Fisheries
Canada
heries and
nada
022722 F S
feService

DA. WILDLIFE SERVICE PROGRES REPORT

Hunter mobility-its relationship to hunte characteristics and its effect on estimated

 waterfowl harvest distributionby Halyna Beznaczuk

Introduction

This study arose from the need to examine recreational patterns of waterfowl hunters. Few studies of the spatia possibly because standard survey questionnaires do no allow for detailed descriptions of hunter characteristic and of their selection of hunting areas. In 1974-75 Filion (1976) conducted a survey to find whether changes in mailed harvest questionnaire format and wording affected the rate and quality of hunter responses. This in turn would affect estimates of waterfowl harvest and hunter activity. The study consisted of six different questionnaires (treatments) that were sent to six sampl lected from the 1972 Canada Migratory Game Bird Hunting Permit (MGBHP) file. Each sample group evenly divided between two geographic areas: (1) Nova Scotia and New Brunswick (to be referred to as the Maritimes) and (2) Alberta. Filion concluded that the wording of questions and the response burden had a substantial effect on harvest survey estimates, and that questionnaires requiring the more detailed replies yield ed lower response rates than the simpler ones.
but concerns itself only with responses by hustin but concerns itself only with responses by hunters
two sample groups--treatments 3 and 4 (see Appen dix 1). After four mailings, the sample sizes for groups 3 and 4 were respectively 620 and 610 (the remainder were undeliverable) with response rates of 85.5% (530) and 85.6% (522). These two treatment groups received the most difficult to complete of the six questionnaires requiring good understanding, time and ability to recal on the respondent's part. However, they provide the of hunter activity and success for analysis of hunting patterns.

Objectives
The National Harvest Survey (NHS) questionnaire al0.109 lows for only one hunting location to be reported, that pendix place where the most hunting was done (see Appendix 1). By establishing the number of locations in NHS a hunter hunts, we hope to assess the biases the and hunter activity.
${ }^{1}$ Formerly CWS, Ottawa KIA 0E7.

the following questions
 (1) How many questions:

 (I) How many waterfowl hunters report hunting in one (2) If a hunter's entire bag, is assumed to and residency vested at only one location (where most of the hunting was done), what effect does this assumption have on the estimated geographic distribution of kill and hunters?
Results and discussion

Filion's (1976) survey indicated that many hunters do not hunt all season in the same location. This led to the in only one location from those using several Table 1 presents the number of responses to treatments 3 and 4 with responses for several hunter sub-groups by number of hunting locations for the two geographical areas. As less than 12% of the hunters used more than three hunting locations, they were put into one category. For simplicity, the number of hunting locations used will be represented by mobility groups as follows

Mobility group
No. of hunting locations

Mobility of huters

Residency

As seen in Table 1, there were significantly more urba than rural hunters ($X^{2}=67.18, \mathrm{df}=1, p<0.005$). The proportion of urban hunters in the Maritimes (82.3%) was significantly higher
Urban hunters were defined as those residing in metropolitan Edmonton, Calgary, Saint John and Halifax A more detailed description is given in Filion (1976). Despite the different composition, as Table I shows, rural hunters did not change significantly as the numbe of hunting locations increased (Maritimes: $\chi^{2}=3.57$, $\mathrm{df}=3, p<0.25$; Alberta: $\chi^{2}=3.61$, df $=3, p<0.25$). the Maritimes, $34(\pm 6.2 \%)$ of all active hunters used more than one location. In Alberta, significantly more hunters ($58 \pm 6.3 \%$) used several locations ($\chi^{2}=27.48$, $\mathrm{df}=3, p<0.005$). (The figures in parentheses represent 1.96 standard errors from which 95% confidence inter vals are evident.)

