The impact of the Migratory Birds Convention Act and of seasonal phenology on recreational hunting of waterfowl in northwestern Canada
 by F.G. Cooch

Abstract

Sales of migratory game bird hunting permits and the reports of respondents to the National Harvest Surveys in 1979-85 are used to compare the impact of restrictions imposed by the Migratory Birds Convention Act and the effects of seasonal phenology on hunting opportunity and success in northwestern Canada. Comparisons have been made using specially defined zones in the Yukon and the District of MacKenzie, Northwest Territories, and in the The shortness of the hunting season in the Yukon and MacKenzie District, resulting from the opening date of 1 September required by the Migratory Birds Convention and the early onset of winter, has been largely offset by high daily bag limits and by relatively low competition between hunters. As a result, residents in the two territories on average enjoy waterfowl hunting success equal to, or better than, that of residents in the northern parts of the western provinces and above the national average. higher daily success and seasonal kill gen ducks thave a hunters in the provinces, but take fewer geese.

Introduction

There is a longstanding belief in some quarters that residents of the Yukon and Northwest Territories wishing to engage in recreational hunting of waterfowl are at a disadvantage because the Migratory Birds Convention Act of 1917 does not permit any hunting season for migratory game birds to open before 1 September. Many northern restricted because of the early onset of winter and the early date of southward migration. That latitudinal fact of life has been compensated for in the Migratory Birds Regulations for the territories: there are no possession limits' (as there are elsewhere in Canada), and daily bag limits for ducks and geese are 25 and 10 respectively. In southern Canada, comparable daily limits are generally no more than 8 and 6 respectively, with a possession limit equal to two daily bag limits.

Results
This study compares reported hunting opportunity for and success in taking ducks and geese in five territorial and eight provincial zones (two in the northern portions of each

Canadian Willdife Service, Ottawa, Ontario, K1A OH3.

ROGRESS NOTES, CANADIAN WILDLIFE SERVICE
\qquad
of the western provinces abutting the two territories (Fig. 1). These zones were specially defined to see what tudes. In the two territories, each zone incorporates thre degrees of latitude and in the provinces each zone encompasses two degrees of latitude. Because migratory game bird hunting permits are not available in the Districts of Franklin and Keewatin, where there are few people who would be required to possess the permit, this analysis has been restricted to the District of MacKenzie and the Yukon Territory.
The data used were derived from the sales records of migratory game bird hunting permits and responses to the sition Survey (SCS) for the period 1979-85 inclusive. Because of the small numbers of hunters involved and variations in their response when selected for the survey data for the seven-year period were summed and divided by seven to produce an annual average. The record of permit sales by zone is given in Table 1: the average number sold ranged from 34 in the lower MacKenzie (Zone 03 to 2855 in Zone 11 of northern Alberta. The number of US "duck stamps" sold in Alaska are also shown in with that state.
Permit sales have been in general decline throughou
Canada since 1979, showing a 27% decrease by 1985 , (though a slight recovery in 1986). Table 1 shows a similar trend in the northwest, with a drop in annual sales from 7429 in 1979 to 5163 in 1985, a decrease of 30.5%. Permit sales declined by 19.8% in the territories (Zones 01-05 inclusive), and by 33% in the provincial northern zones (06-13). The relative stability of permit sales in the given the rapid demographic changes that must occur in service industries when mining and oil development wax and wane. It may be a reflection of good waterfowl populations and hunting opportunity
Figure 2, derived from the duck and goose calendars of respondents to the NHS, shows the dates and number of days on which hunting activity was reported to have occurred in each zone - shown separately for ducks and geese. The numeral marks the median date of reported zones, results from all seven years have been pooled. There are annual variations not depicted in Figure 2. In some years hunting may be terminated prematurely in some zones by the early onset of winter, although published dates of freeze-up show that "early winters" are infrequent (Allen 1974, confirmed by more recent unpublished Atmospheric Environment Service records). The fewest days of hunting opportunity were experienced by the 34 permit-holders hunting in Zone 03 and the maximum Alberta). The reported duck hunting seasons in the south
of the MacKenzie District (Zones 04 and 05) are surpris ingly long, as are the indicated median dates of huntin northern Manitoba, Saskatchewan, and Alberta (Zones 06 08 , and 10).
Tables 2 and 3 summarize hunting activity and succes in all zones, for ducks and geese respectively. For duck hunting, the five territorial zones ranked in the top six zones at least three times in each category: Zones 05,04 and 03 (Northwest Territories) ranked first, second, an third, and 01 (Yukon) sixth. Goose hunters in the terri tories were not as fortunate, geese being scarce in the areas whe staging areas during southward migration; yet in term f average kill of geese per successful hunt four of the six highest averages are in territorial zones $03,04,02$, and 05 respectively.
Tables 4 and 5 show hunter activity per week expressed as percentages of total hunting effort in each zone (to elim nate the differences in scale of the numbers hunting in th various zones). Note that the peak of duck hunting in territorial Zone 05 occurred not in the first week of the season but in the third. The general pattern in the north (and in ctivity to be greatest in the first week and to declin hereafter.
For many years the Migratory Birds Regulations for the erritories have been drafted to compensate for the short ened window of opportunity by providing higher bag limit and removing requirements for possession limits. Th requencies of reported daily bags of ducks and geese Tables 6 and 7) give some indication of the extent to which his added opportunity is used by territorial hunters. In the five territorial zones, 16.6% of the reported dally duck provinces. An estimated 23% of the total territorial kill can be assigned to the expanded limits, especially in Zones 03,04 , and 05 , where daily bags of greater than six epresent $26.2,15.3$, and 9.5% respectively of all reported kills.
If, for example, the daily bag limit in Zone 04 had been 6 , rather than 25 , the number of birds killed would have been reduced by 27%. There is no doubt that territorial residents do take advantage of the expanded limits provided under the Migratory Game Birds Regulations. hanges in hunter activity and success for ducks and geese for each sample zone have been placed in the CWS Report ibrary (Report CWSC 3885). An example of the forma of these analyses is given in Table 8 (NWT Sampling Zone 04). The first interval begins on the last Wednesday in August to standardize the intervals over a number of years and does not coincide precisely with weeks within he month.

