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EXECUTIVE SUMMARY 

This manuscript summarizes the doctoral research activities of Y. 
Marmoush, Department of Civil Engineering McMaster University and is 
intended for an audience of fluid mechanicians, physical limnologists, 
geophysicists and power engineers. = 

The research topic of determining how to characterize the spreading 
of large heated discharges in lakes and in winter was sparked by the 
concern of the Ontario Ministry of Environment on the possible damage 
to nearshore whitefish spawning grounds if the spawn is subjected to 
unnaturally heated water during a critical stage of their development. 
In 1980 Ontario Hydro undertook an extensive series of winter thermal 
plume mappings which served as an observational basis for the research 
study reported herein. 

By means of a somewhat idealized model of the winter thermal plume 
spreading referred to as the loch exchange flow, for the first time to 
our knowledge, this phenomenon was investigated in the case where the 
temperature of maximium density (4°C) plays a crucial role. In a 
laboratory experiment in the NNRI cold chamber the dramatic influence 
of the 4°C water was first demonstrated, and quantitative relations 
between the horizontal spreading distance and the background environmental 
relations where determined. 
* %Development of a highly accurate mathematical model run at McMaster 
University served to further quantify the behaviour of the spreading 
thermal plume in parameter ranges not easily obtainable in the laboratory 

Finally, following from the insight gained in the above two studies, 
a detailed analysis of the key physical processes involved in the spreading 
and subsequent sinking processes permit simple expressions to be derived 
which both unify the numerical and experimental results and provide a 
predictive cabability for environmental applications. 

An application of these spreading relations to the data collected 
at the Ontario Hydro site predicts the initial spreading phase up to 
the point of detachment of the headed discharge extremely well and the 
second phase from the point of detachment to the sinking zone in a 
reasonable fashion. It is thought that the neglect of offshore winds 
in the second phase probably contributed to the underestimation of the 
areal extent of the plumes during winter 1980.



Ansrimc-r 

The existence of a density extremum in water at 4°C gives rise to 

densimetric flows, which are markedly different from those in the 

linear range. Experimental, numerical and scaling investigations are 

described that give some insight into the overflow and sinking 

processes in a lock exchange flow and the manner in which they may 

influence nearshore transport in the vicinity of a thermal outfall in 

a cold climate. The investigations were restricted to an idealized 

model where the lock exchange mechanism was selected due to the fact 

that its behaviour is close to that expected in. the prototype 

situation. A simple application illustrates how the results obtained 

might be employed in the design of power station circulating water 

systems that must operate in severe winter conditions.
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‘ 1 . m'n10nUCT"1oiw 

f — In power station once—through cooling water systems, the,waste 

heat is discharged to the environment in the form of heated effluent 

with a temperature typically 10C° above that of the receiving water. 

Under the temperate climatic conditions which commonly obtain, this 

warm water forms a raft with a pronounced discontinuity in the 

vertical temperature distribution, A front forms at the edge of the 

plume driven by the thermal density difference. When sufficiently 

large stations are located adjacent to natural bodies of water, their 

warm water discharges give rise to environmental concerns which are 

frequently more important than the technical problem of warm surface 

water being drawn into the cooling water intake with consequent 

reduction in the thermal and economic efficiency of the station. The 

transport of heat by buoyancy-induced convective motions is a 

mechanism which finds relevance in many physical systems. 

Accordingly, there have been numerous theoretical, experimental and 

numerical studies of various aspects of natural convective flows. 

Usually the direct modelling of these natural systems is very c0mPlex; 

however, certain idealized cases of such convective motions provide 

some insight pinto these more difficult problems. To, analyse the 

principal flow regime in an idealized case which is likely to occur in 

the vicinity of a thermal outfall, the lock exchange mechanism is 

usually selected due to the fact that its behaviour is close to that
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expected in a prototype situation. The phenomenon of lock exchange 

flow is the classical case of unsteady non-uniform flow in the field 

of small density difference hydraulics. This phenomenon occurs when a 

lock gate or other such division separates bodies of still water with 

the same surface elevation but which differ slightly in density. 

