Upper Great Lakes Connecting Channels Interlaboratory Performance Evaluation Study. QM-2: PAHs in Ampules
W. Horn, R. Szawiola and H.B. Lee

UPPER GREAT LAKES CONRECTING CHANRELS

 INTERLABORATORY PERFORMANCE EVALUATION STUDYQM-2: PAH8 IN AMPULES
FINAL REPORT
by
W. Horn, R. Szawiola and H.B. Lee

Analytical Methods Division
National Water Research Institute
Canada Centre for Inland Waters
Burlington, Ontario, Canada November 1986
and
The Quality Management Work Group *Sent to the QMWG for review and approval*

La Commission mixte internationale a désigne les canaux reliant les Grands Lacs de la région supérieure "secteurs de préoccupation". En 1984, le Canada et les Etats-Unis ont entrepris une étude conjointe sur la détermination et l'évaluation des effets des substances toxiques sur l'environnement de ces régions. Afin d'aider les laboratoires qui participent à cette étude à fournir des données fiables et précises, on a crēe le groupe de travail sur la gestion de la qualité et mis en oeuvre 13 études interlaboratoires. Le présent rapport décrit les résultats de la deuxième êvaluation comparative de la performance des laboratoires, $Q M-2$; dans le cadre de cette etude, on a analysé 16 HAP, polluants prioritaires, dans des solutions étalons. Sept laboratoires participants sur 16 ont fait parvenir leurs résultats (4 laboratoires canadiens et 3 américains). En général, presque toutes les données reçues étaient valables et compatibles, sauf certaines donnees du laboratoire U079 et environ la moitié des données du laboratoire U063. On a envoyé à tous les laboratoires participants les commentaires appropriés.

ABSTRACT

The Upper Great Lakes Connecting Channels (UGLCC) study recognizes Quality Assurance/Quality Control (QA/QC) aspects as crucial elements to the overall utility of study results. As part of the QA/QC program, thirteen interlaboratory performance evaluation studies were designed and conducted by the Quality Management Work Group.

This report describes the results from the second interlaboratory performance evaluation study, $Q M-2$, which consisted of the analysis of 16 PARs in standard solutions. Results were received from seven out of 16 participating laboratories (4 Canadian, 3 U.S.).

The within-lab precision between duplicate samples for all laboratories was excellent and relative standard deviations were <10\%, except for some data from laboratories U063 and U079. The interlaboratory comparability of $P A H$ data was satisfactory with the exceptions noted above.

The agreement between the design values and the interlaboratory medians was good in most cases. Overall, most of the data received from the participants for $Q M-2$ were satisfactory, except for some data from laboratory $U 079$ and about half of the data from laboratory U063.

SOMMAIRE

L'assurance et le contrôle de la qualité ($\mathrm{AC} / \mathrm{CQ}$) sont des eléments essentiels à l'utilité générale des résultats de l'étude sur les canaux reliant les Grands Lacs de la région supérieure. Dans le cadre du programme $A Q / C Q$, le groupe de travail sur la gestion de la qualité a conçu et mene a bien 13 évaluations comparatives de la performance des laboratoires.

Le présent rapport décrit les résultats de la deuxième évaluation de performance, $\mathrm{QM}-2$, soit l'analyse de 16 HAP en solutions étalons. Sept laboratoires participants sur 16 ont fait parvenir leurs résultats (4 laboratoires canadiens, 3 américains).

La précision des résultats pour des échantillons doubles dans un même laboratoire était excellente pour tous les laboratoires et les écarts-types relatifs étaient inférieurs à 10 p .100 , sauf pour certaines données provenant des laboratoires U063 et U079. La comparaison des données sur les HAP entre les laboratoires était donc satisfaisante, sauf en ce qui concerne les exceptions mentionnés plus haut.

Dans la plupart des cas, la compatibilité entre les valeurs théoriques et les médianes des laboratoires était bonne. En général, presque toutes les données envoyées par les participants à l'étude QM-2 étaient valables, à 1'exception de quelques donnés du laboratoire 0079 et environ la moitié des données du laboratoire U063.

INTRODUCTION

The Upper Great Lakes Connecting Channels (UGLCC) have been designated as "Areas of Concern" by the International Joint Commission (IJC). To identify and deal with the environmental problems, a three year binational study was started in 1984, involving Canadian and U.S. environmental and resource agencies, to study the St. Marys, St. Clair and Detroit Rivers, and Lake St. Clair. The study involves identifying, quantifying and determining the environmental impacts of conventional and toxic substances from various sources.

The UGLCCS recognizes Quality Assurance/Quality Control (QA/QC) aspects as crucial elements to the overall utility of study results. As part of the QA/QC program, thirteen interlaboratory performance evalution (QC) studies were designed and conducted by the Quality Management Work Group. The goal of these QC studies was to assist analytical laboratories, which are producing data for the UGLCC study, to generate reliable, accurate data and to assess their overall performance during the study. A total of some 100 parameters (organic, inorganic and physical properties) in three types of matrices (water, sediment and biota) will be assessed.

This second interlaboratory study, $Q M-2$, was initiated on December 17, 1985. It involved the analysis of polyaromatic hydrocarbons (PAHs) in standard solutions. The original deadline for reporting results was set for March 20, 1986. However, several laboratories were late in reporting, so the study was closed on July 4, 1986.

STUDY PROFILE

From the returned questionnaires, the following 16 laboratories affirmed that they would participate in this study: U001, U005, U009, U063, U072, U079, U085, U013, U014, U028, U057, U075, U077, U078, U086, U090. By the time the study was closed, the last nine laboratories had not sent back any results. See the list of participants at the end of this report. Laboratory 0014 found PAHs in toluene unsuitable for analysis by either GC/MS or HPLC. Laboratory 0075 did not submit any results, since the method which they used to analyze the samples submitted under the UGLCC program specified using dichloromethane and isooctane. Toluene created some chromatography problems for this laboratory. Laboratory U086 stated that they would submit their results later, but to date no results have been received.