Waterfowl hunting by territorial residents outside the territories In addition to hunting within the territories, many resiprovinces, or purchase permits when south on holidays.

On average, 125 permits are purchased in the provinces by residents of the Northwest Territories and Yukon Te ritory, primarily in Alberta (40%) and British Columbia (25%). This average sale is in addition to the average o 1269 permits sold in the two territories. In addition, othe persons buying their permits in the territories and claiming territorial residency do some hunting locally, then proceed south on holidays or to overwinter and do most of their hunting there. Their reported kill and general activit are incorporated into estimates derived for the provinc of hunt and not for the territory of residence or permit purchase. How many hunters do this is not entirely clear ate that it is at least as great as the number who purchas permits in the provinces (125). The principal quarry of hese hunters in the south appears to be geese, not ducks. Table 9 compares hunter success in Zone 01 (Yukon) Zones 04 and 05 combined (MacKenzie), and the north ern NHS zones* in each of the provinces that abut the terr ories. (The two most northern zones in the territories 02 and 03 - where only 45 and 34 permits respectivel were sold, have been excluded.) In biological terms it is Stratum 01 and MacKenzie 04 and 05 with Alberta NHS Stratum 02. The average kill of ducks and geese by terri orial hunters exceeds that in the adjacent parts of th provinces, and, except for geese in Zone 01 (Yukon) erritorial averages exceed the national average for both ducks and geese. A comparison is also made with avail able data from Alaska. While US statistics do not distin uish between successful duck and goose hunters, it shoul be noted that duck stamp buyers in Alaska killed an aver age of 5.2 ducks and 0.95 geese per season, whereas migra killed 10.1 ducks and 1.1 geese per season.
Some spokespersons for recreational hunters seek to equate conditions in the interior of the territories with thos in Alaska, especially southern Alaska. In reality th hronology of breeding seasons in most of the two are is significantly different. Break-up occurs much later in he Canadian north than in Alaska south of Fairbanks The Canadian season extends correspondingly later into he autumn. It is unrealistic to compare seasons simply on he basis of latitude.
Regulations related to opening seasons not only mus conform to the Migratory Birds Convention but also to nesting at Kendall Island, Anderson Delta, and Bank sland rarely complete egg laying by 20 June. Incubation equires another 22 days, bringing the likely date of las hatch to 12 July. Adults then enter a moult and begin to fly when the goslings are about 42 days post hatch. Thi means that flight begins for a significant portion of the popudministrator would want to be accused of opening