Emirannem Canedite canadien
del latauna

Total waterfow $k i$

 Tables 1 and 2 suggest that theproportionofactiveihunters who were successful may increase as the number iot hunting locations increases．A itest for ilineär trend in proportions（Snedecor and Cochran 1967）verified this ores $(\mathrm{z}=1.05, p=0.29)$Table 3 shows the distribution of hunters with respect to season bag totals and mobility groups．I found in both Alberta and the Maritimes a significant difference croups（ $\mathrm{X}^{2}=18.79 \mathrm{df}=7, p=0.001$ in the Maritimes： $\chi^{2}=33.64, \mathrm{df}=9, p=0.01$ in Alberta）．Duncan multiple range tests found the mean kills for groups 2 and 3 to be similar．The most marked difference between mean kills occurred between hunters using three or fewer lo－ cations and those using more than three．

Days spent hunting

The number of days hunted by a hunter was generally not related to the number of hunting locations used hunter for various sub－groups．Duncan multiple－ran tests for each sub－group and region showed no signifi－ cant differences for Alberta and only a few for the Maritimes，but without a recognizable pattern．
Sixty－two per cent of the hunters in the Maritimes and 42% in Alberta hunted in only one location and for 10 or fewer days（Table 5）．The proportion of hunters using more than one location increased signif－ icantly as days hunted increased（ $\chi^{2}=35.48, \mathrm{df}=8$ ， in Alberta）．
Table 4 reveals unexpectedly that successful hunters average fewer days hunting than all active hunters，and thus fewer than the unsuccessful ones．Although it is speculation，two possible explanations are：（1）unsuc－ cessful hunters hunt more days hoping for success，or （2）if bagging a bird is of minor importance in the hunting experience，they may spend many days out－ doors with little effort directed toward the kill．
\qquad
To this point we have seen how waterfowl kill，days hunted and residency separately were related to mobilit groups．Discriminant analysis was conducted using these and five other hunter characteristics－age，success， experience，duck kill and goose kill－to discover wheth jointly they might determine the hunter＇s mobility group．This method takes into account correlations ysis does not．Groups 2 and 3 were which separate ana group since previous analyses in this study indicated that their hunter characteristics were very similar． The analysis verified that in the Maritimes total waterfowl kill best discriminated between the groups， while in Alberta the significant distinguishing charac－ teristic was total duck kill．In both areas，these charac－ teristics significantly distinguished between hunters
asing three or fewer locations and those using more Generally，increased kill was related to the latter．

distribution

The site where the hunter hunts most is the only one that can be reported in the NHS．The hunter＇s season kill is then associated with that location，even though the hunter may have bagged waterfowl elsewhere．In Filion＇s（1976）survey，he asked hunters to report all their hunting locations and the bag totals for each．This reporting only one primary hunting location as in the NHS（method 1）and reporting all locations of kills （method 2），and whether this affects the distribution of waterfowl kill．
As method 1 assigns a hunter＇s entire kill to one loca tion，it is subject to additional bias．To illustrate this effect on the kill estimates，the data were summarized by degree block．The distributions resulting from each method are depicted in Figure 1 （Maritimes）and Figure fowl．For a more detailed analysis，the differences between methods 1 and 2 are tabulated for each degree block in the Maritimes（Table 6）and in Alberta（Table 7）and expressed both as a percent of the regional total and as a percent of the degree－block total．The tables indicate that the differences are small relative to the total regional kill，but are sometimes large relative to the degree block kill．Appendix 2 shows the correspond ence between degree block numbers in Tables 6 and and the geographic locations in Figures 1 and 2.
both regions．Their kill showed no significant differ－ ences between the two methods of reporting（degree－ block differences，as a fraction of the regional kill， ranged from -1.10% to 1.12% in the Maritimes，and -1.43% to 0.95% in Alberta）．Allocation of kill to asso ciated hunting locations did not appear to affect the geographic distribution of estimated duck kill（Figs．I and 2），although slight differences were evident in the frequencies of degree blocks in the intervals（calculated was minimized．Jenks 1977，Youngman 1972）．
Although very few geese and other waterfowl were harvested compared with ducks，the slight changes in their distributions for the two methods should be noted Figure 1 shows this noticeably in the estimated distribu tion of goose kill for the Maritimes，with areas of har vest altering degree－block locations．The densities by degree block of the harvest of other waterfowl changed Analysis of the geograp
Analysis of the geographic distribution of hunter use by degree block resulted in similar distributions for the wo methods．Waterfowl kill and hunter use exhibited similar patterns of densities，that is，high concentrations degree－block areas
Table 1
Number of respondents to treatments 3 and 4 by mobility
group and geographic location

