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jconcept. 

Abstract 

The application of first—order 
linear dynamics to predict eutrophica— 
tion in lakes is reviewed within the 
framework of the phosphorus loading 

Lack of understanding of the 
sedimentation term and use of the 
steady state assumption have impeded 
predictions in the past. 

A model of the dynamics of total 
phosphorus in lakes is derived which 
shows that lakes respond as a forced 
system to changes in inflow phosphorus 
concentration. Although the concen- 
tration of phosphorus in a lake is shown 
to scale with the.inflow concentration, 
the time dependence of flushing and 
sedimentation is important to successful 
modelling. ’ 

Résumé 
L'application d’une dynamique 

linéaire du premier ordre servant 5 la 
prévision de l’eutrophisation des lacs 
est étudiée eh fonction de la charge en 
phosphore. Une mauvaise comprehension 
du terme de la sédimentation et 
l’uti1isation de l'hypothése du régime 
permanent ont géné les prévisions par le 
passe. 

'

C 

Un lmodéle de la dynamique du phos- 
phore total d’un lac est établi. Ce 
modéle ‘montre que les lacs réagissent 
comme un systéme forcé aux variations de 
la concentration en phosphore du débit 
entrant. Bien que la concentration en 

_phosphore d’un lac corresponde a-celle 
du débit entrant, il est montré qu’il. 
importe de cerner les caractéristiques 
de la vidange et de la sédimentation 
afin de bien modéliser la dynamique.
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Management Perspective 

A 
Many lakes in Canada experience 

large blooms of algae during the summer 
months that degrade water quality and 

. limit potential uses. .The algae thrive 
on‘ high concentrations of phosphorus 

. that often originate. from municipal 
sewage effluents.‘ Some understanding of 
how jphosphorus behaves in >1akes is 
necessaryW in order to evaluate‘ the’ 
potential impact of improvements in 
sewage treatment. - 

In this report, the theory of phos- 
phorus dynamics is derived for lakes 
controlled by flushing and sedimenta- 
tion. The phosphorus loading concept is 
then reviewed. It is shown that the use 
of static models and a lack of under- 
-standing of phosphorus _sedimentation 
have impeded the- prediction of lake 
phosphorus. A



On the Dynamics of Phosphorus _in Lake; Systems 
Bernard C. VKenney 

INTRODUCTION
I 

In 
_ 

several classic papers, 
Vollenweider (1968, 1975, 1976) pre- 
sented methods to predict lake eutro— 
phication using the phosphorus loading 
concept. This concept was based upon an 
empirical observation that chlorophyll 
production increases with the supply of 
phosphorus (or loading) to lakes. The 
phosphorus loading concept was quanti- 
fied, in the form of nomographs called 
phosphorus loading diagrams, which have 
been‘ used to predict changes in the 
trophic state of lakes from changes in 
loading. In general, the concept is 
called the nutrient loading concept and 
can be applied to any plant nutrient or 
fertilizer in addition to phosphorus. 

In the present paper, the phosphorus 
vloading -concept is examined within the 
framework of equilibrium input—output 
models. Some theoretical and practical 
shortcomings of several phosphorus 
models are then discussed. Finally, the 
dynamics of total phosphorus in lakes is 
explored using first—order linear theory 
with time—dependent coefficients. 

INPUT—0UTPUT uonELs 

Sawyer (1947) reported that when the 
phosphorus concentration in a lake was 
greater than 10 to 20 mg/m3, algal 
blooms frequently occurred. The lower 
limit of Sawyer’s observation was used 
by Vollenweider (1975, 1976). as the 
criterion to quantify eutrophication. 
The problem of predicting the .trophic 

_state of a lake is then reduced to one 
of predicting when the concentration 
of phosphorus in a lake, PL, exceeds 
10 mg/m3 from estimates of phosphorus 
input or loading, L, to the lake. The 
phosphorus loading is defined as the 
mass of total phosphorus entering a lake 
per unit time divided by the surface« 
area of the lake- The required result 
may be expressed mathematically as a 
relationshiP between PL_ and L (plus 
other as yet .unspecified variables). 
The relationship may be expressed in 
terms of an unknown function, f, as 

f(PLa—Lr:99) =.0' ‘ (1) 

The usual empirical approach applied to 
such problems is to measure PL and L for 
a_ number of cases and determine the un—A 
known function, f. The empirical 
approach is basically a curve—fitting 
exercise, and the resultant curve (the 
unknown function, f) is often assumed to 
be_ universal. Once f is Hnown, one may 
determine (or "predict") PL from esti- 
mates of L for other lakes. Conversely,. 
a critical loading can be established 
for a lake by setting PL to 10 mg/m3 in_- 
equation (1). How well this model prep 
dicts ' the .unknown case is strongly 
dependent upon the validity of the 
assumption of similarity among lakes. 

In engineering -applications,‘ the ‘empirical approach produces good results 
when ‘the data used in determining the 
unknown function are judiciously chosen 
to , encompass the complete range of 

s situations for which the resultant curve



may be used. In the context of lake 
eutrophication, use of the empirical 
approach requires that data from a wide 
spectrum of lakes be included when 
determining f. It‘ is also implicitly 
assumed that other factors such as 
"geological and geochemical differences 
between lake basins are unimportant. 

In order to include important 
parameters such as the flushing rate of 
a lake, Vollenweider (1975) proposed 
that more sophisticated phosphorus 
loading models be tied to the principle 
of conservation of mass.» To this end, 
he several input-output models. 
Because the understanding of input- 
output models is important to the 
discussion of the phosphorus loading 
concept to follow, a simple derivation 
of these models is presented in this 
paper. 

Two input—output models are consid- 
ered. The first has a single inlet and 
a single outlet from a well—mixed lake. 
VRemoval of phosphorus from the lake is 
achieved solely through the outlet. The 
second model is the same as the first, 
but with the addition of a second term 
for the removal “of phosphorus in the 
form of sedimentation. - This second 
model is equivalent to the nonconserva—

_ 

tive model presented by Vollenweider 
(1975, p. 58). 

A Vell—HiXed ‘Model 
7 

with a (Single 
Time Scale ' 

Consider a well—mixed "model lake" 
with a single inflow and a single out- 
flow. Let 0 be the volume flow of water 
into the lake and assume the lake level 
is constant with a mean depth, g. The 
surface area of the lake is A and the 
lake concentration of total ‘phosphorus 
is PL. The concentration of phosphorus 
in the inflowing water is Pi and in the 
outflowing water is PL (because the lake

4 

is assumed well mixed). The usual fun- 
damental variables in the Problem are, 
therefore, Pi, PL, 0, A, z, and t, Where 
t is time. 

