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SUMMARY * 

' This paper presents and suggests the use of Poisson 

regression analysis for modelling the association between bacterial 

counts observed in a drinking water distribution system and a set of 

explanatory variables. When the dependent variable is a count that 

follows the Poisson distribution, the procedure developed in this work 

is much more appropriate than thee conventional method of applying 

ordinary_regression analysis after transforming the counts using the 

square root transformation, since such a "transformation may not 

satisfy all the conditions needed for performing _regression. A 

detailed description of the procedure used for calculating the maximum 

likelihood estimates of the unknown parameters of the model and their 

standard errors is given. The method is illustrated by studying the 

spatial and temporal variation of heterotrophic bacterial counts in 

the drinking water distribution system of the city of Morsang in 

France. The results indicated significant variations due to both the 

spatial and temporal characteristics of the distribution of bacteria 

in the network and also that there was a strong interaction between 

those characteristics. Further an attempt to model the temporal and 

spatial variation showed that a sizeable portion of the total 

variability could be explained by using temperature and turbidity as 

predictor variables.



Q 

SOMAIRE 

Dans cette étude, on suggére d'effectuer l'analyse de régression 

de Poisson pour modéliser les relations qui existent entre la numération H 

bactérienne dans un systeme de distribution d'eau potable et un ensemble de 

variables explicatives. Si on emploie comme variable dépendante la numération 

bactérienne et que les valeurs de celle-ci correspondent 5 une distribution 

de Poisson, la procédure que nous présentons convient nettement mieux que 

la méthode classique, laquelle consiste 5 effectuer une analyse de régression 

ordinaire apres avoir transformé les valeurs de la numération au moyen de 

transformations de racines carrées, car cette derniére ne permet pas nécessaie 

rement de satisfaire toutes les conditions requises pour l'analyse de 

régression. On décrit en détail la procédure employée pour.calculer les 

probabilités maximales estimatives des paramétres inconnus du modele et on 

indique les erreurs-types. On illustre la méthode en prenant pour exemple 

l'étude des variations dans le temps et dans l'espace de numérations de 

bactéries hétérotrophes dans le systeme de distribution d'eau potable de la 

ville de Morsang en France. Les résultats ont révélé des variations importantes 

dues aux caractéristiques spatiales et temporelles de la distribution des 

bactéries dans le systeme de distribution et mis en évidence 1'intensité 

des interactions qui jouent entre ces caractéristiques. De plus, en tentant 

de modéliser les variations spatiales et temporelles de la distribution on a 

pu démontrer qu'une portion importante de la variabilité globale pouvait 

s'expliquer en prenant le température et la turbidité come variables 
explicatives.
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IITRODUCTIQR 

The common approach for studying the dependence of bacterial 

counts on a set of physical and chemical predictor factors usually 

requires prior transformation of the crude counts. Regression 

analysis is then performed with the transformed values as the 

dependent variables and the other factors as the independent 

variables. The choice of a specific transformation is based on the 

variance-mean relationship, which in turn is a function of the 

probability distribution. of the observed values. The square root 

transformation, for instance, is appropriate when the distribution of 

the untransformed dependent variable in Poisson which is comonly 

assumed in applied microbiology when the bacteriological data consists 

of plate counts. The justification of such transformations lies in 

the fact that the variance of the transformed variables will be 

approximately constant which is one of the requirements for the 

application of the standard regression methods. However, this is not 

enough, to justify the application of the usual regression technique 

since the other requirements for performing regression analysis may 

not be satisfied. Thus, several kinds of transformations of the 

variables are therefore available to achieve normality and homogeneity 

of the variances, which are both necessary, on strictly mathematical 

grounds, to perform regression analysis. For example, a transforma- 

tion as that suggested by Anscombe [1953] is more successful in
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normalizing the distribution of the transformed variables. Neverthe- 

less, a single transformation cannot both stabilize the variance and 

give approximate normality as effectively as these objectives can be 

achieved separately [Plackett, 1981]. Transformation of the data 

should therefore not be -used incautiously. Further, whichever
1 

transformation is used, the assumption has to be made that the effects 

of the independent variables are additive on the transformed scale. 

