviving to fledge ($1-\mathrm{M}_{\mathrm{i}}$).
2.2.2. Number of survivors

The number of survivors (N_{s}) was derived from an timate of the number of site-attached birds $\left(\mathrm{N}_{52}\right)$ in particular area, corrected for the proportion (E_{i}) th

$$
\mathrm{N}_{\mathrm{s}}=\mathrm{N}_{\mathrm{ya}} \cdot\left(1+\mathrm{E}_{\mathrm{i}}\right)
$$

We defined birds as "site attached" if they were recorded at east twice in one of these areas (which consisted of about 0 ledges each) and not more than once elsewhere. Although the total period of observations was 68 d in 1988, we modified the criteria for three-year-olds to account for do not arrive until early July (Noble 1990), we considered only the period between 14 July and 17 August.

In order to test the criteria for site attachment, we plotted the cumulative totals of first sightings of individuals of a particular cohort fitting those criteria agains ate. An asymptote was interpreted as evidence that all members of that age cohort occupying the defined area had been seen.
TSFWS and specing was banded alternately with site-attached individuals of each band type seen within th defined area to obtain a correction factor for the readability of the two band types. This method assumes that all surviving members of a given cohort were visiting the colony that year and were attached to a particular area A certain proportion of each cohort appeared to be a emigration whether or not the individuals subsequently bred there), and this varied with age. We corrected the number of site-attached birds (N_{si}) for this fraction.

The emigration rate $\left(\mathrm{E}_{i j}\right)$ for a given age i in year
calculated from the ratio $\left(\mathrm{R}_{i j}\right)$ of known-age birds j was calculated from the ratio (R_{ij}) of known-age birds
recorded within versus outside the banding area during th recorded within versus outside the banding area during the imultaneous counts. As the nonbanding area contains he proportion (\mathbf{E}) of a given age-class that was settled outside the banding area as:

Table 1
Numbers of Thick-billed Murre chicks bandded annually at Coass Island, and the
number recovered each winter in Newfoundland dand Greenland

$\begin{aligned} & \text { Banding } \\ & \text { year } \end{aligned}$	No. banded	No. recovered each winter				
		1984-85	1985-86	1986-87	1987-88	1988-89
1984	1454	35	${ }^{22}$	2	3	
1985	1619	-	32	11	9	
1996	2237	-	-	21	18	
1987	2250	-	-	-	55	
1988	2686	-	-	-	-	

$\mathrm{E}_{\mathrm{i}}=3 /\left(3+\mathrm{R}_{\mathrm{i}}\right)$
An important assumption of the previous step is that our watch areas are representative of the entire banding area, emigration or immigration.

Thus, survival of a particular cohort to a given age i, corrected for emigration and mortality during banding M_{i}), was determined by:
$\mathrm{S}_{\mathrm{i}}=\left[\mathrm{N}_{\mathrm{si}} \cdot\left(1+\mathrm{E}_{\mathrm{i}}\right)\right] /\left[(\mathrm{N} \cdot \mathrm{k} \cdot \mathrm{RS} \cdot \mathrm{p}) \cdot\left(1-\mathrm{M}_{\mathrm{i}}\right)\right]$
2.3. Evidence of cohort-specific mortality

In order to investigate cohort-specific patterns of urvival, we analyzed data from the simultaneous watches rom 1986 to 1989. Only counts between 23 July and 16 August, a period represented in all four years, were included. Although we report data from the GH area only, he proportions of known-age birds seen from the two vantage po
not differ.

The attendance rates of known-age birds at the colony were estimated from the proportions of colourbanded right tarsi counted during the simultaneous watches. The estimates were corrected for the total number of chicks banded each year (Table 1) and year-specific ban loss rates.

Band loss was assessed by two methods. We determined the proportion of a sample of specimens recovered in Newfoundland that had lost their colour-band nd the proportion of colour-band loss in individual resighted at the colony in 1988. As we have found no evidence of band wear on Coats Island since banding began in 1981, we have assumed that all band loss occurs early in ife (i.e., the bands fell off the chicks before their legs grew We.
We tested for differences in the proportions (arcsine quare-root transformed) of known-age birds present mong years using the Fisher PLSD multiple range test in return rates at the colony was compared with the pattern of recovery rates of known-age birds shot in Newfoundland.

Results

3.1. Age and timing of return

Age and timing of return
No first-year birds were observed at the colony Table 2). In 1988, when observations commenced early in he season (10 June), two-year-olds were first seen on 28 June. Three-year-olds were first seen on 14 June and our-year-olds on 11 June, a few days betore egg laying egan. In 1989, birds of all ages from two to five we present on our arrival at the colony on 28 July.

3.2. Recruitment

Only three (2\%) of 150 three-year-olds seen in 1988 were observed breeding, and all three lost their egg within

wo weeks of laying (Table 2) Two-year-olds did not arrive until midway through the incubation period, and none attempted to breed.

Seven of the 45 four-year-olds (16%) whose band numbers were recorded in 1988 attempted to breed (Table as succest in tor ear. Our presence probably contributed to the failure of a east two of the attempts. Of the seven failures, one egg did not hatch and five eggs and one chick disappeared, perhaps aken by Glaucous Gulls Larus hyperboreus, major predators of eggs and chicks at Coats Island.

In 1989, only four (7.0\%) of 57 identified four-yearolds and five (31%) of 16 identified five-year-olds were known to breed (Table 2). Another three five-year-olds bred a plot S , but heir band numbers were not read. There was no evidence of breeding by three-year-olds in 1989
3.3. Emigration

Birds banded as chicks that regularly visited areas utside the banding area provided evidence of dispersal. The proportions of two-year-olds among been 1987 and 1989 were seen within the banding area between from five to 21 times the proportions outside, and he proportions of three-year-olds ranged from nine to 28 times as high (Table 3). The mean ratios for all year combined $\left(\mathrm{R}_{\mathrm{i}}\right)$ were 10.7 for two-year-olds, 15.1 for three Year-olds, 14.3 for four-year-olds, and yielded estimates for emigration from the banding rea of 26% for two-year-olds, 17% for three- and four-yearolds, and 13% for five-year-olds.

Only one banded bird (a three-year-old) was eve een at the east subcolony, of more than 1000 birds examined there. We have therefore ignored emigration to ther colonies, although some may occur.
3.4. Survival

Estimate of the number of site-attached individuals
The criteria for site attachment were tested by lotting the cumulative total of sightings in 1988. Observations were carried out every day until day 76 (1 June = 1). The total number of site-attached three-yearIds banded with the special bands approached an asymptote of just over 30 , suggesting that we recorded
practically all individuals atached to sites in NG. Similar plots of the cumulative first sightings of three- and four-year-olds banded with the USFWS bands (Figs. 1 and 2) were not asymptotic.

$\begin{gathered} \substack{\text { Table } 3 \\ \text { Ratios }} \end{gathered}$Simulan						
	Age in years				No. of murres coumed	
Year	Two	Three	Four	Five	Wihin	Ouside
1987	5.0					
1988	6.2	${ }_{8.6}$	10.9	-	7608	1174
1989	29.8	28.0	17.7	19.4	2262	672
Mean ratio	10.7	15.1	14.3	19.4		

Thirty of the three-year-olds banded with special bands were site-attached in the NG area in 1988, as well as 15 banded with USFWS bands. Return rates should not be affected by band type, so we assumed that the difference in numbers sighted related to the readability of the inscriptions. Fifty percent of the 1985 cohort were banded with the special bands; hence, we estimated that there were 60 siteTen four-year-olds were site-attached in NG in 1988. All chicks banded in 1984 received the USFWS bands, so, using the above correction, we estimated that there were 20 siteattached four-year-olds in total (Table 4).

Correcting for the 1988 age-specific emigration rates, we estimated that there were 76 surviving three-year-olds and 24 surviving four-year-olds of the original cohorts from NG are at the colony in 1988 (Table 4)
3.4.2. Estimate of the original banded cohort

The mean count of adults (N) in plot NG in August 1988 was 372 , and the mean August k-ratio (k) was 0.67 . We assumed an error of ± 0.05, which was the range in k-ratio found by Gaston et al. (1985) on nearby Digges Island. Reproductive success at plot D was 0.66 in 1988 variation in breeding success among years and plots at
Digges Island (Gaston et al. 1985) suggested an error of ligspoximately ± 0.12. Chick mortality during banding (M_{H} was estimated as 10% in 1984 and 5% in 1985 and subsequently. Hence, we estimated that 143 and 135 banded chicks successfully fledged from the NG area in 1985 and 1984, respectively (Table 4).

3.4.3. Survival estimate

Substituting the parameters above into equation 1 yielded a survival estimate of 53% to age three for . By substituting the upper and lower limits of the error estimates of each parameter used to calculate survival, we obtained a range of survival to third year of $36-74 \%$. By the same method, survival of the 1984 cohort to fourth year was estimated to be 18% (Table 4)

The number of resightings in the NG area in 1989 was much lower than in 1988 because of the shorter dura based on data from that year are probably underestimates. The S area was much smaller than the NG area, with an estimated 119 breeding pairs.

In 1989, based on resightings at the colony, surviva to third year was estimated as 19% in area NG and 16% on plot S. Survival to fourth year was 17% in both areas NG and S, and sur id to
3.5. Evidence for cohort-specific survival rates

The proportions of known-age birds detected in the simultaneous counts were corrected for year-specific colourband loss rates and the total numbers of chicks banded each
${ }^{\text {Figure }} 1$
Comparison of the cumulative number of site-atached chre- year-olds band
with specaal bands or USFWS bands, seen in the NG area in 1988

Figure 2
Cumulative number of site-atached four-year-oldd seen in the NG area in 198
Cumulative number of site-atacacs
(all banded wihh USFWS bands)
four-year-olds: - Usfws Banda

3.5.1. Colour-band los

Colour-band loss rates varied among years, based on two sources of data: resightings at the colony, and recoveries of banded birds in Newfoundland (Table 5). Although the two sources suggested different overall loss rates, birds banded with the special bands appeared to retain their colour-bands longer than those banded with USFWS bands. Mean colour-band loss rates were 16.2% 3.8%, and 0.5% for 1984,1985 , and 1986 , respectively.