Mobility group	Geographic area	Active hunters	Successful hunters	Successful active	Hunters with experience	Urban dwellers	Rural dwellers	Rural urban
	Maritimes	145 （65．9）＊	117 （64．3）	0.807	139 （65．6）	118 （65．2）	27 （69．2）	0.186
	Alberta	98 （41．9）	84 （39．8）	0.857	94 （41．4）	59 （44．4）	39 （38．6）	0.398
	Maritimes	46 （20．9）	39 （21．4）	0.848	44 （20．8）	41 （22．7）	5 （12．8）	0.109
	Alberta	71 （30．3）	63 （29．9）	0.887	68 （30．0）	36 （27．1）	35 （34．7）	0.493
	Maritimes	17 （ 7．7）	16 （ 8．8）	0.941	17 （ 8．0）	14 （ 7．7）	3 （ 7．7）	0.177
	Alberta	38 （16．2）	37 （17．5）	0.974	38 （16．7）	25 （18．8）	13 （12．9）	0.342
	Maritimes	12 （ 5．5）	10 （ 5．5）	0.833	12 （ 5．7）	8 （ 4．4）	4 （10．3）	0.333
	Alberta	27 （11．5）	27 （12．8）	1.00	27 （11．9）	13 （ 9．8）	14 （13．9）	0.519
Total	Maritimes	220	182	0.827	212	181	39	0.177
	Alberta	234	211	0.902	227	133	101	0.432

		$\begin{aligned} & \angle 8: 1 I \\ & \Delta S^{\circ} L \end{aligned}$	$\begin{aligned} & \text { ISDI } \\ & \text { 208 } \end{aligned}$	$\begin{aligned} & 8 L \cdot \mathcal{E} \mid \\ & \bullet Z \cdot 8 \end{aligned}$	$\begin{aligned} & \text { E8. } \mathfrak{1} \\ & 65^{\circ} 6 \end{aligned}$	$\underset{\forall 6 \in L}{\mathcal{L} \in \mathcal{L}}$	$\begin{aligned} & 6611 \\ & \pm 62 \end{aligned}$	$\begin{aligned} & 0 \varepsilon_{61} \\ & 2 S \downarrow 1 \end{aligned}$	$\begin{aligned} & 6 Z ı \varepsilon \\ & 9 \downarrow \angle I \end{aligned}$	puralv sәш！и！uew	${ }^{\text {P1／O］}}$
$9{ }^{\circ} 8$	S0＇z	se＇sz	00 ¢	$58 . \varepsilon \varepsilon$	¢ $8^{\prime} \varepsilon \varepsilon$	¢8＇£์	（9．6z）¢ ¢ ¢	（6．8z） 655	$(z 62)$ ヤ16	อuวqIV	
ti＇s	19.1	sz＇61	sでı	$85^{\circ} 0 \mathrm{Z}$	0L＇ャて	$85^{\circ} 0 \mathrm{Z}$	（z＇9Z）LL	（L＇II）0LI	（1＇ゅا）$\langle\downarrow$（	sau！u！er N	
$06 \cdot$	0s．0	si＇91	96 ¢	120	0z＇si		（ $\mathrm{C}^{\circ} \mathrm{L}$ ） 0 0IZ	（1．81） 6 t ¢	（6．LI） 65 S	อนวalV	
26%	02＇0	£โ＊	59．8	9 ${ }^{\prime} 8$	IE＇6	9L＇8	（ ${ }^{\circ} 6$ ） 82	（ $¢ \cdot 8$ ） 121	（c8） 601	sวu！	
2L＇9	670	$0 ャ 01$	$1+91$	$8 \varepsilon^{\prime} \varepsilon 1$	SI＇si	¢がと1	（ $\dagger \cdot 0 \varepsilon$ ）$\dagger 9 \varepsilon$	（908） 165	（ $¢ 0 \varepsilon$ ）$\varsigma \varsigma 6$		
LI＇S	$\mathfrak{E} 6^{\circ}$	08＇II	LI＇0I	\＆ャワ01	0でて1	セE゙01	（ ${ }^{\circ} \mathrm{OZ}$ ） 6 S	（L＇8z）LIt	（ $\varepsilon^{\prime}\llcorner\Sigma$ ）9 $¢ \downarrow$	sวu！！！ue N	
SILL	$65^{\circ} 0$	26.9	$0 \varepsilon^{\circ} \mathrm{L}$	$62^{\circ} \mathrm{L}$	ャ¢ 8	SIL	（s＇zz）0Lz	（どてて）İャ	（ \dagger＇zz） $10 L$	euaqiv	
209	$95^{\circ} 0$	18＇t	$0 \chi^{\prime} 9$	$\mathrm{Sl}^{\prime} 9$	$\angle \underbrace{*}$	20.9	（でちカ）0¢I	（6．IS）tol		sวu！！${ }^{\text {are }} \mathrm{N}$	
ио！！esot	кep	دข｜əмр	دәрэмр	دวาunч		دวาแกบ	s．วข｜әмp	s．ว｜วмр	IIP	еәл	dno
supuny	8upun	［e．ma	urqın	рәวиว！ıадхว	［n］ssววons	ал！วе	［eins	urqın	LEHO_{1}		Kı！
．ad II！${ }^{\text {¢ }}$	ıad II！${ }^{\text {¢ }}$	دəd II！	ıad II！${ }^{\text {¢ }}$	Iad II！ Y	Jad II！${ }^{\text {I }}$	Iad IIIX	Kq II！	Kq IIIX			

