

ETUDE Nº 119, SERIE SCIENTIFIQUE DE LA DGEI

Etude hydrogéochimique de l'atténuation et la remobilisation de contaminants dans les terrains de recouvrement du Big Swamp, près de Picton, en Ontario

D.E.J. Creasy, R.J. Patterson et W.A. Gorman

GB 707 C335 no. 119F

INSTITUT NATIONAL OF RECHERCHESEN HYDROLOGIE

Environnement

Canada

Environment Canada

Institut national de recherches en hydrologie

* Les auteurs sont tous associés au Département des sciences géologiques de l'université Queen's, à Kingston (Ontario). La présente étude a été subventionnée par le Programme de subvention à la recherche sur les ressources en eau, de la Direction générale des eaux intérieures.

RAPPORT Nº 10 DE L'INRH

ÉTUDE Nº 119, SÉRIE SCIENTIFIQUE DE LA DGEI

Étude hydrogéochimique de l'atténuation et la remobilisation de contaminants dans les terrains de recouvrement du Big Swamp, près de Picton, en Ontario

D.E.J. Creasy, R.J. Patterson et W.A. Gorman*

INSTITUT NATIONAL DE RECHERCHES EN HYDROLOGIE DIRECTION GÉNÉRALE DES EAUX INTÉRIEURES OTTAWA, CANADA, 1981

© Ministre des Approvisionnements et Services Canada 1983

2

ş

Nº de cat. Em 36-502/119F

ISBN 0-662-91956-4

Table des matières

RESUME	•••••	ix
ABSTRACT	• • • • • • • • • • • • • • • • • • • •	ix
INTRODUCTIO	N	1
OBJECTIFS .		l
		,
REGION ETUD	01EE	1
Emplace	ement et accès	1 2
Géologi		2
τγρε αε		4
METHODES D'	ETUDE	4
Etudes	préliminaires	4
Méthode	es sur le terrain	4
		_
LABORATOIRE	8	5
Expérie	ences d'atténuation	5
Expérie	ences de remobilisation des contaminants	6
Technic	ques analytiques - sediments	/
Technic	ques analytiques - eaux	8
DESILTATS F	T DISCUSSION	9
Topogra	aphie de la région étudiée	9
Hydrogé		9
Analyse	préliminaire des sédiments	12
Oualité	des eaux souterraines	20
Expérie	ences d'atténuation	27
Chl	Lorures et principaux cations	33
Fei	c et manganèse	34
Su]	lfate, phosphate, nitrate-nitrite,	
ä	ammonium et bicarbonate	34
Expérie	ences de remobilisation	35
Princip	paux cations échangeables	37
Effets	potentiels des eaux de percolation	
d'une	e decharge sur la qualité des eaux	
soute	erraines dans le marais de Big Swamp	31
CONCLUSION	•••••••••••••••••••••••••••••••••••••••	43
RECHERCHES	FUTURES-RECOMMANDATIONS	44
REFERENCES	· · · · · · · · · · · · · · · · · · ·	44
ANNEXE A.	Calculs de la conductivité hydraulique de	
	certaines colonnes de sédiments	47
		11
ANNEXE B.	Calculs de la saturation en calcite et	
	en dolomite des eaux souterraines	
	de Big Swamp	48

iii

Table des matières (suite)

ANNEXE C.	Indice des pyrophosphates - Classification histosol de certains sédiments organiques de Big Swamp	50
ANNEXE D.	Rapport des concentrations initiales aux concentrations finales (C/C _O) pour les expériences de contamination des sédiments	52
ANNEXE E.	Résultats des expériences de remobilisation des contaminants utilisant l'eau de pluie simulée	54

Page

Tableaux

1.	Résumé des techniques utilisées pour l'analyse des eaux	9
2.	Niveau de la nappe phréatique dans la région étudiée, 1977	12
3a.	Pertes à la calcination pour les sédiments de loam sableux provenant de la région de Big Swamp	14
3b.	Pertes à la calcination pour les sédiments riches en matières organiques provenant de la région de Big Swamp	14
4.	Concentrations des métaux lourds dans les sédiments non contaminés provenant de la région de Big Swamp	15
5.	Concentrations des principaux cations échangeables dans les sédiments non contaminés provenant de la région de Big Swamp	17
6a.	Analyses chimiques des échantillons d'eau souterraine provenant de la région de Big Swamp, le 3 août 1977	21
6b.	Analyses chimiques des échantillons d'eau souterraine provenant de la région de Big Swamp, le 20 septembre 1977	22

Tableaux (suite)

6C.	Analyses chimiques des échantillons d'eau souterraine provenant de la région de Big Swamp, le 19 octobre 1977	23
7.	Données sur la qualité des eaux à partir des expériences d'atténuation	24

Illustrations

Figure	1.	Emplacement de la région étudiée	2
Figure	2.	Physiographie du comté de Prince-Edouard	3
Figure	3.	Types de sol dans la région de Big Swamp et ses environs	4
Figure	4.	Profil de sol caractéristique du loam de Darlington	4
Figure	5.	Méthode de prélèvement des carottes de sédiments: (a) technique d'échantillonnage utilisée dans les sédiments de loam sableux; (b) technique d'échantillonnage utilisée dans les sédiments riches en matières organiques	5
Figure	6.	Méthode d'empilage des carottes de sédiments utilisée pour construire les colonnes d'essai	6
Figure	7.	Schéma du montage utilisé dans les expériences de remobilisation des contaminants	7
Figure	8.	Topographie de la région étudiée	10
Figure	9.	Données sur le niveau hydrostatique dans des puits privés de la région de Big Swamp	11
Figure	10.	Niveau hydrostatique le long du profil A2-B2 perpendiculaire à l'axe longitudinal de Big Swamp	11

v

Illustrations (suite)

Figure ll.	Courbe de l'altitude en fonction du niveau hydrostatique d'après des données recueillies par des piézomètres installés dans le drumlin de Big Swamp au cours de l'automne de 1977	11
Figure 12.	Diffractogrammes aux rayons X caractéristiques d'échantillons de sol de la région étudiée: (a) sédiments de loam sableux; (b) sédiments riches en matières organiques	13
Figure 13.	Répartition des métaux lourds dans le profil de sol du loam de Darlington avant la contamination	19
Figure 14.	Courbes critiques du chlorure pour les expériences d'atténuation de l'eau de percolation	27
Figure 15.	Courbes critiques du calcium et du magnésium pour les expériences d'atténuation de l'eau de percolation	28
Figure 16.	Courbes critiques du sodium et du potassium pour les expériences d'atténuation de l'eau de percolation	29
Figure 17.	Courbes critiques du fer et du manganèse pour les expériences d'atténuation de l'eau de percolation	30
Figure 18.	Courbes critiques du sulfate et du phosphate pour les expériences d'atténuation de l'eau de percolation	31
Figure 19.	Courbes critiques du nitrate-nitrite et de l'ammonium pour les expériences d'atténuation de l'eau de percolation	32
Figure 20.	Courbes critiques du bicarbonate pour les expériences d'atténuation de l'eau de percolation	33
Figure 21.	Valeurs de qualité de l'eau après remobilisation des contaminants pour les colonnes S3, S5, S6 et S8	36

Illustrations (suite)

í.

Figure 22.	Variations des concentrations des principaux cations échangeables à différentes étapes des expériences d'atténuation et de remobilisation: (a) sédiments non contaminés et sédiments complètement contaminés; (b) sédiments non contaminés et sédiments lavés par l'eau de pluie	38
Figure 23.	Comparaison des teneurs de l'eau de percolation brute, de l'eau de percolation atténuée et des eaux souterraines de Big Swamp en calcium, magnésium, sodium et potassium	39
Figure 24.	Comparaison des teneurs de l'eau de percolation brute, de l'eau de percolation atténuée et des eaux souterraines de Big Swamp en fer, manganèse, bicarbonate et chlorure	40
Figure 25.	Comparaison des teneurs de l'eau de percolation brute, de l'eau de percolation atténuée et des eaux souterraines de Big Swamp en ammonium et nitrate-nitrite	41
Figure 26.	Comparaison des teneurs de l'eau de percolation brute, de l'eau de percolation atténuée et des eaux souterraines de Big Swamp en sulfate et phosphate, ainsi que de leur DBO ₅ et leur conductivité	42

Résumé

On reconnaît que la contamination des eaux souterraines est un problème fréquent dans les décharges utilisées pour l'élimination des déchets municipaux et industriels. La plupart des recherches hydrogéologiques courantes concernant l'élimination des déchets portent sur la migration des contaminants dans les sédiments inorganiques. Pour mieux comprendre les interactions entre les contaminants potentiels et les sédiments organiques, on a effectué une étude détaillée faisant intervenir à la fois des sédiments de surface riches en matières organiques et des sédiments de surface inorganiques provenant d'un emplacement prévu pour une décharge potentielle. Les données obtenues permettent de déterminer si les sédiments organiques sont plus aptes que les matériaux clastiques à grains fins à atténuer les contaminants potentiels dans les eaux de percolation des décharges.

La capacité des matières organiques à atténuer la teneur en Ca, Mq, Na, Fe, Mn, NH_4 , Cl, HCO_3 , SO_4 , PO4, et NO3-NO2 est similaire à ceile des sédiments inorganiques analysés. expériences d'atté-Les nuation des contaminants ont porté sur des volumes égaux de sédiments organiques et inorganiques; en poids sec, les sédiments organiques sont deux à trois fois plus efficaces. La conductivité hydraulique relativement élevée des sédiments organiques $(10^{-1} \text{ à } 10^{-2} \text{ cm/s})$ favoriserait le cheminement sélectif des eaux de percolation des décharges à travers ces matériaux et, étant donné que le débit des eaux souterraines s'en trouverait relativement accru, la dispersion et la dilution augmenteraient. Des sédiments clastiques de conductivité hydraulique voisine auraient probablement une capacité d'atténuation beaucoup moins élevée que les sédiments organiques, même à volume égal.

Abstract

Contamination of ground water has been recognized as a frequent problem at sanitary landfill sites used for the disposal of municipal and industrial wastes. Most of the current hydrogeologic research concerning waste disposal has focused migration of contaminants on the inorganic sediments. through TO increase our understanding of the interactions between potential contaminants and organic sediments, a detailed study of both organic-rich and inorganic surficial sediments from a location designated as a potential landfill site was conducted. From the data obtained in this study, the effectiveness of organic sediments for attenuating potential contaminants in landfill leachate could be evaluated to fine-grained relative clastic materials.

The attenuation capacity of the organic materials with respect to Ca, HCO3, Mg, Na, Fe, Mn, NH₄, Cl, PO4 SO₄, and NO3-NO2 was similar to that found in the inorganic sediments tested. The attenuation experiments were conducted using the same bulk volumes of organic and inorganic sediment; hence on a dry weight basis, the organic sediments are two to three times more effective in attenuating potential contaminants. The relatively high hydraulic conductivity of the organic sediments $(10^{-1}$ to 10^{-2} cm/s) would favour selective channelling of landfill leachate through these materials, and since the rate of ground water flow would be relatively rapid, the significance of dispersion and dilution would be increased. Clastic with similar sediments hydraulic conductivities would likely have much lower attenuation capacities than organic sediments, even when compared on a volume basis.

ix

Étude hydrogéochimique de l'atténuation et la remobilisation de contaminants dans les terrains de recouvrement du Big Swamp, près de Picton, en Ontario

D.E.J. Creasy, R.J. Patterson et W.A. Gorman

INTRODUCTION

On reconnaît que la contamination des eaux souterraines est un problème fréquent dans les décharges utilisées pour l'élimination des déchets municipaux et industriels. Pour répondre à cette situation, particulièrement depuis le début des années 1970, on a considérablement intensifié les recherches relatives à la contamination des eaux souterraines due à l'enfouissement des déchets solides et liquides. Jusqu'à aujourd'hui, la plupart des recherches hydrogéologiques ont surtout porté sur la migration des contaminants dans des sédiments inorganiques, qui, au Canada, sont généralement des dépôts glaciaires. Par contre, peu de recherches sur les sédiments riches en matières organiques (par exemple la tourbe) ont été effectuées, bien que ce type de sédiment soit relativement commun en Ontario et au Québec et puisse constituer des bassins hydrogéochimiques importants pour les métaux lourds et d'autres substances toxiques.

OBJECTIFS

Pour mieux comprendre les interactions entre les contaminants typiques et les sédiments organiques, on a effectué une étude détaillée faisant intervenir des sédiments de surface, riches en matières organiques, provenant d'un emplacement prévu pour une décharge potentielle. L'étude visait particulièrement à:

- Effectuer des expériences d'atténuation dans lesquelles de l'eau contaminée traverserait des colonnes de sédiments organiques non perturbés.
- Evaluer l'importance de la remobilisation des contaminants logés dans des sédiments organiques.
- Evaluer, à partir des résultats expérimentaux et des données recueillies sur le terrain, les effets probables de l'aménagement d'une décharge sur la qualité des eaux souterraines.

REGION ETUDIEE

Emplacement et accès

L'étude sur le terrain a été effectuée dans le marais de Big Swamp, une superficie qui a d'environ 14.2 km^2 et qui est situé dans la partie sud-ouest du canton de Sophiasburg et la partie centre-nord du canton de Hallowell, comté de Prince-Edouard (Ontario) (figure 1). Trois routes publiques traversent le la route 14, la route de marais: comté 4 et une route cantonale.

La figure l montre de façon détaillée l'emplacement de la région étudiée. L'accès à cette région et à l'intérieur de celle-ci se limite à des chemins de terre et à des sentiers.

Figure 1. Emplacement de la région étudiée.

Géologie

La roche de fond de la région de Big Swamp est constituée de calcaires paléozoïques qui recouvrent en discordance le socle précambrien (Liberty, 1960). La succession paléozoïque se divise en deux groupes, celui de Black River et celui de Trenton, lequel recouvre le premier. Seules les roches du groupe de Trenton affleurent dans le comté de Prince-Edouard.

Pendant le Wisconsin du Pléistocène, tout le comté de Prince-Edouard

était recouvert d'une calotte glaciaire de plusieurs milliers de mètres d'épaisseur. Cette calotte glaciaire a commence à fondre il y a environ 20 000 ans, la déglaciation du comté survenant il y a environ 12 000 ans (Watt et coll., 1973). Par suite de cette épisode glaciaire, une mince couche assez uniforme de sédiments glaciaires s'est déposée sur la roche Dans les zones basses de de fond. silt, d'argile ou de roche de fond relativement imperméables, des tourbières et des marais, dont le plus grand est Big Swamp, se sont formés (Mirynech, 1962). La figure 2 illustre la physiographie du comté de Prince-Edouard (Chapman et Putnam, 1972).

Type de sol et végétation

La région de Big Swamp repose principalement sur une terre noire riche en matières organiques, dont l'épaisseur varie de 30 cm à 100 cm Cette couche recouvre à (figure 3). son tour une argile bigarrée contenant un pourcentage relativement élevé de particules de la taille du sable et du A toutes fins pratiques, la silt. terre noire n'a jamais été cultivée et, actuellement, la zone marécageuse est recouverte d'une forêt d'érables à sucre, d'érables noirs et d'ormes. L'abondance des espèces d'érables à sucre laisse penser que les inondations ne sont pas fréquentes dans le bassin de Big Swamp.

seul autre type de sol Le important qu'on trouve dans la région de Big Swamp est celui qui couvre plusieurs drumlins élevés, dont l'un se trouve dans la zone d'étude détail-Les drumlins sont caractérisés lée. par du loam de Darlington (Richards et Morwick, 1948), et la figure 4 montre un profil caractéristique de ce type de sol. Le loam contient environ 50 % de sable et 50 % de silt et d'argile, et il est bien drainé, à l'intérieur comme en surface.

Figure 2. Physiographie du comté de Prince-Edouard (d'après Chapman et Putnam, 1972).

ω

Swamp et ses environs (d'après Richards et Morwick, 1948).

: 10-15 cm de loam brun foncé; matières organiques intermédiaires; structure grumeleuse; beaucoup de pierres; réaction légèrement alcaline

A₂₁ : 20-25 cm de loam pierreux brun jaunâtre ; faible structure lamellaire

A22 : 5-8 cm de loam décoloré gris; pierreux; légèrement cimenté

> 5-10 cm de loam argileux brun foncé; beaucoup de pierres; structure nuciforme

till calcaire gris; contient beaucoup de fragments de calcaire et de schiste argileux

Figure 4. Profil de sol caractéristique du loam de Darlington (d'après Richards et Morwick, 1948).

METHODES D'ETUDE

Etudes préliminaires

Les renseignements topographiques concernant la région de Big Swamp ont été tirés des cartes topographiques à l'échelle de 1/25 000. Les données hydrogéologiques régionales proviennent des carnets de forage de puits privés qui sont conservés au bureau du ministère de l'Environnement de l'Ontario, à Kingston.

Méthodes sur le terrain

La topographie de la zone d'étude détaillée a été établie au levé à la planchette avec une alidade Hilger-Watts Mountain.

On a enfoncé vingt-guatre piézoprofondeurs allant des mètres à jusqu'à 2 m dans la zone d'étude pour échantillons prélever des d'eau souterraine et contrôler le niveau de Les piézomètres la nappe phréatique. sont constitués d'un tuyau en plastique ABS de 5.08 cm (2 po) de diamètre, crépiné à des intervalles de 30 cm. Ils ont été installés à l'aide d'une tarière à vis portative à alimentation On n'a pas pu installer des propre. piézomètres sur le drumlin, topographiquement plus élevé, la tarière ne pouvant s'enfoncer à plus de 1 m dans le sol. On a noté l'altitude du sol à tous les emplacements des piézomètres après avoir creusé les puits.

d'eau dans les niveaux Les piézomètres ont été mesurés à l'aide d'un limnimètre électrique A. Ott. Après avoir bien rincé les puits, on a prélevé des échantillons d'eau souterraine pour fins d'analyse chimique, à l'aide d'une pompe aspirante à main. Des mesures du pH ont été effectuées au moment du prélèvement à l'aide d'une électrode combinée en verre et d'un ohmmètre Metrohm E488. Initialeéchantillons d'eau SOI1les ment, terraine prélevés été filtrés ont

(0.45 µm) et acidifiés sur le terrain afin de les préparer pour l'analyse des principaux ions, du fer et du manganèse. Des expériences les ultérieures visant à évaluer l'acidification avantages de ont pour révélé que, le dosage des principaux ions, cette opération n'était pas nécessaire. Des études supplémentaires ont montré que les résultats des dosages du fer et du manganèse, dans des échantillons acidifiés et non filtrés d'une part, et dans des échantillons acidifiés et filtrés (pH 2.0) d'autre part, étaient identiques dans la limite de l'erreur analytique. Fort de ces résultats, on s'est contenté par la suite d'acidifier au moment du prélèvement les eaux prélevées pour le dosage du fer et du manganèse. Les échantillons destinés au dosage des principaux ions ont été filtrés en laboratoire mais non acidifiés.

Afin d'effectuer des expériences en laboratoire sur des sols provenant de Big Swamp, on a prélevé des carottes. Sur le drumlin de la zone d'étude, on n'a pas pu récupérer des carottes de plus de 50 cm de longueur et on y a donc creusé des puits d'environ 5 m de long sur 0.6 m de large et pouvant atteindre 2.4 m de profondeur. Dans chaque puits, on a prélevé série une de carottes verticales de 30 cm de long sur 8.02 cm de diamètre avec des tubes en acrylique clair (figure 5A). On a prélevé une seconde série d'échantillons de sédiments dans des fioles en plastique de 40 drachmes en les enfonçant dans la paroi du puits à des intervalles de 10 cm (figure 5A). Dans les zones les plus basses de la région, où on trouve des sédiments organiques en surface, on a enfoncé verticalement dans le sol des tubes en acrylique clair de 8.02 cm de diamètre et de 30 cm de long (figure 5B). Après avoir retiré les tubes remplis de sédiments, on a prélevé une série d'échantillons de sédiments dans des fioles de 40 drachmes en les enfoncant

dans les parois des trous laissés par le retrait des tuyaux en plastique (figure 5B).

Figure 5. Méthode de prélèvement des carottes de sédiments: <u>A</u> - technique d'échantillonnage utilisée dans les sédiments de loam sableux; <u>B</u> - technique d'échantillonnage utilisée dans les sédiments riches en matières organiques.

LABORATOIRE

Expériences d'atténuation

Les expériences pour évaluer la capacité des sols à réduire la teneur en principaux ions et en métaux à l'état de traces ont porté sur des carottes de 30 cm de long. Dans chaque expérience, on a empilé verticalement cinq segments de carottes

pour former une seule colonne. Les colonnes ont été chargées périodiquement avec des portions aliquotes de 1 L d'eau de percolation provenant d'un puits situé dans une décharge abandonnée, à Kingston. Des échanchaque portion aliquote tillons de été d'eau ont filtrés (0.45 um), acidifiés conservés fins et pour d'analyse chimique. Au total, on a ajouté 25 L d'eau à chaque colonne. Après l'addition de chaque portion aliquote de 1 L, les effluents ont été recueillis au bas des colonnes et filtrés, à l'aide d'un aspirateur, à une membrane Millipore travers de 0.45 µm. On a envoyé un échantillon de 500 mL au laboratoire du ministère ontarien de l'Environnement à Kingston fins d'analyse chimique. Un pour autre échantillon de 125 mL a été porté à un pH inférieur à 2.0 par l'addition d'acide nitrique (HNO3),

Figure 6. Méthode d'empilage des carottes de sédiments utilisée pour construire les colonnes d'essai. puis conservé à 5°C jusqu'à ce que l'analyse chimique puisse être effectuée à l'université Queen's.

