

Aussi disponible en français
 No. 63, April 1976

Estimates of total numbers in the Hudson Bay population of Lesser Snow Geese, 1964-1973 by H. Boyd ${ }^{1}$

Abstract

The finding of very large numbers of Lesser Snow Geese (Anser e. caerulescens along the Hudson Bay coast in May confirmed that the midwinter inventories in the US have contirmed that the midwinter inventories in the US have
seriously underestimated the population size: the corre seriously underestimated the population size: the corres-
ponding winter counts were 1037000 in December 1972 and 1202000 in December 1973.
Lincolin Index estimates of the numbers in August can be obtained from estimates of the US hunting kill and the proportion of direct recoveries of banded geese, adjusted for non-reporting. Using a reporting rate of one-third, the August population estimates for 1973 and 1974 were 2499000 and 3410000 respectively and the mean values for the quinquennia 196
2228000 .
Estimates of the fall flight into the US can be obtained by combining published estimates of the US kill with results of the winter inventories, adjusting the latter upwards by the ratio number seen in May 1974/number seen in December 1973 to allow for incomplete detection in winter. The adjusted fall flight estimates for October 1972 and 1973 are 1884000 and 2299000 , with quinquennial means of 400000 in 1964-63 and 2134000 in 1969-73.
Although neither method of retrospective estimation is suggest that the population was tending to increase in the suggest that the population was tending to increase in the
decade $1964-73$, despite an increasing kill in the US and fears that the total numbers were diminishing. The increase seems to have been due to a decline in mean annual losses of full-grown geese, not to an increase in recruitment.

Introduction
Until recently, the only information on the population size of the stock of Lesser Snow Geese breeding around Hudson Bay was provided by the long series of midwinter inventories made for the US Fish and Wildlife Service (USFWS) in Louisiana and Texas by J. Lynch and others (see, especialy, 1974 and Dzubin Boyd and Stephen 1975 for the data 1974, and Dzubin, Boyd and Stephen 1975 for the data
used in this paper). These indicated a population, in mid January, i.e. late in the US hunting season, averaging 750000 (range 525000 to 1015000) in the years 1950 to 1959; and 722000 (range 576000 to 799000) in 1960 to 1969 Subsequently, counts in December rose from 826000 in 1969 to 1341000 in 1971, 1032000 in 1972 and 1202000 in 1973.

Lynch's suspicions that the winter inventories serio usly underestimated the total population size have recently been confirmed by two types of surveys in Canada. Vertical aerial photography of the twelve Hudson Bay Snow Goose colonies 43600 nests of Snow Geese in those colonies (Kerbes 1975), 43600 nests of Snow Geese in those colonies (Kerbes 197 corresponding to a late August population of ahout 2.6
million full grown and first-year geese. Aerial surveys of geese scattered along 2660 km of the coast of Hudson Bay and James Bay in late May led to estimates of 1.65 ± 0.13 million Lesser Snow Geese present on 19 May, 1973 and 2.11 ± 0.07 million on 22 May, 1974 (Curtis 1976).
If in recent years there have been far more Lesser Snow Geese than previously realised, it is obviously of practical importance to determine whether this is a result of genuin plete or more accurate surveying techniques. The principal purpose of this note is to derive an independent set of estimates of the number of Lesser Snow Geese by reviving the method proposed by lincoln (1930), using information from recoveries of banded birds in conjunction with esti mates of hunting kill. The results are of unknown reliability However, they are sufficiently plausible and raise enough points of interest to suggest that with attainable refinements the method could be of use as a supplement to and check on other methods.

The Lincoln Index estimates are compared with a second set of estimates referring to the 'fall flight' into the US obtained by combining published estimates of US harvest with the results of winter inventories, adjusted for incompletcness of detection. These estimates are also of unk nown reliability, affected by some arbitrary assumptions and perhaps biased.
Throughout this report the narme Lesser Snow Goose is applied to geese of both the white and blue colour phases,
the latter often referred to by other authors Bu Blue Geese the latter often referred to by other authors as Blue Geese
and sometimes treated by them as a separate form as, for example, in USFWS reports. That practice is unfortunate. It adds to the seeming complexity of the situation by increasing the number of entities being considered, while reducing the sample sizes, and encourages the idle belief that not enough is yet known to permit firm management decisions to be made.