Season bag	Mobility group				Huntertotal
	1	2	3	4	
Maritimes*					
0	40	9	1	3	53
1-10	124	31	12	3	170
11-20	16	8	4	3	3
21-30	4	2	2	2	10
31-40	4	2	0	1	
>40	1	2	1	2	
Total	189	54	20	14	277
Alberta \dagger					
0	17	8	1	0	
1-10	82	39	22	5	148
11-20	25	18	11	6	60
21-30	4	8	3	4	19
31-40	0	3	3	4	
41-50	1	0	1	3	
50-70	0	2	0	4	
>70	0	1	1	3	
Total	129	79	42	29	279

Table 5
Distribution of hunters with respect to number of days

Days hunting	Mobility group				$\begin{gathered} \text { Hunter } \\ \text { total } \end{gathered}$
	1	2	3	4	
Maritimes*					
1-5	126	29	7	1	163
6-10	36	15	6	7	64
11-15	7	6	4	2	19
16-20	1		0		6
>20	2	2	3	,	8
Total	172	54	20	14	260

Alberta \dagger					
$1-5$	100	51	22	7	180
$6-10$	11	13	13	11	48
$11-15$	0	2	2	9	13
$16-20$	2	1	2	1	6
>20	1	12	3	1	17
Total	114	79	42	29	264
*Chi-square $=64.63, \mathrm{df}=12, p<0.01$ + Chi-square $=94.73, \mathrm{~d}=12, p<0.01$.					

Figure 1.
Percentage distributions of kill by degree block in New Brunswick and Nova Scotia.
(A) Assumes all waterfowl were ste at primary hunting location. (B) Makes use of all hunting locations.