Age in year (cohort	Study area	Initial no. in banded cohort ${ }^{\text {a }}$	$\begin{array}{r} \text { No. seen } \\ \text { site-attached } \end{array}$	Ratio of banded murres counted withinnowuside banding banding area	Emigration rate (\%)	No. alive at colony	$\begin{aligned} & \text { Estimate } \\ & \text { survival rate } \end{aligned}$
1988							
Three	ng	${ }^{143}$	60	8.6	25.9	76	
Four	ng	153	${ }^{20}$	10.9	21.6	24	
1989							
${ }_{\text {Three }}^{\text {(1986) }}$	$\stackrel{N G}{\text { S }}$	148 81	25 12	28.0	9.7	${ }_{13}^{28}$	
Four	ng	143	20			25	
(1935)	s	81	12	17.7	14.5	14	
Five	ng	135	4			4.5	
(1984)	s	77	2	19.4	19.4	2	

Corrected for banding moo
Corrected for band ype.
3.5.2. Comparisons of attendance at the colony

Multiple comparisons of the proportions of two-ear-olds detected in the simultaneous counts (corrected for colour-band loss rates and the number of chicks originally influenced by banding year ($\mathrm{F}=6.585, \mathrm{p}=0.004$). A signif cantly greater proportion of the 1984 cohort was present a wo-year-olds compared with the 1986 or 1987 cohorts. The proportion of the 1986 cohort present at age two was also significantly less than that of the 1985 cohort (Fig. 3).

The proportions of three-year-olds present, corrected the same way, were not significantly influenced by band ing year ($\mathrm{F}=1.839, \mathrm{p}=0.195$), alchough the 1985 cohor wa Fig 8) Comparison of the four-year-olds showed that proportion of the 1985 cohort present was significantly reater than the proportion of the 1984 cohort present at the same age ($\mathrm{F}=5.735, \mathrm{p}=0.037$).

Discussion

1. Age of return and recruitmen

As found for most other alcids (Petersen 1976; Lloyd and Perrins 1977; Birkhead and Hudson 1977; Ashcroft and Perrins 1977; Birkhead and Hudson 1977; Ashcrot
1979), no first-year birds were ever seen at the colony. The arrival of two-year-olds midway through the incubation period at Coats Island is also consistent with those studies. We assumed that all three- and four-year-olds visited the colony. However, the fact that the proportion of three-yearolds detected in the simultaneous watches was consistently greater than that of two-year-olds sugges
two-year-olds visited the colony (Fig. 3).

In 1988, only a very small proportion of three-yearolds and slightly larger numbers of four- and five-year-olds attempted to breed. Mean lay date was relatively early and chicks reached high weights, which suggest that condition in 1988 may have been particularly favourable (AJG and DGN, unpubl. data)

This pattern of recruitment is consistent with revious observations at Coats and Digges islands, where rooding chicks (Gaston et al. 1987). These data are also imilar to ages of first breeding reported for Common Murres Uria aalge: three years at an expanding colony in Scotland (Swann and Ramsay 1983) and tour years at an xpanding colony on Skomer Island (Hudson 1985). However, breeding attempts by young birds at Coats Island were probably more common than recorded. We know little

Banding year	Type of metal band	Method of estimation	No. checked	$\begin{gathered} \text { No. with no } \\ \text { colour band }\left(\xi_{0}\right) \end{gathered}$
1984	USFws	Recoveries in Nidd.	34	8 (23)
1984	UsFws	Resightings at the colony (I988)	${ }^{45}$	4 (9)
1985	usfws	Recoveries in Nild.	10	(10)
1985	usfws	Resightings at the colony (1988)	49	24
${ }^{1985}$-86	${ }_{\text {Special }}$		${ }^{23}$	
1985-86	Special	Kasightings at the colony 1988	198	${ }^{(0)}$

about many individuals that were seen only rarely. First time breeders appear to have very poor reproductive ing quickly lost egg very low.
4.2. Emigration and philopatry \qquad
Observations of returning known-age birds suggest that Thick-billed Murres at Coats Island are relatively philopatric. Known-age birds seen outside the banding area amounted to less than 10% of those seen within the banding area.

Although the banding locations of chicks banded prior to 1986 were not recorded, resightings of birds banded ite In 1988 , 35 (52) most returned very close to their nata ste. In 1988, $35(52 \%)$ of 67 two-year-olds resigh

We know that some known-age birds did settle far outside the banding area. For example, in 1988, one four-year-old regularly occupied a site at the far end of the banded area with increasing age probably reflects the closer位e at of birds as their prospecting range decreases.

Few two-year-olds were site-attached, and this age cohort had the greatest proportion of birds seen outside the banding area (Table 3). It appears that two-year-olds that arrive during the incubation period usually visit several areas before settling in a particular location.

There are no published records of visits to a
colony interchange has been reported in other alcids (Lloyd and Perrins 1977) - up to 50% among surviving Atlantic Puffin recruits (Harris 1983). Although one visit to the other Coats island subcolony was recorded, recruitment to other colonies was considered negligible

AGE (YEARS)

- Corrected for band loss and per 1000 blrds banded
4.3. Survival estimates

Our best estimate of survival of prebreeding Thick billed Murres at Coats Island is 53% to age thuee, with a range of error (based on errors in the components of equation 2) from 36% to 74%. Survival to age four was estimated to be 18% in 1988 and 17% in 1989. The latter are almost certainly underestimates, because cumulative plots sign of approaching an asymplote.

Low percent return rates based on observations of colour-marked birds have been reported in most studies of recruitment in alcids (Birkhead and Hudson 1977; Lloyd and Perrius 1977; Ashcroft 1979; Harris and Wanless 1988 Return rates for Common Murres and Razorbills Alca torda were generally lower than those reported here,
ranging from 10% to 20% for survival to three four and ranging from 10% to 20% for survival to three, four, and five lower, attributed partly to emigration (Harris 1983)

Judging from the adult survival rates listed in Table 5.4 in Hudson (1985), estimates obtained by analyses of band recoveries consistently yield higher survival estimates than those based on resightings. Survival rates based on rates of return of the colony can be regarded as minim only, because of the difficullies in recording all of the
Allorough the

Allhough the clata presented here are based on incomplete knowledge of some of the importan parameters (and hence our estumates are pretimmary), they
illustrate a melhod of estimating survival rates will a smal subset of birds in a large seatiing survival rates with a small specific differences in emigration rates, site attachment, or band loss can be incorporated.

50 the modified capture-recapture model used by Harris (1983)
o calculate survival of Allantic Puffins to fifth year by etrapping them at the colony. However, catch eftort echniques are not appropriate at Coats Island, because the assumptions of a closed population and a constant probability of capture or resighting (Davies and Winstead 1980) are violated. Our efforts at capturing prebreeders and
reading band numbers varied considerably over the season and between years and were difficult to quantify

We did compare our survivorship estimates with one obtained from all resightings of members of a group of chicks banded on one readily identiliable ledge in the NG area in 1985. Of 53 chicks banded with the special bands, 15 were resighted at the colony in 1988 and an additional three in 1989, suggesting that the survival of this group to whire year was at in 1989 presumably due to the reduction in observer effort then, we did not estimate survival to fourth year

The derived survival estimates required a number of assumptions, some of which were discussed earlier. First, we assumed that there was no preference for particular areas. However, observations of the breeding plots suggest that recruits tend to colonize ledges on the periphery (AJG prebreeders congregrated on broad or unoccupied ledges, presumably because breeders on narrower ledges usually repel prospectors.

Another consideration is the extent to which prebreeders visit several areas of the colony and the criteria we use to assign site-attached status. We know that many individuals, even breeders, will visit other areas occasionally. A plot of the best set of data, the cumulative total ol
the number of site-attached three-year-olds with special bands seen, was asymptotic. Therefore, al hough the "two visit" criterion is somewhat arbitrary, it is probably the most appropriate in these circumstances.
4.4. Cohort-specific differences in survival rates: the effects of hunting and climatic conditions The large difference in the mean estimates of survivarslip from three to four years. However it is more likely that there are significant differences in the agespecific survival rates of the 1984 and 1985 cohorts. Climatic conditions and hunting activity in Newfoundland and Labrador vary trom year to year and are likely to affec different-aged cohorts differently

A greater proportion of the 1984 cohort returned to the colony as two-year-olds, compared with the 1985 cohor However, more of the (Fig. 3). The reversal suggests that mortality of the 1984 cohort was particularly high in their third winter (1986-87), affecting them more than it did the 1985 cohort in their third winter (1987-88).

This scenario is consistent with data from band recoveries in Newloundland and Labraclor (Table 1). All of the recoveries included in these analyses are of birds shot by than that of the 1985 cohort during their first two winter (Fig. 4), significantly so in their second winter $\left(x^{2}=10.72\right.$, $p=0.013$). However, by the third winter, the pattern had reversed, with the 1985 cohort recovery rate higher (although not significantly so) than the 1984 cohort recovery rate in their third winter ($X^{2}=3.12, p=0.209$) (Fig. 4).

recovery rate of the 1986 cohort in their first winter 1986-87) was significantly lower than all other cohorts $x^{2}=21.25, \mathrm{p}=0.0003$) (Fig. 4). Recoveries of birds that were $986-87$ (Table 6) We consid
We consider several possibilities. Relatively low have been due to reduced hunting pressure. There may have been a major source of mortality sometime between he winters of $1985-86$ and 1986-87. It is also possible that a single factor such as exiensive ice cover could simultaneou

The reduced-hunting-pressure hypothesis is
ted by the fact that recovery rates of beth the and 1985 cohorts increased in the season following the winter of 1986-87. It also agrees with observations that elatively few murres were harvested during the winter of 1986-87 (Elliot et al. 1991; RDE, unpubl. data). Some hunters said that the few birds present during the winter of 986-87 were in such poor condition that they were not food availability in combination with weather conditions affecting hunting activity that reduced the kill as well as overwinter survival during that winter.