Methods

Nethods in late summer
In 1930 lincoln pointed out that an estimate of the total number of waterfowl in the United States could be made using the relationship
total no. waterfowl
\qquad

At that time any estimate of the kill was no more than a suess and the proposed procedure was not followed up, although a great deal of attention has since been given to arted animals, comprehensively reviewed by Cormack (1969) and Seber (1973).

With the introduction of national surveys of waterfowl hunting in the US which sample total hunter activity, spe cific composition of the kill, and age-ratios in the kill, it is now possible to obtain seaso nal estimates of Sno w Goose kill, K, reassembled in Table 1 from data presented in USFW eports. I have combined data from the Central and Mississippi thy ways and for Lesser Snow and Blue Geese, and the reliability of specific estimates of US goose-hunting kill btained from the mail- and parts-surveys seems to have been published. Some State agencies are sceptical of the est mates for their states, at least where the FWS estimates differ substantially from those obtained by local surveys, but there seems to be some confidence in the results at the level of an
entire Flyway.
Estimates of Snow Goose kill in Canada have also been obtained in a rather similar way by the Canadian Wildlife Servec since 1967, but these are relatively small and are use only the US harvest in arriving at population estimates.
The number of Snow G eese banded each year, b, is known quite accurately, although it is likely that appreciable losses of young geese between banding and fledging have occurred on two occasions since 1964. What is much less certain is whether the location of banding has an important effect on the representativeness of the banded sample in relation to al the geese in the population. The direct recovery rates of Island and at Cape Henrietta Maria, Ontario) ares (on Batfin less than those of geese banded at colonies on the west side of Hudson Bay; but the estimated mortality rates do not differ significantly (Boyd 1976). At the level of approximation appropriate to a preliminary survey of the entire population it seems at least as useful to group all bandings, ignoring colony of origin, as to attempt to weight the samples o andings and recoveries by colony size or in other ways.
The difference in recovery rates just referred to is unimportant limitation on the use of the reported direct recoveries d as a measure of the number of banded geese killed. Not all the bands found on shot geese are reported. As no experimental assessments of the reporting rates appropriate to Lesser Snow Geese have been made, I have assumed a constant annual reporting rate of one-third, based on results for several species of geese found by Martinson and McCann (1966) and Henny (1967). There may well be substantial local variations and trends in reporting rates, though these involved were banded in the Canadian A crere the when were marked in southern Canada or the US, close to the site. of recovery. te values have been calculated for gecse in their first year
and for all older geese, because young geese are substantially more vulnerable to hunting than birds more than a year old The seasonal valuess of K are given in.Table 1 and of b and d with the estimates of N in Table 2

Size of fall flight

An estimate of the fall flight (F) into the US can be obtained as the sum of the midwinter inventory (W) and of the harvest (K) in the Mississippi and Central Flyways, Table 3 includes two sets of such estimates. The second ($F^{\prime}=K+W^{\prime}$) includes an upward adjustment of the winter count to allow for incomplete detection and/or underestimation of the number in large flocks. The correction factor uses the counts made in
May 1973 and 1974 (mentioned in the introduction) as estimators of the complete population size in the preceding December, with an arbitrary adjustment for losses betw December and May. Such a device assumes that the midwinter inventories, while incomplete, nevertheless included a constant proportion of the geese alive at the date of the count. Clearly this assumption is most unlikely to be wholly justified.
Results
Given the crude nature of the data and estimating procedures it would be inappropriate to attach much weight to particular numerical values. The Lincoln Index estimates include two absurd values: (1) the adult population in August 1968 is estimated to have been much larger than the entire popula-
ion in August 1967 , and (2) the adult population in Augus 1974 was sightly larger than that of the entire stock in August 1973. At the other extreme, the apparent large re duction from 1965 to 1966, involving the deaths of nearl $3 / 4$ of the stock, seems likely to be an exaggeration. The general impression, ho wever, is of a growth in total number
between the first and second quinquennium, due to an increase in the number of geese more than a year old. That increase was ap parently not due to an increase in the mean number of young produced but to a reduction in the mortality rate of full-grown geese. The fall flight estimates (TTable 3) similarly suggest an increase from the first to the second quinquennium, both the average harvest and the average mid winter count increasing substantially-the former by 31.1%, he latter by 26.7%, as compared with the 23.5% increase in Lincoln Index estimates.
The somewhat paradoxical result that a rise in mean pa pulation size has been accompanied by a greater rate of increase in the US kill can be explored more fully by means of Tables 4-6, which deal with estimates of losses and mortality rates, the relative magnitude of the August, fall and midwinter estimates and the US harvest as a proportion of the August and fall populations. Table 4 includes estimates of aninual mortality rates for geese banded at Hudson Bay onies for the years 1966 to 1973 (after Boyd 1976). As with the estimates of total numbers, the year-by-year
estimates of losses and mortality fluctuate widely and inconsistently, yet the generalised picture given by the quin quennial means is remarkably consistent. From Table 4, average yearly losses from all causes were down from

604000 in 1964-69 to 442000 in 1969-74 (a reduction of 26.8%) while the average US hunting kill rose from 270400 to 438200 (Table 1), an increase of 62.1%. Corresponding ality rate of full-grown geese fell from over 30% in 1964-69 to under 20% in 1969-73.

