

The kill of ducks and geese in Canada by non-resident hunters
by F.G. Cooch ${ }^{1}$

Abstract
In 1976-81, non-resident hunters, defined as persons not hunting in their province or state of residence, constituted about $9 \%$ of hunters in Canada and took $11 \%$ of the ducks and $16 \%$ of the geese reported killed. Their distribution was highly concentrated along provincial or international borders, and in areas where there are large concentrations of waterfowl. Both Canadian and US non-resident hunters were generally more successful than resident hunters. Waterfowl hunting by non-resident Canadians has decreased since 1976. Hunting by US hunters has increased or remained steady.
${ }^{1}$ CWS, Ottawa, Ontario K1A 0E7.
Introduction
Important considerations to be taken into account in setting Canadian waterfowl hunting regulations for a province or zone include forecasts of the fall flight and probable resulting kill by hunters who purchase Canada migratory game bird hunting (MGBH) permits in that province or zone. For many years concern has been expressed about the impact of non-resident hunting on various stocks of migratory game birds, and Saskatchewan and Manitoba have imposed special restrictions on hunting by non-residents. In Saskatchewan, provincial regulations have stipulated since 1974 that hunters not resident in the province may not hunt until early October, though the seasons in all zones open on various dates in September. In Manitoba, non-residents of Canada may not hunt Sandhill Cranes at all, and may not hunt ducks and geese in the southern parts of the province until 5-7 days after the general opening date. The non-residents are believed to be largely US hunters.

The sales record of MGBH permits provides a means not only of measuring kill by Canadians and nonCanadians but also of assessing the numbers of Canadians who hunt in provinces other than their province of residence. Cooch (1978) used this sales record to describe the impact of US hunters in Canada in the 1976 season, finding it to be geographically restricted but of local importance. Cooch (1982) examined factors influencing changes in origin, numbers, and distribution of all non-resident waterfowl hunters in Canada. This paper presents estimates of the kill of waterfowl by both categories of non-residents, who are defined as those hunting in provinces other than their province SK or state of residence. Canadian non-residents, termed OP 471
C3371
No. 147
$\qquad$
(out-of-province) hunters (Cooch 1982), generally trave] shorter distances to hunt than US hunters do. Since 1976 they have been declining in numbers more rapidly than US hunters. This is especially true with regard to OP hunters travelling to western Canada from Ontario and Quebec. Non-resident hunters of both categories now represent about $9 \%$ of the active waterfowl hunters in Canada.
While data are available throughout Canada, I have restricted the major analysis to Alberta, Saskatchewan, Manitoba, and Ontario, where the greatest impact by non-residents is recorded. The analysis could not be extended earlier than 1976 because of the lack of a specialized operational survey for US hunters before that year.

Results
From 1976 to 1981 inclusive, about 3.5 million ducks and 590000 geese were killed each season by sport hunters in Canada. Of that number, US hunters killed an average of 218000 ducks and 56000 geese annually, and OP hunters killed 155000 ducks and 37000 geese. Table 1 shows the concentration of non-resident hunters in central Canada. Annual variations in kill in each CWS administrative region are given in Table 2, making plain the decline since 1976 in the kill of ducks by OP hunters in the Western and Northern Region On average, non-residents nationally constitute $8.3 \%$ of all active hunters and $8.9 \%$ of all successful hunters. In many localities these values are considerably higher. To demonstrate differences between residents and nonresidents, average activity and success by residency class are shown by province in Table 3, and annual variations by CWS region in Table 4. Mobile hunters are clearly more successful than residents.

Data for those National Harvest Survey (NHS) provincial sampling zones where there is high non-resident activity (Cooch 1978) are given in Tables 5, 6, and 7 and in Figures 1 and 2. Zonal summaries such as these do not completely capture the concentration of nonresident hunters in some favoured areas, nor completely show changes occurring in response to changing conditions. Figure 3 indicates the location of 14 reference areas that, in 1976, accounted for about $65 \%$ of all kill by non-resident hunters in Canada. Table 8 shows the changes in kill of ducks and geese by OP, US, and resident hunters in each of those reference areas, and the changes that occurred between 1976 and 1979 and 1981. Decreases in kill and presence of OP hunters in some areas may be related to increases in cost of
travel, changes in regulations (prior to 1979) as shown in Cooch (1982), or the reduced numbers of birds available during the hunting season. Without a specialized socio-economic survey of mobile hunters, the factors determining their decision to travel are unknown.

Cooch (1982) was able to show changes in numbers in both categories of non-resident and resident hunter occurring annually between 1972 and 1981. Because of imitations in the ways in which the data were tabulated and stored, I could not compute the kill of individual US hunters from 1972 to 1975, and the results presen ed in Table 2 are thus restricted to the 6 -year period of 1976-81. This table shows the marked decrease in kill by OP duck hunters in western Canada after 1976 The increase there in the kill of geese by US hunters was almost entirely caused by in Manitoba, and a shift of some hunters from Ontario zone 03 to Manitoba, while the kill by US hunters in Saskatchewan and Alberta stayed nearly constant.
Tables 9 and 10 show average kills of ducks and geese by province of hunt and by state of residence of US hunters.

The data base uses the assumption that Canadians buy MGBH permits in their province of residence. Thus, though I could estimate the kill by OP hunters by province of hunt, I coul similar precision. Estimated totals by province of assumed residence and kill of ducks and geese by OP hunters are presented in Tables 11 and 12. I have also incorporated the standard NHS provincial estimates of OP hunters for comparison with summed estimates by province of residence. Most of the disparities are trivial, though in Saskatchewan and Alberta about $10 \%$ of the kill by OP hunters cannot be assigned by province of residence.

## Discussion

The kill and activity of OP hunters most closely resembled those of experienced (sample D) resident hunters. Non-resident hunters of US origin were generally more successful than either of the two groups Canadians, though hunting on fewer days. Kill by al non-resident hunters was generally more consistent and, where populations were in deciine, closert samples (including D), though there was considerable regional variation.
Here are three examples. First, in southern Ontario NHS) zone 01, I found the distinction between US hunters and resident hunters consistently greater than in any other zone of Canada. Despite hunting on fewer ays ( 7.3 vs . 9.4) US hunters killed an average of 21 ducks per season, compared with 10 by successful residents. One possibility is that quality areas in which to shoot are very limited in southern Ontario and access to those areas may be controlled by ownership and cost, whereas in an area like Saskatchewan the hace to hunt. Although no significant national change has been observed in the ratio between NHS samples A, B, D, or E over the 5 years in Ontario zone 01, the $O P$ sample largely disappeared, apparently in response to a change in regulations (Cooch 1982). The numbers
of ducks available to hunters in southern Ontario are relatively stable, except those of diving ducks of western origin. As the number of specialist hunters is probably small, we expect that, given a relatively stable fall flight, anmual variations in success This does no daily and seasonal bag will not be gresence or absence in the area is more variable. The success rate of goose hunters in zone 01 reflects that variability. The consistency of numbers available is also reflected in the consistency of both the total number of hunters in each sample and the relative proportions of each sam ple cohort within the hunting community
Second, in prairie Canada, waterfowl populations are more variable. Success generally fluctuates in direct response to the supply of birds. For example, the numbers of potential and active houps have been deewan in all resident sampling groups sinatic decrease in 1981, when a scarcity of ducks was associated with public concern over the possibility that Endrin applied to winter wheat in Montana may have "poisoned" the flesh of ducks. Active hunters of geese were apparently largely unaffected by the presumed danger from Endrin.
Non-resident hunters do not appear to have been as affected by reduced numbers of waterfowl as do residents as a whole. Between 1976 and 1981 inclusive, most duck populations in Saskatchewan fell, and age quarry species, the Mallard, have been below 2.0 since 1976 (Cooch and Boyd 1983). This low level of produc ivity has tended to switch resident hunters in the outheast (zone 03) from ducks to geese. By 1980 there were more successful resident goose hunters than duck hunters among samples B and D. In 1981 this was als observed in sample A. US hunters (sample E) for geese raditionally gone o same zone initially had characeristics similar to resident sample D, but by 1978 had also switched to geese.
Third, southern Manitoba zone 01 was traditionally a duck hunting area with a large and stable cadre of experienced resident hunters. Although regulations and declining population of ducks impinged on OP hunters and, to a lesser extent, on residents (Cooch 1982), a massive increase in the fall flight has caused geese to replace ducks as the principal quarry. This in crease in geese was associated in pal Waterfowl Refuge ment of Oak Hammock Pio the numbers of Lesser Snow Geese and Canada Geese breeding along the west sector of Hudson Bay, south of Queen Maud Gulf and on Southampton Island. Manitoba suffered a decline in its duck populations earlier than Saskatchewan and imposed severe regulations (reduced bag limits and delayed opening dates) between 1972 and 1975 (Cooch 1982). This apparently discouraged new and intermitent waterfowl hunters (samples A and B).

