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EXECUTIVE SUMMARY
The knowledge of toxic contaminants fate in the environment is

important given the large number of chemicals {about 60,000) presently in use.
Mathematical models have been used to predict contaminants fate but the
incamplete knowledge of the relation between the chemical structure and
ehvironmental behaviour makes predictions uncertain. Here, Dbasic principles
of fate models are reviewed with a discussion of the latest topics of interest
in ecological modelling. These topics include a) expert systems to catalog
informat;on about new and existing contaminants and pesticides and to improve
the régistratiun process; and b) theory of model development to minimize the
uncertainty in predictions and.to identify important processes, whose detailed

knowledge would improve our confidence in fate models.



ABSTRACT
Mathematical models predict the concentration of contaminants in

differeni compartments, or state variables, according to loading rates into
the system (inputs), to the rates {(parameters or submodelis) of degradation
{photolysis, hydrolysis, oxidation, bicdegradation, etc,) and to transport
rates (parameters or submodels) between compartments ({(volatilizatieon to the
atmosphere, wet and dry deposition, adsorption on soil particles and sediments
in the aguatic environment, resuspension from bottom sediments, currents). At
present many factors, such as wmicro-climate, wind, spatial variability,
uncertainty in the model structure and parameter values {for example measureé
of octanol water partition coefficients higher than 10%), still preclude the
usage of laboratory data and mathematical models alone to set environmental
standards. Field testing is still necessary and mathematical models can help
in integrating this informaticn and opossibly _leading the data collection
efforts. This paper reviews recent research in systems ecclogy: at présent
computer simulations are one of the tools used for predicting the fate of
toxic contaminants in the aquatic environment; others, for example, are
artificial intelligence and expert systems. Other research in systems gecology
focuses on a) theory of model development to minimize the number of state
variables and parameters, that is, to minimize the uncertainty in the model
structure and parameter values, b} algorithms to compute prediction
uncertainty to wunderstand model reliability and to identify important
processes, whose detailed knowledge would improve ﬁur confidence in the model
and c¢) hierarchical and network theory to quantify the cycling rates of toxic

contaminants.
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I. INTRODUCTION

In the past decade ecological modelers have shown great interest in
modeling the fate and effect of toxic substances. This interest was eupressed
in organized form in 1983 when Jorgensen® organized a conference on this topic
in Copenhagen. At present tomputer simulations are one of the tools used for
predicting the fate of toxic contaminants in the aguatic environment; others,
tor example, are artificial intelligence and expert systems. Other research
in systems ecology focuses on a) theory of model development to nminimize the
number of state variables and parameters, that is, to minimize the uncertainty
in  the model gtructure and parameter - values, b) -algorithms to compute
prediction uncertainty to understand model reliability and to identify
important processes, whose detailed knowledge would improve our cdnfidence in
the model and c¢) hierarchical and network theory to quantify the cycling rates
of toxic contaminants.

The knowledoe of toxic contaminants fate in the environment is
impartant given the large number of chemicals (about 60,000)Apresently in use,
Mathematical models have been used?~® to predict contaminants fate but the
incomplete knowledge of the relation between the chemical structure and
environmental behaviour? makes predictions uncertain. Here, basic principles
of fate models are reviewed with a discussion of the latest topics of interest
in ecological modelliing.

A. Past Endeavofs

The prediction of the fate of toxic contaminants in the environment

was made paossible in the 1970's by the realization that most environmental

fate processes follow first order kinetics; therefore linear models (Eq. 1
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below) are an appropriate representation of contaminant behaviourZ?, At the
_time, the main purpose of scientific studies was only to moniter environmental
concentrations of pollutants, usually several years after the eﬁvironment had
been contaminated. For example, Lake Ontario was subject to contaminants as
early as 1909 with the establishment of industriés on the <shores of the
ﬂiagara River. The highest rates of contaminant loadings took place in 1960~
1963%; these rates were subsequently reduced in later years, while the
pollution problem was only recognized in the early 1970's. The historical
pollution trends are recorded in the bottom sediments of Lake Ontario.

