$3610604 E$

Canadian Wildlife Service
Progress Notes contain timely data and conclusions
and are presented as a service to other wildlife
and are presented as a
biologists and agencies.

Converting PIROP counts of seabirds at sea to absolute densities
A.W. Diamond ${ }^{\prime}$, A.J. Gaston ${ }^{1}$, and R.G.B. Brown ${ }^{2}$

Introduction

Seabirds have been counted at sea off eastern and arctic Canada since 1969 under the Programme Integré de Recherches sur les Oiseaux Pélagiques (PIROP) (Brown et al. 1975, Brown 1986). The PIROP data base was designed for records gathered by many different observers, often volunteers, some therefore kept uncomplicated. All birds observed in a $10-\mathrm{min}$ period were counted, irrespective of their distance from the observer. The counts were neither true belt transects, nor line transects, and thus could not be translated into estimates of density by simple multiplication or other techniques appropriate to line transects. The mapping purposes for which the PIROP system was designed do not require such density estimates, but they needed to be developed for use in a model to calculate energy demand by seabirds off eastern and arctic addresses this issue by comparing PIROP counts with densities estimated from population data. The method we use is not intended as an alternative to methods based on fixedwidth transects (e.g. Briggs and Hụnt 1981, Burnham et al. 1980, Powers 1982, Tasker et al. 1984, Wiens et al. 1978) which are obviously more appropriate when estimates of absolute density are required; rather, it is designed to address the specific characteristics of the PIROP data base.

Objectives

(i) For selected species: to compare the densities estimated from known population sizes in different areas with the number of bird
(ii) For all species observed: to generate a factor for converting PIROP counts to absolute densities based on the findings of (i).
(iii) For comparable species: to generate conversion factor for species that do not breed in eastern or Arctic Canada and (ii) and (ii).

Methods

The areas under study are the "southern" areas, which include the Gulf of St. Lawrence, east and south of Newfoundland and southern Labrador, and the "northern" area, Lancaste Sound. In each of these areas, the seabird colonies are closer each area can be considered to be outside the normal feedin
\qquad 'CWS, Otawa, Ont. K1A 0E7.
CWS, Bedford Insiture of Oceanography, Dartmouth, NS B2Y 4A2.
range of a bird that breeds in a colony in either of the other areas. Minor exceptions in Lancaster Sound are covered in the relevant species accounts. Figures 1 and 2 show the precise sea areas and the distribution of major seabird colonies within each. The whole of the Gulf of St. Lawrence is included (as far up-river as longitude $70^{\circ} \mathrm{W}$); colonies are scatered around the perimeter and on islands within it, and most of the sea area least one colony. No point in the Gulf is more than 100 km from a seabird colony; to ensure that the sea areas covered are as closely comparable as possible, those off the coasts as closely comparable as possible, those off the coasts
of Newfoundland and Labrador were chosen to be within 100 km of a major colony. The Lancaster Sound survey area is bordered north and south by coastlines $70-100 \mathrm{~km}$ apart. The east and west limits were chosen to include the estimated feeding ranges of major seabird colonies within Lancaster Sound, including Coburg Island (at the east end of Jones colonies on eastern Baffin Island and northwest Greenland Jones Sound colonies other than Coburg Island were not in cluded because there are no PIROP counts from there. Each of the study areas was defined in terms of the appropriate grid unit ($1^{\circ} \mathrm{W}$ by ${ }_{2}^{2} \mathrm{~N} \mathrm{~N}$); any such unit of which a part fell within 100 km of a major colony was included in the analysis. Areas were determined by planimeter from a $1: 2000000 \mathrm{map}$.

Time of year

In this study we are tabulating the characteristics of the data collected over all 12 months of the year. For the calculation of the conversion factor we selected data collected in July for the three southern areas as large PIROP samples were avair-
able for that month. The activities of both breeders and nonbreeders in July are most likely to be centred on the colony thus their distribution is more concentrated within the study areas than in any other month. In Lancaster Sound the counts were made in August, as ice cover inhibited the number of counts in July. The data set that we used from the PIROP data base covered the years 1969-83 inclusive.

Species selected

We selected species that fed regularly at least 10 km from the coast, and for which reliable population data are available, as few counts were made closer inshore. Gulls (Laridae) and cormorants (Phalacrocoracidae) are thus excluded. Black Guillemots Cepphus grylle and Arctic Terns Sterna paradisaea qualify but were so rarely recorded on PIROP counts that conversion factors could not be calculated. No further details are given for these two species.

Population sizes
Breeding populations are given by Nettleship (1980) and, for Baccalieu Island, by Montevecchi and Tuck (in press). In addition to breeding birds, substantial numbers of nonbreeders attend seabird colonies during the breeding season. Most seabirds come to land rarely or not at all in their 1st year
after fledging, and their attendance at the colony then after fledging, and their attendance at the colony then

Figure 1
Map of three southern study areas

increases until they attain breeding age, often at 5 or more years old. Thus the numbers of pre-breeding birds can actually rival those of breeders. Non-breeders are rarely counted at colonies; their numbers usually have to be estimated from life-table data, adjusted to take into account the increasing tendency, with age, to occur at or close to the colony daring he breeding seaso. To derive the population sizes se nate estimates are therefore necessary for
defined in relation to age-class cohorts rather than to geographical distribution
wo proportion of each pre-breeding age-class which would be expected to be found within the study areas at Data for (a) require the construction of a life-table. The relevant data are chiefly those on adult survival, breeding success, age of first breeding, and attendance patterns. Thes data can be obtained partly from banding returns of birds

Figure 2
Map of Lancaster Sound study area

- $=$ breeding colony [from Nettleship (1980)]
$\%=$ important concentration area for seabirds

In late summer [Davis et al.(1974)]
marked at colonies (either as young or as breeding adults) and artly from studies at the colony itself. Band return data alone may not give reliable estimates of age-specific survival rate methods for estimating survival of pre-breeding age-classes. We used the highest available measure of the annual surviva of breeders (since most methods underestimate adult surviva to some extent), derived where possible from the return of marked birds to breeding colonies in later years, rather than fom recoveries of dead birds. We obtained measures of st-year survival from band recoveries (where available), as
re are no alenaive sources.
In a stable population, adult mortality is equivalent to re which , hey first breed and the 1st-year survival applied io he cohort of fledgelings (estimated from measures of clutch size and breeding success) gives the number of birds entering heir 2nd year. Survival of intermediate age-classes is assumed to be constant over those age-classes, and to lie between 1st-year and adult survival, and is calculated by imple interpolation (see gannet account). If there are no suitable band recovery data for 1 st -year birds, their surviva
is taken to be equal to that of older immatures and calculated by interpolation between the numbers fledging and the expected number of recruits
The expected proportion of pre-breeding birds from each age-class (b) was estimated from both attendance patterns and banding returns. Attendance patterns refer only to birds coming ashore, rather than to all those occurring within the forto supplement and interpret observations of attendance at colonies. Both sources of data are biased, usually involve small samples, and in some cases are missing altogether. The total population within the study area (TPA) can be expressed as follows:

$$
\text { TPA }=\Sigma\left(N_{i} * p_{i}\right)
$$

where $\mathrm{N}_{\mathrm{i}}=$ number in $\mathrm{i}^{\text {th }}$ cohort
$i=b$ for breeders (so $N_{b}=$ breeding population BP) $i=f_{b}$ for failed breeders
$\mathrm{p}_{\mathrm{i}}=$ proportion of cohort present in area (for breeders, $p_{b}=1$)

If N_{i} is expressed in terms of the breeding population, i.e.

$$
\mathrm{N}_{\mathrm{i}}=\mathrm{BP} * \mathrm{x}_{\mathrm{i}}
$$

where x_{i} is the size of the $i^{\text {th }}$ cohort as a proportion of BP (so that for breeders, $x_{b}=1$), the

$$
\begin{equation*}
\mathrm{TPA}=\mathrm{BP}\left[1+\Sigma\left(\mathrm{x}_{\mathrm{i}} * \mathrm{p}_{\mathrm{i}}\right)\right] \tag{1}
\end{equation*}
$$

Failed breeders (in this context, breeders whose eggs do not hatch) are accounted for as follows. The breeding population during the chick stage is approximated by ($\mathrm{BP} * \mathrm{HS}$) where HS $=$ hatching success. The approximation is justified because many more pairs lose eggs than lose chicks. Most of the species covered in this study lay only one egg per breeding season; the exceptions are kittiwakes, which lay up to three,
and Black Guillemots, which lay one or two. The number of and
pairs that lose eggs are BP(I - HS); they are treated as a separate age-class, with the same time-budgets as the oldest non-breeders, and are assumed to remain within the study area throughout the month. This correction for failed modelling of those years in which breeding success can be much lowe than usual. In most species average values of hatching success affect only the second decimal place of the final conversion factor. This is largely because the time-budgets of failed breeders are treated as equivalent to those of the oldest class of non-breeders, which are very similar to those of breeders.