Counts at the colony show that although
significantly more of the 1984 cohort attended the colony as hree-year-olds than as two-year-olds (Fig. 3), the increase with age was much less pronounced than for the 1985 cohort. It appears that the 1984 cohort, despite being olde winter of 1986 - 87 than was the 1985 cohort.

We speculate that the poor survival of the 1984 cohort in that winter, compared with the younger 1985 cohort, was due to differences in wintering area and timing of southward migration. A.J. Gaston et al. (unpubl. data) noted that first- and second-year birds have similar lemporal patterns of recovery in Newloundland, differing more, which have spent their summer in the north

Table 6

Year	No. banded as clichs	No. bautled as aduluts
$1984-85$	13	
1985-86 $1986-87$	17	
1987-88	2	
1988-89	0	

We suggest that the 1984 cohort, although initially doing well, was affected to a greater extent than the 1985 cohort by heavy ice or weather conditions during the winter of 1986-87 as a result of temporal or spatial differences in wintering behaviour. The 1986 cohort, in its first winter, was also particularly vulnerable to those condi ions, and relatively few returned to the colony in thei second year.

5. Summary

At Coats Island, many individuals return to the colony at the age of two years, and probably most surviving irds are attending the colony by their thard year. Our best estimates of survivorship are 53% to third year and 18% to fourth year, but these estimates are cohor 1 -specific. We colort relative to the 1984 cohort is due mainly to ifferences in wintering behaviour Poor weather Conditions during the winter of 1986-87 may have increased nortality directly or by reducing the availability of food, resulting in higher natural mortality, although with fewer ecoveries because of the reduction in hunting. Philopatry colony appears to be very high, and emigration from th gradual decline between the ages of two and five A ama number of three-year-olds and larger numbers of foul and live-year-olds attempted breeding, most unsuccessfully.

Acknowledgements

We are grateful to the Polar Continental Shelf roject of Energy, Mines and Resources Canada, to the Indian Affairs and Northern Development in Frobisher B or logistic and other support throughou this project Bay Many thanks to those who helped collect the data: Kare Allard, Kate Bredin, Don Croll, Leah DeForest, Dirk Draulans, John Creale, Grant Gilchrist, Sue Johnson, Elizabeth MacLaren, and Christophe Rohner. M.P. Harris and W.A. Montevecchi suggested improvements to the manuscript

Population changes in

British Common Murres and
 Atlantic Puffins, 1969-88

Michael P. Harris

Institute of Terrestrial Ecology, Hill of Brathens, Banchor
Kincardineshire, Scotland $A B 34 B Y$

Abstract

The number of Common Murres Uria aalge in Britain and Ireland more than doubled, to 1.2 million, tarted to d9-70 and 1985-88. However, many population decline started earliest in the north and gradually spread south, while the southern populations were still increasing The decrease at an intensively studied colony appeared to e due to poor recruitment, which probably indicates poo urvival of immatures. The number of Atlantic Puffins smaller proportion, over the same period. The rate of increase in the population of Isle of May decreased afte 1981, and by 1988 the population appeared stable. Survival of both adults and immatures was reduced. "Natural" actors were probably responsible for these changes, and here is nothing obvious that can be done in the way of management.

Résumé

Le nombre de Marmettes de Troil Uria aalge, en Angleterre et en Irlande, a plus que doublé, atteignant ,2 million, entre 1969-1970 et 1985-1988. Cependant, de nombreuses populations ont commencé à diminuer au début des années quatre-vingt. Dans la mer du Nord, cette baisse a commence dans le nord s'étendant graduellement de s'accrôtre. La diminution, dans une colonie qui fait 'objet d'études intensives, semble attribuable à une diminution du recrutement, qui reflète probablement une baisse du taux de survie des jeunes oiseaux. Le nombre de Macareux moines Fratercula arctica, en Angleterre et en rlande a augmenté, quoique dans une faible proportion, u cours de la même période. Le rythme d'augmentation de la population de l'̂̀le de May a ralenti après 1981 et, en des adultes et des jeunes a diminué. Des facteurs «naturels» sont probablement à la base de ces changements, de sorte qu'aucune mesure particulière de gestion ne semble appropriée.

1. Introduction

Britain and Ireland have large and internationally important populations of seabirds, and during the last 20 years much effort has been put into monitoring changes in their number because:
(1) they are numerous and obvious
(2) they are peculiarly susceptible to a whole range of pollutants, including il chemicals (Bourne
(3) they are potential competitors with expanding man tisheries for small fish such as sand lance
(4) various species feed in different ecological zones, which allows interesting ecological comparisons to be made; and
(5) they have great appeal to the general public so that, for research. for research
Much attention has focused on the Common Murre Uria aalge and the Atlantic Puffin Fratercula arctica, although
for different reasons: the former is common, obvious, easily counted, and susceptible to oil pollution, whereas the latter has great public appeal and was at one time thought to be endangered.
solely to monitor changes in the numbers of seabirds. solely to monitor changes in the numbers of seabirds. A recent review of the results of annual counting of murres techniques used provided adequate descriptions of longterm changes in numbers but did not lead to a greater understanding of either the biological process involved or the factors that might be influencing the numbers of bird at the colonies (Rothery et al. 1988). Recent work has, therefore, concentrated on developing schemes to monitor seabirds in an attempt to remedy this shortcoming.

The present paper reports on recent changes in the numbers of murres in Britain and on breeding output and survival at a single Scottish colony, where numbers were increasing rapidly until recently but are now declining. Some comparative data are also presented for the Atlantic Puffin from the same areas, although the results of the where (Harri and Wanless 1991).

Method

21. Common Murre

The numbers of individual murres ashore at all British and Irish colonies were counted in 1969-70 Operation Seafarer) and in 1985-87 (Nature Conservancy Council - Seabird Group Seabird Colony Register). In these counts, it was impossible to separate breeding and nonbreeding birds. At most colonies, only single counts were made, so that the totals are of unknown accuracy. Counts at the same place made on different days can vary each June from 1981 to 1989 , the mean error of single counts was $12 \% 695 \%$ confidence interval $7-17 \%, n=9$

Commencing in 1969, numbers of murres at several colonies have been monitored annually by counting the individuals present in clearly defined areas on 5-10 d during the chick-rearing period in June (Seabird Group 981; Stowe 1982). The representativeness of the sample plots used to determine population trends has been questioned (Harris et al. 1983; Heubeck et al. 1986; Mudge overcome this by siting plots in some objective way random or stratified) or by counting all the birds in the colony (which may again cause problems if it is possible to make only a single count each year). As I am concerned here with long-term changes in numbers and not with year-to-year variation, I have given equal weight to complete and sample counts. The clear patterns that emerge suggest that the approach was justified. The Table I. In the Firth of Forth, murres on the Isle of May and all five nearby colonies have been counted regularly, and consequently I have pooled the counts and treated the colonies as a unit (Harris et al. 1987).

The results of complete surveys of all British and Irish murre and puffin colonies come from the reports and data files of Operation Seafarer (Cramp et al. 1974) and the eabird Colony Register (C.S. Lloyd, pers. commun.),
Monitoring of seabirds is carried out by a number of
organizations, and there is, as yet, no complete data base of counts. My information included all counts stored in the Seabird Colony Register, with additional published and solicited unpublished data from Benn et al. (1987), Birkhead and Ashcroft (1975), Evans (1989), Harris et al. 1987), Hatchwell (1988), P. Hawkey (unpubl. data), K. Rideout (pers. commun) Royal Society for the Protection of Birds (unpubl data) Thomas (1988), Wanless et al. (1982), Ward (1987), and reports of the Nature Conservancy Council.

For each colony, counts (\ln) were plotted against year, and any obvious trends in numbers and turning points were assessed visually. All apparent trends involving counts in at least five years were tested using linear level are included here. Where a significant trend was found, all the years involved were included in the regression; thus, when a trend was reversed, a single year could be included in both a significant decline and a significant increase.

2.2. Atlantic Puffin

Puffins are much harder to census than murres, but whe total population was assessed in 1969-70 and 1985-87 whereas that in east Britain (from the Moray Firth to the
igure 1 I Locaions of colonies of Common Murres and Atamic Puffins mentioned in the
ext Numbers refer to the colonies lised in Table 1 . The arrows indicate the limis the east Britush population.

| |
| :--- | :--- | :--- | :--- | :--- |

[^0]
igure 2
 Completere colony counts of Common Murres on Bardsey and Skomer, Irish Sea

Year
River Humber) was estimatè every four to six years Where possible, counts were made in terms of occupied burrows, but at some colonies estimates were based on counts of the numbers of birds present. The numbers of occupied burrows on Dun, part of Britain's largest colony on St. Kilda (Fig. 1), have been assessed every four to five years, and those at Hermaness and Isle of May, Firth of orth, have been assessed annually (Harris 1984; Harris and
2.3. Breeding and numbers of Common Murres and Atlantic Puffins on the Isle of May
These data were collected in standardized ways Harris 1984; Harris and Wanless 1985, 1988). Adult survival rates were based on resightings of colour-banded birds, and mmature survival rates come from large-scale resighting and other colonies. Breeding success was taken to be the proportion of young leaving the colony from a known number of eggs laid, assessed without handling the adults. The diet and feeding frequency of young were assessed by observations from blinds and the collection of fish retrieved rom adults, chicks on the breeding ledges, or burrows. The energy values of loads were calculated using relationships etermined from fish taken from auks on the Isle of May

3. Results

3.1. Population change
3.1.1. Common Murre

The total British and Irish population increased rom about 540000 individuals in $1969-70$ to 1200000 in colonies. In 1982, Stowe and Harris (1984) estimated the population at 1100000 individuals by using counts made at 120 (of about 200 known) colonies and the 1969-70 distribution of birds. Increases between 1969-70 and 1985-88 were largest (490%) in southwest Scotland (totaling all colonies) and smallest (50%) in southwest Ireland and

Figure 3
Counts of Common Murres in sample plots and
Shetland Iclands. Note log scale of y axis.

