

Fisheries
Canada
Pèches et Environnermen 0022722 F

CANADA. WILDLIFE SERVICE

Greater Scaup (Aythya marila). In addition, data on breedin population, habitat, sex and age of shot samples available in current CWS Progress Notes, USFWS Administrative Repor
and the cast were examined for the years 1969 through 1977 .
Data for the five species were requested as relative importance of each was known only generally and the need to group data into larger aggregates for analysis was unknown. Data on Common Goldeneye and Greater Scaup were exa ined but not analysed extensively because of the ir more ces, and nationally both in Canada and the United States. Data on other diving duck species such as Ruddy Duck (Oxyura jamaicensis) and Hooded Merganser (Lophodytes cucullatus) were not provided for the Prairie Provinces as their relative importance in wateriowl harvest generally was believed insignificant. Data on harvest of Canvasback in the Prairie Provinces were then compared to other species and environmental variables in multivariate analyses.

Table 1
Bag limits* for ducks and Canvasback in Manitoba
Bag limits* for ducks and Canvasback in
Saskatchewan and Alberta, 1967-1976i

Year	Manitoba		Saskatchewan		Alberta	
	$\begin{gathered} \text { Canvas- } \\ \text { back } \end{gathered}$	Ducks	$\begin{aligned} & \text { Canvas- } \\ & \text { back } \end{aligned}$	Ducks	Canvas	Ducks
1967	2	8(10) \ddagger	2	8	8	\&(10)
1968	2	5 (7) \ddagger	2	5(7)	8	$\mathfrak{\&} 10$) \ddagger
1969	1	$7(9) \pm$	1	7(9)	8	
1970	1	$8(10) \ddagger$	1	10	8	8
1971	1	$8(10) \ddagger$	1	10	8	8
1972	1	$8(10) \ddagger$	1	10	8	8
1973	1	6 (8) \ddagger	1		8	8
1974	1		1	8	8	8
1975	1	6	1	8	8	8
1976	1	8	1.	8	8	8

During the period in all provinces cited, possession limits have been twice the daily bag limit shown.
Taken from the Office Consolidatio
Convention Act for the years cited.
Convention Act for the years cited. After the
allowed.

Results
In Manitoba and Saskatchewan bag limits for Canvasback have been restricted since the late 1.960 s (Table 1), whereas in Aberta they have been the same for all ducks within each kills of Canvasback and other ducks for each province into two periods, 1970-72 and 1973-75, because similar regula tory treatments between periods could be compared within

Year	Manitoba		Saskatchewan		Alberta	
	Total ducks	Canvasback	Total ducks	Canvasback	Total ducks	Canvasback
1970	518095	5690	930506	7503	904665	6921
1971	332231	4646	690155	4516	847956	5618
1972	355773	4224	616457	5446	801981	3465
1973	251931	3579	471870	2608	831633	5694
1974	249590	5355	699661	8054	1.014272	4814
1975	299221	7981	807295	9062	850709	4181

nd among provinces. Two-way analysis of variance on total stimated retrieved kill of ducks in the Prairie Provinces in dicated acceptance of the hypothesis of equal kill between or variance associated with a province and a period ($F_{212}=$ 1.002). When provinces were compared alone the hypothesis of equal kill was rejected ($F_{2,15}=26.208$). Tukey's "w" tes Steel and Torrie 1960:110) indicated that the kill in Manioba was not equal to that in Saskatchewan or Alberta although the kill in those two provinces were equal over the Ill period. For Canvasback, however, hypotheses of equal 1973-75 seasons ($F_{1,12}=0.154$) and no interaction of a province with a time period $\left(F_{2}=0.186\right.$) were accepted Although the estimated retrieved kill of all ducks in Saskat chewan or Alberta was significantly higher than in Manitoba nd there were no additional restrictions on bag or possession limits of Canvasback in Alberta, the estimated retrieved kill of Canvasback must be considered equal among Prairie Provinces during 1970 through 1975 (Table 2). In other words, dditional restrictions on bag or possession limits of Canvasack during that time had no effect in the Prairie Provinces.

I next examined the effect of changing bag limits from eason to season. Visual inspection of the data (Table 3) for estimated harvest for each province indicated no clear trend. Analysis of variance among provinces from 1969-1976 ($F_{7,23}=1.839 ; F_{2,23}=1.673$) and regression analysis (Fig. $1 ; r^{2}=0.020$) confirmed a no linear trend hypothesis in each province. A similar analysis with data on Redhead, which I have considered here only because it is a look-alike species ad is managed in concert with Canvasback, led to the same conclusions (Fig. 2; $F_{1,12}=2.210 ; F_{2,12}=0.063 ; F_{2,12}=$ $\left.0.173 ; F_{7.23}=1.067 ; F_{2,23}=0.227 ; r^{2}=0.086\right)$ about qual kill over time with differing regulations among proinces. Conscious interventions with or "management" of those species, i.e. changing hunting regulations, did not have clear effect on the kill in the Prairie Provinces. Factors such as weather, opening date of season, availability of the species, hunter preference, reception and perception of information few data are available about their effect on kill and some factors are not manageable in any event. If important at they may only be compensatory in their effect on total kill of Canvasback in the Prairie Provinces.