Populations at sea

PIROP counts can be considered to be random samples of the number of birds actually at sea at the time of the count, since
each count lasts only 10 min of the $16-\mathrm{h}$ day. Of the "total population in area" defined above, only a proportion will be available for counting at sea during the day. This "countable
population is determined by the size of each cohort multiplied by the proportion of the daylight hours that the average member of each cohort spends at sea. Separate estimates are necessary for breeders, non-breeders, and segments of the non-breeding population which are likely to have different patterns of attendance at the colony
The total "countable population" thus depends not only on the size of the breeding population but also on the size of the and the proportion of each cohort likely to occur in the area The general relationship between the "countable population" CP , the total population in the area TPA, and the breeding population BP (the form in which census results are usually expressed) can be summarized as follows:
Using the same notation as eq. [1], with the addition of $T_{i}=$ proportion of day spent at sea by members of the $i^{\text {ih }}$ cohort, the general equation is

$$
\begin{equation*}
C P=B P\left[T_{b}+\Sigma\left(x_{i} * T_{i} * p_{i}\right)\right] \tag{2}
\end{equation*}
$$

Making allowance for failed breeders (see above), this becomes:
$C P=B P *\left[H S * T_{b}+(1-H S) * T_{r b}+\Sigma\left(\mathrm{x}_{\mathrm{i}} * \mathrm{p}_{\mathrm{i}} * \mathrm{~T}_{\mathrm{i}}\right)\right] \quad$ 13]
The density figures obtained by using these conversion factors do not necessarily correspond with the total numbe of birds using a particular area, because the "countable popuThe "countable population" has deliberately been devised as an estimate of the number of birds at sea; therefore, outside the breeding season, the conversion factors given here can be used as presented. During the breeding season, in sea area within feeding range of a breeding colony, further conversion based on attendance patterns will be necessary to estimate th total population using a particular geographical area (TPA) sively to breeding birds; there are very few of these data fo Canadian populations, and none at all for non-breeders. Some extrapolations from European data therefore have to be mad for breeders. For non-breeders, a number of assumptions have to be made, sometimes on very little evidence.
In light of the above, eq. [1] can be expanded to:
TPA $=\mathrm{BP} * 1+\frac{\mathrm{Y} * \mathrm{~S}_{1}}{2} *\left\{\mathrm{p}_{\mathrm{i}}+\sum_{\mathrm{i}=2}^{\mathrm{A}-1}\left(\mathrm{~S}_{\mathrm{nb}}{ }^{\mathrm{i}-1} * \mathrm{p}_{\mathrm{i}}\right)\right\} \quad[4]$
where $\mathrm{Y}=$ number of fledgelings per pair,
$\mathbf{S}_{\mathbf{1}}=$ survival from fledging to 1 year old,
$\begin{aligned} \mathrm{S}_{1} & =\text { survival from fledging to } 1 \text { year old } \\ \mathrm{S}_{\mathrm{nb}} & =\text { survival of older non-breeders, }\end{aligned}$
$\begin{aligned} & \text { nb } \\ & i=\text { age of cohort }(2=2 n d y e a r, ~ e t c .), ~\end{aligned}$
$\mathrm{A}=$ age at first breeding.
The relationship between CP and TPA is assumed to be identical to that between the density of birds actually at sea
(D) and the density of birds using the same area during the day (i.e. birds currently on the colony are assumed to distribute themselves at sea in the same way as thoṣe observed).

Table 1a
Categories of the ship's activity recorded during watch (\% in each category)

Activity (PIROP Code)																			
No data (0)	19	0	16	18	1	20	0	23	0	18	0	7	30	7	30	14	44	3	0
Non-fishing (1)	73	100	80	74	99	72	100	72	100	71	100	85	61	85	61	78	56	69	100
Major fishing (2)	4	0	3	1	0	6	0	2	0	4	0	3	6	3	6	6	0	7	0
Between fish stations (3)	3	0	2	6	0	1	0	2	0	7	0	5	2	5	2	2	0	21	0
Anchored (7, 8)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other (9)	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Hence, $D^{\prime}=D * C_{b}$, where D^{\prime} is the total number of bird using a unit area during 1 day and $C_{b}=$ TPA/CP. Substituting in eq. [4];
$C_{b}=\frac{1+\left\{\frac{Y * S_{1}}{2} *\left[P+\sum_{i=2}^{1-1}\left(S_{n b^{\prime}}{ }^{-1} * P_{i}\right)\right\}\right.}{\left(H S * T_{b}\right)+\left[(1-H S) * T_{b l}\right]+\left\{\frac{Y * S_{1}}{2} *\left[T_{1} P_{1}+\sum_{i=2}^{A-1}\left(S_{n b^{i}}{ }^{-1} * P_{i} * T_{i}\right]\right)\right\}}[5]$
Breeding birds at different stages of their breeding cycle Breeding birds at different stages of their breeding cycle
spend different proportions of their time at sea, hence the term (HS * T_{b}) can be replaced with the expansion:

$$
\Sigma\left(\mathrm{P}_{\mathrm{b} j} * \mathrm{~T}_{\mathrm{b} j}\right)
$$

where $P_{b j}$ represents the proportion of breeders in the $j^{\text {th }}$ stage of the breeding cycle (incubation, brooding chicks, etc.) and $\sum \mathrm{P}_{\mathrm{bj}}=\mathrm{HS}$, and T_{bj} represents Data on the presence or abs
from the colony area are normally d pre-breeding cohort (a) banding recoveries, and (b) numbers of trow two sources: seen at the colony. Banding data are usually summarized by breeding season, combining recoveries in several months. Hence, a statement that " 50% of 2nd-year birds are within 100 km of the colony during the breeding season" means that, over several months, an average of 50% of recoveries wer pre-breeders is highest we can anticipate that the proportion will be much higher. Conversely, sightings of pre-breeding cohorts at the colony usually concentrate on the period o maximum attendance, and a statement that " 80% of 3rd-year birds visit the colony during the breeding season" probabl translates into a much lower average attendance of 3rd-years in any given month. These biases need to be considered evaluating the resulting conversion factors.
Estimated population densities
These are calculated by dividing the countable population by the area of sea in each study area: Gulf of St. Lawrence, $225296 \mathrm{~km}^{2}$; Newfoundland, $184470 \mathrm{~km}^{2}$; Labrador $105656 \mathrm{~km}^{2}$; Lancaster Sound, $66781 \mathrm{~km}^{2}$

PIROP counts

The PIROP data base is remarkable for its size, the length of
time over which it has been accumulated, and the size of geographic area that it covers. Inevitably, it reflects the variation of environmental factors and differences between observerses in bird density that it was designed to measure. Before we use the PIROP data to determine the relative abundance of seabirds, we shall examine several factors that are likely to influence the numbers of birds recorded in the standard $10-\mathrm{min}$ watches. We can then assess the categories that should be excluded from the data set to be used in calculating conversion factors, and which subsequently generate estimates for the seabird-energy model (Diamond et al., in prep.). Some of the variables included in each record are are discussed below. We tabulate data for all months (excep December, for which samples are very small), not just July and August, because we used the same criteria to sort records for use in the year-round energy model (Diamond et al., in prep.) as for developing the conversion factors described here.
Each record refers to a species seen during a $10-\mathrm{min}$ watch. Each record refers to a species seen during a $10-\mathrm{min}$ watch.
It includes details of numbers of birds seen, position, time of day, behaviour of the birds, state of the sea, wind speed, et al. 1975). The records were sorted to include zero scoreswhere a particular species was not recorded on a watchwhen calculating the mean number of birds seen per linear kilometre of sea covered.
Records were first sorted by reliability of watch (PIROP code $0=$ "reliable", applied to over 90% of all watches in all months except November in Zone $2(79 \%)$), then by ship's activity ($0=$ no data, $1=$ not fishing, true for over 90% of all watches (Table la)), and reliability of identification (0 or were 00 (daytime watch, all species seen) together with seven other types of daytime watches in which different groups of species had been selected (Table 1b). The records were also sorted into geographic zones, south ($45-60^{\circ} \mathrm{N}$) and north (north of $60^{\circ} \mathrm{N}$). Ice cover restricted observations in the northem zone to the period July-November.

1. Frequency

The frequency distribution of numbers of birds recorded The frequency distribution of numbers of birds recorded

Dablribution of watch-types by month and zone (zone $1=$ south of
$60^{\circ} \mathrm{N}$,
$60^{\circ} \mathrm{N}$, zone $2=$ north of $60^{\circ} \mathrm{N}$

Month	Zone	Watch-type (species, PIROP code)						
		All spp. (00)	Only fulmars and shearwaters $(20+22)$	$\begin{aligned} & \text { Only } \\ & \text { gulls } \end{aligned}$ (45)	Only alcids (48)	Not shearwaters or fulmars (72)	$\begin{gathered} \text { Not } \\ \text { gulls } \\ (95) \end{gathered}$	$\begin{aligned} & \text { Not } \\ & \text { auks } \\ & \text { (98) } \end{aligned}$
January	1	2841	8	2	3	0	12	0
	2	3	0	0	0	0	0	0
February	1	4770	0	0	228	0	14	4
March	1	3141	0	0	253	0	0	0
April	1	3325	0	0	210	0	0	0
May	1	6662	8	10	95	302	0	0
	2	46	0	0	0	0	0	0
June	1	7528	0	0	21	107	0	0
	2	112	0	0	0	0	0	0
July	1	11163	3	34	3	32	17	0
	2	2715	0	0	208	5	0	0
August	1	15155	24	2	92	10	0	0
	2	10311	2	2	812	34	4	0
September		4824	2	0	42	0	0	0
	2	6507	0	6	170	0	0	116
October	1	6933	0	0	359	1	13	193
	2	1681	0	0	18	0	0	0
November	1	5833	0	9	525	0	32	52
	2	27	0	0	0	0	0	0

Table 1c
roportion of birds \cdot watch $^{-1}$ for which the given number of eac
species was recorded (\%)

	1	2	3-4	5-8	9-16	17-32	33-64	65-128	129-256	257-512	513-1024	1025-2040	N
Fulmar	32	15	17	16	11	5	2	1	'				3586
Greater Shearwater	19	11	15	18	15	12	5	2	1	1			2944
Sooty Shearwater	40	18	17	10	7	3	2	1	1				1299
Manx Shearwater	84	10	5	1									101
Storm Petrel	36	16	16	14	11	5	2						2032
Northern Gannet	70	15	7	6	2	1							586
Phalarope	20	11	15	18	13	9	8	3	1	1			159
Jaeger spp.	74	15	7	2	1								603
Great Black-backed Gull	56	17.	9	8	5	3	1						1186
Herring Gull	46	16	14	10	7	4	2	1					1376
Kittiwake	47	17	16	9	6	3	2						1538
Tern spp.	59	22	9	5	3	1							238
Thick-billed Murre	34	14	14	13	10	7	4	2					889
Dovekie	13	10	12	14	13	10	8	7	5	4	3	1	494
Black Guillemot	59	20	11	7	2								211
Atlantic Puffin	42	19	17	12		3	1						485
TOTAL													19534

(Table 1d $\begin{aligned} & \text { Categories of visibility recorded during watch (} \% \text { in each category) }\end{aligned}$
(zone $1=$ south of $60^{\circ} \mathrm{N}$, zone $2=$ north of $60^{\circ} \mathrm{N}$)