Table 7
Reported species kill by degree block in Alberta

Degree block	Ducks						Geese						Other waterfowl					
	Primary*		$\underline{\text { All locations } \dagger}$		\% change relative to		Primary*		All locations \dagger		\% change relative to		Primary*		All locations \dagger		\% change relative to	
	Kill	\%	Kill	\%	Region	Deg. block	Kill	\%	Kill	\%	Region	Deg. block	Kill	\%	Kill	\%	Region	Deg. block
1	14	0.43	12.	0.38	0.05	16.67	1	0.24	1	0.25	0.01	0.00	-	-	-	-	-	-
2	10	0.31	17	0.53	0.22	-41.18	1	0.24	1	0.25	0.01	0.00	1	2.56	1	2.56	0.00	0.00
3	139	4.32	147	4.60	0.28	-5.44	9	2.12	7	1.72	-0.40	28.57	-	-	-	-		-
4	59	1.83	48	1.50	-0.33	22.92	2	0.48	-	-	-0.48		-	-	-	-	-	-
5	- \ddagger	-	-	-	-	-	-	-	2	0.49	0.49	-100.00	-	-	-	-	-	-
6	19	0.59	16	0.50	-0.09	18.75	7	1.65	7	1.72	0.07	0.00	1	2.56	1	2.56	0.00	0.00
7	49	1.52	49	1.53	0.01	0.00	26	6.12	13	3.19	-2.93	100.00	-	-	-	-	-	-
8	100	3.10	88	2.76	-0.34	13.64	3	0.72	3	0.74	0.02	0.00	7	17.95	3	7.69	-10.26	133.00
9	200	6.21	171	5.35	-0.86	16.95	2	0.48	-	-	-0.48	-	-	-	-	-	-	-
10	20	0.62	29	0.91	0.29	-31.03	4	0.96	-	-	-0.96	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	55	1.71	85	2.66	0.95	-35.29	42	9.88	50	12.25	2.37	-16.00	-	-	-	-	-	-
13	27	0.84	36	1.13	0.29	-25.00	32	7.53	38	9.31	1.78	-15.79	-	-	-	-	-	-
14	103	3.19	80	2.50	-0.69	28.75	29	6.82	32	7.84	1.02	-9.38	-	-	-	--	-	-
15	97	3.01	119	3.73	0.72	-18.49	8	1.88	8	1.96	0.08	0.00	-	-	4	10.26	10.26	-100.00
16	80	2.48	78	2.44	-0.04	2.56	-	-	-	-	-	-	-	-	-	-	-	,
17-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19	13	0.40	23	0.72	0.32	-43.48	25	5.88	35	8.58	2.70	-28.57	-	-	-	-	-	-
20	96	2.98	113	3.54	0.56	-15.04	38	8.95	53	12.99	4.04	-28.30	-	-	-	-	-	-
21	518	16.08	518	16.22	0.14	0.00	42	9.88	38	9.31	-0.57	10.53	-	-	11	28.21	28.21	-100.00
22	271	8.41	223	6.98	-1.43	21.52	21	4.94	18	4.41	-0.53	16.67	14	35.90	4	10.26	-25.64	250.00
23	17	0.53	26	0.81	0.28	-34.62	-	-	-	,		-	-	-	1	2.56	2.56	-100.00
24-27	-	-	-	-	-	-	-	-	-	-	-	\bar{O}	-	-	-	-	-	-
28	71	2.20	73	2.29	0.09	-2.74	11	2.58	5	1.23	-1.35	120.00	-	-	-	-	-	-
29	162	5.03	140	4.38	-0.65	15.71	5	1.18	2	0.49	-0.69	150.00	-	-	-	-	-	-
30	325	10.09	312	9.77	-0.32	4.17	14	3.29	11	2.69	-0.60	27.27	14	35.90	11	28.21	-7.69	27.27
31	378	11.74	348	10.89	-0.85	8.62	26	6.12	8	1.96	-4.16	225.00	1	2.56	2	5.13	2.57	-50.00
32	48	1.49	53	1.66	0.17	-9.43	4	0.96	2	0.49	-0.47	16.67	-		-			-
33	4	0.12	4	0.13	0.01	0.00	-	-	-	-	-	-	-	-	-	-	-	-
34-37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	--	-	-	-
38	21	0.65	36	1.13	0.48	-41.67	2	0.48	5	1.23	0.75	-60.00	\cdots	-	-	-	-	-
39	4	0.12	3	0.09	-0.03	33.33	-	-	-	1.2	-	,	-	-	-	-	-	-
40	8	0.25	18	0.56	0.31	-55.56	4	0.96	-	-	-0.96	-	-	-	-	-	-	- -

Table 7 (cont'd)
Reported species kill by degree block in Alberta

Degree block	Ducks						Geese						Other waterfowl					
	Primary*		All locations \dagger		\% change relative to		Primary*		All locations \dagger		$\%$ change relative to		Primary*		All locations \dagger		\% change relative to	
	Kill	\%	Kill	\%	Region	Deg. block	Kill	\%	Kill	\%	Region	Deg. block	Kill	\%	Kill	\%	Region	Deg. block
41	21	0.65	39	1.22	0.48	-41.67	-	-	-	-	-	-	1	2.56	1	2.56	0.00	0.00
42	9	0.28	2	0.06	-0.22	350.00	-	-	-	-	-	-	-	-	-	-	-	-
43-45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
46	4	0.12	14	0.44	0.32	-17.43	-	-	7	1.72	1.72	-100.00	-	-	-	-	-	-
47	30	0.93	16	0.50	-0.43	87.50	14	3.29	5	1.23	-2.06	180.00	-	-	-	-	-	-
48-50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
51	15	0.47	15	0.47	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
52	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
53	11	0.34	11	0.34	0.00	0.00	8	1.88	8	1.96	0.08	0.00	-	-	-	-	-	-
54	63	1.96	50	1.57	-0.39	26.00	-	-	-	-	-	-	-	-	-	-	-	-
55	27	0.84	42	1.31	0.47	-35.71	14	3.29	14	3.43	0.14	0.00	-	-	-	-	-	-
56	64	1.99	72	2.25	0.26	-11.11	-	-	4	0.98	0.98	-100.00	-	-	-	-	-	-
57	5	0.16	5	0.16	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
58-60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
61-62	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
63	10	0.31	10	0.31	0.00	0.00	-	-	-	--	-_	-	-	-	-	-	-	-
64	-	.	-	,	-	-	-	-	-	-	-	-	-	-	-	-	-	-
65	35	1.09	40	1.25	0.16	-12.50	31	7.29	31	7.59	0.30	0.00	-	-	-	-	-	-
66	8	0.25	2	0.06	-0.19	300.00	-	-	-	-	-	-	-	-	-	-	-	-
67-80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
81-83	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
84	11	0.34	11	0.34	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
85-97	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T.otal	3221		3194				425		408				39		39			