Since erratic in-house standard solutions had been shown to be the single major source of error in previous interlaboratory studies for organic parameters, the present study was designed to evaluate the accuracy of the participants' calibration standards for PAHs.

Each laboratory was provided with four ampules as described in Table 1. All standard solutions and the above test samples were prepared by the Quality Assurance and Methods Section (QAMS) of the National Water Research Institute (NWRI). Stock solutions for the PAHs were prepared from in-house analytical standards of purity greater than 98%. The design values and interlaboratory medians for
each parameter are given in Table 2. The design values were verified against NBS SRM 1647 by two analysts on different dates. The same PAH samples were also used in IJC Interlaboratory Study 52 involving 15 laboratories. The design values of these samples were confirmed by the interlaboratory medians of the IJC study.

$$
\text { Participants were asked to analyze samples 201-204 for } 16 \text { PAHs }
$$ (acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3,-cd)pyrene, naphthalene, phenanthrene and pyrene). In order to provide a rough indication of the precision of such analyses, these samples were sent out in blind duplicate pairs, as shown in Table 1.

RESULTS ARD DISCUSSION

Analytical Methodology

All standard solutions could be quantified by direct injection into a gas chromatograph using either a flame ionization detector or a mass spectrometer and a suitable capillary column. If HPLC analysis was used some dilution of samples was needed. Two out of the seven reporting laboratories used GC/FID with capillary columns. Three laboratories used GC/MS, and U079 used GC/MS for only four parameters (naphthalene, acenaphthylene, acenaphthene and fluorene). Two laboratories used HPLC. See Table 3 for details of the methodology.

Data Evaluation

A11 raw data submitted by the participants are listed by parameter in the data summary (Appendix II). Since the number of samples analyzed was limited (4) and the number of reporting laboratories was small (<7) and varied for each parameter, neither the Youden ranking technique nor the computerized flagging procedure were used to evaluate the data. To evaluate the precision and accuracy of the $P A H$ results in this study, the percent recoveries (reported results vs design values or interlaboratory medians) were calculated for each laboratory and tabulated in Table 4. (See Appendix I for a glossary of terms used in Table 4.) In some cases, because of the small number of reported results and the presence of outliers, the median did not coincide with the design value.

To provide a semi-quantitative evaluation of the results, the results were designated as very low, low, high and very high, based on the reported results as a \% of the design value as shown below:

$\geq 150 \%$	very high
$149 \%-125 \%$	high
$124 \%-76 \%$	satisfactory
$75 \%-51 \%$	low
$\leq 50 \%$	very low

See Table 5 for a summary of each laboratory's results.

General Comments

Only one of the seven reporting laboratories reported their data by the originally set deadline (U079). Computer printouts with the raw data were sent to all reporting laboratories for verification in April, 1986. All laboratories except $U 063$ returned their results verified. A final data summary was sent to the participating laboratories, the Quality Management Work Group, the Work Group Chairmen, and the M.C. and A.I.C. chairmen on July 11, 1986.

After reviewing the data summary, containing all of the laboratories' data, laboratory 0063 discovered some anomalies in their previously reported data and submitted some updated results for PAHs on August 6, 1986. These late changes were not incorporated into this report, but can be found in Appendix III.

The overall comparability of interlaboratory PAH data was satisfactory. After rejection of outliers, the interlaboratory relative standard deviation for all PAHs in most samples was between 20 and 30%. All of the laboratories except U063, analyzed all 16 US EPA PAH priority pollutants (U063 did not analyze benzo(k)fluoranthene). Laboratories $U 005$ and $U 072$ could not separate some isomeric pairs. See lab-specific comments for details. In most cases the difference between the interlaboratory mean and median was less than 10%. Due to the presence of outlying data from laboratory 0063 and in the case of acenaphthylene from U072, there was a $>\mathbf{2 0 \%}$ difference

Abstract

between the mean and median for acenaphthylene, anthracene, benzo(b)fluoranthene, benzo(a)pyrene, benzo(g,h,i)perylene, indeno(1,2,3-cd)pyrene and benzo(k)fluoranthene for some samples (see Appendix II). Agreement between design values and interlaboratory medians for most PAHs was good for samples 201 and 202 , although the medians were more than 15% lower than the design values in the cases of acenaphthene, chrysene, fluorene, phenanthrene and pyrene. For samples 203 and 204, the medians were more than 20% lower than the design values in the cases of acenaphthene, acenaphthylene, benzo(a)anthracene, chrysene, fluoranthene, fluorene, phenanthrene and pyrene. The poorer agreement is probably due to the lower concentration range of samples 203 and 204, as some laboratories could not detect some parameters. Except for results from laboratory 0063 on samples 203 and 204 for all parameters, and $U 079$ for some parameters, the precision of within lab analysis was very good for the rest of the participants since the difference between duplicate analysis was usually $<10 \%$. The reported detection limits ranged from $0.02 \mathrm{ng} / \mu \ell$ to $1.0 \mathrm{ng} / \mu \ell$. Laboratories U 001 and $U 009$ did not report any detection limits.

Lab-Specific Comments

See explanation of low, very low, high and very high on page 4.
$\mathbf{0 0 0 1}$

Results for samples 201 and 202 were accurate with 77-120\% recovery, except naphthalene which was very high $(152 \%$ of the design value). However, all PAH results for samples 203 and 204 were low (15-64\% recovery). These data suggest that detector linearity was probably a problem for U001. For naphthalene, anthracene and dibenz(a,h)anthracene, samples 201 and 202 had "estimated" results reported, while samples 203 and 204 had "not detected" results. Precision between duplicate results was excellent since identical results were reported in all cases. No detection limits were reported.

0005

This laboratory's results were on the low side. Nine parameters had low results ($\langle 75 \%$ recovery) and only benzo(a)pyrene in sample 201 was high (126% recovery). For samples 203 and 204, anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, dibenz(a,h)anthracene and indeno(1,2,3-cd)pyrene were not detected. There was no resolution of benzo(a)anthracene and chrysene or benzo(b)fluoranthene and benzo(k)fluoranthene. The precision between duplicate results was in most cases within $\pm 10 \%$.

