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ABSTRACT

A mathematical model for determining solute concentrations
at a’point within a cylindrically symmetrical conduit fracture/porous
matrix system ig described. Both convective and dispersive propaga-
tion is conéidered within the fracture subsystem, while only disper-
sive propagation is considered with the porous matrix subsystem. The
two subsystéms are coupled through continuity restrictions imposed at
their interface boundary. The transport equations are then subjected

to dimensionless analyses and solved utilizing an alternating direc-

tion implicit method technique. The dimensionless solute concentra-

tion profiles resulting from this model are then sketched and discus-

sed.



EXECUTIVE SUMMARY

Recently, the problem of contaminant transport in fractured
porous formations has attracted considerable attention in many
countries, especially when dealing with the disposal of radioactive
waste in underground repositories. A mathematical model for
determining solute concentrations at a point within a cylindrically
symmetrical conduit fracture/porous matrix system is described. Both
convective and dispersive propagation is considered within the
fracture subsystem, while only dispérsive propagation is considered
with the porous matrix subsystem. The two subsystems are coupled
through continuity restrictions imposed at their interface boundary.
The transport equations are then subjected to dimensionless analyses
and solved wutilizing an alternating direction implicit method
technique; The ‘dimensionless solute concentration profiles resulting

from this model are then sketched and discussed.



INTRODUCTION

Disposing of high level radioactive wastes in deep under-
ground depends upon the ability of the natural rock to isolate radio-
activity from the biosphere. Attractive geologicb conditions are
fatural salt deposits, which are free of groundwater, of granites,
shales, and other media which are subject to little or no movement of
natural groundwater. The concentrated wastes will be cast into
solids, such as glass, and encased in metal containers. This waste
container is expected to last for hundreds and thousands of years
underground without appreciable deterioration.

The migration of radioactive waste in various kinds of rocks
has become an area of large interest in the last decade because of
various national and international efforts in studying the final
disposal of radioactive wastes from nuclear power plants, The
crystalline rocks are selected in Canada, and other European éountries
as the most suitable bedrock in which to build a repository. In
crystalline rock the water moves through fractures which may be fairly
far apart at deeper formationms. The radionuclides transported by
groundwater will interact in various ways with the rock. They may be
strongly retarded due to adsorption on the surface of the fracture and
after a long time, it may also penetrate the intercrystalline of the

porous matrix of the rock.



Despite the realization of the importance of fractured media
in the overall detailed descriptions of the dispersive and convective
pfopagationbof contaminants through subsurface water systems (e.g.,
Day, 1977; Snow, 1969; Grisak et al., 1980a; Wilgon and Witherspoon,
1970, Neretneiks, 1980; Rasmuson and Nereknieks, 1981; Tang et al.,
1981; Sudicky and Frind, 1982; Rasmuson, 1984; and Neretrnieks and
Rasumson, 1984), until recently, surprisingly little modelling effort
has been directed towards the effects the presence of such physical
fractures produce upon the contaminant flow through porous subsurface
media. Grisak and Pickens, 1980b and Grisak et al., 1980, have
recently reported the results of both theoretical and experimental
studies directed towards an evaluation of the processes pertinent to
the transport of solutes through fractured media. Their work has
provided an excellent opportunity for illustrating the effects of
hydrogeologic parameters on the concentration profiles.of groundwater
systems containing fractures into which solutes have been intruded.

The object of this paper is to present the results of

contaminant transport through a fracture/porous matrix.

THE MASS TRARSPORT MODEL

Figure 1 schematically illustrates the fracture/porous
matrix system considered in this analysis. The fracture is considered

as a cylindrical conduit of variable radius r,. A cylindrical

—



coordinate system is established with an origin O at the centre of the
conduit. The z-axis is defined as the axis of rotation of the
cylinder, aﬁd the r-axis is perpendicular to the z-axis at each point
along the z-axis. Groundwater is considered to enter thé fracture
with a constant velocity V (in the range -r, < r > r,) along the
positive 2z direction. The homogeneous porous medium completely
surrounds the conduit in a symmetrical manner and extends to a
distance rpay Wwhere rpay 2 T The solute in the conduit
fracture (phase 1) is considered to be transported through the
combined processes of convection and diffusion, while the solute in
the porous matrix (phase II) is considered to be transported by radial
and axial diffusion only. That is, the convective velocity in the
axial direction everywhere in phase II is taken to be zero at all
times. The initial (time t = 0) solute concentration in both phase I
and phase II is taken to be zero, and solute is considered to enter
the porous matrix in the radial direction by means of molecular
diffusion across the phase I/phase II interface boundary

Mathematical simulation of such a mass transport systen is,
of course, further complicatéd by the fact that a complete system is
involved. The nature of the propagative transport in each phase of
the system both impacts and is impacted by the nature of the
propagtive transport in the other phase. An attempt is wmade to

incorporate such coupled system influences within the present model.