Implications for managemen

What seems to have been happening is a substitution of kil by US sport hunting for other causes of deaths. That the average kill in the US in 1969-73 comes very close to the average total losses over the same period perhaps suggests that the capacity to absorb increasing losses to hunting in entirely, been exhausted
The lack of resemblance between the annual rates of mortality calculated in different ways is troubling. It emphasises the great need to develop better techniques and more appropriate models for measuring survival and/or loss.
Although the estimated sport hunting kill of Hudson Bay Snow Geese in Cañada (Table 7) is still only a small fraction of the total, it has been growing rapidly in Manitoba. Mor over, the still incomplete information on the subsistence of James Bay, shows it to be large enourh to call for its inclusion in any population model for the use of managers. It would be rash for the USFWS and the CWS, or State and Provincial game agencies, to assume that because the Hudson Bay Snow Geese flourished between 1964 and 1973 they will continue to do so without any serious attempt to manage them on the basis of sound biological information. his note shows just how uncertain we still are of some of he elementary and key facts from year to year. In such un certainty it would be easy to let things go too far

References . Mortality rates of Hudson Bay Snow G eese 1967-73. Can. Wildl. Serv. Prog. Note No. 61.4 pp.
Cormack, R.M. 1969. The statistics of capture-recapture methods. Pages 455-506 in H. Barnes (ed.). Oceanography and marine biology, an annual review, Vol. 6. Allen an Unwin, London.
Curtis, S.G. 1976. Estimating numbers of Lesser Snow Geese. Can: Wildl. Serv. Biometrics Report. 44 pp

Dzubin, A., H. Boyd and W.J.D. Stephen. 1975. Blue and Snow Goose distribution in the Mississippi and Central Flyways, 1951-71. Can. Wildl. Serv. Prog. Note No 54.34 pp .
onny, C.J. 1967. Estimating band reporting rates from banding and crippling loss data. J. Wild. Manage. 31(3) 533-538.
Kerbes, R.H. 1975. The nesting population of Lesser Snow G eese in the eastern Canadian Arctic: a photographic in ventory of June 1973. Can, Wildi. Serv. Rep. No. 35 46 pp.
incoln F.C. 1930. Calculating waterfowl abundance on the asis banding returns. US Dept. Agriculture, Circula No. 118.4 pp.

Lynch, J.J. 1972. 1971 Productivity and mortality among geese, swans and brant. Part II. Historical records from productivity appraisals, 1950-71. Res. Prop. Rep, US 42 pp .
Lynch, J.J. and J.R. Singleton. 1964. Winter appraisals of annual productivity in geese and other water birds. Wil fowl Trust Ann. Rep. 15:114-126
Lyneh, J.J. and J.F̄. Voelzer. 1974. 1973 Productivity and mortality among geese, swans and brant. Res. Progr.
Martinson, R.K. and J.A. McCann. 1966. Proportion of re covered soose and brant bands that are reported. J. Wildl. Manage. 30(4):856-858.
Seber, G.E.F. 1973. Estimation of animal abundance and related parameters. Griffin, London. 506 pp .

Table

stimates (in thousands) of the kill of Lesser Snow Geese in the Mississippi and Central Flyways, 1964-65 to 1974-75, partitioned by age-ratios (immature/adult) found in samples of goose tails in US harvest surveys. Data from USFW Special Scientific Reports and Administrative Reports, combining published figures for 'Lesser Snow' and 'Blue' geese, already adjusted for unretrieved
in Dzubin, Boyd and Stephen 1975)