The present paper sets forth an alternative approach for performing 

regression analysis which does not require any transformation of the 

dependent variables since it is based on the exact assumed probability 

distribution. This approach will be called in the paper Poisson 

regression. Note that Poisson regression models have recently been 

applied -to epidemiologic follow-up studies while estimating the 

unknown parameters of the regression function by means of iteratively 

reweighted least squares (IRLS) [Frome, 1983]. Further, the IRLS was 

shown to be equivalent to the maximum likelihood procedure [Frome 

g£_§£., 1973] which is developed and emphasized in the present work, 

using ‘a nonlinear (i.e. the log-linear) regression model. The 

computation of the maximum likelihood estimates of the parameters when 

Poisson regression is used has to be done numerically using a 

"computer. Newton—Raphson method is suggested here for performing the 

computation because it offers the advantage for also producing the 

variance-covariance matrix of the estimates. Hence different tests 

could be assessed and confidence intervals could be constructed for 

comparing and estimating the values of the parameters of the
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regression function. Moreover, the likelihood ratio test [Rao, 1973] 

is presented which allows the assessment of the effects of introducing 

new factors in the model. 

The Poisson regression technique is used to study the spatial and 

temporal variabilities of heterotrophic bacterial counts in a drinking 

water distribution system. The data were generated from the analysis 

of water samples which were collected at five different locations and 

at different times during the summer, fall and winter of 1981 from the 

Morsang drinking water distribution system. The object of the study 

was to determine the changes in the water bacteriological quality in 

the network both spatially and temporally which would undoubtedly help 

to understand the mechanisms of the incidence and the spreading of 

bacteria in a network. Further, an attempt -is made to model the 

spatial and temporal variation using temperature and turbidity 

measurements as predictor variables. 

STATISTICAL usmons 

Poisson Regression, Model 

Let r1, r2, ..., rn be n independent Poisson random 

variables and let Xi be the expected value (the theoretical mean) of 

ri. The aim of the Poisson regression is to assess the dependence 

of A1 on a set 31, ..., xp of p explanatory variables where n is 

sufficiently greater than pgto ensure estimability of the parameters.
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In order to apply this technique, the natural logarithm of Xi is 

expressed as a linear function of the explanatory variables, i.e_., 

1" Xi = B1 xil * B2 xiz * --- ‘dB? xiv (1) 

where xii, ..,, xip are the values of x1, ..., xp which are 

associated with the random variable ri and 31, ...,_ 5p are the p 

unknown regression parameters. Note that. when all the xi1'$ 

(i=l,...,n), for e'x_a_mple,V are set equal to one, the right side of 

equation (1') will contain a constant related to the general level of 

the process. When p ‘/1’, equation (1) gives thfe usual linear 

regression model, and with p > 1 the above model is similar to 

multiple .regression. Further, when the values of x1, ..., xp are 

binary (i.e._, zero or one) then the model can be considered to 

correspond to that of different types of experimental design such as 

one way and two way analysis of variance. Finally, when some of the 

x‘s are binary while the others can assume Sn)’ value, then mode-l (1) 

corresponds to the analysis of covariance. <It should be noted that 

above expression for Xi does not transform or change the probability 

distribution for ri and it is more general than that which expresses 

Xi as ailinear function of xii, x5_2,...,xip since for small 

range of ii model (1) will give approximately linear expression for 

Ai as a funcet-ion of the explanatory variables.
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Estimation of the parameters of the model 

The likelihood function L for B1, ..., BP is obtained by 

writing P(ri) for the probability distribution of ti, multiplying 

these probabilities for r1, ..., in and substituting expression (1) 

for Ln A1, i.e., 

» 
r. 

Q n -ii xi‘ 
L = ;n P (ri) = _n e ‘?TT 

i=1 1=1 e 1 

I! + use 
*2. E B111 * --- * Q 
,1 e 

B? P 
e 1 

L = - 

7 

4 e. (2) 
one 

where qj é xljrl + xzjrz + ... + Xnjrn (j = 1,2, ..., p). 

