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ABSTRACT 

A mathematical model for determining solute concentrations 

at a point within a cylindrically symmetrical conduit fracture/porous 

matrix system is described. Both convective and dispersive propaga- 

tion is considered within the fracture subsystem, while only disper- 

sive propagation is considered with the porous matrix subsystem. The 

two subsystems are coupled through continuity restrictions imposed at 

their interface boundary. The transport equations are then subjected 

to dimensionless analyses and solved utilizing an alternating direc- 

tion implicit method technique. The dimensionless solute concentra- 

tion profiles resulting from this model are then sketched and discus- 

sed.
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EXECUTIVE SUHHABY 

Recently, the problem of contaminant transport in fractured 

porous formations has attracted considerable attention in many 

countries, especially when dealing with the disposal of radioactive 

waste in underground repositories. A mathematical model for 

determining solute concentrations at a point within a cylindrically 

symmetrical conduit fracture/porous matrix system is described. Both 

convective and dispersive propagation is considered within the 

fracture subsystem, while only dispersive propagation is considered 

with the porous matrix subsystem. The two subsystems are coupled 

through continuity restrictions imposed at their interface boundary. 

The transport equations are then subjected to dimensionless analyses 

and solved utilizing an alternating direction implicit method 

technique. The dimensionless solute concentration profiles resulting 

from this model are then sketched and discussed.
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INTRODUCTION 

Disposing of high level radioactive wastes in deep under- 

ground depends upon the ability of the natural rock to isolate radio- 

activity from the biosphere. Attractive geologic conditions are 

natural salt deposits, which are free of groundwater, of granites, 

shales, and other media which are subject to little or no movement of 

natural groundwater. The concentrated wastes will be cast into 

solids, such as glass, and encased in metal containers. This waste 

container is expected to last for hundreds and thousands of years 

underground without appreciable deterioration. 

The migration of radioactive waste in various kinds of rocks 

has become an area of large interest in the last decade because of 

various national and international efforts in studying the final 

disposal of radioactive wastes from nuclear power plants. The 

crystalline rocks are selected in Canada, and other European countries 

as the most suitable bedrock in which to build a repository. In 

crystalline rock the water moves through fractures which may be fairly 

far apart at deeper formations. The radionuclides transported by 

groundwater will interact in various ways with the rock. They may be 

strongly retarded due to adsorption on the surface of the fracture and 

after a long time, it may also penetrate the intercrystalline of the 

porous matrix of the rock.
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Despite the realization of the importance of fractured media 

in the overall detailed descriptions of the dispersive and convective 

propagation of contaminants through subsurface water systems (e.g., 

Day, 1977; Snow, 1969; Grisak it 21:, 1980a; Wilson and Witherspoon, 

1970, Neretneiks, 1980; Rasmuson and Nereknieks, 1981; Tang it 31., 
1981; Sudicky and Frind, 1982; Rasmuson, 1984; and Neretrnieks and 

Rasumson, 1984), until recently, surprisingly little modelling effort 

has been directed towards the effects the presence of such physical 

fractures produce upon the contaminant flow through porous subsurface 

media. Grisak and Pickens, 1980b and Grisak et al., 1980, have 

recently reported the results of both theoretical and experimental 

studies directed towards an evaluation of the processes pertinent to 

the transport of solutes through fractured media. Their work has 

provided an ,excellent opportunity for illustrating the effects of 

hydrogeologic parameters on the concentration profiles of groundwater 

systems containing fractures into which solutes have been intruded. 

The object of this paper is to present the results of 

contaminant transport through a fracture/porous matrix. 