Early inQestigations on the fate of toxic contaminants lead to tuwo
distinct but related lines of research: Studies on model ecosystems focused
on the dynamics of contaminant fate and statistical studies focused on
equilibrium conditions. This yualitv still exists in modeling strategies,
some mathematical models include equilibrium conditions, for example the
fugacity approach of Mackay and Paterson® and the model EXAMS’, while cothers
are strictly dynamic, e.g. PEST*® and TOXFATE.®

Mathematical models predict the concentration of contaminants in
different compartments, or state variables, according to loading rates into
the system (inputs), to the rates (parameters or submodels) of degradation
(phutnlysis, hydrolysisj oxidation, biodegradation, etc.) and to transport
rétes (parameters or submodels) between compartments (velatilization to the
atmosphere, wet and dry deposition, adsorption on soil particlies and sediments
in the aquatic environment, resuspension from bottom sediments, currents).

Halfon®! has reviewed the data base necessary to develop and verify ecosystem

fate wmodels, Figure § shows compartments and environmental processes which

—— —— ——— ———— ——




Efraim Halfon - page 5

affect contaminants behaviour. Figure 2 shows campartments often wused in
modeling exercises and chemical propérties usually assaciated ujtﬂ contaminant
partition in these compartments. At present many factors. such as micro-
climate, wind, spatial variability, uncertainty in the model structure and
parameter values (for example measures of octanol water partition coefficients
higher than 10®), still preclude the usage of laboratory data and mathematical
models alone to set environmental standards., Field testing is still necessary
and mathematical modéls can help in integrating this information and possibly
leading the data collection efforts. fn example to that effect will be
discussed later.

B. Fhysical and Chefical Properties Related To Environmental Behaviour

The transfer and degradation parameters constrain the behaviour
predicted by a mathematicél modely; ‘the transfer parameters are based onh the
physico-cﬁemical properties of the contaminant, Kow. Koc, lDg P, sclubility,
and of the environment, wind speed, current velocities, etc. To reduce the
impact of lack of experimental data, quantitative s£ructure activity
relationships (Q@8AR) have been wused”? in the fﬁrmulation of the model
equations, With @SAR, physical and chemical properties of the contaminants,
measured in the laboratory or estimated from the mole;ular structure, have
been used to predict the environmental behavior of the contaminant ifself.

A large nuéber of statistital models, wusually linear regressions,
has been published to relate propefties such as the octanol water partition
cqefficient (kow or log P) with bioconcentration in fish, adsorption on
suspended sediments, etc, The main problem, still debated, 1is whether this

information is sufficient to make éextrapolations from the laboratory to the

w
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field, and whether mathematical models developed' from laboratory data are

valid under +field conditions. Linear regression models can be used if

" appropriate observations are not available; errors and wuncertainty must be

taken into consideration when predictions are made based on these models. For
example the boiling point of a chemical can be used to compute the vapor
pressure of a chemical and, if the solubility is known, to predict the Henry's
Law constant, or the ratio of equilibrium concentrations of a chemical in the
water and in the air. This ratio is always used in models to compute the
volatility of a chemical. Halfon®2 analyzed the appropriate procedure in the
computation of the statistical linear regression models when both variables
are subject to measurement error and natural variability as is the case in
most ecotoxicological models.

Toxic contaminants in the enviraonment might be degraded or converted
into other chemicals which might also be toxic. Most fate models do not
simulate the fate of these byproducts and therefore, once the chemicals are
deqraded they are considered lost +from the systesm. These degradation
processes can be of a variety of classes including hydrolysis, oxidation,
reduction, substitution, elimination, isomerization and ion-exchange. Most of
these environmental reactions are bimole:ular.(e.q. in hydrolysis, water is a
reagent). Nevertheless, when one of the reactants is present in large excess

then the process becomes a pseudo first order process and can be included in

the model as a linear formulation,

II; EQUILIBRIUM AND DYNAMIC MODDELS

The basic +framework of fate models is usually based on linear
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ordinary differential equations; nevertheless, any process formulation might
be nonlinear. Within this framework, two approaches have been used: 1) In
the dynamic approach the changes of concentration in time are considered
important; 2) in the equilibrium approach the main assumption is that enough
time hac lapsed for the contaminant loadings in ~the environment to have
redched equilibrium in the environment. This second approach has been used by
Mackay and Paterson®, Burns et al.™ and Mclall et al.® The last model has a
structure of the following kind
Ceae <> Cu &7 (., &2 C(.u &5 Co

!

Ce
where C are the concentrations of the contaminant in the water (L.), sediment
(Caoal, fish (C¢), air (Ca), soil water {Caw) and soil (Ca).

The importance of eguilibrium models lies in their ability to
indicate which compartment would be the main recipient of the contaminant if
conditiens remain constant in time, This approach is useful for reculatory
agencies to assess the possible hazard level of a new contaminant.
Predictions on average agrée with monitoring data but not too well at specific
sites.