While the opening of the gate may result in local disturbances, the 

’predominant effect will be a continuing exchange pattern of flow which 

is caused by the density difference. Experimental studies of thermal 

densimetric flow’ have been reported by a large number of 

investigators. Keulegan (1946, 1957) and Schijf and Schonfeld (1953) 

used salinity as the density difference agency, whereas Barr (1963, 

1966, 1967) and Didden and Maxworthy (1982) used both thermally and 

salinity induced density flows. Recently, Simpson (1982) has given a 

broad—ranging account of gravity currents (which includes a most 

comprehensive bibliography). 

In cold climates, the behaviour of thermal density currents may 

be altered when the receiving water is close to the freezing point and 

when the discharge water has a temperature higher than the temperature 

of maximum density (4°C). Temperatures higher than the ambient have 

been observed near the bottom of fresh water lakes in the vicinity of 

thermal discharges [Pipes et al. (1973) and Metcalfe (1980)]. Concern 

has been expressed about the adverse effects of such abnormally warm 

water on the winter ecology of lakes in cold climates [Hoglund and 

Spigarelli (l972)]. It is expected that the existence of a density 

extremum in water at 4°C and the nonlinear relation between density
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and temperature cause densimetric flows which are markedly different 

from those in the linear range. When an ambient temperature of close 

to 0°C is assumed, thermal discharges warmer than 8°C will have 

~positive buoyancy and spread as a surface layer. Thereafter, the 

plume will begin to sink when its temperature is brought to less than 

8°C by cooling and mixing processes since at this point its density is 

greater than that of the receiving fluid. This sinking warm water 

will then spread over the bed as a density current subjecting life 

forms on the lake bed to a transient and unseasonal increase in 

temperature. The sinking phenomenon, termed the thermal bar in the 

geophysical literature, may occur in the vicinity of nmn—made warm 

effluents and also in natural bodies of water during the spring 

warming period as reported by Rodgers (1968) and Spain 3£_§l. (1976). 

The fluid mechanics of the convecting flows with a density 

extremum are less well known than the lock exchange or gravity current 

phenomenon. The information given by the numerical study of Robillard 

and Vasseur (1982) and the laboratory investigations of Inaba and 

Fukuda (1984) concerning the effect of density inversion of water near 

4°C on the natural convective motion in an enclosed cavity provide 

some insight into this problem, but not sufficient for understanding 

the heated discharge problem due to its highly transient nature. In 

the study to be described, lock exchange flows were produced between 

two bodies of water having asymmetrical temperatures around b°C. The 

behaviour of these flows is expected to demonstrate the influence of a



_ 4 _ 

density extremum on lock exchange which is close to that found in a 

prototype situation. Laboratory and numerical analyses were carried 

dut to confirm the existence of the sinking plume phenomenon and to 

allow more detailed study of the zones upstream and downstream of the 

4° isotherm as well as the plunging region at the front. 

2 . PHYSICAL EXPERIMENTS 

A series of physical experiments were conducted in a cold chamber 

to investigate the phenomenon of the sinking plume in lock exchange 

flows. The densimetric flows were created in a horizontal flume where 

a vertical barrier which was located asymmetrically along the length 

of the channel was carefully removed. The shorter portion was used to 

contain the warm water. Weirs were fitted at each end of the flume to 

provide the same depth on both sides of the barrier. Thermistors were 

arranged vertically along the centre line of the flume to be uniformly 

spaced over the depth of water used in the test. More details of 

experimental apparatus may be found in Marmoush e£_al: (1984). 

Because of the effects of distant boundaries of the laboratory 

apparatus which are unlike those in a natural environment, interest 

was focussed on the initial occurrence of the plunging plume and the 

arresting of the overflow. The temperature of the cold reservoir, 

Tc, was set so that 0 §_Tc < 4°C and similarly the warm reservoir 

temperature, TV, was adjusted such that Tw > 8°C. The initial
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flow pattern was similar to the classical lock 
exchange mechanism; the 