Where additional counts were available for intervening years, it was obvious that numbers at some colonies had increased and then declined while still being above the 1969-70 level, and that patterns of change varied greatly between colonies. Murres at Irish Sea colonies were badly affected during a severe nurs at many colonies the autumn of 1969, and numbers at many colonies (Birkhead and Ashcroft 1975). Numbers recovered slightly in the following years and then stabilized, but it was not until the late 1970s that counts indicated a sustained increase, which continued to at least 1987 (Table 1, Fig. 2). Farther north in the Inner Hebrides, numbers on Canna increased at 11% per year between 1974 and 1983 but have since decl al. 1989).

A series of 18 colonies or areas arranged from north to south from the northern tip of Shetland down the east side of Scotland to the Farne Islands has been counted regularly. Numbers increased at all colonies during the 1960s and 1970s, but the most northern colonies started to decline in the late 1970 and early 1980 s (Fig. 3); by 1988, all but the most southern colonies counted- Hose ais. A). Overall, there was a significant negative correlation between the year when numbers were highest and the latitude of the colony (Fig. 5) ($\mathrm{r}=-0.60, \mathrm{n}=20, \mathrm{P}<0.01$). Numbers at some colonies were still declining at the time of the most recent available counts. At others, recent counts were higher than those recorded when counting was initiated. However, in general, the lowest counts in the last 15-20 years occurred much earlier in the southern colonies. the same latitude as the southernmost British North Sea colony that is monitored, showed similar trends, with numbers very low in 1967 and 1973-74 and then increasing steadily up to 1985 before remaining stable in 1986 and 1987 (Vauk-Hentzelt et al. 1986; Kleist and Werner 1987; Meyer 1988). Outside the North Sea, the small population farther south in Brittany has increased from about 250 pairs in
1981 to $350+$ pairs in 1988 (P. Yesou, pers. commun.). Th

Figure 4
Complete colonn counts of Common Murses in the Firit of Forth (total of six
colonies) St. Abbb's Head, and Farne Islands. Note log scale of y axis.

population in Iberia declined dramatically, from 20000 birds in the 1950 s to 300 in the early 1980 s, apparently due to predation and pollutio

The annual rates of increase and decrease at the various British colonies that showed significant sustained linear changes are given in Table 1. The mean rate of increase at 17 colonies was 7.3% per year ($\mathrm{SE}=0.9$). Excluding Burravoe, a small colony where some adults were shot by vandals (M. Heubeck, pers. commun.), the mean rate of decline was 5.8% ($\mathrm{n}=11, \mathrm{SE}=1.03$). All
declines occurred at colonies in or near the North Sea during the 1980 s , and there was a significant relationshi between the rate of decrease and latitude, the numbers at northern colonies decreasing most rapidly (Fig. 6) ($\mathrm{r}=0.78$, $\mathrm{P}<0.01$). There was no significant relationship between the rates of increase and latitude.
3.1.2. Atlantic Puffin

The total British and Irish population in 1984-88 was about 600000 occupied burrows, with approximately about 20% since 1969-70. In part, this could be an artifact resulting from improved coverage of some of the large isolated colonies, but the increase is supported by the an increase of 18° beunts on Dun, St. Kilda, which show an increase of 18% between 1977 and 1987 (Harris and Rothery 1988). Numbers at the large colony at Hermanes (A. R. Martin, pers. commun.).

There have been proportionally large increases at some small southern colonies in England and Wales. In northeast Britain, the total number of pairs of puffins between Troup Head (Grampian) and Bempton Humberside) (Fig. I) was estimated at 10000 in 1969, 17000 1974, 24000 in 1979, and 49000 in 1984, which indicates steady rate of increase of 10% per year

Figure 5
Cear or recent maximum count of Common Murres at 19 British colonies in where the maximum count was at the start or end of the period of counts.

3.2. Demography and breeding on the Isle of May Common Murre
Counts increased during the 1970s and early 1980 (Harris and Galbraith 1983), stabilized about 1983, and declined significantly from 1986 onwards (Fig. 7). The numbers of pairs known to breed in study plots stabilized numbers was atributed to decline. The reduction in total numbers was attributed to a combination of fewer anges in attendance behaviour
Adult surviv

Adult survival and most measures of breeding ouput remained very high from 1981 to 1988 (Table 2 . Two murres of known age had been found breeding on the Isle of May up to 1988; one was three years old (and was six (and had been present for caught), and the other was had certainly not bred). Of 133 chicks colour-banded in 1983. 11 (8 \%) were identified during intensive daily searche of the breeding areas and loafing racks, and only four (3%) were known to have definitely survived until five years of age. Of 250 chicks marked in $1984,11(4.5 \%)$ were present at four years of age. Despite thorough searches of other colonies in east Britain, only two chicks reared at the Isle of May have been found elsewhere, both on the Farne Islands, one of these was subsequently seen back on the Isle of May
3.2.2. Atlantic Puffin

The annual counts of burrows in about a quarter of the colony showed that the population increased at 19% per year between 1973 and 1981; after which the increase slowed, for the first time, numbers declined slightly between 1987
and 1988 (Fig 8). There was liule variation in breeding and 1988 (Fig. 8). There was little variation in breeding success or the mass of food fed to chicks during the 16 years
(Table 3) but fledging weight declined ($\mathrm{r}=0.812, \mathrm{n}=15$, $\mathbf{P}<0.001$). The population increased each year until 1987, so it is unclear whether the decrease in fledging weight was due to increasing intraspecific competition for food (Gaston 1985) or to changes in the overall food supply

Adult survival decreased quite abruptly after the winter of $1980-81$, at exactly the same time that the rate of population increase slowed down. The most recent survival estimates could be too low, as not every adult is recorded
every year, so that some missing birds could still be alive every year, so that some missing birds could still be aliv
However, recalculating the survival rates using Leslie models (Leslie and Chitty 1951) to allow for this confirmed the reduction in survival: the mean of nine estimates from 1973 to 1981 was 96.0% ($\mathrm{SE}=1.8$), and the mean of five estimates from 1981 to 1987 was 91.4% ($\mathrm{SE}=1.8$). The survival of adult puffins is also monitored on Skomer, where survival declined from a mean of 95.8% per year in $1973-78$ to a mean of 88.4% per year in 1978-86
Estimates of immat

Estimates of immature survival (calculated from fledging until the median age of first breeding at five years for birds returning to the island) are available for chicks the 1979 each year from 1973 to 1978. The mean ohot was 18% (Harris and Wanless 1991). Large-scale colour-banding and subsequent checking of many British colonies indicated that at least 46% of young puffins recruited to
colonies away from where they hatched, which suggests that about one-half of the young survived to breeding ag from the cohorts produced during the 1970s. Immature puffins can be separated from adults by bill characters, and the proportions of such birds present on the Isle of May declined from 37% in 1980 to $0-10 \%$ in $1985-88$, which also suggests that survival of immarures had decreased in recent years (or that more birds were emigrating and fewer were immigrating

4. Discussion

The most likely reason for the decrease in total numbers of Common Murres while the numbers breeding remained constant is a reduction in the numbers of immature murres returning to the colony. Hudson (1985) listed 10 estimates of the survival of chicks until breedin
 found back on the Isle of May. Most of these published estimates were based on banding returns and so are probably not directly comparable with sight records. However, on Skomer, similar methodology indicated that 17-23\% of young survived to return to the colony between 1973 and 1977 when numbers were stable (Hudson 1979); in 1987, 13 (9%) of 148 chicks ringed in 1985 were seen, Isle of May at a similar age (Hatchwell 1988; pers. obs.) On the Isle of May in 1989, $33(17 \%)$ of 199 young colourbanded in the main study colony in 1986 were seen at the

56 high and supported the conclusion that most of the young

Figure 7

(a) Counts in random plots

(b) Pairs laying in study plots

ringed in 1983-85 had died, rather than been overlooked on the Isle of May or elsewhere.
mature murres are known to visit other colonies, but there are no quantitative estimates available on the young reared on or immigration. It is possible that some nearby colonies the Isle of May have recruited into the nearby colonies at St. Abs's Head or the Farne islands, as locate any. Details of this aspect of murre biology are needed urgently.

Banding recoveries provide some indication on the age and cause of death of murres from the Isle of May. Of 45 recoveries of murres ringed as chicks in 1981-87, 29 (64\%) were reported in the first year after leaving the colony, 13 (29\%) in the second year, and only three (7%) when older. future, there is obviously a large mortality in the first year and, to a lesser extent, second year. There have been wrecks involving large numbers of immature murres found dead or dying, apparently of starvation, in the North Sea in several winters during the 1980s (e.g., Underwood and Stowe 1984). Of 73 recoveries of murres of all ages banded on the Isle of May, $51(70 \%)$ occurred between November and February, which coincided with the timing of these
wrecks. Most recoveries were of birds found dead on the shore (47%), whereas fewer were oiled (25%), tangled in fishing nets (25%), or shot (3%)

Although breeding output was high right up to 1988, there was evidence that in the later years the duration of feeding trips for adults with young had increased (MPH and S. Wanless, unpubl. data), suggesting that birds were having to travel farther to feed or taking longer to catch prey in the feeding area. There is, therefore, some evidence
of a recent reduction in food availability during the chickrearing period, which would result in lower counts, as fewer off-duty adults would be present (Caston and Noble 1986). So far this has not been reflected in a reduction in the daily energy intake of the young. However, adults appear to be approaching the time when they cannot extend their

Table 2
DDails of breding, food of young, and adut survival for Common Murres on the
Dceio
Delails of breeding, food ol young, and aduit survival for Common Murres on the
isle of May, $1981-88$

