No. 180, March 1989

Surveys of breeding waterfowl in southern Ontario, 1971-87
D.G. Dennis ${ }^{1}$, G.B. McCullough ${ }^{1}$, N.R. North ${ }^{1}$, and B Collins ${ }^{2}$

Introduction

The Canadian Wildlife Service (CWS) began surveys of breeding waterfowl in southern Ontario in 1951. Early sur veys (e.g., Stirrett 1952) were largely exploratory and did no determine what was happening to duck populations or seg ments of duck populations. Those surveys, for the most part, However surveys that cover blocks of countryside are espe cially important in areas such as Ontario, because of varied habitat types and conditions across the province and because much of the population of many duck species is produced in beaver ponds, a transient but extremely important production habitat.
As reported in Dennis (1974), CWS began operational sur veys in Ontario south of latitude $46^{\circ} 15^{\prime} \mathrm{N}$ in 1971. These were designed to yield a valid breeding-pair index for certain species, and thus provide a benchmark against which to meas ure trends in population.
the trends in the populations of several species of waterfow between 1971 and 1987

Methods

Although survey methods were completely described i Dennis (1974), a brief review is in order. Southern Ontario was divided into two strata based on Mallard (Anas platyryn chos) kill locations obtained from the CWS Species Composi tion Survey for the 1967, 1968, and 1969 hunting seasons The stratum with high-density wing receipts (H) was consid ered to represent good-quality habitat, whereas the other, with quantity and perhaps quality of waterfowl production habitat per unit of area. Plots were established on the two strata using a randomly placed grid such that L was sampled at about one sixth the intensity of $\mathrm{H}-74$ and 416 plots respectively. Plots were each $0.8 \mathrm{~km} \times 0.8 \mathrm{~km}$, and many were slightly relo cated to be adjacent to a road. Figure 1 illustrates the distribu tion of the plots in the two strata. When surveying plots, a team of observers drove to the boundary of the plot and con ducted a detailed check of potential waterfowl habitat, identified on an Ontario Ministry of Natural Resources vertical aerial photograph or the area, walking to and a canoe to check wate areas they could not reach on foot. Time to survey a plot nor

0
CWS, London, Ontario N6E 1 Z7.
Canadáa

Table 1
Number of plots completed in each year

Year	1971	1972	1974	1976	1981	1982	1985	1987
Plots completed	463	280	131	280	280	69	349	349

mally averaged one hour. The surveys were timed to coincide, as far as possible, with the early nesting season of Mallards and Black Ducks (Anas rubripes), as described in Dennis (1974). Waterfowl were recorded as pairs, lone males,
 same sex and species or three or more birds of the same or different species). Table 1 shows the number of plots surveyed each year during 1971, 1972, 1974, 1976, 1981, 1982, 1985 and 1987. Variations in numbers from year to year are largely a factor of accessibility, except for 1974, when two teams o the 1971 survey it became obvious that there were too many in the H stratum for the available observers; therefore, ever third plot was not surveyed in subsequent years. In 1971, 1972, 1976, 1981, 1985, and 1987, 266 identical plots were surveyed in the H stratum, and 64 identical L plots were surveyed in 1971, 1982, 1985, and 1987.
The mathematical analysis has been described in detail in various publications (Geissler and Noon 1981, Geissler 1984 Collins and Wendt, unpubl.). Let $y_{i j}$ denote the $j^{\text {th }}$ observaion taken on plot i, and $x_{i j}$ denote the year this observatio was taken. The $y_{i j}$ is transformed to

$$
\begin{aligned}
& y_{i j}=\log 10\left(y_{i j}+0.23\right) \\
& Z_{i j}=\log
\end{aligned}
$$

This transformation was used because, first, the counts were only an index to the population, hence absolute changes in th index could not be interpreted as relative changes and, sec ond, trends probably affect some rather than all of the popula tion (Geissler and Noon 1981). These considerations suggest that a multiplicative model would be a suitable base for interpreting the data. A log transform converts a multiplicative model to a linear model, which is easier to manipulate sinc closed-form expressions for the solution are avaiable. A conmany observed values of zero that could not be log transformed The value 0.23 was chosen because the bias introduced by thi value was less than 5% under a variety of simulated trends Collins and Wendt, unpubl.)
A simple linear regression of $z_{i j}$ against time was done eparately for each plot to provide an estimate of trend over ime $\left(b_{i}\right)$ for each plot. The overall trend for southern Ontario was calculated as a weighted average of the individual plo rends:

where w_{i} denotes the weight given to plot i, and n the num ber of plots in the stratum. The weighting factor is a product

4*

$\begin{gathered} \text { Env } \\ \text { Can } \end{gathered}$	Environnement Canada
$\underset{\substack{\text { Canadian wild } \\ \text { Sevice }}}{ }$	Sevice ca de la aune

