Duck numbers and duck hunting in southern Alberta, 1975-82, and their implications for waterfowl management
by H. Boyd ${ }^{1}$ and F.G. Cooch'

Abstract

From 1975 to 1982, southern Alberta's estimated May population of ducks fell from 6.5 to 3.6 million, a mean rate of -5.6% annually. Mallard declined more steeply, from 1.4 million to just under 800000 (-7.4% annually). In the same period, the July index of the US Fish all ducks fell from 160.0 to 40.6 ($-18.0 \%_{0}$ annually) all ducks fell from 10.0 to 40.6 (-18.0% annually), yet reported. The late nesting index also fell, from 117.2 to 28.5 for all ducks, and from 30.8 to 7.5 for Mallard Meanwhile, in 1975-81, estimates of successful duck hunters in southern Alberta fell from 22400 to 15700 (-6.4% annually), and to 14300 in 1982, a further -9.0%. The reported kill of ducks fell from 299000 to $201000\left(-7.9 \%_{0}\right.$ annually) and of Mallard from 153000 to 138 (1982 was 139000 including 96000 Mallard Most of the decline in duck numbers and production can be attributed to unfavourable habitat conditions, which are persisting, but the impact of local hunting is also serious under such poor conditions. Any substantial increase in the permitted Alberta kill would put severe pressure on the USFWS to abandon its efforts to hold down the US kill through the 5 -year stabilization program for the Pacific and Central flyways.

Introduction

Duck numbers in the prairies show large fluctuations, principally in response to varying amounts of precipitation especially snowfall, and consequent variations in the numbers and biological productivity of potholes and other small water bodies, and in lake levels. In the last half-century, drainage of wetlands for agriculture or long-term cycle, and has been especially intense in the last decade with the advent of larger machines both for cultivation and for clearing and draining land. Thus we need to look especially closely at the size and success of prairie duck populations in this period of high potential stress.
A second reason for concern, less fundamental in ecological terms but of considerable tactical importance in the context of North America waterfowl management,
relates to the current experiment in which the USA and relates to the current experiment in which the USA and unchanged for at least 5 years, while monitoring duck populations and duck harvests more intensively than
'CWS, Ottawa, Ontario K1A 0E7.
before. This is expected to provide a better understanding of the roles of hunting and other factors in regulating duck populations, and hence to improve the international approach to their exploitation. Some hunning organiza ions in parts of both countries have become increasingly critical of this "program of minimal change", for quite different reasons. Some groups argue that their hunthat seasons should be lengthened or bag limits increased at once in their regions, whatever may be happening sewhere. Others fear that the current regulations ate dangerously permissive at a time when prairies condiions are unfavourable for ducks, and argue that serious ong-term damage to duck stocks must be prevented by abandoning "no change" in favour of further restricions on hunting, so as to allow increased numbers of ducks to return to potential breeding places. To proonents of both arguments, allowing the 5 -year program a reprehensible example of bureaucrats giving more weight to their own interests than to those of the hunt ing constituency or of the ducks themselves.
The decision to persist with the current program or o deviate from it in one direction or the other therefore must be justified afresh before Canada and the USA promulgate waterfowl hunting regulations for 1984. This progress note originated in a contribution to the 983 review process. It highlights events in southern Alberta, where recent reductions in duck numbers and hunters, have been exceptionally large.
We have obtained the data from routine surveys the USFWS/CWS surveys of waterfowl breeding number May and production in July, the CWS National Harvest urveys (NHS) based on sales of migratory game bird unting permits (MGBH permits), and the recoveries of ducks banded pre-season in western Canada and adjacent states. No novel methods of analysis were em ployed. Many interested people have reservations about veys, which are not intended to be precise measures
However, we see no reason to suppose that any chan occurring in the surveys' effectiveness would have caused he downward trends in duck numbers and kill revealed in this report.
We have used 1975-82 in analysing population changes, Ws to give a sufficient run of years to detect current rends without being led astray by erratic year-to-year variations; 1975 was a good year for prairie ducks, bu by no means an exceptional one. For Canadian harves data, the period of analysis is 1975-81, the results
The principal questions we address are:
(1) How have numbers of breeding ducks in souther

Alher areas sampled in Canada and the USA?
(2) How has duck production varied in southern Albert since 1975, and in relation to changes in the Canadian nd US prairie regions as a whole?
3) How have duck hunting effort and the reported kil of ducks changed since 1975 in southern Alberta and
(4) How far is it possible to
changes in duck numbers in southern for the observed terms of production, local kill, distant kill, and loca habitat conditions?
5) What predictions can be made about the likely num bers of breeding ducks in southern Alberta in May 198
and in later years? in 1983 might result from advancing the opening of he duck season to 5 September?
Although there have also been substantial changes in since 1975, including the virtual disappearance of Ross Geese from the bag, we have not reviewed them here because they would not add significantly to the arguments, while adding considerably to the bulk of this report.

