Disponible également en français

No. 170, September 1987

Analysis of trends from woodcock inging ground surveys 1969-85

 by B.T. CollinsIntroduction
The woodcock singing ground survey is conducted by the U.S. Fish and Wildlife Service in cooperation with the Canadian Wildlife Service. The survey takes place during the spring courtship displays of American Woodcock (Scolopax minor). A set of specified routes covering the breeding rage observer assigned to a route conducts a count a the number of male woodcock seen or heard near dusk at 10 well-defined stops along the route. The survey is used o create an index to the breeding population. This index

Figure 1
Area covered by singing ground survey

Canadian Wildlife Service
Progress Notes contain timely data and conclusion biologists and agencies.
is calculated as a product of year-to-year change factors based on those routes that are comparable between each pair of adjacent years (Tautin 1985). The year-to-year change factor procedu own to give potentially false indication make more effiient use of the data, Geissler and Noon (1981) proposed an alternative analysis procedure. A modification of this technique was used in an analysis of the Breeding Bird Survey in Canada (Collins and Wendt 1987), and an analysis of the woodcock singing ground survey data is presented here. A brief

The analysis was done separately for each state or province, and the state/province estimates were combined o provide estimates for each of the two managemen regions (eastern and central) and for each country (Canada

0022722 F S

PROGRESS NOTES, CANADIAN
WTI DI IFF SFRVICF${ }^{\text {Endinnornment }}$ Cand Canatian Wialite
$\substack{\text { Sericrice canadie } \\ \text { delevilatarne }}$
and the United States). The model used in the analysis assumes a simple linear trend in the log scale over time Because this model may not be valid for the entire tim rariods: (i) the eytire survey period (1969-85); (ii) the las 0 years (1976 -85); and (iii) the last 5 years (1981-85).

Results and discussion

The results of the analysis are shown in Table 1. The overal esults by management region are similar to those produce means of the year-to-year adjustment techniqu ($p<0.05$) from 2.40 in 1969 to 1.59 in 1985 for the eastern region and a 9% increase in the index (not signif
For $p<0.05$) from 3.30 in 1969 to 3.60 in 1985. For the eastern region, the estimate of rate of decline a decline of 32% over the 17 yuar period of the survey. thend was negative for all states and provinces for the 1969-85 period. The analysis of the shorter period 1976-85 and 1981-85) also showed an overall significan $p<0.05$) decline. Most state and province estimates of rend were also negative. The lack of statistical significanc for the shorter periods compared with that for the entir ime period may be due to decreased power caused by smaller sample size rather than to a reduction in th gradient of the trend.
In the central region, the picture is less clear. During the entire survey period (1969-85), significant ($p<0.05$) increases were noted in Michigan and Minnesota, wherea a significant decline was noted in Ohio. These results ten of no (The corresponding doubling life for the popu tation would be greater than 99 years.) This suggests that ven though there has been no net change in the popula tion index for the central region, some areas of the regio may need to be managed more carefully to preserve the distribution of the species. Some consideration should b given to partitioning the central region into smalle management areas. During 1976-85 there was a significan ($\rho<0.05$) decline overall, and during 1981-85 there was a decline but it was not statistically significant. Most o the individual state and province trends were estimated to be negative for these two periods
When the data for Canada are separated from those fo the United States, the Canadian data indicate a significan 1976-85) and a downward, though not significant, trend for the shortest period (1981-85). All three estimates of the rate of decline are similar. Most of the trends in individual provinces are negative, but there was one estimated significant increase for Prince Edward Island (P.E.I.) fo 1981-85.
The totals of the individual route weighting factors fo each state/province are shown in Table 2. These show how influential each state/province was in the calculatio of management region and country estimates. Because of a large number of observations or high counts, some states
and provinces are given very high weighting factors Michigan and Ontario have the two highest

To allow a visual assessment of the magnitude of the trend, plots of the mean observed counts were made (o) Counts were not available for all routes in each year of the survey. To adjust for routes not run, the predicted value from the trend line was used in calculating the mean count. The mean predicted count was also plotted on the same figure. Because the mean observed data were adjusted fo routes not run each year, the mean observed and predicted values will tend to be similar, and these plots should not be used as measures of the quality of fit to the trend line Figure 2 shows the plot of average woodcock count adjusted for routes run each year and the fitted trend line for Canada. The magnitude of the trend indicates a sub stantial change in the population index over the 17 -yea period of the survey. The individual routes were weighted when the overall trend lines were calculated. Because this was not done for the observed mean counts, the trend line does not go through the apparent centre of th observations.