Southern Manitoba zone 01 is most comparable to Skatchewan zone 03 in that the supply of ducks has decreased since 1976 while the number of geese has inceased. Although the sample structure of active resident hunters remained relatively constant (except for slight decrease in 1981), the number of US hunters in creased from 2400 to 3700 ( $54 \%$ ) between 1977 and 1981 inclusive. Among all classes of hunters, the proportion taking geese has been increasing. In the first 1982), resident $D$ hunters were more successful than the tourists in killing geese, but less successful in killing ducks. This switched in 1979 and now US hunters are more successful than resident $D$ hunters in killing geese and comparable to D in killing ducks. I surmise that American hunters have now learned how to shoo gese under Manitoba conditions and are abandoning duck hunting or merely taking ducks incidentally whil in pursuit of geese
Although in Ontario zone 01, with stable populaions, little had changed between 1976 and 1981 showed how declines in duck numbers resulted in hunters switching to geese as an alternative, with an increase in the proportion of experienced hunters (sample D). Finally, Manitoba zone 01 represents an advanced stage of the decline in duck hunting and the growing importance of goose hunting.
Non-resident hunters reflect these changes as well. In prairie Canada, residents of the United States tradi Although OP hunters have redirected their efforts more quickly toward geese than have residents, the impact of the decline in ducks and of restrictive regulations before 1976 has greatly reduced their activity in western Canada. OP hunters from British Columbia are gradually retreating from the duck areas in Saskatchewan and have even begun pulling back from the Peace River District of Alberta. At the same time, the number of OP hunters has remained near the longcant proportion of the kill.
As a general rule as po
decline, the number of new and intermittent resident hunters (NHS samples A and B) declines and an increasing proportion who purchase permits do not exer cise their option to hunt. The deletion of the inexperienced cohorts ( $A$ and $B$ ) has the effect of bringin he average seasonal kills by resident, OP, and US hunters closer together.
Cove unt non-resident hunters could designed to protect local stocks of waterfowl. An ex ample of this sort of impact occurred in Manitoba, where restrictive regulations to increase breeding popu lations of ducks (primarily the Mallard) were put into effect in 1973 and continued in some form through 1981 (a bag limit of four Mallards per day compared with the standard limit of eight ducks of all species in
each prairie province). However, anticipated reductions in the kill of Mallards have fallen short of expecta tions because of the influx of US hunters, largely seel ing geese but killing ducks as well. This was analysed in some detail by Cooch and Boyd (1983). Data on kill by US hunters do not extend back before 1976, bu records of kill by OP and resident hunters do. A shown in Cooch (1982), OP hunters had decined by since exceeded $65 \%$ of the base of 1825 OP hunters. since exceeded $65 \%$ or the base of 1825 OP hunters. 1972 to 32000 in 1978, and declined to 30000 in 1982. Hunters of US origin (largely from Minnesota, but in creasingly from North Dakota) rose by $142 \%$ from 1542 in 1972 to 3733 in 1982, and their kill of geese by $368 \%$ from 8882 to 32674 between 1976 and 1982 . Although their principal quarry was geese, their kill of ducks has become increasingly significant (plus 2\%) and, as noted, has helped to blunt the effors bella in Manitoba. Although some reduction resulted from discouraging OP hunters from coming to Manitoba, no reduction of kill of Mallards by US hunters was achieved, because of increasing numbers attracted by burgeoning populations of geese.
The numbers of ducks and geese taken in Canada by residents of Michigan, Wisconsin, and Minnesota are compared to the numbers of birds reported taken of their kill in Canada in comparison to the kill within states is quite marked. Even more impressive is the fact that, in 1980, residents of Minnesota killed 80000 geese in that state and another 36000 in Canada Some of this kill was transferred to populations of Canada Geese, for which concern about possible over hunting in Canada has recently been expressed in Mississippi and Central Flyway technical committe meetings.
Another case in point is the Black Duck. Historical States than in Canada. That relationship in the United States than in Canada. That relationship has recently Canada by 15000 US hunters was subtracted from the kill in Canada and considered as part of the American kill, the historic relationship would be more nearly balanced ( 310000 vs. 305000 ).

Conclusion
Between 1976 and 1981, OP and US non-residents as defined killed at least 10.6 and $15.7 \%$ respectively of As shown and geese killed by sport hunters in Cana As shown previously (Cooch 1982), US hunters resdid the to increased opportunity more quicky that did their canadian counterparts. Hunters which contribute most US hunters to Canada (Minnesota, Michigan, and Wisconsin) general ly have shorter distances to travel to suitable areas within Canada than do most OP Canadians.

Cooch (1982) was able to show changes in numbers in both categories of non-resident and resident hunters occurring annually between 1972 and 1981. Because of limitations in the ways in which the data were tabulated and stored, I could not compute the kill of individual US hunters from 1972 to 1975, and the results present ed in Table 2 are thus restricted to the 6 -year period of 1976-81. This table shows the marked decrease in The increase there in the kill of geese by US hunters The increase there in the kill of geese by opportunity in Manitoba, and a shift of some hunters from Ontario zone 03 to Manitoba, while the kill by US hunters in Saskatchewan and Alberta stayed nearly constant.
Tables 9 and 10 show average kills of ducks and
geese by province of hunt and by state of residence of US hunters.
The data base uses the assumption that Canadians buy MGBH permits in their province of residence. Thus, though I could estimate the kill by OP hunters by province of hunt, I could not allocate that Estimb
province of residence with similar precision. Estimated totals by province of assumed residence and kill of ducks and geese by OP hunters are presented in Tables 11 and 12. I have also incorporated the standard NHS provincial estimates of OP hunters for comparison with summed estimates by province of residence. Mos of the disparities are trivial, though in Saskatchewan and Alberta about cannot be assigned by province of residence.

Discussion
The kill and activity of oP hunters most closely resembled those of experienced (sample D) resident hunters. Non-resident hunters of US origin were generally more successful than either of the two groups of Canadians, though hunting on fewer days. Kill by all non-resident hunters was generally more consistent and, where populations were in decline, closer to longterm averages than that by any of the resident samples (including
Here are three examples. First, in southern Ontario (NHS) zone 01, I found the distinction between US hunters and resident hunters consistently greater than in any other zone of Canada. Despite hunting on fewer days ( 7.3 vs . 9.4 ) US hunters killed an average of 21 ducks per season, compared with 10 by successful residents. One possibility is that quality areas in which to shoot are very limited in southern Ontario and ac
cess to those areas may be controlled by ownership and cost, whereas in an area like Saskatchewan the hunters compete for birds but not necessarily for a place to hunt. Although no significant national change has been observed in the ratio between NHS samples A, B, D, or E over the 5 years in Ontario zone 01, the OP sample largely disappeared, apparently in response to a change in regulations (Cooch 1982). The numbers
of ducks available to hunters in southern Ontario are relatively stable, except those of diving ducks of western origin. As the number of specialist hunters is probably small, we expect that, given a relatively stable fall flight, annual variations in sucess rate and daily and seasonal bag who sese presence or absence in the area is more variable. The success rate of goose hunters in zone 01 reflects that variability. The conhunters in zone sistency of numbers available is also reflected in the consistency of both the total number of hunters in each sample and the relative proportions of each sam ple cohort within the hunting community.
Second, in prairie Canada, waterfowl populations are more variable. Success generally fluctuates in direct response to the supply of birds. For example, the numbers of potential and active hunters in Saska decwaning since 1976, with the most dramatic decrease in 1981, when a scarcity of ducks was associated with public concern over the possibility that Endrin applied to winter wheat in Montana may have "poisoned" the flesh of ducks. Active hunters of geese were apparently largely unaffected by the presumed danger from Endrin.
Non-resident hunters do not appear to have been as affected by reduced numbers of waterfowl as do residents as a whole. Between 1976 and 1981 inclusive most duck populations in Saskatchewan fell, and age quarry species, the Mallard, have been below 2.0 since 1976 (Cooch and Boyd 1983). This low level of productivity has tended to switch resident hunters in the tivitheast (zone 03) from ducks to geese. By 1980 there were more successful resident goose hunters than duck hunters among samples B and D. In 1981 this was also observed in sample A. US hunters (sample E) have OP hunters in the same zone initially had characteristics similar to resident sample D, but by 1978 had also switched to geese
Third, southern Manitoba zone 01 was traditionally a duck hunting area with a large and stable cadre of experienced resident hunters. Although regulations and a declining population of ducks impinged on OP hunters and, to a lesser extent, on residents (Cooch 1982), a massive increase in the fall flight has caused geese to replace ducks as the principal quarry. This inment of Oak Hammock Provincial Waterfowl Refuge and also with increases in the numbers of Lesser Snow Geese and Canada Geese breeding along the wes Snow Geese and Canada Geese breeding Maud Gulf and on Southampton Island. Manitoba suffered a decline in its duck populations earlier than Saskatchewan and imposed severe regulations (reduced bag limits and delayed opening dates) between 1972 and 1975 (Cooch 1982). This apparently discouraged new B)