Resuits: duck populations and productio

Numbers of ducks in southern Alberta in May
Southern Alberta is a major breeding place for ducks, with an estimated average of nearly 5 million present n the $166500 \mathrm{~km}^{2}$ included in the four strata (USFW 26-29) making up the region. A density of nearly 30 ducks/ km^{2} ove
The total numbers of ducks (Table 1, Fig. 1) fell from 64 million in May 1975 to 3.56 million in May 1982 decrease of 45.6% at a mean annual rate of -5.56% The rate of loss was irregular, large gains in 1978 and 1979 offsetting the very large drop from 1976 to 1977, and with a further major fall from 1981 to 1982. After 977 the greatest fluctuations within the two principal genera, Anas (the dabbling ducks) and Aythya (the ochards), were found amongst the an the Mallard
Alberta with those over the the changes in southern May surveys, from Alaska and the Mackenzie Valley to South Dakota and Wisconsin. Clearly the declines observed in southern Alberta were much steeper than those throughout the sampled range.
Amongst the 16 species of ducks regularly found in the surveys of southern Alberta (Table 1), none showed an increase over the 8 -year period and five showed signi--7.5% Gadwall -3.6%, Green-winged Teal -6.5%, Redhead -14.4%, and Canvasback -8.0%.
Amongst the diving ducks, the variability of the annual stimates, as indicated by the coefficient of variation (CV), was inversely proportional to population size
$=-0.553$). For the dabblers, the relationship between size ând variability was direct ($r=0.511$), reflecting th tendency. of such species as Pintail, Blue-winged Teal, and Mallard to immigrate and emigrate readily as habita conditions change

Duck production in southern Alberta
Althoughte can convert the number of ducks seen in May to estimates of the population of each species, allowing for differences in their detectability as measured by air/ground comparisons, that degree of detail cannot be achieved in estimating production. That of the adults in May, and many of the broods cannot be identified by species.

Table 1
Mean estimates (in thousands) of ducks in southern Alberta in Mean estimates

Species	Mean	SE	$\begin{aligned} & \text { Trend } \\ & (\% \mathrm{pa}) \end{aligned}$
Mallard			
(Anas platyrhynchos)	1025	259.3	7.5
Gadwall (A. strepera)	314	52.6	- 3.6
American Wigeon			
(A. americana)	303	97.8	-
Green-winged Teal			
(A. crecca)	244	62.1	6.5
Blue-winged Teal			
(A. discors)	770	278.7	-
Shoveler (A. clypeata)	390	103.4	-
Pintail			
(A. acuta)	943	427.7	-
Total dabblers	3991	912.3	- 5.9
Redhead			
(Aythya americana)	187	108.9	8.0
Canvasback			
(A. valisineria)	82	26.2	-
Lesser Scaup			
(A. affinis)	521	105.9	-
Ring-necked Duck (A. collaris)	8	4.0	-
Total pochards	785	177.4	-
American Goldeneye			
(Bucephala clangula)	18	13.9	-
Bufflehead			
(B. albeola)	46	11.6	-
White-winged Scoter (Melanitta deglandi)	22	12.1	-
Common Merganser			
(Mergus merganser)	7	4.3	-
Ruddy Duck			
(Oxyura jamaicensis)	85	52.0	-16.4
Total ducks	4966	1000.7	- 5.6