Phosphorus loading, L, was used by 
Vollenweider (1975) as a ‘fundamental 
quantity in his -derivation of input- 
output models." Phosphorus‘ loading, 
however, is actually a derived quantity 
or parameter. When all the phosphorus 
enters the lake with the inflowing 
water, L = PLO/A. The above fundamental 
variables are used in the present sec- 
tion to simplify the derivation of the 
models. To facilitate comparison with 

7 Vollenweider (1975), certain equations 
are also» expressed, in terms ‘of phos- 
phorus loading. 

The problem is~ to determine PL at 
any time t after the continuous intro- 
duction of phosphorus at the inflow, Pi, 
beginning suddenly at time t = O. The 
assumption can be made, without loss of 
generality, that the initial lake con- 
centration was zero at time t = 0. If‘ 
the problem were to be approached from 
experimental point of view, the first 
task would be to perform a dimensional 
analysis of the independent variables 
(Taylor, 1974). The pertinent dimen- 
sions in this problem are_mass E, length 
L, and time T. Taylor's convention will 

‘ be used to list the dimensions of the 
fundamental variables. For [ ] read 
"the dimensions of." For = read "are." 

[Pi] = ‘E153 
V 

[PL] = ML'3t 
I01 : E51?” 
M1 = E’ 

.Iz‘l. = L 
[t] = 1 

For this simple problem, two dimension- 
less groups may be found, either by 
inspection or by using the Buchingham H 
theorem (Taylor, 1974). The result.of' 
the dimensional analysis is 

. 
‘oi —

. 

= Func (KE). (2) "U"d 
-Ir

1 

(Equation (2) says that the dimensionless 
concentration PL/Pi is some unknown



function of the dimensionless variable 
Qt/Az. The actual functional relation- 
ship depends upon equations governing 
the process. Using the empirical ap- 
proach, the unknown function would be 
determined by the experiment-—by corre- 
lating PL/Pi against Qt/Az, for example. 

V 

In this case, it is not necessary to‘ 
conduct a series of experiments to de- 
termine -the unknown function. The 
governing equation for the model lake 
can be written down directly using the 
principle of conservation of mass as 

fifih _ E18 ’E§9' 
(3) dt ' Az — Az ' 

In this differential equation, dPL/dt is 
the rate of change of concentration of 
phosphorus in the lake expressed as the 
difference between the rate at which the 
concentration is increasing in the lake 
due to the inflow and the rate at which 
the concentration is decreasing because 
of losses at the outflow. Because the 
assumption was made that phosphorus 
enters the lake only with the inflowing 
water, equation (3) may also be written 
in terms of the phosphorus loading as 

dP ' 

& PEQ
2 

CL at—= ‘E’ 
. 

(4) 

Equation (4) is equivalent to equation 
(2.5) in Vollenweider (1975). 

Equation (3) is a first-order 
ordinary differential equation that can 
be readily solved by separation of 
variables. The solution, subject to the 
initial conditions, P3 = O at t = 0, is 

"U"'U

. 

p_—o~ 

‘ = 1 — exp(-Qt/Az). 
’ 

I 

.(5) 
1 . 

Thus, the unknown function’ in 
equation‘ (2) has been found for this 
simple model lake. - If the governing 

r-equation ,were different because of a 
different set of initial ‘assumptions 
(say, about mixing), then this unknown 
function would also be different. This 
solutionv to equation (3) is .called the 
step function response of the lake with 
respect to phosphorus. It describes the. 

concentration of. increase in lake 
phosphorus with time after the sudden 
start of phosphorus addition at _the 
inflow. Using similar techniques, a 

‘sudden decrease or even continuous 
changes in the 

, 
inflow phosphorus 

concentration can also be calculated. 

The step function response is shown 
in Figure 1 in terms of the time scale 
1* = Az/0 of the system. By definition, 
when t = 1;, then PL = — l/e = 63% of 
its final value. The time scale, Az/Q, 
in this simple problem is the same as 
that often used for real lakes. It is " known as the water residence time or 
water renewal time. 

Two characteristics of Figure 1 are 
important for discussions to be pre- 
sented later in this paper. First, at 
steady state (i.e., as t 9 ¢9, the lake 
concentration is equal to the inflow 
concentration for this model (i.e., PL = 
Pi)._ Second, a reasonable estimate of 
the final steady state value (say 99%) 
requires a time of t > 51;. For all 
values of t < 51;, PL < Pi. 

The analysis that leads to equation 
(5) is exact. If a physical model of 
the model lake were constructed in a 
laboratory such that all the initial 
assumptions were met, then equation (5) could also be determined experimentally. 
How well equation (5) applies to a real 
lake is solely dependent upon how well 
the model assumptions apply to the real 
lake. The validity of the assumptions 
to real lakes will be discussed later.
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Figure 1. Time response of input—output model with a.single scale: water 

renewal time. 

A Hodel with Two Time Scales 
“ As an extension of the previous 

model, consider that the element being 
introduced into the lake (phosphorus) 
may be removed from the _lake by some 
other means than outflow, i.e., sedi- 
mentation. The assumption is made that 
the rate of removal by sedimentation is 
proportional to the concentration of 
phosphorus in the lake, PL, and the 
proportionality constant will be called 
a. The fundamental. variables are now 
9., _ 
The result of a dimensional analysis for 
this new model is » 

Qt PL _ 

.

I 

5- = Func (XE, at). (6) 
i 

' 

.

« 

In this case, the nondimensional lake 
concentration is an unknown function of 
two independent nondimensional vari- 
ables. If the unknown function were to 
be determined by« experiment, the task 
would be more 

PL, Q, A, z, and a where [a] = T'1.. 

formidable, partic- 

larly if the unknown function were non- 
linear. 

In this example, however, the 
governing equation may be written down 
directly, as before, with the addition 
of another term for the sedimentation 
process, as ‘

A 

dP P.Q ‘Q P "L" L #=i*jr-%- W 
(source) (sink) (sink) 

The equation governing the new model 
lake" now has one source term and two 
sink terms. This equation may also be 
solved by separation of variables. The 

‘ solution, again subject to the initial 
conditions PL = O at t = 0, is

1 

. 