Les deux premières colonnes (Sl et S2) sur lesquelles on a effectué des essais comprenaient cinq segments successifs de carottes prélevées dans les 150 cm supérieurs du sol de la On a constaté dans ces zone d'étude. expériences que le taux de percolation les matériaux de fond peu dans faible pour était trop perméables justifier la poursuite des essais. On les par conséquent effectué а ultérieures sur des expériences colonnes formées de carottes prélevées dans les 30 cm supérieurs du sol. Ainsi, chaque colonne de 150 cm était composée de cinq sections provenant chacune des 30 cm supérieurs du sol Deux de ces colonnes (S3 (figure 6). et S4) contenaient du sol provenant du drumlin et les quatre autres colonnes (S5, S6, S7 et S8) contenaient des matières organiques sols riches en provenant de la partie plus basse de la zone d'étude.

Expériences de remobilisation des contaminants

On a étudié la réversibilité des d'atténuation dans les processus sédiments de Big Swamp, en faisant infiltrer de l'eau de pluie simulée à travers les colonnes utilisées dans L'élules expériences d'atténuation. tion avec l'eau de pluie simulée a été jours après plusieurs commencée suivant l'addition du d'égouttement litre de l'eau de percolation. 25^e Pendant la période d'égouttement, des électrodes combinées de mesure du rH et du pH ont été insérées dans des orifices de sondage percés dans le tube en plastique, à des intervalles Les électrodes ont été de 30 cm. reliées à un ohmmètre Metrohm E488 par l'intermédiaire d'un sélecteur élec-(modèle multivoies Orion tronique L'élution a été amorcée par 605). pompage de l'eau de pluie simulée vers

Figure 7. Schéma du montage utilisé dans les expériences de remobilisation des contaminants.

le haut à travers la colonne jusqu'à ce que le niveau d'eau fût de 15 cm des au-dessus sédiments. Cette méthode a permis d'éliminer le plus d'air possible dans les pores. On a ensuite inversé la direction de l'écoulement dans la colonne et réglé le taux d'addition d'eau à l'aide d'une pompe péristaltique de façon à maintenir l'eau à un niveau de 15 cm au-dessus des sédiments. Au fur et à mesure que l'eau de pluie traversait la colonne de haut en bas, on a contrôlé le pH et le rH à chaque orifice de sondage. Au cours de l'expérience on a recueilli l'effluent bas au de la colonne dans des bouteilles en plastique de 1 L. Après chaque prélèvement de 1 L, on a mesuré le pH et le rH de l'eau, et on a ajouté une quantité aliquote d'acide nitrique pour abaisser le pH à un niveau inférieur à 2.0. Tous les échantillons ont été conservés à 5°C

jusqu'à ce que les analyses chimiques aient pu être faites. La figure 7 montre le montage utilisé dans les expériences d'élution.

Techniques analytiques - sédiments

On a effectué des mesures de la conductivité hydraulique des échantillons de sédiments conjointement avec les expériences sur la remobilisation des contaminants. On a fait passer de l'eau à travers la colonne de sédiments tout en maintenant le débit et le niveau d'eau. La conductivité hydraulique (en centimètres par seconde) des sédiments de chaque colonne a été calculée à l'aide de l'expression suivante de la loi de Darcy:

$$K = \frac{Q1}{Ah}$$

où K = conductivité hydraulique,

- Q = débit à travers la colonne (cm³/s),
- 1 = longueur du parcours (cm),
- h = longueur totale de la colonne (sédiments + eau de pluie) en centimètres, et
- A = superficie de la section transversale de la colonne (cm^2) .

Pour chaque colonne de sédiments, on a calculé la conductivité hydraulique au moins cinq fois.

Des sous-échantillons de sédiments ont été déposés pour fins d'analyses physique et géochimique dans des fioles en plastique de 40 drachmes. On a ensuite pesé les fioles plus les sédiments, congelé le tout, puis lyophilisé les sédiments en utilisant un lyophilisateur Virtus 10-100 Unitrap. On a désagrégé les sédiments lyophilisés à l'aide d'un agitateur pour peinture Red-Devil modifié. Chaque échantillon a été agité pendant 15 min pour obtenir un mélange homogène.

Après la lyophilisation et la désagrégation, on a pesé de nouveau les échantillons pour en déterminer la teneur en eau comme pourcentage de la On a ensuite effectué une masse. analyse granulométrique détaillée sur certains échantillons de sédiments provenant de chaque site de carottage à l'aide de la méthode F.A.S.T. (Fast Analysis of Sediment Texture), mise au point par Rukavina et Duncan (1970). de minéralogie étudié la On а échantillons provenant de plusieurs chaque site de carottage en utilisant un diffractomètre à rayons X Picker chaque échantillon a été 2822-C; réduit en une poudre fine, dans un mortier d'agate, puis étalé sur une Des diffractolame de verre clair. grammes couvrant des angles de 4° à 45° (20) ont été enregistrés, et chaque pic du spectre de rayons X a été identifié. On a aussi utilisé des méthodes pétrographiques standard pour vérifier la présence de chaque minéral.

On a déterminé la teneur en matières organiques dans les sédiments par perte à la calcination à 450°C. méthode, une certaine cette Dans quantité d'eau et de matières volatiles, en plus des matières organi-Cependant, Coker ques, est perdue. (1974) a constaté que ces pertes sont généralement faibles. Frape (1979) a aussi remarqué qu'il existait une relation importante entre la perte à la calcination et le carbone organique dans plusieurs zones d'étude du sud-est de l'Ontario. Les pertes à la calcination semblent donc être une indication fiable de la teneur en L'importance de matières organiques. matières des décomposition 1a organiques dans les échantillons non sites de contaminés, prélevés aux carottage S5, S6, S7 et S8, a été déterminée à l'aide d'une solution saturée de pyrophosphate de sodium (Kaila, 1956).

La teneur en métaux lourds des sédiments a été déterminée en trois phases: avant et immédiatement après la contamination par l'eau de percolation et après l'élution avec l'eau de pluie simulée. A des échantillons (250 mg) de sédiments lyophilisés on a ajouté 5 mL d'acide nitrique (HNO3) concentré, qui décompose la majorité des constituants à l'exception des 1973). (Foster, On а silicates et ensuite déshydraté le mélange ajouté une autre quantité aliquote de mL de HNO3 concentré. Après la 5 déshydratation de ce mélange, on a ajouté 5 mL de HCl concentré. On a déshydraté encore une fois le mélange acide-sédiments, et on l'a lavé dans 10 mL de HCl 10 % sur un lit de sable à 50°C environ pendant 30 min. Dans la solution résultante, on a dosé le cuivre, le nickel, le plomb, le zinc, le manganèse, le fer, le cobalt et le cadmium à l'aide d'un spectrophotomètre par absorption atomique (SAA) IL251.

On a déterminé les concentrations échangeables principaux cations en (Ca, Mg, Na, K) en trois phases, comme on l'a fait pour les métaux lourds. On a agité des échantillons (250 mg) de sédiments lyophilisés pendant 5 min 0.1 N NH₄ OAC de 8 mL de dans (pH 7.0). On a ensuite centrifugé le mélange et décanté le surnageant. On a répété ce processus pour obtenir une deuxième quantité aliquote de surna-On a recueilli de la même geant. façon une troisième quantité aliquote plus grande (9 mL au lieu de 8) de On a combiné les trois surnageant). quantités aliquotes de surnageant et on en a dosé le calcium, le magnésium, le sodium et le potassium par SAA. la démontré aue (1971) а Hesse triple est d'extraction technique supérieure aux méthodes d'extraction simple.

Techniques analytiques - eaux

Comme il a été indiqué ci-dessus, on a relevé le pH des eaux souterraines sur le terrain, au moment du prélèvement des échantillons. Les mesures du rH et du pH des eaux utilisées dans les expériences d'atténuation et d'élution en laboratoire ont été prises au fur et à mesure des expériences.

On a dosé dans les échantillons d'eau souterraine, d'eau de percolation et d'eau de pluie simulée, les principaux ions et les métaux à l'état de traces à l'aide des techniques résumées dans le tableau l.

Tableau 1. Résumé des techniques utilisées pour l'analyse des eaux

Paramètre	Technique analytique				
HCO ₃ -	Titrage de l'alcalinité* à l'aide de l'acide sulfurique de 0.020 N; appareil de titrage Fisher†				
CI-	Titrage au réactif de Vohlard*				
SO ₄ ^{2⁻}	Méthode turbidimétrique, Sulfaver IV de la Hach Chemical Co.*				
$NO_3^- + NO_2^-$	Auto-analyseur Technicon†				
DBO ₅	Sonde à membrane pour doser l'oxygène dissous†				
rH	Compteur d'ions spécifiques Orion 407A; Électrode combinée en platine d'oxydoréduction Orion 96–78*				
рН	pH-mètre Metrohm E-488; Électrode combinée en verre Metrohm EA-152*				
NH4 ⁺	Auto-analyseur Technicon†				
Ca ²⁺	Spectrophotométrie par absorption atomique*				
Mg ²⁺	Spectrophotométrie par absorption atomique*				
Na ⁺	Spectrophotométrie par absorption atomique*				
K+	Spectrophotométrie par absorption atomique*				
Fe ²⁺	Spectrophotométrie par absorption atomique*				
Mn ²⁺	Spectrophotométrie par absorption atomique*				

 Échantillons analysés à l'université Queen's, Département des sciences géologiques.

+Echantillons analysés par le ministère de l'Environnement.

RESULTATS ET DISCUSSION

Topographie de la région étudiée

La topographie de la région étudiée, telle qu'établie par un levé à la planchette, est illustrée à la figure 8. Etant donné l'absence de repères topographiques proches, toutes les altitudes ont été calculées par rapport à la station A, le point le plus haut du drumlin. On a attribué à la station A une altitude arbitraire de 1000 cm.

Hydrogéologie

L'analyse des échantillons prélevés au cours de l'installation des piézomètres (emplacements indiqués à la figure 8) montre que les zones basses de la région sont recouvertes d'une terre noire, riche en matières organiques, qui peut atteindre 1.2 m d'épaisseur et qui tire son origine de la végétation environnante. Cette terre superficielle de conductivité relativement hydraulique élevée 10^{-2} cm/s [∿10^{-⊥} à (annexe A)] recouvre plus de 5 m (profondeur de pénétration maximale atteinte par la tarière) d'argile et de till argileux relativement imperméables qui reposeraient à leur tour sur une roche de fond calcaire. Sur le drumlin, topographiquement plus élevé, les matériaux superficiels consistent en du till argileux et rocailleux dans lequel la tarière n'a pu pénétrer plus d'un mètre. On a trouvé quelques lentilles d'argile sableuse le long du flanc du drumlin.

Le drainage superficiel de la région de Big Swamp se fait généralement vers l'ouest-sud-ouest (figure 2). La dénivellation du bassin de drainage dans le marécage est de 9 m environ, ce qui donne une pente moyenne de Quatre petits cours d'eau 1.7 m/km. de pentes d'environ 1 m/km se jettent dans le Big Swamp au nord. Aucun superficiel n'est apparent drainage sur la pente sud, plus forte, qui a un gradient moyen d'environ 12 m/km; cependant, un faible ravinement indique qu'il y a périodiquement un écoulement superficiel.

La figure 9 présente des données relatives aux niveaux hydrostatiques provenant des carnets de forage de puits creusés par des particuliers dans la région de Big Swamp. La

Figure 8. Topographie de la région étudiée.

Figure 9. Données sur le niveau hydrostatique dans des puits privés de la région de Big Swamp.

figure 10 donne le niveau hydrostatique le long du profil A2-B2. Bien qu'il semble être une pente vers le Big Swamp, elle n'est pas bien définie car les mesures du niveau statique n'ont pas toutes été obtenues en même temps et les puits ont été creusés à différentes profondeurs. Le seul puits creusé dans le Big Swamp a un niveau statique qui se situe à 5 m environ au-dessous du niveau du sol.

Les niveaux statiques relevés dans les piézomètres (tableau 2) montrent que la nappe phréatique est près de la surface dans les zones reposant sur des matières organiques. Du 3 août au 1^{er} novembre 1977, la nappe phréatique s'est élevée de 157 cm, indiquant que les fluctuations saisonnières dans le niveau peuvent atteindre 2 m. Etant donné qu'il existe une relation presque linéaire entre l'altitude superficielle et le niveau hydrostatique (figure 11), la direction d'écoulement des eaux souterraines peu profondes dans la région étudiée suivrait probablement la pente du terrain.

Figure 10. Niveau hydrostatique le long du profil A2-B2 perpendiculaire à l'axe longitudinal de Big Swamp.

Figure 11. Courbe de l'altitude en fonction du niveau hydrostatique d'après des données recueillies par des piézomètres installés dans le drumlin de Big Swamp au cours de l'automne de 1977.

		Niveau de la nappe phréatique (cm)					
Piézomètre	Altitude (cm)	77 - 08 - 03	77 - 09 - 20	77 - 10 - 03	77 - 10 - 19	77 - 11 - 01	
Lot 49-1	482	292	393	426	453	449	
Lot 49-2	558	549	436	489	507	502	
Lot 49-3	607	510	515	562	589	581	
Lot 49-4	634	535	547	588	616	609	
Lot 49-5	581	469	483	522	552	545	
Lot 49-6	569	480	487	526	553	550	
Lot 49-7	611	516	527	566	593	580	
Lot 49-8	660	500	495	585	580	582	
Lot 49-9	571	469	507	544	562	577	
Lot 49-10	558	434	492	535	550	568	
Lot 49-11	579	496	497	539	551	561	
Lot 49-12	677	486	477	540	562	557	
Lot 49-13	603	522	462	524	550	542	
Lot 49-14	605	489	561	593	608	621	
Lot 50-15	546		477	514	526	533	
Lot 50-16	477		378	434	442	443	
Lot 50-17	463		350	399	402	405	
Lot 50-18	363		301	342	350	350	
Lot 50-19	357		310	347	352	363	
Lot 50-20	351		285	330	362	361	
Lot 50-21	329		266	311	342	342	
Lot 50-22	405		295	379	384	382	
Lot 50-23	443		368	406	433	430	
Lot 50-24	455		353	405	420	419	

Tableau 2. Niveau de la nappe phréatique dans la région étudiée, 1977

Remarque: Toutes les altitudes sont données par rapport à la station A (1000 cm).

Le niveau de la nappe phréatique dans la région étudiée se situe à plus de 4 m au-dessus du niveau statique relevé pour le puits privé situé dans marais (figure 10). Cette le que laisse supposer le différence réseau d'écoulement des eaux souterraines peu profondes de Big Swamp est perché par rapport à la nappe aquifère située dans le plus profonde, calcaire, qui alimente le puits privé.

Analyse préliminaire des sédiments

Les principaux minéraux présents dans les sédiments clastiques et dans la fraction détritique des sédiments organiques sont le quartz, les plagioclases, la calcite et la dolomite. On note des concentrations relativement plus élevées de calcite et de dolomite dans les horizons B et C des échantillons de loam sableux (colonnes S1, S2, S3 et S4). Des diffractogrammes

aux rayons X représentatifs du loam sableux et des sédiments riches en matières organiques provenant de la région de Big Swamp sont illustrés aux figures 12A et 12B respectivement. Un large pic de fond qui s'étend de 10° 36° (20) et qui se à environ rapporte aux échantillons de sédiments riches en matières organiques s'est dissipé une fois la température portée On croit que ce large pic à 450°C. correspond aux matières organiques.

Les résultats des études sur la à la calcination, la perte concentration des métaux lourds et les principaux cations échangeables pour les colonnes de sont donnés sol respectivement dans les tableaux 3, 4 Les teneurs en nickel, en et 5. cuivre, en fer, en manganèse et en cobalt des colonnes S1 et S2 sont plus élevées dans l'horizon B (échantillons S1-4, S1-5, S1-6, S2-4, S2-5 et S2-6), alors que les concentrations en plomb

Figure 12. Diffractogrammes aux rayons X caractéristiques d'échantillons de sol de la région étudiée: A - sédiments de loam sableux; B - sédiments riches en matières organiques.

13

Colonne S1		Colonne S2		Coloni	Colonne S3		Colonne S4	
Échantillon	P. à la C. (%)	Échantillon	P. à la C. (%)	Échantillon	P. à la C. (%)	Échantillon	P. à la C. (%)	
 \$1-01	3.9	S2-01	3.7	\$3-1-1	4.7	S4-1-1	3.8	
S1-02	4.0	S2-02	2.7	\$3-1-2	1.9	S4-1-2	2.1	
S1-03	1.5	S2-03	0.9	S3-1-3	1.4	S4-1-3	2.2	
S1-04	2.6	S2-04	3.1	S3-2-1	1.2	S4-2-1	6.7	
S1-05	1.7	S2-05	1.8	S3-2-2	1.6	S4-2-2	4.0	
\$1-06	2.2	S2-06	2.3	\$3-2-3	1.7	S4-2-3	16.8	
S1-07	0.6	S2-07	0.9	S3-3-1	2.3	S4-3-1	1.3	
S1-08	0.8	S2-08	0.9	S3-3-2	2.7	S4-3-2	3.0	
S1-09	0.6	S2-09	0.9	S3-3-3	2.1	S4-3-3	3.0	
S1-10	0.6	S2-10	1.2	S3-4-1	2.4	S4-4-1	3.9	
S1-11	0.8	S2-11	1.0	S3-4-2	1.3	S4-4-2	1.4	
S1-12	0.6	S2-12	0.9	S3-4-3	1.4	S4-4-3	13.0	
\$1-13	0.5	S2-13	0.8	S3-5-1	1.2	S4-5-1	4,5	
S1-14	0.9	S2-14	0.9	S3-5-2	1.2	S4-5-2	2.8	
S1-15	0.6	S2-15	0.9	S3-5-3	`	S4-5-3	1.3	
Moyenne (x)	1.46		1.47		1.94	· •	4.56	

Tableau 3a. Pertes à la calcination pour les sédiments de loam sableux provenant de la région de Big Swamp

Tableau 3b. Pertes à la calcination pour les sédiments riches en matières organiques provenant de la région de Big Swamp

Co	lonne S5	Colonne S6		Colonne S7		Colonne S8	
Échantillon	P. à la C. (%)	Échantillon	P. à la C. (%)	Échantillon	P. à la C. (%)	Échantillon	P. à la C. (%)
\$5,1,1	35.6	S6-1-1	78.7	S7-1-1	22.6	S8-1-1	51.4
SS-1-2	26.1	S6-1-2	78.7	S7-1-2	21.2	S8-1-2	43.8
SS-1-2 SS-1-3	6.5 (till)	S6-1-3	82.8	S7-1-3	20.1	Ś8-1-3	41.7
SS-1-5 SS-2-1	32.9	S6-2-1	78.6	S7-2-1	26.5	S8-2-1	46.7
\$5-2-1 \$5-7-2	29.3	S6-2-2	79.0	S7-2-2	24.1	S8-2-2	49.3
55-2-2 55-7-3	11.9	S6-2-3	80.0	S7-2-3	26.5	S8-2-3	47.0
S5-2-5 S5-3-1	37.1	S6-3-1	77.3	S7-3-1	26.9	S8-3-1	49.9
00-0-1	57.1	\$6-3-2	81.3	S7-3-2	21.7	S8-3-2	46.0
53-3-2	21.1	\$6-3-3	83.4	S7-3-3	23.4	S8-3-3	49.4
55-5-5 65 A 1	26.1	S6-4-1	77.7	S7-4-1	28.1	S8-4-1	50.4
55.4-1	21.2	S6-4-2	80.3	\$7-4-2	32.9	S8-4-2	54.9
53-4-2 65 A 2	20.5	S6-4-3	78.8	\$7-4-3	26.3	\$8-4-3	33.7
55-4-5	30.5	\$6-5-1	78.9	\$7-5-1	26.5	S8-5-1	48.1
\$5-5-1	37.3	<u>66 5 0</u>	78.3	\$7-5-2	26.0	S8-5-2	_
\$5-5-2	28.1	50-3-2	70.5	\$7-5-3	27.4	S8-5-3	12.0 (till)
\$5-5-3	29.7	20-2-3	/ 0.0				
Moyenne (x̄)	28.1		79.5	· · · · · ·	25.3		44.0