The number of broods seen in 1975 extrapolates to 12 for in 1982 was only 21 200. The highest estimates were of 131900 in 1978 and 129300 in 1979 , when May duck numbers (4.43 and 5.44 million respec ively) were well below the 6.54 million of 1975 . Despite hat short-lived boom, the mean annual rate of decline in the estimated numbers of broods was - $\mathbf{1 4 . 9 \%}$ (Table 2) The mean size of class II and III broods was 4.8 ± 0.6 range 3.8 (1982) to 5.4 (1978). Although the 1982 brood were the smallest seen, the tendency for broods to derease over the period as a whole was not statistically gnificant $\left(r_{b . t}=0.401, p>0.10\right.$.
Changes in Juy which are used as an indication adults many ducks may still be attempting to breed, are remark ble for their unanimous downward trend (Fig. 3), which falls short of the conventional level of signifiance (for $n=8, p=0.05, r=0.632$) only for Wigeon $r=-0.581)$, Blue-winged Teal (-0.609), and Ruddy Duck (-0.423). The total decline in potential late nest rs is dramatic, from 160000 in 1975 to 40800 in 1982 drop of nearly 75%
We can produce a combined production index by cal L tating $P=(2 B+L) / 3$, where B is the brood index and of B to L is not known, but in most years the output of young from first broods is likely to exceed that from late broods. Figure 3 shows that the unadjusted values of B and L are closely correlated ($\mathrm{r}_{L . B}=0.821, p<0.01$) he correlation remains after the removal of the downward the downward trend $\left(r_{\Delta L . \Delta B}=0.536, p=0.10\right)$
able
Mean brood- and late-nesting indices (in thousands) for duck in southern Alberta, 1975-82, with their mean annual rates of decrease. The brood index is based on all broods seen, ightings of single and paired adults during the July survey
Mean SE $\%$ decrease

	Mean	SE	\% decrease
Brood index	86.4	42.5	-14.9

Late-nesting indices
Mallard
American Wigeon
Green-winged Teal
Blue-winged Teal
Shoveler
Pintail
All Anas
Lesser Scaup
ther Aythy
All divers
All ducks

Figure 4 shows that production fell more steeply tha breeding numbers, although the two were positivel Because of $M=0.70, p<0.05$).
980-82, we extended the review of May duction in and production back to 1965 . Figure 5 illustrates the following points: (1) the drop in duck numbers since 1974 has been unusually sustained, but is still not enough to suggest that recovery is impossible, with numbers nearly as low as those of 1982 recorded in 1965 and 1968; (2) the low levels of production in 1980-82 were not approached in any of the previous years for which com parable ward trend in production has been paralleled $\mathbf{b} y$ a reduc tion in the ratio of production to population size
Further analysis of the data summarized in Figure leads to a paradoxical result. Although production in given year tends to be correlated with population size $r=0.558, p>0.01$) the total numbers of ducks in May are not clearly related to the numbers present in the previous May ($r=0.371, p>0.10$) and not at all to local production in the previous year $(r=0.099)$. This from forming closed populations, or that anocher variable, such as hunting, has a significant effect. That may in turn mean that the recent failure of local production need not be followed by further depletion of the breeding populations. During the period 1965-82, he gains shown from 1968 to 1969 and 1973 to 1974 seem to have been due to immigrations rather than to high local production. Long ago, Dzubin (1969) pointe out that, even in the pothole region regarded as the eartland of Mallard range, immigration may be as ion size.
We acknowledge the weakness in reliance here on ndices relating to all ducks, rather than to the perfor mance of individual species, but the crudity of the dat vailable limits the capacity to work out the relationhip of production to population size for single species.

Duck hunting and duck kill in southern Alberta

Figure 6 depicts hunters' activity and success in 1975-8 in CWS zone 0901 , which is nearly equivalent in exent to provincial bird game zones 5, 6, and 7. Sales o 1420 permits remained rather steady, averaging 298 \pm 1420. (Sales in 1982 of 27780 were similar to the activity, which by other measures has clearly decreased activity, which by other measures has clearly decreased ers averaged 19060 (64.0% of permit buyers), but fell t an average rate of -6.4% annually from 79.2% ermit buyers in 1975 to 56.9% in 1981. Estimates of hunting activity (in hunter-days) from the replies of res pondents to the NHS gave a similar picture, falling from an average of 6.8 days per permit buyer in 1975 5.4 days in 1981, with the total of
clining at an annual rate of -8.2%

Table 3
Reported duck hunting activity and duck kill (in thousands) months within seasons, 1975-81, in relation to numbers waterfowl on Sundays is not permitted in southern Alberta
civity and Sull are assumed permitted in southern Alberta.
although the open season continues into December