Dynamic models - time dependent - <can describe site specific
noneéquilibrium conditions and can address the question of residence time. One
of thg earliest models was developed by Neely and Blau®; this model describes
the behaviour of a chemical, chlorpyrifos in a fish pond; .transfer among the
gifferent compartments depends on six parameters which describe

volatilization, hydrolysis, fish uptake, fish excretion, adsorption to soil
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and desorption from soil. The model has a linear formulation and the equation
describing concentrations in water has the following formulation.

dl.

V -=== = <k1ACs - k2VCw = ksFCw + kaFCs - ksSCe + koSCo (1)
dt

where V is the volume of tﬁe pond, A is its area, F is the fish biomass, S is
the weight o} soil and k, - ke are the parameters which quantify the different
traﬁsport and removal processes. Most fate models, with more or fewer state
variables and'parameters, have a similar structure. Neely and Blau® estimated
the rate constants ks-ke froﬁ laboratory ecosystem studies of Smith .et al, s
following a procedure described by Blau et al.'?, The rate constant for
evaporation, 'k,, was estimafed by the Liss and Slater technique!®. The
hydrolyis rate k= was estimated from the observation that the half-life of

Chlorpyritos in water at pH 7 is three days.

II1. MODEL APPLICATIONS

Fate models have .been used to describe the fate of ‘toxic
contaminants in small microcosms and in very large lakes, like Lake Ontario,
300 km long and 70 km wide. In this seftion results from twp simulation
studies are described. In the first the purpose of the model was to predict
the residence time of fenitrothion in ponds after aerial spraying. This
purpose was accomplished by quantifying the parameter values as ranges to -
include the natural variability of observation in the ponds. The purpose of
the second study was to predict the fate of perchloroethylene (FERC) in Lake:

§t. Clair, or to predict the proportion of PERC that would be volatilized, the'
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proportion transported downstream and the resident time in the systen. Note
that in both these examples the loading rates of the éontaminant were unknown.
The modeling exercise provided means to estimate past loadings. .
A. Fenitrothion in New Brunswick Fonds

Halfon and Maguire!® developed stochastic fate models to describe
the variability in the data, variability which is often observed when multiple
measurements are taken of the same compartment. Their model describes the
fate of fenitrothion in three compartments: the surface microlayer, the main
water body and the bottom sediment of a pond. The mpdel parameters were
estimated by fitting a stochastic model to the whole range of observations
(fig. 3); thus, parameter values were quantified as ranges rather than as best
fit values. W®hen used for prediction, the model computes the time needed for
fenitrothion to be removed from a pond, after an aerial spraying, with a 95%
probability. The 951 remnval‘time was estimated to be 20% higher than the
time predicted by the deterministic model thus showing that poliution
persisted longer than previousfy expected (Fig. 4).
E. FPerchloroethylene in the Sﬁ. Clair - Detrpit River System

Ferchloroethylene (PERC) was found in sediment samples collected in
1984 and 1985 at the bottoﬁ of the St. Clair River at Sarnia near the Dow
Chemical plant®7.28; FERC is a volatile chemical commonly used as a solventy
it is water soluble and it has a relatively low octanol-water partition
coefficient (logio P is 2.69)3: ip the aquatic environment FERC does not have
‘much affinity for suspended sediments oﬁce it is in the dissolved state. The
spill created the black buddleé because a laroge amount of PERC and of Carbon

tetrachloride (CTC) was released into the river; since PERC and CTC are
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heaviér than water with a density of about 1.6, most of it stayed on the river
bed.

The purpose of this modeling effort®®, using thé mocdel TOXFATE®, was to
evaluate the relative importance of water transport and volatilization in the
removal of PERC from the St. Clair-Detroit River system and to perform a mass
balance calculation.

1. The Hathematical Hodel

TOXFATE is a contaminant fate model® which integrates information on
the properties of a chemical, suth as melecular weight, sSolubility, vapor
pressure, octanol-water partition coefficient (see Fig. 2 for the relation of
the cthemical properties with environmental behaviour), with information about
the environment where the chemical is found, such as water circulation, wind
speed, the amount of suspended solids, etc. The model can be used to predict
concentrations at different locations and estimate the importance of removal
processes such as veolatilization. Figuré o shows the model structure, the
arrows identify the model parameters.