Code de l'échantillon	Nickel (ppm)	Cuivre (ppm)	Zinc (ppm)	Plomb (ppm)	Fer (%)	Manganèse (ppm)	Cobalt (ppm)	Cadmium (ppm)
S1-1	5	4	43	7	1.6	568	5	<0.4
S1-2	5	<4	44	4	2.0	348	5	<0.4
S1-3	7	4	26	<4	1.8	504	6	<0.4
S1-4	12	10	29	<4	2.5	982	7	<0.4
81-5	14	14	29	<4	2.2	528	7	<0.4
S1-6	15	14	33	<4	2.4	436	8	<0.4
S1-7	9	9	17	<4	1.3	364	5	<0.4
S1-8	. 6	9	19	<4	1.3	348	5	<0,4
S1-9	6	8	18	<4	1.2	340	4	<0.4
SI-10 S1 11	7	10	17	<4	1.2	328	4	<0.4
SI-11 SI 10	6	8	20	<4	1.2	344	4	<0.4
S1-12	6	7	19	<4	1.2	324	4	<0.4
SI-13	8	7	18	<4	1.2	324	5	<0.4
SI-14	6	8	18	<4	1.2	296	4	<0.4
81-15	8	8	22	<4	1.3	324	6	<0.4
S2-1	13	8	50	6	2.2	576	7	<0.4
52-2	18	13	47	4	2.8	702	8	<0.4
S2-3	9	9	20	<4	1.4	384	5	<0.4
S2-4	. 25	20	50	15	3.4	1324	11	<0.4
S2-5	14	10	26	<4	1.8	448	6	<0.4
S2-6	17	15	36	4	2.4	588	7	<0.4
S2-7	9	9	18	<4	1.3	· 360	5	<0.4
S2-8	8	9	17	<4	1.3	352	4	<0.4
S2-9	7	9	18	<4	1.3	344	5	<0.4
S2-10	4	10	18	<4	1.3	336	4	<0.4
S2-11	<4	10	18	<4	1.2	320	5	<0.4
S2-12	6	10	35	<4	1.2	332	4	<0.4
S2-13	5	21	18	<4	1.2	302	4	<0.4
52-14	5	. 8	19	<4	1.3	320	5	<0.4
S2-15	4	8	18	<4	1.2	328	5	<0.4
S3-1-1	7	6	58	11	2.1	600	7	<0.4
S3-1-2	9	5	39	<4	2.3	432	10	<0.4
53-1-3	10	6	31	<4	2.0	408	8	<0.4
53-2-1	7	5	43	4	2.2	520	7	<0.4
53-2-2 52 0 0	12	8	38	5	2.4	592	8	<0.4
33-2-3 52 2 1	14	11	38	<4	2.4	560	8	<0.4
22-2-1 22-2-1	12	9	39	7	2.4	608	8	<0.4
53-3-2	19	16	53	6	2.9	684	9	<0.4
53-3-3 52 4 1	15	13	39	4	2.5	616	8	<0.4
53-4-1 62 4 5	/	. 5	42	5	2.0	452	8	<0.4
55-4-2 53-1 3	9	5	28	4	1.9	396	6	<0.4
\$3-5-1	. 0	6	30	4	1.9	600	8	<0.4
53-5-1 53-5-2	0 0	0	48	6	2.0	504	7	<0.4
53-5-2 53-5-3	0	<4	34	<4	1.7	500	7	<0.4
SS-5-5 S4_1_1	10	1	34	6	2.0	640	8	<0.4
54-1-1 54_1_7	11	3 .	50	6	2.2	440	6	<0.4
54-1-2	0	~4	29	<4	1.8	428	6	<0.4
54-7-1	6	\4	30	<4	2.0	544	8	<0.4
54-2-1	0	<u>4</u>	-54	13	2.1	484	7	<0.4
\$4-2-3	10	3	44	5	2.0	696	7	<0.4
54-3-1	6	~4	28	<4	2.1	1360	9	<0.4
\$4-3-2	13	\4 10	24	<4	1.6	876	6	<0.4
5. 5-2	15	10	46	<4	2.6	2360	10	<0.4
54_J_1	17	12	42	<4	2.6	1124	8	<0.4
57-7-1 SA_A 0	I C	3	44	7	2.0	420	6	<0.4
24 - 2 24 - 4 - 2	D .	<4	25	<4	1.9	404	7	<0.4
54-4-3 54 6 1	8	5	23	<4	1.9	504	6	<0.4
94-3-1 34-5-0	8	<4	45	7	2.1	424	5	<0.4
04-3-2 M 5 2	7	<4	34	5	1.9	420	7	<0.4
14-3-5	6	5	23	<4	1.8	644	6	<04

Tableau 4.	Concentrations en m	étaux lourds dans le	s sédiments 1	non contaminés	provenant de la ré	gion de Bi	g Swamp
------------	---------------------	----------------------	---------------	----------------	--------------------	------------	---------

a the second as

> . 15

Code de l'échantillon	Nickel (ppm)	Cuivre (ppm)	Zinc (ppm)	Plomb (ppm)	Fer (%)	Manganèse (ppm)	Cobalt (ppm)	Cadmium (ppm)
 \$5-1-1	13	16	87	28	2.1	484	7	0.7
\$5-1-2	13	11	69	14	2.2	268	6	<0.4
S5-1-3	11	7	47	4	2.3	284	10	<0.4
\$5-2-1	· 11	15	76	26	2.0	416	6	0.7
\$5-2-2	12	13	78	22	2.2	384	. 8	0.5
\$5-2-3	14	10	67	10	2.6	316	10	<0.4
S5-3-1	11	16	85	26	2.3	440	8	0.6
\$5-3-2	11	14	75	17	2.4	308	8	0.6
\$5-3-3	12	11	70	18	2.4	400	8	0.6
SS-4-1	13	15	84	27	2.5	456	7	0.5
\$5-4-2	13	15	79	23	2.5	436	8	0.6
\$5.4.3	14	15	77	21	2.6	436	8	0.4
S5-5-1	12	18	87	27	2.5	556	8	0.7
\$5-5-7	10	15	76	16	2.7	556	8	0.6
S5-5-3	11	14	77	18	2.6	604	9	0.5
S5-5-5 S6 1 1	7	27	66	50	1.1	128	<4	1.0
SC 1 2	7	20	47	20	1.3	136	<4	0.7
S0-1-2	6	17	40	7	1.2	130	<4	0.6
50-1-5	10	25	73	51	1.2	120	<4	1.1
50-2-1	10	10	46	Q Q	1.8	152	<4	0.5
50-2-2	4	19	21	4	10	140	<4	0.5
S6-2-3	3	10	64	45	1.0	132	<4	0.9
S6-3-1	8	25	51	10	14	132	<4	0.9
S6-3-2	3	24	22	19	0.9	120	<4	0.6
S6-3-3	. 0	20	33	59	1.2	128	<4	1.1
S6-4-1	8	20	13	30	1.2	132	<4	0.9
S6-4-2	7	20	33	21	1.5	164	<4	0.6
S6-4-3	. 7	22	32	5 60	1.2	120	<4	1.1
S6-5-1	7	23	83	14	1.1	120	<4	0.9
S6-5-2	5	18	47	14	1.1	144	<4	0.6
S6-5-3	7	19	33	3	1.1	400	7	0.6
S7-1-1	12	17	/8	20	2.2	357	7	<0.4
S7-1-2	12	14	03	13	2.1	368	7	0.4
S7-1-3	13	14	70	17	2.1	400	7	0.6
S7-2-1	14	20	79	20	2.3	302	7	0.5
S7-2-2	11	17	76	20	2.2	380	, 8	0.4
\$7-2-3	14	18	11	. 19	2.1	364	8	0.6
S7-3-1	15	24	83	19	2.5	304	7	0.6
S7-3-2	12	18	09	14	2.1	376	7	0.6
S7-3-3	13	21	81 80	19	2.2	332	6	0.7
S7-4-1	13	22	80	10	2.2	364	7	0.5
S7-4-2	12	20	80	21	2.2	396	7	0.5
\$7-4-3	14	22	07 96	24	2.3	396	9	0.7
\$7-5-1	12	20	84	20	2.5	360	8	0.4
\$7-5-2	12	20	86	19	2.4	380	8	0.6
\$7-5-3	13	24	66	23	2.0	536	4	0.5
S8-1-1	· 6	17	53	15	1.6	400	<4	0.4
S8-1-2	6	14	53	14	1.6	504	4	0.4
S8-1-3	0	14	55	20	1.0	468	4	0.6
S8-2- 1	5	15	57	20	2.0	516	4	0.6
S8-2-2	6	15	58	19	1.0	432	4	0.6
S8-2-3	4	14	54	10	10	500	<4	0.6
S8-3-1	5	15	01	2U 1 <i>5</i>	1.7	126	5	0.5
S8-3-2	5	14	51	15	1.0	430 540	×ٌم	0.6
S8-3-3	6	15	59	19	1.7	574	· 4	0.7
S8-4-1	6	16	64	20	2.1	524 120	~ <u>~</u>	0.7
S8-4-2	5	15	61	18	1.9	20/	4	0.5
S8-4-3	4	10	47	11	1.5	524	-	0.7
S8-5-1	6	19	66	20	2.1	528	→ 1	0.6
S8-5-2	5	14	58	19	1.9	444	4 E	<0.0
58.5.3	5	<4	30	<4	1.5	172	3	\U. #

Tableau 4. (suite)

Code de	Ca	Ca	Mg	Mg	Na	Na	К	K
l'échantillon	(%)	(méq)	(ppm)	(méq)	(ppm)	(méq)	(ppm)	(méq)
\$1-1	0.17	8.5	60	0.49	50	0.22	75	0.19
S1-2	0.15	7.5	40	0.33	50	0.22	70	0.18
S1-3	0.13	6.5	95	0.78	<50	<0.22	55	0.14
S1-4	0.17	8.5	120	0.99	<50	<0.22	60	0.15
S1-5	0.55	27.4	130	1.07	<50	<0.22	75	0.19
S1-6	0.21	10.5	95	0.78	<50	<0.22	75	0.19
S1-7	1.70	84.8	195	1.60	<50	<0.22	40	0,10
51-6 \$1.0	1.05	82.3	200	1.65		<0.22	45	0.12
S2-1	0.27	05.0	165	1.32	<50	<0.22	60 65	0.13
S2-2	0.94	46.9	145	1.52	<50	0.22	75	0.17
S2-3	1.70	84.8	200	1.65	75	0.33	105	0.15
S2-4	0.49	24.5	185	1.52	<50	<0.22	110	0.28
S2-5	0.98	48.9	175	1.44	60	0.26	115	0.29
S2-6	0.29	14.5	150	1.23	<50	0.22	95	0.24
S2-7	0.31	15.5	220	1.81	100	0.44	90	0.23
S2-8	1.60	79.8	205	1.69	50	0.22	85	0.22
S2-9	1.73	86.3	215	1.77	<50	<0.22	80	0.20
S3-1-1 S2 1 2	0.15	7.5	100	0.82	<50	<0.22	70	0.18
S3-1-2 S3-1-2	0.13	0.5	6U 15	0.49	≤ 0	< 0.22	40	0.10
S3-2-1	0.09	4.5	15	0.12	95	0.41	120	0.31
S3-2-2	0.15	7.5	95	0.38	115	0.44	135	0.33
S3-2-3	0.17	8.5	100	0.82	<50	0.22	90	0.23
S3-3-1	0.17	8.5	105	0.86	105	0.46	130	0.33
S3-3-2	0.27	13.4	130	1.07	<50	<0.22	85	0.22
S3-3-3	0.63	31.4	140	1.15	<50	<0.22	105	0.27
S3-4-1	0.21	10.5	65	0.53	<50	<0.22	30	0.08
S3-4-2	0.11	5.5	25	0.21	<50	<0.22	40	0.10
S3-4-3	0.11	5.5	65	0.53	<50	<0.22	25	0.06
83-3-1	0.15	15	90	0.74	<50	<0.22	40	0.10
\$3-3-2 \$3-5-2	0.09	4.5	30	0.25	<50	<0.22	15	0.04
\$4-1-1	0.13	11.5	40	0.53	< <u>50</u>	<0.22	45	0.12
S4-1-2	0.09	4.5	80	0.41	<50	<0.22	25	0.08
\$4-1-3	0.17	8.5	46	0.38	<50	<0.22	30	0.00
S4-2-1	0.17	8.5	75	0.62	50	0.22	70	0.18
S4-2-2	0.13	6.5	55	0.45	60	0.26	100	0.26
S4-2-3	0.11	5.5	30	0.25	<50	<0.22	40	0.10
S4-3-1	0.11	5.5	35	0.29	<50	<0.22	40	0.10
S4-3-2	0.19	9.5	90	0.74	<50	<0.22	70	0.18
54-3-3 SA_A_1	0.27	13.5	115	0.95	<50	<0.22	65	0.17
S4-4-2	0.13	1.5	45	0.37	<50	<0.22	40	0.10
S4-4-3	0.13	5.5	15	0.12	< <u>50</u>	<0.22	20	0.05
S4-5-1	0.15	7.5	62	0.51	<50	<0.22	50	0.13
S4-5-2	0.09	4.5	10	0.08	<50	<0.22	40 20	0.10
S4-5-3	0.09	4.5	34	0.28	<50	<0.22	25	0.05
S5-1-1	1.30	64.9	720	5.92	<50	<0.22	110	0.28
\$5-1-2	0.99	49.4	630	5.18	<50	<0.22	90	0.23
80-1-3 85 0 1	0.31	15.5	240	1.97	<50	<0.22	30	0.08
55-2-1 55-2-2	1.30	64.9	780	6.42	<50	<0.22	105	0.27
SS-2-2 SS-2-3	1.00	49.9 22.0	630	5.18	<50	<0.22	95	0.24
\$5-3-1	1.22	60.9	33U 790	2.71	< 50	<0.22	50	0.13
\$5-3-2			/00	0.42	<u></u>	<0.22	100	0.26
S5-3-3	7.70	384.2	490	4 03	 < <n< td=""><td><0.22</td><td></td><td>-</td></n<>	<0.22		-
\$5-4-1	1.40	69.9	870	7.16	~~0 <\$0	~0.22 <0.22	03 166	0.17
S5-4-2	1.18	58.9	770	6.33	<50	<0.22	722	U.4U 0.32
\$5-4-3	1.22	60.9	770	6.33	60	0.26	130	0.33

Tableau 5.	Concentrations des	principaux cations	échangeables dans les s	édiments non contaminé	s provenant de la ré	gion de Big Swamp
		Famerer			F	

			.**					
Code de l'échantillon	Ca (%)	Ca (még)	Mg (ppm)	Mg (méq)	Na (ppm)	Na (méq)	K (ppm)	K (méq)
S5-5-1	1.35	67.4	830	6.83	<50	<0.22	110	0.28
S5-5-2	1.12	55.9	750	6.17	<50	<0.22	90	0.23
S5-5-3	1.14	56.9	710	5.84	50	0.22	85	0.22
S6-1-1	2.55	127.2	770	6.33	50	0.22	240	0.61
S6-1-2	2.75	137.2	840	6.91	55	0.24	180	0.46
S6-1-3	2.53	126.2	780	6.42	55	0.24	135	0.35
S6-2-1	2.65	132.2	790	6.50	<50	<0.22	225	0.58
S6-2-2	2.75	137.2	840	6.91	<50	<0.22	135	0.35
S6-2-3	3.00	149.7	900	7.40	<50	<0.22	105	0.27
S6-3-1	2.45	122.3	770	6.33	50	0.22	240	0.61
S6-3-2	2.85	142.2	850	6.99	<50	<0.22	265	0.68
S6-3-3	2.92	145.7	890	7.32	50	0.22	120	0.31
S6-4-1	2.55	127.2	780	6.42	<50	<0.22	205	0.52
S6-4-2	2.60	129.7	780	6.42	60	0.26	210	0.54
S6-4-3	2.92	145.7	900	7.40	50	0.22	105	0.27
S6-5-1	2.60	129.7	750	6.17	<50	<0.22	220	0.56
S6-5-2	2.40	119.8	720	5.92	<50	<0.22	130	0.33
S6-5-3	2.85	142.2	870	7.16	~<50	<0.22	80	0.20
S7-1-1	0.85	42.4	440	3.62	<50	<0.22	85	0.22
S7-1-2	0.82	40.9	440	3.62	<50	<0.22	80	0.20
S7-1-3	0.76	37.9	420	3.45	<50	<0.22	70	0.18
\$7-2-1	0.95	47.4	470	3.87	<50	<0.22	105	0.27
\$7-2-2	0.95	47.4	470	3.87	<50	<0.22	105	0.27
\$7-2-3	1.10	54.9	500	4.11	<50	<0.22	100	0.26
\$7-3-1	1.05	52.4	570	4.69	<50	<0.22	110	0.28
S7-3-2	0.86	42.9	460	3.78	<50	<0.22	100	0.26
\$7-3-3	0.98	48.9	570	4.69	<50	<0.22	95	0.24
S7-4-1	1.15	57.4	580	4.77	<50	<0.22	120	0.31
\$7-4 -2	1.30	64.9	620	5.10	<50	<0.22	95	0.24
\$7-4-3	0.95	47.4	530	4.36	<50	<0.22	85	0.22
S7-5-1	1.00	49.9	480	3.95	<50	<0.22	85	0.22
\$7-5-2	0.90	44.9	450	3.70	<50	<0.22	70	0.18
\$7-5-3	0.95	47.4	490	4.03	<50	<0.22	95	0.24
S8-1-1	1.40	69.9	540	4.44	<50	<0.22	80	0.20
S8-1-2	1.75	87.3	770	6.33	<50	<0.22	95	0.24
S8-1-3	1.70	84.3	690	5.68	<50	<0.22	80	0.20
S8-2-1	1.65	82.3	630	5.18	<50	<0.22	80	0.20
S8-2-2	1.77	88.3	750	6.17	<50	<0.22	100	0.26
S8-2-3	1.61	80.3	710	5.84	<50	<0.22	80	0.20
S8-3-1	1.77	88.3	750	6.17	<50	<0.22	120	0.31
S8-3-2	1.67	83.3	750	6.17	<50	<0.22	100	0.26
S8-3-3	1.77	88.3	750	6.17	[,] <50	<0.22	100	0.26
S8-4-1	1.72	85.8	690	5.68	<50	<0.22	100	0.26
S8-4-2	1.67	83.3	660	5.43	<50	<0.22	100	0.26
S8-4-3	1.32	65.9	500	4.11	<50	<0.22	65	0.17
S8-5-1		_	· _	. –		_	_	
S8-5-2	_	- 	_	· · · _	_	· _	_	.
S8-5-3	<0.05	<0.005	30	0.25	<50	<0.22	5	0.0`1

Tableau 5. (suite)

et en zinc sont maximales dans l'horizon A recouvrant l'horizon B. La comparaison de ces résultats sur les métaux lourds avec ceux sur la perte à la calcination (figure 13) indique qu'il existe une relation entre les valeurs maximales de plomb-zinc et des concentrations élevées en matières organiques. Il semble que des processus illuviaux sont responsables des concentrations des autres métaux lourds (Ni, Cu, Fe, Mn et Co). On note des tendances similaires dans les résultats pour les Α

COLONNE S1

Figure 13. Répartition des métaux lourds dans le profil de sol du loam de Darlington avant la contamination.

métaux lourds dans certaines sections des colonnes S3 et S4.

D'après l'analyse de toutes les sections des colonnes S5, S7 et S8 qui contiennent des sédiments organiques, nickel, concentrations en en les cuivre, en plomb, en fer, en cobalt et ne semblent pas cadmium être en fonctions de la profondeur. Par **l'intérieur** à đe chaque contre, section de sédiments organiques de la colonne S6, il y a généralement une diminution de la teneur en métaux avec De plus, les concenla profondeur. moyennes en fer et en trations manganèse sont plus faibles dans la colonne S6 que dans les colonnes S5, S7 et S8. La comparaison des valeurs conductivité hydraulique de la à (annexe A), de la perte la calcination (tableau 3) et de l'indice des pyrophosphates (annexe C) indique que les concentrations en fer et en manganèse sont liées au degré de décomposition des matières organiques et à l'environnement physiographique Les concentrations relativelocal. ment faibles en fer et en manganèse dans la colonne S6 sont liées aux pertes à la valeurs élevées des la conductivité calcination et de hydraulique et à un degré élevé de (matières sapriques). décomposition Par contre, les sédiments organiques riches en fer et en manganèse présenconductivité des valeurs de tent perte à 1a hydraulique et de calcination plus faibles et un degré de décomposition moyen (matières Des observations sapriques/hémiques). faites sur le terrain indiquent que les inondations saisonnières sont plus dans les zones de persistantes sédiments pauvres en Fe et en Mn [colonnes S6 et S8 (?)] que dans les zones de sédiments riches en ces deux Un (colonnes S5 et S7). métaux sédiments contact accru entre les organiques et les eaux souterraines, la processus d'échange et les complexes organiques de formation peuvent expliquer la carence de métaux les plus lourds dans les zones

fréquemment inondées. La réaction d'échange probable, d'après des données sur les cations échangeables et les métaux lourds, peut être résumée comme suit:

Org	-	Me (ad) +	Ca ²⁺ Org-	Ca (ad)	+ Me ²⁺
ດນ້					

Org - Me _(ad)	= le complexe métal lourd adsorbé -
	matières organi- ques,
Ca ²⁺	= le principal ca-
	tion d'échange
	dans le réseau
	des eaux souter-
	raines,
$Org - Ca_{(ad)}$	= le complexe prin-
(cipal cation ad-
`	sorbé - matières
	organiques, et
Me ²⁺	= le cation de mé-
	tal lourd < <li-< td=""></li-<>
	bre>> dissocié
	(par exemple Fe,
	Mn).

Le cation de métal lourd <libre>>> se lie probablement en un complexe avec des matières organiques solubles est transporté dans eaux les et souterraines à partir de l'horizon organique. Un processus similaire ou sédiments saprique des nature la riches en matières organiques peut expliquer les faibles teneurs en cuivre, en plomb, en zinc et en cadmium (?) dans les sédiments pauvres en fer et en manganèse.

Qualité des eaux souterraines

Le tableau 6 donne les résultats des analyses chimiques des échantillons d'eau souterraine prélevés le 3 août, le 20 septembre et le 19 octobre 1977 à l'aide des piézomètres installés dans la région étudiée. Le 3 août 1977, on n'a pu échantillonner que 14 puits alors qu'en septembre et en octobre les 24 piézomètres ont tous

servi à l'échantillonnage. Les teneurs élevées en calcium et en bicarbonate, et les teneurs relativement élevées en magnésium dans les eaux souterraines, indiquent la présence de calcite et de dolomite dans la fraction détritique des sols organiques et des unités d'argile et till argileux au-dessous de des matières organiques. Des calculs des indices de solubilité indiquent que les eaux souterraines sont sursaturées en calcite et saturées en dolomite (annexe B). La teneur en ammonium (NH₄) et la demande biologique en oxygène (DBO) élevées, ainsi que les faibles concentrations en nitrates et nitrites (NO_3+NO_2) , peuvent être attribuées à la décomposition des organiques matières dans un environnement pauvre en oxygène.