Season	September			October			November			Whole season		
	$\begin{aligned} & \text { Duck } \\ & \text { hunt } \\ & \text { days } \end{aligned}$	Hunter -days	Rep. kill	$\begin{aligned} & \text { Duck } \\ & \text { hunt } \\ & \text { days } \end{aligned}$	Hunter -days	$\begin{aligned} & \text { Rep. } \\ & \text { kill } \end{aligned}$	$\begin{aligned} & \text { Duck } \\ & \text { hunt } \\ & \text { days } \end{aligned}$	$\begin{aligned} & \text { Hunter } \\ & \text {-days } \end{aligned}$	$\begin{aligned} & \text { Rep. } \\ & \text { kill } \end{aligned}$	Duck hunt days	$\underset{\text {-days }}{\text { Hunter }}$	$\begin{aligned} & \text { Rep. } \\ & \text { kill } \end{aligned}$
1975	11	37.8	68.6	27	106.3	164.4	25	48.1	66.0	63	192.2	299.1
1976	13	46.0	72.6	26	102.5	146.1	26	38.3	44.6	65	186.8	263.3
1977	14	45.5	78.2	26	100.3	134.4	26	28.4	35.9	66	174.2	248.5
1978	15	49.8	63.7	26	100.9	113.8	26	25.7	25.5	67	176.4	203.0
1979	12	31.9	53.1	27	90.0	117.9	26	24.7	28.5	65	146.6	199.4
1980	14	33.3	53.3	27	78.2	100.7	25	26.5	28.5	66	138.0	182.5
1981	15	32.5	49.2	27	79.3	101.2	25	37.1	50.2	67	148.9	200.6
Mean		39.5	62.7		93.9	125.5		32.7	39.9		166.2	228.1
SE		7.4	11.1		11.5	23.9		8.7	14.7		21.4	42.8
r, years		-0.569	-0.849		-0.939	-0.960		-0.533	-0.454		-0.920	-0.913
\% change/yr		-4.95	-6.94		-5.31	-8.45		-	-		-	-

In Figure 7, we allocate the reported hunting effort and kill by month. "November" is shorthand for "rest ontil 31 December, but in practice probably ended wel before 30 November. The way in which late-season dat are aggregated by the retrieval programs prevents stud of how hunting peters out in response to the departure of the ducks and the onset of cold weather. The intersting point made by Figure 7 is that the mean rates of decline in effort and kill were greater in October than in September: September hunter-days -4.9%, kill
6.9\%; October hunter-days -5.3%, kill -8.4%.
hiefly because there are more open days; the mid eptember opening date allows only $11-15$ hunting days in that month, compared with 26 or 27 in October depending on the number of Sundays in the month) in Figure 8, averages for 1975 and 1976 show about 3500 active hunters in CWS zone 0901 each day in September compared with more than 3900 dally in October. By 1980 and 1981, the corresponding numbers were down to 280 in September and 2900 in October. Successful hunters ook more ducks per day in September (mean 1.59) tha -3.0% a year in October but less, if at all in Septem -21% but r on years only 0.418 , not significant at the 10% level).
The kill in the southern provincial hunting zones is hown in Figure 9. The rate of decrease was greater in zones 5 and 6 , from Stettler and Drumheller east to he Saskatchewan border, than in the much larger zone 7 making up the remainder of the south, and including
Calgary, Lethbridge, and Medicine Hat.

Mailard populations, production, and

in this section, we examine the relative impact of local hunting on different western groups of Mallard by com paring "net P01duction" ($P^{\prime \prime}$) with the local kill ($K^{\prime \prime}$). "Ne production" is obtained from the equation $P^{\prime \prime}=F_{N}-M$ where M is the number of adults in May and F_{N}, the "n all flight", $=0.9 M\left(1+P^{\prime}\right)$. We use the factor 0.9 to ality during the period May-August; with no detailed estimates available, the use of this uniform figure is arbi estimates available, the use of this uniform figure is arbi-
rary. P^{\prime} is a production index obtained not from the July production surveys but from the kill in the province or state of interest. $P^{\prime}=(I / A) . V$ where I / A is the ratio or oung to adult Mallard wings in the provincial sample of the Species Composition Survey (SCS). V, the vulnera ility quotient, is given by $V=\left(R_{1}^{\prime} / B^{\prime}\right) /\left(R_{1} / B\right)$ where B and B are the number of adult and young Mallard respeceason") and R_{1} and R^{\prime}, are the reported direct (in first season) recoveries from that province. I/A and V vary rom place to place and year to year, due to the vagaries f sampling and to biological variability. The provincia and state values of M and I / A, are listed in Table 4