*Assumes that all waterfowl was bagged in primary location.
${ }^{\dagger}$ Makes use of all reported hunting locations.
Dashes indicated that no waterfowl was reported as bagged in the
respective degree block.

onclusion

the provincial or regional level, the results of this mited study support the NHS method of reporting kill. The simulated NHS method of estimating harvest produced results similar to those obtained by reporting the kill for each location for both the total kill (Tables 6 and 7) and the distribution of kill by degree block. However, in a few degree blocks, where the kill was mall relative to total regional kill, differences were large when compared to the kill in the degree block. or example, in Table 6, the reported kills of ducks in he Maritimes, degree block 25 , are 21 and 10 for raction of the reported regional harvest. Thus, for reas of low kill, differences can be relatively large. However, the NHS was not designed to provide reliable estimates for such small areas, and these estimates are subject to high sampling error. Further, the present tudy was not intensive enough to estimate reliably, at he degree-block level, differences between the two methods of reporting harvest
After testing relationships between hunter characAistics and mobility, I found that, for both regions, the losely related to the amount of waterfowl harvested. Other characteristics such as age, residency, days hunted and hunter experience were found to have little relationship to hunter mobility.

Acknowledgements

thank L. M. Couling for his statistical advice early in he study, J. M. Smyrnew for his advice on the maps, Smith and S. Wendt for their reviews of the manuscript

eferences

ishop, Y. M. M. 1969. Pages 383-398 in Full conngency tables, logits and split contingency tables. Biometrics 25.
Cooch, F. G.; Kaiser G. W.; Wight, L. 1974. Report on 1973 sales of the Canada Migratory Game Bird Hunting Permit migratory game bird harvest and hunter activity Can Wild Serv Prog Notes No. 41
Cooch, F. G.; Kaiser, G. W.; Wight, L. 1974. Species of waterfowl and age and sex ratios of ducks harvested in Canada during the 1973 season. Can. Wildl. Serv. Prog Notes No. 42.

Filion, F. L. 1976. Effects of change in harvest quesionnaire on survey estimates. Can. Wildl. Serv. Biom. ect. Manuscr. Rep. No. 13
Goodman, L. A. 1970. Pages 226 - 256 in The multivariate analysis of qualitative data: interaction among multiple classifications. Stat. Assoc. 65.
Goodman, L. A. 1971. Pages 33-61 in The analysis of multidimensional contingency tables: Stepwise proceand direct estimation methods for building models for multiple classifications. Technometrics 13
enks, G. F. 1977. Optimal data classification for cho opleth maps. Occas. Pap. No. 2. Dep. Geogr. Univ. Kansas, Lawrence.

Nie, H. H.; Hull, C. Hadai; Jenkins, J. G.; Steinbrenner, K.; Bent, D. H. 1970. SPSS: Statistical pack ge for the social sciences. 2nd Ed. McGraw-Hill Book Co.
nedecor, G. W.; Cochran, W. G. 1967. Statistical methods. 6th Ed. Iowa State Univ. Press.
teel, R. G. D.; Torrie, J. H. 1960. Principles and proce dures of statistics. McGraw-Hill Book Co.

Youngman, C. E. 1972. Representational accuracy in mul idimensional regionalization and choropleth mapping Unpubl. Ph.D. Diss. Dep. Geogr. Univ. Kansas, Lawrence.

Appendix 1
Questionnaires

- Environment Canada Environnement Canada
canadian wildulfe service
1973 migrator game bird hunting surver
TREATMENT 3

