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Abstract 

Predicting the twodimensional forced response (or the 
storm surge) of an arbitrary water body is discussed in 
terms of the normal mode expansion technique. Such an 
approach eliminates space dependence from the governing 
equations. Time—dependent aspects of the problem may 
then be solved either by a numerical evaluation of a formal 
integral solution, which involves the normal mode functions 
and the wind stress field, or by a direct finite—difference 
integration in time alone by some explicit or implicit 
schemes. Hence the use of normal mode expansion 
procedure eliminates a complete numerical integration of 
the problem on a space-time finite difference grid, and 
offers certain advantages in avoiding such problems as 
computational stability, grid-dispersion, etc. A method is 

described for constructing the quasi—static normal modes 
for an arbitrary rotating basin and different methods are 
presented for obtaining the general solution for the forced 
response. Application of some of these procedures to two 
ideal cases is then considered. One case deals with the 
response of a non-rotating-rectangular basin of uniform 
depth to a semi—infinite stress band propagating across the 
basin in a given direction; the other deals with the effect of 
an instantaneously imposed wind stress on a rotating 
rectangular basin of uniform depth. 

Résumé 

On traite de la prévision d'une réponse forcée 
bi—dimensionnel|e (ou soulévement de tempéte) d'une masse 
d'eau imaginaire en termes de la technique d’expansion en 
mode normal. Une approche de ce genre élimine la 

dépendance d’espac_e des équations gouvernantes. Les 
aspects du probléme qui sont subordonnés au temps 
peuvent alors étre résolus soit par l’évaluation numérique 
d'une solution formelle intégrale qui implique les fonctions 
en mode normal et le champ de tension du vent, soit par 
|'intégration directe au moyen de la différence finie dans le 
temps uniquement au moyen de schémas explicites ou 
implicites. Par consequent, |’emp|oi du procédé d’expansion 
en mode normal élimine |’intégration numérique complete 
du probléme au moyen d'un quadrillage temps-espace de 
différence finie et ‘présente certalns avantages en écartant 
les problémes de stabilité des calculs, de dispersion du 
quadrillage, etc. On décrit une méthode de construction de 
modes normaux quasi-statiques en ce qui concerne un 
bassin rotatif imaginaire, en plus de différentes méthodes 
pour obtenir la solution générale a la réponse forcée. On 
étudie alors la possibilité d'app|iquer quelques-uns de ces 
procédés dans deux cas idéaux. Le premier porte sur la 

réponse d'un bassin rectangulaire non rotatif et de pro- 
fondeur uniforme a une bande de tension semi-infinie qui se 
propage d'un bout a |'autre du bassin dans une direction 
donnée, tandis que l'autre porte sur l’effet de la tension du 
vent imposée de facon instantanée sur un bassin rectan- 
gulaire et rotatif de profondeur uniforme. 

vii



CHAPTER 1 

General Considerations 

1. INTRODUCTION 

The analytical theory of forced oscillations of a water body has generally been confined to the 
one-dimensional aspect. The response of the water body under the constraint of one-dimensionality has 
included disturbances that are uniform both in space and time, or uniform in space but amplitude 
changing in time (i.e., instantaneous forcing); or propagating disturbances in which the forcing function 
over the water body is dependent on both space and time (Lamb, 1932; Proudman, 1929; and Rao, 
1967, 1969). Such one-dimensional studies explain some fundamental aspects of the forced 
oscillations. 

In practice, however, the response of any water body to an arbitrary disturbance is at least 
two-dimensional (the entire horizontal plane). The analytical theory of the two-dimensional response 
of rectangular bays — that is, water bodies with one end open to a deep ocean — has been considered in 
a series of extensive investigations by Lauwerier (see Lauwerier and Damste, 1963 for a list of all 

references pertaining to this series). In these studies, Lauwerier considered basins that have uniform as 
well as variable depths, and disturbances that are uniform both in space and time, or those that only 
change in time with application of the results to the storm surges in the North Sea along the Dutch 
Coast. - 

This study deals with the general theory of two-dimensional response of a completely enclosed 
basin, e.g., a lake. In Chapter I the theory is presented of obtaining the solutions for the forced 
response of the basin by various methods that involve combinations of analytical-numerical 
considerations. In Chapter ll the application of these methods to two ideal cases is described. 
Chapter III is a summary. 

