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Abstract 

This report describes a generalized numerical model for 
computing the water levels and the three-dimensional 
circulation and temperature structure of the Great Lakes. 
The mathematical-num_erical framework is borrowed from - 

numerical weather prediction, storm surge forecasting, and 
ocean circulation models. In view of the prominence of the 
boundary-value problem in the modeling of relatively 
shallow basins, emphasis is placed on the proper treatment 
of the bottom topography. 

The model is based on the hydrostatic and the 
Boussinesq approximations and employs a quadratic 
relationship between temperature and density anomalies. 
The equations for the layered system are derived by Verticail 
integration over layers and by defining new vertical 
velocities relative to the interfaces. Thereby the model 
allows for ‘rigid horizontal levels, sloping permeable inter- 
faces, moving material interfaces, or any combination of 
these. ‘ 

The formulation of the finite-differencing scheme is 

based on considerations of the energy balance of the 
physical system, and accuracy and economy of numerical 
computations. The problems of grid dispersion and the 
treatment of lateral boundaries are investigated with the 
help of an exact solution obtained for the response of a 
lake to a time-dependent wind stress simulating the passage 
of an atmospheric front.



Introduction 

The numerical modeling of physical processes in the 
atmosphere and the oceans has advanced rapidly over the 
last two decades as a result of vast ‘improvements in 

computing facilities. Such models are based on hydro- 
dynamical and thermodynamical principles as expressed by 
appropriate mathematical equations. Although much 
insight has been gained from analytical solutions of these 
equations for certain idealized situations, a quantitative 
simulation of the highlycomplicated processes observed in 
nature can be attempted only byvnumerical methods. 
Indeed, these techniques have found important practical 
applications in the fields of numerical weather prediction 
and storm surge forecasting; The -present problem, the 
modeling of the water rnotions in la_rge lakes, is essentially 
of the same type and consequently a great amount of 

, 
literature on modeling approximations and computational 
prob|ems.as'sociated with such models is at our disposal." ' 

‘In spite of their similarities, the-various geophysicail 
models differ widely in view of their individual objectives. 
The problem of computing the .water circulation and 
temperature stratification of a lake is a boundary-initial 
value problem not unlike the problem of forecasting the 
weather. Thus the models require a specification of the

a 

boundary conditions including the shore configuration and 
depth contours together with the initial values of the flow 
parameters. However, much of the behaviour of the lake is 
a direct consequence of external forces such as wind stress 
a_nd atmospheric pressure which tend to reduce the effects 
of the initial conditions. At the same time it has been well 
established that the mass circulation of a lake is mainly 
governed by the topography of the basin. This means that 
the boundary-value aspect of_ the present problem is _more 
conspicuous than, for instance, i_n_ numerical weather 
prediction. Much research remains to be done "on the 
numerical treatment of these boundaries. 

, 
The fundamental physical-laws‘-and corresponding 

mathematical equations governing the inotions of lake 
waters and other physical parameters are known. Therefore 
in principle th_e problem facing us,can be solved by 
numerical solution of the hydrodynamical —differential 
equations, once certain numerical problems such as co_m- 
putational instability and truncation errors have been 
considered. However, the field of motions‘ in a lake is in 

reality composed of scales of motions ranging all the way 
from the dimensions of the lake itself down to scales 
gene'ra'lly associated "with turbulence. Thus, a straight- 
forward numerical treatment of_ this ‘complete range of 

CHAPTER 1 

sca_l_es cannot be attempted. In practice it is tacitly assumed 
that it is possible to model the large-scale organized 
motions without a detailed treatment of the smaller scale 
quasi-random turbulent motions. Unfortunately such 
separation of scales or spectral gap has not been well 
established and if it exists it is not clear at what scales it 

would occur. At "present the best approach is to model a 
lak_e with increasing deta_i| and investigate the solutions as a 
function of resolution. The interactions and the exchange 
of. energy between the large-scale flow and the turbulent 
flow are then approximated by an appropriate para- 
meterization of.t_he small-scale phenomena. 

From the foregoing it is clear that the modeling of the 
Great_Lakes must proceed in distinct steps, starting from 
rela__tively.slmplemodels and adva_nci_ng to fairly com- 
plicated models comparable to present-day atmospheric 
rn'odelsv(Phillips, 1959; Leith, 1965; Smagorinsky et al., 

1965; Shuman and‘ Hovermale, 1968). With regard to 
vertical resolution the first step is obviously the homo- 
geneous model where the lake is represented by one layer 
of fluid of constant tem'per'a‘tu’re and density. Such models 
have been used extensively to study the wind~driven ocean 
circulation and the storm-surge problem. In the first case 
the ex_terna_l gravity waves a_re generally filtered out but 
‘nonlinear effects are retained (Bryan, 1965;? Veronis, 1966). 
A similar, model by Paskausky (1969) has been applied to 
Lake Ontario. The second type of model is of course 
mainly concerned with the displacements of the free 
surface, and such effects as bottom friction, horizontal 
diffusion of momentum, and nonlinear inertial 
'aocelerat_io_ns are generally cli_scarcled;. Such storm surge 
modelshave been applied to the North Sea (Hansen, 1956; 
Fischer, 1959; Heaps, 1969), to the Great Lakes (Platzman, 
1963; 1965), and to the Japanese seas (Miyazaki et al_., 

1961). Some recent models have combined the features of 
theocean circulation andthe storm-surge models (Ueno, 
1965; Gates, 1968). These models constitute the basic 
framework for the homogeneous model described in the 
following. ‘

. 

Although such one-layer models may be useful for the 
prediction of storm surges and the study of the ‘winter 
circulation of the lakes, they are subject to severe limita- 
tions. Thus, under homogeneous conditions, the vertical- 
mean flow as computed from the integrated models is 

indeed essentially correct, but this mean flow does not 
necessarily give an indication of the actual velocities to be 
found in the lake. in particular, the time variations of the



local currents bear hardly any relationship to the integrated 
volume transports. Certainly, a th_ree.-digmernsional model 
becomes a necessity if one wants to study thermal effects 
and the interactions between the internal mass distributions 
and the water movements. 

When considering this coupling of the thermodynamics 
and the hydrodynamics of the lake's, a distinction must-be 
made between convection-type models and quasi-static 
models. The large-scale motions of a lake whose depth is 
much less than its horizontal dimensions, can be modeled as 
if the. lake were always in a state of hydrostatic equilibrium. 
This assumption eliminates vertical accelerations due to 
buoyan_cy effects and it therefore precludes the explicit 
treatment of free convection associated with unstable 
.stratific‘ations. However, the assumption simplifies matters 
considerably and appears to be an appropriate principle for 
the present modeling program. Indeed, it is this hydrostatic 
approxfmation which has been applied with so much 
success in numerical weather prediction and in studies of 
the ‘atmospheric circulation. Recently, essentially similar 
models have been used in oceanographic studies by Bryan 
and Cox_ (1967, 1968), Crowley (1968), Bryan (1969), and 
Cox (1970). The three-dimensional model presented in this 
report has been developed along similar lines, but more 
emphasis is placed on the treatment of the bottom 
topography which is of extreme importance for relatively 
shallow bas_in_s (e._g., Rao and Murty, 1970). Furthermore, 
the model is generalized to deal with various tYPe.s of 
numerical representations in the vertical. 

in principle, the numerical computations of the three- 
dimensional mass and velocity fields in a lake could employ 
a three-dimensional array ‘of mesh-points. It is, however, 
more common among meterologists and oceancgraphers to 
visualize a three-dimensional model as a superposition of 
la_yers of fluid. The reasons for this are partly historical and 
partly physical in nature. For instance, during certain 
periods a lake may become stratified to the extent that 
apparent density discontinuities can be traced. This has led 
to the design of models consisting of layers of water of 
different densities andvseparated by moving material inter- 
faces (Csanady, 1967, 1968a, 1968b; Yuen, 1968; Lee and 
Liggett, 1970; Wela_nd_er, 1968). On the other hand, there 
are numerous occasions when a more or less cont_i_nuous 
vertical density gradient exists. Such situations could be 
handled by a straightforward three—dimensional finite- 

difference grid, that is, a sequence of rigid permeable 
ho_ri_zo_ntal levels, which are employed in the three- 
dimensional ocean models referred to above. Or, it might be 
preferable to choose sloping instead of horizontal levels in 
dealing with lakes which generally show a gradual increase 
in depth from the shore to the interior. 

With a view to allow for any one out of such a variety 
of models, the present three-dimensi_ona| model design 
employs the principles and the terminology of layered 
models, although the layers may be separated by rigid 

permeable i_nterfaces instead of material surfaces. Thus, the 

equations for the layered system are obtained by vertical 
integration over each layer instead of applying the equa- 
tions at given levels and replacing the verti_cal derivatives by 
finite differences. This procedure not only leads to greater 
versatility such as, for instance, a combination of moving 
and rigid interfaces in one and the same model, but in 
addition it may result in a more accurate model. At least, 
this procedure will ensure that certain volume integrals are 
preserved and consistency requirements are not violated. 

' 

In this regard it may be pointed out that we are dealing 
with relatively shallow bodies of water with large depth 
variations and relatively low vertical model resolution, 
which result in extreme horizontal variations of layer 
thicknesses over large regions. Since the bottom topography 
for such basins exerts a large effect on the water circula- 
tion, careful treatment of the depth variation is imperative. 
It is clear that a derivation of the model equations by 
integrating over the depth of each layer implies that the 
ba_si_n topography is identical for different vertical 
resolutions of the model and the equations for the layers 
can be added to give the vertically integrated model.

A 

Other features of the three-dimensional model, in 

addition to those described above, are the following. The 
customary Boussi_nesq approximation is used so that. the 
density variations are only allowed to enter in the 
buoyancy term, but the fluid is effectively incompressible. 
Thus, the vertical motion can be computed from the 
continuity of m_ass and the same equation can be used to 
predict the vertical displacements of the free surface and 
other substantial interfaces. The horizontal water 
displacements are computed from the so-called primitive 
equations, that is, the equations of motion in complete 
form, and the changes of temperature follow from the first 
law of thermodynamics. A quadratic relationship between 
the density anomaly and the temperature anomaly com- 
pletes the set of equations. 

In order to simu_late sub-grid scale diffusion of 
momentum and heat, it is necessary to introduce eddy- 
viscosity coefficients and thermal diffusivities. In areas of 
unstable stratification, free convection is simulated by 
allowing the vertical diffusion of heat to be a function of 
static stability. Actually, as is common i_n numerical 
weather prediction, an infinitely large vertical flux of heat 
is invoked to counteract such instabilities. As is also 

common in meteorological models, the nonlinear terms are 
formul_ated on the basis of mass and energy conservations. 

Since vertical displacements of the lake surface are not 
precluded, the model allows for external gravity waves. The 
speed of these waves is much greater than the internal wave 
speeds and consequently tends to put severe restrictions on 
the computational time step. Whereas the surface displace- 
ments may be of interest for other purposes, their effects 
on the internal mass distributions are unimportant. Thus, 
the internal structu_re of the.flow may be computed in such 
a fashion that the effects of the free surface waves are



fiiltered out, which allows for a larger computational time 
step than the one used for the surface and mean flow 
prediction. 