These NHS zones have
 These NHS zones have different boundaries from the smaller special

 These NHS zones have differezones used earlier in this study.
season on birds still flightless or with soft primaries. Hunting before 1 September, even as far south as Yellowknife or Whitehorse, would also certainly be detrimental to diving ducks such as scaup, many of which are still flightless or with soft primaries on 1 September. Opening in August would undoubtedly lead to overharvest of philopatric aife and Rae resulting in the local burnout situation first described by Hochbaum (1947)
Studies by Murdy (1964), Trauger (1971), and Trauger and Bromley (unpubl.) and summaries furnished by Bellrose (1976) provide a basis for estimating the probable impact of an open season beginning before 1 September in the vicinity of Yellowknife, Northwest Territories. Lesser Scaup and Green-winged Teal are selected as examples because of their importance in the bag of territorial residents, even though these species are not well represented along with those of Lesser Snow Geese, are given in Figure 3. Similar, but more extensive, data in Figure 4 (derived from Alliston 1984) demonstrate the situation in the lower MacKenzie District. It can be assumed that the situation in Zone 04 is intermediate between those presented in Figures 3 and 4
Inability to harvest the local production of species such as Pintail, which begin breeding, moulting, and emigrating earlier, is not limited to areas north of $60^{\circ} \mathrm{N}$. Southern Manitoba, for example, has a fall flight of Blue-winged
Fewer than 50000 Pintails breeding in southern Alberta and Saskatchewan are taken from a fall flight that in some years exceeds two million birds. Nothing can be done to change phenology; it is a biological fact of life that most Pintails and Blue-winged Teal have begun their exodus from southern Canada as eanly as 15 August. Those species that do not begin to leave until later are generally those that have relatively slow development, large clutches, and long incubation periods
The SCS provides a basis for estimating the species composition of the kill of waterfowl. Wing receipts from both bined in Tables 10 and 11 to give some indication of the species composition of the kill in the NWT. Use of the SCS as a measure of change in hunting effort by weekly interval is not satisfactory because receipts tend to be a function of the supply of envelopes and not of hunting activity. A dwindling supply of envelopes leads to more complete reporting of species taken early in the season than of those comparison of species composition can be made within weekly intervals and not between intervals in terms of the numbers of a particular species killed. Because of the small sample size available from the two territories, it was not deemed sensible to produce separate tables for each special sampling zone ($01-05$ inclusive), and the species composition is determined for he enire MacKenzie District (Table 10) and the entire Yukon (Table 11). Within the northern zones of the provinces no differences from the tables of relative abundance published annually in the NHS

The SCS is also used to provide an assessment of the age and sex ratios of the kill. Because of limited samples available from the two territories, computation of ratio is not feasible except for Mallards combined for both ter dult. The comparable ratio for the special norther aduit. The comparable ratio for the special northern for relative vulnerability, because of a lack of pre-season banding data from the territories. They should not be inter preted to infer better production in the territories when compared with the provinces. A more reasonable conclu ion is that, given the size of the Mallard kill occurring early in the season when local production is most vulner able, the high ratio in the territories is a reflection of the general immaturity of the birds produced in that region. erritories is a further measure of the impact of phenol ogy, not of high reproductive success.

Discussion

Although there is no doubt that the number of days available for hunting ducks or geese increases as one pro ceeds south, there is also no doubt that the high daily bag limits, lack of a possession limit, low hunting pressure, and he opportunity for Sunday hunting in the territories result achieving a success rate and seasonal bag equal to or greater han that which is possible in most areas further south. Moreover, the reports of hunters in the NHS show that in the southern zones of the territories (where most peo ple live and most recreational hunting is carried on), effective season lengths and the median dates of hunting activity are little different from those several hundred kilometres to the south. In the MacKenzie Delta, geese are available in early September, as they are at Churchill, Manitoba, though access may not be as easy. Lack of easy access to ably has a greater impact on recreational hunting than the lack of birds during the legal open hunting season. The proposals by those who call for renegotiation of the Migratory Birds Convention to allow opening the water fowl hunting season, as early as 1 August, for the benefi of northern recreational hunters and tourists are biologically unsound. Although such an amendment would lead initially to increased kills, this would be followed by rapid depletion of breeding populations in the vicinity of communities, because significant proportions of locally breed their powers of flight. It is difficult to believe that recreational hunters in the territories would wish to be associated with killing flightless birds.