Zone	Jan.		Feb.	March 1	$\begin{aligned} & \text { Apr. } \\ & 1 \end{aligned}$	May		June		July		Aug.		Sept.		Oct.		Nov.	
	1	2					2	1	2		2		2	1	2	1	2		
Visibility (PIROP Code)																			
Good (0, 1)	89	100	87	88	88	85	61	85	88	84	81	85	86	83	79	91	78	94	83
$\begin{aligned} & \frac{1}{4}-1 \text { mile (2) } \\ & (400-1600 \mathrm{~m}) \end{aligned}$	8	0	5	9	8	3	30	7	3	2	1	3	4	5	8	2	4	2	0
$\begin{aligned} & 100 \mathrm{yd}-\frac{1}{4} \text { mile (3) } \\ & (91-400 \mathrm{~m}) \end{aligned}$	1	0	1	1	1	3	10	1	8	0	0	1	1	0	1	1	1	0	0
$\leqslant 100 \mathrm{yd}$ ($\leqslant 91 \mathrm{~m}$) (4)	0	0	0	0	0	3	0	1	0	2	5	2	0	3	0	0	0	0	17
Glare (5)	2	0	6	2	3	1	0	4	0	2	8	8	7	7	10	5	8	3	0
Poor + glare (6)	0	0	0	0	0	0	0	0	0	10	5	0	0	0	0	0	0	0	0
Poor (7)	0	0	1	0	1	0	0	1	0	0	0	1	1	1	1	2	9	1	0

Table le

Table le
Categories of sea state recorded during watch (\% in each category)

Zone		Jan.		Feb. 1	March 1	$\begin{gathered} \text { Apr. } \\ \hline \end{gathered}$	May		June		July		Aug.		Sept.		Oct.		$\stackrel{\text { Nov. }}{1}$	
		1	2				1	2	1	2	1	2	1	2	1	2	1	2		
Sea state (PIROP Code)																				
No data (0)		7	0	10	2	7	21	13	3	8	13	33	5	21	4	13	2	7	0	3
Calm (1)		0	0	12	13	30	35	75	34	85	20	32	18	38	15	20	10	28	2	66
Light (2)		57	100	46	44	44	34	11	55	7	54	25	61	34	55	59	51	48	58	31
Medium (3)		20	0	21	27	12	7	0	7	0	5	10	11	4	13	5	30	10	28	0
Heavy (4)		7	0	5	11	6	1	0	0	0	0	0	1	2	6	0	3	1	8	0
Rough (5)		0	0	1	2	1	2	0	0	0	0	0	0	1	0	0	0	0	1	0
Other (6, 7)		9	0	5	0	1	0	0	1	0	8	0	3	1	7	2	4	6	2	0

positively skewed for most species, but the degree of skew varies considerably between species, especially in relation to flocking behaviour (compare, for example, the relatively Dovekie, skewed distributions of move in flocks, widhern Gannet jaegers, and Black Guillemot). The distributions are not normal, nor are they consistent between species. It would thus be inappropriate to apply a uniform transformation to the raw numbers before calculating means
2. Visibility

Most records were coded as "good visibility" (Table Id), but in some months the next category ($0.25-1$ mile) ($400-1600 \mathrm{~m}$) contributed a significant number of records. Because most birds viewed are likely to have been well within 0.25 miles (402 m) of the ship, records in this category (PIROP visibility code 2) have been included in the calculations of the daily estimates.

3. Sea state

The "roughness" of the sea is recorded on a scale from 1 to 7. Codes 6 and 7 do not refer to the roughest seas, as might be expected, but to heavy swells with light waves or none at all, in which birds are probably more visible than in sea states
lower in the scale. Most records were made during calm or light sea conditions (Table le). We assume (supported by Fig. 3) that records with "no data" in this category were
chiefly also in calm or light seas because sea state is more likely to be recorded if it is rough (see Weather, below). To illustrate the effect of sea state on bird numbers recorded, we sorted data from the northern zone in August for murres, fulmar, and kittiwake. All showed a declining trend in numbers until sea state 3 after which they rose again. Ideally, records from sea states 2-4 should be excluded as they seem sea state 2 is the most commonly recorded in most months, and this policy would reduce sample sizes to unusably low levels. We have therefore included all sea states except "heavy" and "rough" (codes 4 and 5 , respectively), and accepted the high variance due to sea state as a property of the data for which we cannot adequately correct.

4. Weather

Weather conditions were usually not recorded at all (78% of all watches) (Table 1f). The most common categories probably reflects observers' tendencies to record weather only if it was bad. However, the features of the weather during a watch that are likely to directly affect the numbers of birds

Figure 3
hivence of sea state on numbers of three species in August, northern zone

een are visibility and the state of the sea. We have therefor lected records according to those two criteria rather than by weather

. Floating ice

his is recorded under "floating matter" on the PIROP record card. In the most suitable data set (July, northern zone), 61% of fulmar records and 60% of Thick-billed Murres were in the category "not recorded", and there was no clear trend in the remaining records. No further analysis was therefore war ranted, nor could sorting data by ice category by justified This is unfortunate because the proximity of ice is well know ieht have shed new light on this relationship.
6. Ship's speed

The distribution of ship's speed among watches is shown in Table lg. Brown et al. (1975) showed densities in terms of numbers seen per $10-\mathrm{min}$ watch, but Brown (1986) divides the numbers seen by the ship's speed to give numbers per inear kilometre. Both methods involve a negative correlation between bird numbers and ship's speed, caused by birds that when the difference between the speed of the bird and that of the ship is greatest, i.e. at the slowest ship's speeds (see also Gaston et al. 1985). Examples of this trend in records of fulmar and kittiwake for July and August are shown in Figure 4. We ran 26 paired comparisons between the mean number of birds $/ \mathrm{km}$ at speeds below 10 knots and at 10 knots or higher (Table 2). More birds were seen at the lower speeds in 24 cases, and the SE of the mean was also greater at the lower

Influence of ship's speed on numbers of three species

speeds in 22 cases. The trend of declining numbers with rising speeds in 22 cases. The trend of declining numbers with rising only 47% of all watches overall-and even fewer in some months-were made at speeds of 10 knots or greater, so i would not be practicable to exclude all watches made a speeds below 10 knots. Inspection of Figure 4 suggests that the greatest effect of ship speed is below 5 knots, and Table lg shows that 77% of all watches were made at speed of 5 knots or more We have therefore taken 5 knots as the speed below which records are excluded.
7. Following ship

Birds following or otherwise obviously associated with the ship are recorded in the "behaviour" codes $50-55$ and 6 (Table 3). Fulmars, and to a lesser extent kittiwakes, are mos affected, apparently more in the south than the north, no doubt because fishing activity is greater in the south. Record falling in these categories have been excluded from analysi
\bigcirc ?
Table If

	Zone		,	Feb.	March	Apr.		${ }_{2}$	${ }_{1}$			2		2		${ }_{2}$	1	2	$\stackrel{N}{\text { No }}$	
Conditions (PIROP Code)																				
No data (0)		71	100	77	58	70	80	49	79	88	81	78	80	77	87	79	79	66	78	83
Drizzle (1)		1	0	1.	0	2	3	0	4	0	2	3	3	2	1	2	1	0	1	0
Rain (2, 3)		9	0	1	3	2	2	0	1	0	2	1	2	1	0	1	2	2	3	0
High wind (4)		6	0	14	20	12	3	11	6	0	2	5	5	3	8	2	10	4	13	7
Very calm (5)		0	0	0	0	1	1	0	1	0	2	8	3	6	0	2	1	0	1	0
Fog (6)		0	0	1	2	6	9	39	8	12	10	5	7	6	2	4	2	17	2	0
Snow (7)		7	0	6	17	7	2	0	0	0	0	0	0	6	1	10	4	10	3	10
Hail (8)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table $\mathbf{1 g}$
umber of watches recorded at each ship's speed (zone $1=$ south of $60^{\circ} \mathrm{N}$, zone $2=$ north of $60^{\circ} \mathrm{N}$)

Zone	Jan.	$\begin{gathered} \text { Feb. } \\ . \end{gathered}$	March 1	Apr.	May		June		July		Aug.		Sept.		Oct.		Nov.	
					1	2	1	2	1	2	1	2	1	2	1	2		

Speed (knots)																		
0	15	11	18	23	14	0	14	26	6	1	9	5	11	17	11	6	11	10
1	2	0	0	1	1	0	0	0		0	1		1	1	1	0	0	0
2	0	1	7	5	2	0	0	0	0	0	1	0	1	0	2	0	1	0
3	0	1	2	4	7	31	1	13	1	0	1	1	1	0	1	0	1	0
4	6	2	3	6	7	57	3	0	3	1	2	3	0	1	4	2	2	0
	1	9	6	4	4	0	3	31	1	1	4	5	9	2	3	0	3	28
5	6	6	4	2	1	0	2	0	3	7	11	19	1	19	3	24	5	62
7	3	1	7	2	2	0	0	0	2	5	2	2	2	2	6	8	6	0
8	5	8	4	2	8	0	8	0	13	3	6	2	3	2	14	2	15	0
8	23	9	10	5	4	0	11	0	11	1	7	2	10	1	7	4	11	0
10	6	5	20	26	32	11	19	30	20	52	17	27	28	18	14	16	20	0
11	17	7	4	8	6	0	3	0	8	7	10	9	17	6	4	1	4	0
12	5	10	5	4	3	0	5	0	9	7	6	7	1	6	5	23	8	0
13	6	15	7	4	4	0	28	0	15	10	16	16	7	19	18	11	4	0
14	1	4	1	2	5	0	2	0	3	6	5	0	6	5	2	2	4	0
15	0	8	0	0	0	0	0	0	,	0	2	0	1	0	0	1	0	0
16	0	0	0	0	0	0	0	0	0		1	0	0	0	0	1	1	0
17	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	3	0	0	1	0	0	0	0	3	0	0	0	1	0	3	0	0	

in spite of the large proportion of records involved, especially in September, as they clearly represent a strong bias between species and geographical areas.
8. Number of observers

At least 86% of watches were made by one observer, so we have made no correction for the number of observers.
9. Height of observer's eye above sea level

This variable has a considerable effect on the observer's field of view and consequently on the number of birds the observer can see. There are five PIROP categories of this variable, of which we selected those corresponding to heights of at lea 15 feet (4.6 m); these account for nearly 99% of all record
in the months July-September. Samples at lower heights are too small to examine the effect of this variable in detail. It also likely to be correlated with ship's speed since that depends on the ship's length which, in turn, will affect th height of the observation platform.