The present report consists of two major parts. Chapter 
2 p’re‘se'nts the equations for one-layer and multi-layered 
models, including the energy equations. Chapter 3 is 

devoted to a review of numerical techniques for space and 
time di_fferent_iation and an evaluation of the accuracy of 
our finite-difference schemes by comparison with solutions 
for idealized basins. Preliminary computations with a 

homogeneous and a four-layer stratified model’ of Lake 
Ontario have been reported by the author (Simons, 1971, 
1972). The ultimate assessment of the degree of accuracy 
of a numerical model must be based on a comparison with 
observations carried out in the lakes. Pertinent 
observational data are expected to become available during 
the lnternat_ional Field Year on the Great Lakes planned for 
1972. Thisywill be an excellent opportunity to test the 
performance of the present models. A verification project 
of this type is planned and the results will be published 
under separate cover.



CHAPTER 2 

Equations for One-Layer and Multi-Layered Models 

2_.1 FUNDAMENTAL EQUATIONS 
Fir's't, the customary Boussinesq approximation is 

introduced so that the variations of density are allowed 
to affect only the gravitational acceleration. The main 
simplification resulting from this appro'xi‘matio'n is that the 
water is effectively incompressible and thus the continuity 
equation reads 

3-9 91 = o (1) 6x by 32 

where x and y are the horizontal coordinates positive to the 
east and to the north, respectivefly, z is the vertical 
coordinate positive upward from the mean water level, and 
u, v, and w, are the components of the velocity along the 
coordinates x, y, and 2, respectively. 

If equat_io_n (1) is integrated over a column of water" 
e'xtendi'ng from the bottom of the basin to the free surface, 
it clearly establishes a relationship between the change of 
surface level and the volume of water leaving or entering 
the column. This relationship can be obtained directly from 
considerations of mass conservation or can be derived from 
(1) by mathematical techniques. Thus if the depth of the 
la_ke is denoted by H, the free surface by §‘, and the time by 
t, then 

3. ‘ 3_ ‘ 3_§= 
ax if“ 

udz + 
av _fH 

vdz + 
at 

0 (2) 

The second assumption is that the large-scale water 
motions of relatively shallow basins can be modeled as if 

T 

the ‘water’ masses were always in hydrostatic equilibrium. 
The internal pressure distribution can then be obtained by 
vertical integration of the hydrostatic equation, the result 
of which may be written in the following form. 

p = p. + Po 9(§—zl + fyadz (3) 
V

Z 

where p is pressure, ps is the atmospheric pressure at the 
air-sea interface, g is the gravitational acceleration of the 
earth, p is the density of water, po is its value at the 
temperature of maximurn density, and 0 —=— (p —— po) 9 is a 
measure of the density anomaly. 

The density anomaly ‘entering in (3) may be related 
to temperature and pressure by an equation of state. The 
variation of density anomaly at constant pressure is shown 

in Figure 1 against a linear temperature scale (solid curve) 
and also against a quadratic temperature scale (dashed 
curve). Since we are only concerned with horizontal 
pressure gradients the pressure effect can be ignored and to 
the order of the approx_imation,s made in the present model 
a sufficiently ac'cu'r'ate equation of state is 

0 T; — 602; e is constant (4) 

as indicated by the straight line in Figure 1. Here 6 —=— 

T—To i_s the deviation of the temperature from the 
temperature of maximum density. ln princ_iple, of course, 
any other equation of state can be employed. 

For brevity of notation it is convenient to introduce 
the following definitions.

V 

S’ ¢Ef adz (5)
z 

tlIEps+pog§ 
where llz is a barotropic pressure function depending on the 
surface conditions only, and q5 is the baroclinic pressure 
determined by the internal mass distributions. The latter 
varies with depth whereas the former is independent of the 
vertical coordinate. However, the barotropic pressure- 
function is of course only part of the total barotropic 
pressure which in turn increases linearly with depth. 

Next, two differential operators are defined to 
represent the advection of a scalar by large-scale. motions on 
the one hand and the diffusion by sub-grid-scale fluxes o_n 
the other hand. Let to represent any scalar depending on 
the time t and the space coordinates x, y, and 2, and let 0;, B, 
and ‘y be the components of the diffusive«flux of this scalar 
along the coordinates x, y, and 2, respectively. In the 
particular case of the flux of momentum the latter may be 
identified with the familiar Reynolds stres_s_es. Now let 

-6 3 ) Bl ) a( ‘l 

(6) 

_6a(«p) _ 3l3(s0) _ Bvlsol 
ax by 32 8 («pi 

The first operator involving the divergence of the advective 
fluxes of the. scalar ¢ can be shown to constitute the 
material time derivative of this scalar by virtue of the 
continuity equation (1). The second operator represents 
the three-dimensional diffusion and appears here as" the 
convergence of the diffusive fluxes. The latter are related to 
the gradients of the function «p, but if so is identified with
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one component of the velocity field, the fluxes are in 
general also dependent on the other velocity components. 

Using (1) and (3), again neglecting the small density 
anomalies, and denoting the Coriolis parameter by f, the 
horizontal equations of motion may be written in the 
form 

it ‘’’+‘’’ + ¢S(u) bx po 

£lv) ='fu -— 56; (w: (15) + 6M0 

£(u) = fv — 
(7) 

The temperature changes of the water masses are 
governed by the first law of thermodynamics with diabatic 
effects resulting from the three-di_men_sional eddy diffusion 

of heat. Assuming that the, small compressibility effect can 
be neglected, the temperature equation may be written 

£(6) = 6(0) (8) 

where 0 —=— T — To is the temperature anomaly. 

Although it is possible to proceed with the devel- 
opment of the layered models without specifying the 
diffusion relationships, a simple example will be presented 
here. The modeling of the diffusion of momentum has been 
discussed in some detail by Lilly (1967). For the moment it 
will be simply stipulated that the diffusive flux of 
momentum along a given coordinate be proportional to the - 

gradient of the corresponding component of the large scale 
flow. Thus, if A and V are the local coefficients of the 
horizontal and vertical eddy viscosity, the fluxes of the first



momentum component may be written 

a . 

ozlul = —A§ : mu) =— A§—;‘; 7(u) = —z>g—;‘ (9) 

with similar expressions for the second velocity component. 
From (6) and (9) it follows that the horizontal fluxes 
combine to give a horizontal diffusion in the form of a 
Laplacian operator. In the numerical model this term will 
be interpreted i_n terms of sub-grid-scale diffusion, whereas" 
the vertical flux component will appear in the form of 
stresses between layers of fluid, thus simulating the transfer 
(of momentum from the surface downwards. 

Similarly the horizontal diffusion and the vertical flux 
of heat are related to the temperature gradients 

ale) =—Ag%0(;¥B(0l =—A9%g; 7(0) =— xgg (10) 

where A5 is the hori,z_ontal eddy diffusivity and K is the 
vertical eddy diffusivity. The latter depends on the static 
stability 30/82 and is allowed to attain very large values for 
unstable situations in order to simulate the net effects of 
convective overturning. In practice this means that an 
instantaneous adjustment takes place to remove any static 
instability the moment it occurs in the model. 

The equations above form a complete set and may be 
used to compute the evolution of the three-dimensihnal 
water circulation starting from given initial and boundary 
conditions. The primary bounda_ry conditions are that the 
normal component of the velocity and the normal heat flux 
must vanish at a solid (insulated) boundary such as the 
shoreline and the bottom of the basin, whereas the flux of 
momentum normal to these boundaries must be specified 
by some stress condition. On the other hand, at a moving 
material surface such as the air-water interface, a water 
particle must follow the motion of that surface and the 
diffusive fluxes of heat and momentum through the 
interface a_re considered to be specified in terms of external 
parameters. With regard to the velocity components at the 
bottom and the free surface, the following conditions may 
be derived 

z=§: w=u%§(+v%fi”+% 
(11) 

z-—H»:w=—ua—}‘l—va—H 
8 by 

The normal fluxes of momentum at the free surface and the 
bottom must equal the windstress T5 and the bottom stress 
rb, respectively. Noting that the vertical fluxes are positive 
upward, whereas the stresses between layers are th_e forces 
exerted by the upper on the lower layer, the conditions for 
the first velocity component are 

z=§= Vlu) —a(u)g{—3(u)g=—%: 
(12) 

. 3H 3 =— H: 7(ul + alul 5; +B(ul 5§=—% 
with similar conditions for the second component. Further- 
more, if qs is the downward surface flux of heat, then the 
conditions for the temperature flu'x normal to the 
boundaries can be written 

z=r: 7(0)-a(9l%§(-l3(0lg—$"=—<ls 
(13) 

z=— H: 7(0) +a(9)g—:‘ +B(0)g—:'=0 

2.2 HOMOGENEO US MODE L 
In the process of developing an hierarchy of models 

describing the circulation of the Great Lakes, the first step 
is to consider the water transports under homogeneous 
conditions. Although the homogeneous model is just a 
special case of the more general multi—|ayered model 
described in the following section, it is worthwhile to 
discuss here the simplest homogeneous model, namely, the 
one-layer storm-surge model. This model is appropriate for 
a study of the basic circulation of the lakes during the 
colder part of the year a_nd, from a computational 
viewpoint, it is useful for a systematic investigation of 
numerical techniques. In this case the vertical structure of 
the flow will not be considered and thus it is convenient to 
introduce the volume transport vector. 

V E (U-, V) Eff. v dz E_f:. (u, v) dz (14) 

A _measure of the water velocity is then obtained by 
averaging this volume transport over depth, thus 

—_ -_ _ V =(U.V) V=(U,V)—fi—m? (15) 

In the present notation the continuity equation (2) 

becomes 

—=—— —— us) 

Since the model deals with a homogeneous body of 
water, the baroclinic pressure term does not appear in the 
equations of motion and hence the pressure terms of (7) 
become independent of depth. After substituting (6) into 
(7), the equations are integrated over the depth of t_he 

lake, whereby the terms of (6) are transformed by the 
rules for interchanging differentiation and integration and 
with the help of the boundary conditions (11-12). If 
further the horizontal eddy flux vector with components 
a(¢) and 5(4)) is denoted by No), the integrated equations 
of motion become



%=—g(H+§)%<§+;_;)+fv+ 
(17) 

f[ F(u)+uv 1:12 P -H 

3V_ 3 pi ET’-'9(H+§'l5—(§+ )—fU+ t Y “Q us) 
+’sv_;_’2x _v._r: [I‘(v) +vv]dz 

where the subscripts s and b attached to the stress 
components refer to the surface and bottom, respectively, 
V is the horizontal gradient operator, and all other symbols 
h_ave the same meaning as before. The last terms on the 
right represent the nonlinear inertial accelerations and 
originate from the left hand side of (7). A detailed 
discussion of the storm surge equations has been presented 
by Wel_a_nder (1961). 