Southern Manitoba zone 01 is most comparable to Saskatchewan zone 03 in that the supply of ducks ha decreased since 1976 while the number of geese has in decreased since 1976 while the number of geese has indent hunters remained relatively constant (except for a slight decrease in 1981), the number of US hunters increased from 2400 to 3700 ( $54 \%$ ) between 1977 and 1981 inclusive. Among all classes of hunters, the proportion taking geese has been increasing. In the first 2 years after the major influx of US hunters (Cooch the tourists in killing geese, but less successful in killing ducks. This switched in 1979 and now US hunters are more successful than resident $D$ hunters in killing geese and comparable to D in killing ducks. I surmise that American hunters have now learned how to shoo geese under Manitoba conditions and are abandoning duck hunting or merely taking ducks incidentally while in pursuit of geese.
Although in Ontario zone 01, with stable populations, little had changed between 1976 and 1981 showed how declines in duck numbers resulted in hunters switching to geese as an alternative, with an increase in the proportion of experienced hunters (sam ple D). Finally, Manitoba zone 01 represents an advanced stage of the decline in duck hunting and the growing importance of goose hunting.
Non-resident hunters reflect these changes as well. In prairie Canada, residents of the United States traditionally sought geese, and most OP Canadians ducks. quickly toward geese than have residents, the impact quickly toward geese than have residents, the impact before 1976 has greatly reduced their activity in western Canada. OP hunters from British Columbia are gradually retreating from the duck areas in Saskatchewan and have even begun pulling back from the Peace River District of Alberta. At the same time, the number of OP hunters has remained near the longterm average in areas where geese constitute a signifithe kill
As a general rule, as populations of ducks or geese hunters (NHS samples A and B) declines and an increasing proportion who purchase permits do not exer cise their option to hunt. The deletion of the inexperienced cohorts ( A and B ) has the effect of bringing the average seasonal kills by resident, OP, and US hunters closer together.
Cooch (1982) stated that non-resident hunters could have unanticipated impacts on management plans esigned to protect local stocks of waterfowl. An example of this sort of impact occurred in Manitoba, ations of ducks (primarily the Mallard) were put into effect in 1973 and continued in some form through 1981 (a bag limit of four Mallards per day compared with the standard limit of eight ducks of all species in
each prairie province). However, anticipated reductions in the kill of Mallards have fallen short of expeciations because of the influx of US hunters, largely seek ing geese but killing ducks as well. This was analysed in some detail by Cooch and Boyd (1983). Data on kill by US hunters do not extend back before 1976, but records of kill by OP and resident hunters do. A shown in Cooch (1982), OP hunters had declined by 1974 to $40 \%$ of the 1825 present in 1972, and have no since exceeded $65 \%$ of the base of 1825 OP hunters. 1972 to 32000 in 1978, and declined to 30000 in 1987 Hunters of US origin (largely from Minnesota, but increasingly from North Dakota) rose by $142 \%$ from 1542 in 1972 to 3733 in 1982, and their kill of geese by $368 \%$ from 8882 to 32674 between 1976 and 1982. Although their principal quarry was geese, their kili of ducks has become increasingly significant (plus $20 \%$ and, as noted, has helped to blunt the efforts being made to restore the breeding populations of Mallards in Manitoba. Although some reduction resulted from no reduction of kill of Mallards by US hunters was achieved, because of increasing numbers attracted by burgeoning populations of geese.
The numbers of ducks and geese taken in Canada by residents of Michigan, Wisconsin, and Minnesota are compared to the numbers of birds reported taken within those states in Table 13. The apparent stability of their kill in Canada in comparison to the kill within states is quite marked. Even more impressive is the geese in that state and another 36000 in Canada Some of this kill was transferred to populations of Canada Geese, for which concern about possible over hunting in Canada has recently been expressed in Mississippi and Central Flyway technical committe meetings.
Another case in point is the Black Duck. Historical ly, more Black Ducks have been killed in the United been reversed. However, if the kill of Black Ducks in Canada by 15000 US hunters was subtracted from the kill in Canada and considered as part of the American kill, the historic relationship would be more nearly balanced ( 310000 vs. 305000 ).

## Conclusion

Between 1976 and 1981, OP and US non-residents as Between 1976 and 1981, OP and US non-residents as
defined killed at least 10.6 and $15.7 \%$ respectively of the ducks and geese killed by sport hunters in Canada. As shown previously (Cooch 1982), US hunters responded to increased opportunity more quickly than did their Canadian counterparts. Hunters from the three states which contribute most US hunters to Canada (Minnesota, Michigan, and Wisconsin) genera ly have shorter distances to travel to suitable areas

I use these examples to indicate that kill by mobile hunters can have an effect on management plans if the geographic（political）area selected is too small，the time－frame before re－examination too short，or ques－ tions of allocation of harvest not addressed．Who wh have forecast in 1974 that by 1981 anoth iddition to hunters would have gone to Manitoba in addition a those already going to other provinces or that，in a period of declining duck numbers in prairie Canada， the kill of ducks by mobile hunters would largely re main steady and their kill of geese increase greatly？

References
Cooch，F．G．1978．The kill of migratory game birds in Canada by non－resident sport hunters．Pages 52－57 in H．Boyd and G．Finney，eds．Migratory game bird unters and hunting in Rep．Ser．No． 43.127 pp

Cooch，F．G．1982．Factors influencing changes in origin， numbers，and distribution of non－resident waterfowl 130． 16 pp ．
Cooch，F．G．；Boyd H．1983．Changes in the net ex－ port of Mallard from western Canada and the con－ guous United States，1972－82．Can．WildI．Serv．Prog Notes No．142． 27 pp

## Acknowledgements

These data are largely drawn from the National Harvest Survey，now directed by S．Wendt and L． Teevens．Special computer runs were made by Maurice Gratton，Computer and Applied Statistics Directorate， obtain estimates of kill and success by nents received from H．Boyd，K．Brace D．Caswell，and G． Hochbaum，CWS．