Figure 2
Mean observed woodcock counts adjusted for routes run each year and the fitted trend line for Canada

Figure 3, the fitted trend line for the eastern region, indicates a substantial decline in the population index
The fitted trend line for the central region, which does not show a significant slope (Fig. 4), is at variance with the adjusted yearly averages. This may be due to the inability of a single trend line to describe a variety of changes in the index in different states and provinces dur ing different periods of time for this region. Therefore, one should be skeptical of the negligible trend in the woodcock index for the central region.
Despite the misleading indication of the trend line for he central region, most of the data suggest that the wood cock index decreased over much of the breeding rang

Table 1
Analysis of trends in woodcock singing ground counts

Strata	1981-85			1976-85			1969-85		
	NR	Slope	(HDL)	NR	Slope	(HDL)	NR	Slope	(HDL)
Eastern region Canada									
P.E.I.	9	0.0598	(d5)*	11	-0.0147	(h21)	12	-0.0126	(h24)*
New Brunswick	53	-0.0384	(h8)	60	-0.0149	(h20)*	64	-0.0171	(h18)*
Nova Scotia	29	0.0040	(d76)	45	-0.0216	(h14)*	48	${ }_{-0.0023}$	(hgn)
Quebec	39	-0.0110	(h27)	50	0.0033	(d92)	60	-0.0090	(h33)
United States									
Connecticut	4	-0.0394	(h8)	6	-0.0043	(h69)	10	-0.0269	(h11)*
Delaware	1	-1.1475	(h0.3)	2	0.0368	(d8)	3	-0.0278	(h11)
Maine	49	-0.0208	(h15)	60	-0.0167	(h18)*	62	${ }_{-0.0084}$	(h36)*
Maryland	11	-0.1005	(h3)*	15	-0.0347	(h9)*	24	-0.0025	(hgn)
Massachusetts	12	-0.0512	(h6)	16	-0.0139	(h22)	19	-0.0125	(h24)
New Hampshire	14	-0.0177	(h17)	18	-0.0150	(h20)	18	-0.0218	(h14)*
New Jersey	9	-0.0022	(hgn)	13	-0.0001	(hgn)	14	-0.0131	(h23)
New York	67	-0.0121	(h25)	87	0.0013	(dgn)	101	-0.0020	(hgn)
Pennsylvania	32	-0.0090	(h33)	44	-0.0232	(h13)	58	-0.0249	(h12)*
Rhode Island	15	-0.0258	(h12)	2	-0.0164	(h18)	3	-0.0419	(h)* ${ }^{\text {* }}$
Vermont	15	0.0039	(d77)	21	-0.0263	(h11)*	22	-0.0153	(h20)*
Virginia	18	-0.1608	(h2)	31	-0.0014	(hgn)	64	-0.0050	(h60)
West Virginia	29	-0.0751	(h4)*	43	-0.0106	(h28)	45	${ }_{-0.0141}$	(h21)*
Central region Canada									
Ontario	109	-0.0007	(hgn)	113	-0.0174	(h17)*	122	-0.0084	(h36)*
United States									
Illinois	8	-0.1015	(h3)*	24	-0.0158	(h19)	35	-0.0235	
Indiana	24	-0.0704	(h4)*	33	-0.0113	(h27)	43	-0.0013	(hgn)
Michigan	126	-0.0031	(h96)	129	-0.0110	(h27)*	136	0.0043	(d70)*
Minnesota	80	-0.0039	(h77)	89	0.0013	(dgn)	103	0.0155	(d19)*
Ohio	32	-0.0732	(h4)*	49	-0.0130	(h23)	67	-0.0129	(h23)*
Wisconsin	78	-0.0046	(h65)	92	-0.0217	(h14)*	102	0.0010	(dgn)
Eastern region		-0.0259	(h10)*		-0.0112	(h27)*		-0.0107	
Central region		-0.0071	(h42)		-0.0121	(h25)*		0.0009	(dgn)
Canada		-0.0082	(h29)		-0.0153				
United States		-0.0166	(h17)*		-0.0103	(h29)*		${ }_{-0.0011}$	(hgn)
Combined		-0.0140	(h20)*		-0.0118	(h26)*		-0.0038	(h79)*

NR, number of routes used in the analysis.
Slope, estimated slope of the linear regres.
Slope, estimated slope of the linear regression on a log scale.
(HDL), slope expressed as the equivalent half-ife (h) or doubling-life (d) (in years)
(hgn), half-life greater than 99 years.
(dgn), doubling-life greater than 99 year
${ }^{*}$, significant $(p<0.05)$ trend
between 1969 and 1985, though with substantial differences in the rate of change between strata and between the early and more recent years.

Figure 3

Mean observed woodcock counts adjusted for routes run each year and the fitted trend line for the eastern region

Figure 4
Mean observed woodcock counts adjusted for routes rur each year and the fitted trend line for the central region

Acknowledgements

The woodcock singing ground survey relies on the volunteer cooperators who have donated their time and effort to collect the data. The U.S. Fish and Wildlife Service provided the computer data ike for my analysis. I would comments on earlier drafts of this report.

References
Collins, B.T.; Wendt, J.S. 1987. Analysis of population trends in Canada from the North American Breeding Bird Survey 1967-83. Can. WildI. Serv. Occas. Pap. Ser. In preparation.