Les concentrations en fer et en manganèse dans les échantillons filtrés (0.45 µm) sont généralement de 2 à 7 mg/L et de 0.1 à 0.4 mg/L, respectivement. Les concentrations de ces métaux dans les sédiments, particulièrement dans les matières organiques, sont relativement élevées (tableau 5). Des études sur des de tourbe, dépôts effectuées par Casagrande et Erchull (1976, 1977), ont montré que les matières végétales peuvent contenir d'importantes quantités de métaux tels que le fer et le manganèse et que les concentrations de métaux dans un échantillon donné sont liées au type de matières végétales qui donnent naissance à la tourbe. Dans d'autres études, on a utilisé des techniques d'extraction sélective pour repérer les fractions de matières organiques qui contiennent les métaux lourds (par exemple, Szalay et Szilagyi, 1968; Szalay, 1973; Rashid, 1974; Senesi et coll., 1977; Green et Manahan, 1977; Cheshire et coll., 1977). Des quantités importantes de fer et de manganèse peuvent être mobilisées par la décomposition de matières végétales accumulées (Levanidov, 1957; Crerar et coll., 1972). Une fois libres, les métaux se lient probablement en complexes organo-métalliques avec l'acide humique, l'acide fulvique et l'humine disponibles. Des recherches faites par Crerar et coll. (1972), Picard et Felbeck (1976), Reuter et Perdue Davis et Leckie (1977)et (1978)laissent supposer que la stabilité des complexes métallo-humiques dans les eaux naturelles est plus grande que celle des complexes métallo-inorganiques correspondants. A partir de ces observations, les auteurs ont conclu que le fer et le manganèse dosés dans les eaux souterraines de Big Swamp provenaient de matières organiques en

Puits d'observation	NH ₃ (mg/L)	$NO_3 + NO_2$ (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	Sr (mg/L)
1	1.0	0.2	100	17	8.3	1.7	0.8
2	1.0	0.6	53	27	4.0	3.2	0.7
3	1.0	0.3	86	20	7.8	1.6	0.6
4 ·	1.1	0.4	100	20	7.5	2.0	0.7
5	1.3	0.5	56	29	5.0	2.9	<0.5
6	1.4	0.3	105	17	6.5	2.0	0.6
7	0.8	0.2	77	17	4.5	2.7	<0.5
8	0.7	0.4	103	19	6.3	1.7	<0.5
9	1.2	0.3	105	19	6.3	1.7	<0.5
10	1.2	0.5	89	13	5.5	16	<0.5
11	0.9	0.4	107	21	7.3	13.6	<0.5
12	1.1	0.5	85	13	5.0	9.6	<0.5
13	0.8	0.8	93	21	10.5	15.2	<0.5
14	1.1	0.4	155	24	6.5	16.0	<0.5

Tableau 6a. Analyses chimiques des échantillons d'eau souterraine provenant de la région de Big Swamp, le 3 août 1977

Paramètre	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	Sr (mg/L)	Fe (mg/L)	Mn (mg/L)	pH
Puits d'observation					, ,			
1 .	119	17	7.5	6.2	0.5	7.8	0.16	7.5
2	130	34	3.8	11.6	0.5	4.4	0.27	7.6
3	102	22	7.0	7.2	0.5	1.6	0.16	7.5
4	135	23	6.5	6.4	0.5	3.2	0.29	7.6
5	198	42	4.5	10.6	0.5	3.9	0.46	7.9
6	136	19	5.8	7.8	0.5	6.1	0.32	7.8
7	115	18	3.8	9.0	0.5	3.6	0.35	7.8
8	- :	-	-	-	-		_	-
9	126	16	7.0	7.0	0.5	5.7	0.46	7.9
10	93	15	4.5	5.0	0.5	4.1	0.34	7.5
11	143	22	6.5	7.8	0.5	4.7	0.32	7.6
12	162	21	3.5	6.8	0.5	3.0	0.52	7.7
13	177	25	5.0	4.2	0.5	4.1	0.37	7.9
14	110	24	11.0	33.0	0.5	3.4	0.23	7.4
15	192	25	5.8	6.4	0.5	11.4	0.41	7.4
16	560	34	4.3	7.8	0.5	7.1	1.22	7.8
17	109	15	2.8	3.6	0.5	4.0	0.19	7.6
18	152	16	5.8	5.4	0.5	5.9	0.25	7.6
19	69	16	9.8	5.4	0.5	1.7	0.10	7.6
20	106	20	5.3	7.2	0.5	2.5	0.08	7.5
21	50	19	8.8	6.0	0.5	1.3	0.12	7.6
22	715	44	5.0	10.6	2.0	0.4	1.30	7.7
23	168	20	6.3	10.0	0.5	5.3	0.28	7.6
24	720	23	8.3	15.0	0.5	3.1	1.26	7.6
Paramètre	Dureté (mg/L CaCO ₃)	Alcalinité (mg/L HCO ₃)	Conductivité (µS/cm)	NH3 (mg/L)	$NO_3 + NO_2$ (mg/L)	DBO _s (mg/L)	SO ₄ (mg/L)	Cl (mg/L)
Puits d'observation	· · · · · · · · · · · · · · · · · · ·	•						
1	328	368	600	3.2	0.14	<4	13	16
2	238	256	430	1.6	0.20	10	21	5
2	374	371	580	1.0	0.16	<4	15	7
4	310	354	570	19	0.20	10	14	8
5	254	295	460	2.5	0.14	20	24	7
6	356	410	630	2.1	0.74	15	5	10
7	266	290	475	2.9	0.40	22	15	6
, 0							_	
X	_	_	_		_	—		
8 9	- 336	385	620	 8.0	0.22	- 8	15	. 11
8 9 10	_ 336 284		- 620 510	 8.0 1.9	 0.22 0.14	- 8 11	15 13	11 8
8 9 10	- 336 284 260		- 620 510 490	 8.0 1.9 2.1	0.22 0.14 0.22		15 13 20	11 8 7
8 9 10 11 12	- 336 284 260 220	 385 317 290 244	- 620 510 490 415	8.0 1.9 2.1 6.6	0.22 0.14 0.22 0.22	- 8 11 10 >24	15 13 20 14	11 8 7 8
8 9 10 11 12 13	- 336 284 260 220 224	- 385 317 290 244 244	- 620 510 490 415 420	 8.0 1.9 2.1 6.6 3.0	0.22 0.14 0.22 0.22 0.22 0.26	- 8 11 10 >24 21	15 13 20 14 18	11 8 7 8 8
8 9 10 11 12 13 14	- 336 284 260 220 224 336	- 385 317 290 244 244 512	- 620 510 490 415 420 920	8.0 1.9 2.1 6.6 3.0 69.6	0.22 0.14 0.22 0.22 0.22 0.26 0.02	- 8 11 10 >24 21 95	15 13 20 14 18 10	11 8 7 8 8 13
8 9 10 11 12 13 14 15	- 336 284 260 220 224 336 388	- 385 317 290 244 244 512 419	- 620 510 490 415 420 920 690	8.0 1.9 2.1 6.6 3.0 69.6 8.5	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16	- 8 11 10 >24 21 95 26	15 13 20 14 18 10 32	11 8 7 8 8 13 9
8 9 10 11 12 13 14 15 16		385 317 290 244 244 512 419 322	- 620 510 490 415 420 920 690 510	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14	- 8 11 10 >24 21 95 26 26	15 13 20 14 18 10 32 18	11 8 7 8 8 13 9 4
8 9 10 11 12 13 14 15 16 17	336 284 260 220 224 336 388 262 292	385 317 290 244 244 512 419 322 312	- 620 510 490 415 420 920 690 510 520	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6 9.5	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14 0.04	$ \begin{array}{c} 8 \\ 11 \\ $	15 13 20 14 18 10 32 18 17	11 8 7 8 8 13 9 4 5
8 9 10 11 12 13 14 15 16 17 18	336 284 260 220 224 336 388 262 292 364	385 317 290 244 244 512 419 322 312 290	- 620 510 490 415 420 920 690 510 520 630	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6 9.5 7.9	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14 0.04 0.10	$ \begin{array}{c} 8 \\ 11 \\ $	15 13 20 14 18 10 32 18 17 18	11 8 7 8 8 13 9 4 5 8
8 9 10 11 12 13 14 15 16 17 18 19		385 317 290 244 244 512 419 322 312 290 293	- 620 510 490 415 420 920 690 510 520 630 490	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6 9.5 7.9 4.4	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14 0.04 0.10 0.04	$ \begin{array}{c} 8 \\ 11 \\ $	15 13 20 14 18 10 32 18 17 18 7	11 8 7 8 8 13 9 4 5 8 12
8 9 10 11 12 13 14 15 16 17 18 19 20		385 317 290 244 244 512 419 322 312 290 293 417	- 620 510 490 415 420 920 690 510 520 630 490 730	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6 9.5 7.9 4.4 2.0	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14 0.14 0.04 0.10	$ \begin{array}{c} 8 \\ 11 \\ $	15 13 20 14 18 10 32 18 17 18 7 21	11 8 7 8 8 13 9 4 5 8 12 8
8 9 10 11 12 13 14 15 16 17 18 19 20 21	336 284 260 220 224 336 388 262 292 364 238 372 278	385 317 290 244 244 512 419 322 312 290 293 417 315	- 620 510 490 415 420 920 690 510 520 630 490 730 550	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6 9.5 7.9 4.4 2.0 4.0	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14 0.04 0.10 0.04 0.10 0.44	$ \begin{array}{c} 8 \\ 11 \\ $	15 13 20 14 18 10 32 18 17 18 7 21 17	11 8 7 8 8 13 9 4 5 8 12 8 10
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	336 284 260 220 224 336 388 262 292 364 238 372 278 202	385 317 290 244 244 512 419 322 312 290 293 417 315 290	- 620 510 490 415 420 920 690 510 520 630 490 730 550 475	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6 9.5 7.9 4.4 2.0 4.0 7.4	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14 0.04 0.10 0.04 0.10 0.44 0.18	$ \begin{array}{c} 8 \\ 11 \\ $	15 13 20 14 18 10 32 18 17 18 7 21 17 6	11 8 7 8 8 13 9 4 5 8 12 8 10 5
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	336 284 260 220 224 336 388 262 292 364 238 372 278 202	385 317 290 244 244 512 419 322 312 290 293 417 315 290	- 620 510 490 415 420 920 690 510 520 630 490 730 550 475 760	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6 9.5 7.9 4.4 2.0 4.0 7.4 12.0	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14 0.04 0.10 0.04 0.10 0.44 0.18 0.06	$ \begin{array}{c} 8 \\ 11 \\ $	15 13 20 14 18 10 32 18 17 18 7 21 17 6 12	11 8 7 8 8 13 9 4 5 8 12 8 10 5 14
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	336 284 260 220 224 336 388 262 292 364 238 372 278 202 560 254	385 317 290 244 244 512 419 322 312 290 293 417 315 290 466 334	- 620 510 490 415 420 920 690 510 520 630 490 730 550 475 760 580	8.0 1.9 2.1 6.6 3.0 69.6 8.5 4.6 9.5 7.9 4.4 2.0 4.0 7.4 12.0 4.2	- 0.22 0.14 0.22 0.22 0.26 0.02 0.16 0.14 0.04 0.10 0.04 0.10 0.44 0.18 0.06 0.06 0.06	$ \begin{array}{c} 8 \\ 11 \\ $	15 13 20 14 18 10 32 18 17 18 7 21 17 6 12 11	11 8 7 8 8 13 9 4 5 8 12 8 10 5 14 15

Tableau 6b. Analyses chimiques des échantillons d'eau souterraine provenant de la région de Big Swamp, le 20 septembre 1977

,

Paramètre	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	Sr (mg/L)	Fe (mg/L)	Mn (mg/L)	pH
Puits d'observation								
1	105	16	6.5	5.8	0.5	9.0	0.10	7.9
2	47	25	2.5	8.6		1.2	0.05	7.9
3	85	21	6.3	6.0	0.5	2.1	0.14	7.8
4	90	20	6.5	7.0	-	2.6	0.16	7.9
5	52	29	3.8	9.2	_	1.4	0.07	8.0
6	103	16	5.0	6.8	0.5	7.4	0.24	8.0
7	71	16	3.5	8.4	-	1.5	0.14	7.9
8	-	-	-	_	-	_	—	-
9	97	13	7.3	6.6	0.5	2.9	0.30	8.0
10	82	13	4.8	6.1		1.8	0.28	8.0
11	74	15	6.3	6.1	0.5	2.4	0.15	8.0
12	63	11	3.0	5.6		0.9	0.13	7.6
13	63	13	5.0	4.0	<0.5	2.6	0.13	7.8
14	80	16	8.3	7.6	-	4.1	0.16	-
15	106	16	5.3	5.4	0.5	6.8	0.16	7.4
16	69	16	4.0	3.8	-	1.4	0.14	7.8
17	85	12	2.8	3.2	<0.5	3.8	0.14	7.4
18	107	11	5.3	4.6	_	8.8	0.20	7.5
19	60	17	10.0	8.4	0.5	3.8	0.09	7.6
20	111	20	5.3	6.8	_	6.8	0.09	7.7
21	72	19	9.0	6.8	<0.5	2.3	0.07	7.8
22	38	34	5.3	7.8	-	1.6	0.12	8.1
23	119	13	5.3	6.2	0.5	6.9	0.18	7.8
24	94	16	7.0	5.4	0.5	3.5	0.09	7.8
Paramètre	Dureté (mg/L CaCO ₃)	Alcalinité (mg/L HCO ₃)	Conductivité (µS/cm)	NH ₃ (mg/L)	$NO_3 + NO_2$ (mg/L)	DBO _s (mg/L)	SO ₄ (mg/L)	Cl (mg/L)
Puits							-	
d'observation								
d'observation	336	410	640	1.3	0.04	<2	17	15
d'observation	336 236	410 268	640 430	1.3	0.04		17	15
d'observation	336 236 320	410 268 380	640 430 580	1.3 1.2 1.7	0.04 0.10 0.22	2 2 2 2 2 2	17 19 13	15 5 8
d'observation	336 236 320 322	410 268 380 390	640 430 580 600	1.3 1.2 1.7 1.5	0.04 0.10 0.22 0.04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 19 13	15 5 8
d'observation	336 236 320 322 254	410 268 380 390 299	640 430 580 600 470	1.3 1.2 1.7 1.5 1.2	0.04 0.10 0.22 0.04 0.04		17 19 13 10 20	15 5 8 9
d'observation 1 2 3 4 5 6	336 236 320 322 254 344	410 268 380 390 299 430	640 430 580 600 470 640	1.3 1.2 1.7 1.5 1.2 1.8	0.04 0.10 0.22 0.04 0.04 0.46	Q Q Q Q 2 2 2 2 2	17 19 13 10 20 9	15 5 8 9 4
d'observation 1 2 3 4 5 6 7	336 236 320 322 254 344 260	410 268 380 390 299 430 305	640 430 580 600 470 640 475	1.3 1.2 1.7 1.5 1.2 1.8 1.0	0.04 0.10 0.22 0.04 0.04 0.46 0.20	Q Q Q Q 2 2 2 3	17 19 13 10 20 9	15 5 8 9 4 11 5
d'observation 1 2 3 4 5 6 7 8	336 236 320 322 254 344 260	410 268 380 390 299 430 305	640 430 580 600 470 640 475	1.3 1.2 1.7 1.5 1.2 1.8 1.0	0.04 0.10 0.22 0.04 0.04 0.46 0.20	2 2 2 2 2 3	17 19 13 10 20 9 16	15 5 8 9 4 11 5
d'observation 1 2 3 4 5 6 7 8 9	336 236 320 322 254 344 260 322	410 268 380 390 299 430 305 	640 430 580 600 470 640 475 - 600	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2	0.04 0.10 0.22 0.04 0.04 0.46 0.20 	² / ₂ ² / ₂ ² / ₂ ² / ₃ ⁻ / ₂	17 19 13 10 20 9 16 	15 5 8 9 4 11 5 -
d'observation 1 2 3 4 5 6 7 8 9 10	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334	640 430 580 600 470 640 475 - 600 510	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8	0.04 0.10 0.22 0.04 0.04 0.46 0.20 	$\begin{array}{c} \langle 2 \\ \langle 2 \\ \langle 2 \\ \rangle \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ \neg \\ \langle 2 \\ \langle 2 \\ \rangle \\$	17 19 13 10 20 9 16 12 6	15 5 8 9 4 11 5 - 9 4
d'observation 1 2 3 4 5 6 7 8 9 10 11	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317	640 430 580 600 470 640 475 - 600 510 495	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8 1.4	0.04 0.10 0.22 0.04 0.04 0.46 0.20 	$\begin{array}{c} \bigcirc \bigcirc$	17 19 13 10 20 9 16 12 6 18	15 5 8 9 4 11 5 - 9 4 4
d'observation 1 2 3 4 5 6 7 8 9 10 11 12	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 	640 430 580 600 470 640 475 - 600 510 495 400	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8 1.4 3.0	0.04 0.10 0.22 0.04 0.04 0.20 	\$\frac{2}{2} \$\frac{2}{2} \$2 \$	17 19 13 10 20 9 16 	15 5 8 9 4 11 5 - 9 4 4 4
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256	640 430 580 600 470 640 475 - - 600 510 495 400 420	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8 1.4 3.0 0.9	0.04 0.10 0.22 0.04 0.04 0.20 	\$\frac{2}{2} \$\frac{2}{2} \$2 \$2 \$2 \$2 \$2 \$2 \$	17 19 13 10 20 9 16 	15 5 8 9 4 11 5 - 9 4 4 4 5
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 	640 430 580 600 470 640 475 - - 600 510 495 400 420	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8 1.4 3.0 0.9 27.5	0.04 0.10 0.22 0.04 0.04 0.20 	² / ₂ ³ / ₋ ⁻ / ₂ ² / ₂ ² / ₂ ² / ₂ ¹ / ₅ ² / ₂ ⁻ / ₂	17 19 13 10 20 9 16 	15 5 8 9 4 11 5 - 9 4 4 4 4 5
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 	640 430 580 600 470 640 475 - - 600 510 495 400 420 - 660	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8 1.4 3.0 0.9 27.5 3.0	0.04 0.10 0.22 0.04 0.04 0.20 0.26 0.30 0.08 0.80 0.66 0.02	\$ \$	17 19 13 10 20 9 16 12 6 18 12 17 11 23	15 5 8 9 4 11 5 - 9 4 4 4 4 5 - 9
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256 419 295	640 430 580 600 470 640 475 - - 600 510 495 400 420 - 660 465	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8 1.4 3.0 0.9 27.5 3.0 2.1	$\begin{array}{c} 0.04\\ 0.10\\ 0.22\\ 0.04\\ 0.04\\ 0.46\\ 0.20\\\\ 0.26\\ 0.30\\ 0.08\\ 0.80\\ 0.66\\\\ 0.02\\ < 0.18 \end{array}$	<pre></pre>	17 19 13 10 20 9 16 12 6 18 12 17 11 23 18	15 5 8 9 4 11 5 - 9 4 4 4 5 - 9 5
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256 419 295 315	640 430 580 600 470 640 475 - 600 510 495 400 420 - 660 465 495	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8 1.4 3.0 0.9 27.5 3.0 2.1 3.6	$\begin{array}{c} 0.04\\ 0.10\\ 0.22\\ 0.04\\ 0.04\\ 0.46\\ 0.20\\\\ 0.26\\ 0.30\\ 0.08\\ 0.80\\ 0.66\\\\ 0.02\\ < 0.18\\ < 0.02 \end{array}$		17 19 13 10 20 9 16 - 12 6 18 12 17 11 23 18 22	15 5 8 9 4 11 5 - 9 4 4 4 5 - 9 5 3
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256 419 295 315 366	640 430 580 600 470 640 475 - 600 510 495 400 420 - 660 465 495 600	$ \begin{array}{r} 1.3\\ 1.2\\ 1.7\\ 1.5\\ 1.2\\ 1.8\\ 1.0\\ -\\ 2.2\\ 1.8\\ 1.4\\ 3.0\\ 0.9\\ 27.5\\ 3.0\\ 2.1\\ 3.6\\ 5.6\\ \end{array} $	0.04 0.10 0.22 0.04 0.04 0.20 0.26 0.30 0.08 0.80 0.66 0.02 <0.18 <0.02 <0.02		$ \begin{array}{r} 17 \\ 19 \\ 13 \\ 10 \\ 20 \\ 9 \\ 16 \\ - \\ 12 \\ 6 \\ 18 \\ 12 \\ 17 \\ 11 \\ 23 \\ 18 \\ 22 \\ 10 \\ \end{array} $	15 5 8 9 4 11 5 - 9 4 4 4 5 - 9 5 3 5
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256 419 295 315 366 278	640 430 580 600 470 640 475 - 600 510 495 400 420 - 660 465 495 600 450	$ \begin{array}{r} 1.3\\ 1.2\\ 1.7\\ 1.5\\ 1.2\\ 1.8\\ 1.0\\ -\\ 2.2\\ 1.8\\ 1.4\\ 3.0\\ 0.9\\ 27.5\\ 3.0\\ 2.1\\ 3.6\\ 5.6\\ 1.6\\ \end{array} $	$\begin{array}{c} 0.04\\ 0.10\\ 0.22\\ 0.04\\ 0.04\\ 0.46\\ 0.20\\\\ 0.26\\ 0.30\\ 0.08\\ 0.80\\ 0.66\\\\ 0.02\\ <0.18\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ \end{array}$	<pre></pre>	$ \begin{array}{r} 17 \\ 19 \\ 13 \\ 10 \\ 20 \\ 9 \\ 16 \\ - \\ 12 \\ 6 \\ 18 \\ 12 \\ 17 \\ 11 \\ 23 \\ 18 \\ 22 \\ 10 \\ 7 \\ \end{array} $	15 5 8 9 4 11 5 - 9 4 4 4 5 - 9 5 3 5 5
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256 419 295 315 366 278 349	640 430 580 600 470 640 475 - 600 510 495 400 420 - 660 465 495 600 450 700	$ \begin{array}{c} 1.3\\ 1.2\\ 1.7\\ 1.5\\ 1.2\\ 1.8\\ 1.0\\ -\\ 2.2\\ 1.8\\ 1.4\\ 3.0\\ 0.9\\ 27.5\\ 3.0\\ 2.1\\ 3.6\\ 5.6\\ 1.6\\ 3.4\\ \end{array} $	$\begin{array}{c} 0.04\\ 0.10\\ 0.22\\ 0.04\\ 0.04\\ 0.20\\\\ 0.26\\ 0.30\\ 0.08\\ 0.80\\ 0.66\\\\ 0.02\\ <0.18\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ 0.06\\ \end{array}$	$\langle 2 \\ \langle 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	17 19 13 10 20 9 16 12 6 18 12 17 11 23 18 22 10 7 9	15 5 8 9 4 11 5 - 9 4 4 4 5 - 9 5 3 5 5 5 5
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256 419 295 315 366 278 349 298	640 430 580 600 470 640 475 - 600 510 495 400 420 - 660 465 495 600 455 495 600 450 700 520	$ \begin{array}{r} 1.3 \\ 1.2 \\ 1.7 \\ 1.5 \\ 1.2 \\ 1.8 \\ 1.0 \\ - \\ 2.2 \\ 1.8 \\ 1.4 \\ 3.0 \\ 0.9 \\ 27.5 \\ 3.0 \\ 2.1 \\ 3.6 \\ 5.6 \\ 1.6 \\ 3.4 \\ 5.2 \\ \end{array} $	$\begin{array}{c} 0.04\\ 0.10\\ 0.22\\ 0.04\\ 0.04\\ 0.20\\\\ 0.26\\ 0.30\\ 0.08\\ 0.80\\ 0.66\\\\ 0.02\\ <0.18\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ 0.06\\ 0.04\\ \end{array}$	$\begin{array}{c} <2 \\ <2 \\ <2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	17 19 13 10 20 9 16 - 12 6 18 12 17 11 23 18 22 10 7 9 16	15 5 8 9 4 11 5 - 9 4 4 4 5 5 5 5 5 8
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256 419 295 315 366 278 349 298 273	640 430 580 600 470 640 475 - 600 510 495 400 420 - 660 465 495 600 455 495 600 450 700 520 430	$ \begin{array}{c} 1.3\\ 1.2\\ 1.7\\ 1.5\\ 1.2\\ 1.8\\ 1.0\\ -\\ 2.2\\ 1.8\\ 1.4\\ 3.0\\ 0.9\\ 27.5\\ 3.0\\ 2.1\\ 3.6\\ 5.6\\ 1.6\\ 3.4\\ 5.2\\ 2.5\\ \end{array} $	0.04 0.10 0.22 0.04 0.04 0.20 - 0.26 0.30 0.08 0.80 0.66 - 0.02 <0.18 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <	$\begin{array}{c} <2 \\ <2 \\ <2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$ \begin{array}{r} 17 \\ 19 \\ 13 \\ 10 \\ 20 \\ 9 \\ 16 \\ - \\ 12 \\ 6 \\ 18 \\ 12 \\ 17 \\ 11 \\ 23 \\ 18 \\ 22 \\ 10 \\ 7 \\ 9 \\ 16 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 9 \\ 16 \\ 9 \\ 16 \\ 9 \\ 16 \\ 10 \\ 11 \\ 10 \\ $	15 5 8 9 4 11 5 - 9 4 4 4 5 5 3 5 5 5 8 5 5
d'observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	336 236 320 322 254 344 260 	410 268 380 390 299 430 305 390 334 317 249 256 419 295 315 366 278 349 298 273 402	640 430 580 600 470 640 475 - 600 510 495 400 420 - 660 465 495 600 455 495 600 450 700 520 430 680	1.3 1.2 1.7 1.5 1.2 1.8 1.0 - 2.2 1.8 1.4 3.0 0.9 27.5 3.0 2.1 3.6 5.6 1.6 3.4 5.2 2.5 3.8	0.04 0.10 0.22 0.04 0.04 0.20 0.26 0.30 0.08 0.80 0.66 0.02 <0.18 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	$\begin{array}{c} <2 \\ <2 \\ <2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$ \begin{array}{r} 17 \\ 19 \\ 13 \\ 10 \\ 20 \\ 9 \\ 16 \\ - \\ 12 \\ 6 \\ 18 \\ 12 \\ 17 \\ 11 \\ 23 \\ 18 \\ 22 \\ 10 \\ 7 \\ 9 \\ 16 \\ 9 \\ 10 \\ 7 \\ 9 \\ 16 \\ 9 \\ 10 \\ 7 \\ 9 \\ 16 \\ 9 \\ 10 \\ 7 \\ 7 \\ 9 \\ 10 \\ 7 \\ 7 \\ 10 \\ 7 \\ 9 \\ 10 \\ 7 \\ 9 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 7 \\ 10 \\ 7 \\ 7 \\ 7 \\ 10 \\ 7 \\ 7 \\ 10 \\ 7 \\ 7 \\ 7 \\ 7 \\ 10 \\ 7 \\ 9 \\ 10 \\ 7 \\ 7 \\ 7 \\ 9 \\ 10 \\ 7 \\ 7 \\ 7 \\ 7 \\ 10 \\ 7 \\ 7 \\ 7 \\ 10 \\ 7 \\ 7$	15 5 8 9 4 11 5 - 9 4 4 4 5 5 5 5 5 8 5 5 5 8 5 9