This laboratory's results were precise (within $\pm 10 \%$) and fairly accurate (60-119\% recovery). Eight parameters had low results, mainly for samples 203 and 204. No detection limits were reported.

0063

Several of this laboratory's results were erratic. The accuracy was in most cases poor ($67-479 \%$ recovery of the design value). Fourteen of the parameters analyzed had some high or very high results while three parameters had some low results.

Anthracene in sample 204 was not detected. The precision between duplicates for samples 201 and 202 was within $\pm 10 \%$ in most cases, but for samples 203 and 204 the $R S D$ in most cases was $>40 \%$. No results were reported for benzo(k)fluoranthene. No raw data verification was returned. When contacted by telephone, the laboratory requested to have the results remain as reported. See Appendix III for changes to data reported on August 6, 1986. These changes are not incorporated into this report. The precision for these new results did not change and the accuracy was still poor although it improved somewhat (24-144\% recovery). Thirteen of the parameters had some low or very low results and anthracene results for samples 201 and 202 were still slightly high.

Overall, for the parameters reported, the performance of this laboratory was good. Most parameters were quite accurate (90-121\% recovery). Acenaphthylene results for samples 201 and 202 were very high (420\% recovery) but it was not detected in samples 203 and 204. Benzo(k)fluoranthene was somewhat high in sample 203 (131% recovery). The precision was within $\pm 10 \%$ in all cases. There was no resolution of acenaphthene and fluorene; benzo(a)anthracene and chrysene and indeno(1,2,3-cd)pyrene and benzo (g,h,i)perylene. Naphthalene was not analyżed.
$\mathbf{W 0 7 9}$

Overall the accuracy of this laboratory was less satisfactory. Ten parameters had some low or very low results. Five parameters had some high or very high results. The accuracy was poor, ranging from 32-301\% recovery. For all parameters except benzo(a)pyrene, benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene, there was at least one outlying high or low result. Fluorene was not detected in samples 203 and 204. The precision between duplicate results in some cases was poor, with the RSD as high as 88% for pyrene in samples 201 and 202.

The accuracy for samples 201 and 202 was in most cases good. Five parameters had low results and one parameter had a high result. The precision was in most cases within $\pm 10 \%$. For samples 203 and 204 all of the parameters had low or very low results. For samples 203 and 204, six parameters had results reported as "trace" (below their detection limit) and two parameters had "not detected" results. The precision between samples 203 and 204 was poor. Most of the results had a RSD over 30\%.

COMMENTS

The design of this interlaboratory performance evaluation study $(Q M-2)$ is necessarily simple due to limited resources and time available. It involved only four standard PAH solutions at concentrations which are easy to analyze. There are no interferences and minimal or no manipulation required to analyze these standard solutions. Therefore both precision and accuracy should be very easy to achieve by a competent laboratory. One should expect precision and accuracy better than $\pm 25 \%$ for these types of samples at these concentrations. If the data are not satisfactory for these standard solutions, it is inconceivable what the data would look like from analysis of real samples, which require multi-steps (such as extraction, clean-up and evaporation).

ACKMOWLEDGEMERTS

The authors sincerely thank all participants for their cooperation, and Dallas Takeuchi, Pat Leishman and Jackie Abbott of the National Water Research Institute for their assistance.

LIST OF PARTICIPANTS

Detroit Wastewater Treatment Plant, Detroit, Michigan Michigan Department of Public Heath, Lansing, Michigan National Water Research Institute, ECD, Burlington, Ontario Ontario Ministry of the Environment, Rexdale, Ontario US EPA, GLNPO, The Bionetics Corp., Chicago, Illinois Water Quality National Laboratory, Burlington, Ontario Zenon Environmental Inc., Burlington, Ontario

The following laboratories were given samples, but did not submit any results:

Barringer Magenta, Rexdale, Ontario
Great Lakes Environmental Research Laboratory, NOAA, Ann Arbor, Michigan

Michigan Department of Natural Resources, Lansing, Michigan NWRI, ECD, Burlington, Ontario

US Army Corps of Engineers, Detroit, Michigan
US EPA/Raytheon Service Corp., Grosse Ile, Michigan
US Geological Survey, Arvada, Colorado
EPS, Wastewater Technology Centre, Burlington, Ontario
Mann Testing Laboratory, Mississauga, Ontario - Volunteer Laboratory

Table 1. Samples distributed for analysis in (M-2.

Sample	Description
201	Mixture of 16 PAHs in toluene
202	Same as 201
203	Mixture of 16 PAHs in toluene
204	Same as 203

Table 2. Design values and interlaboratory medians for PAHs. All values are in pg/ul.

Parameter	Sample Number 201 and 202			Sample Number 203 and 204		
	Design Value	Median		Design Value	Median	
		201	202		203	204
acenaphthene	10.9	8.86	8.62	1.09	. 820	. 775
acenaphthylene	9.53	9.00	9.20	0.953	. 620	. 601
anthracene	8.34	7.50	7.47	0.334	. 305	. 330
benzo(a)anthracene	10.4	9.74	9.98	2.08	1.40	1.47
benzo(a)pyrene	9.54	9.11	10.3	0.954	1.06	. 977
benzo(b)fluoranthene	9.29	9.08	9.49	0.929	. 921	. 730
benzo(g, h,i) perylene	9.47	9.06	9.19	0.947	1.01	. 935
benzo(k)fluoranthene	10.7	10.0	8.80	0.535	. 545	. 520
chrysene	9.45	8.21	6.96	1.89	1.18	1.20
dibenz(a,h)anthracene	10.0	9.20	8.83	1.00	1.00	. 835
fluoranthene	12.0	10.1	9.70	4.80	3.27	3.70
fluorene	11.7	9.22	8.84	1.17	. 800	. 800
indeno($1,2,3-\mathrm{cd}$) pyrene	8.89	8.47	8.09	0.889	. 711	. 691
naphthalene	6.59	7.62	5.57	0.659	. 532	. 600
phenanthrene	12.7	9.40	9.60	2.54	1.44	1.47
pyrene	12.0	10.9	10.0	4.80	3.60	3.76

Table 3. Analytical Methodology for PABs.