= T'I—'Z3
1 0 

[1 2 exp(—Qt/Az)exp(—at)]. (8) 

wlry

»>
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Figure 2. Time response of input~output model with two time scales: water 

‘renewal and sedimentation. 

Once again the unknown function, Func 
(Qt/Az, a t), has been found. .It is- 
seen ‘that there are two time scales in 
this problem. The water renewal time, 
1; = Az/Q, as before, and a_second time 
scale, 1; = 1/0, which will be called 
the sedimentation time scale. 

The form of the solution is shown in 
Figure 2. In the steady state, 

PL 1 1 
—‘.‘=T_+E:‘=1-+1 '“*°°’ <9’ 
1 T -‘—’ 

‘E
S 

The steady state value'of the lake con- 
centration is no longer simply equal to 
the inflow concentration, but PL < Pi 
always. The actual steady state value 
of PL is dependent not only upon the 
sedimentation time scale, but also on 
the water renewal time.- Therefore, two 

vastly different lakes——one with a high 
flushing rate and a high sedimentation 
rate and the second with low flushing 
and low sedimentation——can have the same 
steady state value of lake concentration 
(Fig. 2). _However, the time required to 
reach steady state is much longer in the 
latter case. ,In general, the higher the 
flushing rate (i.e., the smaller 1;) for 
a given sedimentation rate, the closer 
the steady state value of PL will be to 
Pi. Conversely, the higher the sedi- 
mentation (i.e., the smaller tg) for a 
given flushing rate, the smaller lthe 
final value of PL. 

Because "of the form of the solution‘ 
for this model, ‘ an overall time 
constant, 15, can also be defined by‘ 

1w 
To = <10) 

' ?s

5



The overall time scale of a system is 
always less than the water renewal time 
for any finite value of sedimentation. 
As before, 99% of the steady-state value 
is reached in 515. . 

THE PHOSPHORUS LOADING MODELS 

The Hydraulic Loading Model 

The hydraulic loading model pre~- 
sented in Vollenweider (1976) was based 
on the input—output model with one 
source (inflow) and two sinks (outflow 
and sedimentation) described in the 
~previous section. The results of _the 
model were presented as a plot of phos- 
phorus loading versus hydraulic loading, 
where hydraulic loading was defined as 
the mean depth divided by the water 
renewal time of a lake. The derivation 
of the hydraulic loading model, however, 
contained an error in the treatment of 
the sedimentation term. The nature and 
consequences of this error are discussed 
in the present section. 

The requisite input—output model was 
expressed in .equation (7) using the 
fundamental variables of the problem. 
Equation (7) can be rewritten then in 
terms of the phosphorus loading as 

dP L P 
d“‘E£=E‘-r_L"°PL‘i (11)

W 

The solution to. equation (11). is the 
required result, that is, a relationship 
between L and PL. It is unnecessary to 
integrate equation (11) to obtain the 
solution, however, because the assump- 
tion was made. in Vollenweider (1976) 
‘that all lakes are in steady state with 
respect to phosphorus. ’ Therefore, 
setting dPL/dt = -0 in equation (11) 
produces the required result of the 
hydraulic loading model, 

L =_ p + zo). 
' 

(12)
W 

When z, 1;, and a are known, equation 
(12) describes the relationship between 
L and PL (at‘ least within the assump- 
tions made in deriving the model). 

The application of equation (12) to 
‘real lakes is hampered by the fact that 
the sedimentation time scale, 0'1, is 
neither generally known nor readily 
measured. In Vollenweider (1975), it 
was stated that a could not be measured, 
but must be determined from the_model 
itself. This was done’ by rewriting 
equation (12) in the form 

)- 
' (13) 

‘Data for PL, L, z, and 1“ were then used 
to, determine a for 21 different lakes. 
Although the sedimentation constant can 
be determined for individual lakes that 
are in steady state using this method, 
equation (13) is not an independent 
equation. If equation (13) is substi- 
tuted back. into equation 

' 

(12), an 
identity results. That is, 

L — pL(3T + zo) 
w = 

)1 = L- (14) 

This identity (14) means that equa—3 
tion (13) cannot be used as a functional 
relationship for d in equation (12). A 
general relationship for_o that is valid 
for all lakes must be ~derived indepen- 
dently of either equation (12) or equa- 
tion (13). ‘ 

In Vollenweider (1976), the esti- 
mates of o for the 21 lakes were plotted 
against the mean depth in an attempt to 
obtain an independent equation for a. In 
this case, mean depth was an unfortunate 
choice of parameters because the corre- 
lation that was found between a and _z 

was a spurious self—corre1ation that 
resulted from plotting a ratio against



its own denominator. This ratio corre—
_ lation was examined by Kenney (1982) as 

part of an analysis of the forms of 
spurious self—correlation that result 
from the use of a common term. The 
result of the correlation was 

cr -= —. '_ (15) 

Therefore, instead of applying equation 
(13) directly to equation (12), which 

' would have resulted in the -identity 
(14), the spurious relation described by 
equation (15) was substituted into equa- 
tion (12) to obtain the final result of 
the hydraulic loading model, that is, 

L=pL(.g;+1o).A 
_ 

(16) 

When "the Sawyer criterion was substi- 
a tuted, the critical phosphorus loading, 
LC, was found for a lake: 

LC = 10 ,5; 4 100. (mg/m ?a) 
a 

(17)
W 

Alternatively, it may be shown that 
the hydraulic loading model may be 
obtained . directly from the. spurious 
correlation and equation (13): 

<-9,’?-— V)- (18) 
L . 

<"|” 

Equation (18) shows that the acceptance 
of the spurious correlation. is equiva- 
lent to assuming ’ 

10 = % - z—. (19)T L w 

Equation (19) is not a good approxima- 
tion for the data, however, because’ 
(L/PL — z/IQ)-varies from 3 to 60 (with 
a mean of 15 and a standard deviation of 
14). Nevertheless, equation (16) may be 
obtained directly from _equation (19) 
alone by simply rearranging the terms. 

The Advanced Model 

The next phosphorus loading model 
to be considered was also derived in 
Vollenweider (1976): and it contains 
both mean depth and_ the water renewal. 
time as parameters. It is referred to 
as the advanced model in the present 
paper- '

‘ 

The advanced model result relating L 
and PL is 

L=PZ—(1+F.). 1‘ 
(20) 

Again the final result may be expressed 
‘as a critical phosphorus loading that is 
not to be exceeded by substitution of 
Sawyer’s (1947) criterion that PL 3 10 mg/m3. ' 

.