Table
Average seasonal kill（in thousands）of ducks and geese by

| Residence | Nfld． | PEI | NS | NB | Que． | Ont． | Man． | Sask． | Alta． | BC | NWT | YT | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ducks |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { OP } \\ & \% \end{aligned}$ | $\begin{gathered} 0.6 \\ (0.5) \end{gathered}$ | $\begin{gathered} 2.0 \\ (6.9) \end{gathered}$ | $\begin{gathered} 4.0 \\ (3.4) \end{gathered}$ | $\begin{gathered} 3.0 \\ (5.0) \end{gathered}$ | $\begin{gathered} 25.9 \\ (4.0) \end{gathered}$ | $\begin{aligned} & 21.7 \\ & (2.4) \end{aligned}$ | $\begin{aligned} & 13.7 \\ & (4.2) \end{aligned}$ | $\begin{aligned} & 37.6 \\ & (7.2) \end{aligned}$ | $\begin{gathered} 43.9 \\ (6.4) \end{gathered}$ | $\begin{gathered} 2.4 \\ (1.1) \end{gathered}$ | $\begin{gathered} 0.4 \\ (2.2) \end{gathered}$ | $\underset{(2.4)}{\mathrm{Tr}^{2}}$ | $\begin{gathered} 155.2 \\ (4.4) \end{gathered}$ |
| U.S. | $\begin{aligned} & \mathrm{Tr}^{*} \\ & \mathbf{T r} \end{aligned}$ | $\begin{aligned} & \mathrm{Tr} \\ & \mathrm{Tr} \end{aligned}$ | $\begin{aligned} & \mathrm{Tr} \\ & \mathrm{Tr} \end{aligned}$ | $\stackrel{0.3}{(0.5)}$ | $\begin{gathered} 3.7 \\ (0.6) \end{gathered}$ | $\begin{aligned} & 104.0 \\ & (11.6) \end{aligned}$ | $\begin{aligned} & 49.0 \\ & (14.9) \end{aligned}$ | $\begin{aligned} & 50.5 \\ & (9.7) \end{aligned}$ | $\begin{gathered} 9.8 \\ (1.5) \end{gathered}$ | $\begin{gathered} 1.1 \\ (0.5) \end{gathered}$ | $\begin{aligned} & \mathrm{Tr} \\ & \mathrm{Tr} \end{aligned}$ | $\begin{aligned} & \mathrm{Tr} \\ & \mathrm{Tr} \end{aligned}$ | $\begin{gathered} 218.5 \\ (6.2) \end{gathered}$ |
| Residents <br> \％ | $\begin{aligned} & 118.8 \\ & (99.5) \end{aligned}$ | $\begin{gathered} 27.5 \\ (93.1) \end{gathered}$ | $\begin{aligned} & 110.8 \\ & (96.6) \end{aligned}$ | $\begin{gathered} 56.2 \\ (94.5) \end{gathered}$ | $\begin{aligned} & 510.9 \\ & (94.5) \end{aligned}$ | $\begin{aligned} & 773.7 \\ & (86.0) \end{aligned}$ | $\begin{aligned} & 266.7 \\ & (80.9) \end{aligned}$ | $\begin{aligned} & 434.7 \\ & (83.1) \end{aligned}$ | $\begin{aligned} & 637.0 \\ & (92.1) \end{aligned}$ | $\begin{aligned} & 209.7 \\ & (98.4) \end{aligned}$ | $\begin{gathered} 18.9 \\ (97.8) \end{gathered}$ | $\begin{gathered} 3.1 \\ (97.6) \end{gathered}$ | $\begin{gathered} 3168.1 \\ (89.4) \end{gathered}$ |
| Total | 119.4 | 29.5 | 114.8 | 59.5 | 540.5 | 899.4 | 329.5 | 522.8 | 690.8 | 213.1 | 19.4 | 3.2 | 3541.9 |
| Geese |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { OP } \\ & \% \end{aligned}$ | $\underset{(1.1)}{0.1}$ | $\begin{gathered} 0.7 \\ (4.3) \end{gathered}$ | $\begin{gathered} 0.3 \\ (3.1) \end{gathered}$ | $\begin{gathered} 0.5 \\ (12.8) \end{gathered}$ | $\begin{gathered} 4.6 .6 \\ (5.6) \end{gathered}$ | $\begin{gathered} 2.5 \\ (3.8) \end{gathered}$ | $\stackrel{4.3}{(3.2)}$ | $\begin{aligned} & 14.1 \\ & (9.7) \end{aligned}$ | $\begin{gathered} 9.9 \\ (8.5) \end{gathered}$ | $\underset{(2.1)}{0.3}$ | $\begin{gathered} \mathrm{Tr}_{\mathrm{r}} \\ (5.0) \end{gathered}$ | $\begin{gathered} \mathrm{Tr} \\ (6.7) \end{gathered}$ | $\begin{aligned} & 37.4 \\ & (6.3) \end{aligned}$ |
| $\begin{aligned} & \text { US } \\ & \text { \% } \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{gathered} \mathrm{Tr} \\ \mathrm{Tr} \end{gathered}$ | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{gathered} \mathrm{Tr} \\ (0.5) \end{gathered}$ | $\begin{gathered} 2.4 \\ (3.0) \end{gathered}$ | $\begin{gathered} 10.7 \\ (16.4) \end{gathered}$ | $\begin{gathered} 18.7 \\ (13.8) \end{gathered}$ | $\begin{gathered} 19.1 \\ (13.2) \end{gathered}$ | $\begin{gathered} 5.6 \\ (4.8) \end{gathered}$ | $\begin{aligned} & 12.3 \\ & (0.8) \end{aligned}$ | 0.0 0.0 | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | 56.6 （9．4） |
| Residents | $\begin{gathered} 11.3 \\ (98.9) \end{gathered}$ | $\begin{gathered} 14.7 \\ (95.7) \end{gathered}$ | $\begin{gathered} 7.9 \\ (96.9) \end{gathered}$ | $\begin{array}{r} 3.2 \\ (86.7) \end{array}$ | $\begin{aligned} & 75.0 \\ & (93.2) \end{aligned}$ | $\begin{gathered} 52.0 \\ (79.8) \end{gathered}$ | $\begin{aligned} & 112.2 \\ & (83.0) \end{aligned}$ | $\begin{aligned} & 111.8 \\ & (77.1) \end{aligned}$ | $\begin{aligned} & 100.5 \\ & (86.6) \end{aligned}$ | $\begin{gathered} 14.6 \\ (97.1) \end{gathered}$ | $\begin{gathered} 1.3 \\ (95.0) \end{gathered}$ | $\begin{gathered} 0.3 \\ (93.3) \end{gathered}$ | $\begin{aligned} & 504.9 \\ & (84.3) \end{aligned}$ |
| Total | 11.4 | 15.4 | 8.2 | 3.7 | 82.0 | 65.2 | 135.3 | 145.1 | 115.9 | 15.0 | 1.4 | 0.3 | 598.9 |

$\qquad$ Table 2
Annual variations in kill（in thousands）of ducks and geese by
CWS administrative region，1976－81，according to place of




そこときまも゚











ตัํํํํํํํํํ





をにただにだ

－ローのージ

Table 3
Average numbers of active and successful hunters, by place of
Average numbers of active and succ
residence and by province, 1976-81