THE MASS IRA§$PORT HODEL 

Figure 1 schematically illustrates the fracture/porous 

matrix system considered in this analysis. The fracture is considered 

as a cylindrical conduit of variable radius ro. A cylindrical

/-
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coordinate system is established with an origin O at the centre of the 

conduit. The z—axis is defined as the axis of rotation of the 

cylinder, and the r—axis is perpendicular to the z-axis at each point 

along the z—axis. Groundwater is considered to enter the fracture 

with a constant velocity V (in the range —r° < r > ro) along the 

positive z direction. The homogeneous porous medium completely 

surrounds the conduit in a symmetrical manner and extends to a 

distance rmax where rmax > ro. The solute in the conduit 

fracture (phase I) is considered to be transported through the 

combined processes of convection and diffusion, while the solute in 

the porous matrix (phase II) is considered to be transported by radial 

and axial diffusion only. That is, the convective velocity in the 

axial direction everywhere in phase II is taken to be zero at all 

times. The initial (time t = 0) solute concentration in both phase I 

and phase II is taken to be zero, and solute is considered to enter 

the porous matrix in the radial direction by means of molecular 

diffusion across the phase I/phase II interface boundary 

Mathematical simulation of such a mass transport system is, 

of course, further complicated by the fact that a complete system is 

involved. The nature of the propagative transport in each phase of 

the system both impacts and is impacted by the nature of the 

propagtive transport in the other phase. An attempt is made to 

incorporate such coupled system influences within the present model.
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A brief sumation of the assumptions of this model thus 

becomes:
i 

a) A fully developed laminar flow is considered to enter the 

conduit fracture in the positive axial direction. 

b) Negligible flow (convective velocity = 0) is considered 

to exist within the porous matrix. 

c) The fracture/porous matrix system is considered to 

possess cylindrical symmetry. 

d) The physical and chemical properties of all materials are 

considered to be constant in both space and time. 

e) Both convection and diffusion processes determine solute 

transport within the fracture, while molecular diffusion is considered 

to determine radial transport across the interface boundary into 

either phase I or phase II. 

f) All diffusion is taken to be described by Fick's First 

Law. 

lFo1lowing Jost, (1960), the cylindrical coordinate 

expression of the diffusion/convection mass transport equation 

governing solute propagation within the conduit fracture sub—system 

(phase I) may be written as 

.3_c.=pI [3ic+ll(:.]+DI3iC-VILC (1) 3t r arz r Br Z 322 Z 82
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and the mass transport equation governing solute propagatoin within 
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the porous matrix sub-system (phase II) may be written as 

i9=1>H[l2_C+_3.£]+n 
3t r arz r8r 322 

where C é 

DI
I 

D11 =
I 

I _ Dz 

Vz = 

ll II3C 
Z (2) 

solute concentration (ML'3) 

radial diffusion coefficient in phase I (L2T'1) 

radial diffusion coefficient in phase II (L2T“1) 

axial diffusion coefficient in phase l (L2T'1) 

axial diffusion coefficient in phase II (L2T'1) 

local velocity in phase I (LT'1) 

r and z = cylindrical coordinate variables (L) 

t = tim (T) 

M, L, and T refer to units of mass, length and time, respectively. 

Physical coupling between the two phases is taken t 

defined by the interace boundary conditions 

C1 = C11 8'51‘: 

and DI[,3,C,]I = D:I[a€]II at = O r 5¥' '5' r ' 

o b 

ro (3) 

(4)
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The initial conditions of solute concentration may be taken 

as C=Ofort:<0,0£r_§rmax,and0§_ZiL_, 
and G=C°fort_?_0,0§r§r°a'ndZ=0 
where L is the axial length of the conduit fracture. It will be shown 

that the selection of such initial conditions in no way inhibits the 

rapid development of a parabolic velocity profile within the fracture. 

- The boundary conditions for the development of the current 

model are taken as: 

c=c° _ 
8C_ F O 

.35.: ¥ O 

ac: 
3-Z o 

ac: E o 

Since laminar flow is assumed within the fracture, the local 

velocity, VZ may be expressed as 

:10 
t>0 0 

I‘

i rd<e ro 
D U 

t_>.O r=rmax 

t_z0 roirirmax

z

5

O 

tZ° rosrirmax Z

Z

z

S

0 

_<_L 

z§1.

0

L



_ 5 - 

vz = vm [1- (€_)2] <6) 

where V5 is the maximum velocity observed along the z-axis. 

The governing equations of the mass transport phenomena are 

now subjected to a dimensionless analysis by introducing the following 

dimensionless variables
\

V ‘—r- =L- =l r* — LC, Z* LC, V* VC (7) 

EV t*=i; X:-E- 
LC co

L t C = t—*, where ti = -{,- 
1 C 

where L3 and Vg. represent a characteristic length and velocity, 

respectively, of the coupled subsystems. 