Table 4. Percent recovery calculated from the design values and the interlaboratory medians for PAHs.

Lab Number: $\underline{001}$

Parameter	$\frac{\text { \% Recovery from Design Value }}{\text { Sample }}$				$\frac{\text { \% Recovery from Median }}{\text { Sample }}$			
	201	202	203	204	201	202	203	204
acenaphthene	78.9	78.9	58.7	58.7	97.1	99.8	78.0	82.6
acenaphthylene	96.5	96.5	48.3	48.3	102	100	74.2	76.5
anthracene	120(E)	120(E)	ND	ND	133(E)	134(E)	ND	ND
benzo(a)anthracene	118	118	25.5	25.5	126	123	37.9	36.1
benzo(a)pyrene	78.6	78.6	18.9	18.9	82.3	72.8	17.0	18.4
benzo(b)fluoranthene	95.8	95.8	15.1	15.1	98.0	93.8	15.2	19.2
benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	111	111	64.4	64.4	116	114	60.4	65.2
benzo(k)fluoranthene	82.2	82.2	35.5	35.5	88.0	100	34.9	36.5
chrysene	87.8	87.8	16.9	16.9	101	119	27.1	26.7
dibenz (a, h) anthracene	100(E)	100(E)	ND	ND	109(E)	113(E)	ND	ND
fluoranthene	80.0	80.0	52.1	52.1	95.0	99.0	76.5	67.6
fluorene	76.9	76.9	47.0	47.0	97.6	102	68.8	68.8
indeno($1,2,3-\mathrm{cd}$) pyrene	116	116	40.5	40.5	122	127	50.6	52.1
naphthalene	152(E)	152(E)	ND	ND	131(E)	180(E)	ND	ND
phenanthrene	78.0	78.0	43.3	43.3	105	103	76.4	74.8
pyrene	79.2	79.2	57.3	57.3	87.2	95.0	76.4	73.1

[^0]Table 4. Percent recovery calculated from the design values and the interlaboratory medians for PAHs.

Lab Number: U005

Parameter	\% Recovery from Design Value				$\frac{\text { \% Recovery from Median }}{\text { Sample }}$			
	201	202	203	204	201	202	203	204
acenaphthene	66.1	67.9	73.4	64.2	81.3	85.8	97.6	90.3
acenaphthylene	64.0	77.6	83.9	63.0	67.8	80.4	129	99.8
anthracene	69.5	69.5	ND	ND	77.3	77.6	ND	ND
benzo(a)anthracene	NS							
benzo(a)pyrene	126	122	ND	ND	132	113	ND	ND
benzo(b)fluoranthene	NS							
benzo(g, h, i) perylene	81.3	102	ND	ND	85.0	106	ND	ND
benzo(k)fluoranthene	NS							
chrysene	NS							
dibenz (a, h) anthracene	71.0	88.0	ND	ND	77.2	99.7	ND	ND
fluoranthene	84.2	80.8	83.3	77.1	100	100	122	100
fluorene	63.2	64.1	68.4	68.4	80.3	84.8	100	100
indeno(1, 2,3-cd)pyrene	82.1	84.4	ND	ND	86.2	92.7	ND	ND
naphthalene	78.9	81.9	91.0	91.0	68.2	96.9	113	100
phenanthrene	74.0	73.2	74.8	74.8	100	96.9	132	129
pyrene	90.8	87.5	93.8	87.5	100	105	125	112

*See Appendix I for explanation of codes.

Table 4. Percent recovery calculated from the design values and the interlaboratory medians for PAHs.

Lab Number: $\underline{0009}$

Parameter	$\frac{\text { \% Recovery from Design Value }}{\text { Sample }}$				$\frac{\text { \% Recovery from Median }}{\text { Sample }}$			
	201	202	203	204	201	202	203	204
acenaphthene	83.6	79.2	77.1	78.0	103	100	102	110
acenaphthylene	81.2	78.2	67.2	70.3	86.0	81.0	103	111
anthracene	94.6	89.6	92.8	98.8	105	100	102	100
benzo(a)anthracene	93.7	96.0	87.0	91.3	100	100	129	129
benzo(a)pyrene	95.5	108	115	119	100	99.7	104	117
benzo(b)fluoranthene	99.6	107	74.3	78.6	102	105	74.9	100
benzo(g,h,i)perylene	79.7	91.6	77.1	81.3	83.3	94.3	72.3	82.4
benzo(k)fluoranthene	81.9	87.6	72.9	72.9	87.6	106	71.6	75.0
chrysene	64.8	68.1	62.4	63.5	74.5	92.5	100	100
dibenz (a, h) anthracene	72.5	75.8	67.0	67.0	78.8	85.8	67.0	80.2
fluoranthene	95.4	92.2	90.8	94.2	113	114	133	122
fluorene	80.6	75.4	70.1	71.8	102	99.8	103	105
indeno($1,2,3-\mathrm{cd}$) pyrene	76.9	74.7	58.5	59.6	80.8	82.1	73.1	76.7
naphthalene	89.5	85.6	80.4	78.9	77.4	101	99.6	86.7
phenanthrene	63.6	60.1	56.7	57.9	86.0	79.5	100	100
pyrene	83.8	82.7	80.6	78.3	92.2	99.2	108	100

*See Appendix I for explanation of codes.

Table 4. Percent recovery calculated from the design values and the interlaboratory medians for PAHs.