Acknowledgment

The assistance of Maurice Gratton, Computing and Applied Statistics Directorate, who created several special programs to retrieve data for the national surveys;
J.S. Wendt, and H. Boyd for their useful comments; and Dianne Saliga, for typing the manuscript, is gratefully acknowledged. The figures were prepared by the Drafting Section of Conservation and Protection, Environment Canada.

References

Allen W.T.R. 1974. Freeze-up, break-up and ice thickness in Canada Atmos Environ. Serv. Rep. CLI-1-77. ISSN 0068-7715. 185 pp.

Alliston, W.G. 1984. Studies of numbers, distribution, habitat use and productivity of breeding waterfowl populations, MacKenzie Delta, summer 1982. Rep. prep. by L.G.L. Ltd. for B.C. Hydro

Bellrose, F.C. 1976. Ducks, geese and swans of North America. Stackpole Books, Harrisburg, Penna. 544 pp. Cooch, F.G.; Wendt, S.; Smith, G.E.J.; Butler, G. 1978. The Canada migratory game bird hunting permit and
associated surveys. Pages 8-39 in Boyd, H.; Finney, G.H. eds. Can. Wild. Serv. Rep. Ser. No. 43. 127 pp.
Hochbaum, H.A. 1947. The effect of concentrated hunting pressure on waterfowl breeding stocks. Pages 53-64 in Trans. 12th North Am. Wildl. Conf. Wildl. Manage. Inst., San Antonio, Tex.
Murdy, A.J. 1964. Population dynamics and breeding biology of waterfowl on the Yellowknife Study Area, . Wish and Wildl. Serv. Prog. Rep. 61 pp .
Trauger, D.L. 1971. Population ecology of Lesser Scaup (Aythya affinis) in subarctic taiga. Ph.D. Thesis, Iowa State Univ. Press, Ames, Iowa. 118 pp.

Trauger, D.L.; Bromley, R.M. 1975. Greater Scaup of the West Mirage Islands, Great Slave Lake, Northwest Territories. Unpublished Manuscript.

Table 2

) Average seasonal duck hunting statistics, 1979-85

Zone	$\begin{gathered} \text { Permits } \\ \text { sold } \end{gathered}$	Hunters		$\begin{aligned} & \text { Total } \\ & \text { kill } \end{aligned}$	Seasonal kill per hunter		$\begin{array}{\|c} \text { Days } \\ \text { hunted/ } \\ \text { active } \\ \text { hunter } \end{array}$	$\begin{aligned} & \text { Kill/ } \\ & \text { day/ } \\ & \text { active } \\ & \text { hunter } \end{aligned}$	$\begin{array}{\|c\|} \hline \% \\ \text { success- } \\ \text { ful } \\ \text { hunts } \end{array}$	Averagekill/success-ful hunt	$\begin{aligned} & \begin{array}{l} \text { Success- } \\ \text { ful } \end{array} \% \\ & \hline \text { Active } \end{aligned}$	Averageseasonlength(days)	Media date o hunting
		Active	$\begin{array}{\|c} \hline \begin{array}{c} \text { Success- } \\ \text { ful } \end{array} \end{array}$		Active	$\begin{gathered} \text { Success- } \\ \text { ful } \end{gathered}$							
01	458	274	221	2453	8.95	11.10	4.70	1.90	43.86	3.06	80.66	72	22 S
02	45	33	27	97	2.94	3.50	6.93	0.42	54.10	2.63	81.82	36	14 Se
03	34	33	29	287	8.70	9.90	3.70	2.35	50.00	3.73	87.89	32	13 Se
04	78	129*	106	1388	10.76	13.09	5.25	2.05	49.52	3.82	82.17	70	21 Sep
05	654	632	567	8189	12.96	14.47	6.71	1.93	51.27	4.04	89.72	81	25 Se
06	360	352	235	613	1.74	2.61	4.57	0.38	50.64	2.89	66.76	58	13 Se
07	309	265	216	1605	6.06	7.43	5.69	1.07	49.46	2.92	81.51	70	23 S
08	33	29	22	228	7.88	10.36	6.00	1.31	33.31	1.66	75.86	51	24 S
09	41	33	21	374	11.33	17.81	6.43	1.60	44.87	3.58	63.64	91	1 Oct
10	640	434	364	3627	8.35	9.86	4.93	1.69	55.23	3.49	83.87	81	26 Se
11	2855	2236	1507	16874	7.54	11.19	6.07	1.24	53.25	3.41	67.40	100	5 Oct
12	86	32	26	176	5.50	6.77	6.80	0.81	29.03	3.44	81.25	64	1 Oct.
13	820	542	363	2276	4.19	6.27	5.50	0.76	47.38	3.30	66.97	92	4 Oct.
Alaska	17973	12251	9841	93110	7.60	9.46	6.11	1.24	N/A	N/A	80.33	N/A	N/

Indicates movement of hunters into zone from other areas.