Year	$\begin{gathered} \text { Median laying } \\ \text { date (May) } \end{gathered}$	$\begin{array}{r} \text { Lost egss } \\ \text { replaced } \end{array}$	$\begin{array}{r} \text { Young } \\ \text { fledged/pair } \end{array}$	$\begin{gathered} \text { Leaving } \\ \text { weight }(\mathrm{g})^{2} \end{gathered}$	Feeds/day	$\begin{aligned} & \begin{array}{l} \text { Value of } \\ \text { fish } \end{array} \text { (kJ) } \end{aligned}$	Daily intake		$\begin{gathered} \text { Adult } \\ \text { survival } \end{gathered}$
							g	kJ	
1981	8	${ }^{60}$	0.81		5.2	${ }^{113}$	61	590	
1982	8	39	0.79	249	3.4	104	45	354	93.0
1983	7	52	0.77	250	4.1	94	44	386	93.2
1984	5	43	0.70	262	3.6	82	36	295	93.5
1985	7	41	0.86	262	3.8	64	30	244	93.7
1986	10	52	0.81	264	3.9	69	${ }^{33}$	269	97.3
1987	8		0.80		3.7	${ }^{86}$	37	319	92.6
1988	6	86	0.86	252	3.5	113	39	396	92.4

a Leaving weight is the mean weight of chicks with wing lengits of more than 60 mm .
b Survival refers io survival over winere between year and year $\mathrm{n}+\mathrm{l}$.

feeding trips farther and still guard the chick, and, if conditions become worse, chick production could be affected.
The Isle of May is the only British colony for which detailed information on numbers and ecology is availab for the Atlantic Puffin. During the 1970s, numbers the 16% per year expected from the demographic data with indicating that the colony must have been receiving recruits from other colonies (Harris 1984). During the 1980s, a less complete data set indicated that although the proportion of birds breeding and breeding success remained high, adult and immature survival had both decreased, and that this should resul in the stabilization of colony (Harris and Wanless 1991).
4.1. Implications for managemen

A period of rapid increase for British murre and puffin populations appears to have ended recently. Numbers in 1988 were more or less stable or declining. different natal dereas widely (Mead 1974), and birds from murres banded on the Isle of May have been recovered all around Britain. It is, therefore, difficult to envisage a regular latitudinal ranking of wintering areas, althoug critical data are lacking. The sequential latitudinal trend in the timing of this change among colonies in the North Sea points to a cause operating during the breeding season.

Table 3 Details of adult survival, breeding saccess, food intake, and fledging weights of chicks and immatures present for Alantic Puffins on the Isle of May, 1973-88						
		Clicks	Imake of ch	er day		
Year	${ }_{\text {survival }}\left(\begin{array}{l}\text { (\%) } \\ \text { Ade }\end{array}\right.$	${ }_{\text {per pair }}^{\text {Iledged }}$	${ }_{\mathrm{g}}$	kJ	Fledging weigh (g)	immaurs ${ }^{\text {\% }}$
1978	94.6	0.74	?	?	$?$	
${ }_{1975}^{1974}$	${ }_{94.7}^{98.4}$?	5	435	${ }_{293}^{289}$	
1976	97.9	?	37	249	304	12
1977	95.0	0.78	65	513	281	15
1978	93.6	0.87	42	310	289	28
1979	95.5	0.90	${ }_{6} 6$	${ }^{348}$	278	${ }^{22}$
1980	95.0	0.76	27	194	235	37
1981	86.1	0.89	${ }^{43}$	330	272	15
1982	87.5	0.92	40	${ }^{284}$	279	15
1983	86.0	0.79	47	316	273	22
1984	93.9	0.88	49	353	270	14
1985	89.2	0.79	47	330	270	5
1986	$84.3{ }^{\text {b }}$	0.80	36	259	281	10
1987	$76.1{ }^{\text {b }}$	0.93	43	315	270	
1988	:	0.88	${ }_{47}$	810	264	0

However, whereas murres on the Isle of May had bee making longer feeding trips during the chick-rearing period in the later few years, this was not reflected in a reduced breeding output. Similarly, at none of the many colonies visited each year during monitoring counts or failures. The same appeared to be true for puffins up to 1986; however, during the last three breeding seasons, pairs at two of the largest colonies in Shetland, Hermaness and Foula, reared very few chicks, apparently because the adults were unable to obtain small sand lance (Furness 1989; Martin 1989). This food shortage also resulted in breeding failures of Arctic Tern Sterna paradisaea and Black-legged 1989b). The reduction in numbers of sand lance around Shetland appears to be a natural event (perhaps around by a human fishery) and part of a widespread change in the marine environment of the northern North Sea (Kunzlik 1989; Harris and Wanless 1990).

Thus, although there is some evidence that conditions during the breeding season have deteriorated recently, and a possibility that this occurred first in northern colonies, it is difficult to reconcle these findings suggests that a reduction in immature survival and also the case of the puffin, in adult survival outside the breeding season has been responsible for the leveling off or decline in numbers, but with this explanation it is hard to see why systematic, geographic differences should have arisen.

The similar declines in the annual survival rates of puffins nesting on Skomer, which winter to the south and east of Britain, and birds on the Isle of May, which winter mainly in the North Sea, suggest that recent changes must be acting over a wide area. Further, the coincidence in winter well offshore, and murres, which winter closer to land (Tasker et al. 1987), suggests that a range of habitats may be affected. Despite recent advances in our knowledge of auks at sea, we still know almost nothing of their ecology in winter. Auks in Rritain get oiled, get caught in fishing nets, accumulate heavy metals, PCBs, and other chemicals, and are (rarely) shot, but present knowledge suggests that these threats are now fairly minor (Evans and
Nettleship 1985), although there is increasing concern about the numbers of auks drowned in fishing nets (Mead 1989). Changes in the marine environment are the most likely reasons for recent changes. We can fairly easily protect the birds while they are at their breeding sites, but it is difficult to protect them at sea, except by reducing the pollution of the sea and managing fish stocks sensibly.

Attaining these aims will be no small achievement. Rigorous population studies will probably do little to help the birds directly but must continue, as they will enable us
to identify the magnitude of problems once they become apparent. The detailed work on the puffins on Røst, Norway, and their repeated failures to rear young (Lid 1981) is a good example of a problem being highlighted before the population declined noticeably. However, care must be exercised not to claim a species as endangered or threatened after a minor decline in numbers or breeding success. Auks are much more resilient species than they sometimes appear.

Acknowledgements
I thank all the many people who have counted seabirds in Britain and who have made those counts available to me. Dr. C.S. Lloyd (organizer of the Seabird
Colony Register) and M. Heubeck (SOTEAG) supplied Colony Register) and M. Heubeck (SOTEAG) supplied manuscript.

Literature cited

Ashcrof. R.E. 1979 . Survival rates and breding biology of puffins on Skomer
Aikins, N. Heinemann, B. 1988. The dangers of gill neting to seabidis. Am. Birds
Trena, F.; Teixeira, A.M. Bermejo, A. 1984. Breeding seabird populataions in lantic secaror of the iberian Peninsula. Pages $335-345$ in Croxall J.P. Evans, P. P. H: Schreiber. R.W. (eds.). Status and conservation of the wo
seabirds. Int Counc. Bird Preserv. Tect. Rep. No. 2, Cambridge, U.K.
Benn, S., Tasker, M.L., Reid, A. . 1987 . Changes in numbers of clifif-esting seabirds
Serelsen, A. 1921. Fustenei Umanaq Distrikt. Medd. Groenl. 38.14-214,
Berelesen, A. 1948. Fuglemarkningen i Vest-Gronland i Aarene 1926-1945. Medd.
Croenl. .424(4):1-34.
Sirkhead. T.R. . 1974 . Movement and morrality rates of Briish Guillemots. Bird
Sirkhead, T.R.; Ashcrof, R.E. 1975 . Auk numbers on Skomer Island Nat. Wales
Sirhhead, T.R.: Hudson, P.J. 1977 . Population parameters for the Common
Guilleminol Uria auatgen OTnis Scand 8:145-154
Birkhead, T.R. Neuteship, D.N. 1980. Census mechods for murres, Uria species:
ai unified approach. Can. Wildo. Serv. Occas. Pap. No. 43.25 p.
a unied appoach. Can. Wal Serv. Ocas. Rap. No. 4, 2 pp .
Birkheal, T.R.; Kay, R.; Netleship, D.N. 1985. A new method for estimating the
urvival rates of the Common Murre J. Willd. Manage. 49:496-502.

Inehus, B. 1986. Redegorelese for laksefiskerie 1986. Notat fra Grunnland
iskeriicenskonuol [Review of the salmon fishe
Greenland Fisting Licence Control Authority.
Marne, W.R.P. 1976. Seabirds and polluion. Pages 403-502 in Johnson, R. (ed.)
Marine pollution. Acadernic Press, London, U.K
Brown, R.G.B. 1986. Revised alas of eastern Canadian seabirds - 1. Shipboard
rreys. Can. Widd. Serv, Ouawa. 111 pp.

Resour. Publ. No. 156.305 pp.
Chapdelaine, G;; Gaston, A.J.: Brosseau, P. P. 1986 . Censusing the thick-billed murre
colonies of Akpaok Island, Northwest Teritories, Can. Widd. Serv. Prog, Notes No. 63.9 pp.
Christensen, O: Lear, W.H. 1977. Bycatches in salmon drit-nest at West Greenland
Cochran, W.G. 1977. Sarmpling techniques. 3nd ed. John Wiley \& Sons, New York YY. 428 pp.

Davice, De E. Winster 287
(1) pulations. Pages $221-246$ in in. Estimating the numbers of wildife
hniques manual 4th ed. The Wilditie Society, Washington, DC.
Dickson, K... 1989. Migratary gane birds killed in Canada during the 1987
Prog. Notes No. 179.41 pp

Ellioot R.D. . 1986. Preliminary Cield investigations of the Newfoundland turr hunt
in $19844-85$ Unpubl. report. Can. Wild. Serv. St. Johns. 27 pp.