Lab Number: U063

Parameter	\% Recovery from Design Value				\% Recovery from Median			
	Sample				Sample			
	201	202	203	204	201	202	203	204
acenaphthene	135	133	107	179	166	168	143	252
acenaphthylene	144	149	118	236	152	154	181	374
anthracene	285	305	186	ND	317	340	203	ND
benzo(a)anthracene	89.7	100	67.3	129	95.8	104	100	182
benzo(a)pyrene	220	229	142	319	231	212	127	311
benzo(b)fluoranthene	394	479	262	466	403	469	264	593
benzo(g,h,i) perylene	190	205	147	307	199	211	138	311
benzo(k)fluoranthene	NA							
chrysene	98.4	98.4	69.3	133	113	134	111	210
dibenz (a, h) anthracene	151	152	90.0	170	164	172	90.0	204
fluoranthene	103	127	68.1	156	123	157	100	202
fluorene	124	126	81.2	150	157	166	119	220
indeno(1,2,3-cd)pyrene	218	214	127	240	229	235	159	308
naphthalene	178	170	118	178	154	201	147	195
phenanthrene	120	124	96.5	119	162	165	170	205
pyrene	97.5	109	64.6	136	107	131	86.1	174

*See Appendix I for explanation of codes.

Table 4. Percent recovery calculated from the design values and the interlaboratory medians for PAHs.

Lab Number: U072

Parameter	$\frac{\text { \% Recovery from Design Value }}{\text { Sample }}$				\% Recovery from Median			
	201	202	203	204	201	202	203	204
acenaphthene	NS							
acenaphthylene	420	420	ND	ND	444	435	ND	ND
anthracene	90.0	92.3	90.0	90.0	100	103	98.4	90.9
benzo(a)anthracene	NS							
benzo(a)pyrene	106	111	105	94.3	111	103	94.3	92.1
benzo(b)fluoranthene	105	109	108	108	108	106	109	137
benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	NS							
benzo(k)fluoranthene	98.1	102	131	121	105	124	128	125
chrysene	NS							
dibenz (a, h) anthracene	103	103	110	100	112	1.17	110	120
fluoranthene	90.0	90.0	100	91.7	107	111	147	119
fluorene	NS							
indeno(1, 2,3-cd)pyrene	NS							
naphthalene	-	-	-	-	-	-	-	-
phenanthrene	89.8	92.9	90.6	86.6	121	123	160	150
pyrene	90.0	90.0	100	95.8	99.1	108	133	122

*See Appendix I for explanation of codes.

Table 4. Percent recovery calculated from the design values and the interlaboratory medians for PAlls.

Lab Number: U079

Parameter	\% Recovery from Design Value				$\frac{\text { \% Recovery from Median }}{\text { Sample }}$			
	201	202	203	204	201	202	203	204
acenaphthene	59.5	32.1	36.7	91.2	73.3	40.6	48.8	128
acenaphthylene	66.9	34.9	49.5	63.1	70.9	36.2	76.1	100
anthracene	83.3	68.1	64.4	119	92.7	76.0	70.5	120
benzo(a)anthracene	76.4	70.3	80.8	70.7	81.6	73.2	120	100
benzo(a)pyrene	95.2	81.4	111	102	99.7	75.4	100	100
benzo(b)fluoranthene	88.3	80.6	99.1	78.6	90.3	78.9	100	100
benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	93.1	85.6	135	116	97.4	88.1	127	118
benzo(k)fluoranthene	105	78.7	290	301	112	95.7	284	310
chrysene	86.9	73.7	106	74.1	100	100	169	117
dibenz (a, h) anthracene	88.1	88.3	117	60.3	95.8	100	117	72.2
fluoranthene	79.3	42.1	57.5	56.7	94.2	52.1	84.4	73.5
fluorene	145	75.6	ND	ND	184	100	ND	ND
indeno(1,2,3-cd) pyrene	98.2	86.3	101	95.8	103	94.8	127	123
naphthalene	142	75.0	80.7	162	122	88.7	100	178
phenanthrene	61.7	59.6	47.6	47.6	83.4	78.9	84.0	82.3
pyrene	149	34.8	61.9	56.9	164	41.7	82.5	72.6

[^1]Table 4. Percent recovery calculated from the design values and the interlaboratory medians for PAHs.

Lab Number: U085

Parameter	$\frac{\text { \% Recovery from Design Value }}{\text { Sample }}$				$\frac{\text { \% Recovery from Median }}{\text { Sample }}$			
	201	202	203	204	201	202	203	204
acenaphthene	119	128	110	64.2	147	162	146	90.3
acenaphthylene	94.4	96.5	63.0	52.5	100	100	96.8	83.2
anthracene	87.5	85.1	Tra	Tra	97.3	95.0	Tra	Tra
benzo(a)anthracene	95.2	68.3	48.1	28.8	102	71.1	71.4	40.8
benzo(a)pyrene	83.9	74.4	Tra	Tra	87.8	68.9	Tra	Tra
benzo(b)fluoranthene	91.5	96.9	Tra	Tra	93.6	94.8	Tra	Tra
benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	98.2	86.6	Tra	Tra	103	89.2	Tra	Tra
benzo(k)fluoranthene	93.5	78.5	Tra	Tra	100	95.5	Tra	Tra
chrysene	70.9	59.3	42.3	37.0	81.6	80.5	67.8	58.3
dibenz (a, h) anthracene	92.0	80.0	ND	ND	100	90.6	ND	
fluoranthene	79.2	77.5	62.5	41.7	94.1	95.9	91.7	54.1
fluorene	49.6	48.7	25.6	25.6	62.9	64.5	37.5	37.5
indeno(1, 2,3-cd)pyrene	92.2	95.6	Tra	ND	96.8	105	Tra	ND
naphthalene	80.4	83.5	75.9	45.5	69.6	98.7	94.0	50.0
phenanthrene	74.0	75.6	51.2	35.4	100	100	90.3	61.2
pyrene	100	83.3	75.0	47.9	110	100	100	61.2

[^2]Table 5. Summary of laboratory results based on the $\%$ recovery of the design value. (See page 4.)