Figure 1

of two terms - a measure of the precision of the estimate o Thend and measure of the average index value on number of counts on the plot and the time between them. Th first term in the weighting factor gives greater weight to thos stimates that have more observations or are more spread ou ver the period of the survey. The factor used to weight for he precision of the estimate was

$$
\sum_{i=1}^{m_{i}}\left(x_{i j}-\bar{x}_{i .}\right)^{2}
$$

$j=1$
where \bar{x}_{i} is the average of the m_{i} years plot i was measured given change in the population of waterfowl along a plas A given change in the population of waterfowl along a plo
is of more concern in high-density than in low-density areas. The second term in the weighting factor, the predicted value for the index at the mid-range of the years of the survey, gives greater weight to those areas with a larger population of water fowl.
Occasionally very large numbers of non-nesting waterfowl are observed on a survey plot in a staging area for migration These large counts can distort the measurements of trend. To rduced to 50 (i.e winsorized at 50). The same procedure was followed for the second term of the weighting factor, the predicted count at midyear

The significance of the estimate of trend was assessed using dure, the hypothesis that there had been no trend is tested by randomly rearranging the observations within each plot. The proportion of times the randomized estimate is larger than the observed estimate measures the probability that the observed trend could have arisen if the year-to-year differences in count had been due solely to random errors.

Results and discussion

Table 2 shows the number of potential breeding pairs for the major species as determined from 266 survey plots in the H stratum and for 64 plots in the L stratum during 1971-87. Table 3 shows the estimated waterfowl population trends between 1971 and 1987. The trends in Table 3 are based on data gathered over a relatively long time over a large area of areas of eastern North America.
A number of factors must be considered when assessing the results of the trend analysis. First, considering that the survey has been conducted over 17 years, there has been fair conGBM) have been present for all surveys, while the (hird (NRN) missed only 1971 and 1972 . As for assistants, seven participated

Table 2 nd 64 number of breeding pairs on 266 plots in H stratum and 64 plots in L stratum

Year	Stratum	Species					
		Mallard	Black Duck	Mallard with Black Duck	Green- winged Teal	Wood Duck	Canad Goose
1971	H	185	54	1	45	24	7
1971	L	10	10	0	3	5	0
1972	H	236	49	1	42	22	2
1976	H	248	40	2	12	62	6
1981	H	278	17	5	15	81	11
1982	L	31	3	2	0	15	0
1985	H	330	18	1	11	65	20
1985	L	23	4	1	0	14	1
1987	H	345	14	0	9	88	30
1987	L	22	6	0	3	7	2

for two surveys, one for four years; all others were presen for one year.
The study period encompassed the rapid conversion in south en Ontario from mixed farming to grain farming during th 1970s as a result of high world grain prices, which led to som destruction of habitat. We suspect, however, that much of th habitat destroyed was of marginal quality for breeding waterand uat he expansion of grain farming dario 1 op waterfowl. Most of the destruction of production areas in agri cultural southern Ontario probably occurred during earlier periods of agricultural expansion.
Our breeding-pair survey apparently subtends the major area in eastern North America where the fastest change in Black Duck abundance occurred during the study period. Trend anal sis in Table 3 suggests that the population is decreasing by alf in 11 years. In absolute numbers, Black Ducks declined rom 93 to 26 on plots surveyed in both 1971 and 1987. Gen able for Black Ducks, especially beaver ponds, improved ove he study period. These observations are supported by surveys by GBM (in prep.) that found that beaver ponds on the tudy plots had increased from 146 totalling 558.1 ha in 981-82 tô 158 totalling 590.5 ha by 1987
We believe that hybridization with Mallards is the single factor most responsible for the decrease in Black Ducks a hypothesis discussed in detail by Ankney et al. (1987). Despite he high rate of Mallard expansion in Ontario (the trend analy is indicates a population doubling in 43 years), continental Durham (1985), the continental Mallard population decline rom 9845000 in 1971 to 5475000 in 1985 . By 1987 it had recovered slightly to 6691000 (Durham 1987)
As for the decreasing trend in Green-winged Teal (Anas (recca) numbers, midwinter inventory figures for the Atlan tic Flyway suggest a decline from 1971 to 1987, although the trend is rather erratic. Numbers counted in the flyway in January 1971 were 107 200; in January 1988 they were 60900 These data are similar to the trend in breeding pairs in the survey plots, where the population shows a haff-life of 19 years Ontario occur in the area in which the plots were located. For

Table 3
Esimated trends ${ }^{\mathrm{a}}$ in southern Ontario waterfowl 1971-87: of decrease from greatest rate of increase to greatest rate

Species	Number of plots used in analysis	Total birds observed observed	Total birds observed winsorized at 50	Estimate of trend
Canada Goose	52	1575	575	$0.0225(\mathrm{~d} 13)^{\text {b }}$
Wood Duck	132	754	754	$0.0171(\mathrm{~d} 17)^{\text {b }}$
allard	267	3034	2879	0.0071 (d43) ${ }^{\text {b }}$
Common Goldeneye	21	133	114	-0.0043 (h69)
Common Merganser	r 26	341	329	-0.0046 (h65)
Ring-necked Duck	34	203	203	-0.0069 (h43)
Blue-winged Teal	114	958	953	-0.0087 (h34)
Green-winged Teal	63	290	290	-0.0157 (h19) ${ }^{\text {b }}$
Black Duck	108	454	454	-0.0269 (hl1) ${ }^{\text {b }}$
All ducks	298	6167	5853	0.0033 (d92)