	US harvest $\left(\times 10^{3}\right)$			
Breeding yr	K	$=$	$K_{a}+$	+
1964	227.3	116.6	K_{i}	K_{i} / K
1965	238.0	121.4	0.487	
1966	403.4	178.9	224.5	0.490
1967	289.1	160.9	128.2	0.444
1968	194.0	142.7	51.3	0.265
Mean 1964-68	270.4	144.1	126.3	0.467
1969	477.1	196.0	281.1	0.589
1970	675.5	316.5	359.0	0.532
1971	392.3	244.8	147.5	0.376
1972	245.7	188.1	57.6	0.234
1973	400.2	147.8	252.4	0.631
Mean 1969-73	438.2	218.6	219.5	0.472
Mean 1964-73	354.3	181.4	172.9	0.470
1974	384.9	240.4	144.5	0.375

Table 2
Lincoln Index estimates (in thousands) of number of Lesser
Snow Geese in the eastern Canadian Arctic in August,
1964-73. Estimates of K are given in Table 1

Breeding yr	Adults (more than 1 yr old)			'Young (just prior to fledging)			Total population$N=N_{a}+N_{i}$
	Banded b_{a}	Recovered d_{a}	Estimated No. N_{a}	$\begin{gathered} \text { Banded } \\ b_{j} \end{gathered}$	Recovered d_{j}	Estimated No. N_{i}	
1964	1443	49	1145	657	24	1010	2155
1965	6745	223	1224	4851	205	920	2144
1966	400	37	554	4052	327	797	1351
1967	2421	103	1163	3427	274	494	1659
1968	8716	154	21.95	1217	123	138	2333
Mean 1964-68	-	-	1256	-	-	672	1928
1969	2963	112	1482	1892	228	667	2149
1970	4273	193	1908	5998	590	994	2902
1971	3243	164	1422	1360	124	475	1897
1972	2115	90	1473	3491	304	220	1693
1973	2418	81	1471	3556	291	1028	2499
Mean 1969-73	-	-	1551	-	-	677	2228
Mean 1964-73	-	-	1404	-	-	674	2078

Table 3
Estimates (in thousands) of 'fall flight' of Lesser Snow
Geese into the Mississippi and Central Flyways, 1964-73,
obtained from sum of hunter kill in those flyways and winter
inventory counts by USFWS (latter from Table 8 in Dzubin,

Breeding yr	$\underset{K}{\text { Hunter kill }}$	$\begin{aligned} & \text { Winter inventory } \\ & W \end{aligned}$	Fall flight $F=K+W$	Adjusted ${ }^{*}$ winter inventory W^{\prime}	Adjusted fall flight $F^{\prime}=K+W^{\prime}$
1964	227	796	1023	1285	1512
1965	238	698	936	1127	1365
1966	403	642	1045	1036	1439
1967	289	633	922	1022	1311
1968	194	729	923	1177	1371
Mean 1964-68	270	700	970	1127	1400
1969	477	720	1197	1138	1615
1970	676	1081	1757	1708	2384
1971	392	1328	1720	2098	2490
1972	246	1037	1283	1638	1884
1973	400	1202	1602	1899	2299
Mean 1969-73	438	1074	1512	1696	2134
Mean 1964-73	354	887	1241	1412	1767

*Adjustment based on observations (after Curtis and Lumsden, in
prep.) that in May 1973 there were 1650000 Lesser Snow Geese on
the Hudson Bay coast and that in May 1974 there were 211000 . These correspond to winter inventories of 1037000 and 1202000
respectively. The numbers of deaths from January to May in each year
are not known but are probably at least 50000 and not more than
are not known but are probably at least 50000 and not more tha
80000 , including late season kills in Texas and Louisiana, spring
kills by native subsistence hunters and deaths from natural causes.
Using the arbitrary addition of 70000 to each December inventory
ve arrive at a correction factor of
$\underline{1650+2110}=\frac{3760}{20}=1.580$
$\frac{160+1272}{1107+1272}=\frac{3379}{2379}=1.580$
by which each yearly value of W should be multiplied to arrive at W^{\prime}. For the years 1964 to 1968 , when the counts were made in mid-January and there was no late US hunting season, we add only 45000 to the recent
winter mean of 1119500 to yield a multiplier of $1880 / 1164.5=1.614$.