Lab. No.	Parameter	Comments
U001	acenaphthene acenaphthylene anthracene benzo(a)anthracene benzo(a)pyrene benzo(b)fluoranthene benzo(g, h, i)perylene benzo(k)fluoranthene crysene dibenz (a, h) anthracene fluoranthene fluorene indeno(1, 2,3-cd)pyrene $\}$ naphthalene phenanthrene pyrene	samples 203 \& 204 - low samples 203 \& 204 - v. low samples $203 \& 204$ - ND samples 203 \& 204 - v. low samples $203 \& 204$ - low samples $203 \& 204$ - v. low samples $203 \& 204$ - ND samples $203 \& 204$ - low samples 203 \& 204 - v. low samples 201 \& 202 - v. high; 203 \& 204-ND samples 203 \& 204 - v. low samples 203 \& 204 - 1ow
U005	acenaphthene acenaphthylene anthracene benzo(a)pyrene $\left.\begin{array}{l}\text { benzo(} g, h, i \text {)perylene } \\ \text { indeno(} 1,2,3-c d) \text { pyrene }\end{array}\right\}$ dibenz (a, h)anthracene fluorene, phenanthrene	```all 4 samples - low samples 201 & 204 - low samples 201 & 202 - low; 203 & 204 - ND sample 201 - high; 203 & 204 - ND samples 203 & 204 - ND sample 201 - low; 203& 204 - ND all 4 samples - low```
U009	acenaphthylene benzo(b)fluoranthene benzo(k)fluoranthene chrysene dibenz (a, h)anthracene fluorene indeno(1, 2,3-cd)pyrene phenanthrene	$\begin{aligned} & \text { samples } 203 \& 204-10 w \\ & \text { sample } 203-10 w \\ & \text { samples } 203 \& 204-10 w \\ & \text { all } 4 \text { samples }-1 \text { ow } \\ & \text { samples } 201,203 \& 204-\text { low } \\ & \text { samples } 203 \& 204-\text { low } \\ & \text { samples } 202,203 \& 204-10 w \\ & \text { all } 4 \text { samples }- \text { low } \end{aligned}$

Table 5. Summary of laboratory results based on the $\%$ recovery of the design value. continued

Lab. No.	Parameter	Comments
U063	acenaphthene acenaphthylene anthracenebenzo(a)anthracenebenzo(a)pyrene benzo(g,h,i)perylene benzo(b)fluoranthene chrysenedibenz(a,h)anthracenefluoranthenefluoreneindeno(1, 2, 3-cd)pyrenenaphthalenepyrene	```samples 201 \& 202 - high sample 204 - v. high samples 201,202 \& 203 - v. high sample 204 - ND sample 203 - low; 204-high samples 201,202 \& 204-v. high; 203-high all 4 samples - v. high sample 203 - low; 204 - high samples 201,202 \& 204 - v. high sample 202 - high; 203-1ow; 204-v. high sample202-high; 204 - v. high samples 201,202\& 204 - v. high; 203 - high samples 201,202\& 204 - v. high sample 203-1ow; 204 - high```
U072	acenaphthylene benzo(k)fluoranthene	```samples 201 & 202 - v.high; 203 & 204 - ND sample 203 - high```
U079	acenaphthene acenaphthylene anthracene benzo(a)anthracene benzo(g, h,i)perylene benzo(k)fluoranthene chrysene dibenz(a, h)anthracene fluoranthene fluorene naphthalene phenanthrene pyrene	```sample 201-1ow; 202 \& 203 - v. low samples 201 \& 204 - low; 202 \& 203 - v. 1ow samples 202 \& 203 - low samples \(202 \& 204\) - low samples 203 - high samples 203 \& 204 - v. high samples 202 \& 204 - low sample 204 - low sample 202 - v. low 203 \& 204 - low sample 201 - high; 203\& 204 - ND sample 201 - high; 204 - v. high sample 201 \& 202 - low; 203 \& 204 - v. low sample 201 - high; 202 - v. low, 203 \& 204 - low```

Table 5. Summary of laboratory results based on the $\%$ recovery of the design value. continued

Lab. No.	Parameter	Comments
U085	acenaphthene	
	acenaphthylene	samples $203 \& 204$ - low
	anthracene benzo(a)pyrene	samples 203 \& 204 - trace
	benzo(b)fluoranthene	amounts (below detection
	benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	limit)
	benzo(k)fluoranthene indeno(1, 2,3-cd)pyrene	sample 203 - trace; 204 - ND
	benzo(a)anthracene, chrysene	sample 202-low; 203 \& 204
		- v. low
	dibenz(a, h)anthracene fluoranthene	samples 203 \& 204 - ND sample 203 - low; 204 -
		v. low
	fluorene	all four v. low
	naphthalene, pyrene	sample 204 - v. low
	phenanthrene	samples 201 \& 203 - low;
		204-v. low

APPENDIX I

CLOSSARY OF TERMS

```
NA: not analyzed
NRA: not routinely analyzed
N or ND: not detected
NAPP: not applicable
Tra: trace, below detection limit
NS: not separated, two parameters co-eluted together
E: estimate value
```

W: A. "W" code is used with a reported result when no measurement was possible due to no response of the instrument to the sample. The " W " is preceded by the smallest determinative division that can be used in the units used in reporting.

T: The " T " code is used with values between the Criterion of Detection and the "W" value. The Criterion of Detection is commonly thought of by many as the limit of detection.

UGLCC INTERLABORATORY PERFORMAMCE EVALDATION STUDY

QM-2 PAHs IN AMPULES
PIRAL DATA SUMMARY

NG/UL

SAMFL三 RESULTS

201. 202203204

Lab
4001
4005
U00? 4053 $407 ?$
4085

$: 54$
.85
1.95
$: 934$

| TOTAL LABS REPORTING | 6 | 6 | 6 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 6 | 6 | 6 | 6 |
| MEAN | 9.85000 | 9.43933 | .84167 | .97233 |
| STD DEV | 3.28229 | 4.17622 | .30779 | .49599 |
| MEDIAN | 8.35500 | 8.51500 | .82000 | .77500 |