The methods described here, make use of the principle of representing the forced solution by 
an appropriate combination of the free (or characteristic or eigen) solutions of the basin, which 
automatically satisfy the necessary boundary conditions. Adopting this procedure eliminates the 
space-dependent aspect of the forced solution. The problem of determining the latter then reduces to 
solving a system of (either coupled or uncoupled) inhomogeneous, ordinary, differential equations of 
the first order, with time as the independent variable, for the expansion coefficients. In this respect, 
the procedure described here differs from that of Lauwerier (loc. cit.). In the latter’s approach to the 
problem, the time-dependence in the governing equations is eliminated by using the Laplace-transform; 
the resulting system of equations essentially leads to an inhomogeneous elliptic equation. The problem 
then is solved by a superposition of the fundamental wave solutions in a rectangular geometry, namely 
the Poincaré and Kelvin waves. As these solutions satisfy the wave-equation but not all the boundary 
conditions, the expansion coefficients must then be determined to satisfy the latter requirement. This 
approach has one disadvantage, i.e., the Laplace-transform has to be inverted to obtain the solution. 
For arbitrary wind fields, the inversion procedure will, in general, be difficult and requires introduction 
of additional approximations (Lauwerier, 1961). 

First a general method is described for determining the characteristic functions of an arbitrary 
basin. Traditionally, in the field of limnology, the normal modes of lakes and bays have been 
determined for one-dimensional channels (Platzman and Rao, 1964). Only recently have the 
two-dimensional aspects of lake oscillations started receiving attention. Loomis (1970) determined the 
two-dimensional normal modes for bays and harbours of Hawaii without considering the ea_rth's



rotat_ion_. Platzman (1971) obtained the fundamental modes for Lake Superior and the Gulf of Mexico, 
ta_king the earth's rotation into account by the method of resonance interactions. When several of the 
normal modes are required, as in the present case, Platzma'n's method becomes difficult to apply, 
requiring repeated searches for each mode. 

Hence, in this study, a different’ approach is adopted, one that is capable of yielding several of 
the normal modes simultaneously. The solution is obtained through the decomposition of the vertically 
integrated flow into an irrotational part and a solenoidal part. The characteristic functions for each of 
the parts are obtained by solving the appropriate eigenvalue problem. This procedure is the same as the 
one used by Proudman (1916) and Rao (19‘66)ito study problems of free oscillations of rotating 
basins; but here it is also extended to include arbitrary bottom friction law and external wind-stress 
force. The various methods of obtaining the forced solution are then discussed. The forced solution is 
obtained by finding the particula_r solution, which is determined by the forcing function, and by 
combining it with the homogeneous solutions, to satisfy the necessary initial conditions. One of the 
methods leads to a set of coupled ordinary inhomogeneous differential equations, which are obtained 
when the technique of Proudman for the study of free oscillations is extended to the forced case. 
Another method, in which an expansion technique, used by Reid (1958) in a study of edge wave 
resonance problems, is employed, leads to uncoupled inhomogeneous equations. In both these 
methods, the time dependent part of the solution may be represented formally for an arbitrary case by 
an integral overtime, which can be evaluated by Simpson's ru_|e or any other standard method of 

‘evaluating integrals numerically. Finally, the solution to the time-dependent part by direct 
finite—difference integrations in time is also considered. 

The problems discussed here may also be solved by direct finite—difference methods of 
integration both in space and time. Indeed, this is what is generally done for predicting storm surges on 
real water bodies such as the North Sea, Lake Erie, etc. (Platzman, 1963; Welander, 1961). This 
procedure requires a three-dimensional, space-time finite-difference mesh with proper staggering of the 
dependent variables. The time integrations are usually done by using explicit schemes with the 
attendant limitations on time increment imposed on the scheme by the chosen space-grid interval, to 
ensure computational stability. Furthermore, for arbitrary basins with irregular boundary configura- 
tion, problems of grid dispersion can be aggravating (Simons, 1971). In addition‘, when a prediction has 
to be made, direct finite-difference methods require starting the integrations more or less from scratch. 

The storm surge prediction problem may also be appro_ached, as deuscribed above, from the 
methodology of using the eigenfunctions of the basin. Such an approach has certain advantages over 
space-time finite-difference integrations, even if the eigenfunctions for a real basin have to be 
computed nume_rica|ly, especially if a large number of predictions are to be "made for the same region. 
(This, of course, is the case when any storm surge model is considered for an operational purpose). In 
most cases,“ the eigenfunction expansion converges rapidly. Also, because these functions ca_n be 
computed once and for all for a given basin, the storm surge prediction problem simply reduces to 
solving ordinary inhomogeneous differential equations of the first order in time as described above. 
Even if these are solved by finite-difference methods (in preference to using the formal integral 

solution in time) one can use here implicit time integration schemes without any difficulty, as the 
governing equations are linear. Use of an implicit method permits the employment of larger time steps, 
as these methods are stable for any chosen time-increment; thereby the prediction problem becomes 
more economical from the point of view of the computer time used. 