A brief summation of the assumptions of this model thus
becomes:

a’ A fully developed laminar flow is considered to enter the
conduit fracture in the positive axial direction.

b) Negligible flow (convective velocity = 0) is considered
to exist within the porous matrix.

c) The fracture/porous matrix system is considered to
possess cylindrical symmetry.

d) The physical and chemical properties of all materials are
considered to be constant in both space and time.

e) Both convection and diffusion processes determihe solute
transport within the fracture, while molecular diffusion is considered
to determine radial transport across the interface boundary into
either phase I or phase II.

f) All diffusion is taken to be described by Fick's First
Law.

Following Jost, (1960), the cylindrical coordinate
expression of the diffusion/convection mass transport equation
governing solute propagation within the conduit fracture sub-system

(phase 1) may be written as

3¢ . pl [_ac+liC_]+DI_aC_vIa_C (1)
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and the mass transport equation governing solute propagatoin within

the porous matrix sub-system (phase II) may be written as

2 2
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where C = solute concentration (ML-3)

D: = radial diffusion coefficient in phase I (L2T"1)

II P . . . . . 2m=1
Dr = radial diffusion coefficient in phase II (L<T™%)
D; = axial diffusion coefficient in phase I (L2T"1)

D,” = axial diffusion coefficient in phase II L2r-1)

Vz = local velocity in phase I (LT-1)
r and z = cylindrical coordinate variables (L)
t = time (T)
M, L, and T refer to units of mass, length and time, respectively.
Physical coupling between the two phases is taken to be

defined by the interace boundary conditions

C=C" atr =r, (3)
and Ic3C4qI I1,9C,II
Drfs;] =D_ [3;] at r = r, (4)




The initi;l conditions of solute concentration may be taken
as C=0 for t <0, 0<r £ rpsx, and 0 < 2 <L,
and C=C, fort 20, 0{r<r,and 2 =0
where L is the axial length of the conduit fracture. It will be shown
that t:he selection of such initial conditions in no way inhibits the
rapid development of a parabolic velocity profile within the fracture.
The boundary conditions for the development of the current

model are taken as:

C =2¢C, t_)_O OSrSro z =0
X . t>0 r=0 0<z<L
or - - -
(5)
aC =
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Since laminar flow is assumed within the fracture, the local

velocity, Vz may be expressed as



v,=v  [1- (f_)z] (6)

where V; is the maximum velocity observed along the z-axis.
The governing equations of the mass transport phenomena are
now subjected to a dimensionless analysis by introducing the following

dimensionless variables

\'
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where Lg and Vg represent a characteristic length and velocity,

respectively, of the coupled subsystems.

Substituting (7) into (1) yields the dimensionless mass

transport equation for the conduit fracture (phase I)
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readily recognized as the dimensionless Peclet numbers appropriate to
radial and axial solute transport within Phase I.
Similarly, substituting (7) into (2) yields the dimensionl-

ess mass transport equation for the porous matrix (phase II)
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where Pr —BfTIand Pz BTI— are 1in

r Z
a form similar to the Peclet numbers P,l and PzI.

Further, equations (3) and (4) defining the interface

boundary conditions assume the dimensionless forms

r
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and
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respectively,

Expressing the local velocity Vz from equation (6) in

dimensionless form yields

Vm Lcr* 2 |
V*'W[l' =) (12)

Equations (9) to (12) then become the working equations for
the current fracture/porous matrix model. Clearly it is seen that any
solution to these equations will be functionally dependent upon the
pair of Peclet numbers PrI and PrII appropriate to radial
solute transport and the pair of Peclet numbers PZI and PZII
appropriate to axial solute transport within the complex system.