At this point a number of approximations is 

introduced to obtain a closed system of equations. The 
nonlinear inertial terms are approximated as follows 

* 
’ uv : vv 

!HUVdZ-Fl-:§ _fHVVdZ-"|T+—§_ 

In reality, this vertical integration requires an assumption 
regarding the vertical velocity profiles and the approxi- 
mation above applies essentially to the case of uniform 
velocity distribution in the vertical. Thus the 
approximation tends to underestimate the nonlinear effects 
and one might consider to multiply the results of the 
integrations above by a number larger than unity. In 
particular for a linear variation of velocity with depth the 
n'_iult_ip_licat_ive factor would be 4/3. However, the 
approximation (19) seems adequate and will be introduced 
in the basic equations (17-18). 

According to (6) and (9), the lateral diffusion of 
momentum has been assumed to be propo_rtional to the 
Laplacian of the velocity field_. It is possible of course to 
represent the horizontal viscosity effectsin a more 
sophisticated manner but at p,res_ent this seems hardly 
justified in view‘ of our knowledge of the diffusion 
processes. The coefficient of lateral eddy diffusion is 

probably a function of the space coordinates. Its value 
is estimated for Lake Ontario to be of the order of 
10‘_‘cm’/sec. For comparison of numerical models of 
different horizontal resolution, the coefficient shou_|d be 
related in some fashion to the mesh size of the computa- 
tional grid. Thus Ueno (1964) assumed A to be propor- 
tional to the 4/3th power of the grid distance over which 
the Laplacian is evaluated. 

The vertical integration of the diffusion terms in equa- 
tions (17-18) calls again for some assumption concerning the 

vertical profiles of the horizontal mot_ion_s.» Assuming t_he 
horizontal diffusion coefficient to be constant with depth, 
two different expressions for the eddy viscosity can be 
derived. If the velocities are assumed to be uniform with 
depth the vertical integrations of (9) can be performed 
immediately and the integrals become 

s’ 

_IH I‘ (u,v) dz = _ A (H+§l V (EV) (20) 

On the other hand it may be more reasonable to realize that 
the water transports are concentrated in the upper layers of 
the lake and the deeper portions will contribute con- 
siderably less to the total transports. In that case a better 
approximation would be 

1’: 
I‘(u,v) dz=—AV(U, V) (21) 

For the present calculations the latter form of the diffusion 
simulation has been adopted. 

The bottom stresses must also be related to the volume 
transports in order to obtain a closed system of equations. 
The bottom friction can be made proportional to the 
velocity at the bottom as follows 

Tb = pk|VblVb 

where k is a non-dimensional skin friction coefficient of the 
order of 2.5 x 103. On assuming a uniform velocity 
distribution in the vertical, it follows then from (15) that 

7b- . = kw) .. km 7 3"’ B’(H+ci= H+§ 

It is often convenient or at least more economical to 
linearize this expression in some fashion, assuming either 
typical mean velocities or typical volume transports. 
Computations with a ‘Lake Ontario model show typical 
average velocities in shallow water of the order of 10 
cm/sec as compared to velocities as low as 1 cm/sec in the 
deeper parts of the lake. The corresponding coefficient B 
would vary from 0.0025/H to 0.025/H cgs units and may 
be compared with the value 8 = 0.01/H cgs units adopted 
by Rao & Murty (1970). On the other hand, the mass 
transport field is much smoother than the mean velocity 
field and typical values are 2-4 x 10‘ cm?/s for both the 
shallow and deep parts of the lake. Thus the bottom 
friction coefficient defined in (22) would vary between B = 
50/H2.and B = 100/H2 cgs units. 

Another expression for the bottom stress may be 
deduced from a solution of.Ekman’s problem where the 
vertical turbulent diffusion of momentum i_s prescribed by 
means of a constant eddy-viscosity coefficient 1). Thus 
Platzman (1963) derived a bottom friction coefficient as a 
function of the Ekman ‘number H\/f/212 so that B 
approaches zero for large depths and tends to B = 2.5 V/H2 

(22) -



for shallow water. For Lake Erie, Platzman estimated v =. 
40 cm2/s which may be considered a reasonable value for 
the shallower parts of the Great Lakes where the bottom 
friction is most prominent. Thus one would again obtain for 
shallow water B = 100/H2 cgs un_its. In summary, the 
alternatives for the bottom friction as defined in (22) are 
the following 

(1) Linear B a/H a :7 0.01 cm/sec; 

(2) Quasi-linear: B b/H2 b : 100cm2/sec; (23) 

(3) Nonlinear: B k IVI /H2 is 2' 0.0025, 

where the surface elevation g‘ has been neglected by 
comparison with the depth H. 

The nonlinear bottom fri_ction was used by Hansen 
(1956) in his pioneering work on the North Sea storm 
surges. Fischer (1959) used the quasi-linear formulation and 
Jelesnianski (1967) adopted Platzm,an’s (1963) formula-. 
tion. It may be noted here that the complete Ekman 
procedure implies a reduction of the pressure gradient by a 
factor‘ 5/6 and an increase of the wind stress by a factor 
1.25 for shallow parts of the lake. A slight rotation of the 
pressure gradient force and the bottom stress are also 
involved. Ueno (1964) adopted the nonlinear bottom 
friction but l_ncre_as_ed the wind stress by the factor 1.25., 
Jelesnianski (1970) subsequently derived an integral 
operator for the bottom stress that incorporates the time 
history of forces in the system in _the form of a convolution 
integral implying a time lag between wind stress or surface 
slope and consequent bottom stress. However, for the 
present preliminary calculations only the three alternatives 
defined in (23) are compared. 

The last terms of the equations (17-18) to be discussed 
are the external forces, i.e., the surface pressure and the 
wind stress. For the present cal,culat_ion_s the surface 
pressure is set equal to zero since it can be incorporated in a 
s't‘raightforwa’rd manner in operational runs. The surface 
wind stress is customarily related to the wind velocity as 
follows 

is = k pa Ivalva (24). 

where pa is the density of air (1.2 10"3 cgs) and Va is the 
wind velocity at anemometer level. The drag coefficient k 
has a nondimensional value of the order of 10'3 but its 

exact value is highly uncertain and depends, of course, on 
the surface parameters. In most studies of storm surges in 
the North Sea, the skin-friction coefficient was assigned 
values of the order of 3 x 103; similar values were 
suggested by Platzman (19583) and Ueno (1964). Recent 
observations i,ndi_cate_ that an app'r'opriate value for models 
of the Great Lakes might be as low as k = 1.2 x 103. This 
problem will not be considered here, since modeling 
approximations and n_umerica_l techniques rather than 
operational predictions are under discussion. Thus for the 
preliminary calculations, more or less typical windfields are 

used and in particular a scale value of the wind stressequal 
to -rs / p = 1 cm?/52 is assumed. 

To complete the system of equations, the lateral 
boundary conditions must be specified. The first condition 
is that the component of velocity normal to the shore must 
tend to zero. Since the depth of the lake approaches zero at 
the shore the tangential component of the volu_me-transport 
vector will also ten_d to 2‘ero. However, this is equivalent to 
the condition of zero slip and therefore introduces an 
apparent friction. Nevertheless, this condition appears 
reasonable for the large-scale circulation and it is a proper 
boundary condi,t_io_n in conjunction with the horizontal 
eddy diffusion in Equations (17-18). The matter will be 
discussed in more detail in Chapter 3 with regard to the 
numerical treatment of the boundaries, and the effects of 
the boundary conditions on the large-scale flow will be 
evaluated in the latter part of Chapter 3. 

2.3 MULTI-LAYERED MODEL 
The layered model has been designed so that the 

equa_ti,on_s for any vertical resolution are consistent with the 
vertically-integrated homogeneous model. This is ensured 
by integration of the continuity equation and the equations 
of motion over each layer of the model. Since the depth 
contours are among the most important factors determining 
the lake circulation, it is essential that. the treatment of the 
bathymetry of the basin will not be adversely affected by 
the relatively low model resolution. Due to the large depth 
variations it is likely that the interfaces between the layers 
will intersect the bottom as shown in Figure 2. Therefore 
the number of layers will be a function of the horizontal 
coordinates and can be also time-dependent. For the 
ensuing mathematical development, and also for the 
purpose of the numerical computations by computer, it is 

more convenien_t to stipulate that the total number of 
layers be the same throughout the basin by letting an 
interface coincide with ‘the bottom beyond their inter- 
se‘ction;._ Thus formally -each layer extends over the whole 
surface area of the basin. 

Let K denote the number of layers and let hk, k = 1, 2, 
. . . ,K-1, be the distance between the k-th interface and the 
equilibrium free surface (F0). The character of the 
interfaces is not yet specified and the layers can be 
separated by moving material surfaces, hk (t,x,y), rigid 

permeable interfaces, hk (x,y), or rigid levels where hk = 
constant. Thus it is convenient to denote the surfaces and 
the interfaces entering into the model by the general 
equation z=Zk (t,x,y), k=0,1, . . . , K. Recalling the notation 
for the surface deviation and the basin depth, the various 
interfaces are defined. 

Free surface: 20 = §'(t,x,y) 

Interfaces: Zk —-hk (t,x,y), k=1,2, . . . , K-1 (25) 

Bottom: ZK —H (x,y)



where for certain areas a numberuof the interfaces Zk may 
coincide with the bottom ZK as indicated in Figure 2, 

The primary dependent variables are the layer 
thick_nes_ses together with the velocity components and the 
temperature integrated over the depth of each layer. Thus 
the following parameters, which are functions of time and 
the h,ori_z_onta_| coordinates, are introduced 

Layer thickness: Dk...; E zk_1 _zk 
Z _ 

Layer transports: (U,V)k..% 5 
J2 

k 1 
(u,\,)dz (25)

k 

Z . 
Layer "heat content": Tk...;. E f k 1 

9 dz 
zk

’ 

where k ranges from 1 to K. As indicated in Figure 2, a 
half-integer subscript refers to a layer whereas an integer 
subscript indicates a variable evaluated at an interface. 

To simplify the notation for the generalized multi- 
layered model and the boundary conditions, a new vertical 
velocity relative to a surface Zk is defined as follows 

BZK 32k 32k 
“kW 

and similarly the following measure of the diffusive flux 
through a surface Zk is introduced 

32;‘ 
xlsplk E7l<plk —a<«p)k 5x— 

32" 
‘5(¢)k‘E,T (28) 

//> /7

~ 
where 0:, B, and 'y are the components of the sub-grid-scale 
flux 

__ 

of the scalar sp discussed earlier, and k ranges 
from" 0 to K. If the scalar «p is identified with 
momentum and temperature, the flux parameter (28) may 
be considered to represent the stresses and the heat fluxes 
between layers, which in Figure 2 are indicated by the 
symbols 7 and q, respectively. 

Next, an advection and a diffusion operator cor- 
responding to the definitions (6) may be defined for each 
layer 

1 _ Zk‘1 1 
Zk-1 

L(‘P)k—- = I Ail/7)k--— E 
2 zk 2 

zk 

After integrating the terms of (6) over the depth of a 
layer, applying the rules for interchanging integration and 
differentiation, and using the definitions (27-28), the 
operators (29) take on the following form 

2 .; Z _ Z _ 
L(«p)k...‘. 53 f [(012 +lf kuip1dz + -if ‘i/godz 

k k l_< 

+ (0)lP)k-1 — 
. .