Tableau 6c. Analy	ses chimiques des échantillons	d'eau souterraine provenant de la ré	gion de Big Swam	p, le 19 octobre 1977
-------------------	--------------------------------	--------------------------------------	------------------	-----------------------

Tableau 7. Données sur la qualité des eaux à partir des expériences d'atténuation

					14010			1			-					
Échantillon	HCO ₃	Mg	Na	Ca	К	Fe	Mn	Cl	NO3	NH₄	SO₄	PO4	Litre	Cations totaux	Anions totaux	Charge résid.
						(méq/l	L) •••					****			(meq/L)	
$ \begin{array}{c} \acute{E} chantillon\\ 3 \cup c & 25 \\ 3 \cup c & 2$	HCO ₃ 24 9.999 11.999 1299 11991 1299 11991 15995 15991 15995 15905 159	Mg 02271200414007807911710078016530145 0227122014400791171007801653015 1007020153004414007911710078016 100708079117100153014 100708079117100153014 100708079117100153014 1007080791171000 1007080791171000 10070807000 10010000000000000000	Na 	Ca 0467788877732772322274748048888823 2123205650345272232274748048888823 212320565034541335233527748048888823 212320565034541335233527744290799999723 2123205799999723 21232079799999723	K 0.0033 0.0030 0.0033 0.0030 0.0030 0.0033 0.0033 0.0033 0.0030 0.0000 0.0000 0.0000 0.00000000	Fe $(méq/1)$ 0.34 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.00 0.0	Mn U.00	Cl - 2045935755000000000000000000000000000000000	NO ₃	NH4 0.04 0.028 0.029 0.029 0.020 0.020 0.020 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000000 0.00000 0.00000000	SO4 	PO4 	Litre 1 2 3 4 5 6 7 8 10 11 3 14 5 6 7 8 10 12 22 34 5 6 7 8 10 11 2	totaux 0.388 26.709 27.1.9949 2882 29949 2882 29949 2882 29949 2882 29949 2882 29949 2882 29949 2882 29949 2882 29949 2882 29949 2882 29949 29957 30973 19949 2957 30973 19949 2957 1995 2958 2957 1995 2958 2957 1995 2958 2958 2957 1995 2958 2958 2957 1995 29588 29588 29588 29588 29588 29588 29588 29588 29588	totaux (méq/L) 4.789 0.170 23.296 24.707 24.707 24.707 24.707 24.707 25.447 166.0445 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000 0.000000 0.00000000	resid. ************************************
4 N V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V	15.67 13.11 13.51 15.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1.77 1.77	9.70 9.79 10.35 11.01 0.00 0.00 0.00 0.00 0.00 0.00	12.227 13.97 13.97 13.97 13.97 13.97 13.97 13.97 11.98 11.98 11.73 9.73 11.73			U + U 9 U + 11 U + U 7 U + U 5 U + U 5 U + 15 U + 15 U + 15 U + 06 U + 08 U + 07 U + 07	1 • • 5 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0+116 0+116 0+116 0+105 0+106 0+100 0+100 0+100 0+100 0+100 0+100 0+100 0+100 0+100 0+100 0+100 0+100 0+100 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+116 0+100000000				1345678901234	577. 95200 952000 95200 95200 95200 95200 95200 952000 952000 95200 952000	255 457 2457 255 255 255 255 2000 0000 0000 0000 0	- 6417 2 • • 6417 2 • • 51* * * * * * * * * * * * * * * * * * *
4FEB13	0.00	3.77	- 0.00	11.48	0.10	0.04	0.07	0.00	ū+00	ō,ōu	0.00	0.00	25	15+455	0.000	****

24

. .

Tableau 7. (suite)

Échantillor		Ma		~				CT.			80 [°]	-	.	Cations	Anions	Charge
2000000	· nco3	Mg	Na	Ca	K	ге	мп	CI	NO3	NH₄	504	PO ₄	Litre	totaux	totaux	resia.
						(méq/]	L) •••								 (méq/L) 	
506125	0.04	2.96	0.90	10.58	0.16	0.09	0.00	U.73	u•u2	0.09	1.88	0.00	1	14.789	3.472	61.978
500126	12+11	3+45	1.07	20.96	0.10	0.01	0.01	0.18	Ũ+ŨĞ	0.14	1.08	0.00	Ž	26.540	21+437	10.649
SNUVUI	16.55	4 H	4:33	19:46	8:13	8.85	0.07	10.56	0+06	8:85	3:94	0.01	3	32:985	37:283	=3:33
5NUV15	22.42	5+18	2.00	21.46	0.23	0.03	0.13	10.72	0.00	0.44	0.33	0.01	ŝ	32.470	33.484	-1.538
5NUV12	19.82	4 • / /	0.09	20.46	0.28	0.21	0+11	11.00	0.02	0.50	0.23	0.00	6	32.422	32 • 35 3	0.106
SNUVIU	19.50	2.08	7.18	17.96	0.41	8.18	0.03	11:57	U+U2 U+13	8:35	0.20	0.01	8		31.430	-5.510
5NUV19	20.14	2.06	∫• #Q	17.47	0.28	0.10	0.10	11.57	Ū+ĪŎ	0.47	0.21	0.00	9	27.860	32.017	-6.929
5NUV25	18.78	3.70	7.61	16.70	0+40	0.09	0.09	12.41	0+10	0.047	0.25	0.01	10	31.434	32+588	=1.8U3 =2.856
SNUV26	20.46	3 . 37	1.98	17:25	ŏ:54	0.14	Ŭ. Č9	11:57	0.00	8:55	ŭ 29	0.00	12	23.847	32:389	-4.085
5080027	21.58	3.70	(14.3?	0.59	0.10	0.08	11.20	0+11	0.00	8. 25	0.00	13	28.580	31.633	-5.061
SULCO7	21.10	3+54	0.18	15.97	0.72	004	0.09	11.85	0+10	0.72	0.00	0+00	14	32.030	32.950	-1.343
501000	20+46	3+45	0.40	15.22	0.77	0.07	0.07	11.57	0.15	0.61	Ŭ ÖŎ	0.00	ić	26.593	32 . 183	-5.907
SJAN19	0.00	5+05	0.00	19.71	0.82	0.18	0.12	0.00	0.00	0.00	0.00	0.00	17	25.882	0.000	*****
SJAN2U	0.00	4+61	ũ.ũŏ	17.22	0.97	0.04	0.11	0.00	0.00	0.00	0.00	0.00	19	22.947	0.000	*****
SFEHOS	0.00	4 • 40	0.00	17.71	1.00	0.04	0.11	0.00	0.00	0.00	0.00	0.00	20	23.254	0.000	****
SFEDIO	0.00	4.65	V.00	10.46	1.05	0.13	U-13	0.00	0.00	0.00	0.00	0+00	21	20.201	0.000	*****
555641	0.00	4+25	0.00	1.8.21	1.07	0.07	0.11	0.00	0.00	0.00	0.00	0.00	23	23.725	0.000	*****
566613	0.00	3.88	0.00	16.97	1.07	0.05	0+10	0.00	0+00	0.00	8.00	0.00	24	22.193	0.000	****
640 25	11.51	0.90	V.38	8.03	0.10	0.07	0.00	5+64	0+07	0.19	3.02	0.00	1	20.400.3	20.247	******
6UCT31	9.00	1.23	1.00	18.96	0.08	0.04	Ŭ+ŪĬ	6+49	Ū•Ū3	0.16	1.46	0.00	2	21.474	16.014	14.565
8NUVUI	10.71	1.48	2:52	12:49	8:15	0.00	8:81	0.00	8.12	8:00	1:35	8:00	3	12:994	18:648	-9-245
NUN12	11.03	1.3	3.48	16.47	0.28	0.09	0.02	10.44	0+11	0.07	9.19	0.00	5	22.132	21 . 771	0.823
6NUV17	11.59	1+73	2.22	15.47	0.51	0.14	0.01	11.00	0.00	0.14	0.42	0.00	6	23.223	21+972	2.768
6NUV18	10.87	0.74	5.87	13:47	0.54	0.04	0.01	0.00	0.11	0.60	0.21	0.00	8	20.677	11-192	29.761
6NUV20		0.66	0.09	13.97	0.66	0.03	0.01	12.13	0.10	0.32	0.34	0.00	. 9	21.711	23.234	-3.389
6NUV25	9.91	1.15	0.74	12.72	0.09	0.04	0.001	11.85	0+0.3	0.24	0.27	0+00	10 -	22: 300	22.075	-1.148
6 NUV 26	10.95	0.90	(+40	11.98	0.77	0.44	0.01	12.13	0.11	Ŭ 23	Ŭ 3 Å	0.00	12	21.330	23.572	-4.993
OULCUS	11.91	1.07	6.01	12.48	0.89	0.05	0.01	11:2/	0.15	0.35	U+38	0.00	13	22.460	23 840	-2.962
OULU07	12.23	1.15	8.92	12.48	1.15	0.04	0.001	11185	0.05	0.43	U.00	0+00	14	24.172	24.126	0.095
6.JAN1.7	12+31	1+23	7.05	12.48	1.25	0.04	0+01	13.20	0+10	0.38	0.00	0.00	16	24.432	25.665	-2.462
6JAN19	ŏ.ŭŏ	1.56	0.00	12.48	0.00	0.04	0+01 0+01	0.00	0+00	0.00	0.00	0.00	17	13.540	0.000	******
6JAN20	0.00	1.25	0.00	11.73	0.00	0.04	u+01	0.00	0.00	0.00	0.00	0.00	19	13.122	0.000	*****
OFLUUY	0.00	1.39	0.00	12.23	0.00	0.04	0+01	0:+00	0.00	0.00	0.00	0.00	20	13.769	0.000	*****
61 LU1U	0.00	1 . 52	0.00	12.48	0.00	0.04	0+00	0.00	0+00	0.00	0.00	0.00	22	14.036	0.000	*****
011011 651012	0.00	1+51	V.00	13.22	Ö.ÖÖ	0.04	0.00	ū•0ŭ	ũ•ŭ0	0.00	0.00	0.00	23	14.768	Ō•ŪŪŌ	*****
61 E B 1 3	0.00	1+63	0.00	11.22	0.00	0.04	0+01	0.00	0.00	0.00	0.00	0+00	24	15.079	0.000	****

4

τ.

Tableau 7. (suite)

													- •	Cations	Anions	Charge
Échantillor	1 HCO3	Mg	Na	Ca	K	Fe	Mn	Cl	NO3	NH₄	SO₄	PO ₄	Litre	totaux	totaux	resia.
						(méq/	L)							.	• (meq/L)	
700125	12.23	2.47	0.35	9.88	0.28	0+01	0.00	2.06	0.01	0.08	1.04	0.00	12	13.069 26.305	15.347 20.528	-8.016 12.336
700131	19.39	3.04	1.44	14.97	0.10	0.09	0.09	0-04	0.03	0.10	0.29	0.01	3	19.830	24.755	******
714115	23.90	5.02	3.96	25.95	0.26	0.04	U • 17	10.72	0.03	ų .30	0.27	0.01	5	35.697	34.930	1.086
7 NUV16 7 NUV17	20.30	4+20	5.07	20.46	0+20	0.38	0.12	12.13	0.11	8.35	. U. 2.9	0.01	7	31 • 142	38:793	12 228
7NUV18 7NUV19	29.54	1+89	6.31	19.46	0.28	0.12	U • 1.2	12.13	0+02	0.40	9.17	0.00	9	28+414	32.858	5 - 535
7NUV20 7NUV25	19.82	· 3•29 3•37	0.96	17.96	0.33	0.01	U+12 U+12	12+13	0+10 U+U5	0.33	V.25	0+00	10	29.860	30.891	-1.687
7 NU V26	20.62	3.21	0.05	17.96	0.36	0.25	U • 12	11.28	0+05	0.33	V.21 V.25	0+00	12	30.272 30.351	32 • 100	= 3:+033 =1+559
TUELUS	21.10	3 29	5.05	18.21	0.54	0.98	0.12	11.85	Ú+Ü-9	0.49 0.52	0.00 0.00	0.00	14	32.684	33+031 31+805	=0.520 0.991
TUELUg	19.74	2.68	5.40	15.97	0.59	0.04	0.12	12.69	0.00	0.49	0.00	0.00	iģ	28.476	32+438	-6.503
7JAN17 7JAN19	0.00	4 • 30	0.00	21.21	0.79	0.11	U-16	0.00	u•u0	0.00	0.00	0.00	18	26.759	0.000	*****
7JAN2U 7JAN21	0.00	4.18	0.00	19.71	0.84	0.04	0+13	0.00	0.00	0.00	0.00	0+00	20	23.300	0.000	*****
7FEB09	0.00 0.00	4 • 24	U • 00	19.21	0.89		0+12	U • 0 U U • 0 U	0.00 0.00	0.00	U.00 U.00	0.00	21	24.574 25.00U	0.000	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
71 2811	Ŭ: ŬŬ	3.73	0.00	IA.71	1.05	0.11	0.09	0.00	Ŭ+Ū0 □+00	0.00	0.00	0.00	23	23.698 22.003	0.000	****
71 2813	Ů Öğ	3.34	0.00	16.47	1.13	0.05	ŭ ii	0.00	0.00	0.00	Ŭ.00	0.00	25	21.098	0.000	*****
800122	11.03	2.30	0.49	20.96	0.10	0.01	0.01	7.50	U+U6	0.09	1.67	0.00	2	24.417	20.659	8.336
800131 800701	13.27	0 • 1 6 3 • 0 4	1.13	15.97	0.08	0+03	U+U5 U+U6	7.62	0+08	0.02	1.04	0+00	4	24.291	25.568	-2.563
8NUV15	17.98	3.62	2.65	22.95	0.13	0.08		10.72	U+U2 U+10	0.12	U.25 U.23	0+00	56	29 651	30.759	-0.386
8NUV17	17.58	3.45	4.79	20.46	0.23	0.08	0+14 0+08	12+41	.0+13 0+60	0.22	0.23	0.00	7	29.370 25.910	30.359 16.911	21:013
8NUV19	13.51	2.71	0.09	17.96	0 <u>3</u> 3	0.04	0.08	11.85	0.11	0.34	U 27	0.00	10	27.560	29.735	=3.795 =2.601
BNUV25	19.15	2.39	0.22	16.72	0.38	0.04	0.07	12.13	0+08	0.28	0.19	0.00	11	26.090	28+546	-4.494
8 NU V 2 7	17.11	2.22	0.U5	15.72	0.56	0.05	0.07	11.5/	0.00	0.29	0.31	0.00	13	26.959	29.052	-3.736
801106 801107	17.90	2.22	0./0	15.72	0.72	0+09	0.07	11.20	U+U2 U+U8	0.42	V.00	0.400	15	25.882	28 • 627	-5.035
BUECUS BUAN17	16.79	1.97	1.83	14.22	0.82	0.04	U+U6 U+11	12-13	0+10 0+00	0.42	0.00	000	16	25.095	29.013	*****
8JAN19	0.00	3.59	0.00	19.96	1.15	0.14	U • 12	U. 0 U	U•ŬÓ U•UÓ	0.00	0.00	0.00	18	24.965	0.000	*****
8JAN21	0.00	3.74	1.00	16.47	1.15	0.67	0.08	0.00	0.00	8.80	8.00	0.00	39	20.212	8:888	*****
BELDIG	0.00	3-26	0.00	19.40	1.43	Q•71	2.11	0.00	N•60	8.88	8.88	0.00	33	34 . 728	8:888	*****
812011 812012	0.00	2.57	0.00	15.32	1 • 4 5	0.11	0.09	0.00	0.00	0.00	0.00	0.00	24	19.447	0.000	*****

décomposition et sont probablement liés en complexes avec des composés organiques solubles qui sont également produits au cours des processus de décomposition.