In the model the spatial description of the St. Clair River svstenm
follows the observation that the river is not well amixed horiznntall? and
therefore contaminants which enter the river near the east shore stay near
that shore rather than mix uniformly across the whole river. These river
water masses can be easily recognized in Lake St. Clair by following the
plumes of suspended sediments by remote sensing2®. Simons®! who has developed
a hydrodynamical circulation model of the lake, provided estimates of the
water flows and therefore Lake St. Clair was divided into five cells (Fig. 6),

The boundaries of the five cells were chosen to integqrate information on the
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long term annual circulation of the lake and the observed contaminant plumes
in the lake waters. The Detroit River is spatially divided intp two cells to
completé,the description of the system and to compute the propnrtgén of the
loadings which arrive in Lake Erie dissolved in wafer.

2. Model Results

The water retention time in the St. Clair-Detrcit River system is

' _about ten days2* and the simulation®® was run for forty days for water

concentrations to reach a steady state with constant loadings.

The main purpose of the study was to estimate pathways of PERC in
the system, thut the model computes voplatilization and transport processes.
PERC is very volatile with a Henry's Law constant of 8.3 1073 [ (Atm-m®) / mol
). ' Assuming loadings of 64 kg PERC per day in dissolved form, the model
predicts that 3.4 kg per day (5% of loadings) are lost through volatilization
in the S5t. Clair Rivér system up to Port Lambton, another 3.3 kg per day (S%)
volatilizes from the delta, 44.3 kg per day (6%%) from the lake and 1.8 ko per
day (3%4) from the Detroit River. The TOXFATE simulations éhow that up to
about 2% (78-87% under a range of wind speed and water temperature
conditions) of loadings are lost from the system before reaching Lake Erie.
In Lake 5t. Clair the model predicts that about 69% of FERC loading is lost to
the atmosphere through volatilization. Alsoc simulations show that in the St.
Clair betroit River system, the average residence half 1lifé of FPERC lost
through volatilization is 80+B3 hours while the average travel time of PERC
transported in the water to Lake Erie from Sarnia is about 350-400 hours.

Biven the availability of concentration data of PERC in water (Fig,

7) collected by Kaiser and: Comba2® in June 1984 the simulations were also

11
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compared with ﬁbe4 available data. Without calibrafion the computed
toncentratiaons (Fig. 6) agree well with observations (Fig. 7);4the predicted
values {Fig. 6) are about 300 ng/L at Fort Lambton near the Canadian shore and
8-9 ng/L near the US shore, 105 ng/L near the cutoff channel and 16-39 ng/L at
the head of the Detroit River. The model also predicts that the main loss of
PERC +from the system might be due to volatilization to the atmosphere.
Unfortunately at present no plans exist to repeat a similar sampling program
and therefore the model can not be verified correct since one cruise does not

provide sufficient data for model verification.

IV. UNCERTAINTY
A. Model Structure

Two major problems in developing fate models are the choice of state
variables and the quantification of parameter values. The appropriate chaice
of the state variables is a common problem in systems ecology: this choice is
cften left to the modeler and therefore somewhat arbitrary. Halfon23-25 hasg
‘analyzed the choice process using system methods. His conclusion was that no
best model structure exists but an appropriate choice may be made by using the
appropriate decision making tool. Hirata énd Ulanowicz?® in a review paper
recently suggested that research in systems ecology should shift from
deterministic, numerical simulations of ecosystems and instead consider more
basic caoncerns on howvto represent the ecosystem structure.

From a theoretical point of view modeling the fate iof toxic
contaminants should be a straightforward esercise. Contaminants are found in

water and from there they adsorb into suspended sediments, fish and algae;
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suspended sediments might sediment toc the bottom of the lake or of the ocean
to be buried by other sediments or to be resuspended according to the levels
of turbulence near the-bottoq. The choice of state variableg ;nd of their
felations however is quite arbitrary. For example, some gquestions that need to
be addressed are use one class of suspended sediments or several size
friactions, one class of seston or several species of plankton and zooplankton,
representaticn of the food chain, one class or several classes of fish, etc.
The problem of the interrelations is the decision of the representation of
dynamic or egquilibrium proﬁesses, food chain structure, etc. Each process
added implies one more parameter that need tc be estimated or measured.

Choice and quantification of the parameters ic even a more difficult
protlem. I1f a simple linear formulation is wused in the modél then the
parameters are a composite of several processeé. For example in Neely and
Elau ‘s model® the parameter k; describes volatilization: Kk, can be also be
computed by a submodel which describes the behaviour of a contaminant at the
air-water interface - {for example the two layer model of Whitman2?, The
important point is that any parameter can be expanded into a submode! and
given a more accurate qescription. Even so, np unique formulation has been
universélly accepted for any particular process; field and 1laboratory
experiments are performed under specified conditions. Generalization of a set
of_ data toc a model fhat is generally applicable, for example to all agquatic
environments, is difficult.