The estimate of trend is the slope of the trend across time on the log scale. The number in parentheses denotes the corresponding ${ }^{5}$ Significant $(p \leq 0.05)$
that reason, the increasing number of Wood Ducks should be directly correlated with a change in kill. According to the CWS was 115380 The trend in kill probably under-represents the increase in the Ontario breeding population, because the kill of Wood Ducks in Ontario includes a rather large portion of moult migrants (largely adult males) from the U.S., which distorts the local stock at risk. The trend analysis suggests that Wood Ducks breeding in southern Ontario double in 17 years. Species such as the Ring-necked Duck (Aythya collaris), Common Merganser (Mergus merganser), and Common Goldeneye (Bucephala clangula) were mostly found in a few plots on the northern boundary of the survey area. Thu
The plot surveys were designed to survey early nesters such The plot surveys were designed to survey early nesters such Ducks. Blue-winged Teal (Anas discors), as well as Ringnecked Ducks, are late nesters; therefore, they may have been sampled erratically, subject to variations in the proportion that had returned to the vicinity of breeding locations at the time
When the surveys were designed there was little thought that they might be useful for Canada Geese, which in 1970 did not commonly nest in the survey area. However, the plots canadensis maxima) were expanding in southern Ontario. The sample plot analysis suggests that the population doubles every 13 years; independent CWS surveys of Giant Canada Geese in southern Ontario suggest that numbers increased from 19285 in August 1977 to more than 61610 in August 1986. Ross et al. (1984) published results of the plot surveys for 1971-76 with emphasis on Mallards, Black Ducks, Wood Ducks, Blue-winged Teal, and Green-winged Teal. The trends to 1987 continue those forecast by Ross, with the exception oo early to adequately sample Blue-winged Teal, and thus may be a measure more of the timing of migration than of
population changes. The decreasing trend may represent reductions in the prairie populations rather than those in Ontario. Due to concerns about the status of Black Ducks, these surveys may be repeated at more regular intervals in future. The authors see little reason for present population trends to change in the foreseeable future, except perhaps that the rate of decrease of Black Ducks may be slowed by restrictive hunting
regulations established in Canada and the U.S. in the mid 1980s.

Acknowledgements

The plot surveys were conducted with the assistance of many people. Without exception, field personnel have been diligent and keenly interested in conducting high-quality surveys. have included G. Bain, D. Brown, R. Chandler, M. Channing, J. Collins, J. Dobell, A. Doberstein, P. Godin, J. Hawkings, B. Johnson, L. Kellaway, S. Muir, R. Peart, K. Ross, W. Simkin, J. Vanos, and S. Wendt. The authors are especially grateful to F.G. Cooch, who was largely responsible or suggesting an organized, repeatable, survey system for Ontario, and to H . Boyd for his assistance along the way, especially in the preparation of finished reports.

References

References
Ankney, C.D.; Dennis, D.G.; Bailey, R.C. 1987. Increasing Mallards, decreasing Black Ducks: coincidence or cause and effect? J. Wildl. Manage. 51(3): 523-529.

Dennis, D.G. 1974. Breeding pair surveys in southern Ontario. Pages 45-52 in Boyd, H. ed. Waterfowl studies in eastern Canada, 1969-73. Can. Wild. Serv. Rep. Ser. No. 29. 105 pp.

Durham, M. 1985. 1985 Waterfowl breeding surveys duck mbers the lowest in 30 years. U.S. Fish and Wildl. Serv press release. 27 July 1985.

Durham, M. 1987. Spring duck breeding populations unchanged from last year. U.S. Fish and Wildl. Serv. pres release. 21 July 1987.

Geissler, P.H. 1984. Estimation of animal population trend and annual indices from a survey of call-counts or other indi cations. Pages 472-477 in Proceedings of the Am. Stat. Assoc Sect. on Survey Research Methods Am. Stat. Assoc. Washing ton, D.C

Geissler, P.H.; Noon, B.R. 1981. Estimates of avian popu lation trends from the North American breeding bird survey Pages 42-51 in Ralph, C.J.; Scott, J.M. eds. Estimating Cooper Ornithological Society: Coper Ornito

Ross, R.K.; Dennis, D.G.; Butler, G. 1984. Population trends of the five most common duck species breeding in south ern Ontario, 1971-76. Pages 22-25 in Curtis, S.G.; Dennis D.G.; Boyd, H. eds. Waterfowl studies in Ontario, 1973-81 Pap. No. 54. 69 pp

Stirrett, G.M. 1952. Waterfowl breeding ground survey in southern Ontario. Pages 96-98 in Waterfowl populations and breeding conditions, summer 1952. U.S. Fish and Wild. Serv Sci. Rep. Wildl. No. 21. 303 pp