| Hunters |  | Nfld. | PEI | NS | NB | Que. | Ont. | Man. | Sask. | Alta. | BC | YT | NWT | Total | \% Canadian total kill |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OP | Active | 180 | 378 | 416 | 441 | 2816 | 2110 | 1316 | 3583 | 4253 | 285 | 14 | 14 | 15806 | 4.1 |
|  | Success (1)* | 102 | 209 | 331 | 316 | 2302 | 1789 | 1113 | 2847 | 3462 | 186 | 14 | 14 | 12690 | 4.2 |
|  | Success (2) $\dagger$ | 42 | 190 | 86 | 117 | 796 | 555 | 730 | 2302 | 1833 | 89 | 3 | 4 | 6747 | 6.0 |
|  | \% (1) | 56.6 | 55.3 | 79.6 | 71.7 | 81.8 | 84.8 | 84.6 | 79.5 | 81.4 | 65.2 | 100 | 100 | 80.3 |  |
|  | \% (2) | 23.3 | 51.3 | 20.7 | 26.5 | 28.3 | 26.3 | 55.5 | 64.3 | 43.1 | 31.2 | 21.0 | 29.0 | 42.6 |  |
| US | Active | 7 | 3 | 21 | 88 | 569 | 7118 | 4952 | 4067 | 980 | 142 | 2 | 2 | 17971 | 4.6 |
|  | Success (1) | 7 | 3 | 21 | 50 | 407 | 6347 | 3782 | 3507 | 744 | 107 | 2 | 2 | 14979 | 4.9 |
|  | Success (2) | 0 | 3 | 0 | 7 | 292 | 1624 | 2676 | 2809 | 737 | 38 | 0 | 0 | 8186 | 7.3 |
|  | \% (1) | 100 | 100 | 100 | 62.5 | 71.5 | 89.2 | 76.4 | 86.2 | 75.9 | 75.4 | 100 | 100 | 83.4 |  |
|  | \% (2) | 0 | 100 | 0 | 8.0 | 51.3 | 22.8 | 54.0 | 69.1 | 75.2 | 26.5 | 0 | 0 | 45.6 |  |
| Res. |  | 21590 | $4664$ | 10546 | 8755 | 53174 | 104863 | 35378 | 41018 | 56355 | 17431 |  | 727 | 355002 | 91.3 |
|  | Success (1) | 14400 | 3285 | 8207 | 6808 | 43586 | 80250 | 25850 | 32757 | 45751 | 14069 | 367 | 567 | 275897 | 90.9 |
|  | Success (2) | 3144 | 2374 | 1977 | 929 | 14344 | 15548 | 19224 | 17967 | 17296 | 3857 | 90 | 124 | 96874 | 86.6 |
|  | \% (1) | 66.7 | 70.4 | 77.8 | 77.8 | 82.0 | 76.5 | 73.1 | 79.9 | 81.2 | 80.7 | 73.2 | 78.0 | 77.8 |  |
|  | \% (2) | 14.6 | 50.9 | 18.8 | 10.6 | 27.0 | 14.8 | 54.6 | 43.8 | 30.7 | 22.1 | 18.0 | 17.0 | 27.5 |  |
| Total | Active | 21777 | 5045 | 10983 | 9284 | 56559 | 114091 | 41646 | 48668 | 61585 | 17858 | 517 | 743 | 388769 |  |
|  | Success (1) | 14509 | 3497 | 8559 | 7174 | 46295 | 88386 | 30745 | 39111 | 49957 | 14362 | 383. | 586 | 303564 |  |
|  | Success (2) | 3186 | 2567 | 2063 | 1053 | 15432 | 17727 | 22630 | 23078 | 19866 | 3984 | 93 | 128 | 111807 |  |
|  | \% (1) | 66.6 | 69.3 | 77.9 | 77.3 | 81.9 | 77.5 | 73.8 | 80.4 | 81.1 | 80.4 | 74.1 | 78.9 | 78.1 |  |
|  | \% (2) | 14.6 | 50.9 | 18.8 | 11.3 | 27.3 | 15.5 | 54.5 | 48.7 | 39.8 | 22.3 | 18.0 | 17.2 | 28.9 |  |

$\begin{aligned} *(1) & =\text { successful duck hunters. } \\ t(2) & =\text { successful goose hunters. }\end{aligned}$
Table 4
Annual variation in numbers of successful duck and goose hunters by region, 1976-81, according to place of residence

|  | Allantic |  |  |  | Quebec |  |  |  | Ontario |  |  |  | Western and Northern |  |  |  | Pacific and Yukon |  |  |  | Canada |  |  |  | OP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | OP | us | Res. | Total | \% |


| 1976 | 1002 | 92 | 30138 | 31232 | 1746 | 414 | 42934 | 45094 | 2467 | 6832 | 76664 | 85963 | 11020 | 8782 | 117460 | 137262 | 161 | 86 | 14102 | 14349 | 16396 | 16206 | 281298 | 313900 | 5.2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1977 | 973 | 129 | 35523 | 36625 | 2138 | 405 | 46119 | 4866 | 1380 | 6297 | 84539 | 92216 | 7107 | 7268 | 109760 | 124235 | 197 | 101 | 16091 | 16389 | 11795 | 14200 | 292032 | 318027 | 3.7 | 4.5 |
| 1978 | 757 | 89 | 37808 | 3654 | 1692 | 376 | 45031 | 47099 | 1822 | 6711 | 86114 | 9464 | 6782 | 7937 | 113179 | 127898 | 74 | 132 | 14541 | 14747 | 11127 | 15245 | 296673 | 323045 | 3.4 | 4.7 |
| 1979 | 975 | 44 | 30510 | 31529 | 2126 | 420 | 40791 | 43337 | 1498 | 6405 | 78608 | 86511 | 7354 | 7876 | 107407 | 122279 | 190 | 112 | 13896 | 14198 | 12143 | 14859 | 270852 | 297854 | 4.1 | . 0 |
| 1980 | 793 | 64 | 31545 | 32402 | 2872 | 439 | 45116 | 48427 | 1557 | 6278 | 80717 | 8855 | 6141 | 8051 | 103444 | 117032 | 135 | 96 | 14061 | 14292 | 11498 | 14928 | 274:883 | 301309 | 3.8 |  |
| 1981 | 1243 | 69 | 30685 | 31997 | 3235 | 389 | 41526 | 45 is0 | 2010 | 5559 | 7485 | 82424 | 6218 | 8294 | 7857 | 93086 | 443 | 129 | 13921 | 14493 | 13149 | 14440 | 239561 | 267150 | 4.9 |  |
| M | 957 | 81 | 32702 | 33740 | 2302 | 407 | 4358 | 46295 | 1789 | 6347 | 80250 | 88386 | 7436 | 8036 | 104927 | 120399 | 200 | 109 | 14436 | 14745 | 12684 | 14980 | 275;880 | 303,544 | 4.2 |  |
| \% | 2.8 | 0.2 | 96.9 |  | 5.0 | 0.9 | 94.1 |  | 2.0 | 7.2 | 90.8 |  | 6.2 | 6.7 | 87.2 |  | 1.3 | 0.8 |  |  | 4.2 | 4.9 | 90.9 |  |  |  |
| \% NR* |  |  |  |  |  | 5. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| 1976 | 474 | 25 | 8271 | 8770 | 485 | 262 | 9290 | 10037 | 646 | 1622 | 9662 | 11930 | 6075 | 6156 | 52891 | 65127 | 124 | 31 | 2937 | 3092 | 7804 | 8096 | 73761 | 89661 | 8.7 | 9.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1977 | 545 | 11 | 8812 | 9368 | 758 | 382 | 12387 | 13527 | 434 | 1533 | 17509 | 19476 | 3962 | 5757 | 45115 | 57834 | 77 | 26 | 2900 | 3003 | 5778 | 7709 | 89723 | 103210 | $5: 4$ | 7.5 |
| 1978 | 357 | 7 | 9002 | 9366 | 731 | 260 | 18828 | 19819 | 485 | 1540 | 14297 | 16322 | 4738 | 5904 | 54929 | 65971 | 5 | 47 | 3790 | 3842 | 6311 | 7758 | 100.846 | 114915 | 5.5 | 6.8 |
| 1979 | 249 | 3 | 7752 | 8004 | 837 | 302 | 15631 | 16770 | 577 | 2192 | 17594 | 20363 | 5171 | 5718 | 61895 | 72784 | 76 | 31 | 3941 | 4048 | 6910 | 8246 | 106813 | 121969 | 5.7 | 6.8 |
| 1980 | 356 | 7 | 8985 | 9348 | 1145 | 360 | 19040 | 20545 | 728 | 1557 | 19929 | 22214 | 4307 | 6800 | 59096 | 90203 | 98 | 31 | 4929 | 5058 | 6634 | 8755. | 111979 | 127368 | 5.2 | 6.9 |
| 1981 | 638 | 7 | 7716 | 8361 | 817 | 186 | 10889 | 11892 | 459 | 1300 | 14296 | 16055 | 4957 | 7000 | 51185 | 63142 | 171 | 59 | 5203 | 5433 | 7042 | 8552 | 89289 | 104883 | 6.7 | 8.2 |
| M | 437 | 10 | 8423 | 8870 | 796 | 292 | 1434 | 15432 | 555 | 1624 | 15948 | 17727 | 4867 | 6223 | 54611 | 65702 | 92 | 38 | 3947 | 4077 | 6747 | 8187 | 96874 | 111808 | 6.0 | 7.3 |
| \% | 4.9 | Trt | 95.0 |  | 5.2 | 1.9 | 91.6 |  | 3.1 | 9.2 | 87.7 |  | 7.4 | 9.5 | 83.1 |  | 2.3 | 0.9 | 96.8 |  | 6.0 | 7.3 | 86.6 |  |  |  |
| \% NR. |  | 5.0 |  |  |  | 7. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

* $\mathrm{NR}=$ non-
$\dagger \mathrm{Tr}=$ trace.