_ 
Substituting (7) into (1) yields the dimensionless mass 

transport equation for the conduit fracture (phase I) 

aC* = 1 a2c* 1 ac* 1 a?c* _ 'ac* 
'3c* P1 [aflf + r* 31‘*‘] 

" 
P1 32,32 “FF (8) 

I’ Z
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L v 
V I C C I _ C C where Pr = -§T— and P 2 -;—5Iare 

readily recognized as the dimensionless Peclet numbers appropriate to 

radial and axial solute transport within Phase I. 

Similarly, substituting (7) into (2) yields the dimensionl- 

ess mass transport equation for the porous matrix (phase II) 

ac*_, 1 32c* 1 ac* 1 320* 
3t* Pll [3,-if 

+ r* 3r*] + PII 321:2 
(9) 

1' Z 

L vg L v_ 
where Pil = _§1c_Iand Pil = $3.2 are in 

r Z 

a form similar to the Peclet numbers Prl and PZI. . 

Further, equations (3) _and (4) defining the interface 

boundary conditions assume the dimensionless forms 

811

r C*I= C*IIat r* = ig (10)



_ 9 _ 

pl 3C* 1 30* _ ro T =-V-I-1; at 1'* -TC 
P1’ P1’ 

respectively. 

Expressing the local velocity VZ from equation (6) in 

dimensionless form yields 

V L r* 2 . v*- = % [1 - (ZT) ] (12) 

Equations (9) to (12) then become the working equations for 

the current fracture/porous matrix model. Clearly it is seen that any 

solution to these equations will be functionally dependent upon the 

pair of Peclet numbers Prl and Prll appropriate to radial 

solute transport and the pair of Peclet numbers PZI and PZII 

appropriate to axial solute transport within the complex system. 

The initial conditions and boundary conditions, expressed in 

dimensionless form become .



c* = 0 

c*=1 

ac*_ -- - 0 8r* 

30* -i=0 3r* 

ac* 
iaz* =0 

ac*_ W“) 

Similarity requirements are -read-ily seen to be satisfied by 
replacing Lg by 2 to in the boundary conditions of equation (13) 

which now becomes 

-9-

r 
t*(() 0<,*,_'E§‘_ ()<>z-4e<_1'_ .— — LC — —LC

I c*>0 0<r*<—° *= _ _ _LC z 0 

:*>o 1-*=0 o<_z*<L_ _ _. _1,C

r 
t~k)() 1-*=_'E’l Q<_z*<L _ LC _ >_1,C 

1’ I‘ 
Q max = t~* 0 "L-C- 3 17* £ LC 

Z* 
» Q 

ta: 0 .13. 1-* in-Bl‘ z*=_L 
LC Lc 

i l Lg

13
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c* = 0 =* 0 o r* 

C* = 1 t* O O r* 

3C* 1.: 0 ti’ Q I-"k 
3r* 

ac* r* $=0 t* 0 

ac* .1 4i: 0 t* 0 1-‘R az* 3' 

3C* 
3Z* 0 t* 0 .21.’. I-* 

1' 

1333 
>22; 

1.
2

o

r max 
Zro

r max 
Zro

r max 
2r° 

z* 

Z* 

z* 

Z1’: 

2* 

Z*

L 
zro 

= o

L 
2ro 

_£_ 
Zro 

= O 

= L 
Zro 

14 

It is also readily seen that the selection of VC = 

eliminates the functional dependence of concentration on velocity 

Equation (12) may now be rewritten as the parabolic equation 

v* =-1 - 4r*2 (15 

With the above choices of characteristic length and 

characteristic velocity, the mass transport equations for which 
numerical solutions are sought become
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-ac* = ; a2c* 1 ac* 1 a2c* _ 1_4 *2 3§;_ 16 a=* P1 [3,*f 
+ r* ar*] * Pg 32*? 