warmer buoyant layer 'which was identified with a weak trace of 

fluorescene, extended over the cold receiving water. Concurrently, a 

cold, dense wedge was propagated under the warm body of water; The 

visual impression given by the dyed water was that the fluid behind 

the advancing front was turbulentl After the warm front had 

progressed for some distance, filaments of fluorescene dyed water 

could be seen extending downwards from the interface through the 

colder water to the bed of the flume. As the volume of water 

entrained in this way increased, the wanm front was arrested and a 

layer of dyed water was seen to propagate along the bed of the flume 

in the same direction as the original surface layer. The three zones 

of interest in the vicinity of 4° isotherm were clearly demonstrated 

viz. (i) the thermal overflow region, (ii) the thermal front, and 

(iii) the thermal underflow region. The experiments provide dramatic 

proof that the existence of an extremum in the density-temperature 

relation has a profound influence on the behaviourh of densimetric 

flows. Before presenting the effect of varying laboratory conditions 

on the initial behaviour of overflow and sinking processes we first 

discuss possible nmans of quantifying experimental results of this 

kind. 

DISCUSSION OF EXPERIMENTAL RESSLTS 

One approach to quantify these effects is through the use of the 

Rayleigh number. The Rayleigh number is defined as
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= g(Ap)H3/povolto .(1> 

where Ap is the density difference between the two water bodies, H is 

the depth of water in the flume, g is the gravitational acceleration, 

and po, no, no are the fluid properties (density, kinematic 

viscosity and thermal conductivity, respectively) at a specified 

reference temperature of To=4°C. Due to laboratory limitations, 

fairly large experimental Rayleigh numbers were used with values 

ranging from 107 to 108. 

The convective motions under investigation here are produced by a 

difference in density (i.e. due to a temperature gradient). Generally 

in convection problems, the flow patterns are dependent mainly on the 
. .1 

specified values of the Rayleigh number Ra, Prandtl number Pr 

(V/K) and aspect ratio A (Length, L / Depth, H). Numerical simulation 

of convective motions for circumstances in which the 

density-temperature dependence is linear, can be categorized by a 

single Rayleigh number as defined in Eq. 1. However, when a 

nonlinear density—temperature relation is involved and specifically 

when the warm and cold temperatures are separated by the temperature 

of maximum density, it is necessary to employ three different 

definitions of Rayleigh numbers to completely describe the 

experiment. These three values are:
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1-the cold Rayleigh number, (Ra)c=g(p,,—pc)H3/povoro (1.a) 

2—the warm Rayleigh number , (Ra )w=g( 0;,-pw)H 3/ pa vo no (1 .b) 

Sfthe lock exchange Rayleigh number, (Ra)1=g(pc-pw)H3/ pévolto) (1.c) 

From these definitions, it is apparent that any one Rayleigh number is 

dependent on the other two. In the investigation described here, 

(Ra')c and (Ra); are considered to be independent parameters with 

the dependent (Rah, = (Ra)c + (Ra)1*- If BY1IImet1'i¢81 

temperature differences around 4°C are assumed, (Ra)¢=(Ra)w, 

(so that (Ra)1 = 0) and only one of these is sufficient to describe 

the behaviour. The other determining parameter of the flow, the 

Prandtl number, is temperature dependent and has values of 11.6, 9.0 

and 7.0 for specified temperatures of 4'0, 15°C and 20°C, respectively 

(due mainly to the change in. ki_nematic viscosity). Unlike the case of 

the conventional cavity convection problem [Patterson and Imberger 

(1980), Hamblin and Ivey (1984)], in which Ra, Pr and A specify 

the flow pattern, the lock exchange flow mechanism is a function of 

(Ra)1g (Ra)c and Pro 

*, For the, unlikely case that 4°C < TV < 8°C the lock exchange 

(Ra); will be negative by the above definition indicating that 

lock exchange will occur but in a reverse direct.ion,. i.e. cold 

buoyant water overlying the warmer water.
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When the distance that the plume travels horizontally before it 

sinks to the bottom is non-dimensionalized with respect to the depth, 

it. becomes effectively the aspect ratio of the convective flow 

pattern, a quantity to be determined and not specified. Hence, the 

objective is to find the dependence of the aspect ratio A on the 

independent parameters, (Ra)1, (Ra)¢ , and Pre After the 

plume sinks there will be a slow lateral migration of the sinking 

point as the fluid tends towards its final rest state, However, this 

stage is of little interest and will not be considered further. 