The initial conditions and boundary conditions, expressed in

dimensionless form become
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Similarity requirements are readily seen to be satisfied by
replacing Lg by 2 r, in the boundary conditions of equation (13)

which now becomes



C*

C*

ac*
or*

9C*
YA

oC*
EYAS

t*

t*

t*

t*

t*

t¥*

] T

N 1=

- 10 -

r
r* —ex
2r,
r¥ l
2
r* =0
T
p* = _Dax
2r,
Tma
* max
2r,
r
o* max
2ry

A

(14)

2r,

It is also readily seen that the selection of Vg =

eliminates the functional dependence of concentration on velocity.

Equation (12) may now be rewritten as the parabolic equation

With

characteristic

Wk =] - 4r*2

above

velocity,

numerical solutions are sought become

(15)
choices of characteristic 1length and
the mass transport equations for which
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Clearly, problems will arise in the numerical solution of
equation (16) when r* = 0, i.e., when axial positives in phase I are
considered (this problem will not arise in equation (17), of course,

since r* # 0 at any point in phase II).

*
Applying L' Hosp1ta1 s rule to the l— gc* term in equation
(17) yields
F *
1 aC* _r* Jr¥ _ a%cr
rl(l)m r¥ Jr* 3 r* 31.*2 (20)
or¥

Thus, for r* = 0, the form of equation (16) utilized in

obtaning numerical solutions for the mass transport equation is



-12 -

ack _ 2 aZ%cx . 1 a%cx .2y 3C* |
=29, 1 - (1-4r*2)X* 16
3tF T gra? o] P ( 4r )az* (16a)
r

NUMERICAL SOLUTIOR

Many of the differential equations resulting from a
consideration of physical problems in applied science and engineering
have no known analytical solutions, and must therefore be solved by
employing numeical approximation techniques. Equations (16) to (20)
include parabolic equations and a discussion of the various techniques
available for obtaining approximate solutions to such second order
partial differential equations is given by Jon Rosenberg (1968).
Several of these available techniques involve an iteration procedure.
However, such iterative techniques are impractical for the
unsteady-state situations encountered in the current model, due
largely to the excessive computation times required to obtain a
solution. Consequently, the far less time-consuming alternating
directon implicit method (ADIM) developed by Peaceman and Rachford
(1955) was adopted in this work.

The ADIM approach to the solution of equations (16) to (20)
involves the alternate implicit differencing of one parameter (2Z*
direction in the current work) and explicit differencing of the others
(r* direction at t* time dbmain). It requires a sequential solution
of a small set of simultaneous equations that may be approached

through direct non-iterative procedures. Ananthakrisnan et al (1965)
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have modified the ADIM for applicability to laminar dispersion in
capillaries. By combining the original work of Peaceman and Rachford
(1955) withv the modified version of ADIM of Ananthakrishnan et al
(1965), the alternating direction implicit method may be rendered
suitable for use with the current coupled fracture/porous matrix
system, Detailed discussion of the ADIM mathematical procedures
developed for obtaining solutions to the transport equations and
boundary conditions of the current model will be presented elsewhere,
suffice to say that a grid network was established to cover the range
of variablesvdefining the coupled system, and the solute concentration
was determined at each location within this grid network.

Alternate implicit differencing in the 2* direction -and
explicit differencing in the r* direction was performed. The
concentration at each grid point'was assumed to be initially zero.
Subsequent to the introduction of a step change in solute
concentration into the predominantly convection stream of the conduit
fracture subsystem, t* was increased by a pre-determined increment and
new values of solute concentration were computed from the Z* implicit
equations. Utilizing the r* explicit equations and the same value of
pre-determined t* increment, the solute concentrations were once again
determined. This process was repeated until the desired time value

was reached.
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CORCERTRATION PROFILES

Using the preceding numerical methods, solutions for solute

concentrations were obtained for a conduit fracture/porous matrix

II

1 I - 100; ana PL = s0.

coupled system defined by P£ = Pz = 200; P,

These Peclet numbers are consistent with realistic anticipated values

of Vp (..ccvuvt...?) for such fracture systems.