B. In Prediction
The topic of uncertainty can not be resolved only at the stage of

model develapment, since the model structure and parameter values influence
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the predictions made fhe computer model. The problem of model uncertainty was
recognized as early as 1973 by O'Neill®® but a formal theory of model
uncertainty did not originate until later2¥-32, The purpose éf uncertainty
analYSis is to quantify the amount of error present in a simulation due to
different sources, the errors might be due to the model structure, uncer{ain
pafameter values, uncertain inputs and uncertain data from which the model was
developed. All these factors must be taken into account. Several methods now
exist to compute this uncertainty but the most used are those that rely on
Monte Carlc simulations.

Halfon® developed a fate model of Mirex in Lake Water. Figures 8
and 9 shows the obsérved coficentration of Mirex in 1968 in the bottom sediment
of Lake Ontario (this information was used as initial condition) and the
predicted concentrations in 1982. Given the large scale of the system, model
simulations had to include such factors as currents and wind drive
circulation. To account for uncertainty in the model Halfon® performed an
error analysis of the model. Thie analysis wWas accomplished by running the
model 200 times with different parameter values sampled from a known freguency
distributian. In practical applications of error analysis the frequency
distribution might be normal, +triangular with minimum and maximum limits, or
uniform it the parameter values are uncertain within given bounds.
Correlation among parameters can alsc be included in the analysis. Once model
simulations were performed the simulations were displayed with corfidence
limitss kFig. 10). The two limits could be considered worst and best tases.

In error analysis parameter variability is assumed due to incorrect

assumptions and poor parameter estimates in addition to the natural

14
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variability of the parameters; The purpose of the error gnalySis if twofold,
to produce tolerance limits associated with the simulations (Figf 10) and to
assess the effects of individual parameter errors, that is, which parameters
produce the maximum Error in thé simulation. This analysis identified
parameters whose precise knowledge would allow better prediction, i.e. smaller
tolerance limits.

For the Mirex model the error analysis chowed that the most
important parameter for a reliable simulations were the bulk density of the
sediments and the sediment-water exchange rate. The analysis also shows that
percentage reduction in error rates if these two processes could have been
measured exactly. Error analysié proved to be a very useful tenl in the
identification of weak areas of knowledge; A time analysis of parameters
tontrolling the behaviour of Mirex showedAthat different parameters are in
control at different times. Dver the short term biological parameters are
important whereas over the long term, geological properties are more relevant.
FPhysical parameters, such turbulence and currents, are impbfﬁant both over the
short as well over the 1long tern. By concentrating research efforts on
processes and variables identified by error analysis we can obtain results
useful in reducing prediction uncertainty. Error analysis has focused our
attention on the processes responsible for resuspension from the sediments.
Mirex is 1opcated in the bottom sediments and only processes at the bottom of
the lake are important for long term dynamics.

The relation between prediction uncertainty and error asscrciated

with model parameters has been studied by a number of investigators (D'Neill

et al.®% for a review). In general, parameters should be measured or
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estimated from field and laboratory experiments. When ghese measurements are
not available or possible, then parameters must be estimated mathematically or
from laboratory experiments. All the information available on the system
parameters is utilized for the analysis. Gardner et al®° sugagest that the
correlation coefficient computed between a state vériable and a parameter is a
reasonable way to rank model parameters according to their contribution to
prediction uncertaint?.
in the analysis of the Mirex model Halfon® showed that only 15% of

the 96 parameters in the model were important. One of the efforts of this
study is to produce information on areas that should be the focus of research
projects to reduce prediction uncertainty, i.e., 1if the identified parameters
were measured with smaller variance we should observe a reduction in
'prediction error uncertainty. The correlaiiun coefficient when sgquared
represents the percentage of variability in the state variable due to one
parameter when the variability in the other parameters is uncontrolled. For
each s&tate variable, by summiﬁg the wvariability reduction due to each
parameter we can compute the variability that can be obtained by better

measuring those state variables.