SAMPLE RESULTS
201
202
203
204

LAB

U00
$U 005$
$U 009$
$U 063$
$U 075$
$U 079$
$U 085$
9.2
$6 \cdot 1$
$7 \cdot 74$
13.7
40.
6.38
9.0

$$
\begin{array}{r}
.4 E \\
.6 \\
.67 \\
2.25 \\
.601 \\
.5
\end{array}
$$

TOTAL LABS REPORTING	7	7	7	7	
TOTAL LABS USED	7	7	7	6	6
MEAN	13.16000	12.96857	.68200	.84683	
STD DEV	12.10270	12.34898	.24805	.63158	
MEDIAN	9.00000	9.20000	.62000	.60050	

ANALYSIS OF PAHs
PRINIOUT PREPARED: 86/09/15. PARAMETER: ANTHRACENE

NG JUL
SAMPLE RESULTS
201202203

LAB
Y 001
U005
U00
U063
U072
U 099
U085

$\begin{array}{ll}\mathrm{N} & \\ \mathrm{N} & \\ & : 31 \\ & : 52 \\ \mathrm{~N} & : 215\end{array}$
7
7
7
4

204

$$
\begin{array}{ll}
N & \\
N & .33 \\
N & : 336
\end{array}
$$

7
3
.34200
.04911
. 33000

ANALYSIS OF PAHS

PRINTOUT PPEPARED: 86/09/15.

PAFAMETER: BENZO(A)IMTHRAこENE NG NL

	SAMPLE FESJLTS		
201	202	203	204

LAB

Y 001	12.3
$\bigcirc 063$	9. 34
U079	7.95
UDE5	9.9

12.3
9.98
$10: 4$
$7: 31$
$7: 1$

| TOTAL LABS REPORTINE | 5 | 5 | 5 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USEO | 5 | 5 | 5 | 5 |
| MEAN | 9.84400 | 9.41800 | 1.28400 | 1.43500 |
| STD DEV | 1.57300 | 2.20244 | .52348 | .90605 |
| MEDIAA | 9.74000 | 9.98000 | 1.40000 | 1.47000 |

ANALYSIS Of PAHs

PRINTOUT PREPARED: $86 / 09115$.

 PARAMETER\& BENZO(A)PYRENE NG/UL
SAMPLE RESULTS

201202203204

LAB

N

TOTAL LABS REPORTING	7	7	7	7	
TOTAL LABS USED	7	7	7	5	5
MEAN	10.97000	10.94857	.93800	1.24740	
STD OEV	4.65033	5.03194	.44421	1.06748	
MEDIAN	9.11000	10.27000	1.06000	.97700	

ANALYSIS OF PAHS

PRINTOUT PREPARED: $86 / 03 / 15$ 。

PARAMETER: BENZOIBIFLUORANTHENE

NG/UL

SAMPLE RESULTS
$201 \quad 202$
203
204

LAB

U001	8.9
U009	9.25
UOE	36.6
UO72	9.8
UO7	8.20
UOE	8.5

$$
\begin{array}{r}
114 \\
2: 43 \\
2.43 \\
1.0 \\
0 \\
0
\end{array}
$$

$$
\begin{array}{r}
\cdot 14 \\
4: 73 \\
4: 33 \\
1.930
\end{array}
$$

6
TOTAL LABS REPORTING 6
TOTAL LA $3 S$ USED
$\begin{array}{lr}\text { HEAN } & 13.54167 \\ \text { STD DEV } & 11.31019 \\ \text { MEDIAN } & 9.07500\end{array}$
N

6

5
6
5

14.99333
1.03620
14.48565

- 84 557
$9.48500 \quad .92100 \quad .7300$

1. 38600
2. 57551
-楮

ANALYSIS OF PAHs
PRINTOUT PEEPARED\& © 6/05/15.
PARAMETER\& BENZOIG,H,IJPEZYLENE NG/UL
SAMPLE RESULTS

	201	202		03		04
LAB						
U 001	10.5	10.5		. 51		. 61
4005 4009	7.7	9.7	N		N	
U063	18.0	19.4		1.39		2.91
4079	8.82	8.10		1.26		1:10
$\cup 085$	9.3	8.2	N		N	

| TOTAL LASS PEPORTING | 6 | 6 | 6 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 6 | 6 | 4 | 4 |
| MEAN | 10.31167 | 10.76167 | 1.00250 | 1.34750 |
| STO DEV | 3.92025 | 4.33216 | .38965 | 1.06146 |
| MEDIAN | 9.06000 | 9.18500 | 1.00500 | .93500 |

ANALYSIS OF PAHS

PRINTOUT PFミPAPED: yE/03/15.

PARAMETER: BENZO(K)FLUORAVTHENE NGIUL

SA MPLE RESULTS

| TOTAL LASS FEPOFTING | 5 | 5 | 5 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 5 | 5 | 4 | 4 |
| MEAN | 9.85200 | 9.17800 | .70750 | .71000 |
| STD DEV | $1.0 E 748$ | 1.03982 | .59958 | .52325 |
| MEOIAN | 10.00000 | 8.90000 | .54500 | .52000 |

PRINTOUT PREPARED: SE/0э115.
PADAMETER\& ChRVSENE
NG/UL
SAMPLE RESULTS

	201	202	233	204
LAB				
U001	8.3	8.3	-32	
4009	6. 12	6.44	1:18	1:20
U063	9. 30		1.31	2.52
$\begin{array}{r}\cup 079 \\ \\ \hline 085\end{array}$	8. 6.71	6.96 5.6	2.00	1.40

| TOTAL LABS REPOPTING | 5 | 5 | 5 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 5 | 5 | 5 | E |
| MEAN | 7.72600 | 7.32000 | 1.12200 | 1.22800 |
| STD OEV | 1.29162 | 1.47845 | .62379 | .83709 |
| MEDIAN | 8.21000 | 6.96000 | 1.18000 | 1.20000 |

ANELYSIS OF PAHS

PRINTOUT PFEPAFED: 6 6/09/15.