Figutres 2 and 3 illustrate the transient axial solute

concentration profiles for the fracture subsystem (Phase I) for

r
r* = 0.25 (i.e., T = -%) and r* = 0 (i.e., r = 0), respectively. The

well~defined front produced by the step-change input is clearly
evident within the fracture for small values of time T, the
consequence of the predominance of the convective transport mechanism
over the diffusive transport mechanism in phase I. The discontinuity
associated with this front remains relatively intact to large values
of T as the solute is tranmnsported through the conduit fracture. The
frontal discontinuity at r* = 0.25 (i.e., at a point midway between
the radial axis and the interface between phases I and II) clearly
iags the frontal discontinuity at r* = 0 (i.e., at a point on the
radial axis). This results in a parabolic velocity profile being
observed within the conduit fracture subsystems, as illustrated in

Figure 4 (obtained from equation (15)). Thus, even though a constant
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(in r and z) laminar flow rapidly assumes the faimilar paraboiic
velocity profilg oncé the solute has entered phase I. The effect of
" diffusion, directed radially outward from the axis of the conduit and
acting to disperse the frontal discontinuity, is also clearly evident
in Figures 2 and 3. As the discontinuity passes completely out of the
fracture and into the porous matrix (phase II), the axial profiles
assume a ngar-horizontal configuration.

Figure 5 iilustrates the transient axial soliite concentra-
tion profiles along the interface boundary between phase I and II for
r* = r, = 0.5 at various dimensionless times T*. Similar evolution
| of concentration profiles with time are evident at the interface as
are evident within phase I except that the frontal discontinuity
undergoes more rapid dissipation from the interface due to the rein-
forcing influence of the diffusion into the porous méttix. The
conductive velocity log of the frontal discontinuity at the interface
boundary is quite pronounced, a direct consequence of the parabolic
velocity profile within the conduit fracture.

The response of the conduit fracture system is fully estab-
lished prior to the intrusion of significant ;oléte into the porous
matrix subsystem (phase II) in the current example since the selection
of Peclet numbers highly favours axial convection over radial
diffusion. With the passage of the frontal discontinuity through the
interface and into phase II, mass transfer in the porous matrix system

degenerates (in this model) into a cylindrically symmetrical radial
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movement in the positive r* (or r) direction. Thus, solute build-up
within the porous matrix subsystem is as depicted in Figure 6 wherein
the solute concentrations at various times T are plotted as a function
of axial distance at r* = 1.00 (i.e., r = 2r,) within phase II. The
diffusive nature of the evolution of concentration profiles in Figure
6 is obvious.

Figure 7 illustrates the time response of point
concentrations at r* = 0.25>(midd1e_of the conduit fracture) for three
positions along the axis of revolution of the cylindri¢al fracture.
The rapid saturation of the fracture at axial positions near the input
is clearly evident, as is the gradual irncrease in rise times of solute.
buildup as points further downstream from the input are considered.

Figure 8 displays the buildup in time at a fixed axial
position (Z* = 1.0) within the porous matrix subsystem for two
different radial positions (r* = 1.0 and r* = 1.5). Clearly, the time
response in phase II is ‘considerably‘ more gradual than the time
response in phase 1. An analysis of the concentration buildup
profiles of Figure 8 indicates that a first order exponential curve
may be fitted to the response function of the porous matrix subsystem
(i.e., CII(t) ~ ekT* yhere k is a constant).

Figures 9 to 11 illustrate the solute buildup within the
coupled fracture/porous matrix system at three axial locations,
| Figure 9 representing the conditions near fhe input (2* = 1),

Figure 10 representing the conditions further downstream from the
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source (Z* = 2,5), and Figure 11 representing the conditions at the

selected termination point for the numerical analysis of the current

model (Z* =-§¥— = 5.0, at which axial position %%-was set equal to
o

zero in the boundary conditioms). On each of the three figures,
solute concentration is plotted against radial position for several
values of time T. The advance with time of the leading edge of the
frontal discontinuity of solute concentraton within the system is
readily seen, as the combined effects of convection and diffusion
within the conduit fracture subsystem, radial diffusion within the
porous matrix subsystems, and coupling restraints between the two
subsystems simultaneously enact to eventually result in total solute
saturation becoming apparent within the coupled system at very large T
in the following sequence.

a) High vlues of solute concentrations become apparent near
the input (Figure 9) at early times. These concentrations are
transported rapidly downstream within the conduit fracéture due to the
preferential convective transport mechanism and less rapidly radially
outwards to the interface boundary.