Expériences d'atténuation

Au tableau 7 on trouve des données sur la qualité de l'eau obtenues dans les expériences d'atténuation des eaux de percolation pour les colonnes de sédiments S3, S4, S5, S6, S7 et S8. Les valeurs d'erreurs relatives à la charge résiduelle d'échantillons pour lesquels il existe des données analytiques complètes sont données par la formule suivante (Hem, 1970):

 $\frac{\text{MEQ cation} - \text{MEQ anion}}{\text{MEQ cation} + \text{MEQ anion}} \times 100$

Pour la plupart des échantillons,

l'exactitude des calculs de la charge résiduelle est de ± 5 %.

Les résultats des expériences de des contamination sédiments sont donnés à l'annexe D et illustrés aux figures 14 à 20. Dans ces figures, on reporte la concentration relative (C/C_{n}) différents des éléments ou ions en fonction du volume d'eau de percolation ajouté. La concentration relative est le rapport entre la concentration dans l'eau de percolation ajoutée (C_{O}) la concentration et dans l'effluent (C) pour chaque partie aliquote de l L. Selon Griffin et coll. le (1976),point <critique>> pour élément un donné est défini comme le point où la concentration dans l'effluent est égale à la moitié de la concentration dans l'eau de percolation (i.e. $C/C_0 = 0.5$).

COURBES CRITIQUES DU CHLORURE

Figure 14. Courbes critiques du chlorure pour les expériences d'atténuation de l'eau de percolation.

COURBES CRITIQUES DU MAGNÉSIUM

Figure 15. Courbes critiques du calcium et du magnésium pour les expériences d'atténuation de l'eau de percolation.

Figure 16. Courbes critiques du sodium et du potassium pour les expériences d'atténuation de l'eau de percolation.

29

Figure 17. Courbes critiques du fer et du manganèse pour les expériences d'atténuation de l'eau de percolation.

В

COURBES CRITIQUES DU PHOSPHATE

Figure 18. Courbes critiques du sulfate et du phosphate pour les expériences d'atténuation de l'eau de percolation.

COURBES CRITIQUES DE L'AMMONIUM

Figure 19. Courbes critiques du nitrate-nitrite et de l'ammonium pour les expériences d'atténuation de l'eau de percolation.

Α

COURBES CRITIQUES DU BICARBONATE

Chlorures et principaux cations

La figure 14 montre les résultats de l'analyse des chlorures. Les valeurs de C/C_O montent rapidement vers l'unité et restent stables à cette valeur après l'addition d'une quantité d'eau de percolation ne dépassant 6 pas Ĺ. Les faibles valeurs initiales C/C_{O} de ne seraient pas un indice de l'absorption par les sédiments mais plutôt un indice de la dilution par les fluides interstitiels présents dans les sédiments. Etant donné que les sédiments organiques (S5, S6, S7 et S8) ont une teneur initiale en eau plus élevée, l'effet de la dilution est plus marqué dans ces substances.

Par rapport aux chlorures, les principaux cations (calcium, magné-

sium, sodium et potassium) se sont comportés de façon différente. Les colonnes de loam sableux (S3 et S4) représentant le drumlin, et notamment les colonnes de sédiments riches en matières organiques (S5, S6, S7 et S8), ont toutes libéré du Ca lorsqu'on a ajouté de l'eau de percolation aux sédiments (figure 15A). Par contre, la teneur en magnésium a été réduite de façon variable dans les expériences de contamination (figure 15B). La concentration en magnésium dissous a été très réduite dans l'effluent de la colonne S6. Les courbes critiques du sodium (figure 16A) révèlent que la capacité des sédiments à réduire la concentration de ce métal est variable. Dans les colonnes de loam sableux (S3 et S4), la valeur C/C_O a atteint 1.0 après l'addition de 7 L d'eau de percolation, alors que le

niveau de non-atténuation dans les sédiments riches en matières organiques n'a été atteint qu'après l'addition de 14 Pendant L. l'expérience de contamination des sédiments, l'atténuation du potassium a dépassé 90 % dans les colonnes S3 et S4 (figure 16B). Il semblerait donc que le loam de Darlington qui s'est formé sur les drumlins du comté de Prince-Edouard a une grande capacité à fixer le potassium. L'atténuation du potassium par les sols organiques de Big Swamp a été moins importante. A la fin des expériences, les colonnes S5, S6, S7 et S8 n'étaient plus capables d'atténuer le potassium.

On peut expliquer la libération du calcium et l'atténuation du magnésium, du sodium et du potassium en d'échange fonction des processus d'ions. Dans tous les sédiments utilisés dans les expériences, le calcium s'est avéré le principal cation échangeable (tableau 5). Le calcium, par rapport au magnésium, au sodium et au potassium, reste encore le principal cation des eaux souterraines de la région étudiée (tableau 6). Par rapport aux eaux souterraines, l'eau percolation utilisée dans les de expériences d'atténuation a présenté des concentrations plus élevées en sodium, en magnésium et en potassium qu'en calcium. Ainsi. le contact entre l'eau de percolation et les sédiments s'est traduit par le remplacement dans les sédiments du magnésium, du sodium et du potassium par le calcium.

Fer et manganèse

Au cours des expériences, on n'a observé dans les échantillons pas quantités atténué d'effluent de appréciables de métaux lourds sauf du fer et du manganèse. Les concentrations en fer (figure 17A) sont erralaissent supposer une tiques et atténuation importante. L'atténuation du fer est probablement due à la précipitation d'oxyhydroxydes de fer, lesquels sont éliminés ensuite par filtration. On doit cependant faire remarquer que si les expériences avaient été faites dans des conditions anoxiques, la précipitation et l'élimination du fer auraient pu ne pas se produire.

Les colonnes d'atténuation S3, S4, S5, S7 et S8 ont libéré du manganèse après l'addition de quelques litres d'eau de percolation (figure Les concentrations élevées en 17B). manganèse de l'effluent indiquent une désorption ou dissolution possible. Par contre, dans la colonne S6, plus de 50 % du manganèse a été éliminé au cours des expériences d'atténuation de l'eau de percolation. La capacité des sédiments de la colonne S6 à atténuer le manganèse peut tenir à leur teneur très élevée en matières organiques (tableau 4) et au degré de décomposition de ces matières (annexe C). Les résultats pour les colonnes S3 et S4 sont erratiques et ne montrent aucune tendance particulière.

Sulfate, phosphate, nitrate-nitrite, ammonium et bicarbonate

Les données sur l'atténuation du sulfate, du phosphate, des nitrates et nitrites, de l'ammoniac et du bicarbonate dans les eaux de percolation sont illustrées aux figures 18, 19 et 20. Les courbes critiques pour ces complexes ioniques sont mal définies pour tous les types de sédiments étudiés.

Les concentrations en sulfates et en phosphates de l'effluent provenant des colonnes n'ont ni augmenté ni diminué d'une façon régulière par rapport aux valeurs initiales dans l'eau de percolation (figure 18). Les résultats pour les sulfates dans les colonnes S5, S6, S7 et S8, après l'addition de 8 L d'eau de percolation, pourraient laisser supposer que du sulfate a été libéré; cependant, cette augmentation dans le rapport C/C_O a été en grande partie le résultat d'une diminution de la concentration en sulfate de l'eau de percolation brute.

La concentration en nitrates et nitrités de l'effluent a augmenté d'une façon importante par rapport à la concentration dans l'eau de percolation (figure 19A). La présence de la plus grande partie des nitrates et nitrites a été probablement le résultat de la nitrification de l'ammonium, car les concentrations en ammonium ont été largement réduites au cours du passage de l'eau de percolation à travers les colonnes (figure 19B). Une certaine quantité d'ammonium a pu se volatiliser sous la forme de NH3, mais, étant donné que le pH est resté presque neutre (pH 7.0 + 0.5) pendant les expériences, ce phénomène а vraisemblablement été peu important (Haan et Zwerman, 1976).

La figure 20 donne les rapports C/Co du bicarbonate. Après l'addition de seulement quelques litres d'eau de percolation, un rapport C/C_O relativement stable inférieur à 1.0 a été atteint. Il semble que, pour les colonnes S5, S6, S7 et S8, il existe une relation directe entre l'ampleur de l'atténuation du HCO3 et la perte à la calcination (tableau 3b). L'oxydation du fer et la formation de dioxyde de carbone dans les sédiments pourraient être à l'origine de la diminution de la concentration en bicarbonate. On peut représenter ce processus par la réaction suivante:

(1) $2Fe^{3+}(aq)+3H_{2}O \neq Fe_{2}O_{3}(s)+6H^{+}(aq)$

(2) $6H^+(aq) + 6HCO_3(aq) \approx 6H_2CO_3$ $\approx 6H_2O + 6CO_2(g)$

D'autres réactions biochimiques/géochimiques faisant intervenir probablement des minéraux carbonatés peuvent aussi influer sur la concentration en bicarbonate.

11 - 2**2**3 - 2017

Expériences de remobilisation

Les résultats analytiques pour tous les échantillons prélevés au cours des expériences de remobilisation sont présentés sous forme de tableau à l'annexe E.

Le pH de l'eau de pluie simulée est passé de 3.6 à 7 environ au fur et à mesure que la solution a migré vers la base de chaque colonne. Dans toutes les colonnes de sédiments organiques sur lesquelles on a fait des essais (S5, S6 et S8), le pH s'est stabilisé à 7.0 dans les 60 cm supérieurs. Les valeurs initiales du rH de l'eau de pluie (400 mV) ont été réduites à 250-320 mV dans les 30 cm supérieurs de chaque colonne contenant des sédiments riches en matières organiques, alors que les valeurs du rH dans le loam sableux (colonne S3) ont baissé jusqu'à 200-220 mV.

Les données portant sur l'élution avec l'eau de pluie des colonnes S3, S5, S6 et S8 sont reportées sur graphique à la figure 21. Les concentrations en calcium, en magnésium, en sodium et en potassium sont données en fonction du volume de solution éluée à la base de chaque colonne. En général, on a remarqué que la concentration des principaux éléments augmente d'abord, atteint un maximum après l'addition de quelques litres d'eau de pluie simulée, puis baisse d'une façon continue jusqu'à la fin de l'expérience. L'augmentation initiale de la concentration s'explique par la méthode expérimentale. Avant de commencer les expériences, on a saturé les colonnes d'eau de pluie simulée en les remplissant par le bas. Ainsi, au début des expériences, les premiers échantillons recueillis à la base de chaque colonne contenaient de l'eau de remplissage. La concentration des constituants a augmenté initialement car l'eau de remplissage, au sommet de la colonne, s'est d'abord mélangée avec les sédiments, puis a élué une

Figure 21. Valeurs de qualité de l'eau après remobilisation des contaminants pour les colonnes S3, S5, S6 et S8.

très forte proportion des constituants. On a remarqué que les courbes de concentration de l'éluat étaient similaires à celles de la figure 21 pour le bicarbonate, le sulfate et le fer. Dans toutes les colonnes sur lesquelles on a effectué des essais, les concentrations en fer et en manganèse étaient inférieures à 1 mg/L, ce qui laisse supposer que la remobilisation de ces éléments n'était pas importante dans les conditions expérimentales.

Les différences de conductivité hydraulique dans les colonnes S5. S6 et S8 (annexe A) se sont traduites par des débits différents d'eau de pluie simulée à travers les colonnes. Néanmoins. les concentrations en principaux ions dans l'éluant étaient similaires pour toutes les colonnes (comparer les figures 21B, 21C et 21D). Les résultats laissent supposer que l'élution est relativement rapide.

Principaux cations échangeables

A la figure 22, on a tracé la courbe des données pour les colonnes S5 et S7 sur le calcium, le magnésium, le sodium et le potassium échangeables qu'on a obtenues à partir des échantillons de sédiments prélevés à différentes étapes des expériences d'atténuation et de remobilisation. On n'a remarqué aucune différence statistiquement significative dans les concentrations en calcium échangeable entre les sédiments contaminés, les sédiments lavés par l'eau de pluie et les sédiments non contaminés, bien que du calcium ait été libéré pendant les expériences d'atténuation et de remobilisation. On n'a pas décelé de pertes de calcium dans les résultats du calcium échangeable car la quantité de calcium libérée était très petite par rapport à la quantité totale contenue dans les sédiments. Par contre, les concentrations en magnésium, en sodium et en potassium échangeables étaient beaucoup plus grandes dans les sédiments contaminés que dans 165 sédiments non contaminés correspondants (figure 22A). Même après élution avec l'eau de pluie simulée, ces concentrations étaient encore plus grandes que celles dans les sédiments non contaminés, mais la différence movenne, particulièrement pour le sodium, était réduite (figure 22B).

Effets potentiels des eaux de percolation d'une décharge sur la qualité des eaux souterraines dans le marais de Big Swamp

D'après les données obtenues dans la présente étude, on peut estimer l'effet potentiel sur la qualité des eaux souterraines de l'aménagement éventuel d'une décharge dans le marais de Big Swamp.

Aux figures 23, 24, 25 et 26, on compare les concentrations de différents constituants de l'eau de percolation brute et de l'eau atténuée avec celles des eaux souterraines naturelles de la région de Big Swamp. Les concentrations en calcium, en magnésium, en sodium, en potassium, en ammonium, en fer, en manganèse, en bicarbonate et en chlorure sont plus élevées dans l'eau de percolation brute que dans les eaux souterraines naturelles.

Des données obtenues dans les expériences d'atténuation indiquent que le chlorure ne sera pas retenu par les sédiments, mais que le mélange initial de l'eau de percolation avec sédiments les organiques et inorganiques de Big Swamp aura comme résultat des baisses dans les concentrations en magnésium, en potassium, en sodium, en ammonium, en fer, en métaux à l'état de traces et en bicarbonate. Pour le sodium, le magnésium et, à l'exception des sédiments inorganiques, le potassium, la capacité d'atténuation est limitée, comme l'indique l'augmentation lente des concentrations dans l'effluent

Figure 22. Variations des concentrations des principaux cations échangeables à différentes étapes des expériences d'atténuation et de remobilisation: A - sédiments non contaminés et sédiments complètement contaminés; B - sédiments non contaminés et sédiments lavés par l'eau de pluie.

Figure 23. Comparaison des teneurs de l'eau de percolation brute, de l'eau de percolation atténuée et des eaux souterraines de Big Swamp en calcium, magnésium, sodium et potassium.

Figure 24. Comparaison des teneurs de l'eau de percolation brute, de l'eau de percolation atténuée et des eaux souterraines de Big Swamp en fer, manganèse, bicarbonate et chlorure.

Figure 25. Comparaison des teneurs de l'eau de percolation brute, de l'eau de percolation atténuée et des eaux souterraines de Big Swamp en ammonium et nitrate-nitrite.

provenant des colonnes au cours des expériences d'atténuation. De plus, les résultats obtenus à partir des expériences de remobilisation ont montré que le sodium, le potassium et le magnésium peuvent être facilement éliminés des sédiments (figures 21 et 22). Par conséquent, ces cations ne éliminés seront pas d'une facon permanente de l'eau de percolation au contact avec les sédiments, mais la vitesse de migration de chaque cation sera retardée par rapport au débit des eaux souterraines.

Le mélange de l'eau de percolation d'une décharge avec les sédiments organiques et inorganiques devrait entraîner des concentrations accrues en calcium et en manganèse. Par contre, les concentrations en ammonium, en fer et en métaux à l'état de traces seront réduites à des valeurs égales ou inférieures aux concentrations moyennes naturelles. Les résultats obtenus dans les expériences de remobilisation indiquent que l'élimination du fer et des métaux à l'état de traces sera permanente, du moins si les conditions d'oxydation Les données à la figure 19 dominent. laissent supposer que l'ammonium sera converti en nitrates et nitrites, dont les concentrations dépasseront de beaucoup les concentrations naturelles.

Le mélange de l'eau de percolation avec les sédiments devrait se traduire par une réduction de la concentration en bicarbonate, mais pas à une valeur caractéristique des eaux souterraines naturelles de la région. La réduction observée du bicarbonate peut être une conséquence de la précipitation des carbonates, l'eau de percolation étant sursaturée en calcite (tableau 7).

Le passage de l'eau de percolation à travers le milieu souterrain de la région de Big Swamp ne devrait pas modifier sensiblement la DBO5 ou la concentration en phosphates. Cependant, la concentration en sulfates pourrait augmenter au moment initial de contact entre l'eau de percolation et les sédiments organiques.

En résumé, la percolation des eaux d'une décharge dans le milieu souterrain de Bia Swamp devrait modifier la qualité des eaux souterraines locales. Les concentrations en chlorure, en calcium, en sodium, en potassium, en manganèse, en nitrates et nitrites et en bicarbonate augmenteront par rapport aux concentrations naturelles. Les concentrations en chlorure, en ammonium, en manganèse et en calcium pourraient dépasser les concentrations acceptables dans les consommation eaux de domestique (McNeely et coll., 1979). Au fur et à mesure que l'eau de percolation migre à travers les sédiments, la concentration de ces derniers éléments sera réduite par dilution et dispersion, phénomènes qui sont les plus marqués au cours de la période de ruissellement au printemps. Si les eaux de la percolation atteignent nappe aquifère plus profonde située dans le calcaire, la dilution et la dispersion seront beaucoup moins marquées. Aυ cours de la migration des eaux de percolation à travers les sédiments non consolidés, les éléments tels que le sodium, le potassium et le magnésium sont séparés par chromatographie, étant donné que leurs vitesses de déplacement sont retardées par rapport au débit des eaux souterraines. Le fer et les métaux à l'état de traces devraient être retenus efficacement par les sédiments et ne devraient pas être entraînés loin de l'emplacement de la décharge.

CONCLUSION

Les données obtenues dans la présente étude permettent d'évaluer l'efficacité relative des sédiments organiques, par rapport aux matériaux clastiques à grains fins, à atténuer les contaminants potentiels dans les eaux de percolation d'une décharge. Pour tous les éléments, à l'exception du potassium, la capacité d'atténuation des substances organiques est celle des sédiments similaire à inorganiques (figures 14 à 20). On doit cependant faire remarquer que les expériences ont été effectuées en volumes égaux de utilisant des sédiments organiques et de sédiments poids sec, inorganiques. En la sédiments dans les quantité de matières inorganiques colonnes de était environ trois fois celle dans les colonnes de matières organiques. Par conséquent, en poids sec, les sédiments organiques sont beaucoup plus efficaces.

La conductivité hydraulique des sédiments organiques est relativement élevée, et ces matériaux ne seraient par conséquent pas efficaces pour réduire la vitesse de déplacement des eaux de percolation provenant d'une Néanmoins, on ne devrait décharge. nécessairement considérer la pas présence de sédiments organiques comme défavorable lors du choix d'un lieu de décharge. Des sédiments clastiques de conductivité hydraulique similaire $(10^{-1} \text{ à } 10^{-2} \text{ cm/s})$, contenant des (Freeze et Cherry, sables propres auraient probablement une 1979), capacité d'atténuation beaucoup plus sédiments des faible que celle volumes idenmême à organiques, Etant donné que les eaux de tiques. percolation suivront la voie la plus simple, c'est-à-dire à travers les les plus perméables d'une unités décharge, il serait plus avantageux si plus perméables horizons les les eaux de Les étaient organiques. percolation seraient alors sélectivement canalisées vers les horizons l'atténuation serait οù organiques relativement efficace. De plus, étant donné que le débit des eaux souterraines est relativement rapide dans les horizons organiques, l'importance de la dispersion et de la dilution augmenterait.

RECHERCHES FUTURES -- RECOMMANDATIONS

Les résultats obtenus dans les expériences effectuées au cours de la présente étude ont montré que les sédiments riches en matières organiques peuvent effectivement atténuer certains contaminants potentiels dans l'eau de percolation d'une décharge De plus, les expériences contrôlée. d'élution ont montré jusqu'à quel point les processus d'atténuation sont réversibles. On recommande d'effectuer des expériences similaires sur le terrain en utilisant des techniques à système fermé pour s'assurer que l'eau de percolation ne libère pas de gaz ou n'entre pas en contact avec l'atmos-Dans des conditions, il est phère. possible qu'on obtienne des résultats différents pour certains éléments tels que le fer et peut-être pour d'autres métaux à l'état de traces. La recherche future doit aussi porter sur la définition des mécanismes impliqués dans le processus d'atténuation et les conditions géochimiques dans lesquelles ces processus se produisent.

REFERENCES

- Casagrande, D.J. et L.D. Erchull. 1976. Metals in Okefenokee peat-forming environments: relation to constituents found in coal. Geochim. Cosmochim. Acta, vol. 40, pp. 387-393.
- Casagrande, D.J. et L.D. Erchull. 1977. Metals in plants and waters in the Okefenokee swamp and their relationship to constituents found in coal. Geochim. Cosmochim. Acta, vol. 41, pp. 1391-1394.
- Chapman, L.J. et D.F. Putnam. 1972. Physiography of south central and southeastern portions of southern Ontario. Ministère ontarien des Mines et des Affaires du Nord, cartes 2226 et 2227.

- Rukavina, N.A. et G.A. Duncan. 1970. F.A.S.T. - Fast analysis of sediment texture. Proc. 13th Conf. Great Lakes Research, Int. Assoc. Great Lakes Research, pp. 274-281.
- Senesi, N., S.M. Griffith, M. Schnitzer
 et M.G. Townsend. 1977. Binding
 of Fe³⁺ by humic materials.
 Geochim. Cosmochim. Acta, vol.
 41, pp. 969-976.
- Szalay, A. 1973. Retention of micronutrient cations by humic acids and deficiency of plants on peat soils. *Dans* Advances in

Organic Geochemistry, Pergamon, Oxford, B. Tissot et F. Bienner (réds.), pp. 841-848.