We obtained the adjusted kill from the NHS estimat of local kill multiplied by $1.1 \times 1.25=1.375$. The addition of 10% allows for unreported kill, i.e. that by Indians, who are not required to possess MGBH permits, and who are consequently not sampled by the NHS, and that of other hunters acting illegally, such as those hunting during the closed season or in excess of the daily bag limit. We allow a further 25% for birds hit and not retrieved, but dying from their wound Both these adjustments are arbitrary. There are undoub etailed records do not exist, except from intensive studi in small areas, whose representativeness can always be questioned. The point of a standard upward adjut ment of the kill is to avoid underestimating the scale of local losses.
The estimates of net production (Fig. 10) are dominated by the major decreases in Saskatchewan and Alberta. They also show that net output probably fell everywhere from 1975 to 1981, except in the Mackenz alley, NWT
he estimates of adjusted kill in Figure 11 are also the latter markedly less steep (at a mean rate of - 2.5% compared with -5.1% in Saskatchewan).
It is the combination of these two sets of figures, the ocal kill as a percentage of net local production (Fig. 12), that is of greatest interest, showing statistically significant increases for the entire area (at a mean annual rate of 8.1%) and for Alberta (13.9%), South Dakota 11.0%), and Saskatchewan (5.9%), and less certain Northwest Territories are again distinctive, with the kill as a fraction of net production decline, with the -70 annually. The steep rise in Alberta has brought the kil close to the net production, and even above it in 1981 This means that Alberta is ceasing to be a net exporter of Mallard, a distinction it shares with no other state or province in the sample, though comparable to Minne ota and to many other states further south in which local production is small

Changes in the recovery rates of Mallard banded and ecovered in Alberta, 1965-8
Munro and Kimball (1982) have updated and amplified he study by Geis (1971) of the distribution and derithation of the Mallard kill in North America and ceriis organized with American rather than Canadian reader mind, and suffers the further limitation in this conext of drawing only on banding records for 1961-75. They show that, up to 1975, 47.3% of the Mallard kil in Alberta comprised birds originating in southern Alberta, with a further 31.4% from northern Alberta 90% from British Columbia and Alaska 1.1% from Canada east of Saskatchewan, and 3.3% from the con iguous USA. With over 90% of the banded birds take t that time having originated within or immediately adjacent to Alberta, we get the impression of a nearly provinces, and
sion on years

Year	Alaska		NWT		Alberta		Saskatchewan	
	M	I/A	M	I/A	M	I/A	M	I/A
1975	101	3.24	494	3.64	2050	3.02	2800	2.56
1976	154	2.76	186	2.96	1848	2.18	3573	2.30
1977	392	2.32	671	2.12	1442	1.56	3338	1.57
1978	270	2.26	430	2.26	1495	1.96	2701	1.56
1979	234	2.06	317	1.06	1868	1.74	2855	1.93
1980	349	2.24	575	2.20	1814	1.24	2646	1.17
1981	411	2.02	476	1.94	1571	1.00	1985	1.20
1975-81								
mean	271.7	2.44	458.4	2.31	1726.9	1.81	2842.6	1.76
SE	117.6	0.41	153.8	0.81	224.8	0.67	512.4	0.53
${ }^{r} T$	0.751	-0.823	0.216	-0.731	-0.369	-0.897	-0.720	-0.867
p	<0.02	<0.01	ns	<0.05	ns	<0.001	<0.05	<0.01
Year	Manitoba		Montana		North Dakota		South Dakota	
	M	I/A	M	1/A	M	I/A	M	I/A
1975	616	2.42	478	2.6	567	2.4	354	2.4
1976	1035	2.75	480	2.7	459	2.0	332	2.0
1977	746	2.48	333	1.1	375	1.0	267	1.4
1978	829	2.30	283	2.62	507	2.2	537	2.2
1979	893	2.26	389	2.62	685	2.6	483	2.6
1980	816	2.18	256	1.8	485	1.8	339	1.8
1981	895	1.87	246	2.0	309	1.6	187	1.4
1975-81								
mean	832.9	2.32	352.1	2.21	483.9	1.94	357.0	1.97
SE	131.2	0.27	99.3	0.60	123.1	0.54	119.9	0.47
${ }^{\prime} T$	0.321	-0.851	0.845	-0.267	-0.258	-0.172	-0.174	-0.363
p	ns	<0.01	<0.01	ns	ns	ns	ns	ns