V. ARTIFICIAL INTELLIGENCE

The problenm with computer simulations is that the chemical
properties used to quantify model parameters are seldom available for the
hundreds of new products produced pach year. Hazard assessment of new
tontaminants is presently evaluated using experts, who: by analyzing the

available information can decide whether given contaminants might prove to bé

16
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a8 hazard or not. For example, giVen some information on the octancl water
partition coefficient, splubility,' vapour pressure, etc., experts might be
able to estimate whether a co@pound is acceptable. This deci;ion making
process can be automated with the use of the so called artificial intelligence
systems, e.q., decision “trees, decision tables and expert systems. The
purpese. of these methods is to store expertise in the computer and have an
algorithm take decisions in a reputable way according to oprespecified
triteria. Lemmon®2 for example developed an expert system for cotton crop
manaqement called COMAX. One of the advantages of expert systems is that if
the computer if given a set of rules and some information on the process of
which decision has to be made, the decision process can be reconstructedss
Note that also experts in their decision making use mental models. Inputs
usually consists of observations, or in this case the physico-chemical data of
the new contaminants, and the output will be in the form of a decision,
acceptance or rejection or reguest for more information. The advantage of
using a formal algorithm is that the decision making urocess-is transparent33,
I+ we use an expert his experierice is like a model which we are not allowed to
see. The expert might give results, even good results, but it is difficult to
argue about the way the results were obtained and the chemical company might
object. The weakness with the artificial intelligence approach is that we do
not know whether we have compléetely debriefed an expert to include all his/her
knowledge in the computer program. However by combining the expertise of many
scientists we can improve the knowledge of the computer and we can identify
weaknesses or lackvof knowledge and areas where improvements are necessary.

Artificial intelligence can be subdivided into three relatively

17
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independent research areas: Natural Language Frocessing, Robotics and Expert
SystemsS*, The first area is concerned primarily with developing computer
programs that can read, speak or understand language as people use it in
everyday conversation. The second area is concerned with developing smart
robots or how to develop visual and tactile programs that allow robote to
cbserve the ongoing changes that take place as they mave around in an
environment. f# third area 1is conterned with developinq programs that use
symbolic knowledge to simulate the behaviour of human experts. This last area
is of interest to develop program that can be used in setting regulations for
the use and distribution of toxic centaminants. At present three approaches
tan be used fq represent expert system in fate modeling.
A. Decision Treesss

The decision structure is similar to a dichotomous key for
classifying plants. To use the tree we start gt the top and we answer
questions until we are led to a decision. A decision tree is eéasy to use once
it has been built but it is very difficult to built and difficult to modify
once they gre built to include new knowledge. This drawback is fundamental
since the problems with toxic contaminants a?g tomplex and the model should be
amended in light of new experience.
B. Decision Tables3s

The information included in the decision tree is rewritten in Table
form. The decisions are written in any order and the entries of the table
‘ tonsists of T (true), F (false) or X for irrelevant.
Note that while there is only one row for each question there can be

more than one column corresponding to each decision. Each column represents a

18
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set of conditions that would lead to (or validate) that decision and there are
pften two or more ways of validating a particular decision. Decision tables
are easier to built than decision trees since the order of the guestions is no
longer important. As more information become available the‘thé decision table
can be modified by adding a new row and if new set of circumstances that leads
to’a new decision become available than we add a column.

Decision tables are weasily implemented on computers and the
information is stored in' a matrix. The computer program asks the user to
reply true or false for géach statement and then the grogram Compares thésé
replies with the stored matrix to see which decisions are valid.

The major d}isadvantage33 is that rows and columns tend to
proliferate, in fact each question has to be written as a question with a true
pr false answer and questions with two or more answers have td be broken down
in single guestionsy adding more rows. |
C. I+-Then Rules and Expert Systenms

A knowledge based system 1is easier to build than a conventional
model because it has a well defined format33, The expert system consists of a
decision list (which specifies the problem to be solved), a list of questions
with answers (whith tells us what information is needed to solve the problem)
and a list of rules (which describes how one progresses logically from the
answers to the decisions).

As is in any modeling exercise the first step is to establish the
objective of a quantitative model. By first drawing up a list decisions
before the rest of the knowledge base is collécted we makeé sure that the model

addresses the right issues and that we approach the right experts.

19
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The next step is to decide wﬁat information is needed to Feach the
decisibns and to write this information in the form of questions and answers.
The expert should be asked to list all the necessary information appropriate

for a well taken opinion. When complex problems are analyzed an
interdisciplinary workshop provides an ideal environment for bailding the
knowledge. In the case of decision making for toxit contaminants, several
committee meeting might be followed to assess the process making in deciding
whether a compound is acceptable or not.