3 ' 

! _ 3 Zk-1 3 Zk-1 (‘ 0) 

A(<P)k...i =--ix f a((0)dz -5-I B(<p)dz 
2k y 2k 

— xic/>lk-1 + xleplk 

T2 

Z1=Z2=Z3 

Z2=Za 

K 20 (U01-oqo 

' 

D,,2(u,v),/2T,,2 

Z1 W1 T1q1 

H 
D11/2(U,V),1,2 r,.,2 

22 (U2 T2q2
; 

D2‘/2(U»V)21/272'/2 

Figure 2. Vertical configuration of threedimensional model.



The equations for computing the time rate of change 
of the laye_red variables (26) can now be derived from the 
basic equations (1), (_7), and (8). First, i_ntegratio_n of the 

- continuity equation (1) and use of the definitions (26-27), 
results in 

8D .3. 8U -1 _l . . 

a_..-" 2) __" 2 + E‘./" 2 +wk_,—wk=0 (31) 
at: fix by 

which, according to the first definition of (30), can be 
written formally as L(1)k_ ,} 

= o_ This equation makes it 
possible to compute either the displacement of a material 
surface (3Zk/at)_or the apparent vertical motion through a 
rigid interface (wk). The computation starts with the 
bottom layer and proceeds upward through the model with 
the help of the following conditions which apply to the free 
surface, the bottom, and the two types of interfaces 

Free surface (impermeable) Z0 (t,x,y): wo = 0 

Material interface (impermeable) Zk (t,x,y): wk =0 

32 (32) 
Rigid interface (permeable) Z,‘ (x,y): 3?“ = 0 

_. _ 
BZK 

Bottom (flgld, impermeable) ZK ('x,'y): wK '-’ 5; = 0 

These conditions follow from the boundary conditions (1 1) 
and similar considerations for a material interface. 

The equations of motion (7) i_nt_egra_ted over the depth 
of a layer become 

4 
°'<'% aw 

"(”"<‘§ = fV"‘§ _ Po 5»? 

— fzkq a_ 1 dz+A(u) -3. 
Z [)0 

k 2
k 

D 1 
(33) 

LMr§=—fw%-:2 %0 

Zn:-1 3 ¢ 1 _ 
£ 

dz+A(v)k_,;
k 

and the integrated thermal energy equation follows from 
(8). 

L(a),,_% = A (elk; (34) 

If it is assumed that the density varies slowly within 
each, layer, the baroclinic pressure defined in (5) varies in 
a quasi-linear fashion within that layer. Differentiating the 
latter with respect to the horizontal coordinates and 
integrating over the layer depth then gives the result 

10 

zk-1 ' 

ék 
V¢dz= DR”; V¢k_-.2. + SR.-.3 VZk_% (35) 

where the following definitions have been introduced 

2 1 = 1 (2 +2 ) I_<-- " 2 «-1 k 

2 _ . 

s.—; E 1 K0 (:2 (35) 
2k 
S‘ 

¢k._1 —=— f adz 
Zk__1_

2 

The first term on the right of (35) is simply the gradient 
of the baroclinic pressure, as defined by (5), evaluated at 
the midpoint of a layer. The last term of (35) is a 
correct_io_n term to account for the variable thicknesses of 
the layers. The system of equations (31-36) is completed 
by recalling the definition of the barotropic pressure 
function (5), the equation of state (4) relating the 
density anomaly to the temperature, and the diffusion 
relationships (9-10). 

For the purpose of numerical computations, the 
integrals defined by (30) and (36), the temperatures and 
the horizontal velocities at the interfaces, and the diffusion 
relationships must be expressed in terms of the primary 
dependent variables (26). A satisfactory approximation to 
the integrated product of two variables is of me following 
type V

' 

Z — . 

1 "Jo dz = 3T 
1 

V (37) 
2k D K"; 

where the variables are defined by (26). Thus, i_n the event _ 

that the equation of state. is of the form (4), the layer 
density defined in (36) becomes 

T2 
Sk__;. 

= — G 

and the advection of temperature follows from (-30) 

_aT -1 a UT 
L(9)k—_;_ =—tk 2 

(F>k__;. 

3 VT 

The nonlinear inertial terms in the equations of motion will 
be approximated in the same way. As shown in the next 
section, the interpolation scheme to obtain the 
temperatures and the horizontal velocity components at the 
interfaces is dictated by energy considerations. 

(39) 

The horizontal diffusion, the interface stresses, and the 
temperature fluxes can be formulated in a num_ber of ways.
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A straightforward finite-difference expression for the 
vertical temperature flux defined by (10) is 

(T/o)k_'§ — (T/D)“; 
7(9)). = -2K (40) 

or; + 0,“; . 

If the vertical variation of the horizontal heat fluxes within 
a layer are neglected, the integrals entering in the diffusion 
operator (30) may be approximated as follows 

Z'<'1 _ a T £a(9)dz—— AaD$(- B k__;_ 
(41)

k 

for the temperature flu_x defined by (10). Thus the 
diffusion of t'em'per'a't'u‘re is according to (30) described by 
the operator 

i 

, a B T 

where the last terms are defined by’ (28). Similar ex- 
pressions are used for the interface stresses and the 
horizontal diffusion of momentum. 

The boundary conditions on the normal fluxes defined 
by (28) follow immediately from" (12) and (13). Thus 
at the free surface and the bottom, respectively, 

T T 
xlulo = —-7}: ; xlvlo = -7% : xl9lo = — as. 

(43) 

x(u),<=—%;‘: xlv)K =4; ; xl6)K =0. 
The total heat content of the basin is conserved (in the 
absence of surface fluxes qs) by the lateral boundary 
conditions 

3 T _ E <B)—0 (44) 

where n is the direction normal to the lake shore. The 
stresses at the bottom of the basin must be expressed in 
terms of the flow field, for example, by the relationship 

Tb = Pok I Vb I Vb (45) 

where the bottom velocities may be approximated by the 
average velocities in the lowest layer. 

If the wind stress and the temperature flux at the 
surface are known, then all the necessary equations to 

predict the evolution of the flow field from given initial 
conditions are available. Thus, starting from the 
temperature, the horizontal transport components, and the 
positions of all interfaces, including the a_ir-water interface, 
the barotropic pressure gradient follows from (5), the 
baroclinic pressure gradient from (35), (36), and (38), 
and the vertical mot_ion at rigid interfaces from (31). Then 
the time rate of change of the primary varia_b|es is governed 
by (31), (33) and (34). In principle, the latter equations 
are of the same type as the governing equations for the 
homogeneous model and, consequently, the same numerical 
techniques can be applied. The nu_m_erica_l methods will be 
discussed in Chapter '3. 

2.4 ENERGY CONSIDE R_ATl ONS 
The kinetic and the potential energy of a column of 

water extending from the bottom of the basin to the free 
surface are defined 

5'’ 1
‘ KEI kdz; kE§Po(u2+v2) -H 

(46) 
_ r‘ 

1 2 2 : P=f p9zdz=7po9(§ —H H! ozdz ‘H "H 

To derive expressions for the time rate of change of these 
energy quantities, recourse must be taken to the funda- 
mental equations (1-13). First it may be noted that 
the operator (6) represents essentially the so-called 
substantial or material time derivative and consequently the 
following identities hold 

.c(«p’) 2(o-Elsa) 

(47) 
£lsaz) cpw + z£(<p) 

which can be verified also by partial differentiation of (6) 
and substitution of (1). If the equation of state is of the 
form (4), then it follows from (46) and (47) that 

£(k) pou£(u) + p°V.C(V) 
.C(az) = aw—2 620 .C(6) (48) 

Now substituting the equations of motion (7) and 
the thermal energy equation (8) into the right-hand sides 
of (48) gives 

£(k) =-U§£(Po9§+¢)—v%-(Po9§+¢)+G 
(49) 

.£(az) = aw+O 
where 

._ a a G = u):po5(u)_§]+v |:_po5(v)—a%3] 
1 

(so) 
OE-2c-:z0.C(9) =-2ez06(0)

11



The latter represent the effects of diffusion, dissipation, 
and external agents. It will be shown that inthe absence of 
these terms the sum of the total kinetic and potential 
energy for the basin is conserved, Subsequently, similar 
relationships will be derived for the layered model. 

First it may be verified by partial differentiation and 
by using (1) that the first of expressions (49) is equivalent 
to 

-C(/H-¢+pog§') = 5% (¢+pog§) + w % + e (51) 

Secondly, by integrating (6) in the vertical, using the rules 
for interchanging differentiation a_nd integration, and 
applying the boundary conditions (1 1), it is found that. 

r _ a r a_ r . 

_fH 
£_(<p)dz—- a—t_fH 4pdz+ ax._fHucpd_z 

3 f 
(52) 

+ 
57!‘-1' 

Vtfldz 

and also, since (5) implies that ¢ = 0 at the free surface, 

a.— I‘(¢>+pog§> dz = If 3 (¢ +pog§) dz 
3‘ '“ '” at (53)

3 
4' P091" % 

Thus, integrating (51) over the total depth, using (52-53) 
and the first definition of (46), results i_n 

3 S’ 

13:3 
= — 

5; ;_H ulk+¢+Po9_§ld..z 

ag : - 
3; f_H V(k+¢+Po9§')dZ (54) 

V 

a r a
A 

..,_.,og;%+ [H (,.,.aL‘z3+ G)dz 

whereas from (46), (49), and (52) the following "is arrived at 

BP _ 8 l’ B S’ 

3-,; 
- " 

5;_IH_U (0?) dz 
"' WJHV d1 

(55) 

+ pogf E‘ + f§(w(7+Q)d_z at 3“ 

According to (5_), 0 = - 34>/32 and consequently the th_ird 
and the fourth terms on the right of (54) and (55) are 
equal in magnitude but of opposite sign (if the source-sink 
terms G and O are excluded), representing conversions of 
potential to kinetic energy or vice versa. The first two 
te_rm_s integrate out over the whole area of the basin by 

12 

virtue of the condition that the transport across the 
boundary must vanish. 

' Let us now consider the energy conversions in the 
layered model. The kinetic and the potential energy for a 
layer of water of unit. horizontal area may be written as 
follows 

K 1 = Zk—1 _1 2 1 2 I 1 
k'.__2. — 

£ 
kdZ- E po (Uk—3 + Vk*_;2:) / Dk_.__.5

k 

ZKT1. 
. 1 2 2 

Pk_% E f pgzdz= 5 P09 (Zk_1—Zk) (56) 
2k 

+ z,_; s,__ 

where the layered variables are defined by (25), (26), 
(36), and (33). Now suppose that the temperature and 
the horizontal velocity components at an interface are 
approximated by an interpolation formula of the type

' 

-1 T. 1 I 0k — 2 <D)k__;_. + 2 <0)“; 
(57) 

but that the quadratic expression for the density anomaly 
(4) at an interface is defined as follows 

__ T T 

with a similar definition for the kinetic energy k at the 
interface», Then it can be verified from (39), with the help 
of (31), (38), the second of definitions (36), and the 
first of definitions (56), that the following "identities hold 

po L(u) + -‘é L(v):| k_% 
= L (k)k_.;.