Table 7
verage kill of ducks and geese per season by active and
successful hunters by place of residence, 1976-81

| Province | Quebec |  | Ontario |  |  | Manitoba |  | Saskatchewan |  |  | Alberta |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Zone | 01 | 02 | 01 | 02 | 03 | 01 | 02 | 01 | 02 | 03 | 01 | 02 |  |
| Ducks/active <br> hunter |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OP | 9.7 | 7.3 | 17.4 | 9.4 | 10.0 | 11.5 | 8.5 | 8.8 | 17.5 | 12.9 | 7.4 | 13.1 |  |
| US | 8.0 | 3.6 | 19.9 | 7.9 | 11.1 | 12.0 | 13.6 | 8.7 | 15.1 | 16.8 | 8.1 | 13.5 | 12.8 |
| Resident | 10.5 | 8.8 | 7.6 | 7.1 | 6.7 | 6.7 | 9.0 | 9.5 | 14.1 | 11.9 | 9.0 | 13.0 | 9.2 |
| Ducks/ <br> successful <br> hunter |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OP | 12.1 | 9.9 | 18.4 | 10.8 | 12.1 | 13.6 | 9.5 | 12.3 | 19.1 | 14.1 | 10.1 | 14.7 | 12.9 |
| US | 10.2 | 6.4 | 21.0 | 9.8 | 13.6 | 13.7 | 15.0 | 11.4 | 17.1 | 16.7 | 10.6 | 16.5 | 15.0 |
| Resident | 12.6 | 10.9 | 10.4 | 9.5 | 8.8 | 9.8 | 11.5 | 12.3 | 16.5 | 13.8 | 11.7 | 15.1 | 11.6 |
| Geese/active <br> hunter |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OP | 0.9 | 2.5 | 2.7 | 1.0 | 0.04 | 2.3 | 3.2 |  | 2.6 | 2.4 | 2.8 | 1.0 | 3.2 |
| US | 2.2 | 6.6 | 1.5 | 0.2 | 1.8 | 3.7 | 2.6 | 6.0 3.5 | 2.4 1.4 | 2.4 2.0 | 7.0 2.4 | 3.1 1.2 | 3.0 1.4 |
| Resident | 1.4 | 1.3 | 0.5 | 0.4 | 0.8 | 2.9 | 2.7 | 3.5 | 1.4 | 2.0 | 2.4 |  |  |
| Geese/ <br> successful <br> hunter |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OP | 3.6 | 5.6 | 8.4 | 4.2 2.8 | 8.0 | 4.2 | 5.1 | 6.2 7.9 | 4.9 | 5.0 | 7.9 | 7.3 | 6.5 |
| US | 6.4 5.3 | 8.7 4.8 | 5.4 3.0 | 2.8 3.0 | 8.4 4.7 | 4.2 | 5.5 3.5 | 4.5 | 4.9 5 | 5.5 | 5.8 | 5.0 | 5.2 |

Table 8
Table 8
Kill of waterfowl in areas of concentration of non-resident

| Area | Year | Kill of ducks |  |  |  |  |  | Kill of geese |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OP | \% | US | \% | Res. | \% | OP | \% | US | \% | Res. | \% |
| 1 | 1976 | 2103 | 15.6 | 0 | - | 11416 | 84.4 | 14 | 1.9 | 0 | - | 714 | 98.1 |
|  | 1979 | 3133 | 24.8 | 14 | Tr | 9466 | 75.0 | 17 | 2.4 | 2 | Tr | 700 | 97.5 |
|  | 1981 | 3590 | 22.6 | 35 | Tr | 12246 | 77.3 | 491 | 41.0 | 0 | - | 708 | 59.0 |
| 2 | 1976 | 21366 | 12.8 | ${ }^{7} 1360$ | 0.8 | 144309 |  | 722 | 11.8 | 0 | - | 5432 | 88.9 |
|  | $1979$ | 16875 | 11.4 | 2442 | 1.7 | 128149 | 86.9 | 2451 | 19.1 | 0 | - | 10382 | 80.9 |
|  | 1981 | 18525 | 12.1 | 1650 | 1.1 | 133060 | 86.8 | 1650 | 21.1 | 36 | TI | 5712 | 79.7 |
| 3 | 1976 | 5574 | 6.0 | 6228 | 6.7 | 80846 | 87.3 | 842 | 20.5 | 51 | 1.2 | 3224 | 78.3 |
|  | 1979 | 2998 | 3.9 | 9477 | 12.5 | 63410 | 83.6 | 435 | 11.5 | 318 | 21.8 | 2504 | 66.6 |
|  | 1981 | 23 | Tr* | 5554 | 10.2 | 48759 | 89.7 | 0 | - | 177 | 4.0 | 4285 | 96.0 |
| 4 | 1976 | 12247 | 10.6 | 59846 | 52.0 | 43110 | 37.4 | 997 | 13.9 | 4240 | 59.1 | 1937 | 27.0 |
|  | 1979 | 1280 | Tr | 42652 | 42.8 | 56766 | 56.9 | 23 | Tr | 4773 | 40.7 | 6919 | 59.1 |
|  | 1981 | 1251 | 0.3 | 42136 | 48.3 | 43835 | 50.3 | 23 | 0.4 | 2510 | 43.1 | 3268 | 56.2 |
| 5 | 1976 | 2402 | 5.3 | 37144 | 81.6 | 5995 | 13.2 | 89 | 13.5 | 315 | 48.0 | 253 | 38.5 |
|  | 1979 | 2282 | 4.2 | 32252 | 59.6 | 19608 | 36.2 | 225 | 8.8 | 773 | 30.4 | 1547 | 60.8 |
|  | 1981 | 1277 | 3.0 | 17747 | 41.6 | 23675 | 55.4 | 48 | 2.8 | 75 | 4.4 | 1567 | 92.7 |
| 6 | 1976 | 7696 | 7.9 | 13776 | 14.2 | 75694 | 77.9 | 2692 | 6.3 | 5520 | 12.9 | 34512 | 80.8 |
|  | 1979 | 1561 | 1.1 | 16904 | 12.0 | 121963 | 86.9 | 3284 | 3.1 | 11345 | 10.7 | 91606 | 86.2 |
|  | 1981 | 3575 | 3.2 | 21673 | 19.5 | 85908 | 77.3 | 2430 | 3.4 | 14744 | 20.8 | 53648 | 75.8 |
| 7 | 1976 | 8964 | 6.9 | 10934 | 8.4 | 110069 | 84.7 | 271 | 1.5 | 601 | 3.4 | 16952 | 95.1 |
|  | 1979 | 7397 | 6.8 | 20012 | 18.4 | 81168 | 74.8 | 1741 | 4.2 | 6325 | 15.3 | 33262 | 80.5 |
|  | 1981 | 5174 | 6.2 | 15330 | 18.3 | 63226 | 75.5 | 1723 | 4.0 | 11113 | 25.8 | 30177 | 70.2 |
| 8 | 1976 | 441 | 1.6 | 12912 | 45.7 | 13353 | 47.3 | 14 | Tr | 560 | 26.6 | 1529 | 72.7 |
|  | 1979 | 671 | 2.0 | 12988 | 40.2 | 18617 | 52.7 | 90 | 5.5 | 55 | 3.3 | 1510 | 91.2 |
|  | 1981 | 98 | 0.4 | 8256 | 35.3 | 16018 | 65.7 | 0 | - | 288 | 9.5 | 2756 | 90.5 |
| 9 | 1976 | 5962 | 12.6 | 5753 | 12.2 | 35481 | 75.2 | 354 | 9.6 | 238 | 7.3 | 3092 | 84.0 |
|  | 1979 | 298 | Tr | 8886 | 19.1 | 35061 | 80.2 | 0 |  | 1349 | 15.0 | 5607 | 85.0 |
|  | 1981 | 0 |  | 4288 | 33.4 | 8553 | 66.6 | 0 | - | 1014 | 31.8 | 2178 | 69.2 |
| 10 | 1976 | 10191 | 5.9 | 23119 | 13.4 | 139530 | 80.7 | 1507 | 6.0 | 3173 | 12.6 | 20547 | 81.5 |
|  | 1979 | 12465 | 7.9 | 23224 | 14.7 | 121903 | 77.4 | 4279 | 12.9 | 3868 | 11.6 | 25127 | 75.5 |
|  | 1981 | 7473 | 11.6 | 7052 | 10.9 | 50062 | 77.5 | 2875 | 10.0 | 1785 | 6.2 | 24189 | 83.9 |
| 11 | 1976 | 19889 | 16.9 | 23312 | 19.8 | 74516 | 63.3 | 12930 | 18.4 | 12383 | 17.6 | 44948 | 64.0 |
|  | 1979 | 3525 | 8.0 | 6736 | 15.9 | 32024 | 75.7 | 5276 | 9.7 | 9612 | 17.7 | 39487 | 72.6 |
|  | 1981 | 4629 | 13.7 | 5968 | 17.7 | 23086 | 68.5 | 8144 | 15.2 | 11570 | 21.6 | 33814 | 63.2 |
| 12 | 1976 | 9173 | 11.7 | 8289 | 10.6 | 61016 | 77.8 | 3679 | 11.4 | 4953 | 15.4 | 23570 | 73.2 |
|  | 1979 | 5590 | 10.4 | 4392 | 8.2 | 43538 | 81.4 | 1510 | 5.8 | 3176 | 12.2 | 21288 | 82.0 |
|  | 1981 | 2899 | 8.0 | 3616 | 10.0 | 36318 | 82.0 | 2479 | 9.0 | 2794 | 10.0 | 22446 | 81.0 |
| 13 | 1976 | 20225 | 8.6 | 1089 | 0.5 | 213028 | 90.9 | 1601 | 4.5 | 836 | 2.3 | 33199 | 93.2 |
|  | 1979 | 11472 | 6.1 | 736 | Tr | 176346 | 93.5 | 1546 | 4.7 | 557 | 1.7 | 30674 | 93.6 |
|  | 1981 | 9910 | 5.2 | 4006 | 2.1 | 177501 | 92.7 | 4855 | 10.3 | 786 | 1.7 | 41313 | 88.0 |
| 14 | 1976 | 12521 | 21.5 | 136 | Tr | 45666 | 78.3 | 3052 | 41.5 | 122 | 1.7 | 4175 | 56.8 |
|  | 1979 | 12116 | 21.8 | 763 | 1.4 | 42670 | 76.8 | 2256 | 14.9 | 740 | 4.8 | 12187 | 80.3 |
|  | 1981 | 5998 | 15.1 | 1892 | 4.8 | 31918 | 80.1 | 2674 | 14.6 | 371 | 2.0 | 15311 | 83.4 |
| Total | 1976 | 138754 | 9.9 | 203898 | 14.6 | 1054029 | 75.5 | 28764 | 10.8 | 32992 | 12.4 | 204490 | 76.8 |
|  | 1979 | 80655 | 6.7 | 180928 | 14.9 | 950689 | 78.4 | 23133 | 6.6 | 43393 | 12.4 | 282800 | 81.0 |
|  | 1981 | 64422 | 6.5 | 139203 | 14.1 | 784165 | 79.4 | 27392 | 9.1 | 47263 | 15.7 | 266061 | 75.2 |
| Change | 76-79 | -58099 | -41.9 | -21970 | -10.8 | -103 340 | -9.8 | -5631 | -19.6 | 10401 | 31.5 | 78310 | 38.3 |
|  | 76-81 | -74 332 | -53.6 | 64695 | -31.7 | -269 864 | -25.6 | -1372 | -4.8 | 14271 | 43.3 | 21571 | 10.6 |