Sensitivity test of conversion factor C

The effect of input variables on the size of the conversion factor C_{l} was tested by altering each in turn and comparing their effects on the output value. Confidence limits are not available for most input parameters so we examined the mos extreme case that appeared possible-for most variable
50%. Tests were conducted for two examples, one larg species that flies frequently (gannet), and one small specie

Table 2
Mean numbers of birds $\cdot \mathrm{km}^{-1}$ in relation to ship speed in selected
months months

South $=$ south of $60^{\circ} \mathrm{N} ; \mathrm{SE}=$ standard eror of mean; $S=$ stip's speed
less than $10 \mathrm{knots} ; \mathrm{F}=$ speed 10 knots or greater; $\% \mathrm{FF}=\%$ records from less han
speed F.
hat spends most of its time on the water (puffin). Results are given in Table 4
Changes in the values of population-dynamics variables had little effect on the value of C_{b}, nor did changes in th proportions of pre-breeders in the colony area. The proportion of breeders at different stages of the breeding cycle had an mportant effect in both species. This effect was greater in the case of the puffin, where post-brooding birds spend most of their time at sea, than for the gannet where post-brooder of time the birds spent on the colony had a big effect in incubating and brooding birds, whose time spent at sea can be fairly accurately measured.
It appears that C_{b} provides a fairly robust conversion factor as long as the timing of breeding of the species concemed is known with reasonable accuracy. However, if the timing of breeding, or the duration of different breeding states, is so poorly known that the proportion of breeders at a given stage of their cycle in any month is not known within $\pm 50 \%$, the
value of C_{b} is subject to considerable inaccuracy. In the case of our model, we have every reason to believe that data on timing of breeding are adequate.

esuits

The full details of assumptions, interpolations, and calcu lations are given in the Northern Gannet species account; the ame methods are used for the other species unless otherwis tated
(i) Northern Gannet Sula bassanus 19960.
b) Life-table. A cohort of 1000 breeding pairs produces an verage of 720 fledgelings per year: this breeding success of 72%, reported from Newfoundland by Montevecchi et al.

Percentage of birds following or circling the ship in selected months

	$\begin{gathered} \text { June } \\ \hline \text { South } \end{gathered}$	$\frac{\text { July }}{\text { South }}$	August		September		November South
			South	North	South	North	
Northern Fulmar	36	16	18	4	55	10	43
Kittiwake	11	14	13	13	59	15	38
Common Murre	1	3	0		0		0
Thick-billed Murre				0.2		0	

able

Sensitivity tests for the conversion factor C_{b}, relating number
bserved at sea during the breeding season to total numbers usin
the same area

Input parameter	Selected value, June		Change in value	\% Change in output (C_{b})	
	N. Gannet	Puffin		N. Gannet	Puffin
Adult survival	0.94	0.955	-50\%	+52.0	+ 0.5
Ist year survival	0.58	0.35	-50\%	- 6.7	- 0.7
Chicks fledged/pair	0.72	0.42			
Age at first breeding	5	5	-25\%	- 0.3	- 0.4
Proportion at breeding stage:					
Pre-laying	${ }_{0}^{0.01}$			-25.3 +5.4	-25.2 +13.6
Incubating/breeding Post-brooding	0.66 0.23	0.71 0.06	each value	+5.4 +10.0	+13.6 -64.0
Post-brooding Failed	${ }_{0} 0.10$	0.22	to 1.0	-10.0	-25.2
Proportion present in colony area:					
First year	0.77	0.25	-50\%	+ 6.3	
Second year	0.90	0.75	-50% -50%	0.1	0.1
Other pre-breeders	1.00	1.00	-50\%	0.1	0.1
Proportion of time at sea:					
Pre-layers	0.60	0.75	-50\%		
Incubating/brooding	0.40	0.50	-50\%	+20.3	
Post-brooding	0.50	1.00	-50\%	+8.8 +38	+4.7 +12.8
Failed	0.50	0.75	-50\%	+ 3.8	+12.8
First year	1.00	1.00	-50\%	+ 6.2	+ 1.4
Second year	0.75	0.90	-50\%	0.1	0.1
Other pre-breeders	0.75	0.80	-50\%	0.1	0.1
"True" value of C_{b}	1.896	1.660			

(1984), is similar to figures from the eastern Atlantic Nelson 1978), though lower than that of the 81% reported from Newfoundland by Montevecchi and Porter (1980). Dat from Bonaventure Island, Quebec, showed much lowe breeding success (38%, Poulin 1969), due probably to a combination of toxic chemical pollution and human disturbance (Montevecchi and Tuck, in press; Montevecchi et al. 1984) suming a stable population, adult mortality is balanced by recruitment which, to simplify calculation, is taken to occur in one age-class only, that in which first breeding usually occurs (i.e. the modal age of first breeding or AFB). Nelson (1978, Table 18) gives this as 5 , so 6% of 2000 birds $=120$ birds are required in year-class 5 . No figures are available fo survival of the age-classes between 2 and 5 , and those fo

Ist-year mortality are conflicting; Nelson (1978) assumes 65% in his Table 18 but quotes banding returns indicating about 54% in Table 25. Moisan and Scherrer (1973) give banding returns of birds from the Gulf of St. Lawrence that suggest a lst-year mortality of 42%, which is the figure use 418 Ist-year birds. Numbers of 2-, 3-, and 4 -year-olds are derived by interpolation between this figure and th number of 5 -year-old recruits calculated, assuming a constant mortality rate, by the formula

$$
S=\left(F_{b} / N_{t}\right)^{1 / x}
$$

where $S=$ annual survival rate between Ist-year and age of first-breeding, F_{b} is the number of birds at age of first bree ing (\mathbf{b} years), $N_{\text {i }}$ is the number of 1 st-years, and $x=(b-1)$.

	\% Survival (for fledgelings, (breeding success)	Number in population	\% Breeding population
Age-class	94	2000	100
Adult	72	720	36.0
Fledgelings	75	418	20.9
Ist Year	58	306	15.3
2nd Year	73	224	11.2
3dr Year	73	164	8.2
4th Year	73	120	6.0
5th Year $=$	73		
recruitment			

This gives an annual survival rate over years 2-5 of 73% and a total pre-breeding population of 1112 birds or 56% o the breeding population, apportioned to the various age classes as in Table 5. This method of estimating pre-breeding mortality is preferred to the direct use of banding returns because such returns are known to be biased in a number of ways, particularly by the propensity of younger birds to die, recoveries are only used to estimate mortality where no other method is possible, especially for Ist-year mortality.
(c) Proportion in study area: Banding returns (Moisan and Scherrer 1973) show that in July about 77% of the bands from yearlings, about 80% of the bands from 2-year-olds, and 100% of adult bands are recovered within 100 km of the colony. Assuming a similar pattern for 3 - and 4 -year-olds to hat of 2 -year-olds, the total proportion of birds within the study area in July is estimated by:
for 1st years, $\quad \mathrm{x}_{1} * \mathrm{p}_{1} \quad=0.21 \times 0.77=0.161$
for 2 nd to

$$
\begin{aligned}
\sum_{i=2}^{4}\left(x_{i} * p_{i}\right)=0.347 \times 0.80 & =0.278 \\
\sum_{i \neq b}\left(x_{i} * p_{i}\right) & =\overline{0.439}
\end{aligned}
$$

4th years
or 44% of the breeding population present as pre-breeders in the study area.
(d) Time spent at sea: Attendance-shifts average about 7.5 h in July (Montevecchi and Porter 1980) which, in a 16-h day There are no quantitative data on attendance patterns of immatures, but Nelson (1978) suggests that list-years never come ashore and older young spend progressively more time ashore at the colony between the 2nd and 5th years. We assume that 1 st-years spend all their time at sea, and other immatures average 75% at sea. So, $T_{1}=1.0, T_{2-4}=0.75$ $\mathrm{T}_{\mathrm{b}}=0.5$.
The countable population can, therefore, be finally esti mated, using a hatching success of 80% (Montevecchi et al.

Table 6
Black-legged Kittiwake life-table, based on cohort of 1000 breeding pairs

	\% Survival (for fledgelings, Age-class breeding success)	Number in population	\% Breeding population
Adult	83.5	2000	100
Flegelings	58	1073	53.7
Ist Year	79	848	42.4
2nd Year	79	670	33.5
3rd Year	79	529	26.5
4h Year	79	418	20.0
(5th Year $=$	79	330	16.5
recruitment			

$$
\mathrm{CP}=\mathrm{BP}\left(\mathrm{HS} * \mathrm{~T}+\Sigma\left(\mathrm{x}_{\mathrm{i}} * \mathrm{~T}_{\mathrm{i}} * \mathrm{P}_{\mathrm{i}}\right)\right.
$$

$\mathrm{CP}=\mathrm{BP} \mid(\underset{\text { breeders }}{[0.80 * 0.5)}+\underset{\text { st }}{0.162}+\underset{\text { Ind } 4 \text { th yr }}{(0.278 * 0.75)}+\underset{\text { failed }}{(0.20 * 0.75)]}=0.92 B P$
(ii) Black-legged Kittiwake Rissa tridactyla
(a) Breeding population: Gulf, 82580 birds; Newfoundland 123 260; Labrador, 100
(b) Life-table: Newfoundland birds have an average clutch size of 1.85 and breeding success (chicks fledged per egg laid) of 58% (Maunder and Threlfall 1972). The breeding probably atypical, coming from a very small and rapidly increasing colony. First-year survival is 79% in European birds (Coulson and White 1959); adult mortality, averaging the two sexes, which have slightly different rates, is 16.5% (Wooller and Coulson 1977), and mean age of first breeding, again pooling the sexes, averages 5 years (Wooller and survival rate between the end of year 1 and the start of year 5, and working from the calculated proportion of 1st-years, the mean immature survival works out to 79%, i.e. equal to Ist-year survival. The proportion of the breedin population of each age-class (1-4), can be calculated as 42 34, 27, and 20%, respectively (Table 6).
(c) Proportion in study area: Banding returns from larg numbers of kittiwakes marked in northwest Greenlan (Salomonsen birds would be found within 100 km of their colony, but almost all birds of older age-classes would be. We assume that the entire population of kittiwakes, with the exception of 1 st -year birds, are within 100 km of the colony in July The number of non-breeders present can therefore be take directly from the life-table as the number of all $2-, 3$-, and 4 -year-old birds, i.e. $81 \% \mathrm{BP}$
(d) Time spent at sea: Adults feeding chicks have been docu mented as spending about 82% of their daylight hours at se