T 2e L(0):|k_% 
= — L(o)k_% 

The above relationships essentially imply that the layered 
representation of the nonlinear terms does not introduce 
spurious energies_. Thus, after summing the right hand sides 
of (59) over all layers, the vertical motion terms cancel 
one another as indeed they should. In the terminology of 
finite-difference schemes this layered model possesses a 
variance-conserving property as discussed by Arakawa 
(1966), Bryan (1966), and Li_|lY (1,965). 

(59) 

' The energy equations for a layer are obtained by 
relating the time rate of change of the energies (56) to the 
right hand sides of (59) by virtueof (39) and subsequently 
substitu_ti_ng the equations (33-34) into the left-hand sides 
of (59). If further the layered equivalents of (50) are 
defined
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2T (60) 

0k._% E “ 25 k-A 

ZT =— 26 [3 A (o)]k_% 

then after a partial differentiation with respect to x and y 
and substitution of the continuity equation (31) 

3K .1 3 K 
'3?“ 7- 

"-'-' 
a‘x‘[U <‘D‘+¢+P09§):|l<‘% 

a . — 3 [V +¢+Po9§>:| l<"';1 

USE "_5i’_Z Q —<? Bx + + ¢8t>k'-é D 3V (51) 

‘ ¢k"';' (Wk-1 ‘ wk) 

8D -1 
<5?k 2 +(J)k—1—(l)k> 

— (wk)k_1 — (wklk + Gk_.;. 

3P .1 _ a a $5 2 —— 6? (uzs/o)k_§ -5;-(vzs/o).‘_§ 

US az vs 32 az 
+.<FZ—);+B8-37+s3t>k--;- 

(62) 

— 
zk-..-.-:7 K-1" (Q-’o)k] 

32 _ 32 +Po9<Zk~13f$1‘ Zk fik) + One; 

If (61) and (62) a_re summed over all the layers and 
integrated over the area of the basin, then the right-h_and

~ 

sides of (61) and (62) should cancel each other except 
for the generation terms. It can be easily verified that this 
cancellation takes place if 

K aDk_1 K azk___! 2 ¢,<_1___» 2= 2 sk__1_. 2 
k=1 “at k_=1 “at

K 
2: ¢k—--21- (wk-1 " wk) = (63) 

k=1 -

K 
E Z,_<_% [(wa)k — (wa)k_1] 

k 1 

For a layered system with irnpermeable material i_nterfaces 
(wk = 0) it is found from (26), (32), and (36) that the 
conditions (63) are satisfied if

1 

491 
= — 31 

2 (64) 
tel 

1 . 

1 _ _1 = — . ¢k +3 ¢k"5 2 (Sk"';‘ + SR 

On the other hand, at rigid pe_rmeable levels (3Zk/3t= 0) 
(63) can be obviously satisfied by 

¢'<+§l' 
_ 

¢k"';‘ = 0k (Z|_¢——;- ."'Zk+%) (65) 

The approximations (64) and (65) indeed represent 
two reasonable alternatives for the numerical integration of 
the baroclinic pressure at the mid-levels defined by (36). 
This seems true for only one of the other two formulas 
(57) and (58), which were introduced earlier in order to 
arrive at the present energy-conserving layered system. The 
interpolation formula (57) is not only acceptable from a 
viewpoint of accuracy, but also is essential to preserve the 
variance of the primary variables (26), as will be shown in 
Chapter 3. This formula is to be used for computing the 
temperature and the horizontal velocity components at a_n 
interface, ‘thus assuring that the nonlinear terms in the 
equations (33) and (34) do not give rise to spurious 
energy. On the other hand, a question may be raised with 
regard to the accuracy of the formula (65), if the density 
at an interface, 0k, is computed according to the definition 
(58).- In this case it may be preferable to use a more 
accutrate formula even if this results in a violation of the 
energy conservation rules. Although such modifications can 
be allowed in the operational runs of the model, thepresent 
formulation is certainly very useful for the purpose of 
testing the computer program. 
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CHAPTER 3 

Numerical Techniques for Space and Time 
Differentiation 

3.1 NUMERICAL TIME INTEGRATION 

A great number of studies have been devoted to the 
numerical solution of equations of the present type in 

connection with the development of numerical weather 
prediction. Although most invest_igations have been con- 
cerned with the problems of space-differencing, interest in 
time-differencing procedures has recently increased as a 
consequence 

a 
of improvements in space-differencing 

techniques ‘and the application of spectral techniques. 
Actually, methods of time-extrapolation are well developed 
since the problem is essentially equivalent to the numerical 
solution of a system of" ordinary first-order differential 
equations in time. The result is an abundance of numerical 
prediction schemes of various "types such as explicit and 
implicit schemes,'sing|e-step and multi-step schemes. In 

choosing a particular forecasting scheme one must combine 
considerations of economy and accuracy. The latter 

depends to a large extent on the form of the equations and 
the character of the solutions, that is, the water motions to 
be studied. 

In the absence of external forces and frictional effects, 
the major terms in the-present equations are the pressure 
-gradients and the divergence terms which together describe 
the propagation of gravity waves in the lake. Since the 
Coriolis terms also represent a wave motion it is clear that 

’ the effects of various time-extrapolation schemes on the 
solution of the wave equation should be considered. This 
problem has been investigated by Kurihara (1965)-. 

Subsequently ‘Lilly (1965), Young (1968), and Baer and 
Simons (1970) included the treatment of the nonlinear 
inertial terms. From these and other studies it is "known 
that many forecasting schemes have filtering properties 
which may be desirable for specific purposes. However, 
based on considerations of accuracy, "stability, and 
economy, it appears that for wave motions none of the 
schemes proposed to date is substantially superior to the 
familiar method of centered time differences often referred 
to as the mid-point rule, the step-over, or the leapfrog 
method. The computational mode associated with this 

scheme may cause a time-splitting of the solution into 
quasi-independent solutions for even and odd time steps 
but this can be suppressed by a half-time-step starting 

procedure (see e.g., Baer and Simons, 1970), or by a 
re-start-, or‘ by a time-smoothing at regular time intervals 
(Smagorinsky et al., 1965). « 
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The mid-point rule is computationally neutral in the 
sense that the amplitudes of oscillatory solutions are 
preserved if the time step is small e_nough to satisfy the 
stability criterion, When combined with centered dif- 

ferences in the space domain the stability criterion is the 
familiar Courant-Friedrichs-Lewy condition for hyperbolic 
equations. Thus, if the centered differences are evaluated 
over 2At and 2A5 in time and space, respectively, then 

“ computational stability is assured if 

At I/x/T — < ‘ ' (66) 
As cmax 

where C-max is the speed of propagation of the fastest 
waves in the model, a_nd therefore equal to \/gH, that is, the 
speed of external gravity waves, in the presentgmodel. 

» While the centered time-differencing procedure is 

computationally neutral for our equations in the absence of 
bottom friction and diffusion, the same scheme is com- 
putationally unstable for dissipation terms. As noted by 
Platzman (1963) the dissipation terms represent a motion 
of pure decay described by a first order equation in time, 
whereas wave motion is described by an equation with 
second order time derivatives. On the other hand, single- 
step forward differencing results in amplification of 
oscillatory solutions but is stable for dissipat_ive terms for 
small enough time steps. Thus an appropriate time extra- 
polation scheme for the present equations is one where the 
pressure gradient terms, the divergence terms, the Coriolis 
terms, and the non-linear terms are evaluated at a time-step « 

centered between the old and new time, while the 
dissipation, and diffusion terms are evaluated at the old time 
step. The computational stability condition for the com- 
plete equations will be more restrictive than the condition 
(66) but the latter is a satisfactory indicator’ of the time 
step to be used in the integration. In the final ana_|ysis the 
stability of the calculation must be judged by‘ monitoring 
certain conservative parameters such as total energy in the 
absence of forcing or dissipative terms. More detailed 
discussions of computational stability in connection with 
the present problem have been presented by Fischer (1959, 
1965a), Platzman (19631), Kasahara (1965), and Gates 
(1968). 

Having established t_hat the non-diffusive terms in Equ_a- 
tions (16-18) and (33-34) are to be evaluated at the central



time-step, it may still be advisable to use some form of 
centered differencing other than the leapfrog scheme for 
certain terms in the equations. Indeed almost all other 
time-extrapolation schemes applied in the field of 
meteorology and oceanography fit within the general 
framework of centered differencing even though the 
functions are approximated rather than evaluated at the 
centered time; In view of the usefulness of such procedures 
for the treatment of the Coriolis terms and the nonlinear 
terms, a brief review seems justified. For example, consider 
the basic equations (16-'18) in_the absence of forcing or 
dissipative terms and with the time derivatives replaced by 
centered differences. 

5:; [u(:+An —U(t—At) ]=—gH + fV(t*l 
. , (67) —Ngh) 

1 _ _ =_ a§(t*) _ .. 

2_A_t [V(t+At) V(t.At)] gH 
av fU(t) 

(68) 
—NLy(t*) 

-1- [§(t*+2At) —§(t*) ]=— 2- U(t+At) 2At Bx 
3 

(69) 
- V(t+At) 

where NL indicates the nonlinear acceleration terms and t* 
is a dummy variable for the time t. The leapfrog scheme i_s 

obtained by replacing t* by t, which represents the 
centered time for the U-V-field. The time lag between the 
equations of motion and the continuity equation assures 
that the pressure-gradient terms are available at the right 
time, but the Coriolis term and the nonlinear terms clearly 
call for a second prediction of the U-V-§ -field with a time 
lag of one time step, so that the U-V-field will be available 
a_t time t and §‘ becomes available at t + A t. 

With regard to the Coriolis terms this additional 
prediction can be eliminated by a t_ime-i_nterpolation of 
these terms. As discussed by Lilly (1961) this can be 
accomplished in two ways. The most accurate method is a 
treatment ofithe Coriolis terms by the familiar Euler- 
implicit or trapezoidal scheme. Thus the Coriolis terms are 
approximated as follows.

1 fV(t') 2' f[V(t—'At-) + V(t+At)] Ml 

_ 
(70) 

fU(t') 2 15 _f[U(t—At) + U(t+At)] 

In this case the implicit character of the scheme causes no 
problems since the equations can be transformed 
immediately into explicit forms by solving the system of 
equations (67) and (68) in terms of the new velocity field. 
The second method suggested by Lilly (1961) is a com- 

bination of forward and backward differences where t* = t - 

At in the Coriolis term of equation (67) and t* = t +At in 
the Coriolis term of (68). 

Another combination of forward and backward dif- 
ferences may be mentioned" because it has been applied 
extensively in studies of storm su_rges in the North Sea 
(Fischer, 1959; Lauwerier, 1962; Heaps, 1969). Welander 
(1961) called this scheme the half-implicit scheme and it is 
essentially equivalent to the scheme obtained from 
(67-69) if t* is replaced by t-At, which implies a fonNa_rd 
differencing of the equations of motion and a backward 
evaluation of the continuity equation. With regard to the ' 

gravity waves this procedure is similar to the leapfrog 
scheme due to the special character of the equations - 

(Fischer, 1965b). However, the forward differencing 
applied to the Coriolis terms introduces computational 
instability as pointed out by Fischer's (1959) stability 
analysis.