( r )az* (s ) 

.aa_ce=_*, 1 a2c*+ 1 ac* + 1 a2c* 
(1,) 3t*' PEI [at-*5 r* 8r*] Pél 32*-f 

c*I = c*n at 1* =-§- (18) 

1 3C* _ 1__ 3C* _ 1 

;T 
— at !‘* - Y (19) 

1' PI’ 

Clearly, problems will arise in the numerical. solution of 

equation (I6) when r* = 0, i.e., when axial positives in phase I are 

considered (this problem will not arise in equation (17), of course, 

since r* ¢ 0 at any point in phase II). 

Applying L'Hospital's rule to the term in equation 

(-17) yields 

3 3C*
2 

., 1 30* 31"? 3:1‘. 3’ 0* 
l a. . . 

= " * = 20 ,*§“ r* 3r* a r* 3,*f ( ) 
i 3r* 

Thus, for r* = 0, the form of equation (16) utilized in 

obtaning numerical solutions for the mass transport equation is



P 12 — 

ac*. = _2 Iazcs 1 a2c* _ 1-4 *1 a¢* 16 a£* PI ar*z 
+ 

P2 82*: 
( 

l 

rs )aZ* ( a) 
1' 

NUMERICAL $OLUTION 

'Many of the differential equations resulting from a 

consideration of physical problems in applied science and engineering 

have no known analytical solutions, and must therefore be solved by 
employing numeical approximation techniques. Equations (16) to (20) 

include parabolic equations and a discussion of the various techniques 

available for obtaining approximate solutions to such second order 

partial differential equations is given by Jon Rosenberg (1968). 

Several of these available techniques involve an iteration procedure. 

However, such iterative techniques are impractical for the 

unsteady—state situations encountered in the current model, due 

largely to the excessive computation times required to obtain a 

solution. Consequently, the far less time-consuming alternating 
directon implicit method (ADIM) developed by Peaceman and Rachford 

(1955) was adopted in this work. 

The ADIM approach to the solution of equations (16) to (20) 

involves the alternate implicit differencing of one parameter (Z* 

direction in the current work) and explicit differencing of the others 
(r* direction at t* time domain). It requires a sequential solution 
of a small set of simultaneous equations that may be approached 
through direct non-iterative procedures, Ananthakrisnan et al (1965)
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have modified the ADIM for applicability to laminar dispersion in 

capillaries. By combining the original work of Peaceman and Rachford 

(1.955) with the modified version of ADIM of Ananthakrishnan et all 

(1965), the alternating direction implicit method may be rendered 

suitable for use with the current coupled fracture/porous matrix 

system. Detailed discussion of the ADIM mathematical procedures 

developed for obtaining solutions to the transport equations and 

boundary conditions of the current model will be presented elsewhere, 

suffice to say that a grid network was established to cover the range 

of variables defining the coupled system, and the solute concentration 

was determined at each location within this grid network. 

Alternate implicit differencing in. the Z* direction -and 

explicit differencing in the r* direction was performed. The 

concentration at each grid point was assumed to be initially zero. 

Subsequent to the introduction of a step change in solute 

concentration into the predominantly convection stream of the conduit 

fracture subsystem, t* was increased by a pre-determined increment and 

new values of solute concentration were computed from the Z* implicit 

equations. Utilizing the r* explicit equations and the same value of 

pre-determined t* increment, the solute concentrations were once again 

determined. This process was repeated until the desired time value 

was reached.
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CONCENTRATION PROFILES 

Using the preceding numerical methods, solutions for solute 

concentrations were obtained for a conduit fracture/porous matrix 

coupled system defined by Pg = Pé = 200; Pgl = 100; and P%I = 50. 

These Peclet numbers are consistent with realistic anticipated values 

of Vb (...........?) for such fracture systems. V 

Figures 2 and 3 illustrate the transient axial solute 

concentration profiles for the fracture subsystem (Phase I) for

r 
r* = 0.25 (is8a, I = —%) and r* = O (i.e., r = 0), respectively. The 

welledefined front produced by the step—change input is clearly 

evident within the fracture for small values of time T, the 

consequence of the predominance of the convective transport mechanism 

over the diffusive transport mechanism in phase I. The discontinuity 

associated with this front remains relatively intact to large values 

of T as the solute is transported through the conduit fracture. The 

frontal discontinuity at r* = 0.25 (i.e., at a point midway between 

the radial axis and the interface between phases I and II) clearly 

lags the frontal discontinuity at r* = 0 (i.e., at a point on the 

radial axis). This results in a parabolic velocity profile being 

observed within the conduit fracture subsystems, as illustrated in 

Figure 4 (obtained from equation (15)). Thus, even though a constant
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(in r and z) laminar flow rapidly assumes the faimilar parabolic 