- Szalay, A. et M. Szilagyi. 1968. Accumulation of microelements in peat humic acids and coal. Dans Advances in Organic Geochemistry, Pergamon, Oxford, P.A. Scheneck et I. Havenaar (réds.), pp. 567-578.
- Watt, W.E., W.A. Gorman et J.W. Ambrose. 1973. Groundwater resources of Prince Edward County. Université Queen's, Kingston (Ontario).

- Cheshire, M.V., M.L. Barrow, B.A. Goodman et C.M. Mundie. 1977. Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochim. Cosmochim. Acta, vol. 41, pp. 1131-1138.
- Coker, W.B. 1974. Lake sediment geochemistry in the Superior province of the Canadian Shield. Thèse de doctorat non publiée, Département des sciences géologiques, université Queen's, Kingston (Ontario).
- Crerar, D.A., R.K. Cormick et H.L. Barnes. 1972. Organic controls on sedimentary geochemistry of manganese. Acta Mineral. Petrogr., vol. 20, n^o 2, pp. 217-226.
- Davis, J.A. et J.O. Leckie. 1978. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environ. Sci. Technol., vol. 12, n^O 12, pp. 1309-1315.
- Foster, J.R. 1973. The efficiency of various digestion procedures on the extraction of metals from rocks and rock-forming minerals. Can. Inst. Min. Metall. Bull., vol. 66, pp. 85-92.
- Frape, S.K. 1979. Interstitial waters and bottom sediment geochemistry as indicators of groundwater seepage. Thèse de doctorat non publiée, Département des sciences géologiques, université Queen's, Kingston (Ontario) 322 p.
- Freeze, R.A. et J.A. Cherry. 1979. Groundwater. New Jersey: Prentice-Hall.
- Green, J.B. et S.E. Manahan. 1977. Cupric ion binding by coal humic acids at pH's 1-3. Can. J. Chem., vol. 55, pp. 3248-3254.
- Griffin, R.A., K. Cartwright, N.F. Shimp, J.D. Steele, R.R. Ruch, W.A. White, G.M. Hughes, et R.H. Gilkeson. 1976. Attenuation of pollutants in municipal landfill leachate by clay minerals; Part 1 - Column leaching and field verification. Ill. State Geol. Surv. EGN 78.

- Haan, F.A.M. et D.J. Zwerman. 1976. Pollution of soil. Dans Soil Chemistry A -- Basic Elements, Developments in Soil 5A. Bolt, G.H. et M.G.M. Bruggenwart (réds.), pp. 192-263.
- Hem, J.D. 1970. Study and interpretation of the chemical characteristics of natural water. 2^e éd. U.S.Geol. Surv. Water-Supply Pap. 1473.
- Hesse, P.R. 1971. A Textbook of Soil Chemical Analysis. London: John Murray Publishers Ltd.
- Kaila, A. 1956. Determination of the degree of humification in peat samples. J. Sci. Agric. Soc., Finl., vol. 23, pp. 18-35.
- Levanidov, L. Ya. 1957. Manganese in the geochemical landscape of the South Ural forest-steppe. Uch. Zap. Chelyab. Otdel. Geograf. Obshchestva, SSSR, pp. 137-143.
- Liberty, B.A. 1960. Belleville and Wellington map-areas, Ontario. Geol. Surv. Can. Pap. 60-31.
- McNeely, R.N., V.P. Neimanis et L. Dwyer. 1979. Références sur la qualité des eaux - Guide des paramètres de la qualité des eaux. Direction générale des eaux intérieures, Direction de la qualité des eaux, Ottawa.
- Mirynech, E. 1962. Pleistocene geology of the Trenton-Campbellford map-area, Ontario. Thèse de doctorat, université de Toronto.
- Picard, G.L. et G.T. Felbeck Jr. 1976. The complexation of iron by marine humic acid. Geochim. Cosmochim. Acta, vol. 40, pp. 1347-1350.
- Rashid, M.A. 1974. Adsorption of metals on sedimentary and peat humic acids. Chem. Geol., vol. 13, pp. 115-123.
- Reuter, J.H. et E.M. Perdue. 1977. Importance of heavy metal-organic matter interactions in natural waters. Geochim. Cosmochim. Acta, vol. 41, pp. 325-334.
- Richards, N.R. et F.F. Morwick. 1948. Soil survey of Prince Edward County. Rapport n^O 10 de l'Ontario Soil Survey.

ANNEXE A

j.

,

CALCULS DE LA CONDUCTIVITÉ HYDRAULIQUE DE CERTAINES COLONNES DE SÉDIMENTS

		Tableau A-1	
	Cond hydr	uctivité aulique	Temps écoulé depuis
Colonne	Q cm ³ /s	K cm/s	de l'élution
S3	0.008	1.47×10^{-4}	46 min
	0.010	1.84×10^{-4}	126 min
	0.010	1.84×10^{-4}	197 min
	0.015	2.75×10^{-4}	265 min
	0.013	2.39 × 10 ⁻⁴	337 min
Moyenne	0.011	2.06 × 10 ⁻⁴	
S5	4.55	8.19 × 10 ⁻²	10 min
	4.65	8.37 X 10 ⁻²	14 min
	4.76	8.57×10^{-2}	16 min
	4.35	7.83×10^{-2}	28 min
	4.35	7.83×10^{-2}	36 min
	4.26	7.67×10^{-2}	50 min
	4.08	7.34×10^{-2}	54 min
	4.08	7.34×10^{-2}	64 min
	4.00	7.20×10^{-2}	68 min
	3.85	6.93 X 10 ⁻²	72 min
	3.85	6.93×10^{-2}	76 min
Moyenne	4.25	7.65×10^{-2}	
S6	16.67	3.00×10^{-1}	1 min
	14.29	2.57 X 10 ⁻¹	2 min 10 s
	14.29	2.57 X 10 ⁻¹	3 min 20 s
	14.29	2.57×10^{-1}	4 min 30 s
	14.29	2.57×10^{-1}	5 min 40 s
Moyenne	14.77	2.57×10^{-1}	

- - -

]

*

1

	Cond hydra	Temps écoulé depuis	
Colonne	Q cm ³ /s	K cm/s	de l'élution
S8	4.17	7.51×10^{-2}	10 min
	2.70	4.86×10^{-2}	16 min 10 s
	3.23	5.81×10^{-2}	21 min 20 s
	3.03	5.45×10^{-2}	26 min 50 s
	3.13	5.63×10^{-2}	32 min 10 s
	3.13	5.63×10^{-2}	37 min 30 s
	3.03	5.45×10^{-2}	43 min 0 s
	3.03	5.45×10^{-2}	48 min 30 s
	3.33	5.99×10^{-2}	53 min 30 s
	2.22	4.00×10^{-2}	60 min 0 s
	5.26	9.47×10^{-2}	63 min 10 s
	4.17	7.51×10^{-2}	67 min 30 s
	3.85	6.93×10^{-2}	71 min 50 s
	3.70	6.66×10^{-2}	76 min 20 s
	3.70	6.66×10^{-2}	80 min 50 s
	3.70	6.66×10^{-2}	85 min 25 s
	4.17	7.51×10^{-2}	67 min 30 s
	3.85	6.93×10^{-2}	71 min 50 s
	3.70	6.66×10^{-2}	76 min 20 s
	3.70	6.66×10^{-2}	80 min 50 s
	3.70	6.66×10^{-2}	85 min 25 s
	3.33	5.99 X 10 ⁻²	90 min 25 s
	3.70	6.66×10^{-2}	94 min 55 s
	3.75	6.75×10^{-2}	99 min 22 s
	3.05	5.49×10^{-2}	104 min 50 s
	3.33	5.99×10^{-2}	109 min 50 s
	3.03	5.45×10^{-2}	115 min 20 s
	3.45	6.21×10^{-2}	120 min 10 s
	3.03	5.45×10^{-2}	125 min 40 s
	3.64	6.55×10^{-2}	130 min 15 s
	3.70	6.66 X 10 ⁻²	144 min 20 s
	2.94	5.29×10^{-2}	160 min 40 s
	3.85	6.93×10^{-2}	166 min 0 s
	3.33	5.99 X 10 ⁻²	171 min 0 s
	3.28	5.90 X 10 ⁻²	176 min 5 s
	3.45	6.21×10^{-2}	180 min 55 s
	3.39	6.10×10^{-2}	185 min 50 s
	3.45	6.21 X 10 ⁻²	190 min 40 s
	3.57	6,43 X 10 ²	195 min 20 s
	3.33	5.99 X 10 -	200 min 20 s
	3.45	6.21 X 10 ⁴	205 min 10 s
	3.13	5.63×10^{-2}	210 min 30 s
	2.80	5.15 X 10 *	216 min 20 s
	3.33	5.99 X 10	221 min 20 s
	2.99	5.38 X 10 *	226 min 55 s
	3.45	6.21 X 10 ⁻²	231 min 45 s
	3.57	6.43 X 10 ⁻²	236 min 25 s
	3.57	6.43 X 10 ⁻²	241 min 5 s
	3.77	6.79 X 10 ⁻²	245 min 20 s
Moyenne	3.41	6.14 × 10 ⁻²	

Tableau A-1. (suite)

ANNEXE B

CALCULS DE LA SATURATION EN CALCITE ET EN DOLOMITE DES EAUX SOUTERRAINES DE BIG SWAMP

L'intensité ionique des eaux souterraines de Big Swamp est une moyenne définie par l'équation :

$$I = 1/2 \Sigma Z_i^2 \cdot C_i$$

où I = l'intensité ionique des eaux souterraines,

Z_i = la charge de chaque type d'ion, et

C_i = la concentration de chaque type d'ion en moles par litre.

L'intensité ionique des eaux souterraines utilisée dans le calcul de l'équation précédente est égale à 2×10^{-2} mol/L. Les valeurs suivantes sont les coefficients d'activité du

bicarbonate, du calcium et du magnésium, lesquels ont été calculés à l'aide de l'équation augmentée de Debye-Hückel :

$$\gamma_{HCO_3}^{} = 0.90$$

 $\gamma_{Ca^{2+}}^{} = 0.68$
 $\gamma_{Mg^{2+}}^{} = 0.69$

Les produits théoriques d'association de l'ionisation à 25° C pour la calcite et la dolomite sont respectivement 0.955 $\times 10^{2}$ et 0.912 $\times 10^{4}$, et sont calculés à l'aide des équations suivantes :

$$CaCO_3 + H^+ \rightleftharpoons HCO_3^- + Ca^{2+}$$

$$CaMg(CO_3)_2 + 2H^+ \rightleftharpoons 2HCO_3^- + Ca^{2+} + Mg^{2+}$$

Tableau B-1. Concentrations ioniques dans les eau	c souterraines de Big Swamp, le 20 septembre 1977
---	---

		Mesures su	Produits de sol	ubilité calculés (K)			
Puits	pH	HCO ₃ ⁻ (X10 ⁻³ mol/L)	Ca ²⁺ (X10 ⁻³ mol/L)	$\frac{\text{Mg}^{2+}}{(\times 10^{-4} \text{ mol/L})}$	$\begin{array}{c} \text{CaCO}_{3} \\ \text{(calc. X10}^2) \end{array}$	$\frac{\text{CaMg(CO_3)}_2}{(\text{calc. X 10}^4)}$	
	75	6.03	2.98	7.00	3.81	3.49	
2	7.5	4.20	3.25	13.99	3.64	5.84	
2	7.5	6.08	2.55	9.05	3.28	3.92	
3	7.5	5.80	3.38	9.47	5.23	5.26	
4 . C	7.0	4 84	4.95	17.28	12.75	58.15	
5	7.9	672	3.40	7.82	9.66	21.99	
8	7.8	4 75	2.88	7.41	5.78	8.82	
0	7,0	-	_	-	-	<u> </u>	
° 0	70	631	3.15	6.58	10.58	23.95	
9 10	7.5	5 20	2.33	6.17	2.57	1.79	
10	7.5	4.75	3.58	9.05	4.54	5.33	
11	7.0	4 00	4.05	8.64	5.44	6.47	
12	79	4.00	4.43	10.29	9.43	21.18	
13	7.5	8.39	2.75	9.88	3.89	5.56	
14	74	6.87	4.80	10.29	5.55	6.76	
15	7.4	5.28	1.40	13.99	3.12	9.99	
10	7.6	5.11	2.73	6.17	3.72	3.20	
17	7.0	6 3 9	3.80	6.58	6.48	7.45	
18	7.0	4.80	1 73	6.58	2.22	1.91	
19	7.0	4.00	265	8 23	3.84	4.69	
20	7.5	5 1 6	1.25	7 82	1.72	1.90	
21	7.6	5.10	1.25	18 11	2.87	8.51	
22	7,7	4./3	1.00	8 23	8.56	14.70	
23	7.6	/.04	4.20	9.47	2.63	13.73	
24	7.6	5.48	1.80	J.+ /			

		Mesures su		Produits de solubilité calculés (K)			
Puits	рН	HCO ₃ ⁻ (X10 ⁻³ mol/L)	Ca ²⁺ (X10 ⁻³ mol/L)	Mg ²⁺ (×10 ⁻⁴ mol/L)	CaCO ₃ (calc. X10 ²)	$CaMg(CO_3)_2$ (calc. X10 ⁴)	
1	7.9	6.72	2.63	6.58	9.41	22.68	
2	7.9	4.39	1.18	10.29	2.75	6.79	
3	7.8	6.23	2.13	8.64	5.61	13.08	
4	7.9	6.39	2.25	8.23	7.65	21.95	
5	8.0	4.90	1.30	11.93	4.27	17.13	
6	8.0	7.05	2.58	6.58	12.19	38.81	
7	7.9	5.00	1.78	6.58	4 4 7	8.50	
8	_	_	_	_	· _	-	
9	8.0	6.39	2.43	5.35	1041	24 4 2	
10	8.0	5.48	2.05	5.35	7.52	15.15	
11	8.0	5.20	1.85	617	6.57	14 20	
12	7.6	4.08	1.58	4.53	1 72	0.87	
13	7.8	4.20	1.58	5 3 5	2.81	273	
14	_	_	2.00	6 58	2.01	2.1.5	
15	7.4	6.87	2.65	6.58	3.06	2.30	
16	7.8	4.80	1.73	6 58	3 51	4.80	
17	7.4	5.16	2.13	4 94	1.85	0.81	
18	7.5	6.00	2.68	4 53	3.40	2.01	
19	7.6	4.56	1.50	7.00	1.82	1.50	
20	7.7	5.72	2.78	8 23	5 34	2.55	
21	7.8	4.89	1.80	7.82	3.54	6.05	
22	8.1	4.48	0.95	13.99	3.72	10.10	
23	7.8	6.59	2.98	5 3 5	5.59 8 30	17.43	
24	7.8	5.48	2.35	6.58	5.44	8.53	

Tableau B-2. Concentra	ations ioniques dans le	s eaux souterraines de B	ig Swamp	, le 19 octobre 1977
------------------------	-------------------------	--------------------------	----------	----------------------

ANNEXE C

INDICE DES PYROPHOSPHATES – CLASSIFICATION HISTOSOL DE CERTAINS SÉDIMENTS ORGANIQUES DE BIG SWAMP

Code de l'échantillon	Valeur de l'indice des pyrophosphates	Teinte Munsell	Valeur de notation des couleurs/chroma	Classification histosol		
S5-1-1	3	10 JR	7/4	saprique/hémique		
S5-1-2	2	10 JR	6/4	saprique/hémique		
S5-1-3	6	10 JR	8/2	till argileux		
S6-1-1	1	10 JR	4/3	saprique		
S6-1-2	1	10 JR	4/3	saprique		
S6-1-3	. 1	10 JR	3/2	saprique		
S7-1-1	2	10 JR	6/4	saprique/hémique		
\$7-1-2	2	10 JR	6/4	saprique/hémique		
\$7-1-3	2	10 JR	6/4	saprique/hémique		
S8-1-1	1	10 JR	4/3	saprique		
S8-1-2	2	10 JR	5/3	saprique		
S8-1-3	2	10 JR	5/3	saprique		

Tableau C-1. Sédiments non contaminés

Tableau C-2. Sédiments contaminés

Code de	Valeur de l'indice	Teinte	Valeur de notation	Classification
l'échantillon	des pyrophosphates	Munsell	des couleurs/chroma	histosol
	3	10 JR	7/4	saprique/hémique
S5-1-2-4	3	10 JR	7/4	saprique/hémique
\$5-1-4-6	2	10 JR	6/4	saprique/hémique
S5-1-6-8	2	10 JR	6/4	saprique/hémique
S5-1-8-10	2	10 JR	6/4	saprique/hémique
S5-1-10-12	2	10 JR	6/4	saprique/hémique
\$5-1-12-14	2	10 JR	6/4	saprique/hémique
S5-1-14-16	2	10 JR	6/4	saprique/hémique
\$5-1-16-18	3	10 JR	7/4	saprique/hémique
S5-1-18-20	6	10 JR	8/2	till argileux
S5-1-20-22	6	10 JR	8/2	till argileux
\$5.1.27.24	6	10 JR	8/2	till argileux
S5-1-22-24	· · 6	10 JR	8/2	till argileux
S5-1-26-28	-	_		-
\$5-1-28-30	_	-	_	-
S6.1.0.2	1	10 JR	4/3	saprique
SG-1-0-2 SG-1-2-A	- 1	10 JR	4/3	saprique
SC-1-2-4	1	10 JR	4/3	saprique
50-1-4-0	1	10 JR	4/3	saprique
30-1-0-0	1	10 IR	4/3	saprique
50-1-8-10	1	10 JR	4/3	saprique
\$6-1-10-12	1	10 JK	4/3	saprique
S6-1-12-14	1	10 JK	4/3	saprique
S6-1-14-16	1	TOPK		

Code de l'échantillon	Valeur de l'indice des pyrophosphates	Teinte Munsell	Valeur de notation des couleurs/chroma	Classification histosol
\$6-1-16-18	 2	10 19	6/4	
S6-1-18-20	-	10 JR	4/3	saprique
S6-1-20-22	1	10 JR 10 JR	3/3	saprique
S6-1-22-24	1	10 JK	3/2	saprique
S6-1-24-26	1	10 JK 10 JR	3/2	saprique
S6-1-26-28	1	10 JK	5/2	saprique
S6-1-28-30		_		_
S7-1-0-2		10 IP	-	
\$7-1-2-4		10 JK 10 IP	//3	saprique/nemique
\$7-1-2-4 \$7-1-4-6	3	10 JR	0/3	saprique/hemique
\$7-1-6-9	4	10 JR 10 JR	1/3	saprique/nemique
S7-1-0-0	2	10 JK 10 JR	6/4	saprique/nemique
57-1-0-10	2	10 JK	6/4	saprique/hemique
57-1-10-12	2	10 JK	6/4	saprique/hémique
57-1-12-14	3	10 JK	7/4	saprique/hémique
57-1-14-10	2	10 JR	6/4	saprique/hémique
S/-1-16-18	2	10 JR	6/4	saprique/hémique
S7-1-18-20	2	10 JR	6/4	saprique/hémique
\$7-1-20-22	2	10 JR	6/4	saprique/hémique
S7-1-22-24	2	10 JR	6/4	saprique/hémique
S7-1-24-26	2	10 JR	6/4	saprique/hémique
S7-1-26-28	2	10 JR	6/4	saprique/hémique
S7-1-28-30	2	10 JR	6/4	saprique/hémique
S8-1-0-2	1	10 JR	4/3	saprique
S8-1-2-4	1	10 JR	4/3	saprique
S8-1-4-6	2	10 JR	5/3	saprique
S8-1-6-8	2	10 JR	5/3	saprique
S8-1-8-10	-		-	_
S8-1-10-12	_	-	-	_
S8-1-12-14	1	10 JR	4/3	saprique
S8-1-14-16	1	10 JR	4/3	saprique
S8-1-16-18	2	10 JR	5/3	saprique
S8-1-18-20	2	10 JR	5/3	saprique
S8-1-20-22	2	10 JR	5/3	saprique
S8-1-22-24	2	10 JR	5/3	saprique
S8-1-24-26	2	10 JR	5/3	saprique
S8-1-26-28	2	10 JR	5/3	saprique
S8-1-28-30	2	10 JR	5/3	saprique

.