1 

For the nonlinear terms in the equations (67-68) to. 

be available at the centered time it appears necessary to 
carry along another prediction. As an alternative, the Euler 
implicit method can b_e applied to the complete equations 
(Uusitalo, 1960; Veronis, 1963) but its implicit character 
makes it very costly. If restricted to the first iterative 
approximation (Heun 

' 

method) the most desirable 
properties of the scheme are lost. Another alternative for an 
additional leapfrog time extrapolation is found in 
prediction schemes of the Lax-Wendroff type where the 
nonlinear terms at time t are eva_l_uated after a forward 
prediction from time t-At to time t. In Phillips’ (1960) case 
the forward step is Lagrangian, and other variations have 
been dis_cu_ssed by Fischer (1965a, 1965c) and Kasahara 
(1965). The schemes are known to have a damping effect 
on the high wave numbers but do not exhibit the 
computational or parasitic mode. Somewhat similar is the 
method of fractional time steps employed by Leith (1965) 
and consisting of a sequence of two Lag'ra’ng’ian steps. The 
first iterative approximation to the backward differencing 
(implicit) scheme used by Matsuno (1966) and Anthes 
(1970) results also in a damping of oscillatory solutions. 
The mai_n problem remains that the computational effort is 
doubled whether an additional leapfrog prediction is carried 
along or any of the above substitutes is used. In addition, 
the evaluation of the nonlinear terms is time-consuming. 

Extending the above to the three-dimensional model 
the following procedure is suggested for the prediction of 
the various parameters. Considering first the linear terms it 
can be seen from (31), (33), and (34) that it would be 
desira_ble for the variables g‘, D and T to be staggered in time 
with respect to U, V, and w. Thus both the barotropic and 
baroclinic pressure gradients would be available at the 
centered time for the velocity computations, while the 
Coriolis term could be computed according to (70). 
Furthermore, the velocity components would be available 
at the centered time not only for the computation of the 
layer thicknesses from (31) but also for the nonlinear
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temperature advection (39), which constitutes an 
essential part of the model. In the absence of the nonlinear 
inertial terms in the equations of motion it would then only 
remain to approximate the temperature at the time level of 
the velocity components for the purpose of computing the 
temperature advection, for instance by a Lax-Wendroff 
scheme. Again, however, the nonlinear terms in the 
equations of motion would essentially result in a doubling 
of the computational effort, and for many purposes it may 
be acceptable to d_rop these terms. 

3.2 FINITE-DIFFERENCING IN SPACE 
Turning now to the problem of space-differencing, the 

in_teri_o_r of the lake away from the shores will be considered 
first. There, a very natural and accurate method of replacing 
space derivatives by‘ finite differences is to utilize centered 
differences in space. Considering the gravity waves 
described by the pressure and divergence terms, it is clear 
from the basic equations that the combination of central 
differences in time and space implies that the calculation of 
any one of the five variables U, V, T, D, (.2 requires a 
knowledge of the other variables at specific points in space 
and time. This leads to a certain disposition of the variables 
in time an_d space on the horizontal computational grid or 
lattice shown in Figure 3a, where f indicates a point where 
the surface elevation (f) and also the variables T, D, and co 
are specified. The prime indicates a time lag of one time 
step with respect to the other variables. Notice that, 
whereas T, D, and co are all defined in the §'-points, only T 
and D are at the time level of § while co is computed at the 
time level of the horizontal velocity components as 
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Figure 3. Finite difference lattices associated with 
centered differences in time and space. 
Primes denote time lag of one time step. 
a—basic lattice, b—space-supplement, 
c-time-supplement, d—conjugate lattice. 
Space location of variables D, T, and w in 
5'-points, with w at time-level of velocity 
components. 
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indicated in the previous section. Although the basic grid of 
Figure 3a is in ‘principle sufficient to perform the 
numerical calculations associated with the remaining terms 
of the equations, a proper modeling of the Coriolis forces 
and nonlinear terms is considerably simplified if at least one 
additional lattice‘ is introduced. Possible-alternatives are the 
space-supplement‘ of the basic lattice shown in Figure 3b, 
the time-supplemental la_tt_ice shown in Figure 3c, or the 
sipa'ce-time-supplement shown in Figure 3d, which is 

called the conjugate lattice in P|atzm‘an's (1963) notation. 

Various combinations of the (lattices a, b, c, and d, 
shown in Figure 3, can be considered with reference to 
the evaluation of non-frictional terms at centered time-steps 
and diffusive terms at previous time-steps. A direct 
evaluation of the Coriolis term without space interpolation 
calls for a definition of the U-components of the velocity at 
the V-points and vice versa. This can be accomplished by 
combining lattices a and d as proposed by Eliassen (1956) 
and Platzman (1963) or lattices a and b together with a 
time interpolation as suggested by Lilly (1961). As 
discussed before, this time extrapolation can be of two 
types, corresponding to a trapezoidal or a forward- 
backward differencing sch,eme,r_espectively. The latter was 
used by Sielecki (1963); the former was employed by Ueno 
(1964) and will be adopted for the present model of the 
Great Lakes. 

A combination of lattices a and c does not add to the 
space resolution of the model and therefore necessitates a 
space interpolation of many te_rms of the equations 
including the Coriolis terms. The added time resolution is 

not of much value since. the time step prescribed by the 
stability criterion (66) is already very small. On the other 
hand it is we_ll known that the combinations a andb ora 
an_d d may result in semi-independent solutions on the 
individual lattices. This phenor_n_en_on is known as grid- 

dispersion and is essentially a measure of space truncation 
errors. The problem becomes most serious in natural basins 
with irregula_r bottom topography and shore configurations 
‘where each lattice is subject to different boundary con- 
ditions. It is true that the Coriolis term and the nonlinear 
terms call for a combination of lattices and consequently 
tend to couple the solutions on the individual lattices. This, 
however, is hardly desirable but should be regarded as a 

source of error a_nd possibly computational instability. It is 

therefore most important to minimizethe grid-dispers_ion in 
the absence of these terms. The most obvious technique of 
reducing the grid-dispersion consists of the application of 
space-smoothing operators (Shuman,1957). Such filters 

may be combined with finite-difference schemes as 

discussed in some detail by Harris and Jelesnianski (1964). 
However, a side-effect is the damping of oscillatory 
solutions which may be undesirable although it is mostly 
confined to the higher harmonics. It may be more 
satisfactory to accomplish a virtual smoothing by a proper 
modeling of the horizontal eddy diffusion of momen_tu_m_. 
Thus, for the horizontal viscosity to couple the lattices a 
and b or the combination of a and d, the Laplace operator



should be evaluated by a rotation of the coordinate axes 
over 45 degrees. ' 

A rotation of the coordinates may also be valuable for 
the evaluation of other space differences. This may be 
illustrated with the help of Figure 4, whichshows two 

V computational grids employed in preliminary test models. 
Each grid is composed of a least two lattices of the type 
shown in Figure 3. The mesh size of the second grid is 

smaller and the grid is rotated over 45 degrees. The higher 
resolution is irrelevant for purposes of the present 
discussion but the rotation is of interest. The basic 
coordinate system of model B is denoted by x’-y’ in Figure 
4B and the equations (16-18) are written for these 
rotated x’-y’ coordinates. Finite differences are also 
evaluated along the rotated axes. It can be easily verified 
that, by adding and subt'r'ac'ting the equations of motion and 
relating the velocity components in the primed system to 
the original U-V-components, one would obtain a system of 
prediction_ equations of the type used by Lauwerier (1962),' 
Leith (1965), and Heaps (1969), among others. The latter 
form of the equations would suggest a smoothing and a 
coupling of the |_attices, and consequently a reduction of 
the grid-dispersion. Apparently, that is not the case, and 
any improvements resulting from this procedure 
(Lauwerier, 1962) must be traced to the orientation of the 
grid in relation to the boundaries of the basin. The effects 
of this orientation will be discussed in the last Section 
where computations on this grid are compared with" results 
of model A. These numerical calculations have been 
performed in the primed coordinate system because the 
averaging appears to be an unnecessary computational effort. 

The final aspect of the numerical procedure concerns 
the treatment of the lateral boundaries. The boundary 
condition for the velocity component normal to the shore 
can be incorporated readily if the computat_ions are 
performed on a single lattice, e.g., lattice a in Figure 3. A 
virtual boundary can then be defined consisting of 

MODEL A 

0 5 10 15 20 
—> x[km] 

boundary segments parallel to either the x-axis or the 
y-axis, so that the segments parallel to the x-axis pass 
through points where V-values are located and segments in 
y-direction pass through U-points. The velocity components 
at boundary points are then set equal to zero. This 
technique was applied by Platzman (1958a) and also 
apparently by Hansen (1962), Henning (1962), and Rose 
(1962). If the computational grid consists of two basic 
lattices such as the grids shown in Figure 4, this method 
would result in two different virtual boundaries,‘ one for 
each latice, which would cause a serious grid-dispersion 
problem (see, e.g., Sie_|ec_ki, 1968). Furthermore, in such 
computational grids the boundaries will necessarily pass 
through elevation points or through points where the 
component of the velocity parallel to the boundary is 

defined. In that case the following procedures may be 
considered. 

If a_n elevat_ion point coincides with the boundary, the 
equation of continuity can be applied -at such a point 
providing that fonlvard space-differences are employed. This

' 

method assures conservation of mass and, as such, is 

equivalent to the condition that the velocity component 
_normal to the wall mu_st vanish. This method is equivalent 
to Platzman’s (1963) boundary treat_ment and was used by 
Gates (1968). On the other hand, Harris and Jelesnianski 
(1964) suggested to obtain the gradient of the surface from 
the equation of motion perpendicular to the shore. The 
first method is employed in the present models in view of 
its desirable conservation properties. 

The tangential velocity component at the shore can be 
obtained by applying the equation of motion for that 
component in a boundary point. This is the usual procedure 
in storm-surge studies (Fischer, 1959; Lauwerier, 1962; 
Platzman, 1963; Heaps, 1969). For boundary segments 
oriented with respect to the computational grid as in Figure 
4A, the pressure-gradient term along the bou_nd_ary can be 
evaluated immediately from boundary-elevation points. lf 

MODEL B 

O 5 10 15 20 —> x[km]' 
Figure 4. Computational grid employed in preliminary test models. Crosses denote 

stream points where both velocity components are specified. Circles indicate 
elevation points; open circles belong to lattice b (or d), black circles to lattice 
a of Figure 3.
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the boundary segment is of the type shown in Figure 4B a 
special procedure is necessary to evaluate the pressure 
gradient in the equation of motion parallel to the shore. 
The following alternatives may be considered for the 
boundary points of model B. 

The equations of motion in the x'- and y’-direction 
may be applied at a boundary streampoint by introducing a 
fictitious surface elevation at this boundary streampoint 
and evaluating the pressure gradients by forward differences 
(Sielecki, 1968). By adding and subtracting the equations 
and using the boundary condition for the velocity normal 
to'the wall, one obtains a prediction equation for the 
tangential "velocity. In the latter equation the pressure 
gradient along the wall is clearly replaced by the gradient 
along the first internal row of elevation points. For a more 
accurate evaluation of the pressure gradient at the wall, the 
surface elevations at the boundaries can be obtained by 
linear extrapolation of surface elevations computed at the 
first two rows of internal elevation points (Lauwerier, 
1962). Heaps (1969) extended this method to a 3-point 
interpolation between two rows of interior and one row of 
fictitious exterior elevation points computed from the 
equation of motion perpendicular to the wall. 