All the tests in the experimental investigation were carried out 

with the cold water temperature close to 0°C for ease of control. 

Thus the effect of the variation of (Ra)c , caused by’ different 

cold water temperatures, was not examined. Since Pr is a function 

of temperature for any specific fluid it is therefore subject to minor 

spatial variations between ‘warm and cold zones pin the laboratory 

experiments. ‘For calculation purposes, a constant value was assumed 

and defined at a reference temperature of 4°C. A number of 

observations of the horizontal extension distance were taken with 

varying warm water temperature and depths, as listed in Table 1. 

The experimental parameters described in these tests are used to 

determine the relation between the maximum extension of the upper 

layer Lméx/H and the system parameters [(Ra)1, (Ra)c]. 

These results will be displayed in a later section along with 

additional values obtained by the solution of a mathematical model. 

From the experimental data, it was found that Lmax/H is proportional 

to (R,)1+-5 and to (R3)¢'-5.
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3. IMTIIEHATICAL FORHUIATIOH OF THE PROBLEM 

Q: 
W 
The fluid motion and heat transfer are generally described-by a 

set (system) of coupled (simultaneous) partial differential equations 

which are mathematical statements of the conservation of momentum, 

energy and mass. Moreover, the equation of state for the fluid of 

interest must be defined over» the temperature "range to be simulated. 

The system of equations comprises: (i) the Navie-r~-Stokes equation 

(conservation of momentum), (ii) the heat-transfer equation 

(conservation of energy), (iii) the continuity equation (conservation 

of mass), and (iv) the equation of state for the fluid 

(density—temperature relationship). Thus for a fluid element the 

two—dimensional governing differential equations [Lamb (1945) and 

Schlichting (1968)] are: 

3u 3u 
l 

3u -i-l 3p 
+ u + v __ 

= + vovzu 
3X 3)’ po 32 

(2) 

3t 

3v 3v 3v -1 3p Ap 
a+u +v~ =s. +v°v2v-g-_ (3) 

ac ax ay poay °o 

3'1‘ 3T 3T +»u_+h_@%Wr cm 
ax 8y 3'; 

8u 3n —+—-‘=0 (5) 
3x 3y 

p = poil - @<r-w°>21 (6)

1

4'
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The equations are written in an Eulerian frame of reference where u 

and v are the horizontal and vertical components of the velocity 

field, T is the temperature of fluid, p is the pressure, t is the 

time, and X and y are the coordinates of elements in the horizontal 

and vertical directions (Fig. la). 
J 
It is assumed that the fluid is 

incompressible and follows a Newtonian shear stress law. Moreover, 

the Boussinesq approximation is applied [Gray and Giorgini (l976)]. 

‘By defining the component of vorticity in the x-y plane as m = 

3u/3y - 3v/8x, equations (2) and (3) yield the following vorticity- 

transport equation 

3w 3m 3m 3 Ap -*1!-—’+v--=v°V2w"'8—(-) (1) 
8t 8X 8y 3x po 

The stream-function ¢ is described by the relations aw/ay = -u and 

8¢/Bx = v, so that 

82¢ 82¢ %- + —-i = ‘U 
3x2 ayz 

01' 

v2¢ = -u (8b) 

It is noted that the continuity equation, (S), is identically 

satisfied by the introduction of the stream-function, ¢. The 

governing differential _equation can be normalized by defining the 

following nonrdimensional terms

i

I

1

1
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v = vH/to ; n = MHZ/KO ; w = ¢/<0 ; 9 = (T—To)/AT , (9) 

where the water depth, H, is the characteristic length and AT is the 

temperature difference between the _two water bodies. Due to the 

semi-infinite nature of the domain of interest, it is not possible to 

normalize the equations in terms of any characteristic horizontal 

length. Substituting the terms of (9) into the governing differential 

equations, the normalized conservative system of equations becomes 

ae ave ave 
__.+ ___.+ ___. = vze (10) 

31 *3X 3Y 

an aun avn 2 
2 

36 
__. + .__ + __ = Prvn - (Ra)°Pr ___. (11) 

31 3X 3Y 
‘ ' 3X 

vzw = -n (12) 

3? 3? 
U = _ —- 9 V = —— 

3Y 3X 

where (Ra)O is equal to gB(AT)2H3/uogo. The relation between 

(Ra)° and the other definitions of Rayleigh numbers can be found 

in Table 2. The investigation is carried out for the lock exchange 

flows shown in Figure 1(b). The associated non-dimensional initial 

and boundary conditions, shown in Figure 1(b), are detailed in (I4) 

and (15). 