velocity profile once the solute has entered phase I. The effect of 

diffusion, directed radially outward from the axis of the conduit and 

acting to disperse the frontal discontinuity, is also clearly evident 

in Figures 2 and 3. As the discontinuity passes completely out of the 

fracture and into the porous matrix (phase II), the axial profiles 

assume a near—horizontal configuration. 

Figure 5 illustrates the transient axial solute concentra- 

tion profiles along the interface boundary between phase I and II for 

r* = ro = 0.5 at various dimensionless times T*. Similar evolution 

of concentration profiles with time are evident at the interface as 

are evident within phase I except that the frontal discontinuity 

undergoes more rapid dissipation from the interface due to the rein- 

forcing influence of the diffusion into the porous matrix. The 

conductive velocity log of the frontal discontinuity at the interface 

boundary is quite pronounced, a direct consequence of the parabolic 

velocity profile within the conduit fracture. 

_ 
The response of the conduit fracture system is fully estab- 

lished prior to the intrusion of significant solute into the porous 

matrix subsystem (phase II) in the current example since the selection 

of Peclet numbers highly favours axial convection over radial 

diffusion. With the passage of the frontal discontinuity through the 

interface and into phase II, mass transfer in the porous matrix system 

degenerates (in this model) into a cylindrically symmetrical radial
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movement in the positive r* (or r) direction. Thus, solute build-up 

within the porous matrix subsystem is as depicted in Figure 6 wherein 

the solute concentrations at various times T are plotted as a function 

of axial distance at r* = 1.00 (i.e., r = Zro) within phase II. The 

diffusive nature of the evolution of concentration profiles in Figure 

6 is obvious. 

Figure 7 illustrates the time response of point 

concentrations at r* = 0.25 (middle of the conduit fracture) for three 

positions along the axis of revolution of the cylindrical fracture. 

The rapid saturation of the fracture at axial positions near the input 

is clearly evident, as is the gradual increase in rise times of solute 

buildup as points further downstream from the input are considered. 

Figure 8 displays‘ the buildup in time at a fixed axial 

position (Z* * 1.0) within the porous matrix subsystem for two 

different radial positions (ri * 1.0 and r* = 1.5). Clearly, the time 

response in phase II is considerably’ more gradual than the time 

response in phase I. An analysis of the concentration buildup 

profiles of Figure 8 indicates that a first order exponential curve 

may be fitted to the response function of the porous matrix subsystem 
(i.e., CII(t) - ekT* where k is a constant). 

Figures 9 to ll illustrate the solute buildup within the 

coupled fracture/porous matrix system at three axial locations, 

Figure 9 representing the conditions near the input (Z* = 1), 

Figure 10 representing the conditions further downstream from the
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source (Z* = 2.5), and Figure 11 representing the conditions at the 

selected termination point for the numerical analysis of the current 

model (Z* =-§%— = 5.0, at which axial position gg-was set equal to
o 

zero in the boundary conditions). On each of the three figures, 

solute concentration is plotted against radial position for several 

values of time T. The advance with time of the leading edge of the 

frontal discontinuity of solute concentraton within the system is 

readily seen, as the combined effects of convection and diffusion 

within the conduit fracture subsystem, radial diffusion within the 

porous matrix subsystems, and coupling restraints between the two 

subsystems simultaneously enact to eventually result in total solute 

saturation becoming apparent within the coupled system at very large T 

in the following sequence. 

a) High vlues of solute concentrations become apparent near 

the input (Figure 9) at early times. These concentrations are 

transported rapidly downstream within the conduit fracture due to the 

preferential convective transport mechanism and less rapidly radially 

outwards to the interface boundary.
_ 

b) For the values of Peclet numbers selected in the current
\ 

model, some intrusion of solute into the porous matrix is apparent 

after a short passage of time near the source (Figure 9), after a 

longer passage of time downstream from the source (Figure 10) and
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after.a considerably longer passage of time at the mathematical limit 

of the system at Z* = 5.0 (Figure ll). 