3.3 TREATMENT OF NONLINEAFI TERMS 
In the discussion of the energy conversions for a 

layered model, a major problem associated with space- 
differencing was touched upon, namely, the numerical 
treatment of nonlinear terms. A great deal of research has 
been ‘devoted to this problem particularly after the 
introduction of numerical models in meteorology. The 
nonlinear processes tend to generate higher harmonics 
which cannot be dealt with effectively by the com- 
putational grid and which can lead to nonlinear com- 
putational instability as pointed out by Phillips (1959). An 
effective method to suppress higher harmonics is to 
introduce eddy diffusion or smoothing. Special numerical 
techniques have been proposed to deal with the problem of 
nonlinear instability, including the application of spectral 
techniques or the use of conservative finite-difference 
schemes. A review of -various numerical schemes has 
recently been presented by Grammeltvedt (1969). 

(Many numerical schemes designed for the treatment of 
nonlinear terms are highly complicated and difficult to 
apply at the boundaries since a great number of grid poi_nts 
may be involved. In view of the character of the lateral 

boundaries in the present models it appears desirable to 
evaluate the nonlinear inertial terms in the equations of 
motion over not more than five adjacent stream points. 
This in turn calls for at least two lattices of the type shown 
in Figure 3, such as the double-lattice grids of Figure 4. 
Within the five-point restriction there are basically two 
alternatives. The first one is to average the variables along 
the x-axis of Figure 3a before evaluating the centered 
differences in the y-direction, and vice versa (e.g., Gates, 
1968). The second method is to compute the components 
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Figure 5. Typical horizontal (above) and vertical (below) 
staggering of variables in a layered model. 

of the nonlinear inertial acceleration along the axis of a 
coordinate system rotated 45 degrees with re_spect to the 
main orientation of the grid. For example, whereas the 
main orientation of grid 4B is along the primed coordinates, 
the nonlinear terms could be evaluated along the unprimed 
axes. In the latter case one could average the variables along 
a given axis before taking centered differences alongthe 
same axis. The latter would be an example of a conservative 
scheme. 

The principles of the energy-conserving finite- 

differencing procedure have been discussed by Arakawa 
(1968), Bryan (1966), and Lilly (1965). The purpose is to 
compute the nonlinear advection terms so that these terms 
do not affect the volume integrals of the advected quantity 
nor its variance. An outline of this method will now be 
presen_ted for the type of equations under discussion. In 
particular the operator defined by (39) will be 
considered, which includes the corresponding one-layer 
operator as a special case. The discussion will be based on 
the disposition of va_riab|es shown in Figure 5, which 
corresponds to a horizontal lattice of the type of Figure 3 
combined with the vertically layered system of Figure 2. 
It is understood that all subscripts are i, j, k-§, unless 
indicated otherwise, and that all variables are available at 
the same time. Furthermore, in each grid point only those 
variables have been entered which are called for in the



present discussion. In general, additional variables will be 
defined in the same grid points, and, conversely, the 
horizontal velocity components are not necessarily defined 
in the points indicated‘ but may have to be obtained by 
interpolation. The latter could be the case in the com- 
putation of the nonlinear inertial terms. 

For convenience the two equations (31) and (39) 
will be reproduced for a grid point with horizontal indices 
(i, j) and for the layer with index k-§. Dropping all 

indices unless they differ from the above 

a au av Ll1l=aTD+K+a—y- +¢.;k_,—wk =0 - (71) 

L(0) =33; + (,?7<%T) + 

+ (w0)k-1 - (w0)k 
(72) 

It will now be shown that the conservation requirements 
are satisfied if the values of the advected variables (in this 
case the temperature) on the surfaces of the box sur- 
rounding the point [i, i, k--§] are approximated by 
s_i_mp|e linear interpolation. Further, replacing the 
derivatives by ordinary centered differences, the equations 
above become 
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It follows that the summation of (73) or (74) over all 

layers and all grid points reduces to the summation of the 
first terms on the right-hand sides by virtue of the 
cancellation of all other terms, together with the boundary 
conditions on (U, V) and co which vanish at the proper 
boundaries. Thus the volume integral of 0 is not affected by 
the nonlinear advection terms. Obviously this property of 
(74) is not lost if (73) is substituted i_n (74) with the 
result 

_ QI T. EL L Er _ E ""9" 
at 

+ 20 at + 2AX|:<D>l+1 <o>i—J 

1 VT VT ‘ 

*2Tv[(s)—~ -(F):-«l 

+-1- I ‘ T
1 

2 wk" D k-E "wk B H; 
If the latter is Fnultiplied by ‘T/D then 

%L(0)= +-2%; [U‘*‘ (-l%>i+1 

‘UT-1(%>i-«(%)«l T 

G) B)» 
- 

1 (%)i—1(%)ll 

* 5'l“k~=(%> <%)«—% 

"‘’k "°’ 

Again the summation of (76) over all points reduces to the 
summation of the first term on the right by virtue of the 
same cancellation effects and boundary conditions 
mentioned below (74). This first term is just the time rate 
of change of 02/2 for a layer, according to (37), and 
hence the volume integral is not affected by the nonlinear 
advection terms. Consequently, the scheme is conservative 
in the sense defined above. With regard to the layered 
representation in the vertical, a similar argument was 
presented already in the framework of the energy con- 
siderations. 

-l 

In summary it is concluded that the advection of a 
given variable is to be computed by surrounding the grid 
point by a box as illustrated in Figure 5, using a linear 
interpolation for the advected variable on the surfaces of 
the box, and requiring that the advecting velocities on these 
surfaces be related to each other by (73). It is clear from 
the above that the values of the advecting velocities U, V, 0.: 
at the surfaces of the box do not have to be grid point 
values, as mentioned before. These velocity co‘m'ponen_ts 
may be obtained by interpolation if for reasons of other 
computations-it is more convenient to define one or more 
of these variables at grid points different from those shown 
in Figure 5. This is the case if one wants to compute the
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Figure 6, idealized wind field simulating the passage of an atmos- 
pheric front. 

nonlinear terms in the equation_s of motion, where one is 

dealing with a box surrounding a velocity point. In that 
case, the condition that the velocity components must be 
mutually consistent in the sense that (73l- is to be satisfied, 
leads to a computatio_n of co in points which lie 

immediately above and below the velocity points. Since the 
temperature calculation already calls for on in the elevation 
points, this results in a doubling of co-points. 

3.4 ONE-DIMENSIONAL TEST COMFUTATIONS 
Before proceeding to more realistic "models of the 

Great Lakes it is useful to consider the response of simple 
_la_ke models to time-dependent wind stresses. |f'the 
situation considered. is simple enough, it may be possible to 
obtain analytical solutions which not only give us an.idea of 
the behaviour of the phys_ical system but also can be used 
to test the numerical solutions.. For example, in the case of 
Lake Ontario one is dealing with alake of considerably 
smaller size than the scales of atm,osp_he‘ric distu‘rbanc‘es. 
The lake has a narrow elongated shape, it is situated in the 
belt of atmospheric westerlies, and its main axis is nearly 
parallel to the prevailing wind direction. It is thus of 
interest to consider the problem of a. time-dependent wind 
field of large space dimensions blowing along the length 
axis of an elongated rectangular homogeneous basin,’ 
ignoring as a first approximation the effects of the earth's 
rotation, the n,on_Ii_near_-effects, and the eddy diffusion. At 
first it will also be assumed that the depth is uniform in 
which case this wind stress will not generate any transverse 
motions and the problem becomes effectively o_ne- 

dimensional. ~ 

' ' 
’

1 

Considering the general behaviour of the wind 
following the passage of a front, the wind tends to--increase 
sharply for a relatively short period of~'time, sa'y T, and 
thereafter varies more slowly. At the same time the wind 
field will move across the lake in the general direction of 
the wind stress. ldealizing this situation we consider a 
semi-infinite stress band with a linear increase ofintensity 
over a period of time, T, and a constant i_nt_ensity after time 
T, and moving with a constant translation speed V. This 
wind field is shown in Figure 6, where To‘ is the scale value of 
the stress. Notice that the setup for a finite stress band may 
be obtained by superposition of two semi-infinite stress 

hands, a positive stress and a negative stress o_f_the same - 

intensity, moving in the same direction, but separated by a 

time lag. Notice also that the linear increase of stress 
implies a wind increase proportional to the square root of 
time. ~ 

‘ -

A 
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The present problem has been solved by Rao (1967) 
for a step-function wind stress (T=0) using the method of 
characteristics. As the same technique will be applied "here 

,'no detailed discussion of the procedure is presented. 
Consider a lake of uniform width, W,’ uniform depth, H, 
finite length, L, and let the x-axis be oriented along the 
length axis of the lake. Without the Coriolis terms, the 
nonlinear effects, and the frictional terms, the one- 
dimensional equations corresponding to (16-18) are 

£22.- fa; T_s.a.r- _ 
at 

—igH ax+ ’ 
__ (77) 

where the time~dependent windstress at the surface (Ts) is of 
the form shown in Figure 6, and the front is taken to 
arrive at the left end of the lake (x=0) at time t=0. The 
boundary conditions are then_ U=0 at x'=0 and x=L, and the 
initial conditions are U=§=0 at t=O. Let c=\/§—H‘ be the speed 
of the free gravity wave and introduce the non-dimensional 
quantities 

' 

' ~

IX ix/L, t_' 2 ct/L, v’ —=—‘V/c, 'T’ 2 cT/L,
_ 

i 
y 

, 

' 
’ 

(78) 

T; E T5/To: -§ 5 pc2§/To L, U'- —=- p‘cLl/roL 

where To is the scale va_|ue of the wind stress (Fig. _6). 

Upon adding and subtracting the nondfirnensional forms of 
equation (77)-it follows that . 

' 

'

‘ 

I 

. 

dx' 
d—t,lu':§')=7’s for C7-=:1g 

V 

.(79) 

These. equations can be integrated easily in the x’, t'—p|_ane 

along the straight characteristics x=i t + constant, noting 
that 

r;=0- ,_ forx'>V't' 
r; = 1' 

' for x’ < V'(t'-—T') (80) 

‘\ 
_¢n,

~ ll 
(6 {T5 for v’ ,(t"—T') <x' <v't'_ 

The speed of the free gravity wave forALake Ontario is 
of" the order of 30 m/sec. As this velocity is never attained 
by moving 1 atmospheric disturbances, we may restrict 
ourselves to the case V’ ‘=' V/cg<_1.

‘ 

The solutions for th_is case are summarized in Table 1, where 
- §o is thesurfaoe elevation at the Ieftend of the basin (x=0) 
and fl is the elevation at the other end (x'-_‘L). All variables 
in-the table are nondimensional, butfor convenience the 
primes" have been dropped. Furthermore,.min (afi) denotes 
the smallest of the two numbers a and [3 and max (or,B) 

indicates the larger of the two. As an_ example of the 
solutions of.Table, 1, the response of the lake to a few 
typical stress bands is shown in Figure 7. For comparison 
with Lake Ontario, dim'en'sional numbers based on the 
values c=32 m/s, L=300 km, and To/p= 1 cmz/$2 have been 
included, ‘thus v=32' v’ (m/sl, T=2.6T’ (hr). §‘=2.91 gr’ (cm),



~ 
TABLE 1. One-dimensional response of a lake to the idealized wind 

shown in Figure 6. 
Definitions 

_ . 