Elliot, R. . . . 1989 . Background for a Newfoundland turn harv
strategy. Unpubl. repont. Can. Widl. Serv., St. Johnts. 69 pp.
Elliot, R.D., Gaston, A.J. 1986. The age structure of the Newfoundiand Thick

 hunting in
(in press.
Eicheberry, R. 1990 . The spring mieration (1999) in St Pierre and Miquelon
vans, P.G.H. 1984 . Th
Tvans, P.G.H. 1984 . The seabirds of Greenland: their staus and conservation.
 conservaion of the
Cambridge, U..
Evans, P.G.H. 1986 . Monitoring seabirds in the North Allantic. Pages $179-206$ in

Medieranean marine avilauna springer-Veriag, Berin
Evans, P.G.H. 1987 . Project studying ways to reduce the impact of hunuing upon He Brunnict's Guillemol Uria iomuia populaions of Upernavik Distric, West
Greenland, July Ist- September 8th 1987. Unpubl. repont, Upernavik, Greenland 1 pp .
 Caderic Press, Orlando, FL
Eans, P.G.H.f. Waterston, G. 1976. The decline of the Thick-billed Murre in
Evans P. . H. Waterson G. 1977
West Greenland. Polar Rec $18: 507$ - -508 .
Evans, R.J. . 1989. Seabird studies in east Cailhness, summer 1988. Royal Society for
alk. K. Durinck, J. 1989 P Pa

 entanglement in salmon drit nest. Greenland Home Rule, Department
Wildife Managementit Tech. Rep. No. 9. 88 pp. (In Danish with Eng ish
summary.)
Murre hunting in W. J. 1990 . Lomvieiagten i Vestyronland $1988-89$ Thick-billed Murre hunding in West Greenland 1988-99.. Greenland Hore Rule Departm
Widdife Managemen Tech. Rep. No. 5 , 40 pp. (In Danish with English mary.)
1989. The im in Ran. Wilde Servo Spec. Publ., Oluawa. 43 pp
urress, R.W. 1999. Changes in diet and breeding ecology of seabirds on Foula minar in Lerwick, $15-16$-16ectober 1988 Shelland Bird Club, Lerwick, U.K. Gaston, A.f. 1980 . Populations, movements and wintering areas of Thick-billed
Lurres (Uria iomvia) in eastern Canada. Can. Wildl. Serv. Pros. Notes No. 110 ${ }^{\text {Minres }}$
Gaston, A.J. 1984 . How to disinguish Irst-year murres, Ura spp., from older Gaston, A.J. 1985 . Development of the young in the Allantic Alcidae. Pages
$319-352$ in Nettleship, DN.:; Birkhead, T.R. (eds.), The Allanic Alcidae. Academic Press, Orlando. FL .
Gaston, A.J. Cairns, D. K.: Elliot, R.D., Noble, D.G. 1985 . Natural history of
Digges Sound. Can. Wild. Sery. Rep. Ser. No. 46 . 67 pp.
 Coats s.sland. Northw
Prog. Noes No. 167 .
Gaston, A.J.: Goudie, R.L.: Noble, D.G.; Macfarlane, A. .1984. Observations on
"uurt" hunting in Newfoundiand: age, body condition and diec of thick-billed

Gaston, A.J., Jones. I.L. 1984. Guide to the seabirds of eastern Canada. Can. Wild.
Serv, Otawa. 5 spp p.
 sland - a sudy of the breeding
Monogr. Ao. 6, Otawa.3 50 pp
Gaston, A.J;, Noole, D.G. 1986. The possible effect of food availability on Island, Northwest Territories Seabird 9:47-51.
 ornithol, 54:275-282
Goodman, D. 1974. Na
Am. Nat. $10: 247-268$.
Haldane, J.B.S. 1955. The calculation of moraality rates from ringing data.
Proc. 1lt Int. Omithol. Congr 1954:454-458.
Hansard. 1951. Record of the proceedings of the House of Common
14 March 1951; the Migratory Birds Convention Act pp. 1239-1261.
Haris, M.P. 1981. Age detemination and age of first breeding of British puffins
Harris, M.P. 1983. Biology and survival of the immature puffin, Fratercula arctic
Harris, M. P. 1984, The puffin. Poyser Calon, UK. 224 pp.

Harris, M.P.P; Hislop, J.R.C. 1978. The food of young puffins. J. Zool. (London) Haris, M.P. Rothery, P. P. 1988. Monitoring of puffin burrows on Dun, SL. Kilda, Harris, M.P. Wanless S. S. 1985. Fish fed to young Guillemots, Uria alge, and used
in display on the lste or May, Scotand. J. Zool (London) 207AA441-48. Haris, M.P., Wanless, S. 1988. The breeding biology of Guillemots Uria aalge on
the Iste of May overa a six year period. 1bis $130: 172-19$. the Isle of May over a six year period. 1bis 130:172-192
Harris, M.P.; Wanless, S. 1 . 1990 . Breceding success of British kitiwakes Rissa
rridactyla in 1986-1988: eviderce for thanging conditions in the northern North ridactyla in in 1986-1988: evidene
Sea. J Appl. Ecol. 27:172-187.
 (ed.), , Bird population studies: relevance to conservation and management. Oxxord
University Press. Oxtord UK

Harris, M.P.; Wanless S. S. Smith, R.W.J. 1987 . The breeding seabirds of the Firth of
Fort, Scotand. Proc. R. Soc. Edinturgh 938.52 -533. Hact Well, B.J. 1988. Population biology and coloniality of Common Guillem Heubeck, M. M. 1989. Monitoring of breeding seabirds in Shetland in 1988 . Report to
heeland Oii Terminal Environmenal Advisory Group, University of Aberten, Scoland, U.K. 125 pp.

Heubeck, M., Richardson, M.C.; Dore, C.P. 1986. Monit
Kituwake Risss (tridactyla in Sheland. Seabird $9: 32-42$.
Holboll, C. . . 846 . Ornithologischer Beitrag zuer Fauna Grônlands. Ueberseat und
mit einem Anhange versehen von 1 H. Poulsen, Leipaig. Hudson. P.J. 1979. The bechaviour and survival of auks. Ph.D. thesis, University of
Oxford, Oxford, U.K. It pp. Hudson, P.J. 1985 . Population patameters for the Alamuic Alcidae. Pages 233-261
in Netlestip, D.N; Birkhead, T.R. (eds), The Alantic Alcidae. Academic Press, Inder, J.G;; Gillespie, D.I. I974. Estimates of the kill of migratory game birds in
he province of Newfoundland 1959-1955; analysis of small game licence returns. Nild. Wildi. Div. Tech. Bull. No. 1.19 pp.
Joensen, A. A.; Preuss, N.O. 1 . 192. Report on the ornithological expedition to
North-West Greenland 1965. Medd. Groenl. 1911 I-58.

Kampp, K. 1982 . Den Kornnebbede Lomvie Uria Lomvia i Granland [The Thick-
billed Murre in Greenland). Unpubbl dissertaion, Zoological Museum, University

Kampp, K. 19888 . Migraion and winer ranges of Brïnnich's Guillemots Uria lomuaia breding or occurting in Greenland. Dan. Ornithol. Foren. Tidskkr.
$82: 117$ - 130 .
Kampp, K. 1988 C . Gronlands lomvier [Greenland's murres]. Tidsskr. Groenl
Kampp, K. 1990 . Thick-billed Murre populations of the Thule District, Greenland.
Arccic 43:115-120.
Arctic 43:115-120.
Klesist, G.; Werner, R. 1987 . Brutpaaraufstellung aus unseren Schuagebeeiten 1986.

Korte, J. de. 1973. Nederlandse Groenland Expedicie S
Unpubbished preliminary avíaunistical report. 10 pp.
Kunrli, P.A. . . 1989. Small fish around Shetand. Payes $38-47$ in Heubeck, M. (ed.),
Seabirds and sandelss: Proceedines of a seminar in Lerwick, $15-16$ October 1988 . Seabirds and sandeels. Proceeding
Lack, D. S. Schifferli, A. 1948. Dic Lebensdauer des Sares. Ornithol. Beob.
$455107-114$. Lestie, P.H.; Chity, D. 1951 . The estimation of population parameters from data
obbained by means of capure--reapture methods. Biomeriika $88: 269-292$. obtained by means of capture-recapture methods. Biometrika 38:269-292 Lid, G. 1981 . Reproduction of the Puffin a Rost, in the Lofoten Islands in
$1964-1980$. Feana Norv. Ser. C. Cindus $4.30-39$.
Lloyd, C.S. . 1975 . Timing and frequency of census counts of cliff-nesting auks.
Br Birds $68: 507$ - 13 . Lloyd, C.S.S. Perrins, C.M. 1 I 77. Survival and age of first brecing in the Razorbill
(Alca torda). Bidd Banding 48:29-252. (Alca lorda). Bird-Banding 48,29-252.

Matoox, w.G. 1970. Bird-banding in Greenland. Arctic 23:217-228.
Mead, C.J. 1974. The results of ringing auks in Britiain and Ireland. Bird Sudy
Mead, CJ. 1989. Mono-kill. Br. Trust Ornithol. News 163:1
Melotite, H. 1976. Ornithological observaions from the Scoresty Sund areas, East
Greenland, 1974. Dan. Ornithol. Foren. Tidssk. 700107-122.
Métras, L.L. Wendt, J.S. 1986. Migratory birds killed in Canada during the 1984
season. Can. Wildl. Serv. Prog. Notes No. 661.39 pp.
Meyer. A. 1988. Bruppaarautsellung aus unseren Schutzebicten 1987 . Seevogel
 Monevecchi, W.A.: Tuck, L.M. 1987 . Newtoundland birds. exploiation, sudy
conservation. Publ. Nutall Orrithol. Club 21 , Cambridge, MA. 279 pp. Mudge, C. . 1886 . Trends of papulation change at colonies of cliff-nesting seabirds
in the Moray Firth. Proc. R. Soc. Edinburgh $918: 77-$ Mudge, C. . 1988 . An evaluation of current methodology for monioring changes in
the breeding populations of Guillemots U ria aalge. Bird Sudy 35 : $1-9$. Netteship, D.N. 1977 . Seabird resources of eastern Canada, status, problems and
 $\underset{\substack{\text { symposium on Cat } \\ \text { Publ. 6, Otawa. }}}{ }$
Neuleship, D.N., Chardine, J. I. 1989 A A simulation model for the managemen of
Thick-billed Murres in the northwest Aluantic. Unpubl. report, Can. Wildl. Serv,
 demic Press, Orlando, Fl .
Noble, D.G. 1990. Factors sffecing recruiment in Thick-billed Murres 12id lomoria, on Coats stand, N. W.T. M.Sc. hesesis, Queen's University, Kingston. Northland Associates Ldd. 1986. Native waterfowl harvest in coastal Labrador Oldendow, K. 1995. Naturfedning i Gromland. Groent. elskabs Skr. 9:1-809. Pedersen, A. 1939. Der Scorrbysund. Drei Jahre Forschungseisen an der Ostkuste
GGronlands. Berlin. 157 pp.
 report, Prefect of Greenland.