F 

In the derivation -presented 'in 
Vollenweider (1976), the advanced model 
results from the application of the 
steady state assumption to ‘ equation ' 

(11). It is not necessary, however, to 
invoke equation (11) in order to derive 
‘the advanced model. The advanced model 
may be derived directly from the regres- 
sion between /1; and tg, where T is 
the residence time for phosphorus in the 
lake (Fig. 3). ' 

°‘°' ‘L IJIAJAII I 1 [Jill] 
I I0 “ ’ 

T;(8)7 
Figure 3, Relative phosphorus residence 

time as a function of water 
residence time (after- 
Vollenweider, 1976).



Rather than use the actual power law 
regression equation for the data in 
Figure 3, Vollenweider used the fol- 
lowing analytical representation 
instead: 

1 lg ' 

.2 = +__———;__ 
e (21) 

1% 1 + /E; 

lEquation (21) was chosen over the power» 
law equation because it more "closely 
represented the expected . asymptotic 
behaviour of highly flushed lakes (lakes 
with short water—renewal times). Al- 
though equation (21) represents the 21 
data points in Figure 3- almost as well 
as the power law equation, it must be 
noted that the success of the regression 
(i.e., the high correlation coefficients A 

.obtained) is strongly dependent upon the 
two data points with large water-renewal 
times. The validity of equation (21) is 
discussed later, but first, the advanced 
model result is derived directly from_ 
equation (21); 

\_ 

The phosphorus residence time, , 

.is defined by .Vollenweider (1976) in 
analogy to the water residence time as 
"the .hypothetical time necessary to 
bring the phosphorus concentration of‘a 
lake to its present level starting from 
concentration equal to 0." The resi- 
dence time_ of phosphorus relative to 
that of water, Ig/1;, was shown in 
Vollenweider (1976, p. 62, equation [6]) 
to equal the ratio of the average lake 
concentration of_ phosphorous, PL, and 
the average inflow concentration, Pi. 
Therefore, equation (21) . may be 
rewritten as . 

.2 = is ' 

(22) 
T P. 1 + V3? W . 1 W 

The assumption that the entire ‘phos- 
phorus - loading to each lake. was 

contained- in the inflowing water was 
implicit in Vollenweider (1976). Using 
this. assumption, one may write equation 
.(22).as

K 

= ———————. (23) 
1 + /$- 

t"l;t_"U 

K>|O 

After rearranging the terms in equation 
(23), 

L..—.(PL% § (1 + (24) 

and recalling -that '1; '= Az/Q, one 
arrives at the advanced model equation.‘ 
Thus, the advanced model follows 
directly from an empirical regression 
analysis. 

It is instructive, however, to fur- 
ther examine equation (11) to see how it 
is "related to’ the advanced model. By 
comparing equation (22) to equation (9), 
one‘ can see ~that the advanced model 
result can be derived from the input- 

, 

output model with two time scales if the 
assumption is_made that a = 1//rw. When 
this assumption is made, however, a very 
different _input—output model results. 
The differential equation 'governing 
phosphorus for the advanced model lake 
is not equation (7) or equation (11), 
but rather, . 

rI_»._i___L__.E-_ 
dt z 1 /$7 

(source) (sink) (sink) 

(25) 

Note that, although equation (25) con- 
tains one source term and two sink 
terms, the two sink terms are not in- 
-dependent. Rather than a model based on’ 
two independent time scales (1§,'o”1), 
the differential» equation governing 
phosphorus for the eadvanced model



’depends solely on. the water renewal 
time, 1;, Rewriting equation (25) as 

ESL _ E _ PL (E_:_!fE) (25) dt i' z TW 

and substituting equation (21) produces 
the simplification 

__E = _ _ ré, (27) 

The solution of equation (27) (by sepa— ‘ 

ration of variables) shows that the 
phosphorus residence time, 1b, is the 
effective time scale of the advanced 
model. There is an important difference 
between the effective time scale of the 

_advanced model described there and the 
overall time scale (equation [10]) dis- 
cussed previously.' The overall time’ 
scale contains two independent variables 
that describe two independent processes 
——flushing and sedimentation; the effec- 
tive time scale describes only one 
process——f1ushing. 

When the input-output models were 
first derived, the assumption -was made 
that flushing and sedimentation were 
independent processes. This assumption 
appears to be reasonable for most lakes. 
Flushing is controlled by hydrological A parameters such as precipitation, size 
of‘ drainage basin, lake size, and mor- 
phometry. From a physical perspective, 
sedimentation is a nonstationary, random 
process .that is largely controlled by 
lake turbulence and, therefore, ulti- 
mately by the wind. From a biological 
perspective, sedimentation is controlled 
by the rate at which biological pro- 
cesses-convert dissolved phosphorus into 
particulate form through the growth of 

_ 

algae. In addition 'to' being a nonstae 
tionary, random process, algal growth is .‘highly nonlinear and directly_coupled_to 
many physical processes occurring in 

water _renewal time. 

.lakes. Sedimentation is likely to be
1 

quantitatively different in shallow 
lakes and lakes that are deep enough to 
stratify because the~ sediment flux 
through the thermocline is trapped, at 
least until fall overturn. Significant 
coupling between flushing and sedimenta- 
tion rates is to be expected only when 
the hydraulic flow through the‘ lake 
dominates lake turbulence generation 
(i.e., for lakes that are only slight 
widenings of rivers with high flows). 
Although such lakes do exist, they are 
not common. Therefore, the assumption 
that flushing and’ sedimentation are 
independent processes (appears to be 
reasonable for most lakes." 

From an alternative viewpoint, the 
advanced model lake may be seen as one 
with a special type of sedimentation, 
that is, sedimentation with a time scale 
proportional to the square root of the 

Table 1 compares 
typical, values of the effective time 
scale of the advanced model lake with 
the water renewal time, and this special 
sedimentation time scale. According to 
Table 1, the phosphorus in lakes with 
long water—renewal times is dominated by 
sedimentation. For lakes short 
watergrenewal times,/ the effects of 

1." Some typical values of the 
effective time scale, Tb, the 
water renewal time, 1;, and 
the special sedimentation time 
scale, 15, according to the 
advanced model. 