Table 9
Average kill (in thousands) of ducks by US hunters in
Canada, 1976-81, according to state of residence and pro vince of kill where their kill exceeds 1000 ducks

| State of residence | Province of kill |  |  |  |  |  | Total | \% US kill <br> in Canada |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Que. | Ont. | Man. | Sask. | Alta. | BC |  |  |
| California | Tr* | 0.1 | 0.1 | 0.8 | 0.7 | 0.2 | 1.9 | 0.9 |
| Iowa | Tr | 1.4 | 1.7 | 2.0 | 0.4 | - | 5.4 | 2.5 |
| Illinois | Tr | 2.9 | 3.3 | 2.2 | 0.2 | - | 8.5 | 3.9 |
| Indiana | 0.1 | 1.0 | 1.1 | 0.8 | 0.1 | - | 3.1 | 1.4 |
| Michigan | 0.1 | 50.8 | 5.6 | 4.5 | 0.2 | Tr | 61.3 | 28.0 |
| Minnesota | Tr | 25.1 | 22.2 | 20.0 | 2.6 | Tr | 69.9 | 32.0 |
| Montana | - | - | 0.1 | 0.2 | 0.9 | - | 1.2 | 0.5 |
| North Dakota | - | 0.2 | 1.0 | 0.7 | - | - | 1.9 | 0.9 |
| New York | 1.3 | 8.0 | 0.1 | 0.3 | - | - | 9.7 | 4.4 |
| Ohio | 0.5 | 6.9 | 0.2 | 2.3 | Tr | Tr | 9.9 | 4.5 |
| Pennsylvania | 0.1 | 2.0 | 0.3 | 0.8 | Tr | - | 3.2 | 1.5 |
| Washington | Tr | - | 0.1 | 0.3 | 1.5 | 0.6 | 2.5 | 1.1 |
| Wisconsin | Tr | 3.5 | 11.9 | 12.2 | 1.1 |  | 28.8 | 13.2 |
| Others | 1.6 | 2.0 | 1.3 | 3.2 | 2.1 | 0.3 | 11.3 | 5.2 |
| Total | 3.7 | 104.0 | 49.0 | 50.5 | 9.8 | 1.1 | 218.5 | - |

Table 10
verage kill (in thousands) of geese by US hunters in
Canada, 1976-81, according to state of residence and pro
vince of kill where their kill exceeds 500 geese

| State of residence | Province of kill |  |  |  |  | Total | \% US kill in Canada |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Que. | Ont. | Man. | Sask. | Alta. |  |  |
| California | 0.1 | Tr | Tr | 0.3 | 0.1 | 0.6 | 1.0 |
| Florida | Tr* | 0.2 | 0.1 | 0.2 | 0.1 | 0.6 | 1.0 |
| Iowa | - | 0.2 | 0.9 | 0.6 | 0.1 | 1.7 | 3.0 |
| Illinois | Tr | 0.4 | 1.2 | 0.3 | Tr | 1.9 | 3.0 |
| Indiana |  | 0.1 | 0.5 | 0.5 | Tr | 1.1 | 2.0 |
| Michigan | 0.1 | 5.4 | 1.5 | 1.5 | Tr | 8.6 | 15.0 |
| Minnesota | Tr | 1.1 | 10.9 | 11.7 | 1.9 | 25.6 | 45.0 |
| Montana |  |  | 0.1 | 0.9 | 1.0 | 2.0 | 3.0 |
| North Dakota | - | $\mathrm{Tr}_{\text {r }}$ | 1.1 | 0.2 | - | 1.3 | 2.0 |
| New York | 0.7 | 0.6 | - | - | - | 1.2 | 2.0 |
| Ohio | 0.2 | 0.8 | Tr | 0.3 | Tr | 1.4 | 2.0 |
| Pennsylvania | 0.1 | 0.4 | Tr | 0.1 | - | 0.6 | 1.0 |
| Washington | - | - | Tr | 0.2 | 0.8 | 1.1 | 2.0 |
| Wisconsin | - | 0.4 | 2.2 | 1.4 | 0.5 | 4.4 | 8.0 |
| Others | 1.4 | 1.0 | 0.2 | 0.9 | 1.2 | 4.0 | 8.0 |
| Total | 2.7 | 10.7 | 18.7 | 19.1 | 5.6 | 56.6 | 98.0 |