The estimates §1, ..., §p of 31, ..., BP are obtained by maximizing L 

for the variations of B1, ..., Bp. This can be done by solving the 

set of p equations 

32 n 81x-' + ..¢ + Bax- 
.___ = - Z -xi. e 11 P ‘P + q. = 0 (j=1,2, ..., p) (3) 

aej i=1 ~J 1 

where L = £nL. Equations (3) are nonelinear and their solution can be 

obtained by iteration. One convenient method for doing this is 

Newton—Raphson method which requires the evaluation of the information



-7- 

matrix I. This matrix is of order p x p with the element in the r-th 

(r = 1, 2, ..., p) row and sth (s =1, 2, ..., D) column is given by 

n“ 31x. +...+Bx. 
. 1 
1 = 2 x. x. e 1 P 1p 
rs . ir 18 i=1 - 

It is more convenient to present the foregoing results using matrix 

notation. Let X be the matrix of order (n x p) with xij as the 

element in the ith row and jth column and let Q be the column vector 
of length p and elements ql, ..., qp. Further denote to the vector 

of 61, .¢., B9 by Q and let D(§) be a diagonal matrix of order 
. . . 

i Blxil + + BPxiP 
(n x n) with its 1th diagonal element e '

. 

_Then it is easy to show that the system of equations (3) is 

x' 0(5) 1 = ‘Q (4) 

where is a column vector of length n with all its elements equal to 

one and X‘ is the transpose of the matrix X. . The information 

matrix is 

1 = x' n(_s_) x (5) 

Note that the matrix D(£) is written in this way toemphasize its 

dependence on lg. Suppose that an initial estimate £0 for 3 is 

available then the iterative process is given by _
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ék = _E(k_1) + 1'1(_g(k_1)) (g- x'n(_§(k_1)) _1_) <6)’ 

where Ek (k = 1, 2, ...) is solution at the stage k in the iteration 

process. The iteration continues until the difference between fik 

and very small, i.e., (E 1;‘ (k_1))' (ék — _§(k_-1) ) is less 

than a prespecified small value. At this stage the value of_§ is 

taken as fik. 

Inferences about the parameters 1! 

Large sample confidence interval can be constructed by 

noting that I'1(3) is the estimate of the variance—covariance matrix 

and hence an estimate of the the variance of fij is the jth diagonal 

element I'1(j,j) of 1'1, The 95 percent confidence interval for 6; 

is then §j'i 1.96 JI'I(j,j). In addition, to test if a subset of 

the B's, say B;+1, 8¢+2, ... BP (with 2 < p) can be regarded as 

zero's (i.e., not important parameters) in the regression equation 

then, the likelihood ratio test could be used which is given by 
' ‘ h . an an 

‘zm A = 2 {B141 * J’ Bbqp ‘ $1q1 
' ' Bzqz 

A A "' '\' 

H coo + BX- n + woo 8 xv 
_ 

.2 e 11 p 1p + 2 e 11 1 11} . (7) 
1*1 i=1
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where E1, ..., E1 are the maximum likelihood estimates of 61,_..., 

B1 when B1+1, ..., BF are set equal to zeros in (1). The 

asymptotic distribution of —2£nA is X2 with p-L degrees of freedom. 

The case when the values of the random variable r can be 

classified according to the levels, for example, of two factors and 

the interest is to test if the two factors operate independently of 

each other is important in many applications. Model (1) is 

specialized here to deal with this case. Let rij be the observed 

value of the random variable r at level i (i = 1,2, ..», L) of the 

first factor and level j (j = 1,2, ..., m) of the second factor. 

Further, the likelihood ratio test is used to test the null 

hypothesis, Ho, that In Aij can be expressed as an additive linear 

combination of the ith level of the first factor and jth level of the 

second. Under HO model (1) can be written as 

In Aij = u + oi + Bj, (i = 1,2,...,£; j = l,2,...,m) (8) 

where u is the general level of the process, mi the effect due to 

the ith level of the first factor and 35 is the jth level of the 

second factor. Note that the parameters u, (ml, ..., ml) and 

(B1, ..., fin) are not independent and to obtain a unique estimate 

for these parameters it is assumed that Zai = 2Bj=0. 

Under the alternative hypothesis, model (8) is replaced by 

£11115 =cu+q+Bj+Y15 (9)
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where Yij represents the interaction between the ith level of the 

first factor with the jth level of the second factor. So the 

likelihood ratio test as given by (7) for testing the adequacy of 

model (8) is equivalent to testing that yij E 0 for all i and j. 