. 1; 
(Years) (years) (years) 

0.5 1 1.0 
0.83 2 1.4 
1.25 14 2.0 
2.4 10 3.16 
9.1 100 V 

AlO.0 
25.5 700 ‘ 

‘_ 26.5 
30-7 1000 31.6

9



flushing and sedimentation-are similar 
in magnitude. Thus, for a lake with a 
long water—renewal time, such as Lake 
Tahoe (1; = 700 a), the effective time 
scale of the advanced model lake with 
respect to phosphorus "is much shorter 
‘(Z5 a) than 1;. As vwas shown earlier, 
it takes 51 to approach a steady state 
condition. Therefore, Lake Tahoe would 
reach steady state with respect to phos- 

_phorus' after 150 years according to the 
advanced model rather than 3500 years if 
there were no sedimentation. With such 
a large difference in time scales, it is 
very important for lake management to 
know. which time scale is correct. The 
validity of the advanced model and some 
important consequences of the steady 
state assumption are discussed in the 
next section. 

TH STEADY STATE ASSUHPTION 

All of the phosphorus loading models 
described in Vollenweider (1976) make 
use "of the assumption that lakes are in 
steady state with respect to phosphorus. 
Unfortunately, substantial error may be 
introduced by ignoring the’ time—depen— 
dent term in the differential equations. 
An assessment of the impact of the 
steady state assumption on the advanced 
model is made in this section.

' 

It was shown .previously that_ the 
advanced model is actually based on the 
regression between PL/Pil“ and . 1; 
(Fig. 3). Here, the steady state as; 
sumption is crucial to the success of 
the model. Figures 1 and 2 show the 
timeedependent behaviour of PL/PL for 
two input—output models prior to steady 
state. For the input—output model with a 
single time scale (Fig. 1), the steady - 

state lake phosphorus concentration was 
always equal to the inflow phosphorus 
concentration. For practical purposes, 
_steady state is achieved‘ after a time 
equalk to 51;. The important point here 
is that PL < PL for all time less than 

10 

'5TL. Furthermore, PL may be very much 
less than P. as illustrated— in 

I \ 
1 , 

Figure 1. 

It is further shown in Figure 2 that 
(even at steady state) PL is always less - 

than Pi for an input—output model with 
two time scales (flushing and sedimenta- 
tion). Prior to reaching a steady state 
condition, PL may be very much less than 
Pi for all practical cases. The question 
is, how.much less? And, why is it less? 
Is PL less than Pi because of high sedi- 
mentation in a particular lake or is 
that lake‘ simply far from its steady 
state value? The answers to these 
questions have a profound effect on the 
validity of the advanced model. 

If all the lakes used in the regres- 
sion (Fig. 3) were actually at steady 
state with respect to phosphorus, then 
a = 1/J}; might be a reasonable estie 
mate of the effect of sedimentation of 
phosphorus (or any other removal process 
for phosphorus not dealt with expli- 
citly). However, if PL/PL is smaller 
than its steady state value for any of_ 
the lakes in Figure 3, then the effect . 

of this too small value is simply ab- 
.sorbed in the sedimentation term. In 
other words, if PL/Pi is small because 
the lake is far from steady state, the 
“advanced model automatically assigns_ 
this lake a high sedimentation——because 
—high sedimentation (small 1;) is re- 
quired for small PL/PL at “steady state 
(see Fig. 2). Such a trend is visible in 
Table 1. Lakes with long water—renewal 
times (those lakes least likely to be at 
steady state) are dominated by sedimen- 
tation——according to the advanced model. 
But, is the advanced model correct? To 
properly assess the impact of the 
steady state assumption on the advanced 
model, one must return to the origin of 
the model (Fig. 3). As was noted pre- 
viously, the success of the regression 
is very dependent upon the two data 
points in Figure 3 with large 1; (i.e.,



1; = 30 years and 1; = 56 years). When 
these two points are removed, the corre- 
lation coefficient changes from one that 
is significant at the 1% level (-0.674) 
to one that is not significant at the 5% 
level (-0.412). In other words, when 
these two data points are removed, there 
is no significant correlation between 
PL/Pi and I; (at the 5% level) and the 
basis for the advanced model disappears. 
The validity of the advanced model is, 
therefore, strongly dependent upon data 
from two lakes—-both of which have large 
water—renewal times. In addition, these 
two lakes are the least likely to be in 
equilibrium because they require 150 and 
280 years respectively to reach steady 
state (ignoring sedimentation), The 
heavy weight given to sedimentation for 

. lakes with long water—renewal times may 
be a direct result of using two lakes 
that are‘ far from equilibrium. as the 
basis for the advanced model. The ac- 
curacy of any predictions made with the 
advanced model must be suspect until 
such time as the impact of sedimentation 
processes is fully assessed. 

Another potential concern is that 
the. advanced model may be verified by 
using data from other lakes equally far 
from. equilibrium. Since.the large cul- 
tural input of phosphorus to lakes is of 
relatively recent origin, most (lakes 
with long water-renewal times are in- 
cluded in this category. For now, the 
advanced model may appear to valid. 
Overestimation of phosphorus .sedimen— 
tation by the advanced model, however, 
together with concomitant lake manage- 
ment= (i.e.,. increasing the phosphorus 
load), could have serious effects for 
lakes with 1; as steady state is even- 
tually-reached. 

Larsen and Mercier (1976) presented 
a similar analysis to tvollenweider 
(1976) using data from a different 

'nately, 

series of lakes. The basic input-output’ 
model and the use of the steady state 
assumption were identical, but the 
.analysis was formulated in terms of‘the 
retention coefficient, R = 1 — PL/Pi. 
The Larsen and Mercier result, 

—“———':g§ 
A 

(23) 

is equivalent to Vollenweider (1976) 
equation (22), which may be readily 
shown by substitution of the definitions 
of R into equation (28). Figure 4 shows 