Table 3
stimated retrieved kill ${ }^{*}$ of Redhead and Canvasback in
Manitoba, Saskatchewan and Alberta, 1969-1976 \dagger

Year	Manitoba		Saskatchewan		Alberta	
	Redhead	Canvasback	Redhead	Canvasback	Redhead	Canvasback
1969	16176	4670	8533	5024	7449	5109
1970	14814	5690	12782	7403	9591	6921
1971	8048	4646	6902	4516	15736	5618
1972	7612	4224	8836	5446	9307	3465
1973	4429	3579	5304	2608	8598	5694
1974	8128	5355	10475	8054	10806	4814
1975	8825	7981	9684	9062	8546	4181
1976	11745	5232	9123	7144	6642	3837

*If figures reported for a given year varied when compared in
subsequent years the last reported number was used, in most occurrences the variance was slight.
\dagger CWS Progress Notes Nos. 37 and 71 Strestes Notes Nos. 37 and 71 and unpublished computer

Table 4

Relative geographic distribution of diving duck kill* in
Manitoba and other Prairies Provinces, 1968-1975

Species	Location in Man. \dagger								$\begin{gathered} \text { Other } \\ \text { Man. } \\ \hline \end{gathered}$		$\begin{gathered} \text { Man. } \\ \text { sub-total } \\ \hline \end{gathered}$		Other Prairies		To									
	98-50		95-50		100-50		97-50																	
	n	\%	n	\%	n	\%	n	\%	-	\%	-	\%	n	\%	n	\%								
Redhead	128	19	17	2	52	8	69	10	416	61	682	45	847	55	1529	26								
Canvasback	115	35	4	1	32	10	27	8	151	46	329	37	566	63	895	15								
Greater Scaup	8	12	12	18	3	5	5	8	37	57	65	81	15	19	80	1								
Lesser Scaup	271	16	109	13	226	14	178	11	769	47	1653	64	919	36	2572	44								
Common Goldeneye	40	6	245	34	15	2	45	6	375	52	720	89	93	11	813	14								
Total	562	16	487	14	328	10	324	9	1748	51	3449	59	2440	41	5889	100								
*Cumulative number of identified wings returned by hunters reporting to the National Species Survey not including Ruddy Ducks, mergansers or sea ducks. \dagger Refers to degrees west longtitude and north latitude of southeast																								
Table 5 Indices to harvest of Redhead and Canvasback in Canada. and the United States, 1969-1976 hunting seasons*																								

and the United States, 1969-1976 hunting seasons**

Year	Canada								US total				Total	
	Prairie Provinces				Total									
	Redhead	\%	Canvasback	\%	Redhead	\%	Canvasback	\%	Redhead	\%	Canvasback	\%	Redhead	Canvasback
1969	32158	12	14803	10	49846	19	22073	14	215300	81	131600	86	265146	153673
1970	37187	13	20114	12	60129	22	29304	17	215400	78	143500	83.	275529	172804
1971	30686	11	14780	9	47754	18	23901	14	220500	82	141700	86	268254	165601
1972	25755	25	13135	46	51855	51	24.471	85	52600	49	4400	15	104455	28871
1973	18331	18	11881	18	30670	29	20055	31	73700	71	44900	69	104370	64955
1974	29409	20	18233	17	49011	34	31728	30	94651	66	73494	70	143662	105222
1975	27055	13	21224	15	52224	25	42497	30	158009	75	99125	70	210233	141622
1976	27560	13	16213	10	59768	27	37054	22	160471	73	129180	78	220239	166234

apublished computer output for 1976 USFWS

Inext considered the effect of geographic location of kill About 20% of all Canvasback reported killed in the Prairie Provinces are taken in Manitoba, and about half of that total are killed in an area south of Riding Mountain National Park or some 60% of all diving ducks reported killed in the Prairi Provinces (Table 4). There appears to be some relationship, perhaps because of hunter preference, availability or some ther factor, between diving duck kill and southern Manitoba.
In the United States, counties with previously high kill of Canvasback have recently been closed to Canvasback hunting Complete closure of legal hunting throughout the United States can reduce the reported total kill of Canvasback but not eliminate it (Table 5). The seasons were closed throughout the United States from 1960 through 1963 and in Canvasback were more restricted than for other ducks. Th apparent capacity of harvesting Canvasbacks in the United Fig. 4) even with area (county) closures and reduced bag limits elsewhere