APPLICATIONS 

The method is illustrated by a numerical example based on 

total bacterial counts observed in water samples from five fixed 

points in the Morsang drinking water distribution system [Sle, 1983]. 

The general structure of the network and the position of the sampling 

stations are shown in Figure l. Samples were collected from the 

exhaust—pipe of the treatment plant, above and below the Linas 

reservoir and from two other stations located in the Bondoufle network 

and also on a long dead-end at a place called "Ferme des Folies". 

Retention time of the water in the pipes before reachingthe stations 

below the plant has been estimated to be 5 hours, 17 hours, 1 day and 

1 month, respectively. Bacteriological data were obtained during 

special study which was conducted from May to December 1981. These 

data consist of total counts expressed as the number of colony- 

forming—units per mL after 72 hours of incubation at 20°C using the 

standard pour plate procedure. The aim of the study was to determine 

how the bacteriological water quality changes both spatially and 

temporally. So, the hypothesis of interest were to test: i) if the 

bacterial density in the water varies at any fixed time from one
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sampling point to another, ii) if it varies at a fixed location from 

one. time to the other and iii) for the presence .of interactions 

between time and space. ' 

Y The analysis started by fitting model (8) to the data. The 

estimated time effects E3 (j = 1,2, ..., 14) are plotted in Figure 

2, while the location effects ii (i = 1,2, ..., 5) are plotted in 2 

Figure 3. The values of fij appear to have maximums in the first 

half of July and in the beginning of September and it reaches its 

minimum in the middle of November. It is of interest to note that the 

values of §j are nearly constant for July, August and September. 

Thereafter the value of E drops drastically to reach its minimum. To 

test for the significance of this pattern, the likelihood ratio test 

(equation (7)) is applied to test the hypothesis H1231 = 32 = ... = 

B14. The value of -2 £nA is 49428.78, which is very highly signifiw 

cant (P<.01). Hence H1 is rejected (i.e., the temporal variabilities 

expressed in terms of the 3's are accepted). 

The values of &i.(1 = 1,2, ..., 5) indicate an increase with the 

distance from the treatment plant (Figure 3) and the maximum differ- 

ence between two successive u's occurring between location one and 

location two which is followed by the difference between location four 

and five. The differences between locations two, three and four are 

of least importance. The likelihood ratio test gave —2znA = b8ll2.95 

which is very highly significant (P < .01). Hence the differences
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between locations is accepted as real. Further, the interaction 

between the temporal and spatial variabilities was tested by comparing 

model (9) with model‘ (8) (i.e., testing that all yij * 0 for i = 

l,2, ..., 5 and j = 1,2, ..., 14). The likelihood ratio test gave -2 

!.nA = 10424.02 which is highly significant (P < .01) when compared 

with X2 on 52 degrees of freedom. This suggests that there is a 

strong interaction between the spatial and temporal variabilities of 

bacterial counts. ' 

An attempt is made here to correlate the spatial and 

temporal variabilities with temperature and turbidity where these 

measurements are available. First, it was decided to see if the 

inclusion of temperature will explain the temporal- differences; hence 

in model (8) the parameter Bj has been replaced by Qxij where 

xij is the temperature of the water in the ith location and during 

the jth time and 6 is an unknown regression parameter. Under this 

assumption the value of 8 was estimated as 0 = .3667 with standard _ 

error .0029 which shows that the effect of temperature is significant 

and is positively correlated with bacterial density. To determine if 

the inclusion of temperature could explain the temporal variabilities, 

the likelihood "ratio test was applied and showed that temperature 

could not completely explain the variation in the 5j's (-2 um = 

220152.47). Since a linear term in temperature was not adequate, it 

was decided to consider a quadratic term, hence in model (8), Bj has 

been replaced by 61x15 + Ozxzij. The values of 91 and 92 were
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estimated as 51 = .7582 and 52 * -.0857, respectively. The standard 