Table 1
Annual sales of migratory game bird hunting permits in the territories and the northern parts of the western provinces, 1979-85, and duck stamp sales in Alaska during the same period

Zone	Area	Year							\bar{x}
		1979	1980	1981	1982	1983	1984	1985	
01	Yukon Territory	543	483	464	522	422	449	324	458
02	Yukon Territory	41	42	50	50	52	47	37	45
03	Northwest Territories	27	26	25	32	42	45	41	34
04	Northwest Territories	92	74	69	81	90	83	57	78
05	Northwest Territories	636	632	670	687	618	722	615	654
06	Manitoba	380	388	378	364	370	319	322	360
07	Manitoba	402	378	340	322	252	248	223	309
08	Saskatchewan	43	66	73	25	6	8	8	33
09	Saskatchewan	39	39	41	44	36	48	38	41
10	Alberta	701	668	610	594	592	696	619	640
11	Alberta	3438	3462	3103	2587	2566	2569	2259	2855
12	British Columbia	86	77	108	102	90	80	57	86
13	British Columbia	1001	1021	961	834	733	631	563	820
Total		7429	7356	6892	6244	5869	5945	5163	6413
Duck stamps sold in Alaska		19689	20110	15814	18000	18388	18475	15335	17973

Table 3
verage seasonal goose hunting statistics, 1979-85

Zone	$\begin{gathered} \text { Permits } \\ \text { sold } \end{gathered}$	Hunters		$\begin{gathered} \text { Total } \\ \text { kill } \end{gathered}$	Seasonal kill per hunter		$\begin{aligned} & \text { Days } \\ & \text { hunted/ } \\ & \text { active } \\ & \text { hunter } \end{aligned}$	$\begin{aligned} & \text { Kill/ } \\ & \text { day/ } \\ & \text { active } \\ & \text { hunter } \end{aligned}$		Averagekill/success-ful hunt	$\begin{aligned} & \begin{array}{l} \text { Success- } \\ \text { ful } \end{array} \\ & \hline \text { Active } \end{aligned}$	Average season length (days)	Mediandate ofhunting
		Active	Successful		Active	$\begin{gathered} \text { Success- } \\ \text { ful } \end{gathered}$							
01	458	274	83	322	1.18	3.90	4.67	0.25	21.80	1.94	30.29	49	18 Sept
02	45	33	7	22	0.67	3.14	2.91	0.23	25.00	2.75	21.21	19	5 Sept
03	34	33	11	167	5.06	15.18	1.83	2.77	54.55	6.66	33.33	17	11 Sep
04	78	129*	31	128	1.00	4.13	3.07	0.33	24.82	2.79	24.03	64	20 Sep
05	654	632	100	866	1.37	8.66	4.97	0.28	18.75	2.54	15.82	67	19 Sep
06	360	352	317	3384	9.61	10.68	4.84	1.99	64.41	3.01	90.06	64	11 Sep
07	309	265	112	1005	3.79	8.97	4.93	0.77	29.23	2.37	42.26	68	23 Se
08	33	29	-	-									
09	41	33	6	47	1.42	7.83	5.50	0.26	18.18	2.00	18.18	28	Sep
10	640	434	290	2635	6.07	9.09	4.28	1.42	37.49	1.90	66.82	76	28 Sep
11	2855	2236	1383	10878	4.86	7.86	5.20	0.93	42.40	2.52	61.85	100	9 Oct.
12	86	32											
13	820	542	128	599	1.15	4.68	4.80	0.37	20.76	1.96	37.43	83	7 Oct.
Alaska	17973	12251	9841	9356	0.76	0.95	(6.11)	(0.12)	N/A	N/A	(80.33)	N/A	N/A

[^0]Table 4
Duck hunting activity expressed as a percentage of total seasonal hunting activity in each zone for weekly time periods
beginning 1 September