Pedersen, T.4. 1984 . Redeggre [lse for lakseciskericic 1984. Notat fra repor, Prefect of Greenland.
Petersen, A. 1976. Age of first breeding in puffin, Fratercula arctica. Astarte
g:43-50.
Piatt, J.F.; Netuleship, D.N. 1987 . Incidental catches of marine birds and mammals
in fishing nets off Newfoundland, Canada. Mar. Pollut. Bull. 18:34--49.
fiatt, J.F;; Reddin, D.G. 1984. Recent tends in the West Greenland salmon fishey nd implications for Thick-billed Murres. Pages 208-210 in Neuleship, D. N: Sanger, GA. . Springer, P.f. (eds.), Marine birds: their feeding ecologog and
commercial fisheries relationships. Can . Widll Serv. Spec. Publ., Ouawa.

Piat, J.F; Elliot, R.D; MacCharles, A. . . 1985 . Marine birds and oil pollution in
Newfoundland 1951 -1984, Newloundland Institue for Cold Ocean Science Rep. Newfoundand, 1951-1984. Newfoundland 1 .
105, Memorial Univesity, St. John's. 54 pp.
Rothery, P.; Wanless, S.; Harris, M.P. 1988 . Analysis of counts from monitoring
Guillermos in Britio and Ireland. J. Anim Ecol. $57: 1-19$. Salomonsen, F. 1950. Grobnlands Fugle - The birds of Greenland. Ejnar
Murksgaard, Copenhagen, 604 pp.
Salomonsen, F. F. 1955. Fredning at fuglivet i Grotnland IBird preservation in
Greenland). Dan. Orrithol. Foren. Tidsskf. 49:3-11. (In Danish with English Greenland].
summary.)
salomonsen, F. 1956. The Greenland bird-banding system. Arcicic 9:258-264. Salomonsen, F. 1967 . Fuglene pa Gron land [The birds of Greenland]. Rhodos,
Copenhagen. 343 pp. (The chapeters on seabirds translated from Danish hy R.G.B. Brown as "Sudies on northern seabirds," Can. Wildl. Serv. Rep. No. 100 , 881.)

Salomonsen, F. 1970 . Birds useful to man in Greenland. Pages 169 - 775 in Producivivy and conservation in northern circumpolar lands. 1 UCN (Int Union

 Producivity and conservation in northern circumppConserv. Nat. Nat. Resour., Morges, Swiuerland.
Salomonsen, F. 1979. Ornithological and ecological sudies in South-We
seabird Group. 1981. Auk censusing manual. The Seabird Group, Oxford. U.K. eber, G.A.F. 1972. Estimating survival rates from bird-band returns. J. Wild peeich, S. Manuwal, D.A. 1974. Gular pouch development and population
Stowe, T.J. . 1982 . Recent population trends in cliff-nesting seabirds in Britain and
reland. Ibis $124: 502$-510. Sowe, T.J., Harris, M.P. 1984. Status of Guillemots and Razorbills in Britain and Swann, R.L.; Ramsay, A.D.K. 19833 . Movernents from and age of reurn to an panding Seri Guillemot col wann, R.L.: Ramsay, A.D.K. 1984 . Long-term seabird monitoring on the tsle of

Swann, R.L.; Aiton, D.G.; Carruhers, J; Graham, R; Ramsay, A.D.K. 1999.
Changes in recovery and retrap paterns of Guilemots ringed on Canna 1974 - 198 . Ringing Migr. $09: 55-40$. Tasker, M.L.; Webb, A; Hall, A.J., Pienkowski, M.W.; Langslow, D.R. 1987 .

Seabirds in the North Sea Naure Conservancy Counci, Peterborough, U.K. | Seaber, |
| :---: |
| Seabids |
| 336 pp. |

 ${ }^{53}$ pp.
Thompson, J.G. 1994. Current perspectives on the management of migratory bird
in northern Canada and Newfoundland. Transs.56th North Am. Wildi. Nat.
Resour. Cont. (in press).
 Commercial salmon fishery and trate in 1988$]$. Unpubl. report, Greenland Fish
Licence Conirol Authority.
Tuck, L.M. . 955. A murre investigation wih special reference to Newfoundand
(preliminary). Unpubl. report, Can. Widdl Serv, St. Jotrrs. 38 pp.
eliminary). Unpubl. rep er, Can. Wial. Serv, St. Jothr's. 8_{p}
Tuck, L.M. . 1955 . The murre colonies in Digges Sound, Hudson Bay - a report on
summer's field work - 195 . Unpubl. report, Can. Widal. Serv, St. John's. 15 pp.
Tuck, L.M. 1957 . Wildife investigations in the Cape Hay region, Lancaster Sound
1997. Unpubl report, Can. Willa. Serv., St. John's. 74 pp.
Tuck, L.M. 1961. The murres - their distribution, populations and biology,
a sudy of the genus Uria. Can. Widd. Serv. Monogr. 1 Otawa 260 pp.
Tull, C.E., Germain, P., May, A. W. 192. Morrality of Thick-billed Murres in the
West Greemland salmon fishery, Naure (London) 23742 -44.

Underwood, L.A.; Stowe. T.J. 1984. Massive wrecks of seabirds in eastern Britain
988. Bird Sudy 31:79-88.

Wanless, S.; French, D.D;; Harris, M.P.; Langslow, D.R. 1982. Detection of annual
changes in he numbers of clifinnesting seabirds in Orkney 1976-80. J. Anim. Ecol langes in the numbers of Cilif-nesting seabirds in Orkney $976-80$. J. Anim. Eco
$1: 585$-595. Ward, R.M. 1987 . Surveillance of cliff-nessing seabirds in Orkney 1987. Nature
Conservancy Council Chief Scientist Directorate Rep. No. 759 . Peletbonough. UK Conserv
82 p.
 Wendt, J.S.S; Couling, L. Lig7. Preliminary report- the kill of sea ducks and
murres in Newloundland. Unpubl. rep., Can. Wild. Serv., Otuawa. 5 pp.

Other publications in the Occasional Papers series

No. 1
Birds protected in Canada under the Migratory Birds Convention Act
Pedil
Publication bilingue.
Cat. No. CW69-1/1. Publ. 1957, rev. 1991.
No. 2 .
Canadian bird names. French, English and scientific. Publication
bilingue. Cat. No. CW69-1/2. Publ. 1957 rev. 1972 .
bilingue. Cat. No. CW.
No.
Use
an Wildiffe Service, by D.A. Benson.
Cal. No. CW69-1/3. Publ. 1963, repr. 1966.
No. 4
Queen Elizabeth IIlands game survey, 1961 , by J.S. Tener.
Cat. No. CW69-1/4. Publ. 1963 , repr. 1972.
Age determination in the polar bears, by T.H. Manning.
Cat. No. CW69-1/5. Publ. 1964 , repr. 1973 .
A wildife biologist looks at sampling, data processing and computers,
by D.A. Benson Out of print. by D.A. Renson. Out of print.
Cat. No. R69.1/6. Publ. 1964 .
N
N, F.
Priminary report on the effects of phosphamidon on bird populations
Preliminary report on the effects of phosphamido
in New Brunswik, by CD. Fowle. Out of print.
Cat. No. $699.1 / 7$. Publ. 1965.
Birds of the Nova Scotia - New Brunswick border region, by G.F. Boyer

Cat. No. CW69-1/8. Publ 1966, repr. 1981.
No.

No. 9
Effects of dieary methylmercury on Ring-necked Pheasants, with
special reference to reproduction hy N . Fimreite.
special reference to reproduct
Cat. No. R69-1/ 9. Publ. 1971 .
Trends in the population of barren-ground caribou of mainland Canada over the last two decades: a re-evaluation of the evidence, b
G.R. Parker. Cat. No. CW69-1/10. Publ. 1971 , repr. 1972 .
No. 11
The Canada migratory game bird hunting permit and related surveys,
by D. . Benson.
Cat. No. R69-1/11. Publ. 1971.
No. 12.
Observations on duck hunting in eastern Canada in 1968 and 1969 ,
by H.J. Boyd.
by H.J. Boyd.
Cat. No. R69.1/22. Publ. 1971.
No. 13
Evaluation of ecological effects of recent low water levels in the Peace. Evaluation of ecological effects of
Athatasca Delata by H. Hircch1.
Cat. No. CW69-1/13. Publ. 1972.
The Great Cormorants of eastern Canada, by A.J. Erskine
Cal. No. CW69.1/44. Publ. 1972.
Distribution of barren-ground caribou harvest in north-central Canada,
by G.R. Parker by G.R. Parker.
Cat. No. CW69-1/5. Publ. 1972.
No. 16.
No. 16 .
Bird migration forecasts for military air operations, by H. Blokpoel.
Cat. No. CW69.1/16. Publ. 1973 .
No. No.
Waterfowl populations 1973.
Watertowl populations on the Peace-Athabasca Delta. 1969 and 1970, by
D.J. Neiman and H.J. Dirschl. Cal. No. CW69-1/77. Publ. 1975.
No. 18
Gammarus predation and the possible effects of Gammarus and
Chaocorus ceding on the zooplankton composition in some s
Chaoborus teeding on the zooplankton composition in some small lakes
and ponds sin western Canada by R.S. Anderson and L.G. Rasuveldt.
Cat. No. CW69.1/18. Publ. 1974. Cat. No. CW69.-1/18. Publ. 1974.