The most difficult part in the construction of a knowledge basis is
the formulation of the rules. For example we can ask ourselves “ Under what
circumstances would this c¢temical hydrolyze ?" or ‘“what distinguishes a
vclatile compound from a 1less volatile compound®, “how does the weather
influences the volatilization process®, water mixing " fhe rules should flow
from the answers to the gquestions. The advantage of the if-then structure is
that the fule base can be built slowly, one rule at the time: we do not need
to grasp the nature of the whole decision making process. We do have to make
sure that each rule is correct and appropriate. It is always advantageous to
have a number of shorter rules (each with an appropriate explanation) rather
than a few long and complicated rules. ODne of the disadvantages of the if~-
then structure is that it is sometimes difficult to decide whether the set of
rules is adequate or complete. The only way to test this is to implement and
exercise the knowledge base via an expert system. If the system frequently
fails to find a decision, than the rule base is probably too slinm. The
process of exercising and interfacing with the knowledge base helps to

identify those situations that need to be addressed by additional rules.
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D. Decision Support Systems3S

An expert system can be integrated into a decision support system
via a data base and computer términals. For example if a decision must be
taken about a new chemical compound, the present bption is to call a meeting
of experts to decide whether the new chemical can be marketed. Alternatively
the decision might be taken by running the program with the expert system and
to take a decision accordingly. The advantage of using this approach is that
the chemical industry can immediately understand the reasoning at the base of
the decision of acceptance or rejection of the marketing application in_  basis
on the information provided. I+ a decision is asked to be reconsidered some
additional information might be provided in an interactive fashion until a
compromise of environmental safety and industrial gain is reached. In this
way decisions to be taken within ecclogical managément can be taken routinely.
In toxic contaminants management these decisions might related to production
qhota. A decision support system is a pretentious but apt title for an expert
system shell that exercises & knowledge base containing thé rationale behind
any of these routine decisions®3®, Rykiel et al>® present a clear example of a
computer-aided decision support in pest management systems.

Starfield®S clearly states the advantages ofAusing gecision support
systems:
"1, at the simplest level the decision support system provides a safety
for the inexperienced staff and intelligent checklist for wore experienced
staff.

2. it helps to ensure continuity despite changes in staff.
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3. it helps to differentiate between situations that are roufine and
those when more careful analysis or data collection (or the opinion of an
expert) are needed. .

4, it coﬁld provide a stable reference when emotion runs high. Those
who disagree with its recommendations would be forced to give explicit reasons
for their disagreement

o. it is an effective communication device, either for explaining the
reasoning behind a recommendation to those who have to authorize the decision

pr to present the same reasoning to the public.’

VI. CONCLUSIONS

Mathematical models are usually built +for two main purposes, to
improve out understanding of the problems at hand and as a tool to predict the
fate of toxic contaminants once they enter the environment. Simulation models
are one of the methods used by systems ecologists to develop and test theories
about the environment. In addition to working on simulation models a number
of systems ecologists work on methods to improve the simulation methodology
and to improve our understanding of the environment and how it is affected by
human influence. In recent years we have made significant improvement in our
ability to predict the fate of toxic contaminants and error analysis has
allowed us to quantify thé model reliability and to intéraet with field
ecologists to decide which data should be collected for maximum amount of
information.
Building models for ecological management 1% not an easy task,

While there 1is often a pletora pf data that are peripheral to our problenm,
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"!’ ,
there tend to be a conspicuous lack of data we really need. For example to
node]f’ the fate of toxic contaminants in Lake St. Clair ué'need data
collected in lake water during different seasons and Undér' different
hydrological conditions; one time surveys are nat enough either from a
modeling point of view or from an empirical point of view since they do not
provide enough information to lead +to as theory of confaminant behaviour.
QFigure 11 shéws the modeling process and the continuous interaction of
egqlpgical modelers and field scientists to improve the understanding of the
system and the predictive ability of the model. In the case of PERC in Lake
St. Clair*®, even if concentration data to compare model simulations with were
not available, the model simulations have provided insight in the behaviour of
FERC in the system. For example some conclusion of this study were that about
B2% of the very volatile PERC entering the St. Clair River at Sarhia would be
lost to the atmosphere before reaching Lake Erie; in Lake St. Clair alone, the
volatilization losses are about 69-74% of all 1lpadings at Sarnia under a
variety of temperature and wind ctonditions. The high water levels in the St.
Clair River system do not influence the fate of PERC and prediction of FERC
water concentrations strongly depends on the knowledge of the loadings. Local
temperature and wind conditions might affect water concentrations locally but
not drastically. The average residence half-life of ‘PERC lost through
volatilization is B80-85 hours while the average travel time of PERC
transported in thelwater to Lake Erie from Sarnia is about 350-400 hours,
During the {ield programs of 1984 and i985 no field measurements of ?ERC