Zone	Weekly intervals from 1 September													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
01	15.4	18.0	18.0	15.4	9.8	7.8	7.7	3.7	2.8	1.4	-	-	-	-
02	28.8	17.5	17.5	11.3	15.0	10.0	-	-	-	-	-	-	-	-
03	8.1	59.5	11.7	15.3	5.4	-	-	-	-	-	-	-	-	-
04	20.0	19.4	14.3	12.8	8.2	5.7	7.1	6.9	4.6	1.2	-	-	-	-
05	18.9	16.1	24.0	13.7	9.4	7.2	3.3	2.3	1.3	1.7	1.2	0.9	-	-
06	29.2	28.6	18.9	10.1	6.0	3.2	2.6	1.4	-	-	-	-	-	-
07	10.9	17.6	21.3	16.7	10.8	7.6	6.7	5.0	2.3	1.3	-	-	-	-
08	0	0	22.2	62.9	7.4	7.4	-	-	-	-	-	-	-	-
09	8.7	9.4	13.9	12.2	12.2	9.4	11.9	5.3	6.4	2.8	2.8	2.5	2.5	-
10	10.5	12.9	15.0	15.9	11.5	13.3	8.1	6.3	5.1	0.7	0.6	--	-	-
11	7.4	9.4	10.6	11.1	7.1	15.8	14.0	9.9	6.4	3.6	2.5	1.3	0.8	0.3
12	10.2	16.4	6.2	0	0	6.2	6.6	19.5	24.8	-	-	-		-
13	9.7	7.3	11.2	12.8	12.0	11.9	13.0	8.9	6.3	3.0	2.0	1.1	0.8	-

Goose hunting activity expressed as a percentage of total seasonal hunting activity in each zone for weekly time periods beginning 1 September

Zone	Weekly intervals from 1 September													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
01	22.6	19.1	15.6	17.0	10.3	6.4	5.8	2.2	1.1	-	-	-	-	-
02	69.2	7.7	23.1	-	-	-	-	-	-	-	-	-	-	-
03	23.5	52.9	23.5	-	-	-	-	-	-	-	-	-	-	-
04	21.0	15.2	14.7	19.0	6.3	4.0	6.9	5.8	5.6	1.6	-	-	-	-
05	10.9	12.5	32.8	13.0	10.0	5.6	5.4	3.2	1.6	2.0	2.0	1.3	-	-
06	30.1	29.6	18.3	13.2	3.0	2.3	1.0	1.0	0.8	0.4	-	-	-	-
07	5.8	15.2	23.4	19.2	14.1	8.3	6.6	4.2	1.8	1.5	-	-	-	-
08							record							
09	0	9.5	21.1	23.2	20.0	9.5	7.4	9.5	6.6	-	-	-	-	-
10	6.9	11.5	17.3	17.6	14.8	14.6	9.5	4.4	1.7	0.4	0.8	0.6	-	-
11	4.1	5.0	8.9	10.3	14.3	15.6	13.6	10.8	9.0	3.6	2.4	1.1	0.8	0.3
12							record							
13	5.8	4.9	11.6	10.7.	11.7	13.8	10.9	10.4	6.8	7.1	3.4	1.9	0.6	0.3

Table 6
Frequency of daily bag of ducks per zone (expressed as percentage)