Table 4

stimates of losses (in thousands) and gross mortality rates
(in \%) of Lesser Snow Geese in 1964-73 obtained by sub-
tracting estimated number of geese more than one year old
in year $(t+1)$ from total population in year (t). L, losses;
N, total population in August or October

Year	Estimated losses		Mortality rate (\%)		Mortality rates for banded geese		
	$\begin{aligned} & \text { (Lincoln Index) } \\ & \quad \text { Aug.-Aug. } \\ & L \end{aligned}$	(Fall flight) $\begin{gathered} \text { Oct._Oct. } \\ L^{\prime} \end{gathered}$	$\underset{L / N}{(\text { Lincoln Index) }}$	$\begin{gathered} \text { (Fall flight) } \\ L^{\prime} / F^{?} \end{gathered}$	$\begin{aligned} & \text { Adults } \\ & \tilde{m}_{a} \end{aligned}$	$\begin{gathered} \text { 1st year } \\ m_{i} \end{gathered}$	Weighted mean* m
1964-65	931	644	43.2	42.6			
1965-66	1590	592	74.2	43.4			
1966-67	188	463	13.9	32.2	64.8	74.3	69.2
1967-68	(-538)	142	(-32.5)	10.8	21.7	76.3	35.7
1968-69	851	369	36.5	26.9	21.5	44.4	24.9
5 yr mean	604	442	31.3	31.6	-	-	-
1969-70	241	47	11.2	2.9	24.4	53.5	35.4
1970-71	1480	401	51.0	16.8	38.8	61.3	46.5
1971-72	424	822	22.4	33.0	15.2	47.8	21.8
1972-73	222		13.1		39.0	50.1	40.3
1973-74	155		(-6.2)		7.9	37.9	
5 yr mean	442		19.6				
Period mean	523		25.2				

ean weighted by estimated age-ratio in adjusted fall flight
$m^{\prime}=\frac{m^{m} F_{a}^{\prime}+m_{i} \cdot F_{i}^{\prime}}{F^{\prime}}$
(1) Table 5

Table
Comparison (in thousands) of Lincoln Index estimates of the population of Lesser Snow Geese in eastern Arctic Canad in August with estimates of the fall flight into the US and with the midwinter counts (adjusted for incomplete search) for the breeding years 1964-73

Breeding yr	No. in August	$\begin{aligned} & \text { No. in } \\ & \text { fall } \\ & F^{\prime} \end{aligned}$	No. in winter W^{\prime}	F^{\prime} / N	W^{\prime} / N	W^{\prime} / F^{\prime}
1964	2155	1512	1285	0.702	0.596	0.850
1965	2144	1365	1127	0.637	0.526	0.826
1966	1351	1439	1036	1.065	0.767	0.720
1967	1657	1311	1022	0.791	0.617	0.780
1968	2333	1371	1177	0.588	0.504	0.858
Mean 1964-68	1928	1400	1127	0.726	0.585	0.805
1969	2149	1615	1138	0.752	0.530	0.705
1970	2902	2384	1788	0.822	0.589	0.716
1971	1897	2490	2098	1.313	1.106	0.843
1972	1693	1884	1638	1.113	0.968	0.869
1973	2499	2299	1899	0.920	0.760	0.826
Mean 1969-73	2228	2134	1696	0.958	0.761	0.765
Mean 1964-73	2078	1767	1412	0.850	0.679	0.799

Table 6
Estimated harvest of Hudson Bay Lesser Snow Geese in the Mississippi and Central Flyways in proportion to estimated total population size in August (N) and fall $\left(F^{\prime}\right)$ and total annual losses, 1964-65 to 1973-74

Breeding yr	K / N $\%$	K / F^{\prime} $\%$	K / L $\%$	K / L^{\prime} $\%$
1964	10.5	15.0	24.4	35.3
1965	11.1	17.4	15.0	40.2
1966	29.9	28.0	$(2.14 .6)$	87.1
1967	17.4	22.1	-	(203.6)
1968	8.3	14.2	22.8	52.6
Mean 1964-68	14.0	19.3	44.7	61.1
1969	22.2	29.5	(198.0)	(1015.1)
1970	23.3	28.3	45.6	(168.5)
1971	20.7	15.8	92.5	47.7
1972	14.5	13.0	(110.7)	
1973	16.0	17.4	(258.2)	
Mean 1969-73	19.7	20.5	99.1	
Mean 1964-73	17.0	20.0	67.7	

Table 7

Estimates (to nearest hundred) based on national migratory game bird harvest surveys of the kill by sport hunters in 1969-74

	Estimated sport kill in			
Breeding yr	Manitoba	Ontario	Quebec	Total
1969	11900	21600	7600	41100
1970	9600	12600	6400	28600
1971	8600	12300	7000	27900
1972	15500	6300	2300	24100
1973	21500	12500	4700	33700
1974	25200	13800	1700	40700

s.C.F. - C.W.S.

MAY 51976
quÉBEC