closed system. This may be misleading, because the great majority of the Mallard banded pre-season (in July to early September) were adults or freely flying of flight). As many adult males and some females undertake "moult migrations" to large marshes and other secure areas at widely varying distances from their breeding sites, and as most young scatter widely soon after fledging, the population sampled by banding in late summer may be very different from the local breeding population and its progeny. (This inconvenient qualification is often overlooked.)
of Mallard banded pre-season there Ald elsa in 1975-81 of Mallard banded pre-season there and elsewhere shows the 82 out-of-province specimens having come from Saskatchewan (64), the NWT (14), Montana (3), and South Dakota (1). The recoveries from Saskatchewan
represent only 0.092% of the 69830 banded pre-seaso in that province in 1975-81, or 2.0% of the total 3199 direct recoveries from the banded sample. The latter represent a drop from the 5.1% found in Alberta up o 1975 as reported by Munro and Kimball (1982). Direct recoveries within Alberta of Mallard banded there pre-season in 1975-81 amounted to 523 from as many as from Saskatchewan. This local recovery rate is very low. Figure 13 shows that the rate was declining -4.6% annually for adults, -4.9% for young) for the period 1965-81, though in 1965-74 the recovery rates fluctuated very widely without the clear trend evident in the dry years after 1975. The corresponding direct recovery rates for young Alberta Mallard reported outside Alberta (Fig. 14) do not show this downward rend, though those of adults do (at -2.1% annually) These changes in direct recovery rates have led to
some striking changes in the local vuinerability quotient, V_{L} (Fig. 15), while that calculated from all direct
recoveries has fluctuated less. As Figure 13 suggests, the recoveries has fluctuated less. As Figure 13 suggests, the size of the local fluctuations is due mostly to changes in the local direct recovery rate of young birds.
The changes in local direct recovery rates in 1975-81 kill. Nor, though the point will not be pursued in this paper, were they related to the estimated survival of Mallard in Alberta or elsewhere in Canada (Boyd, in prep.). Thus, despite their striking nature, they may reflect nothing more significant than a loss of local interest in reporting bands. As the result of a planned increase in effort, many more Mallard were banded annually in Alberta in 1975-81 (annual average 6000) than in most previous years (average 1962-68, 2200; 1969-74, 3100). There have been many instances in different parts of increased banded samples as well as with long-con tinued banding operations.
On the basis of direct recoveries per 1000 banded, 12.02 Mallard banded in Alberta were reported shot there compared with only 0.39 marked in surrounding areas, so that only 3.1% of the Mallard killed were to be found outside the province immediately prior to th hunting season.
A very different impression is given by the indirect recoveries (Table 5), which are far more numerous. It the numbers of banded ducks at risk $1,2,3$ or more years after marking, because the annual survival rates are not all known. As a first approximation, we express all indirect recoveries in year t as proportions of the numbers banded in the year $t-1$, and ignore the effects of varying survival. Assessing the proportion of Albertabanded Mallard recovered in subsequent years in the same way, the ratio of Alberta-banded to immigrant recovery rates is $4.86: 1.83$, i.e. immigrants comprise later years. Table 5 shows that the highest rates of immigration were from South Dakota, Montana, and British Columbia. Because of the small numbers of recoveries involved, year-by-year comparisons are unreliable Grouping the years 1976-78 and 1979-81 separatel shows that in several cases the rate of immigration altered considerably.
The important points that emerge from our analysis of recoveries of Mallard banded inside and outside Alberta are that. (1) otribution to the number of Mallard forming the target population for Albertan hunters; but (2) made a substantial indirect contribution, presumably by supplying immigrants to the breeding population; and (3) the proportion of immigrants increased during 1976-81.