Table

adices to breeding Redhead and Canvasback*, May and fuly ponds \dagger in southern Alberta, Saskatchewan and lanitoba, 1968-1977 \ddagger

Year	May ponds	July ponds	Redhead	Canvasback
1969	2963	1658	759	530
1970	4389	2613	834	$\mathbf{6 0 1}$
1971	3865	2017	693	$\mathbf{4 4 1}$
1972	3435	1313	489	429
1973	1888	1736	754	696
1974	5601	2753	613	493
1975	4586	2410	974	706
1976	3811	2152	946	686
1977	2022	1391	688	702

*Adjusted for visibility bias.

Waterfowl status report and fall flight forecast 25 July 1977 USFWS (litho).

If total harvest is to be maintained, restored to apparent ormer levels, or increased, sooner or later habitat constraints will become limiting. Breeding habitat occupancy is one of the expected major constraints to population growth when eduction in mortality results in greater survival of a breeding population. The hypothesis that breeding population is a ne previous summer (July in the spring (May ponds) and in harvest during the previous hunting season was tested by multiple regression of logarithmic transformations of the data (Tables 5 and 6) and rejected ($r^{2}=0.395, F_{43}=1.268$),
Those factors seem to be major life cycle components of any me ducks. The correlation coefficient associated with each ombination of factors in the regression is given in Table 7.

Table 7

orrelation coefficients between factors affecting life cycles game ducks

	$\underset{\text { previous }}{\log }$ July July pond	${ }^{\log }$ previous season Canadian harvest	${ }^{\log }$ season US	log breeding Canvasback
${ }^{\log }$ May ponds	+0.35	-0.29	+0.44	-0.41
${ }_{\text {log }}^{\text {previous }}$ July ponds	xx	+0.64	+0.68	-0.07
$\underset{\text { previous }}{\log }$ season Can. harvest	xx	xx	+0.28	+0.51
${ }_{\text {previous }}^{\text {log }}$ season US	xx	xx	xx	-0.35

The data show some synchrony (Fig. 4) and the correlation atrix implies, from strongest association of July ponds with rawn with larger samples. Analysis using previous Prairie rovince harvest data instead of previous total Canadian harvest data weakened the F-ratio in total, strengthened the orrelation with July ponds and US harvest and weakened he correlation with May ponds and breeding Canvasback. Those effects imply that the Prairie Province harvest is more ikely related to fledged young available (raised in Prairie Povince July ponds) and will follow the US harvest more harvest, however, has less effect on breeding Canvasback reorded on May ponds the next year than does the total Canadian harvest. Canadian prairie hunters seem to shoot ore Canvasback if they are around but that harvest has little effect on the number that come back the next spring. Comparable data on Canadian harvest of Canvasback are not
vailable earlier than 1969. Different implications or condent conclusions about habitat for example, must await more data, one replicate of which appears only once per year. An alternative would be to design experiments with hunting regimes, including complete closure of hunting Canvasback for specified time periods, with commensurate easuremen offects breeding population survival and concomitant fall flight.

iscussio

Results show that the kill of Canvasbacks and Redheads in he Prairie Provinces is relatively low compared to that in United States and stable over years. Despite variable and some apparently liberal hunting regulations, the relative annual harvest is unaffected by Canadian regulations imposed during the period analysed, although an expected change did occur in harvest of other ducks with restrictions on hunting. By definition, there are top-ranking geographic location for harvest of Canvasback within the Prairie Provinces. The proportion of Canvasback taken in total in those areas is so small, however, that additional restrictions are not believed warranted if indeed the present restrictions should continue. hunting further and add to management cost. A major increase in survival of Canvasback cannot readily be associated with new management regimes in those localities.
Analysis of factors associated with hunting mortality, subsequent breeding populations of Canvasback and their habita did not reveal any conclusive relationships from 1969 through 1976. Geis and Crissey (1969) concluded that restrictive hunting regulations in the United States reduced shown defects in many analyses of banding recoveries to esti mate survival, for lack of arithmetic rigour. The conclusions of Geis and Crissey (op. cit.) were questioned on those grounds. The gross effect of reduced US kill with restrictive US regulations was not questioned by Anderson and Burn ham. The data analysed here confirm the effect of restrictive hunting regimes. Lower breeding populations followed higher US harvest. In this analysis, however, increase in recorded breeding Canvasbacks was associated with an increase in Cana dian harvest, indicating a spurious correlation or an effect no biological evidence such as highly selective kill of males in eastern Canada is readily available to warrant inference of increased breeders with increased Canadian harvest.

