Progress Notes $36 /\left(\frac{1}{5}\right.$
 The kill of murres in Newfoundland in the 1977-78, 1978-79, and 1979-80 hunting sea sons
 by S. Wendt' and F.G. Cooch

Canadian Wildlife Service

Introduction
Two species of murres winter in large numbers off Newfoundland. These are the Common Murre (Uria aalge) and the Thick-billed Murre (Uria lomvia). A special provision of the Migratory Birds Regulations allows residents of Newfoundland-Labrador, in addition to Inuit and Indians, to take murres for noncommercial human consumption from 1 September to 31 March. Although murres breed in abundance in of their slow rate of recruitment. In addition, large of their slow ratle of recruitment. In addition, large numbers are killed or threatened by man's activities in average annual hunting kill of 450000 ± 50000 murres of both species combined by hunters in Newfoundland-Labrador during the 3 years of this survey. During this period we were unable to distinguish between the kill of Thick-billed Murres and Common and Collins 1982) that provides a means of species based on this method would permit the development of estimates of the relative number of each species taken.
The standard national surveys of migratory game bird hunters (Cooch et al. 1978) do not produce estimates of the kill of murres in Newfoundland. One reason for this is that it is not practical to query hunters in the National Waterfowl Harvest Survey case of waterfowl, are mailed up to 6 months before some of the kill of murres takes place. A special local survey is therefore required to provide useful estimates of murre kill in Newfoundland. Results obtained in the first 3 years of this experimental survey are described here

Methods

A special mail questionnaire survey, similar in concept and design to the National Waterfowl Harvest Survey, was used. The sampling frame consisted of all persons who purchased Migratory Game Bird Hunting Permits Although all hunters of migratory game birds are legally required to possess that permit, it is not man datory for murre hunters in that province, the only
one in which murre hunting is authorized. For the pur
ne in which murre hunting is authorized. For the pur murre hunters who do not buy permits is small com pared with the number that do. We do not believe tha this resulted in a significant underestimate of the potential number of murre hunters. Separate investigations in Labrador have shown that many Indians and Inuit, exempt from the necessity of holding MGBH Permits, nevertheless think it prudent to buy one.
To stratify the survey, Newfoundland-Labrador was divided into 13 geographical zones, largely on the basis of inshore fisheries surveys (Fig. 1). This stratification ing between geographic zones of permit purchase, particularly between coastal and interior regions and because respondents were expected to be familiar with fisheries zones. A further stratification by date of purchase was included for 2 years because hunters who buy late in the year have only sea ducks and murres a possible legal quarry. Late purchasers are of additional the sampling frame of the national survey. Since the regular sport duck hunting seasons close on 30 Novem ber in Newfoundland, late purchasers were expected to be more active in the murre season.
The sample selection was systematic (by taking permit numbers at regular intervals from the list of hunters) within each stratum. The sample selection process was modified in 1979-80 on the basis of expeience in the first 2 years of the survey to optimize om each stratum was roughly proportional to the number of permits sold in that stratum, except that all late permit purchasers in the first 2 years were sent questionnaires. Some adjustments were made to ensure enhanced representation from coastal areas with small sales. The questionnaires were mailed on 13 April 1978 27 April 1979, and 26 April 1980

To avoid confusion with the national survey the questionnaire includes an explanation pointing out the rrerence between the wo surveys and also provion
use.
A second wave of questionnaires was sent to those unters who did not return the first questionnaires within about 6 weeks. Covering letters were sent with In the analysis of results of the first mailing in 1978. Th hu analysis of results of the survey, we assum hat hunters who did not specify their hunting locations hunted in the zones where they bought permits. sing standard deviation unweizhed by sample size because the annual samples involved are generally similar.

Results

Response to the survey

Table 1 shows the responses to the survey from the strata of hunters who purchased before 1 December. the first 2 years, all of whom were sent questionnaires They returned 375 (1977-78) (54.7%) and 311 (197879) (44.4%) questionnaires, respectively, Late purchasers were not sampled separately in 1979-80. There was some evidence of a growing resistance to completion of questionnaires in some strata with small sam pling frames.

The overall response was as follows:

$1977-78$	$1978-79$	$1979-80$
36458	37523	37155
4693	4695	3990
12.9	12.5	11.2
2681	2345	1990
57.1	49.9	49.8
9005	6829	8025

Total permits
Sample size
Sample intensity ($\%$)
Response
Response as $\%$ of
sample
Estimated no. of
active hunters

Estimates of kill
Annual estimates of the total kill of murres by zone of hunting are given in Table 2. We decided not to base estimates of hunter activity and success on zone of permit purchase because some hunters indicated that chased their permits. The confidence intervals for the total kill at the 0.05 level are:
$\frac{1977-78}{\frac{1978-79}{1979-80}}$
Using 1977-78 as a baseline, the kill of murres Using 1977-78 as a baseline, the kill of murres declined significantly in Zones 2, 4, and in 1978- in, dicated in Table 3 and shown on Figure 2, the estimated kill of murres was down in every month of the 1978-79 season. The annual cumulative kill is given in Figure 3.