Table 7
Common Murre life-table, based on cohort of 1000 breeding pairs

	\% Survival (for fledgelings, Age-class breeding success)	Number. in population	\% Breeding population
Adult	94	2000	100
Fledgelings	76	760	38.0
Ist Year	40	304	15.2
2nd Year	79	240	12.0
3rd Year	79	190	9.5
4th Year	79	150	7.5
(5th Year $=$	79	120	6.0
recruitment			

in the Pribilofs (Hunt et al. 1982), and 56% of their day a sea in the North Sea (Hodges 1974, per J. Porter, pers commun.). The Pribilofs data are from a very large colony, the North Sea data from a small one, so the mean of the two values (69%) is used here. Four-year-old birds are assumed to spend the same proportion of the day at sea as adults, and fo 2 - and 3 -year-olds we used 90%.
The countable population, using a hatching success of 73% Maunder and Threlfall 1972) is thus:

$$
\begin{aligned}
& =1.38 \mathrm{~B}
\end{aligned}
$$

(iii) Common Murre Uria aalge
(a) Breeding population: Gulf, 46240 birds; Newfoundland 977 160; Labrador, 112300.
(b) Life-table: Breeding success from the clutch of one averaged 76% in Newfoundland (McLagan and Piatt 1982 Birkhead and Netleship 1982). Fist-yar Canadian bandin recoveries (A.J. Gaston and D. Noble, unpubl.); this is likely to be too low, but by how much is unclear. We adopted a conservative value of 40% in this study, chiefly to smooth out the otherwise very sharp jump required between Ist-year and adult survival. Average age of first breeding is 5 year (Birkhead and Hudson 1977). Estimates of adult surviva range from 87% in Helgoland (Mead 1974) and 88% in eastern Canada (Gaston and Noble, unpubl.) from straight anding recoveries, to 91.5% 1977) 93.5% from British banding recoveries, selected to minimize the various biases inherent in band recovery data (Mead 1974), and 94% from changes in composition of pairs including a bridled bird in Labrador (T.R. Birkhead, pers. commun.). Since most sources underestimate adult survival, the highest of them (94%) is used here. Interpolating, as before, between Ist-year and adult survival, we obtain an estimate of 79% mean annual survival of immatures from 1 to 4 years old. This agrees well
with the 77% survival of 2 - and 3 -year-olds from returns of birds banded on Helgoland (Mead 1974). The life-table Table 7) gives a slightly lower estimate of survival to age o first breeding (16%) than that of 20% suggested by Birkhea and Hudson (1977)
(c) Proportion in study area: Recoveries of known-age ban Prds in July suggest that about 60% of immatures would be within 100 km of the colony (Mead 1974).
(d) Time spent at sea: Birkhead (1978) found that pairs with eggs were together at the site, on average, 30% of the daytime, and pairs with chicks (estimated from Birkhead 1978 Fig. 6), about 20%. Each adult was therefore, on average, at sea $70 / 2=35 \%$ of the time in the incubation period, 40% while raising the chick. Three- and 4 -year-olds are assumed here also to spend 35% of their time at sea in July, and 1 -yearolds 100%, as they are not seen on land. Birkhead (1978) saw
only 20% of the 2 -year-olds that the life-table suggests should be present in the population, in the "club" of non-breeders on Skomer Island; here, 80% is used as an estimate of the average time spent at sea by 2 -year-olds.
The above figures, together with a hatching success of 89\% (Birkhead and Nettleship 1982), yield the following estimat of the countable population:

$+(0.11 * 0.35)]=0.56 B$
(iv) Thick-billed Murre Uria lomvia
(a) Breeding population: Gulf, 1400 birds; Newfoundland 3700; Labrador 18740
(b) Life-table, (c) proportion in study area: There are no local data, thus we assume these data to approximate those of the Common Murre. The West Greenland breeding populatio probably behaves similarly to southern Canadian birds, since both areas are "Low Arctic"; Kampp (1982) estimated adu surviva there as 90% (known to be an un 49 in Kampp
 comparable with the values used here for Common Murres of comparable with the values u
94% and 16%, respectively.
(d) Time spent at sea: Gaston (1985) gave figures for the time spent at sea by breeders and non-breeders at Digges Island and Prince Leopold Island. We used the former figures here since Digges is the closer colony to those considered in this report. In July, there are about 4 h of darkness at Digges, 2 of which are spent on the colony by each breeder. Thus, of available daylight, each breeder spends 10 h on the colony each day and 10 h at sea. Non-breeders spend on average 6.3 h on the colony in July, all of it by day, thus spend 68% of he daylight hous atsea. spend all of the time at sea.

	\% Survival (for fledgelings, (breeding success)	Number in population	$\%$ Breeding population
Age-class	92	2000	100
Adult	67	670	33.5
Fledgelings	67	328	16.4
Ist Year	49	274	13.7
2nd Year	83.5	229	11.5
3rd Year	83.5	191	9.6
4h Year	83.5	160	8.0
(5th Year $=$	83.5	160	
recruitment			

Hatching success averages 68% in Labrador (Birkhead and Nettleship 1982), so

(v) Razorbill Alca torda
(a) Breeding population: Gulf, 6740 birds (Chapdelaine and Laporte 1982); Newfoundland, 1480; Labrador, 38584.
(b) Life-table: Clutch size is one and breeding success averaged 67% in the Gulf of St. Lawrence (Bedard 1969). First-year survival, from banding returns, is 49% in eastern
Canada (Bedard 1969), which agrees well with the 45% from Canada (Bedard 1969), which agrees well with the 45% from
British banding recoveries (Lloyd 1974). Adult survival, British banding recoveries (Lloyd 1974). Adult survival,
from resightings of breeding birds at Skokholm Island, Eurofrom resightings of breeding birds at Skokhom highe figure is
pe, is $90-92 \%$ (Lloyd and Perrins 1977); the highe used here. The modal age of first breeding is 5 years in Britain (Lloyd and Perrins 1977). Average annual survival between years 1 and 5 , by interpolation, is estimated at 83.5% (Table 8).
(c) Proportion in study area: British recoveries between May and July showed 20% of 1 st-years within 200 km of the colony (Mead 1974); by interpolation, 10% are estimated to be within 100 km of the colony. Adults and immatures older
than one year showed similar distribution patterns to each than one year showed similar distribution patterns to each
other; accordingly, all birds older than 1 year are assumed to other; accordingly, all birds older that
be within 100 km of land in July.
(d) Time spent at sea: Lloyd (1982) found that off-duty breeding razorbills spent $20-34 \%$ of their time on land a very similar to those for Common Murres (discussed previously). There are no other data on time-budgets, so these are assumed to be the same as Common Murres.
Hatching success averaged 76\% in the Gulf (Bedard 1969), 70% in Norway (Barrett 1984) and 64\% on Skokholm, Wale (Lloyd 1977); the mean of these figures (70%) is used here.

Table 9
Atlantic Puffin life-table, based on cohort of 1000 breeding pairs

	\% Survival (for fledgelings, (breeding success)	Number in population	\% Breeding population
Age-class	96	2000	100
Adult	71	710	35.5
Fledgelings	35	249	12.8
Ist Year	75	187	9.4
2nd Year	75	140	7.0
3rd Year	75	106	5.3
4th Year	75	80	4.0
(5th Year $=$	75		
recruitment	75		

The countable population is therefore:

$$
\begin{aligned}
& +(0.30 * 0.35) \mathrm{l}=0.63 \mathrm{BP} \\
& \begin{array}{c}
\text { failed } \\
\text { breeders }
\end{array}
\end{aligned}
$$

(vi) Atlantic Puffin Fratercula arctica
(a) Breeding population: Gulf, 14 740; Newfoundland 495 000; Labrador, 153460.
(b) Life-table: Breeding success in Newfoundland (33\% (Nettleship 1972a)) is substantially lower than breeding successes measured elsewhere (e.g. 64% on Skomer (Ashcrof 1979), 87% and 93% on Funk and Small Islands, Newfoundland (Nettleship 1972a), 80% on Isle of May, Scotland (Harris 1983), 77% on St. Kilda (Harris 1980)). Here we us an overall mean figure, from all these studies, of 71%. First-year survival was 35% in banding returns of British
puffins (Mead 1974). The same data estimated adult survival at 95.5%, close to the 96% from resightings recorded by at 95.5%, close to the 96% from resightings recorded by
Harris (1983) in Scotland and 95% by Ashcroft (1979) in Wales. Age of first breeding is widely given as 5 years on average (e.g. Ashcroft 1979; Harris 1981, 1983) and that figure is used here, although Harris' data suggest that the modal age of first breeding may be nearer 6; 26 of his sample of 54 first bred at 7 or older. The average annual survival rate between years 1 and 5 , by interpolation, is 75% (Table 9). The life-table deservés comment. It is based on such the population is stable. More likely, puffin populations are declining as Nettleship $(1980,1985)$ has claimed. However they might be declining because of low breeding success (which would be likely if the very low breeding output measured by Nettleship (1972a) in Newfoundland was typical of Canadian puffins), or because of low survival of immatures, or from a higher adult mortality than that used here (which is inferred from British figures). Without knowing at which point in the life-cycle there is excess mortality, the life-table
annot be adjusted to reflect the apparent steep decline in the population.
Alternative life-tables can be constructed using differen values for breeding success. The most recent and detailed tudies are by Harris (1980,1983) in Scotland where breeding success averaged nearly twice the Newfoundland figure, fo example. This figure, applied to Table 9, implies an increasing population, which is true of many British colonies but not of the Canadian population which is at best stable but more likely declining (Nettleship 1980, 1985). Alternatively setting recruitment constant at replacement rate with 80% breeding success gives a $2-4$ year survival of 73%, which is substantially lower than the figure in Table 9
It is important to note that breeding success as reported in the literature refers to chicks fledged per pair that laid an egg, the literature refers to chicks fledged per pair that"" in some British colonies, $20-30 \%$ of breeding pairs may occupy burrows without laying. but this category includes burrows in which no egg is laid (Nettleship 1972b). Hence these figures for breeding success, low as they are, may seriously overestimate the breeding output of a population counted by this method. Counteracting this bias is the endency for research on puffin breeding biology to caus losses and so underestimate the breeding success of undis and Birkhead and Nettleship (1982), though Harris (1980 1983) suggested that the methods used in such research (including Nettleship's (1972a), which Pierotti addressed specifically) do not seriously lower breeding success in puffins.
(c) Proportion in study area: First-year birds rarely come ashore; Mead (1974) gives one banding return of a yearling 70 km from its natal colony. Twenty-five percent of 1st-year are here assumed to spend July within 100 km of shore. Few 2nd-year birds land (though more than Ist-years), but all the returns of banded 2-year-olds from eastern North America are at the natal colony (CWS unpubl. rep., Ottawa). We assume that 75% of 2 -year-olds are within 100 km of the colony in the area as are adults Ashcroft's (1979) finding that 20% o adult puffins in a Welsh colony could not breed because of competition with rabbits and Manx Shearwaters Puffinus puffinus, and that a further 2% were away from the colony eac year, has not been shown to apply in Canadian colonies.
(d) Time spent at sea: There are no time-budgets for this species. The single chick is not brooded or attended (as, for example, in murres and Razorbills), so an estimated 75% of time spent at sea for each adult in July seems reasonable First-years are assumed to spend 100% of their time at sea Few 2nd-year birds land (though more than ist-years), are treated 4 yerrold are assumed to spend the same amount of time at sea as adults.
The mean of all figures for hatching success given by Harris (1984) is 77%; this figure is used here.
The countable population is therefore:

Species accounts - Northern are

(i) Northern Fulmar Fulmarus glacialis
(a) Breeding population: This species breeds commonly in arctic Canada, but rarely in the Maritimes (Netleship and Montgomerie 1974). The breeding population in the Lancaster Sound study area (Fig. 2) is 344000 , with an additional 6000 birds on Coburg Island of which 25% probably feed within the study area in August, the to
(b) Life-table: The only quantitative data (apart fron Salomonsen (1967-see below)) are from a Scottish colony in an expandiong popula for (De at first breeding (9 years), and annual survival of breeders (97%) and non-breeders (91%), to he Canadian breeding output of 47% (Linton and Nettleship 1977), produces a life-table with a surplus of recruits equiv alent to 268% of the number needed to keep the populatio stable. The Canadian population is probably stable, and cer tainly shows no evidence of increase on the scale shown by eastern Atlantic populations (Nettleship 1980), so the Scottis data cannot be applied wholesale to Canadian populations likely to reflect the state of the Canadian population, as with the Atlantic Puffin, is that there are a number of differen ways to make adjustments but no Canadian data to guide which one is chosen.
Perhaps the feature of the Scottish data least likely to apply to the Canadian Arctic is the high pre-breeding survival. The age of first breeding is probably also over-estimated, even for the Scottish population (Dunnet et al. 1979). A smal decrease in adult survival can also have a marked effect th the Scottish data are suggested for the Canadian Arctic population:
(i) age of first breeding 8 years, rather than 9
(ii) adult survival 95%, rather than 97%;
(iii) using these two changes, the mean annual survival of pre-breeders is calculated by interpolation between the number of fledgelings and the number of 8 -year-ol recruits required in a stable population (see Northe Gannet).
Pre-breeding survival works out to 82.4%, compared with he 91% of the Scottish population. The calculated life-tabl is shown in Table 10.
banded birds recover gives a graph of the age distribution of markedly from thered off Greenland, which differs quite reasons for this are probable higher chick production in the Low Arctic colonies of West Greenland, compared with those

Table 10

Northern Fulmar life-table, based on cohort of 1000 breeding pairs

Age-class	$\begin{gathered} \text { \% Survival } \\ \text { (for fledgelings, } \\ =\text { breeding success) } \end{gathered}$	Number in population	\% Breeding population
Adult	95	2000	100
Fledgelings	47	470	23.5
Ist Year	82.4	387	19.4
2nd Year	82.4	319	16.0
3rd Year	82.4	263	13.2
4th Year	82.4	217	10.9
5th Year	82.4	179	9.0
6th Year	82.4	147	7.4
7th Year	82.4	121	6.1
(8th Year $=$ recruitment	82.4	100	5.0

of the Canadian High Arctic, and possible distortions through hunting of fulmars in Greenland
(c) Proportion in study area: Salomonsen (1967) and Mac donald (1977), referring to Greenland and British populations, respectively, both suggested that most birds older than 4 years, and many 3 -year-olds, come to land regularly a the colony during the breeding season. Birds between 3 and 7 years old in the calculated life-table (Table 10) account for about 47% of the breeding population. Linton and Nettleship eopold Island, Lancaster Sound, numbered about 61% of the breeding population. Non-breeders of 1 - and 2 -years-old account for a further 35% of the breeding population Banding recoveries from Disko Bay in Northwest Greenland (Salomonsen 1967) suggest that 1 - and 2 -year-old bird account for about 13% of the local population in the summer Salomonsen (1967) implies that these birds had been banded elsewhere and that 1 -and 2 -year-old birds do not visit the vicinity of breeding colonies. However, if they do visit lan in similar proportions to their numbers in Disko Bay, they obtained in Lancaster Sound (Linton and Nettleship 1977) This would mean-contrary to Salomonsen's suggestionthat there are negligible numbers of non-breeders within the feeding range of the colony that do not come to land. Here we use the figure of 61% of the breeding population present a non-breeders, from Linton and Nettleship's (1977) field data from Lancaster Sound itself, but point out that this is no consistent with the calculated life-table.
Fulmars are known to have a large potential feeding range while breeding, but authorities differ sharply on the actua recoveries of breeding birds, in the breeding season, averging 232 km from the colony; these could be split into separate means ($n=3$ each) for incubation (296 km) and chick-rearing (176 km). However, Furness (1983) and Furness and Todd (1984) use very different foraging ranges these authors misquote Dunnet and Ollason (1982) as giving
"no clear evidence for ranges of breeding adults", and calcuates a maximum potential foraging range of 120 km for 6 -hour departure. Furness (1983) based his figures on sigh ings of dyed birds-not necessarily feeding when sighted though he did not mention this-at a time when small chick were present, being constantly brooded, and with a small foo demand. He dyed 21 birds with eggs or small chicks
"several" of the eggs were lost before the study was completed. Of 10 sightings in July and August, the furthest wa 120 km , the median 35 km ; nine birds failed to rear chicks and all but one of the sightings could in theory have been from hese birds. The birds studied by Furness made much shorte foraging trips than those on Prince Leopold Island, which ar therefore likely to forage at least as far from land as suggested by Dunnet and Oilason's (1982) figures. Furness and Tod (1984) found that the diets of fulmars breeding on Foula and St. Kilda were very different, suggesting that there was ver thus, since the islands are 445 km apart that their foraging ranges are less than 220 km . The limits chosen for the Lancaster Sound study area are about 250 km from the neares fulmar colony, except for the small one at Coburg Island which is less than 50 km inside the study area limits. Here is assumed that only 25% of Coburg birds forage within the sudy area. Further, he few birds from other Lancaster Sound colonies which might feed outside the study area are probably balanced by birds entering it from colonies in northwes Greenland and northeast Baffin Island.
(d) Time spent at sea: Breeding birds spend, on average, 8 h of the day at sea while the chick is being brooded (for the Ist week of August), and 96% of the day at sea for the res of the month (Linton and Nettleship 1977); on average, therefore, breeders spend 81% of the day at sea during August in Lancaster Sound. Linton and Nettleship's (1977) data sugges that non-breeders attending the colony follow similar atten dance patterns to breeders; but non-breeders attending a particular site surely cannot be assumed to be the same indi-
viduals as can birds attending a chick, so that the data on non-breeders-with regards to both their numbers and their time-budgets-are less reliable than the data for breeders.
The countable population is therefore calculated using proportion of non-breeders of 0.61 BP , a hatching success o 62% (Linton and Nettleship 1977), and assuming all 1.61 BP birds are in the area and spend 81% of their time at sea. From hese figures,
$\mathrm{CP}=\mathrm{BP}[(0.62 * 0.81)+\underset{\text { breeders }}{(0.61 * 0.81)}+\underset{\substack{\text { non- }}}{(0.38 * 0.81)]}$ failed $)=1.3 \mathrm{BP}$
(ii) Black-legged Kittiwake Rissa tridactyla
a) Breeding population: Lancaster Sound, 207500 birds assuming 75% of colonies at Coburg Island and Baillie Hamilton Island feed within the survey area).
b) Life-table: Clutch-size in Lancaster Sound averages 1.7 atching success 80\%, and fledging success 57% (Nettleship and Birkhead, ND).
(c) Time spent at sea: Taken as 82% for breeders (figures for Pribilofs, from Hunt et al. 1982) and 4 -year-olds, others as for southern areas
The countable population is therefore

$=1.52 B$
(iii) Thick-billed Murre Uria lomvia
(a) Breeding population: 740000 birds.
(b) Life-table, (c) proportion in study area: Assumptions as for southern areas, except for the population of 2- to 4-year non-breeders attending the colony (Gaston and Nettleship 1981), rather than the 17% BP suggested by the Common Murre life-table (29% BP 2- to 4 -year-olds, of which 60% were estimated to be in the study area). Band recoveries in the Canadian arctic suggest that few, if any, 1 - or 2-year-old birds are in the vicinity of the colony in July (A.J. Gaston, pers. commun.)
(d) Time spent at sea: Gaston's (1985) figures for Prince Leopold Island suggest that breeders spend 50% of their time Leopold Island suggest that bre
at sea and non-breeders 47%.
Using the 79% hatching success recorded by Gaston and Nettleship (1981) at Prince Leopold Island, the countable population is therefore:

Conversion factors
(i) Breeding species

Table 11 shows the calculated densities at sea for all species in each study area, together with the mean number of birds seen per linear kilometre on PIROP counts in July and a conversion factor C, obtained by dividing the PIROP ind (Uria) are so difficult to distinguish at sea that in the southern areas, where the two species overlap, they are commonly recorded as "murre spp." on PIROP counts; samples of ind vidual species are inadequate, so the figures for "murre spp. have been used here, using breeding biology data for Common Murres (which far outnumber Thick-billed Murres here). The two species are likely to have similar conversion factors because these depend chiefly on visibility and behav iour at sea, in which the two species are clearly very simiar. an order of magnitude. There is no real alternative to using the mean of the two values (1.27) and accepting-however reluctantly-the large margins of error involved.
The two C values calculated for southern Black-legged Kittiwakes are very close. That for Lancaster Sound is much higher, apparently because kittiwakes there are highly concentrated in coastal waters too close inshore to be sampled
by the survey vessels on which PIROP counts are made Nettleship and Gaston (1978) found that only 21% of kitt wrom in Lancaster Sound in August were further than 4 km giveshore. Applying this correction to C for Lancaster 4 tical to C for euthmate or . This is lower than C for gannet which at first seems anomalous as gannets are so much bigger than kittiwakes, but immature gannets are much darker (and thus less visible) than young kittiwakes.
The single value of obtained for Northern Fulmars (in Lancaster Sound) is rather higher than might be predicted and Gaston (1978) found in aerial surveys of westerm Lancaster Sound in August that over 40% of fulmars were in the coastal zone (defined as within 4 km of the shore). Applying this "coastal correction"-as for northern Black legged Kittiwakes (above)-lowers C to 1.02
The conversion factors obtained for "murre spp." are similar to those for puffins, although murres are larger than puffins (23% longer-winged using wing lengths in Birknea easily visible Razorbill C values are very variable, but derive from much lower densities than other auks. The figures for Thick-billed Murres in Lancaster Sound yield an anomalously low value of C , suggesting that the calculated value of D underestimates the real density of birds. The expected density is much higher than for any other species (except fulmars in Lancaster Sound-see above). The low value of C may be due partly to the few PIROP samples available from Lancaster Sound and partly to the tendency-evident asso in murres and "coastal correction" as for fulmars and kittiwakes (above), using 30% of birds found in the coastal zone on aerial surveys (Nettleship and Gaston 1978) lowers C still further, as the anomaly here lies in the very high PIROP counts rather than in high expected densities. We cannot satisfactorily explain this anomalous result.
The values of C for expected densities of auks of less than 0.5 birds $\cdot \mathrm{km}^{-2}$ are particularly variable and, because the The mean of the values of C for all alcids cortesponding to expected densities of at least 0.5 birds $\cdot \mathrm{km}^{-2}$ is 1.8 , with 95% confidence intervals of 1.2-2.3. We have applied this value to alcids in general
(ii) Implications of the conversion factors