Average kill of ducks by OP hunters according to province of
residence and province of kill, 1976-81

| Province of residence | Province of kill |  |  |  |  |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nfid. | PEI | NS | NB | Que. | Ont. | Man. | Sask. | Alta. | BC | NWT | YT |  |
| Nfld. | - | 101 | 188 | 3 | 1010 | 104 | 29 | 94 | - | - | - | - | 1529 |
| PEI | 22 |  | 128 | 312 |  | - | 4 | 37 | - | - | - | - | 503 |
| NS | 36 | 868 |  | 1956 | 6 | 55 | 2 | 187 | 227 | - | - | - | 3337 |
| NB | 42 | 699 | 2758 | - | 1385 | 108 | 49 | 92 | 152 | - | - | - | 5285 |
| Que. | 481 | 62 | 194 | 333 | - | 17217 | 26 | 523 | 1379 | - | 9 | - | 20224 |
| Ont. | 10 | 41 | 645 | 64 | 19780 | - | 8440 | 8812 | 4858 | 102 | 240 | - | 42992 |
| Man. | 26 | - | - | - | 96 | 1487 | - | 3886 | 418 | 62 | 51 | - | 6026 |
| Sask. | - | - | - | - | 866 | 582 | 2804 | - | 3908 | 256 | 11 | - | 8427 |
| Alta. | - | - | - | - | 372 | 616 | 395 | 10421 | - | 1841 | 15 | 16 | 13676 |
| BC | - | - |  |  |  | 34 | 951 | 8980 | 26538 |  | - | 17 | 36920 |
| NWT | - | - | - | - | - | 3 | 19 | 318 | 1581 | 3 | - | 32 | 1956 |
| YT | - | - | - | - | - | - | 2 | 53 | 254 | 52 | 47 | - | 408 |
| Est. total* | 617 | 1771 | 3913 | 2668 | 23515 | 20206 | 12721 | 33403 | 39315 | 2316 | 373 | 65 | 140883 |
| NHS total | 626 | 2034 | 3954 | 2954 | 24867 | 21705 | 13738 | 37589 | 43895 | 2387 | 421 | 77 | 155247 |

Estimates of kill by province of kill subject to error (see text)

| Province of residence | Province of kill |  |  |  |  |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nfld. | PEI | NS | NB | Que. | Ont. | Man. | Sask. | Alta. | BC | NWT | YT |  |
| Nfld. | - | 88 | - | - | 418 | 140 | - | - | - | - | - | - | 646 |
| PEI | - | - | 46 | 125 | - | - | 11 | - | - | - | - | - | 171 |
| NS | 4 | 278 | - | 80 | 2 | 6 | 5 | 48 | 97 | - | - | - | 520 |
| NB | - | 168 | 117 | - | 419 | 143 | 34 | - | 50 | - | - | - | 931 |
| Que. | 106 | 40 | 32 | 147 | - | 1790 | 143 | 161 | 77 | - | 45 | - | 2541 |
| Ont. | - | 38 | 39 | 40 | 3507 | - | 2707 | 2240 | 809 | - | 22 | - | 9402 |
| Man. | - | - | - | - | 65 | 148 | - | 2492 | 131 | - |  | - | 2836 |
| Sask. | - | - | - | - | 80 | 70 | 450 | - | 1803 | 101 | - | - | 2504 |
| Alta. | - | - | - | - | 50 | 160 | 407 | 3896 | - | 200 | 3 | 13 | 4729 |
| BC | - | - | - | - |  | 10 | 404 | 3636 | 4958 |  | - | 10 | 9018 |
| NWT | - | - | - | - | - | - | 121 | 136 | 965 | 2 | - | - | 1224 |
| YT |  |  | - | - | - | - |  | 25 | 82 | - | - | - | 107 |
| Est. total ${ }^{*}$ | 110 | 612 | 234 | 392 | 4541 | 2467 | 4282 | 12634 | 8972 | 303 | 70 | 23 | 34629 |
| NHS total | 127 | 711 | 253 | 473 | 4597 | 2493 | 4322 | 14133 | 9888 | 315 | 70 | 23 | 37405 |

*Estimates of kill by province of kill subject to error (see text)
Average kill of geese by OP hunters according to province o esidence and province of

Table 13
Table 13
Kill (in thousands) of ducks and geese by US hunters in Canada,

| State | Ducks |  |  |  |  |  | Geese |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Province of kill |  |  |  |  | $\begin{array}{r} \text { Kill in } \\ \text { resident } \\ \text { state } \end{array}$ | Province of kill |  |  |  |  | Kill inresidentstate |
|  | Ont. | Man. | Sask. | Other | Total |  | Ont. | Man. | Sask. | Other | Total |  |
| Michigan |  |  |  |  |  |  |  |  |  |  |  |  |
| 1976 | 68.7 | 1.6 | 4.3 | 0.1 | 74.7 | 455.8 | 6.2 | 0.3 | 0.9 | 0.2 | 7.6 | 26.9 |
| 1977 | 46.9 | 2.9 | 1.7 | 0.1 | 52.2 | 243.1 | 3.6 | 0.3 | 0.7 | 0.4 | 5.0 | 30.7 |
| 1978 | 49.7 | 6.0 | 8.2 | 0.3 | 64.2 | 277.8 | 5.7 | 1.1 | 3.2 | 0.2 | 10.2 | 22.7 |
| 1979 | 49.1 | 7.8 | 8.3 | 0.3 | 65.5 | 314.8 | 0.2 | 9.1 | 1.5 | 0.2 | 11.0 | 35.7 |
| 1980 | 44.6 | 5.5 | 2.2 | 0.5 | 52.8 | 292.1 | 4.5 | 0.5 | 1.7 | 0.1 | 6.8 | 34.5 |
| 1981 | 45.8 | 9.7 | 2.1 | 0.9 | 58.5 | 238.7 | 4.0 | 6.2 | 0.9 | 0.1 | 11.2 | 32.0 |
| Wisconsin |  |  |  |  |  |  |  |  |  |  |  |  |
| 1976 | 4.0 | 11.3 | 23.1 | 1.1 | 39.5 | 637.4 | 1.0 | 1.1 | 1.6 | 0.5 | 4.2 | 46.5 |
| 1977 | 2.5 | 9.2 | 11.3 | 0.5 | 23.5 | 471.1 | 0.2 | 1.6 | 1.2 | Tr* | 3.0 | 87.7 |
| 1978 | 3.4 | 12.4 | 12.6 | 1.6 | 30.0 | 513.3 | 0.4 | 1.8 | 1.2 | 0.5 | 3.9 | 86.1 |
| 1979 | 3.1 | 14.2 | 11.0 | 1.8 | 30.1 | 568.9 | 0.3 | 2.8 | 1.2 | Tr | 4.3 | 66.2 |
| 1980 | 5.9 | 9.7 | 9.1 | 0.8 | 25.5 | 558.2 | 0.3 | 2.3 | 1.7 | 0.5 | 4.8 | 64.8 |
| 1981 | 2.1 | 14.3 | 6.2 | 2.7 | 25.3 | 438.9 | 0.2 | 3.8 | 1.3 | 0.2 | 5.5 | 46.6 |
| Minnesota |  |  |  |  |  |  |  |  |  |  |  |  |
| 1976 | 30.9 | 23.7 | 30.4 | 3.9 | 88.9 | 612.0 | 0.2 | 5.3 | 12.9 | 2.4 | 20.8 | 63.6 |
| 1977 | 24.9 | 18.5 | 17.4 | 3.4 | 64.2 | 686.5 | 1.9 | 5.1 | 14.2 | 1.7 | 22.9 | 57.7 |
| 1978 | 30.5 | 17.3 | 15.0 | 2.3 | 65.1 | 109.7 | 1.6 | 5.7 | 9.3 | 1.6 | 18.2 | 71.6 |
| 1979 | 27.0 | 22.7 | 21.9 | 3.9 | 75.5 | 1104.1 | 1.5 | 11.3 | 9.5 | 1.1 | 24.8 | 99.1 |
| 1980 | 17.0 | 26.3 | 20.6 | 2.0 | 65.9 | 811.5 | 0.8 | 21.4 | 11.6 | 1.9 | 35.7 | 79.6 |
| 1981 | 19.5 | 24.5 | 14.6 | 1.3 | 59.9 | 806.5 | 0.8 | 16.9 | 12.5 | 1.2 | 31.4 | 93.0 |



Figure 3
Areas of concentration of non-resident hunters