Zone	Daily bag																		$\%$ of kill in bags of over 6
	1	2	3	4	5	6	7.	8	9	10	11	12	13	14	15	16-20	21-25	No.	
01	22.1	26.0	16.4	14.8	9.5	5.4	1.3	2.0	0.4	0.5	0.1	0.7	0.2	0.4	0.2	0.2	-	561	6.0
02	37.1	22.9	14.3	10.0	7.1	1.4	-	2.9	-	-	-	-	1.4	-	1.4	-	-	70	5.7
03	28.3	17.4	4.4	8.7	6.5	8.7	6.5	10.9	2.2	2.2	2.2	2.2	-	-	-	-	-	92	26.2
04	28.8	29.3	17.1	8.8	9.3	5.4	1.2	2.7	0.5	2.7	0.7	1.0	0.5	0.7	2.2	2.4	0.7	410	15.3
05	25.8	24.1	14.9	12.1	9.1	5.1	2.1	1.9	0.9	1.9	0.2	0.2	0.2	0.7	0.2	0.7	0.5	431	9.5
06	22.5	28.4	13.6	11.4	13.6	10.6	-	-	-	-	-	-	-	-	-	-	-	236	-
07	21.3	29.2	15.8	14.8	7.1	11.7	-	-	-	-	-	-	-	-	-	-	-	366	-
08	58.3	16.7	25.0	-		-		-	-	-	-	-	-	-	-	-	-	24	-
09	10.2	21.2	16.9	20.3	15.3	16.1	-	-	-			-	-	-	-	-	-	236	-
10	13.6	28.2	14.7	15.0	15.5	4.8	2.5	5.6	-	-	-	-	-	-	-	-	-	354	8.1
11	16.8	27.1	15.1	14.7	9.6	6.7	2.1	7.9	-	-	-	-	-	-	-	-	-	2185	10.0
12	16.7	27.8	27.8	5.6	5.6	16.7	-	-	-	-	-	-	-	-	-	-	-	$\begin{array}{r}36 \\ \hline\end{array}$.
13	19.3	24.1	16.7	15.0	10.6	5.6	2.3	6.3	-	-	-	-	-	-	-			605	8.6

Table 7
Frequency of daily bag of geese per zone (expressed as percentage)

Zone	Daily bag										N
	1	2	3	4	5	6	7	8	9	10	
01	53.9	23.6	10.9	5.5	4.9	6.3	0.6	-	-	-	165
02	62.5	37.5	-	-	-	-	-	-	-		16
03	50.0	28.6	7.0	7.0	7.0	-	-	-	-		28
04	29.0	31.9	8.7	13.0	3.0	7.3	3.0	1.5	3.0	-	138
05	33.3	21.6	19.6	11.8	4.0	2.0	2.0	2.0	2.0	2.0	102
06	20.1	27.0	12.2	15.3	25.4	-	-	-	-	-	378
07	34.2	27.2	16.7	11.4	10.5		-	-	-	-	114
08 09						eco					
09	83.3	16.7	-	-			-	-	-	-	12
10	19.3	30.7	18.6	10.8	20.6	-	-	-	-		388
11 12	29.3	28.9	16.7	10.3	14.7		-	-	-	-	1370
13	46.3	29.3	11.6	8.2	4.8	recor	-	-	-		147

Sampled bag limit analysis for 1979-85 in Northwest Territories Special Zone 04

Ducks Killed	Time period (7-day intervals)														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
0	18	82	101	74	49	39	39	43	15	8	2	2	1	1	474
1	5	17	23	18	21	11	16	1	5	1	0	0	0	0	118
2	11	19	28	14	13	11	12	6	5	1	0	0	0	0	120
3	2	18	11	8	8	9	4	5	3	1	0	1	0	0	70
4	4	9	6	5	3	4	1	2	2	0	0	0	0	0	36
5	2	9	6	8	6	4	2	0	0	0	0	0	1	0	38
6	2	3	7	6	3	0	0	1	0	0	0	0	0	0	22
7	0	2	1	1	0	1	0	0	0	0	0	0	0	0	5
8	2	1	4	2	1	0	1	0	0	0	0	0	0	0	11
9	0	0	2	0	0	0	0	0	0	0	0	0	0	0	2
10	0	3	3	2	0	1	0	1	1	0	0	0	0	0	11
11	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
12	0	2	1	1	0	0	0	0	0	0	0	0	0	0	4
13	0	1	0	1	0	0	0	0	0	0	0	0	0	0	2
14	0	1	1	0	1	0	0	0	0	0	0	0	0	0	3
15	1	6	1	0	0	1	0	0	0	0	0	0	0	0	9
16	1	0	1	0	0	0	0	0	0	0	0	0	0	0	2
17	1	0	1	0	1	0	0	0	0	0	0	0	0	0	3
18	0	0	1	1	0	0	0	0	0	0	0	0	0	0	2
20	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2
25	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2
Total active hunter-days	51	177	199	141	106	81	75	59	31	11	2	3	2	1	939
Total ducks	180	468	398	252	170	128	74	52	42	6	0	3	5	0	1778
Ducks per active hunter-day per time period	3.52	2.64	2.00	1.78	1.60	1.58	0.98	0.88	1.35	0.54	0.00	1.00	2.50	0.00	1.89
Total successful hunter-days	33	95	98	67	57	42	36	16	16	3	0	1	1	0	465
Ducks per successful hunter-day per time period	5.45	4.92	4.06	3.76	2.98	3.04	2.05	3.25	2.62	2.00	0.00	3.00	5.00	0.00	3.82
$\%$ successful days	64.7	53.6	49.2	47.5	53.7	51.8	48.0	27.1	51.6	27.2	0.0	33.3	50.0	0.0	49.5