' the data from the 20 ‘lakes used by Larsen and Mercier to obtain equation 
(28) plotted as PL/Pi versus 1;. These 
lakes, fit equation (22) quite well and 
might be used as additional evidence in 
support of the advanced model. Unfortu- 

the same criticism (i.e., the 
blanket application.of the steady state 
assumption of all lakes) applies equally 
well to Larsen and Mercier’s analysis. 
Furthermore, Larsen and Mercier selected 
the 2Q lakes (out of a possible 36 lakes 
for which data were presented) that gave 
the best empirical relationship between 
R and lake characteristics. The process 
of subjectively selecting the lakes that 
produced the largest regression coeffi- 
cient is questionable.‘ When all the 
lakes from Larsen and Mercier (1976) and 
Vollenweider (1976) are plotted 
(Fig. 4), more scatter is evident. This scatter may be attributed to differences 
in sedimentation, the degree of unstead- 
iness of the various lakes, or to other 
factors not included in the model. Cer- 
tainly, the three lakes in Figure 4 with 
the longest water renewal times do have 
the smallest values of PL/Pi-—but »is 
this because of high sedimentation or 
simply because these lakes are far from 
steady state? -» “

ll
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Figure 4. Nondimensional lake iphosphorus, PL/Pi, plotted against water. 
' residence time, 1;, for 54 lakes from Larsen and Mercier (1976) 

and nvollenweider _(1976). The 20 lakes used by Larsen and 
Mercier are circled. '

- 

Equations (22) and (28) and Figures 1;. There appears_to be no compelling 
3 and 4 all assume either implicitly or 
explicitly that PL/Pi is a function of 
1; alone. It was shown, however, in the 
derivation of the basic model underlying 
both the Vollenweider and the-Larsen and 
Mercier analyses that PL/Pi.is ‘a func- 
tion of 1;, a, and t (cf. equation [6]). 

conflicting requirements can be 
resolved if'a and/or t are constants; or 
if PL/Pi is constant with variations in 
0 ~and/or t; or if 6 and/or t are func- 
tions of 1;; or some combination of the 
above. The conclusion of Vo1lenweider's 
advanced model is that PL/Pi is constant‘ 
with variations in t (i.e., the steady 
state assumption) and aais a function of 

'12 

qmathematical or physical evidence to 
support such a conclusion. 

THE Ennonnsoti AND LEHHAN HODEL 

Edmondson and Lehman (1981) (here- 
after referred to’ as EL) presented a 
lake eutrophication model that_ they 
verified with data from Lake Washington. 
The starting point of the EL model‘ is 
the equation for the_we1l—mixed model 
with a single time scale (equation [13] 
in this paper, equation [10] in EL). 

4The‘ EL model is of‘ interest because it 
introduces a new

A 

treatment of .sedimentation of 
concept Vin the 

lake



The conventional wisdom of 
phosphorus sedimentation is based on'a 
heuristic equation in which phosphorus 
sedimentation is proportional to the 
concentration of phosphorus in the lake; 
"the higher the phosphorus concentration, 
the greater the sedimentation. The EL 

‘ paper suggests that- sedimentation of 
lake_ phosphorus may be more accurately 
modelled by the assumption that 
sedimentation is proportional to 
phosphorus inflow, I (where = P10, 
using the symbols of the present paper). 
It will be shown below that the EL 
suggestion is incorrect. 

The sedimentation of lake phosphorus 
was accounted for in the EL model simply 
by reducing the phosphorus inflow using 
the proportionality constant, f. g was 
found in EL as the slop of the linear 
regression line between phosphorus sedi- 
mentation, Psed, and I. Psed was itself 
calculated from the other terms in the 
phosphorus budget by difference. That 
is, the phosphorus sedimentation was 
equal to the annual phosphorus inflow 
minus the annual phosphorus outflow, Po, 

. minus the annual change in the mass of 
phosphorus in the lake, dP, as measured 
on 1 January of successive years. In 
effect, ’

I 

g = Func (I, Po, dP). 
‘ 

‘ 

. (29) 

It will be shown below, however, that 
the EL model equation may be written as 

dP = Func (I, Po, f) .‘ (30) 

or, alternatively, as 

P0 = Func (I, dP, g). 
' 

‘(31) 

Since there was no new information added 
between equations (29) and (31), the 
essence of the EL model is contained in 
f and the linear regression line shown 
in Figure 5. Figures 6 and 7, which are 
presented to verify the EL model, are 

‘annual flux of P to the sediments, P 

only restatements of Figure 5. The 
scatter from the line of 100% agreement 
in Figures 6 and 7 is a re—expression of 
the scatter from the linear regression 
line in Figure 5.- If all the data 
points in Figure 5 had fallen on the 
regression line, then the EL model 
'"results" in Figures 6 and 7 would have 
shown perfect .agreement. In actual 
fact, the EL model is a simple 
tautology. — 

To show the tautology more clearly‘ 
requires a detailed examination of 
Figure 5. This figure is a plot of the 

(17 versus P—loading, I. The least squates 
regression line for the data in Figure 5 
is '

- 

<Psed> = f I + constant. (32) 

If the annual phosphorus inflow to the 
lake is known for any year, say the-jth 
year, then the least squares estimate of 
the annual sedimentation ofl phosphorus 
for the jth year, <P5ed>j; can be found 
from equation (32). 

The EL model was given in discrete analog form as (EL equation [12]), 

pi+1 = Ij(1 _ g) + Pj(1 4 oj/v) (33) 

where Pj is the phosphorus content of 
the lake» on .1 January of successive 
years. However, EL compared the model 
prediction of annual outflow with the 
measured values (Fig. 6) so‘ that the I 

terms of the model ’equation must be 
rearranged to 

Equation (34) is the.EL model equation for predicting phosphorus outflow. 
Values of Ij, Pj, and Pj+1 were 
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Figure 5. 
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Figure 6. 
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substituted in EL to find values of the But, predictedv annual phosphorus outflow for 
the jth year. The value of f was 
constant. and equal .to the 0.49 slope P 
found in Figure 5. These predicted 
outflows were compared with the measured 
outflows in Figure 6. A similar proce- 
dure was followed for the lake P results 
given in Figure 7. 

sedj = (I — PO — dP)j (36) 

hecause Psed was found by difference 
using the budget method. Furthermore, 

squares estimate of Psed minus "a Equation (34) can be expanded as constant that is 7 7 

i P. ./v I.— £1. — P — P. r J03 J 
. ( J). —’J j+1 flj = < Psed >j — constant. . (37) 

P ’— P = I. — P . 

. . . . . 
* + oj oj J oj( Substituting equations (36) and (37) 

. into equation ~(35) gives the annual — dPj — fl. + P (35) phosphorus outflow predicted by the EL 
j , model as

I 

, 

_ 
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from equation (32), fl is the least



Pjoj/V = Psedj _ < Psed >3. 