F 

1 
'1 _ 1 

‘1 
A0 = ‘7 

+1 A1 = V - 

_ 1 1 Bo =m1n(T,V+l5 B1=mm(T,‘7—l 

- 1_ _ 1 Co=max T,V+1 C1=max T,V—l 

DET+—1-+1 1).=_T+.1__1 ° v 1 V 
Solutions ' 

time r-om + mt-1) time r,(t+1) — mt) 
t<0 0. t<0 0. 

0<.t<Bo —Aot’ 0<t<B1 A, t’ 

B0<t<Co —AoBo(2t—-Bo‘) B1<t<C1 A1B1(2t—B1) 

Co<.t<Do —l+Ao(t—Do)2 C1<t<D1 l—A1(t—D1)2 

Do<t _ -1 __VD1<t 1.

~ 
and t=2.6t' (hr). These and many other cases were also 
computed by the numerical techniques discussed earlier, 
that is, centered differences in space and time. Comparison 
of the exact and the numerical solutions indicated that the 
truncation error with a gridmesh of 5 km is less than 1%. 

The character of the solutions above is important and a 
brief discussion therefore may be inserted here. The present 
solutions are similar to Rao’s (1967) resultssfor T=0 except 
for the somewhat smoother response of the lake as seen 
from Figure 7. It follows from Table 1 that {'0 is periodic 

for t’ > T’ + + 1 and §'1 is periodic for t’ > T’ + 

6-, + 2 with period At’=2 or At=2L/c. In Rao's special 

case (T=0) the surface elevations §o a_nd {'1 approach the 

constant values §6 = —%, {'1 = g-, for V’ = 1/(‘,2n+1) where 
n is a positive integer. Another special case which may be 
considered is the wind stress associated with a deepening 
storm situated over the lake. The solution can be obtained 
from the general solution by letting V’ approach infinity 
but the solutions for V’ > 1 have not been included in 
Table 1. If this special case was ‘solved-, it would be found 
that the response approaches the constant values 

g’; = - 5-, {'1 = g-, if T'=2n where n is a positive 

integer. From simple considerations it may then be con- 
cluded that the general solutions of Table 1 approach a

< 

v‘=.5 [v=1e m/sec] T'=o [T=O] .3 - I 
, 
’ ——- v‘=.5 [V-=16.m/sec] T‘=1 [T=2.6 hrs] 

-2 - - — v'=.5 tv=1e m/sec] r‘=2 
, 
[_r=5.2 hrs] 

— — v'=.5 [v’=1s m/sec] T'=3 [T=7.8 hrs] 
.1 - 
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Figure 7. One-dimensional response of a lake to a wind field of the type shown in Figure 6. Dimensional 
quantities based on unit wind stress and dimensions of Lake Ontario.
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non-oscillatory, steady state for V’=1/(2n+1) or T’=2,n. 
This is of particular interest if we consider an idealized 
wind field with a velocity V=10 m/s and a period of 
intensification equal to T=5 hr, which appear to be fairly 
reasonable values. Using the same representative values for 
Lake Ontario given above we find V’=1/3 and T’=2 
(approxi_m_ate|y). Each of these values tends to favour a 
steady set up. 

3.5 TWO-DIMENSIONAL TEST COMPUTATIONS 
Returning now to the numerical aspects of the problem 

.a two-dimensional extension of the above solution is 

considered, The response of the rectangular lake to the 
same wind is computed with the same assumptions 
introduced earlier except for the following. The depth is 

now take_n to vary in the direction perpendicular -to the 
wind which tends to induce transverse motions and 
consequently we are dealing with a tvvo-dimensional 
problem. As before, the only terms retained for the 
moment in Equations (16-18) are the pressure gradients, the 
divergence terms, and the wind stress. - 

The length of the rectangular basin is 300 km and the 
cross-section corresponds to the depth profile of Lake 
Ontario at longitude 78°W. Thus the width of the model is 
70 km and the average depth is 105 m as denoted by the‘ 
dashed line in Figure 8. The corresponding velocity of 
the free surface wave is about 32 m/s, which was used 
above for conversion from non-dimensional to dimensional 
quantities. The x-axis is taken along the length-axis pointing 
eastward and the y-axis points northward-. The wind blows 
again along the x-axis and consequently the response of the 
basin without depth variations would be the same as the 
one-dimensional response above. The computational grids 
have been discussed in connection with Figure 4. Each 
grid is composed of the lattices a and b shown in Figure 
3. To identify the lattices, the elevation points belonging 
to lattice a are denoted by black circles while open circles 
ind_icate the elevation points of lattice b. The distance 
between grid points is 5 km for grid A of Figure 4 and 
5/\/fkm for grid B. Centered differences in time and space 
a_re used except for the boundary-elevation points where 
the divergence is evaluated by forward space-differences, 
The normal velocity is zero at the wall and the tangential 
velocity is either computed from the equation of motion 
parallel to the wall or set equal to zero, 

As noted before, the utiliza_tion of centered differences 
in time and space in the present model implies the existence 
of two independent solutions on lattice a and b 
respectively. In model A of Figure 4 each lattice is subject 
to computationally different boundary conditions. For 
lattice a (black circles) the condition is that the normal 
velocity component vanish at the boundary, for lattice b 
(open circles) the same condition prevails but the normal 
component of the velocity is not specified at the wall. 

' Instead, the condition is satisfied by a proper computation 

- therefore 

of the divergence in the boundary points. lniorder to assure 
that these conditions are compatible, the solutions on the 
two lattices are compared for the case of uniform depth 
and found in perfect agreement. For comparison with the 
exact solutions described above the surface elevation at the 
boundary for lattice a is obtained by a linear extrapolation 
from the first two interior points of the same lattice. The 
exact solutions are well approximated by both lattices; in 
fact, the errors do not exceed one percent of the true 
solution. 

Co_nsider now the depth profile of Figure 8, where 
we let the depth at the shores approach. a small but 
non-zero value, H = 1 m. Clearly the bottom profile affects 
the two lattices of model A in different ways, and in 
particular the shallow depths at the shores are perceived by 
lattice b only. The upperpart of Figure 9 shows the 
response of the basin to a wind impulse given by T5 = 0 for 
t < 0 and ‘rs/p = 1 cm’/s2 for t > 0. The dashed curve is the 
response of model A at x = 0, y = 25 km, that is, grid a. The 
dot-dash curve is the response at point x=0, y=20 km 
belonging to grid b. By comparison with neighboring points 
it is found that the surface elevations at distances of 10 km 
along the boundary" are nearly the same. Hence the 
differences between the two curves are caused almost 
entirely by grid dispersion. The considerable dispersion is 

mostly induced by the shallow depths at the shores which 
tend to retard the oscillations of the solution on lattice b 
since the free surface wave moves very slovvly in this 
shallow water. 

In the present case the grid dispersion can be related 
immediately to the orientation of the grid ‘with respect to 
the bottom contours and lateral boundaries. Rotation of 
the computational grid as shown in Figure 4B is 

indicated. The computational procedure has 
been described earlier. Thus the x, y-coordinate system is 

DISTANCE ALONG Y-AXIS OF MODEL [km] 
70 so 50 40 N30 $20 10 0 

£. 50 — 

: 1oo =--.._--------- --..._——-—.——-. ----------- -- 
l- 
& 150 - 
O. 

200 ‘ <— Noam SOUTH —> 
Figure 8. Depth profile of Lake Ontario at longitude 78VW, employed in Studies 

orrectangula: basin.
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Figure 9. [Response of rectangular basin to wind inpulse of unit stress, measured at location of arrow in 

Figure 8. Upper part of figure for free-slip walls, lowerpart for no-slip walls. 

replaced by the primed system as the basic coordinates for 
the calculations at interior points. The pressure gradients 
along the wall necessary for thetprediction of the tangential 
velocity component in the case of free-slip boundaries are 
obtained by lin_ear extrapolation from the first two internal 
points. Integrations with model B show indeed that the grid 
dispersion is completely suppressed for the pgreseint bottom 
configuration. The solid line in the upper part of Figure 
9 shows the response of model B to the same wind stress 
imposed on model A_. The surface elevation shown 
corresponds to the point x=0, y=22.5 km. On the scale of 
Figure 9 the latter coincides with the response at x=0, 
y=27.5 km which means that the grid dispersion has been 
eliminated. As expected, the solid line is a weighted average 
of the dashed line and the dot-dash curve. 

The same experiments may now be repeated with the 
boundary condition that both components of the transport 
vector vanish at the sho_re. The results are shown in the 
lower part of Figure 9. The dashed curve shows the 
response of lattice a of model A which is not affected by 
the new boundary condition and consequently this cu_rve is 
the same as before. The dot-dash line shows the response of 
latti_ce b of model A and the solid line indicates again the 
response of model B which is once more free of grid 
dispersion. The general behavior of the solutions for 
free-slip boundaries and for no-slip walls is similar in that 
the presence of the boundaries in either case tends to slow 
down the oscillations. In addition, the no-slip boundary 
tends to reduce the amplitude of the oscillation. Since the 
oscillation of the basin is the integrated effect of the 
oscillations of a number of channels of various depths, a 
large contribution to the total a_mp|itude comes from the 
shallow shores. This contribution is annihilated by the 

condition of no-slip boundaries. If the same computatiovns 
are performed for a channel of constant depth, the 
amplitudes of the solutions are the same for each lattice 
and each model. However, the no-s|i_p boundary condition 
results in an increase of the period of oscillation on grid b 
of model A equal to about 7% by comparison to solution a 
of model A. This could be expected since there are 14 grid 
intervals in the transverse direction. In this case the period 
of oscillation of model B is increased by 3-4%, again 
without grid dispersion. 

Although the no-slip boundaries appear to cause a 
larger grid dispersion than the free-slip boundaries, it is 

believed that the former boundary condition represents a 
reasonable simulation of the retarding effect exerted on the 
large-scale flow by the lateral boundaries. Thus this 
condition is adopted for the present models in conjunction 
with the effects of horizontal eddy diffusion. The lateral 
boundary layer i,nt_roduc_ed by this procedure has an 
effective width equal to the grid distance. In the present 
models this is of the order of 5 km, which probably 
underestimates the nearshore ve|ocities.- An improvement 
may be achieved by a quadratic interpolation of the 
velocities for the purpose of computing the divergence in 
the first internal row of elevation points of model B, or by 
using a finer grid at the boundaries. Some preliminary 
computations have been performed to study the effects of 
such refinements. As expected, the results are weighted 
averages of the free-slip and the no-slip-boundary solutions 
shown in Figure 9. It is found, however, that weak 
instabilities may be introduced by such procedures. 
Although this could be related to a coupling of the lattices 
(PIa'tzma_n, 1958b), it should be noted that such coupling 
occurs always at the boundaries of model B in the case of 
free-slip walls.

A
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