1. Geissler, P.H. 1984. Estimation of animal population trends and annual indices from a survey of call counts or other indications. Pages 472-477 in Proceedings of the Research Methods.

Geissler, P.H.; Noon, B.R. 1981. Estimates of avian population trends from the North American Breeding Bird Survey. Stud. Avian Biol. 6:42-51.

Tautin, J. 1985. American Woodcock Administrative Report, 1985 Breeding Population Status. U.S. Fish and Wildlife Service, Laurel, Maryland.

Table 2
Totals of individual route weighting factors for each state and province

Strata	1981-85	1976-85	1969-85
Eastern region Canada			
P.E.I.	179.56	1446.51	8872.45
New Brunswick	1782.69	16681.71	76903.99
Nova Scotia	639.06	6782.25	27275.50
Quebec	703.89	5367.84	15135.06
United States			
Connecticut	76.26	619.56	4215.94
Delaware	1.62	35.03	310.64
Maine	1570.23	12394.96	64087.49
Maryland	180.18	1661.20	6154.28
Massachusetts	218.66	1935.57	9032.29
New Hampshire	327.44	2818.76	16376.11
New Jersey	158.62	1331.63	7838.00
New York	2341.45	17434.47	76428.80
Pennsylvania	362.88	3299.23	19477.79
Rhode Island	7.08	55.00	595.82
Vermont	272.16	2704.65	13391.21
Virginia	334.64	2010.42	10416.26
West Virginia	345.11	2976.92	12847.77
Central region Canada			
Ontario	4682.80	32116.49	136224.60
United States			
Illinois	113.50	508.90	1264.80
Indiana	239.18	2025.26	9108.95
Michigan	5107.18	43666.02	205526.50
Minnesota	3385.17	24230.37	65101.86
Ohio	642.94	4727.86	22953.26
Wisconsin	2231.24	21467.00	95941.55

ppendix 1

Estimating trend in fixed plot surveys
The procedures used in the analysis have been described in detail in various publications (Geissler and Noon 1981, Geissler 1984, Collins and Wendt 1987). This appendix gives only a brief descrip ion of the procedure used
Let $y_{i j}$ denote the j th observation taken on route i, and x_{j} formed to:

$$
z_{i j}=\log _{10}\left(y_{i j}+0.23\right)
$$

This transformation was used for the following reasons. First, it was recognized that the counts were only an index to the popupretable as relative changes. In addition, trends probably affe proportion of, rather than the entire, population (Geissler and Noon 1981). This suggests that a multiplicative model would be suitable base for interpreting the data. A log transform conmanipulate as closed-form expressions for the solution are avail ble. A constant number (0.23) was added to each value, as there were many observed values of zero which could not be log ransformed. The value 0.23 was chosen because the bias itroduced by it was less than 5% under a variety of simulate rends (Collins and Wendt 1987)
A simple linear regression of $z_{i j}$ against time was done me (b, $)$ for each route to provide an estimate of trend over grei) br each route. The individual route trends wer province state provide an overall estimate of trend for a stratum province, state, management region or country) using a weighted average:

$$
b=\frac{\sum_{i=1}^{n} w_{i} b_{i}}{\sum_{i=1}^{n} w_{i}}
$$

ere w_{i} denotes the weight given to route i and n denotes th number of routes in the stratum.

Weighting factor

The weighting factor is a product of two terms: (i) f_{1}, a meas-
ure of the precision of the estimate of trend; and (ii) $f_{2 i}$, a measure of the average index value on the route.
ber of counts made on the route and the spacing in of the numcounts. The first term in the weighting factor gives greater weight to those estimates which have more observations or are more spread out over the period of the survey. The factor $f_{1 i}$ used to
weight for the precision of the estimate was:

$$
f_{1 i}=\sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}
$$

where \bar{x}_{i} is the average of the n_{i} years route i was measured. A given change in the population of woodcock along a route
is of more concern in areas of high density than in areas of low density. The second term in the weighting factor, f_{2}, is the predicted value for the index at the mid-range of the years of the survey and gives greater weight to those areas which have larger population of woodcock
In analyses of similar surveys (Geissler and Noon 1981,
Collins and Wendt 1987), Collins and Wendt 1987), a third term, measuring the area of in the weight function. As measurements of the area represented by each route were not available, such a term in the weighting factor was not used in this analysis.
In the woodcock survey, some routes were run more than once in the same year by different observers to provide comparable
routes for the year-to-year adjustment estimator. In the analysis used here, all observations on a route in one year were averaged. The analysis ignored the differences in number of observations taken on one route in one year

Testing the hypothesis of no trend

The significance of the estimate of trend was assessed using a permutation test (Collins and Wendt 1987). In this procedure, the hypothesis that there had been no trend is tested by randomly rearranging the observations within each route. The proportion of times the randomized estimate is larger than the observed estimate is indicative of the probability that the observed trend could
have arisen if the year-to-year differences in count had been due solely to random errors.