No. 19
A summary of DDE and PCB determinations in Canadian birds, 1969 to
1972, Gy Gilbersion and 1992, by M. Gilberson and L. Reynolds
Cat. No. CW69-19. Publ. 1974 .
Cat. No.
No 20
Develop
Development of a simulation model of Mallard Duck populations, by
C.J. Walters, R. Hilborn, E. Ogus, R. M. Peterman and J.M. Stander C. Walters, R. Hilborn, E. Og
Cat. No. CW69-1/20. Publ. 1974.
No. 21

Use of museum specimens in toxic chemical research, by A.M. Rick.
Cat No. CE69-1/21. Publ. 1975 .
Impoundments for waterfowl, by W.R. Whitman.
Ca. No. CW69-1/22. Publ. 1976.
No. 23
Minimizing the dangers of nesing sudies to raptors and other sensitive
species, by R.W. Fyle and R. R. Olendorff.
species, by R.W. Fyternd R.R. Olendorff.
Cat. No. CW69-1/23. Publ. 1976 .
Cat. No. $24.29-1 / 23$. Publ. 1976 .
No. 2 aterfowl damage to Canadian grain: current problems and research Waterfowl damage to Canadian
needs. by L. . Sugden
Cat. No. CW69-1/24. Publ. 1976 .
No. 25 Cechniques for seabirds of arctic and eastern Canada, by
D.N. Nettleship.
Cat. No. CW69-1/23. Publ 1976.

Cat. No.
No 26
Notes on
Notes on the present status of the polar bear in James Bay and Belcher
Island area, by Charles Jonkel, Pauline Smith, Ian Sirifing and George
B Kotenosk Islands area, by Charies Jonkel,
B. Kolenoky
Cat. No. CW $69-1 / 26$. Publ
Cat. No. CW69-1/26. Publ. 1976.
No. 27.
Limnological and planktonic studies in the Waterton Lakes, Alberta,
by R. Stewart Anderson and Roderick B. Green.
by R. Stewart Anderson and Roderick B. Green.
Cat. No. CW69-1/27. Publ 1976.
Cat. No.
No. 28
Birds and
Birds and mammals of the Belcher, Sleeper, Ottawa, and King George Birds and marmmals of the Belcher, Sleeper, Otawa
Istands. Northwest Terriotises, by T.H. Manning.
Cat. No. CW69-1/28. Pubr. 1976 .
Developments in PPS sampling-Impact on current research,
Dy A,
by A. R. Sen.
Ca. No. CW69-1/29. Publ. 1976 .
No. 30
Dynamics of snowshoe hare populations in the Maritime Provinces, by Thomas J. Wood and Stantey
Cat. No. CW69-1/30. Publ 1977.
No. 31.
Migration and population dynamics of the Peace-Athabasca Delta gogreve population, ,y D.B. Domald and A. H. Kooyman.
Cat. No. CW69-1/31. Pubi. 1977 .
Cat. No. CW69-1/31. Publ. 1977.
No. 32
The
The effects of fire on the ecology of the Boreal Forest, with paricular
reternce to the Canadian north; a review and seleced bibliography, reterence to the Canadian north; a review and selected bil
by John P. Kelsall. E.S. Telfer and Thomas D. Wright.
Cat. No. CW69-1/32. Publ. 1977.
Cal. No. CW691/32. Publ. 1977 .
No. 33
The ecology of the polar bear (Ursus maritimus) along the western coast
of Hudson Bay, , Dy Ian Sitiring, Charles Jonkel, Pauline Smith, Richard
R Roberson and Dale Crass.
Cat. No. CW69-1/33. Publ. 1977.
No. 34
No. 34
Canvasback habitat use and production in Saskatchewan parklands,
by Liws C
by Lawson G. Sugden.
Cat. No. CW69.1/34. Publ. 1978.

The diets of muskoxen and Peary caribou on some istands of the Canadian High Arcicic, by Gerald R. Parker.
Cat. No. CW69-1/35. Publ. 1978.
Observations of Mallards in the parkland of Alberta, by
Michael F. Sorensen. Cat. No. CW69-1/36. Publ. 1978.
No. 37 . The wife valuation problem: A critical review of economic
paroaches by Wiliam A. Langtord and Donald J. Cocheba
No. 38.
Spatial changes in waterfowl habitat, 1964.74, on two land types in the
Manitoba Newdale Plain, by G.D. Adams and G.G. Gende. Mantoba Newdale Plain, by G.
Cat. No. CW69-1/38. Publ. 1978.
No. 39.
No. 39
Paterns of pelagic distribution of seabirds in western Lancaster Sound and Barrow Surait, overthwest Territaries, in Ausust and September
and
1976, by D. N. Nettleship and A.J. Gaston. Cat , No. D.... Netulteship and A.
(0. 40 .
No. 40.
Responses of Peary caribou and muskoxen to helicopter harassment, by Responses or Peary Caribou and
Frank L. Miller and Ane Gunn.
Cat. No. CW69-1/40. Publ 1979.
Cat. No. CW69-1/40. Publ. 1979 .
No. 41
Avian community structure of six forest stands in La Mauricie Nationa

No. 42

opulation ecology studies of the polar bear in northern Labrador, by
an Stirling and H.P.L. Kiliaan. Disponible également en francais. Cat Sirling and H. P. L. Kiliaan.
Cot No. W69-1/42E. Publ. 1980 .
No. 43
Census
Census methods for murres, Uria species; a unified approach, by
R. Birkhend
at. No. CW69-1/43E. Publ. 1980 . Disponible egalement en franģais.
opulation ecology studies of the polar bear in the area of southeastern
Por
out Disponible egalement en trancais
Cat. No. CW69-144E. Publ. 1980
Polynyas in the Canadian Arctic, by Lan Stirling and Holy Cleator, eds. Disponible également en francais.
Cat No. CW69-1/45E. Publ. 1981.

The distribution and abundance of seals in the eastern Beaufort Sea,
1974-79, by lan Stirling, Michael Kingsley, and Wendy Calvert. Disponible également en francalis.
Cat No. NW69-1/47E. Publ. 1982 .
No. 48
No. 48
Faraging behaviour of Peary caribou in response to springuime snow
and ice conditions, by F.L. Miller, E.J. Edmonds, and A. Gunn. Cat No. CW69-1/48E. Publ. 1982.
No. Na .
Ao. 49 . A review of some important techniques in sam
A.R.Sen. Disponible ésalement en rançais.
Cat. No. CW69.1/49E. Publ. 1982 . Cat. No. CW69-1/49E. Publ. 1982 .
Ahtensive regulaion of duck huning in North America: its purpose and
achievements, by Hugh Boyd. Disponible également en fres Cat. No. CW69-1/50E. Publ. 1983 .
No. 51
Human dimensions of migratory game-bird huming in Canada,
Hy Shane A.D. Parker and Fern L. Filion. Disponible également
en francais.
Cat. No. CW69-1/5IE. Publ. 1984.
Components of hunting mortality in ducks, by G.S. Hochbaum and

No. 53 . Cos-/52E. Publ 1934.
The interpretation of aerial surveys for seabirds: some effects of
behaviour, by A.J. Gaston and G.E.J. Smith. Disponible egaleme
en trean

Cat. No. CW69-1/53E. Publ. 1984.
No. 54

Wa.erfowl studies in Ontario 1973-81, by S.G. Curtis, D.G. Dennis, and
H. Boyd, eds. Disponible également en francais.
C H. Boyd, eds. Disponible égalamen.
Cat No.
No. 5\% CW69-1/55E. Publ. 1985.

No. 5 reported kill of ducks and geese in Canada and the USA, 1974-82
The by Huprted koyd Disponkste and geese in Canada and
Cat. No. CW69.I 55 F . Publ. 1985 .

No. 56
Populatio
vith mercury contaming the Common Loon (Gayia immer) associated

Cat. No. CW69-1/56E. Publ. 1986.
o. 57 .
The Ring-billed Gull in Ontario: a review of a new problem species, by
H. Blokpoel and G.D. Tessier. Disponible egalement en français. H. Blokpoel and G.D. Tessier. Dis
Cat. No. CW69-1/57E. uubl. 1986 .

The birds of the Creston Valley and southeastern British Cotumbia, by
R.W. Butler, B.G. Sushnoff, and E. McMackin. Disponible également en francais. 1
Estimating densities of birds at sea and the proportion in flight from counts made on transects of indefininte width, by A., Gaston,
B.T. Colilina and A. W. Diamond Disponible également en francais.
at No. CW $69.1 / 59 \mathrm{E}$ P. Publ 1987 . Co. 60 .
Wareffowl breeding population surveys, Alantic Provinces, by
A. J. Erskine, ed. Disponible également en francais.

0.61
survey of Leser Snow 0 .

A survey of Lesser Snow Geese on Southampton and Baffin islands,
VWT, 1979 , by A. Reed, P. Dupuis and G.E. J. Smith. Disponible

No. 62 .
Studies of the effects of acidification on aquatic wildife in Canada waterfowl and trophic relationsthips in small lakes in northern Ontario,
by D.K. McNicol, B.E. Bendell and R.K. Ross. Disponible egalement n francais.
Cat
at. No. CW69-1/62E. Publ. 1987.
o. 63
No. 63
Bison ecology in relation to agricultural development in the Slave River Bison ecology in relation to agricultural development in the Sla
lowlanss. WW. by H.W. Revnolds and A.W.L. Hawley, eds.
Cat. No. CW69.1.63E. Publ. 1987.

No. 64
simulation model for the Greater Snow Goose population, by
A simulation model for the Greater Snow Goose population
I. Gavin ardA. Red. Disporible egalement en francais.
Cat. No. CW69-1/64E. Publ. 1987 .
No. 65 .
The birds of the Fraser River della: populations, ecology and
international signiticance by R.W. Buter and R.W. Campbell.

Moriality of migratory barren-ground caribou on the calving grounds of
he Beverly herd, Northwest Territories, $1981-88$, by F.L Miller,

No. 67 of effer of acidification on aquatic wildifife in Canada:
Studies of the effects of acidification on aquatic wildife in Canada:
Lacustrine birds and their habitats in Quebec, by Jean-Luc DesGranges,

No. 63
Sudies of high-latitude seabirds. I. Behavioural, energetic, and

Think Recycling!

[^0]: leass five counts ate incluted
 Numbers refer rer isurr t. At another Cailhness colony, Iresgoe, there was no
 significant linear change.