Discussion

We must not lose sight of the important themes that this study in the mass of detail that can readily be generated the primary concern is what is likely to
happen to duck numbers and duck hunting in the imme diate future and, more important, when the unusually long dry spell in western Canada and the north-central USA is followed by wetter weather conditions. (Quite rapid alternation of dry and wet conditions has been the rule during the last century, and there is as yet no A second concern is the impact of the deliberate management decisions in 1979, in both Canada and the USA, o hold duck hunting regulations steady during the dry spell, unless confronted by a catastrophic reduction in ducks numbers, instead of tightening the regulations as duck numbers fell, the practice followed in the pre vious 35 years. As the existing agreement on stabilized regulations stands, the decision to maintain or move on from there has to be made in 1984, after a revie of events in 1979-83
A increase in duck kill, even while unfavourable breeding habitat conditions persist, would bring about the catas rophe that has not yet occurred. The several propo nents of immediate relaxation, in several widely sepa rated provinces and states, presumably believe that no damage would be done.
The value of southern Alberta as a testing ground is that it has recently shown greater proportionate reducogether with humbing effort sustained at a high level despite rapidly declining success.
We write this in April 1983, before ducks have returned to the prairies, but when already it is clear that water will again be scarce in Alberta in the summer. One way of testing our understanding of the processes water fowl managers have to respond to is to make predicions, which we do for the summer and fall of 1983. Table 6 consists of extrapolations to 1983 of the trends in duck numbers, hunting activity, kill, and production hunting activity and kill in 1982 with predictions based on 1975-81.
The extrapolations in Table 6 are for the most part unremarkable, but show obvious contradictions in the production indices. The steep rate of decline of the late-nesting index from 1975 to 1982 leads to the prediction that hardly any potential late-nesters will be observed in 1983, and none at all in subsequent years, which is most unlikely to be correct. The production index P ' (a combination of the other indices, see "Duck production in southern Albera ') shows a large expect far the lowest, because broods and late-nesters (and thu mean brood size) were unusually scarce. Hence the pre diction of increased breeding success in 1983 hinges on the interpretation of the 1982 results as aberrant rather than being determined by population size and habitat conditions (which were in fact less severe in 1982 than in 1981).
A potentially more instructive way of forecasting is to rely on the mpirical relationship between parameters
able 5
Recoveries in Alberta, 1975-81, of Mallard banded in adjacen provinces and states

Where banded	$\begin{array}{r} \text { No. } \\ \text { banded } \end{array}$	Direct	Recoveries per 1000 banded	Indirect recoveries			
				No.	Per 1000 banded*	1976-78	1979-81
NWT	5635	14	2.48	15	2.19	2.71	1.77
BC	722	0	-	8	7.1	11.04	7.69
Sask.	69852	64	0.92	167	2.55	1.88	3.10
Man.	70266	0	-	46	0.75	0.50	1.01
Ont.	30959	0	-	19	0.46	0.45	0.47
Montana	4286	3	0.70	40	8.96	6.59	12.51
N. Dak.	15556	0	-	23	1.36	1.24	1.52
S. Dak.	2457	1	0.41	58	18.93	23.69	13.88
Total	207733	82	0.39	376	1.83	1.43	2.20

Approximation assuming all recovered in 2nd and 3rd years after marking.
ound in the study, though these are not functional elationships in a strict sense, enabling us to make con ditional forecasts in the form "if there are 3.5 million ucks in southern Alberta in May, the production inde will be $49^{\prime \prime}$. We use point, rather than interval, for casts in Table 7, as in Table 6, not in the belief that hey are reliable, but because at present we know to ittle to provide satisfactory interval forecasts.
The forecasts in Table 7 differ substantially from re plausible, because less extreme. The number of roods predicted to be seen is 67% greater than the extrapolation suggests, but the production index is 17% wer. The predicted kills of Mallards and other ducks In both 1982 and 1983 are lower on the basis of the relationship between kill and effort than are the extrapolated values.
It would be a mistake to give much weight to the success of these forecasts. What matters is the picture a whole, of a (temporarily) declining resource under
hunting attack that is also diminishing, but less rapidly, so that the impact of local (and distant) hunting is growing even though the local kill is falling. In such he objective of relaxing surely be misguid to increase th kill, unless the manager and the critics might be satisfied with more hunting for less return.

References

Dzubin, A. 1969. Assessing breeding populations of duck y ground counts. Pages 178-230 in Saskatoon Wetland Seminar. Can. Wildl. Serv. Rep. Ser. No. 6. 262 pp.

Geis, A.D. 1971. Breeding and wintering areas of mallard harvested in various states and provinces. US Fish Wildl Serv. Spec. Sci. Rep. Wildl. 144. 59 pp.