It is possible to check on the absolute and relative values of C, by reference to the distances from the ship at which the different species are likely to be visible. Because the PIROP counts are expressed as birds per linear kilometre, a conbirds were detected up to a distance of 500 m either side of the ship. Gannets and kittiwakes (and fulmars after correcting for coastal effects) each have a C of about 1 ; though gannets are larger, many of them are in immature plumage, with varying amounts of brown rendering them less conspicuous, whereas even Ist-year kittiwakes appear largely white so it is reasonable to expect these two species to share a similar C. It is also reasonable to expect them to be detected up to

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} \& \multirow[b]{2}{*}{Region} \& \multirow[b]{2}{*}{BP} \& \multirow[b]{2}{*}{CP} \& \multirow[b]{2}{*}{D} \& \multicolumn{2}{|c|}{PIROP} \& \\
\hline \& \& \& \& \& \(\bar{x}\) \& SE \& C \\
\hline Northern Fulmar \& Lanc. Sound Lanc. Sound (coastal correction) \(\dagger\) \& 344000 \& 577280 \& \[
\begin{aligned}
\& 8.345 \\
\& 5.007
\end{aligned}
\] \& 4.923 \& 0.705 \& \[
\begin{aligned}
\& 1.695 \\
\& 1.020
\end{aligned}
\] \\
\hline Northern Gannet \& \begin{tabular}{l}
Gulf \\
E. Nfld. Labrador
\end{tabular} \& \[
\begin{gathered}
45550 \\
19960 \\
0
\end{gathered}
\] \& \[
\begin{gathered}
41906 \\
16343 \\
0
\end{gathered}
\] \& \[
\begin{aligned}
\& 0.186 \\
\& 0.089
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.073 \\
\& 0.514 \\
\& 0.047
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.016 \\
\& 0.195 \\
\& 0.012
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.372 \\
\& 0.172
\end{aligned}
\] \\
\hline Black-legged Kittiwake \& \begin{tabular}{l}
Gulf \\
E. Nfld. \\
Labrador* \\
Lanc. Sound \\
Lanc. Sound \\
(coastal correction) \(\dagger\)
\end{tabular} \& 82580 123260 207500 \& \begin{tabular}{l}
167377 168866 \\
315400
\end{tabular} \& \[
\begin{aligned}
\& 0.743 \\
\& 0.915 \\
\& \hline .723 \\
\& 0.992
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.707 \\
\& 0.880 \\
\& 0.520 \\
\& 0.935
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.106 \\
\& 0.327 \\
\& 0.119 \\
\& 0.117
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.051 \\
\& 1.041 \\
\& 5 . \overline{0} 0 \\
\& 1.060
\end{aligned}
\] \\
\hline Razorbill \& \begin{tabular}{l}
Gulf \\
E. Nfld. Labrador
\end{tabular} \& \[
\begin{array}{r}
6750 \\
1480 \\
38584
\end{array}
\] \& \[
\begin{array}{r}
3718 \\
814 \\
21221
\end{array}
\] \& \[
\begin{aligned}
\& 0.017 \\
\& 0.004 \\
\& 0.201
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.040 \\
\& 0.018 \\
\& 0.067
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.034 \\
\& 0.007 \\
\& 0.019
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.413 \\
\& 0.550 \\
\& 2.678
\end{aligned}
\] \\
\hline Thick-billed Murre \& Lanc. Sound Lanc. Sound (coastal correction) \(\dagger\) Hudson Strait \& 740000
1650000 \& 614200
1204500 \& \[
\begin{aligned}
\& 9.197 \\
\& 6.438 \\
\& 4.208
\end{aligned}
\] \& 10.597

3.224 \& 1.382 \& $$
\begin{aligned}
& 0.868 \\
& 0.558 \\
& \\
& 1.305
\end{aligned}
$$

\hline Murre spp. \& | Gulf |
| :--- |
| E. Nfld. Labrador | \& \[

$$
\begin{array}{r}
47640 \\
980860 \\
131044
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
35249 \\
519856 \\
69453
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.112 \\
& 2.818 \\
& 0.657
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.035 \\
& 1.294 \\
& 0.347
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.013 \\
& 0.292 \\
& 0.092
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.397 \\
& 2.179 \\
& 1.896
\end{aligned}
$$
\]

\hline Atlantic Puffin \& | Gulf |
| :--- |
| E. Nfld. |
| Labrador | \& \[

$$
\begin{array}{r}
14740 \\
495000 \\
153460
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
13747 \\
470250 \\
145787
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.061 \\
& 2.549 \\
& 1.380
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.017 \\
& 1.493 \\
& 0.708
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.007 \\
& 0.215 \\
& 0.345
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.211 \\
& 1.707 \\
& 1.949
\end{aligned}
$$
\]

\hline
\end{tabular}

* Many non-breeding kitiwakes from Greenland visit Labrador waters in July. + See text for explanation.

Note: Gulf $=$ Gulf of St. Lawrence; E . Nfld. $=$ eastem Newfoundland
$\mathrm{BP}=$ breding $\begin{aligned} & \mathrm{BP}=\text { breeding population (no. of birds); } \mathrm{CP}=\text { countable population; } \mathrm{D} \\ & \text { calculated density (birds per square kilometre) } \\ & \text { PIROP }\end{aligned}=$ mean per linear kilometre recorded on 10 -min PIROP watches; $\mathrm{C}=$ conversion factor (D/PIROP). See text for details.

500 m from the ship, as Dixon (1977) found that gannets, 500 m from the ship, as Dixon (1977) found that gannets, 216 m , and 352 m (respectively) from the ship when sitting on the water, and they would be visible in flight substantially further away. The conversion factor of 1.8 for alcids suggest hat they were visible up to 277 m ; Dixon (1977) first saw Common Murres and Atlantic Puffins at mean distances of 217 and 218 m , respectively.
The values of C are thus reasonable in relation to the little vailable information known about these species' visibility at sea:
Conversion factors have been calculated to three decimal places to minimize rounding errors, but it would give a misleading impression of precision to express them to more han a single decimal place; they are therefore rounded accordingly
(iii) Other species

Conversion factors are also needed for other species, but cannot be calculated directly either because they do not breed in this area (Greater and Sooty Shearwaters Puffinus gravis and P. griseus, respectively, phalaropes Phalaropus spp. Great Skua Catharacta skua); because they feed so close to land while breeding that very few breeders would be detected on PIROP counts (Larus gulls, jaegers Stercoraria spp.); or because their breeding populations have yet to be determined hard to distinguish at sea from non-breeding migrants of Wilson's Storm Petrel Oceanites oceanicus, and Dovekie Alle alle, of which the first breeding population known in Canada was described in 1984 (Finley and Evans 1984)) Conversion factors for these species have to be estimated by comparison with the most similar of the species for which
they can be calculated Dovekies 1.8; they present difficulties because, although their colouring is much the same as the other auks, they are very much smaller (wing length 69% of Atlantic Puffin, 56% of Common Murre, using Dovekie wing length in Norderhaug (1970)). Dovekies typically move in flocks, which are easier to detect than scattered birds but are also invariably underestimated, so the if they do not cancel each ther out. There seems no alternative to using the same conversion factor for Dovekies as for the other auks. Sooty and Great Shearwater 1.4 (the detectability of both shearwaters is likely to be intermediate between that of fulmars and auks because, though they behave like fulmars, they are much darker; a C midway between 1.0 of fulmars and the 1.8 of murres is therefore appropriate). Storm petrels and phalaropes 2.0 (this is the highest as they are the smallest species, thus we feel it is reasonable to suggest that they are twice as hard to see as Northem Futs). Sall ages) Jaegers 1.6 (between Great Black-backed Gull and Skua). Larus gulls, other than Great Black-backed, 1.2 (slightly more than Black-legged Kittiwake to allow for less conspicuous immatures). Great Black-backed Gull 1.4 (slightly more than Northern Gannet, corresponding to smaller size, and slightly higher than other Larus gulls because of the darker back of adults)

Conclusions

(i) Conversion factors for translating the mean numbers of birds seen per linear kilometre on PIROP 10 -min watches to the mean number of birds $\cdot \mathrm{km}^{-2}$ at ship speeds of 5 knots and over, for observations made from at least 4.6 m above the sea, Gannet I.3; Black-legged Kittiwake 1.1; Common Murre, Thick-billed Murre, Razorbill, and Atlantic Puffin 1.8. These species breed in the areas under study and consequently the conversion factors are based on acceptable data from population sizes available for counting.
(ii) By comparison with the most similar of the above species, the following conversion factors are suggested for species that do not breed in the areas under study, and those that breed in numbers either too small or too poorly known to allow con-
version factors to be calculated: Sooty and Great Shearwater 1.4; storm petrels and phalaropes 2.0; Great Black-backed Gull 1.4; other Larus gulls 1.2; Skua 1.8; jaegers 1.6; Dovekie 1.8 .

Acknowledgements

We thank D.N. Nettleship for supplying unpublished information, B. Collins for help with programming and statistics, and H. Boyd, G. Finney, K. Powers, D. Schneider, and S. Wendt for helpful comments on various drafts of this report.