For 1 §_0= U ‘= V = V = 9 = 0 , everywhere (14)
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9 = Qw , at X<0 

e = (6 + 0 )/2 , at x=0 
C W 

: 
i 

6 = ac , at x>o 
i 

(15) 

For 1 > 0: 
l 

u = av/ax = w = as/ax = n =»0 , at x=¢~ 

3U/3Y = v = w = 39/3Y = 9 = 0 , at Y=0,1 

A "no-slip" condition at the lower boundary is not specified due to 

the increase in the cost of numerical simulation which this would 

incur (see section 4). A slip boundary condition is judged to be 

acceptable since interest is concentrated on the penetration of the 

upper layer and not the details of the wall boundary layers. 

4. HUHBRICAL ANALYSIS 

A numerical procedure has been developed to model the behaviour 

of a thermal front at the outfall of an electric generating station 

cooling water system [Marmoush (1985)]. The numerical model employs a 

finite—differen'ce scheme where the resulting algebraic finite 

difference equations are solved using an alternating direction 

implicit (ADI) methodi and a sparse—matrix package. The numerical 

model has been verified by comparing it to numerical solutions of four 

different cases-of the idealized problem of steady laminar flow in an 

enclosed rectangular cavity with differentially heated end walls. 

Moreover, additional acceleration techniques have been introduced to 

improve the numerical solution procedure [Marmoush ££_§l. (1985)].
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The general behaviour will be discussed for a numerical run where 

the values of the lock exchange [(Ra)1] and cold [(Ra)c] 

Rayleigh numbers are assumed to be 15000 and 1000, respectively. 

~These two chosen values of Rayleigh numbers correspond to warm (Ow) 

and cold (BC) dimensionless temperatures of -+0.8 and -0.2, 

respectively. The Prandtl number Pf is assumed to have a value of 

11.6 which is the value corresponding to a reference temperature of 

4°C. This run is designated as Run #6 in Table 2. As the extent of 

the frontal disturbance increased following the (simulated) removal of 

the barrier, the computational, domain was extended in a series of 

steps so as to always contain the region of interest. In general the 

computational domain is larger than that depicted in Figures 2 and 3. 

The following observations may be made from the computational results 

obtained. 

1) The initial behaviour is governed by the difference in 

horizontal pressure and closely resembles the classical lock 

exchange umchanism. The warm water extends as an upper 

layer, while the cold water extends in the opposite 

direction as a lower layer. As the motion of both layers is 

governed by the lock exchange process, almost symmetrical 

behaviour of both layers around the barrier is to be 

expected. 

2) As the relative extension distance between the upper and 

lower fronts increases, the heat transfer between the two 

layers causes a reduction in the buoyancy driving force.
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The asymmetrical behaviour shown in Figure 2 is explained by 

the nonlinear response of density to change of temperature 

in the warm and cold layers. _ 

Due to the continuous reduction of the horizontal inertia 

and mixing at the warm front, the diluted water near the 

front attains the temperature of maximum density (9 = 0, 

T = 4°C). This maximum density water then sinks vertically 

from the upper layer and is entrained by the lower layer 

which results in an increase of the temperature of the lower 

layer. The location of this sinking phenomenon can be 

identified as the point at which the isotherm force = 0 

(T = 4°C) is vertical through the upper layer. Eventually 

this 0°C isotherm will extend throughout the total depth of 

the lock exchange flow. 

Due to the phenomenon described in (3) above, the sinking 

frontal extremity of the upper layer forms a closed 

convective cell. Forward movement of the upper front ceases 

at this stage. 

The temperature gradient created between the cold water and 

the thermal front drives a compensating convective cell-in 

the cold region as shown in Figure 3. 