Hunter activity

Estimates of the number of days spent by hunters are given in Table 4. Hunter activity declined significantly in 1978-79 but increased in 1979-80. Table 5 shows the percentage of hurvey Although their kill is significant, hunters of murres constitute a minority of permit purchasers in all areas.

In the 1977 and 1978 surveys late purchasers were found to be more active than earlier purchasers (Table 6). This is reflected in the proportion of permit holders that hunted, the proportion that were successful in However, the total kill reported by this group ac-
ounts for less than 3% of the murres taken. There ore, the exclusion of this group from the sampling frame of the national surveys is not a major problem and the universe was not retained as a separate stratum in 1979, when all purchasers were lumped

Comparison of responses to first and second mailings in 1977-78 Persons who choose not to reply to a mail survey may the hunters who do reply. Non-response is therefore a source of bias in our estimates. Although we do not know what this bias is, we can learn something about it by comparing results from 1) hunters who responded to the first questionnaire received, and 2) all respon dents, including those who only responded after receiv ing a second questionnaire. Table 7 compares these two groups. If these two points are used to extrapolate to the kill that would have been reported with a 100% reason to believe that our estimates are linear functions of response rate) we obtain -1% as the estimated non-response bias on murre kill. This indicates that non-response bias can probably be ignored in comparison to sampling error in this survey

Discussion

Limitations of the survey
The estimates presented in this report were calculated under the assumptions that the sampling frame was he information received on the questionnaires was correct. None of these assumptions holds perfectly, so they cause a mixture of upward and downward biases in the results. Many of these biases are common to most mail surveys. See Cooch et al. (1978) for a dis ussion of biases in the national surveys.
We have some additional reservations peculiar to his survey. Some downward bias is introduced in the hunters is incomplete. We feel that a countervailing upward bias in the murre kill estimates is caused by the difficulty that many murre hunters must have in separating their individual kill from their party kill.
urres (1980) sugests that the groups of Thick-billed Gaston (1980) suggests Newfoundland number about 4 million when they leave the summer areas. Similar cal culations were applied to the Common Murre breeding population estimates from Brown et al. (1975) and give about 1.5 million of this species. Thus, a rough estimate of the murre population using Newfoundland waters is a 5 million birds. With these approximation our survey incicats an in Newfoundland over the 3 years of this survey.
Suppose, as in Gaston and Nettleship (1981), that there is a 60% loss of murre chicks before they reach Newfoundland, and the production of young is 0.7
chicks per breeding pair. If the survival rate (S) does not vary after hatching year and the number of breeding pairs in year i is denoted B_{i}, then
$\frac{B_{1}}{2}$
To maintain a constant breeding population we have $B_{i .}=B_{i-1}=B_{i-5}$, allowing the solution of the above quations to give $S=0.91$. Although this model is so oversimplified we do not expect it would fit real population data, it establishes heuristically the approximate

able

Characteristics of the sample of hunters who purchased permits before 1 December, 1977-78 and 1978-79

Zone	Total permits	$\begin{gathered} \text { Sample } \\ \text { size } \end{gathered}$	Sampling intensity (\%)	Response	Response as $\%$ of sample
1977-78					
1	4535	450	9.9	267	59.3
2	2556	260	10.2	161	61.9
3	3372	340	10.1	192	56.5
4	8931	890	10.0	565	63.5
5	2709	270	10.0	164	60.7
6	3971	400	10.1	242	60.5
7	889	200	22.5	121	60.5
8	3371	340	10.1	169	49.7
9	2045	210	10.3	130	61.9
Nfld.	32379	3360	10.4	2011	59.9
10	762	200	26.2	84	42.0
11	202	200	99.0	76	38.0
12	1892	199	10.5	114	57.3
13	538	49	9.1	21	42.9
Labr.	3394	648	19.1	295	45.5
Total	35773	4008	11.2	2306	57.5
1978-79					
1	4666	450	9.6	230	51.1
2	2520	260	10.3	126	48.5
	3587	340	9.5	183	53.8
4	9416	890	9.5	476	53.5
5	2868	270	9.4	147	54.4
6	3925	400	10.2	226	56.5
7	874	200	22.9	106	53.0
8	3532	340	9.6	137	40.3
9	2183	210	9.6	128	61.0
Nfld.	33571	3360	10.0	1759	52.4
10	774	200	25.8	78	39.0
11	227	200	88.1	70	35.0
12	1818	200	11.0	115	57.5
13	448	50	11.2	12	24.0
Labr.	3267	650	19.9	275	42.3
Total	36838	4010	10.9	2034	50.7

ortality that murre populations can safely sustain, Which is about 10% for birds of age one or older. Several other mortality factors operate at levels similar
to that we have found for shooting in Newfoundland. to that we have found for shooting in Newfoundland.
These include mortality due to fishing operations (Tull These include mortality due to fishing operations (Tull
et al. 1972) and oiling (Nettleship 1977), both of which are less selective of young birds and so are potentially more damaging. We expect that first-year birds are more vulnerable to shooting than older birds, so th mortality estimated by this survey probably included substantially less than 10% of the older age classes.