References
Ashcroft, R.E. 1979. Survival and breeding biology of Affins on Skomer Island Wales Om. Scand. 10:100-110

Barrett, R.T. 1984. Comparative notes on eggs, chick growth and fledging of the Razorbill Alca torda in North Norway. Seabird 7:55-61.
Bedard, J. 1969. Histoire naturelle du Gode, Alca torda L dans le golfe Saint-Laurent, province de Québec, Canada Étude du Service canadien de la faune $\mathrm{n}^{\circ} 7$, Ottawa.
Birkhead, T.R. 1978. Attendance patterns of Guillemots Uria aalge at breeding colonies on Skomer Island. Ibis Uria aalge at
$120: 219-229$.

Birkhead, T.R.; Hudson P. 1977. Population parameters for Birkhead, T.R.; Hudson P. 197. Population parameters for
the Common Guillemot Uria aalge. Orm. Scand. 8:145-154. Birkhead, T.R.; Nettleship, D.N. 1982. Studies of alcids breeding at the Gannet Clusters, Labrador. Can. Wildl. Serv Unpubl. paper, Dartmouth, NS. 144 pp
Briggs, K.T.; Hunt, G.L., Jr. 1981. Seabirds: details of strip censusing techniques. Pages 257-266 in Summary Report,
1975-1978. Marine mammal and seabird survey of the Southern California Bight area. Springfield, Virginia, US Dep. Commerce, Natl. Tech. Inf. Serv. Rep. PB 81-248-197. Brown, R.G.B. 1986. Revised atlas of eastern Canadian seabirds. Can. Wildl. Serv., Ottawa. 120 pp
Brown, R.G.B.; Nettleship, D.N.; Germain, P.; Tull, C.E. Davis, T. 1975. Atlas of eastern Canadian seabirds. Can Wildl. Serv., Ottawa. 220 pp.
Burnham, K.P.; Anderson, D.R.; Laake, J.L. 1980. Estimation of density from line transect sampling of biological populations. WildI. Monogr. No. 72
Chapdelaine, G.; Laporte, P. 1982. Population, reproductive success and analysis of contaminants in Razorbills (Alca Widl Serv. Prog Note No. 129. 10 pp

Coulson, J.C.; White, E. 1959. The post-fledging mortality f the kittiwake. Bird Study 6:97-102
Dixon, T.J. 1977. The distance at which sitting birds can be seen at sea. Ibis 119:372-375
Dunnet, G.M.; Ollason, J.C. 1982. The feeding dispersal of lmars Fulmarus glacialis in the breeding season. Ibis 124:359-361.

Dunnet, G.M.; Ollason, J.C.; Anderson, A. 1979. A 28-yea study of breeding Fulmars Fulmarus glacialis in Orkney. Ibi 121:293-300.
Finley, K.J.; Evans, C.R. 1984. First Canadian breeding record of the Dovekie (Alle alle). Arctic 37:288-289
Fumess, R.W. 1983. The birds of Foula. Ambleside: Brathay Hall Trust. 147 pp .

Furness, R.W.; Todd, C.M. 1984. Diets and feeding of ulmars Fulmarus glacialis during the breeding season: a comparison between St. Kilda and Shetland colonies. Ibis 26:377-387.

Gaston, A.J. 1985. Energy invested in reproduction by Thick-billed Murres Uria lomvia. Auk 102:447-458
Gaston, A.J.; Nettleship, D.N. 1981. The Thick-billed Murres of Prince Leopold Island. Can. Wildl. Serv. Monogr. No. 6. 350 pp .
Gaston, A.J.; Collins, B.; Diamond, A.W. 1985. An im proved index of density and estimate of proportions of birds in flight for use with counts of birds at sea on transects of 7 pp .

Harris, M.P. 1980. Breeding performance of Puffins Frater cula arctica in relation to nest density, laying date and year bis 122:193-209

Harris, M.P. 1981. Age determination and first breeding of British Puffins. Brit. Birds 74:246-256.
Harris, M.P. 1983. Biology and survival of the immatur Harris, M.P. 1983. Biology and survival

Harris, M.P. 1984. The puffin. Poyser, Calton, UK.
Hodges, A.F. 1974. A study of the biology of the kittiwake Rissa tridactyla. Ph.D. thesis, University of Durham.

Hunt, G.E.; Eppley, Z.; Burgeson, B.; Squibb, R. 1982 Reproductive ecology, food and foraging areas of seabird Resting on the Priblof Endies 12.1 258 ontinental shelf. Final rep.

Kampp, K. 1982. Den Kortnaebbede lomvie Uria lomvia in reenland. Kandidat thesis, Univ. Copenhagen. 148 pp Trans. R.G.B. Brown, 1983.

Lakhani, K.H.; Newton, I. 1983. Estimating age-specific ird survival rates from ring recoveries-can it be done? . Anim. Ecol. 52:83-92.
Linton, A.; Nettleship, D.N. 1977. Biological investigations of Northern Fulmars (Fulmarus glacialis) at Prince Leopold Northern Fulmars (Fulmarus glacialis) at Prince Leopol mouth, NS. 152 pp.
Lloyd, C.S. 1974. Movement and survival of British Razor ills. Bird Study 21:102-116.

Lloyd, C.S. 1977. The ability of the Razorbill Alca tord o raise an additional chick to fledging. Orn. Scand :155-159.
loyd, C.S. 1982. The seabirds of Great Saltee. Irish Birds 2:1-37.
Lloyd, C.S.; Perrins, C.M. 1977. Survival and age of firs Lloyd, C.S.; Perrins, C.M. 1977. Survival and age of first
breeding in the Razorbill (Alca torda). Bird-banding 48:239-252.

Macdonald, M.A. 1977. An analysis of the recoveries of British-ringed Fulmars. Bird Study 24:208-214

Maunder, J.E.; Threlfall, W. 1972. The breeding biology of the Black-legged Kittiwake in Newfoundland. Auk 89 79-816.
McLagan, R.; Piatt, J. 1982. Aspects of the population biol gy of the Common Murre (Uria aalge) at Cape St. Mary's Newfoundland. Dep. Biol., Memorial University. 29 pp.
Mead, C.J. 1974. The results of ringing auks in Britain and reland. Bird Study 21:45-86.

Moisan, G.; Scherrer, B. 1973. Déplacements saisonniers des Fous de bassan de l'île Bonaventure (Canada). Terre et Vie 27:414-434.
Montevecchi, W.A.; Tuck, L.M. In press. Newfoundland birds: exploitation, status and conservation. Publ. Nuttal Ornithol. Club.
Montevecchi, W.A.; Porter, J.M. 1980. Parental investment by seabirds at the breeding area with emphasis on Norther marine animals Vol 4 Burger J. Olla B B. Winn H.E. (eds.) Plenum Press, New York.

Montevecchi, W.A.; Ricklefs, R.E.; Kirkham, I.R Gabaldon, D. 1984. Growth energetics of nestling Norther Gannets (Sula bassanus) Auk 101:334-341.

Nelson, J.B. 1978. The Gannet. Vermilion, South Dakota, USA: Buteo Books.
Nettleship, D.N. 1972a. Breeding success of the Commo Puffin (Fratercula arctica) on different habitats at Grea island, Newfoundland. Ecol. Monogr. 42:239-268.

Nettleship, D.N. 1972b. Census techniques for seabirds of arctic and eastem Canada. Can. WildI. Serv. Occ. Pap. No 25.31 pp
ettleship, D.N. 1977. Studies of seabirds at Prince Leopold sland and vicinity, Northwest Territories. Can Wildl. Serv Prog. Note No. 73.11 pp .
Nettleship, D.N. 1980. A guide to the major seabird colonies of eastern Canada. Can. Wildl. Serv., Dartmouth, NS. 132 pp.

Nettleship, D.N. 1985. Distribution and status of the Atlantic Alcidae. In Birkhead, T.R.; Nettleship, D.N. (eds.) The Atlantic Alcidae. Academic Press.
Nettleship, D.N.; Birkhead, T.R. 1981. Alcid studies in Labrador: Gannet Clusters, June-September 1981, progres note. Can. WildI. Serv. Unpubl. paper, Dartmouth, NS. 9 pp
Nettleship, D.N.; Birkhead, T.R. ND. Reproductive biology of Black-legged Kittiwakes Rissa tridactyla at three high arctic breeding colonies. Can. Wildl. Serv. Unpubl. paper Dartmouth, NS. 35 pp.

Nettleship, D.N.; Gaston, A.J. 1978. Patterns of pelagic dis sibution of seabirds in western Lancaster Sound and Barrow Strait, N.W.T. Can. Wildl. Serv. Occ. Pap. No. 39. 40 pp

Nettleship, D.N.; Montgomerie, R.D. 1974. The Northern Fulmar Fulmarus glacialis, breeding in Newfoundland. Am. Birds 28:16.
Nettleship, D.N.; Birkhead, T.R.; McLagan, R. 1982. Status and breeding of Black-legged Kittiwakes on the Gannet Clusters, Labrador, 1981. Can Wildl. Serv. Unpubl. paper Dartmouth, NS. 7 pp.

Norderhaug, M. 1970. The role of the Little Auk, Plautu alle (L.), in arctic ecosystems. Pages 558-560 in Holdgate M.W. (ed.) Antarctic Ecology, Vol. I
ierotti, R. 1983. Gull-Puffin interactions on Great Island, Newfoundland. Biol. Cons. 26:1-14.
Poulin, J.M. 1969. Reproduction du Fou de Bassan (Sula bassana), île Bonaventure (Québec), (Perspective éco bassana), ile Bonaventure (Quebec), (Perspecive evec 110 pp

Powers, K.D. 1982. A comparison of two methods of count ing birds at sea. J. Field. Om. 53:209-222.
Salomonsen, F. 1967. The seabirds of Greenland. (Trans R.G.B. Brown 1981). 133 pp. From: "Fuglene på Grønland" Rhodos, Copenhagen.
asker, M.L.; Hope-Jones, P.; Dixon, T.; Blake, B.F. 1984 Counting seabirds at sea from ships: a review of method mployed and a suggestion for a standardized approach. Au 01:567-577.
Wiens, J.A.; Heinemann, D.; Hoffmann, W. 1978. Commu nity structure, distribution and interrelationships of marine birds in the Gulf of Alaska. Final reports of Principa Investigations, Vol. 3. Boulder, Col., NOAA.
Wooller, R.D.; Coulson, J.C. 1977. Factors affecting the age first breeding of the Kittiwake Rissa tridactyla. Ib 119:339-349