+ constant + Po . 
' 

(38) 
j - 

For those data points that fall on the 
.regression line, Psed is identically 
equal to <PSed>. For all other data 
points, Psed is approximately equal to 
<Psed> except for- scatter about the 
least‘ squares regression line. ~There— 
fore, equation (38) reduces to 

Pjoj/V = P0 + constant : scatter. *(39) 
J’ 

Thus, we have returned to our starting 
point. The predicted outflow phosphorus 
is identically equal -to the measured 
‘outflow phosphorus plus a constant plus 
or minus some scatter. _The constant, 
which arose because of the non-zero in- 
tercept of the regression line in Fig—A 
ure 5, explains why most of the pre- 
dicted values lie to- the right of the 
theoretical line of 1002 (agreement 
between prediction and observation in 
Figure 6. As stated earlier, the scat- 
ter in Figure 6 is simply a reflection 
of the scatter in Figure 5. 

The same arguments apply for Fig- 
ure 7, where the predicted lake phos- 
phorus generally lies to the'right of 
line of 100% agreement with the observed 
lake phosphorus. - 

LAKE PHOSPEORUS DYNAMICS 

In this section, the nature of the 
input—output models derived previously 

- is further explored, and several factors 
affecting the application of these mod- 
els to real- lakes are considered. It~ 
will be assumed that phosphorus is the 
correct element to model and that 
Sawyer's criterion is also correct. The’ 
prediction of eutrophication, therefore, 
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may be reduced to one of predicting when 
PL > 10 mg/m3, as before. Because one 
is interested in the. long—term effects 
‘of —phosphorus loading to a lake, it is 
the steady state value of PL that one 
would like to predict. . 

The steady state iresult relating 
phosphorus loading and lake phosphorus 
concentration was given in equation (12) 
for the input—output model with two 
time scales, flushing and sedimentation. 
The critical phosphorus loading, PL ,

c 
for a specific» lake may be_found by 
substituting Sawyerls» criterion in 
equation (12). That is, 

LC .= 102 + o) (mg/m2/a). (40) 
W . 

Within the assumption made, equation 
(40) is the, "predictive" equation for- 
lake eutrophication. For lakes where z, 
1%, and a are known, the critical phos- 
phorus loading may be calculated direct- 
ily -from equation (40). Of course, a is 
not generally known, and it is this 
deficiency that led to the problems 
previously described. 

The Sedimentation Constant, c 

There are several indirectc methods 
to determine a for’ a specific .lake 
depending upon the type of phosphorus 
loading to that lake. Each method 
depends critically on the validity of 
the input—output model with two time 
scales. All experimental error in the 

- measurement of the data (as well as any 
error —from other sources or sinks not 
explicitly accounted for by the model) 
is’ simply absorbed in the sedimentation 
constant. 

The Steady State Method 

The 
4 first method was discussed 

briefly when considering the hydraulic



loading model. It may be applied to a 
specific lake if that lake is known.to 
be in steady state with respect to phos- 
phorus. To assume that a lake is in 
steady state without corroborative data 
is futile. The ’existence of steady 
state conditions may be determined by 
measuring L and PL for a period of time. 
If L and PL are constant for a time 
equal to about 1; or longer, then it is 
safe to assume that the lake is in 
steady state. If data are also avail- 
able for z (and 1;), then a may be 
determined from equation (13), 

If one is only interested in deter- 
mining the critical phosphorus loading 
for a specific lake in steady state, it 
is not necessary to calculate the sedi- 
mentation constant, a. For a specific 
lake in steady state, the ratio, L/PL, 
is a constant. Therefore, a single 
measurement of L and PL will produce the 
constant for that specific lake-—within 
the requisite assumptions, of course. 
The critical phosphorus loading may then 
be found from 

L" L 
P:)vsteady 

state 

= CONSTANT = (41)( H: 00 

Although equation (41) applies to each 
lake _separately, the value of the cone 
stant will ‘vary greatly from lake to 
lake. 

The Step Function Response Method 

The second method of determining the 
sedimentation constant may be applied if 
there has been a sudden change in the 
phosphorus loading (either increase or 
decrease), and if ‘the lake phosphorus 
concentrations, PL,- are measured fol- 
lowing the change. The overall time con- 
stant of the lake, 1;, may be determined 
by fitting an exponential curve to the 
PL versus time data. Once 15 is known, 
a may be found from equation (10) and 
the critical phosphorus loading for that 

specific lake may again be" calculated 
from equation (40). 

The Forced Response Hethod 

For many lakes, the phosphorus 
loading is neither constant nor subject 
to _sudden changes to a new level, (but 
rather is continuously changing. One 
must- examine the forced response of the 
~lake to determine a in these cases. 

In order to simplify the discussion 
of forced systems, an analysis of the 
forced .response of the input—output 
model with a single time scale is prea 
sented first. The first—order linear 
equation governing the input—output 
model with one time scale (equation 3) 
may be rewritten as 

dP L 
' 

.‘ 

jg a?— 
+ PL = pi (t) (42) 

where the phosphorus concentration in 
the -inflowing water, Pi, is now the 
time—dependent forcing function for the 
system. The simplest forcing is given 
by 

Pi(t) = P0 +'P1 sin w t (43) 

where P, is the amplitude of a simple 
harmonic oscillation about some constant 
level of phosphorus concentration, Po. 

Equations (42) and (43) may be 
readily solved in terms of the relative 
amplitude of the output oscillations and 
the phase shift between the input and 
the output, but for brevity, the deri- 
vation of the solution is omitted. 
After initial transients have decayed, 
the output of the forced system (PL’, 
the oscillating part of PL in this 
example) occurs at the same frequency as 
the forcing function (i.e., at 09. The 
amplitude of the output oscillations and 
the phase shift between the input and
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the output are determined by the charac- 
teristics of the system. In equation 
(42) there is only one parameter that 
characterizes the entire‘ system-—the 

. water renewal time, 1;. The relative 
amplitude of the response, G (i.e., the 
magnitude of. the ‘output oscillation 
relative to the input oscillations or 
forcing), is given by 

p I 1 
G = ——— = ————————————. (44) 

1 — (1 + a31§)* 

The output oscillations lag the input by 
a phase shift, ¢,_given by 

¢ = tan'1 «Hg. .(45) 