Thereafter, the simulated domain is divided into two 

convective cells of opposite rotational sense on either side 

of the location of the thermal front. Each of these is 

governed by the gradient between the "ambient" water
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temperature (Ow or BC) and the temperature of maximum 

density (6 = 0). Both cells transport "ambient" water 

; towards and away from the thermal front location through the 

upper and lower layers respectively. 

To reduce the computational cost, the numerical calculation was 

stopped when the thermal front location showed an acceptably small 

variation with the elapsed time. It should be noted, however, that 

this point is not a final equilibrium state but it is considered to 

represent the point at which the horizontal extension is arrested by 

the vertical sinking. The maximum extension of the thermal front is 

taken at the distance L/H at which the upper penetration of the 4°C 

isotherm reaches a quasi—steady state. 

For a densimetric flow between two water bodies having different 

temperatures around 4°C, the flow pattern can be described in terms of 

three zones of interest. These three zones which are shown 

schematically in Figure 4, Figure 4(a) and 4(b) are expressed in terms 

of dimensional and non—dimensional parameters, respectively. Over one 

of these zones, the densimetric flow is maintained by the density 

differences between the thermal front (i.e. 9 = 0, or T = 4°C) and the 

warm water body (i.e, 6 = 6w, or T = Tw). Two warm layers having 

different temperatures, both more than 4’C (6 > 0) and less than Tw 

(B < Q") are established. The convective motion in this zone will 

be identified as a warm convective cell which transports the ambient 

warm water to the thermal front, where the water approaches maximum 

density, sinks and by continuity returns as a reversed underflow. In

i
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the other zone, the densimetric flow is maintained by the density 

differences between the thermal front (i.e. B = 0, or T = 4°C) and the 

cold water body (i.e. 6 = BC, or T = Tc). Two cold layers’having 

different temperatures, both less than 4°C (9 < O) and more than Tc 

(9 > 6c) are established. The convective motion in this zone will 

be identified as a cold convective cell which transports the ambient 

cold water to the thermal front, and behaves in a similar manner to 

the warm front. It should be noted that for both warm and cold 

convective cells, the layers are vertically stable. Between these two 

zones (i.e. the warm and cold convective cells), the thermal front 

exists forming the third zone and showing a constant vertical 

temperature 6 = 0 (i.e. T = 4°C). 

The aspect ratio, A, will be ‘determined by (Ra)1, _(Ra)c- 

and Pr as long as the numerical domains are essentially 

semi*infinite and free from boundary reflection effects such as those 

described by Simpson (1982). 

The sensitivity of Lmax/H or A to the variation ‘of each 

parameter was examined numerically. The calculated values of Lmax/H 

and model parameters are listed in Table 2. By examining the 

sensitivity of Lmax/H with respect to each of the parameters 

separately, it is found that Lmax/H is proportional to 

(n,)1+°-5° and (R,)c*'°-35. For small values of (Ra)1, 

Lmax/H is not sensitive to Pr, but for high values of (Ra)1, it 

is proportional to [Pr]'°'15.
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It is worth mentioning that due to the limitation on the maximum 

size of (Ra); which could be simulated with the available 

computational resources, the correlation with respect to Pr is far 

from conclusive. A comparison of the numerical with the experimental 

results will be deferred until the next section in which scaling 

analysis is discussed. 

5. uxrsnslou DISTANCE nzLAr10Hs 

The estimated value of the maximum extension distance of the 

thermal front (Lmax) can be related to the relevant parameters by 

using a scaling analysis approach. The laboratory experiment suggests 

that for higher values of (Ra)1, the penetration of the upper 

layer is governed by inertial forces. Therefore, the scale of the 

horizontal velocity of the upper layer, u, may be estimated from the 

balance between horizontal advection and the opposing horizontal 

pressure forces in the horizontal momentum equation (_2), which yields 

H2 AP sAp1 H I Y»?-"I-‘»., 

/_‘_ 
or u = C1 gT...H (16)

o 

Similarly, from the vertical balance of inertia and buoyancy the scale 

of the vertical sinking velocity of the upper layer, v, may be 

estimated from the balance between either horizontal or vertical 

advection and the vertical buoyancy forces in the vertical momentum 

equation (3). This balance yields vu/L ' 
g Apc/po, i.e.
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A01- 
v~gibc‘.1lnax (1