Munro, R.F.; Kimball, C.F. 1982. Population ecology of he mallard. VII. Distribution and derivation of the harvest. US Fish Wild. Serv. Resour. Publ. 147 Washington, DC. 127 pp

Table 6
Estimates (in thousands) by linear extrapolation of trends in 1975-82, of the number of ducks in southern Alberta in May 1983 and of duck production in July 1983; and, from 1975-81, of hunting activity and duck kill (in thousands) in the 1982 and 1983 hunting seasons

Ducks		$\begin{array}{r} \text { Mean } \\ 1975-81 \end{array}$	1982	$\begin{gathered} \text { Forecast } \\ 1983 \end{gathered}$	\% change from 1982	$\begin{array}{r} \text { Reported } \\ 1983 \end{array}$
Total ducks in May	N_{T}	5170	3560	3450	-3.1	3181
Mallard in May	N_{M}	1060	776	610	-21.4	845
July production indices						
Duck broods seen	\underline{B}	95.7	21.2	28.6	+ 34.9	
Mean brood size	b	4.9	3.8	4.4	+ 15.8	
Late nesting index, total ducks	LN	104.5	40.6	0.9	-97.8	
Late nesting index, Mallard	LNM	20.3	7.5	0.9	-88.0	
Production index	P^{\prime}	110	31	69	+ 122.6	
		Mean	Forecast	Reported	Forecast	
Hunting		1975-81	1982	1982	1983	
MGBH permit sales		29790	29000	27780	28800	
Hunter-days		166.2	120.6	123.1	111.5	
Successful hunters		19.1	14.1	14.3	12.9	
Reported kill						
Total ducks		228.1	155.8	137.8	137.7	
Mallard		129.5	112.6	95.4	106.3	

Table 7

orecasts (in thousands) of (a) duck production in southern Alberta
in 1983 and (b) the kill of ducks in the autumn of 1983 based
on empirical relationships between duck numbers and pro
tivity in 1975-81

	Equation		$\begin{array}{r} \text { Forecast } \\ 1983 \end{array}$	\% change from 1982
Duck broods	$\hat{B}^{\text {E }}=$	0.025N-39.94	47.8	+ 125.5
Late-nesting Anas	$L_{A}=$	0.032A-60.86	31.9	+11.9
Mallard	$\kappa_{M}=$	$0.031 M-13.42$	7.7	+2.7
Divers	$L_{D}=$	$0.86 D$-54.16	14.9	+23.1
Total ducks	$L N T T=$	0.050D-158.33	29.4	-27.6
Production index			57	+83.9
			$\underline{1982}$	1983
Kill of ducks				
Total ducks		1.749HD-62.54	148.4	132.4
Mallard	$\hat{K}_{M}=$	$20.48+0.7140$	106.1	99.7

Figure 3
Indices (in thousands) of duck broods seen and of late nesting pairs in southern Alberta, 1975-82

Figure 4
Duck populations (in thousands) in May and production in July, southern Alberta, 1975-82: (a) indices of breed ing ducks $\left(M^{\prime}\right)$ and of production (P^{\prime}) standardized so that the period mean of each is 100 ; (b) correlation of indices of population and production

Figure 5
Indices of duck populations (in thousands) in May (M^{\prime})
and production (P^{\prime}) for southern Alberta, 1965-82, based
on mean 1975-82 e 100

Figure 7
Changes (in thousands) in duck hunting activity and reported kill in southern Alberta in September, October, and November 1975-81: (a) reported kill; (b) reported
hunter-days

Figure 8
Average numbers of successful duck hunters each day in September and October in southern Alberta, 1975-81, and mean kill per hunter-day

16

Figure 9

Figure 9 (ill (housands) reported from southern Alberta provincial bird game zones 5, 6, and 7, 1975-81; data from NHS

Figure 10
Net production of Mallard (in thousands) in western provinces, NWT, Alaska, and north-central USA, 1975-81

Figure 11
Estimates (in thousands) of Mallard kill in Alberta and
adjacent provinces and states, 1975-81, adjusted for
unreported hunting and crippling losses

E-M-

Figure 12
Local kill of Mallards as $\%$ of local net production,
1975-81, in Alberta and adjacent areas: linear regressions
on years
\xrightarrow{N}

Figure 13
Local direct recovery rates (per thousand banded) of Mallard banded pre-season in Alberta, 1965-81

Figure 14
Direct recovery rates (per thousand banded) of Mallard
banded pre-season in Alberta and shot outside the province, 1965-81

N

Figure 15
Vulnerability quotients for young Mallard banded pre-
season in Alberta, 1965-81: $V_{L}=$ '"local quotient"
based on shooting recoveries in Alberta only;
$V\left[=\left(R_{1}^{\prime} / M^{\prime}\right) /\left(R_{1} / M\right)\right]$ is based on all reported direct
recoveries of shot, banded Mallard irrespective of locality