PARAMETER: DIBENZ (A, H)ANTHFACENE
 NG/UL

SAMPLE RESULTS

	201	202		03		204
LAB						
4001	10.1	10.3	N		N	
$\cup 009$	7.25	7.59		. 67		. 57
4063	15.1	15.2		. 90		1.70
U072	10.31	10:3		1.17		1:003
U085	9. 2	8.0	N		N	. 003

| TOTAL LABS FEPORTING | 7 | 7 | 7 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 7 | 7 | 4 | 4 |
| MEAN | $0.6 R 000$ | 9.31571 | .96000 | .99325 |
| STO OEV | 2.68995 | $2.567 E 7$ | .22465 | .50210 |
| MEDIAN | 9.20000 | 8.83000 | 1.00000 | .83500 |

ANALYSIS OF PAHB

PRINTOUT PFEPAFED: 26/09/15. PAFAMETER: FLUORANTHENE NG/UL

SAMPLERESULTS			
201	202	203	204

LAB

$\begin{aligned} & U 001 \\ & U 005 \end{aligned}$	$\begin{array}{r} 9.6 \\ 10.1 \end{array}$	$\begin{aligned} & 9.6 \\ & 9.7 \end{aligned}$	$\begin{aligned} & 2.5 \\ & +00 \end{aligned}$	2.5 3.7
UOC9	11.45	11.06	4.36	4.52
U063	12.4	15.2	3.27	7.43
U072	10.8	10.8	-. 8	4.is
U073	9.51	5.05	2.76	2.72
UDE5	9.5	9.3	3.0	2.0

TOTAL LABS REPOFTING	7	7	7	7	
TOTAL LABS USED	7	7	7	7	7
MEAN	$10.4 E 000$	10.10143	3.52714	3.90429	
STO DEV	1.12174	2.99928	.86042	1.54954	
MEDIAN	10.10000	9.70000	3.27000	3.70000	

ANALYSIS OF PAHS
PRINTOUT PREPAFED: $86 / 09 / 15$.
PARAMETER: INDENO ($1,2,3 C D)$ PYRENE
NG/UL
SAMPLE RESULTS

	201	202		3		04
LAB						
Y001	10:3	10.3	N	. 36	N	. 35
4009	6.84	6:044	N	- 52	N	
U063 4073	19.4 8.73	19.00		$1: 13$		2.13
U0E5	8.2	$8: \frac{57}{7}$	N	- 302		. 552

| TOTAL LABS FEPORTING | 6 | 6 | 6 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LESS USED | 6 | 6 | 4 | 4 |
| MEAN | 10.12833 | 9.93500 | .72300 | .96900 |
| STD DEV | 4.70063 | 4.61049 | .35146 | .30108 |
| MEDIAA | 8.46500 | 8.09500 | .71100 | .69100 |

ANALYSIS OF PAHS

PRINTOUT PDEPACED: $\operatorname{BE/09/15.}$

PARAMETER: NAPHTHALENE
 NG/UL

SAMPLE RESULTS
$201 \quad 202203204$

LAB
U001
UOOF
4009
U0F
4079
$U 085$

N

N

$$
\begin{array}{r}
.0 \\
: 52 \\
1: 17 \\
1: 07 \\
\cdot 3
\end{array}
$$

| TOTAL LABS FEPOFTING | 6 | 6 | 6 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 6 | 6 | 5 | 5 |
| MEAN | 7.90500 | 7.11333 | .58340 | .73200 |
| STD DEV | $2.7908 ?$ | 2.73735 | .11319 | .37252 |
| MEDIAA | 7.61500 | 5.57000 | .53200 | .50000 |

ANALYSIS OF PAHS

PRINTOUT PFEOAFED: $36 / 03 / 15$.

PAFAMETER\& PHENANTHRENE NG/UL
SAMPLE RESULTS
$201 \quad 202$
203
204
LAB

4001 0005
 Uong
 U0E3
 U072 U079
 U085

$1 \cdot 1$
$1: 9$
$1: 47$
3.0 .1
$2: 2$
$1: 21$
.9

| TOTAL LABS REPODTING | 7 | 7 | 7 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USEC | 7 | 7 | 7 | 7 |
| MEAN | 10.17429 | $10.228 \equiv 7$ | 1.67143 | 1.59429 |
| STO OEV | 2.51228 | 2.84886 | .54535 | .74132 |
| MEDIAN | 9.40000 | 9.50000 | 1.44000 | 1.47000 |

ANALYSIS OF PAHE

```
PRINTOUT PEEPAKEO& 86/03/15.
PARAMETER: PYRENE NG/UL
```

SAMPLE RESULTS
201202203

LAB
4001
4005
4009
4063
4072
4079
$U 085$

| TOTAL LASS REPORTING | 7 | 7 | 7 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LASS USEO | 7 | 7 | 7 | 7 |
| MEAN | 11.83571 | $9.712 \varepsilon E$ | 3.65571 | 3.83957 |
| STO DEV | 2.81110 | 2.71318 | .76215 | 1.45725 |
| MEDIAN | 10.90000 | 10.00000 | 3.60000 | 3.76000 |

(qu-2 Par Results (ng/uL)

	201	202	203	204
naphthalene	5.1	5.28	0.60	0.24
acenaphthylene	6.0	6.84	0.91	0.45
acenaphthene	6.0	6.7	0.87	0.46
anthracene	10.4	12.0	0.48	ND
benzo(a)anthracene	4.1	4.9	1.08	0.54
benzo(a)pyrene	9.2	10.3	1.04	0.62
benzo(b)fluoranthene	16.0	21.0	1.88	0.88
\& benzo(k)fluoranthene				
benzo(g, h,i)perylene	7.9	9.15	1.08	0.59
chrysene	4.1	4.3	1.01	0.51
dibenz (a, h)anthracene	6.6	7.2	0.7	0.34
fluoranthene	5.4	7.2	2.53	1.52
fluorene	6.34	6.93	0.74	0.35
indeno(1, 2,3-cd)pyrene	8.48	8.96	0.87	0.43
phenanthrene	6.64	7.45	1.90	0.61
pyrene	5.11	6.18	2.40	1.32

[^0]: *See Appendix I for explanation of codes.

[^1]: *See Appendix I for explanation of codes.

[^2]: *See Appendix I for explanation of codes.