Tableau C-2. (suite)

ANNEXE D

RAPPORT DES CONCENTRATIONS INITIALES AUX CONCENTRATIONS FINALES (C/C₀) POUR LES EXPÉRIENCES DE CONTAMINATION DES SÉDIMENTS

Rapport d'atténuation de l'eau de percolation (C/C₀)

	Échantillon	HCU3	MG	NA	C A	к	FL	MN	CL	NO 3	NH4	504	P04
\mathbf{A}	501150782 222 22000 11 22000 11 23 50 11 50 789 00 67 67 87 90 19 01 20 22 22 22 20 00 67 67 87 90 19 01 20 20 20 20 20 20 20 20 20 20 20 20 20	00167601000040000000000075516630893501100000004744N848651N9N030000000000000000000000000000000000	06806024406503378471248057068063410930090505071071738746083472807976050694 02222333033033784712480570680634109302905777567745734517662666550694 00000000000000000000000000000000000	0234643605006878000000000005050630227475000000000870301021646127000000000000000000000000000000000000	C111111111C11C11111111111111110CCCCCCCC	031111122204606707000000000010117602676777352333866967702 83137900323866787 0200000000000000000000000000000000000	00000000000000000000000000000000000000	0449196702500553366360007700000829026401928503007670585446050180728388135405 00000236709304631101000007700000829026401928503007670585446050180728388135405 000002367093046311010000077000000829026401928503007670585446050180728388135405 0000000000000000000000000000000000	80695808010030000000000004842200000000000000000000		$\begin{array}{c} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	0000355900007000000000000000000007730000000000	

Rapport d'atténuation de l'eau de percolation (C/C₀)

Carrier States

600125 0 600126 0 600131 0 600V01 0 600V05 0 600V15 0 600V15 0 600V17 0 600V17 0 600V18 0	•54 0 •38 0 •41 0	•11 0	U-34 U-09	0.66	0.06	0.04	0.00	U+38	0.00	0.00	0.00	A . 6 8
00000000000000000000000000000000000000	00000000000000000000000000000000000000	••••••••••••••••••••••••••••••••••••	r 452197159816700000000001112455677890000000005819778771983952		00000000000000000000000000000000000000	00000000000000000000000000000000000000	09335329769074255990664500641550188551518599383440060880588905874 9024335329769074255990664500951650188551518599383440060880588905874 99024335329769074255990664500951650188551518599388440060880588905874 99024335329769074255990664500951650188551518599388440060880588905874	43 49 30 0 0 1 1 10 30 0 2 0 0 0 0 0 0 0 0 0 1 5 4 7 8 90 0 0 1 30 5 7 6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 5 3 0 5 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			01 01 131 31 2V 21 01 00 000 000 000 000 48 38 00 059 230 00 000 000 000 00 7 30 80 850 0 081 33 00 00 06 30 127 57 04 53 000000000000000000000000000000000	0021010066337000000000000000000002421100000000000000

ANNEXE E

RÉSULTATS DES EXPÉRIENCES DE REMOBILISATION DES CONTAMINANTS UTILISANT L'EAU DE PLUIE SIMULÉE

Le présent tableau renferme les résultats analytiques pour tous les échantillons prélevés lors des expériences de remobilisation.

RÉSULTATS EXPÉRIMENTAUX DE LA REMOBILISATION PAR L'EAU DE PLUIE

Code de l'échantillon	N ^{bre} de litres	Temps (min)	1 ^{er} sondage du rH	2 ^e sondage du rH	3 ^e sondage du rH	1 ^{er} sondage du pH	2 ^e sondage du pH	CA	MG MG⊀I	NA I LITRE==	K
\$5=000 \$5=001 \$5=002 \$5=003	00	0.08 0.00 0.50	220 220 220	220 220 220 220		5 ± 7 5 ⊾ 8 5 ± 8	6 • 0 6 • 1 6 • 0	14•0	0.1	1.0	0.5
\$5=004 \$5=005		1.00	220	220		6 • 1 6 • 2	6 • 0 6 • 0				
S5=006 S5=007		1.42	220	220		6.3	ě I				
š5=ŭŭá		1:37	220	220		6 • 3 6 • 3	8:1				
SS-009 SS-010		1.75	220	220		6 • 3	6.1				
\$5 - 011		2.17	220	220		6.4	6.1				
S5-012 S5-013		2.42	220	220		6 • 4	6+1				
\$5=014	<i>C</i> 1	2.75	220	220		6 . 4	6.1			-	
\$5=015	01	3.17	220	220		6.2	6.2	70.0	10+2	70.0	17.5
S5=017		4.33	230	220		5.9	6.2				
\$5 - 019		4.83	232	220		5.9	6.3				
\$5=029	62	2.17	237	324		5.9	6 • 4	· /· ···	19.0	10 1	0E 7
\$5-022	υL	6.83	237	217		5.9	0 • 4 6 • 4	10.0	10.0	10.0	25+1
S5=023		7.58	240	210		5.9	6.5				
\$5-925		9.00	240	215		5.9	6.5				
55-026 55-027	63	9.50	240	210		5-9	6.5	0.0	14 5	02 (0 h 5
\$5-028	03	10.00	242	212		5.9	6.6	90+0	1400	9 2 .U	24+5
55-029	6.4	12.00	245	212		5 - 9	6.6		<u> </u>	70 0	00.0
\$5 - 031	•	14.06	250	215		5.8	6.7	0200	747	(9.0	20.0
33-033	υ 5	12:89	255	217		5+8	6 • 7	8 M - U	7.6	45	177
\$5-034	•••	1A.00	257	217		5 • 8	6.8	4010		0.0.0	1/ • /
S5=035	00	20.00	260	220		5.7	6.8	A0 . (i	6.3	57 0	14.0
55-037	•	22.00	260	220		5.7	6.8	40.0	0.5	37.00	10.0
35-030 55-039	07	24.00	260	220		5.7	6 • 8	33.5	5.1	49.0	14.2
S5=040	-	26.00	260	220		5.7	6 • 8	33.3		4740	1444
33-042	ίo	28.00	260	220		5.8	6.8	28.5	4.4	42.0	13.4
35-043		30.00	260	220		5.9	6.8	7003		42.00	1 3 4 4
\$5-045	U Y	32.50	202	220		5.9	6.9	25.0	3.7	38.0	11.8
55-046		34.00	265	220		5 • B	6.9	/] • •	2	3010	1110
55-046	10	36.33	202	22V		5.7	6.9	23.5	3.3	36.0	11.2
55=049 55=050		3A.00	262	220		5+9	6 • 9				
\$5 - 051	11	40.08	202			2.1	0 + 7	21.0	2.9	32.0	10.4
32-025		42.00	262	222		5.7	7.0				

ទ្រ

Code de	N ^{bre} de	Temps	1 ^{er} sondage	2 ^e sondage	3 ^e sondage	1 ^{er} sondage	2 ⁸ sondage	CA	MG ►==MGZL	NA K	
l'échantilion	litres	(min)	du rH	du rH	du rH	du pri	du pri	20+0	2.1	30.0	9.1
55-054 55-055 55-055	14	44.00	262 262	2225		5 • 7 5 • 7	7:8	19•0	2.5	29.0	9.5
\$5-057 \$5-058	14	48.00 50.00 51.83	383	227		5:7	5:8	13+0	2.3	27.0	9.3
\$5=060 \$5=061	17	52.00	262	230		5 • 7 5 • 7	7:8	16+5	2.2	25.0	9.3
55=063 55=064	1	56.00	262 265 265	230 230 230		5 • 7 5 • 7 5 • 7	7 • 0 7 • 0 7 • 0		0 1	0 #	
S5-066 S5-067	10	60.67 62.00	265	230 300		5 • 7 5 • 7	7.0	16+4	2	24.0	7 0
S5-069 S5-070	17	64 • 45 66 • 00	265	228		5 a R 5 a 7	7 • 0 7 • 0	16.0	2.0	23.0	
S5-071 S5-072 S5-073	10	68.92 70.00	265	225		5 • 7	7 • 0 7 • 1	15+0	2.0	22.0	8.0
55-074 55-075 55-076	19	73.25 74.00	265	222		5.7	7.0	15.0	1.9	21.0	8•/
55-077 55-078	20	77.58 78.00	265	222		5.7	7•0 7•0	14•5	1.8	20.0	7 • 4
S5=080 S5=081 S5=082	94	80.00 81.00 82.00	208	225 225		5.7	7.0 Z.8	14.5	1.8	20.0	7.4
55-084 55-085	2.	83.20 84.88	288 289	225 230 222		5 • 7 5 • 9 6 • 1	7:0				
55-087 55-088 55-088 55-090 55-090 55-091		86.20 86.33 86.42 86.75 86.92				6 • 3 6 • 5 6 • 7 6 • 8	7.1				
55-092 55-093 55-094 55-094		87.00 87.42 88.00	262 260	218 218		6 a 6 6 a 7	7 • 1 7 • 1 7 • 0				
55-096 55-097		88.58 88.92	260	240 240		6.± 8 6:± 9 6:± 6	7•1 Z•1		۰ ۵	3 0	7 4
55-099 56-000 58-001	22 00 01	90.00 0.00	260	240		6 • 7 6 • 8 6 • 9	7 • 1 6 • 7 6 • 7	14.5 14.0 70.0	Q 1	70:8	28.5
S6=002 S6=003 S6=004 S6=004	02	G.67 1.00 1.50	260 260 265 272	240 240 240 240 240		6 • 9 6 • 9 6 • 8	6 • 7 6 • 7 6 • 7	05+0	8	98 . U	34.5
56-006 56-007 56-008	ذ ن	2.00 2.50 2.67	280 280	237		6.8	0 • 1 6 • 7	08.0	9.6	U9.U	41.0
56-009 56-010 56-011 56-012	04	3.00 3.50 4.00	277 298 300 305	235 230 230 230	ч. Т	6 • 7 6 • 6 6 • 6 6 • 6	6 • 8 6 • 8 6 • 9	90+0	7.3	91.U	35.0

RÉSULTATS EXPÉRIMENTAUX DE LA REMOBILISATION PAR L'EAU DE PLUIE

Code de l'échantillon	N ^{bre} de litres	Temps (min)	1 ^{er} sondage du rH	2 ^e sondage du rH	3 ^e sondage du rH	1 ^{er} sondage du pH	2 ^e sondage du pH	C A	MG MG⊀	NA LITRE	k
56-013 56-014	05	5.50	300 310	223 225		645	6 • 9 6 • 9	65+0	5+4	77.0	29.0
\$6-015 \$6-016	Ũ6	6 17 7 00	320	225		6.5	6.9	47+5	4.2	63+0	24.5
S6=017 S6=018	07	8.00	320	222		6.4	7.0	39+5	3.5	56 e U	22.5
S6-019 S6-020	08	A . 33	320	220		6.4	7.0	36+0	3.0	49.0	21.0
S6=021 S6=022 S4=025	09	10.00	320	220	ι,	6 . 3	7.0	31+0	2.0	45.0	18.0
S6=024	10	11.00	310	220		6 • 4	7.0	26.5	2.2	41.0	16.5
S6=026	11	12.33	320	220		6.5	6 • 9	28+5	2.4	41.0	16.5
S6-028	12	13.00	320	220		6.5	6.9	24 • U	2.0	37.0	15.0
S6-030 S6-031	13	14.67	337	220		6 • 4	6.9	21+5	1.7	33.0	13.5
S6=032 S6=033	14	15.83	340	220		6+3	0.9	19+5	1.5	30.0	12.5
\$6-034 \$6-035	15	17.00	345	220		6 • 1	6 • 9	18.5	1.5	28.0	11.2
\$6-036 \$6-037	16	18.17	345	215		6 • 1	0 6 7	17+0	1.3	26.0	10.8
56-038 56-039	17	10.33	350	215		6.0	0 • 7 4 0	16+Ŭ	1.2	25.0	10.3
56-040 56-041	10	20.50	350	215	·	6.0	6.9	15+5	1.2	23.0	9.5
\$6=042 \$6=043	19	21.67	350	215		6.0	6.9	17•0	1.2	22.0	9.3
56-044 56-045	20	22.83 23.00	355	215		6+0	6.9	17+0	1.1	20.0	8.7
56-046	21	24.00	355 355	215 215		519	8.9 6.9	16+5	1.0	20.u	8.7
56-048		25+50	355 340	212 210		6 = 0 6 = 0	6 • 9 6 • 9				
S6=051	22	26.00	345 350	215		6 = 0 6 + 0	7.0	16.0	1.0	20.0	8.3
56-053		27:50	388	213		8:1	7:2				
\$6=055 \$6=056		28.00	355	215		6 = 1 6 = 1	7.2				
56-057 56-058		29.50	355	215		6 • 1 6 • 2 6 • 2	7 • 3 7 • 3 7 • 4				

....

57

.

Code de M	N ^{bre} de	Temps	1 ^{er} sondage	2 ^e sondage du rH	3 ^e sondage du rH	1 ^{er} sondage du pH	2 ^e ⊧sondage du pH	CA MG NA K MG:/LITR:			
l'échantillon	litres	l (min)	aurm	QU IA	Guill			14.0	0.1	1	0.5
58-000 58-001	0:0	0.00		920	18()	6.7	6.7				
S8-002		1.00	240	210	100	0	4 7				
38-004		2.00	250	270	180	6. ≜ /	0+1		·		
58-005		2.50	240	270		6.7	6.7				
\$8=007 \$8		3:58	240	270	180	6.7	6.7				
S8=009 S8=010		4.50	240	205	180	6 • 7	6.7	87. L	4.0	57.u	18.5
58-011	01	6.00	240	260	180	0+0 6+8	6.7	4,			
58-012		7.00	235	260	185	6.9	6.7				
58-014		9.00	235	255	180	6.9	6.7	79 · U	6.5	82.0	27.5
S8=015	02	10.00	235	255	180	6.9	6.7				
58-017		12.00	230	255	180	6 4 9	0.17				
<u>şazyla</u>		13.00	230	238	180	8:3	8.7				
58-019		14.00	230	250	180	6.9	Q•7				
38-02Y		12:88	230	250	180	6.9	0.00	89U	7.4	91.0	31.0
\$8 022	03	14.18	230	250	180	6:+ 9	6.8				
58-023		18.00	230	250	188	6 • 9	2.8				
38-025		19.0 0	232	250	170	6.9	6.9				
58-026	6. h	20.00	232	230	110	·0 • ¥		70.0	6.1	81.U	28.0
58-027	04	22.00	235	250	178	6.9	6.9				
58-029		24.00	240	258	178	6.9	6.9				
58-030	05	26.00	240	200	110		• •	52•V	4.5	71.0	25.0
38-032	05	28.00	240	260	178	6+9	7.0				
\$8:933		30.90	348	288	178	8.8	5:8				
58-034	0.6	32.00	240				7.0	39+0	3.3	54.0	21.0
58-035		34.00	240	260	170	0 + D 4 - R	7.0				
58-037	0.0	36.60	240	200	110	C1:0 11		30.0	2.5	50.0	17+7
58-030	01	38.00	242	200	178	6+8	7.0				
\$8-040		40.00	245	260	178	0 + 0 6 + 8	7.1				
58-041	0.8	42.00	250	200	.,.			5.0	2.0	43.0	16.0
58-043	00	44.00	250	202	178	6.8	$\frac{7 + 1}{7 + 1}$				
\$8-044		46.00	250	202	170	0 # D 6 # B	7.I	_			
58-045	6.9	48.00	200				7 0	1.0	1.0	3/.0	14.0
58-049		38:00	250	262	178	6 » R	7.2			- .	
\$8=048	1.0	23.68	260	210	1/0	0 • 0		8.0	1.5	34.0	12.5
58-049	10	54.00	260	210	180	6 • B	<u>7.4</u>				
58- 051		57:00	260	270	180	- 0 + 0 A	7.5				
S8=052		5A.00	262	212	100	0.8 0					

RÉSULTATS EXPÉRIMENTAUX DE LA REMOBILISATION PAR L'EAU DE PLUIE

Code de l'échantillon	N ^{bre} de litres	Temps (min)	1 ^{er} sondage du rH	2 ^e sondage du rH	3 ^e sondage du rH	1 ^{er} sondage du pH	2 ^e sondage du pH	<u>с</u> А		NA LITRE	K
20-053	14	00.00	262	215	180	6 . 8	1.2	13.0	1	3200	11+7
S8=854	1.2	\$2.00	260	212	180	6:* 8	7.5		• •	38 0	10 5
S8-056	14	03:17	260	215	140	4 B	7.5	12+0	1.0	20 a V	10.1
58=057 Seeu5a		82:00	280	275	ÍŘŬ	8.48	7:5		• •		
58-059	13	07.50 68.00	260	215	180	A . A	7.5	11+0	0.9	20.00	10.0
58-060	•	78.00	260	275	îšŭ	6.8	7.5		A . D		a F
58-001	14	72.00	260	215	180	6.8	7.5	10+0	0.0	25.0	9.0
58-063		74.00	260	275	180	648	7.5				
\$8=065	15	76.00	260	215	180	6 • A	7.5	9 . Ú	0.8	23.0	9.0
58-066	-	78.00	262	278	180	6.8	7 • 4	,			,
38-088	16	80.00	265	411	182	6 + 8	7 • 4	9.0	0.7	23.0	8.5
58-378		82.80	295	329	182	6 • B	ζ•#	-			
58-071	17	85.42	270	200	103	0.6.0	/ 6 4	9.0	0.7	22.0	8.5
58=072 58=073	-	86.00	270	200	185	6 • 8	7 • 4		- •		
58-074		90.00	270	280		6 • 8 6 • 8	7 • 4				
58-075 58-076	10	20.42	270	2=(1	107	4 8	7 //	8.0	0.7	21.0	8.0
S8=077		94.00	270	260	- 190	0+0 6-8	7.4				
56=078 58=079	17	84.92	270	2	100		7 /	8•0	0.7	22.0	8.0
58-080		9A.00	275	260	190	0 • n 6 • 8	7.4				
58-081	20	99.22	075	2.	100		7 //	8 • 0	0.6	20.0	8.0
58-083		102.00	277	280	190	6 • 8 6 • 8	5:4				
58-085	21	184.89	277	200	190	6 • 8	7 • 4	8	0.6	20.0	8.0
58-086		106.00	277	260	195	6 . 8	7.4	0.0			010
58-007 58-088	22	108.00	277	260	195	6 • R	7 • 4	6 - 41	0.6	19.0	7.5
58-089	•••	110.00	277	200	197	6 . 8	7 • 4	0.00	•••		1.00
S8-090		112.00	280	250	197	6 • A	7.4				
S8=092	23	115.33	200			020		7 • 0	0.6	19.0	7.5
58-094			280		200	6 • 8 6 • 8	7:4				
S8=095	24	120.00	280	200	200	6 . 8	7.4	• •	0.6	17 ()	
582997	27	120.17	280	202	200	6.8	7.4	7.0	0.0	17.0	1.5
28-098	25	124.00	282	265	200	818	7 • 4		0 4		
58-1úó	23	127:00	282	205	200	6 . 8	7.4	7.0	0.0	1/+0	7.00
S8-101 S8-102		128.00	282	285	200	6 . 9	7•4				
S8-103	20	130.25	202	205	200	0.4.7	1 6 7	7.0	0.5	15.0	7.0
58-105		132.00	282	267	200	6.9	7.4				
58-106	27	135.00	202		200	0.4 ¥	r • ••	7•0	0.5	15.0	7.0
58-108		136.00	282	267 267	200	6 • 9	7 • 4 7 - 4				
58-109	20	139.83	202	- U :	200	D:4 ¥	F • 7	8 + 0	0.5	15.0	7.0
38-111	:	149:88	285	250	388	2.3	7:4				
S8-112		144.00	287	292	205	6.+9	7 . 4				

RÉSULTATS EXPÉRIMENTAUX DE LA REMOBILISATION PAR L'EAU DE PLUIE

Code de	N ^{bre} de	Temps	1 ^{er} sondage	2 ^e sondage	3 ^e sondage	1 ^{er} sondage	2 ⁶ sondage	_CA	MG MG/L	NA K. ITRE	
l'échantillon	litres	(min)	du rH	du rH	du rH	du p H	au pri	7.0	0.5	14.0	7.0
500 - 113 500 - 114	27	144.33	287	292	205	6.9	Z•4	7 . 11	0.5	14.0	7.0
38-113	30	148:00	287	292	205	6.9	74	7.0	0.5	14.0	7.0
38-119	31	139:88	287	242	205	6.9	7.4	7.0	0.5	14.0	7.0
<u>88=118</u>	32	188:89	287	292	207	0.4.4	7 • 5	7 • U	0.5	14.0	7.5
\$8=130	•-	105.00	287	245	207	6 • 9	7 + 3	7 • U	0.5	13.0	7.0
58=122	33	170.00	287	245	210	6 + 9	7 • 3	7 . U	0.5	13.0	7.0
58-123 58-124	34	1/1.00	290	245	210	6 • 9	7.2	7.4	0.6	13.0	7.0
Š8=125	35	176.08	290	295	212	7.0	7.3	· · ·	0.5	12.0	7.0
SU=127	30	180.92	270	265	215	7.0	7.3	7.0	0.0	1.2.1.0	7.0
58-128 58-129	37	105.00	290	2.95	215	7.0	7.3	7•0	0.0	12.0	7.0
58-130	-	190.00	290	293	215	7.0	7 3	7.0	0.5	12.0	7.0
58-132	50	195.00	290	295	215	7.0	-	7.0	0.5	12.0	7.0
58-134	37	200.00	292	245	215	7•0	7 • 3	7 • U	0.5	11.0	7.9
S8=135 S8=136	40 41	200.33	295	291	217	7.0	7.3	7.0	0.5	11.0	7.0
58 137	42	210.50	285	247	219	7 • 0 7 • 0	7:3	7.0	0.0	10.0	7.0
58-139	43	221.33	297	2 4 /	220	7 • 0 7 • 0	7.2	7 • U 7 • U	0.0	10.0	7.0
S8=140 S8=141	45	226.92	297	241	260	7.0	7.2	7+0	0.0	10.0	6.5
S8-142	41	236.42	297	297	222	7 • 0 7 • 0	7.2	8.0	0.6	9.0	6.5
S8=144	47	245.33	287	297	333	7: 8	4:2	8+0	0.6	8.0	8.5
58-145	50	255.17	297	377	338	7-3	7:3	8•0	0.7	6.0	6
58-147	•	256.00	300	320	200	Z • 3	3.3				
<u>88-149</u>		257:50	300	310	220	7.2	7.4				
58-150		259.50	300	320	238	7.3	7:3				
S8=152 S8=153		261.50	300	325	220	7.02	7.4				
S8=154		262.50	300	325	220	7.2	ζ.4				
58-156		264.50	295	320	220	7 • 3	7 a D 7 a 4				
88-138		289:88				7.3	7 • 4				
88=128		388.88				7 13	2:4				
582121		270.00				7:3	5:4				
58-102		271.00				7-3	7:4				
58-164		273.00				7.3	7 • 4				
58-166		275.00				.7 + 3	T ● ⁷⁴				

. .

. .