losses through volatilization or sedimentation were perforaed, thus a

‘ verification of the model predictions through a program of field observations

[ )
LB
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or independent estimates of PERC volatilization is essential. This
ocbservation is valid for any fate model to be used in the St. Clair Detroit
River System; at present the model is only prognostic and could be wused to
estimate contaminants pathways. We have also learnt to use mathematical
models to improve our understanding of the problem or our appreciation of the
management alternatives.

The recognition of model uncertainty Was a significant
development ,5+24+28-31 appther is also the subject of how we can draw
conclusions without calculations.3-3% e know that people do it all tﬁe time
and the basies on which they do is their experience. The artificial
intelligence methods of decision trees, decision tables and expert systeas
based on if-then rules can be used to analyze the probles of licensing new
contaminants when industry does not ﬁrovide much chemical information on 1its
properties. Although very large expert system have been successfully built
and used in other fields34, for example avionics in airplanes and medical
diagnostic systems, the idea of wusing an expert system in environmental
management is novel and relatively untested. It offers 'a. mechanism that
captures and organizes the type of information scientists are accustomed to
using. The process of building a deciéionv support system 15 always
stimulating and effective.

The way in which a decision support system is implemented (first
build a prototype model, consult it regularly, compare its performance with
what aftually happened, and update »it on a regulaf basis) is in line with
concepts of adaptive management (Fig. 11). A properly designed and

implemented decision support system can captufe long-term management
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experience in the same way as data banks capture long term information.
Experts or people with field experience do not always agree with
eaCh_other. They are seldom able to pinpoint where they disagree. Experience
is not a commodity that is eésy to communicate, and how and ﬁhy d perspn
reaches a decision is something that tends to be distorted with hindsiéht.
Ultimately there can be no real progress in any Subjeti unless those working
in it have a common and unambiguou% form of communication. éerhaps the more

important quality of models, be they guantitative of qualitative, is that they

provide a disciplined basis for discussion and argument.
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FIGURE LEGENDS

- Figure 1: State variables, environmental factors, transfer and

degradation processes present in fate models.

Figure 2: Physical properties used in equilibrium models and their
relation with the transfer rates of toxic contaminants among compartments

in the aquati¢ environment.

Figure 3: Stochastic simulation of Fenitrothion in pond water. The
~stochastic simulation, expressed as a range, includes most data points.
The stochastic sinulation allows the computation of prediction with

specified probabilities,

Figure 4: Prediction of Fenitrothion concentrations in water at different
times after aerial spraying. The deterministic solution suggest that 95%
of fenitrothion will disappear from the pond waters in &7 hours.
Stochastic simulations show that most likely the disappéarance will take
about 20% longer or 66-67 hours. Thé two graphs represent different

assumptions about the uncertainty in the parameters.
Figure 3: TOXFATE model structure. The suspended sediments are

represented as three size fractions, "clay, silt and sand; the plankton

compartment includes both phyto- and zooplankton.

20
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Figure 6: Chart of Lake St, Clair., The five cells were identified after
analysis of plume behaviour and long term current movements. The numbers
in the cells represent the predicted concentration of FPERC in the water

{ng L-*]. PERC loadings toc the systems were estimated at 64 kg per day'”.

’Figure 7: Chart of Lake 5t. Clair. Predicted concentration of

Ferchloroethylene in lake waters? [ng L-%].

Figure 8: Observed concentrations of Mirex in the bottosm sediments of
Lake Ontariop in 1968. The total ampunt of Mirex in the bottom sediments

is about %50 kg.

Figure 9: Predicted concentrations of Mirex in the bottom sediments of
Lake Ontarioc in 1982. The total amount df Mirex in the bottom sediment is

about 1300 kg. A large increase since 1968.

Figure 10: Simulation of Mirex in the bottom sediment of Lake Ontario with
confidence limits. The dark middle line represent the average of the 20¢
Monte Carlo simulations and the dotted line represent the deterministic

solution.

Figure 11: Steps in the development of mathematical models. Note the
close relation with experimentalists for the integration of system theory

and field work.
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