Table 9

Area		Successful hunters		Total kill		Seasonal bag/successful hunter	
		Ducks	Geese	Ducks	Geese	Ducks	Geese
Yukon	Zone 01	221	83	2453	322	11.10	3.90
NWT	Zones 04 \& 05	673	131	9577	994	14.23	7.59
Manitoba	NHS Zone 02	7150	5581	87517	39677	12.24	7.11
Saskatchewan	NHS Zone 02	6269	3518	90854	20784	14.49	5.91
Alberta	NHS Zone 02	27491	9989	338971	63496	12.33	6.36
British Columbia	NHS Zone 01	5869	2369	60153	9151	10.25	3.86
Canada		268886	114836	2583755	656063	9.61	5.71
Alaska		9841	N/A	93110	9356	9.46	0.95

Table 10
Species composition of duck bag by weekly intervals, MacKenzie District, Northwest Territories, 1979-85

Species	Weekly intervals									Unknown	Total	\%
	September					October						
	1-7	8-14	15-21	22-28	29-5	6-13	14-20	21-27	28-3			
Mallard	57	20	19	10	16	2	3	1	1	5	134	50.2
Wigeon	14	4	-1	7	3	-	3	-	-	1	33	12.4
Pintail	10	3	1	1	-	-	-	-	-	-	15	5.6
Green-winged Teal	6	4	1	1	2	1	-	-	-	-	15	5.6
Other dabblers	2	4	3	-	-	-	-	-	-	1	10	3.7
Lesser Scaup	9	1	2	5	2	4	-	-	-	1	24	9.0
Other divers	13	3	7	6	9	1	1	-	-	-	40	14.9
Total ducks	110	39	32	32	28	8	7	1	3	8	268	
\% Mallard	51.8	51.3	59.4	31.3	57.1	25.0	42.9	50.0	25.0	62.5		

Table 11

secies composition of duck bag by weekly intervals, Yukon 1979-85

Species	Weekly intervals									Unknown	Total	\%
	September					October						
	1-7	8-14	15-21	22-28	29-5	6-13	14-20	21-27	28-3			
Mallard	36	24	9	13	1	18	10	10	1	13	135	39.1
Wigeon	20	7	5	3	1	-	-	-	-	13	49	15.3
Pintail	11	6	8	6	3	-	-	-	-	6	40	12.5
Green-winged Teal	7	3	9	1	3	-	-	-	-	2	27	8.4
Other dabblers	8	3	1	-	-	5	-	1	-	2	20	6.2
Lesser Scaup	3	5	2	2	-	1	-	-	-	2	15	4.7
Other divers	2	0	4	4	5	9	4	4	0	5	37	11.5
Total ducks	87	48	38	29	13	33	14	15	1	43	321	
\% Mallard	41.4	50.0	23.7	44.8	7.7	54.5	71.4	66.6	100	30.2		

Special sampling zones

Figure 2
Season lengths for ducks (1) and geese (2), showing median

Zone	September	October	November	December	Total days available		
01	1		\square		72		
		-			49		
02	-1				36		
	-				19		
03	1				32		
	2				17		
04	1				70		
	2				64		
05			-		81		
					67		
06	2				58		
					64		
07	1		-		70		
	2				68		
08	-1-				51		
					-		
09	-2_-		- -		91		
			28				
10	1				-		81
				76			
11	-			-	100		
	-				100		
12	1				64		
	- - -				-		
13					92		
		2	- -		83		

Figure 3
Phenolog
Phenology of three species of waterfowl (1) nest initiation, (2) egg laying, (3) incubation, (4) hatching and fledging

Figure 4
Breeding chronology of waterfowl species in the MacKenzie Delta in 1982. The three indicated breeding activities are esting (1), incubation (2), and rearing (3) (data from
Alliston 1984).

- Mallard

Pintail
Green-winged Teal
Wigeon
Shoveler

* Canvasback
Δ Scaup
- Scaup \quad White-winged Scoter

[^0]: diates movemen of huters into the zone from other areas.