b) For the values of Peclet numbers selected in the current
model, some intrusion of solute into the porous matrix is apparent
after a short passage of time near the source (Figure 9), after a

longer pasSage-of time downstream from the source (Figure 10) and
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after a considerably longer passage of time at the mathematical limit
of the system at Z* = 5.0 (Figu;e 11).

cj Once the solute has intruded the porous matrix subsystem,
radial diffusion proceeds at a much slower rate.

d) At an extremely large value of T the entire conduit
fracture/porous matrix system becomes totally saturated (i.e.,
Concentration = 1.0 everywhere within the system). At this point the
current model is no longer valid, since, once saturation is achieved
the Peclet numbers are no longe; physically meaningful (i.e., Fick's
First Law is no longer applicable).

Clearly, solute transport within a coupled system will be
dependent upon the pliysical location of the interfce boundary between
the two subsystemé, i.e., the solute concentration profiles will be a
function of the radius r, of the conduit fracture. This influence
of ro, upon the concentration profile observable within the coupled
system is schematically illustrate in Figure 12. Herein are plotted
the concentration profiles observed in both subsystems at T = 40 and
z*¥ = 2.5 for four values of r, ranging from 0.05 to 0.4. The
salient features of Figure 12 are:

a) As the radius increases, larger volumes of solute enter
the system, and saturation occurs in a shorter time period.

b) Small bore conduit fractures display a high degree of
radial uniformity, while increasingly larger bore conduit fractures

display an increasingly more parabolic radial distribution within the

fracture subsystem.
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¢) A similar feature is observed within the porous matrix
subsystem with the radial diffusion for solute intrusion from a large
bore fracture displaying considerably slower rise times than the

radial diffuéion for solute intension from a smaller bore fracture.
SUMMARY

A mathematical model has been developed for determining the
solute concentration at a point within a conduit fracture/porous
matrix coupled system. The governing transport equations, which
consider the effects of both convection and disperson within the
conduit fracture subsystem and solely dispersibn Qithin the porous
matrix subsystems, have been subjected to dimensionless analysis. The
governing equations of ttansport;'includiné coupling equations which
provide continuity across the interface boundary of the two sub-
systems, have been solved utilizing alternating direction implicit
method techniques.

The‘ system has been considered to possess cylindrical
symmetry and the use of cylindrical coordinates (axial and radial)
enable a tﬁree-dimensional model to be expressed in essentially two
dimension parameteré. That such cylindrical symmetry is an eminently
sensible assumption is borne out by the ubiquous occurrence of
concentric rings of precipated solute in field core samples of

subsurface fracture/porous matrix systems (Bobba, 1966).
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Because of the dimensionless analysis techniques employed in
this work, the. dimensioniess concentration profiles resulting from
this model ;re functionally dependent upon a set of four dimensionless
numbers which may be expressed in Peclet number form. A radial and an
axial Peclet number do, in fact, deermine the salient convective and
diffusive transport within the conduit fracture subsystem. A radial
and axial number, both of which have been treated as Peclet numbers in
this analysis, determine the salient radial and axial diffusion
occurring within the porous matrix subsystem.

Concentration profiles obtained from the cylindrically
symmetrical transport model illustrate an almost instantaneous
appearance of solute within the conduit fracture which is rapidly
convected axially through the cylinder and dispersed radially towards
the interface boundary. Once solute has radially intruded the porous
matrix subsystems, radial diffusion which is much slower and first
order in nature is involved, with the ultimate result being a fully
saturated system aftér an extremely long time period.

The current model has considered two very simplifying
assumptions, viz. the absencelof any convective flow within the porous
matrix subsystem and the absence of complexities resulting from
chemical adsorptioﬁ within the coupled system. Current modelling
works is being directed towards both the effect of convective flow
within the porous matrix subsystems and the influence of chemical
reactions acting throughout the system (including at the interface
boundary of the two subsystems). Results of these modelling efforst

should be shortly forthcoming.
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Figure 9 Transient radial concentration profiles in conduit fracture

and porous matrix at z*=],0,
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Figure 10 Transient radig] concentration profiles in conduit fracture

‘ and porous matrix at z*=2 5,
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Figure 1} Transient radial concentration Profiles ip conduit fractyre

‘ and poroys matrix at z*=5_0,
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Figure 12 Transient radiag] concentiation profiles ip conduit fracture

and poroug matrix with different interface boundary,
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