O 

The. maximum horizontal extension distance, Lma-Ix, of the thermal 

front is achieved when the continuity equation (5) is satisfied, i.e. 

u/Lmapx ~ v/HY,‘ and combining with Eqns. (16) and (.17) we obtain, 

L - - _ 
__.a‘t“‘?" = c2 <1: >1” (R 11/2 <18 
H 8 8 C 

For smaller values of (Ra)1, the numerical experiments suggest 

that viscous forces may not be neglected in the sink_i__ng process. In 

this case, the vertical sinking velocity may be estimated from tlhe 

theory of convection between horizontal plates. Where the buoyancy 

flux depends on the conditions very near 
_ 

the boundaries and is 

independent of the ‘plate separation and of Pr, the following 

relation is found (Turner, 1973) 

_ /3 V 

Nu (Ra )2 
(19 

where Nu is the Nusselt number which is defined as Nu ~ VATH/KAT. 

Consequently, Eqn. 17 will yield 

v -in: >1/3 <20 
H BC
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Following the same arguments for the horizontal velocity scale, and 

the continuity equation, the following relation may be obtained ~ 

_ L 

H r a l a c 

It is of interest to note that for low values of Pr, Kraichnan 

(1962) predicted Nu as 

1/3 1/3 
Nu - P (R ) 

(22) 
r a c 

In this case, Eqn. 21 becomes 

L . 

___“"’~" = c,, P:/6 (Ra);/2 (Ra)?/3 (23)
H 

A criterion for establishing which of the above relations apply 

may be estimated by considering the time taken for the development of 

a viscous boundary layer and by comparing this time to that required 

for a particle to travel a distance L in the horizontal or H in the 

vertical. If say H2/v < H/v viscous forces predominate or if from 

(16) and (21)

C 1/3 3 
(Ra)c < CT Pr then 

relation (21) ought to apply. Alternatively, if H2/v > H/v or from 

(16) and (18), t(Ra)¢ > (C2/C1)2A Pr then the spreading process 

should be given by (18).
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DISCUSSION 

Q 
l 

The relations derived in the precedihg $e¢¢i°fl for $h¢ h0TiZ°fita1 

spreading of the overflow contain an undetermined factor of 

proportionality. On account of the complexity of the flow, these 

factors are determined experimentally once the order of magnitude 

dependence of the independent parameters have" been verified. In 

Figure 5 the laboratory results and the numerical results confirm the 

predicted exponents in equation (18) and (23) for each regime with the 

exception of the Prandtl number dependence in equation (23). The 

result of the numerical experiment no. 12 shown in Figure 5 would 

suggest a small negative exponent (~—.1) for the Prandtl number as 

opposed to the one—half power predicted by the scaling analysis. For 

this reason, the Prandtl number was not included in the variables 

plotted in Figure 5. 

From the laboratory results of Barr (1963), C1 was determined to 

be 0.55 which may be compared with that inferred from the initial 

spreading in the numerical experiments of 0.34. From our laboratory 

experiment C2 in equation (18) is 11.(25) and C3 is 0.2 from the 

numerical results. Based on these values we may establish the 

criteria for the regime boundaries more precisely. From the previous 

section the spreading process should be dominated by viscosity if 

(Ra)c < .05 Prs. In the light of the numerical results showing 

at most weak dependence on the Prandtl number, it is possible that 

this criterion should be (Ra)¢ < .05 P,3/2. In any case none
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of the experimental results were clearly dominated by viscous effects 

according to this criterion but were either in s transition between 

the two regime boundaries or in the case of the laboratory experiments 

were well above the inertially dominated boundary of (Ra)c > 418 

Pr. According to this criterion numerical experiment 12 should be
A 

marginally within the inertially dominated regime. This may explain 

why this point is shifted in Figure 5 towards the position of the 

laboratory—derived points. 