No relation could be detected between recorded breeding population and recorded habitat available for broods the previous summer. Indeed there seemed to be a relationship between more spring breeding habitat recorded (May ponds) and fewer breeding Canvasback, which implies a sampling o observation problem rather than a biological event. An alter suitable to breeding Canvasback not previously considered likely on a broad scale.
Sugden (1978) compiled data on breeding habitat for Canvasback at eight widely scattered locations in the Prairi Provinces collected for at least two years during the period

1951 through 1955. His analysis indicates that the number of breeding Canvasback will increase as the number of May ponds increases. The equation $y=0.087 x-0.564$ had a regression coefficient 0.99 when y equals the number of Canvasback pairs per unit area and x equals the number of May ponds per unit area. The equation implies about 18 Ma ponds triple the mean of data (5.9) used for continental management of breeding Canvasback (Table 6).
The implications are that (1) the generally observed unThe implications are that (1) the generally observed unbacks or other factors may have a profound effect on the accuracy of continental data used for management of the species and (2) on a continental basis, mean occupancy of available spring habitat would not be expected to be lower than one pair of Canvasback per 18 ponds. The Sugden equa ion would thus be a conservative estimate of the expect number of breeding Canvasback associated with all May ponds recorded in the Prairie Provinces. As the mean number anged from a maximum of 7303000 in 1955 to a minimum of 1636000 in 1968 a post-huting season population oal might be one associated with that breeding habitat plus appropriate allowances for other breeding areas. As data on May ponds and breeding Canvasback in the Prairie Provinces are commonly available in quantitative form they may serve as a basis for a quantitative goal. Comparison of the mean, minimum and maximum May ponds and breeding Canvas back since 1955 with the conservative estimate of the expected number of breeding Canvasback and assuming t unequal sex ratio the following goals emerge:

	Mean	Min.	Max.
No. May ponds	3422	1636	7303
Obs. breeding Canvasback index	574	385	713
Goal breeding Canvasback index	381	182	812

As the currently recorded breeding Canvasback indices (Table 6) are close to the maximum and as the potential ince the recorded maximum in 1955, the recent continental beeding population must be close to the post-hunting season goals for the potential breeding habitat. Those goals are inependent of time (seasonal or annual change) and of merit because time-related events such as precipitation or evaporation cannot be managed. Those goals are certainly better tha managing by administrative or public fiat. To apply those goals to Canvasback management specifically merely requires easonably accurate or conservative prediction of availability ment of a regulation framework for a hunting regime. Parti tioning the models by geographic or population segments or additional ecological parameters as the cost of re-analysis of vailable data or obtaining additional data warrants would permit derivation of sub-goals referrable to administrative units or provide more reliable predictions. Observed over-
achievement of mean and minimum population goals for Canvasback in the past may indicate defects in the tools for measurement or prediction of Canvasback management.
On the basis of this analysis the critical hunting regimes or Canvasback management appear to occur in the United States. With regard to Canada, no grand, new, expensive mended. Indeed if social and economic conditions had warranted, the restrictions on hunting Canvasbacks in th Prairie Provinces could have been removed as this analysis indicates they were biologically ineffective.

Acknowledgements

acknowledge the advice and assistance of D.G. Peden M.C.S. Kingsley and G.E.J. Smith in planning and interpreting statistical analyses; and L.G. Sugden, J.B. Gollop,
H.J. Boyd and J.H. Patterson in reviewing an early draft of the manuscript

References

Anderson, D.R.; Burnham, Kenneth P. 1976. The ecology of he Mallard, VI. The effect of exploitation on survival. Res. Publ. 128, Fish Wildl. Serv. U.S. Dept. Int. Washington, D.C

Anonymous. 1975. Petition proposing review of status of th canvashack duck and the adoption of appropriate conservation measures. February 14, 1975. Petition by the Nationa We Interior.and the Director of the U.S. Fish and Wildlife Service.
Geis, A.E.; Crissey, W.F. 1969. Effect of restrictive hunting egulations on canvasback and redhead harvest rates and survival. J. Wildl. Manage. 33(4):8 $80-865$
Steel, R.G.D.; Torrie, J.H. 1960. Principles and procedures of statistics. McGraw-Hill, N.Y. 481 pp

Sugden, L.G. 1978. Canvasback habitat use and production in Saskatchewan parklands. Can. Wildl. Serv. Occas. Pap. No. 34.32 pp .

Figure 2
Index to
Index to Redhead harvest, Prairie Provinces, 1969-1976

Figure 3
Geographic distribution of top-ranked locations of diving
duck kill in Prairie Provinces, 1968-1975

LOGARITHM