The forced system‘ response is totally 
described by G and ¢ as a function of 
nondimensional frequency ung. For low 
frequency forcing (i.e., small aha), the 
output (PL') essentially follows the 
input (P1) with little attenuation or 
phase shift. On the other hand, high 
frequency forcing (an; >> 1) is very 
strongly attenuated. The lake phos- 
_phorus lags the input oscillations by 
approximately 90 degrees at high 
frequency. ~

4 

As an example, consider a hypotheti- 
cal lake with a water.renewal time of 
one year subjected to forcing with an 
annual cycle. From equations (44) and 
(45) the relative response is only 0.16 
with a phase shift of 81 degrees. This 
means that oscillations in phosphorus 
concentration of the inflow of 100 
mg/m3, for example, would result in a 
16—mg/m3 oscillation in the phosphorus» 
concentration in the lake. Thus annual 
oscillations in inflow‘ phosphorus are 
high frequency oscillations for a lake 
with a ,one—year water renewal time. 
Faster oscillations in inflow_ (e.g., 
monthly, daily) are more highly atten- 
uated in this hypothetical lake and re- 
quire ‘extremely large amplitude forcing 
even to be detectable in the outflow.~ 

\. 
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Except that the response-character- 
istics are determined by two parameters 
(1; and a), the forced response of the 
input—output model with two time scales 
is similar to that described above. The

_ 

governing equation (equation [7]) may be 
rewritten to show the role of forcing as 

dP 
‘TV ‘(F + + O’TW)PL 

= P6 + Plsin am. 
' 

(46) 

The solution of equation (46) for the 
relative amplitude is. A

1 G = ——————————————————. (47) 
““w 2 % ”+ (177.7) 1 

. W 

The phase shift is now 

1. 
“"h‘ 

(T—:—;;;)- (43) ¢ = tan- 

For cases where a lake is subjected 
to simple harmonic forcing, that is, a 
sinusoidal oscillation of a single fre- 
quency, either equation (47) or equation 
(48) can be used to determine the sedi- 
mentation constant within the range of 
nondimensional frequencies, 0.1 3 un§/ 
(1 + atw) 3 10. Outside of this fre- 
quency range, the. accuracy to which a 
can be determined is very poor. The use 
of either equation to determine a re- 
quires a measurement of the water re- 
newal time plus a time history of inflow 
and lake phosphorus concentrations of 
sufficient length to determine w from 
the measurements. To use equation (47), 

- the :relative response, G, is calculated 
from the time histories of the inflow 
and outflow leaving a as the only un- 
known in equation (47). Similarly, the



phase shift, ¢, is measured directly 
from the time histories thereby per- 
mitting the use of equation (48) to 
determine oi‘ Reasonable accuracy re- 
quires‘ data over at least one complete 
cycle of period T = 2n/ax 

For cases where the forcing is 
broadband (i.e., composed of many dif- 
ferent frequencies), the phase shift 
between the input oscillations and the 
output may still _be determined using 
cross—spectral analysis. However, spec- 
tral techniques require data over many. 
complete cycles of oscillation so that 
sufficient data may not be available for 
the spectral approach if the forcing is 
predominantly low frequency. It must be 
emphasized that all the methods for the 
determination‘ of 0 described herein 
require time histories of the inflow and 
lake phosphorus concentrations over 
several 1%. Consequently, the"spectral 
approach to the determination -of a is 
likely to be applied (in the near 
future) only to lakes with small 1;. 

Time-Dependent Coefficients 

As mentioned before, the success- 
ful application of input-output models 
for predicting eutrophication depends 
solely .upon the validity of the assump- 
tions made in the derivation of the 
models——the mathematics is exact. The 
validity of one assumption that greatly 
affects the application of these models 
is now considered. 

It was assumed throughout this paper 
that the coefficients of the first—order 
differential equations (i.e., 1;, a) were constants. Most real" lakes, how- 
ever, are subjected to large variations 
in flow (0) throughout the year, with 
peak flows usually occurring during 
spring runoff for many temperate lakes. 
Changes in lake xlevel (z) and volume 
(Az) may also be large, particularly for 
lakes used for hydroelectric purposes. 

' These 
V 

variables directly. affect the 
water renewal time (1; = Az/Q), making 
1; time dependent. 

\‘The factors that affect the sedi- 
mentation. constant, 6, are not as well 
understood. It is known that sedimenta- 
'tion is a nonstationary, random process 
that can be positive or negative at 
various times. A negative sedimentation 
flux occurs to some extent in the water 
column of all lakes and is very common 
in - shallow lakes. Because physical 
sedimentation is controlled principally 
by the level of turbulence in a lake, 
large seasonal variations in o are- 
expected to reflect the differences 
between turbulence under winter ice and 
during open water in temperate lakes. 

More realistic models require 
time—dependent coefficients, therefore, 
for both 1; and a. For example,~ /dPL(t) . 

1§(t) at + [1 + o(t)Tfi(t)] PL(t) 

= Pi<t> -» 
y 

(49) 
‘ F 

now replaces equation (46) where the 
time_ dependence is given explicitly by 
(t). Before equation (49) can be solved, 
the temporal variation in 1; and a must 
be known (or independently predicted) 
either in the form of time histories for random variations or in the form of 
analytical functions for periodic varia- 
tions. The model forcing, Pi(t), must also be input to the model. The forcing 
may be in the form of time-histories of 
measured phosphorus inflow to a lake for 
a hindcast of the lake response. Antici- 
pated changes in phosphorus inflow could 
also be input to the model either as time histories or as analytical func- 
tions in order to forecast future lake 
changes.
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Temporal variations in the coeffi- 
cients may be more important than varia- 
tions in the phosphorus concentration of_ 
the inflow (forcing) for many lakes. In 
complicated lakes, the forcing and the_ 
time—dependent coefficients may even be 
coupled, say, by the flow through the 
_lake, 0. It may be stated, in general, 
that a large spring runoff tends to-make 
the spring lake phosphorus concentration 
equal to the spring inflow concentration 
by greatly reducing the instantaneous 
value of 1%. Ice cover, on the other 
hand, tends to enhance the sedimentation 
sink. 

- A quasi—stationary approximation may 
allow analytical solutions to equation 
(49) if the variations in the coeffi- 
cients are slow compared to the forcing 
frequency. Since seasonal variations in 
1; and '0 are often predominant, the 
quasi—stationary 

A approximation will 
seldom apply. In general, equations 
like equation (49) require numerical 
solutions. » 

Several examples of the application 
of the theory developed here to real 
lakes may be found in. Kenney,(1990a, 
1990b). 
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