error of §1 is .0112 and that of §2 is .0018 which indicates that the 

inclusion of V02 is significant (-2 £nA = 15920.94). Note that the 

value of--2 2nA is reduced quite substantially as the result of adding 
'- ~ 

the quadratic term. The effect of turbidity was next introduced into 

the model by adding an interaction term between turbidity and tempera- 

ture. ‘ Thus, another term in the form y xij Tiji has been 

considered in the regression equation, where Tij is the turbidity in 

the ith location at the jth time. The likelihood ratio statistic, 

-2 .£nA, amounted to 5267.77 which is highly significant. This 

indicates that, although the interaction between temperature and 

turbidity is very marked, there is still unexplained temporal 

variability. Finally, the regression was repeated by adding another 

linear term for the, turbidity. The inclusion of this new factor 

resulted in ‘the decrease in @2LnA from the previous value 

substantially to 341.97, which is still significant. From this 

analysis it was concluded that temperature and turbidity cannot 

explain all the spatial and temporal variation in the bacterial 

density, although they explained a very large portion of it. Figure 4 

displays the bacterial counts observed and the corresponding estimated 

value when the turbidity and temperature_ are both included in the 

model. The figure shows that the model appears to fit the 

experimental observations reasonably well except for the last three 

samplingydates.
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DI§(_ZUSSION OOIICLUSIOH " 

In this paper, the method of maximum likelihood is used to 

obtain estimates of the parameters in a log—linear regression mwdel 

when the experimental observations are independent and assumed to 

follow the ?oisson distribution. The application of “the usual 

regression methods assumes: normality, constancy of variance and 

additivity of the effects of the explanatory variables, and therefore 

often requires transformation of the experimental data. Consequently, 

since no single transformation might be capable of fulfilling all 

these requirements, Poisson regression, which requires no previous 

transformation of the data, offers an appropriate way to avoid all 

these difficulties. Hence, this statistical method is much more 

appropriate than conventional regression analysis for assessing the 

dependence of Poisson distributed data on a set of categorical and/or 

continuous variables. The improvement resulting from the inclusion of 

new factors in a given regression model can be evaluated by means of 

the likelihood ratio test; furthermore, examination and comparison of 

the likelihood ratios corresponding to different regression equations 

may progressively achieve an adequate model for fitting the data. In 

this regard, it must be emphasized that 'the sequential’ order of 
introducing new independent variables into the model is not unique and 

may not be prespecified. Thus, an interesting approach to attain an 

appropriate model containing a set of variables with great predictor 

potentials can be achieved 'by performing a stepwise regression
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analysis by means of the likelihood ratio used as the discriminating 

function [Draper and Smith, 1966]. 

One important area of application of Poisson regression models is 

the analysis of bacteriological quantitative data. The statistical 

procedures developed in section 2 have great potential for improving 

estimation of parameters and fitting models to such data sets. The 

results of the analysis of the Morsang's distribution system data, 

which is presented in this work as a numerical example for 

illustrating the mthod, indicated the presence of strong spatial and 

temporal variation in the bacterial density with a marked interaction 

between those two components. Factors which may have contributed to 

influence the temporal variability are turbidity and water 

temperature. Both of these variables were highly positively 

correlated to bacterial incidence in the network. These observations 

are in accord with those of other studies, showing a structured 

pattern of the spatial and temporal heterogeneity of the bacteria in 

distribution systems. In particular, high densities of heterotrophic 

bacteria are: i) more likely to occur in peripheral locations far from 
-4 the treatment plant rather than close to it; and 11) concomitant with 

warmest water temperatures [Maul st §l., 1985;]. The understanding of 

the variability in bacterial density through appropriate regression 

models can be useful for i) studying the relation between bacterial 

incidence and some physical and chemical characteristics of the body 

of water considered; and ii) determining the spatial and temporal 

dispersion pattern of bacteria in light of those characteristics.
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This information, thereafter, can be used for identifying problem 

areas or periods and will thus facilitate taking remedial action. In 

addition, it will help to improve the design of future monitoring 

sampling programs [Maul e£_§l:, 1985b]. 

Although Poisson regression requires more computation than 

ordinary regression analysis, it is worth bringing to the attention of 

microbiologists for the existence of computers makes this represent no 

real disadvantage. In fact, the analysis of the data presented here 

took only a few seconds using APL computer system. 
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FIGURES 

General configuration of the Morsang water distribution 

system. 

Estimated time effect plotted against sequential order of 

the observations. A 

Estimated location effect corresponding to each of the five 

sampling stations.
' 

Observed and fitted bacterial density g 

for each of the 

five sampling stations vs time.
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