c) Once the solute has intruded the porous matrix subsystem, 

radial diffusion proceeds at a much slower rate. 

d) At an extremely large value of T the entire conduit 

fracture/porous matrix system becomes totally saturated (i.e., 

Concentration = 1.0 everywhere within the system). At this point the 

current model is no longer valid, since, once saturation is achieved 

the Peclet numbers are no longer physically meaningful (i.e., Fick's 

First Law is no longer applicable). 

Clearly, solute transport within a coupled system will be 

dependent upon the physical location of the interfce boundary between 

the two subsystems, i.e., the solute concentration profiles will be a 

function of the radius ro of the conduit fracture. This influence 

of ro upon the concentration profile observable within the coupled 

system is schematically illustrate in Figure 12. herein are plotted 

the concentration profiles observed in both subsystems at T = 40 and 
Z* = 2.5 for four values of ro ranging from 0.05 to 0.4. The 

salient features of Figure l2 are: 

a) As the radius increases, larger volumes of solute enter 

the system, and saturation occurs in a shorter time period. 

b) Small bore conduit fractures display a high degree of 

radial uniformity, while increasingly larger bore conduit fractures 

display an increasingly more parabolic radial distribution within the 
fracture subsystem.



-19- 

c) A similar feature is observed within the porous matrix 

subsystem with the radial diffusion for solute intrusion from a large 

bore fracture displaying considerably slower rise times than the 

radial diffusion for solute intension from a smaller bore fracture. 

SUHHARY 

A mathematical model has been developed for determining the 

solute concentration at a point within a conduit fracture/porous 

matrix coupled system. lhe governing transport equations, which 

consider the effects of both convection, and disperson within the 

conduit fracture subsystem and solely dispersion within the porous 

matrix subsystems, have been subjected to dimensionless analysis. The 

governing equations of transport, including coupling equations which 

provide continuity across the interface boundary of the two sub- 

systems, have been solved utilizing alternating direction implicit 

method techniques. i 

The system has been considered to possess cylindrical 

symmetry and the use of cylindrical coordinates (axial and radial) 

enable a three-dimensional model to be expressed in essentially two 

dimension parameters. That such cylindrical symmetry is an eminently 

sensible assumption is borne out by the ubiquous occurrence of 

concentric rings of _precipated solute in field core samples of 

subsurface fracture/porous matrix systems (Bobba, 1966).
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Because of the dimensionless analysis techniques employed in 

this work, the, dimensionless concentration profiles resulting from 

this model are functionally dependent upon a set of four dimensionless 

numbers which may be expressed in Peclet number form. A radial and an 
axial Peclet number do, in fact, deermine the salient convective and 
diffusive transport within the conduit fracture subsystem. A radial 

and axial number, both of which have been treated as Peclet numbers in 

this analysis, determine the salient radial and axial diffusion 
occurring within the porous matrix subsystem. 

Concentration profiles obtained from the cylindrically 
symmetrical transport model illustrate an almost instantaneous 
appearance of solute within the conduit fracture which is rapidly 
convected axially through the cylinder and dispersed radially towards 
the interface boundary. Once solute has radially intruded the porous 
matrix subsystems, radial diffusion which is umch slower and first 
order in nature is involved, with the ultimate result being a fully 
saturated system after an extremely long time period, 

The current model has considered two very simplifying 
assumptions, viz. the absence of any convective flow within the porous 
matrix subsystem and the absence of complexities resulting from 
chemical adsorption within the coupled system. Current modelling 
works is being directed towards both the effect of convective flow 
within the porous matrix subsystems and the influence of chemical 
reactions acting throughout the system (including at the interface 
boundary of the two subsystems). Results of these modelling efforst 
should be shortly forthcoming.
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igure 9 Transient radial concentration profiles in conduit fracture 
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Figure 11 Transient radial concentration profiles in conduit fracture 
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Figure 12 Trans1eut radial concentration profiles in conduit fracture 
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