O.

Table
Estimates of kill by zone of hunting

	Murres	
Zone	Kill	SE

	$1977-78$	
1	80757	12904
2	55074	11518
3	47288	8677
4	228572	25923
5	553	553
6	4468	1509
7	38583	12773
8	50914	11403
9	11851	3410
Nfld.	518059	36795
10	18834	9431
11	3589	1360
12	-	-
13	1281	1281
Labr.	23704	9614
Total	541764	38030

1978-79

	$1978-79$	
1	106555	31333
2	22271	5880
3	41272	10076
4	115497	18114
5	2669	2573
6	7110	3504
7	10118	5686
8	36937	7352
9	4011	2668
Nfld.	346439	39476
10	5625	2137
11	966	357
12	-	-
13	7120	529
Labr.	353559	234
Total		39539

(cont'd)

Ice conditions

To better understand the annual and seasonal changes in murre kill we obtained maps showing ice distribution from Ice Forecasting Central in Ottawa (AES, Dept. of Environment). We were most interested in the kill of murres in Zone 4 from December to February because kill there makes up a large part of the total kill decreased significantly in 1978-79.

Table 2 (cont'd)

Estimates of kill by zone of hunting

	Murres	
Zone	Kill	SE
	$1979-80$	
1	70029	13518
2	60769	16506
3	45038	7508
4	18350	2700
5	5690	5355
6	7733	7156
7	11533	5074
8	81941	25667
9	4491	1769
Nfld.	470805	44588
10	7066	5978
11	520	431
12	-	-
13	7587	5994
Labr.	478391	49989
Total		

The ice maps show that the 1978-79 ice conditions were indeed different from those of the previous seaon in Zone 4. The date of first freezing in 1977-78 as about 5 January, whereas in 1978-79 ice cove until the end of February 1979. Similarly, ice cover was earlier and more complete in Zones 1 and 2 when compared with 1977-78. In 1979-80, ice conditions during the winter months were less severe than in cordingly Surprisingly the decrease in kill that occurred in Zones 4 and 8 , in part because of ice, was not reflected by increases in kill in Zones 2, 3, or 6 . Conventional wisdom suggests that murres displaced from Zones 4 and 8 would move south around the Avalon Peninsula to the ice-free waters off the south coast. Kill did increase in Zones 1 and 9, however, which would seem to indicate some degree of southward movement. Brown et al. (1975) suggest that murres Newfoundland by ice. Therefore, ice conditions probably account for much of the change in the kill estimates for Zones 2 and 4. Other factors are obviousy important, too, including wind speed and direction. Tuck (1960) estimated that, in 1956 approximately 00000 birds were taken annually by subsistence hunt ers in Newfoundland-Labrador. Those estimates were derived at a time when subsistence hunting was restrict d to designated outports and excluded such metropol Cornerbrook. In 1974, the privilege of hunting murres

Table 6 Characteristics of late purchasers compared with those of early purchasers		
Purchase dates	Purchasers hunting murres (\%)	Murre kill per hunter
Up to 30 Nov. 1977	23.7	52.51
1 Dec. 1977 to	30.1	60.32
10 March 1978	16.3	49.28
Up to 30 Nov. 1978	30.5	42.74
1 Dec. 1978 to		
10 March 1979		

Table 7
Estimated kill of murres calculated after first and second mailings in 1977-78

Location	After first mailing			After second mailing		
	$\begin{array}{r} \text { Kill } \\ \text { estimate } \end{array}$	SE	Respondents	$\begin{array}{r} \text { Kill } \\ \text { estimate } \end{array}$	SE	Respondents
Nfld.	522802	46536	1436	518059	36795	2351
Labrador	15605	3747	196	23704	9614	330
Total	538407	46687	1632	541764	38030	2681

Figure 2
Estimated kill of murres by month, Sept.-March, 1977-78 to 1979-80

Figure 3
Figure 3
Cumulative seasonal kill of murres in Newfoundland and Labrador, 1977-78 to 1979-80

10

10 OCT 920

Erratum August 1984
Progress Note No. 146, June 1984

The kill of murres in Newfoundland in the 1977-78, 1978-79, and 1979-80 hunting
by S. Wendt and F.G. Cooch

Please replace pages 9 and 10 with the attached sheet

Figure 3
Cumulative seasonal kill of murres in Newfoundalnd and Labrador, 1977-78 to 1979-80