APPLICATION 

As an illustrative example of how some of the concepts developed 

in this study may be applied in a practical situation, we consider a 

set of eight field experiments in a winter outfall study conducted by 

Ontario Hydro (Metcalfe, 1980) in Lake Ontario. In the first stage of 

discharge, the heated plume spread out over the uniformly sloping 

bottom. The distance at which the buoyant plume detaches from the 

bottom may be estimated from the formula for axisymmetric spreading of 

a buoyant plume given by Didden and Maxworthy (1982). A preliminary 

analysis indicated that for typical values of the winter plume 

discharge, Q, of 100 m3/s, eddy diffusivity of 3x10'3 m2/s (Elliot, 

1980) and reduced gravity, g1 of 10*2 m/s2, the initial stage would be 

governed by an inertia—buoyancy balance. With the assumption that the 

proportionality factors found by Didden and Maxworthy (1982) for the 

viscous—buoyancy range apply also in the inertia—buoyancy range, the
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radius, R, at which the discharge detaches from the sloping bottom is 

obtained as R1 = (1.2 (4Q) / ¢g1s3)2/5 where S is the bottom slope. 

"The multiplication of the discharge by a factor of 4 is an attempt to 

crudely account for the confining influence of the strong longshore 

currents present on all occasions.' In the above expression, it is 

assumed that the discharge is contained» within a single quadrant. 

This relation yields a distance R1 of 700 m which is close to the 

observed distance of 500 m. 

At this point, the further spreading of the plume is controlled 

by interplay of horizontal pressure forces and vertical sinking forces 

of the type of interest in this study. Since this application 

involves a continuous discharge and not a lock exchange flow, the 

axisymmetric inertial spreading formula of Didden and Maxworthy 

(1982) may be applied, i.e. 

R2 = .6 (g1 4Q)‘/4 :3/4 . 

The time t may be estimated as t = H/v where the vertical sinking 

velocity, v, is assumed to be given by our scaling analysis and 

experimental results for the inertially dominated range; thus 

v = (:Y<n>)‘/2. 
H BC 

Based on an observed depth of 8 m at the sinking point and an offshore 

water temperature of*2°C, the vertical sinking velocity is 2.3 l0'3 

m/s which results in the distance between the point of detachment and 

the sinking point of 390 m. This estimate may be compared to the
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average spreading distance beyond the point of detachment of about 

1000 m observed over the eight experiments. The agreement between 

theory and observation is considered to be reasonable since during 

most field experiments offshore surface, winds probably were 

responsible for spreading the plumes further offshore than under 

windless conditions. 

It may be noted that other combinations of Didden and Maxworthy's 

spreading relations and the sinking relations, equations (18) and (21) 

may be applied in this manner to suit the circumstances of the 

environmental flow. " 

CONCLUSIONS 

Stimulated by the need for an improved understanding of the 

dynamics of thermal discharges in winter in lakes, a series of 

laboratory and numerical experiments were carried out on the classical 

lock exchange mechanism in the presence of a density extremum. 

Attention focussed on the initial behaviour of the exchange flow and, 

in particular, on the dynamics of the arrested overflow and subsequent 

sinking of the plume at the temperature of maximum density. 

Comparison of the results with the classical lock exchange mechanism 

in a fluid with a linear temperature—density relation showed the 

profound influence of the nonlinearity in density on the flow field¢ 

A number of parameters characterizing such flows are proposed, 

namely two distinct Rayleigh numbers and the Prandtl number as well as 

dependencies of the aspect ratio of the two-dimensional flow
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field on these numbers based on an elementary scaling analysis. These 

relations are generally supported by the laboratory and numerical 

Qexperiments within narrow parameter ranges. J 

The analysis suggests other experiments of interest such as the 

case of the viscously dominated lock exchange flow. A more detailed 

exploration oi the sinking process in the transitional range between 

viscous and inertial dominated convection and the further.elaboration 

of the dependence of the aspect ratio on Prandtl number. Finally, we 

have demonstrated how our findings when combined with the relations on 

gravitational spreading established by Didden and Maxworthy (1982) may 

be employed to estimate the areal extent of a heated discharge in a 

cold receiving water body.
'"
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Note = Constant = 11.6.



TABLE 2. Sensitivity of Lug;/H to the variation of each parameter. 
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