The ultimate purpose of this investigation is to apply the eigenfunction technique for storm 
surge predictions in the Great Lakes, e.g., Lake Ontario, and to test the efficiency and accuracy of 
these ‘procedures with direct space-time numerical integrations conducted at the Canada Centre for 
Inland Waters. The method, in the preliminary stages, is tested on certain ideal cases in which the 
horizontal—p|an form is taken as rectangular and the depth as uniform. A few of these results are 
presented.

I



2. DYNAMIC EQUATIONS 

For the dynamic equations governing the response of a water body to an imposed disturbance, 
consider a body of water which is homogeneous. Take a right-handed Cartesian co-ordinate system 
having its origin at the mean surface level with x—axis pointing eastward, y-axis pointing northward, and 
z-axis pointing upward. Let H(x,y) denote the equilibrium depth of the water in the lake which is 

bounded by a horizontal boundary S(x,y). Assume that the water body is on a plane rotating about its 
vertical axis with a constant angular speed S2. Further assume that the depth H is much less than the 
scale of horizontal disturbances in the lake, so that the shallow water approximation may be invoked. 
This assumption then permits us to replace the pressure-gradient terms in the horizontal momentum 
equations by their hydrostatic equivalents. By suppressing the non-linear advective terms in the 
momentum equations (based on the usual order of magnitude considerations), the vertically integrated 
equations of motion and mass conservation may be written as follows: 

%—r[M].=—gfihv§+7-5+7}, 0'” 

35 +v-M=o (2.2) 
at 

In the above equations M is the transport vector 
= 5’ M _f_hfivd2 (2.3) 

where V '=’ (u,v) is the horizontal velocity vector; [M] indicates a rotation of vector M through ninety 
degrees in the negative sense of the horizontal plane; §‘ is the perturbation height of the water level, and 
is assumed to be small compared to the depth so that the pressure-gradient term may be linearized; h is 
a non-dimensional depth parameter defined by 

H (x,y)
E 

h (x,y) E (2.4) 

where I: is some constant mean depth. If one assumes that the water density p is unity, then Ts and 
73 represent the wind stress vector at the surface and the bottom stress vector, respectively. 

3 6 V E("a— , 3-‘ is the horizontal gradient operator,f E 2 S2 sin 0 is the coriolis parameter, and g is X v 
the constant of apparent gravitational acceleration. 

In equation (2.1) the surface wind stress T5 is in the nature of an external parameter which is 
prescribed, based on the atmospheric wind field. If the bottom stress vector 73 can be prescribed (or 
parameterized) in terms of the unknown quantities, namely, the dependent variables, then equations 
(2.1) and (2.2) form a closed set of equations which may then be solved subject to the appropriate 
initial and boundary conditions. Neglecting the question of the difficulties associated with a proper 
parameterization, we assume here that 73, when it is taken into account, is given by 

T3 = KM (2.5) 

where 7\ is an appropriate friction coefficient, which in principle can be depth dependent. Substitution 
of equation (2.5) into (2.1), closes the problem on the dependent variables M and §. 

The boundary conditions appropriate to a totally enclosed water body like a lake are: 

M - n = 0 on the boundary (2.6)



where n represents the outward drawn unit normal vector to the boundary curve S(x,y). To focus ‘ 

attention only on the response produced by the wind stress forcing, a_n initial state of rest in the lake is 
assumed so that at time 

t=0:M=0;§=0 ' 

.(2.7) 

Now equations (2.1), (2.2) along with the conditions (2.6) and (2.7) pose an initial-boundary value 
problem of inhomogeneous nature, havin‘g__\a unique solution M(x,y,t) and §(x,y,t) corresponding to a 
prescribed forcing function 1'5 (x,y,t).

' 

3. NORMAL MODES OF AN A_RB|TR_ARY BASIN 
Because the method used here is completely dependent on a knowledge of the normal modes, 

the question of how to determine them for an arbitrary basin is considered first. This requires, in 
principle, the solution of the characteristic value problem associated with (2.1), (2.2) and (2.6) (with 
T5 = 0). In general, for a real water body, this aspect of the problem will become rather complicated. 
If, for example, an attempt is made to solve this problem, by assuming that the normal modes are of 
the form 

M = M(x,y) e”’“ 
f = §(x.v) e“" 

where 0 is the frequency of oscillation and by eliminating M in the free equations, the result is 

(ignoring1'B for the time being): 

2_ 2 ' 

0——__—'f—§—%Vh-[V§']=0 (3.1) 
gH 

V‘hV§+ 

with the boundary condition 

— + -4 = o (3.2) 

on the boundary. Here n and s are the normal (outward) and tangential (counter-clockwise) directions 
to the boundary curve. The characteristic values and functions are then obtained by solving the second 
order e||ipt__ic differential equation above. Even though the problem is now reduced to solving (3.1) and 
(3.2) involving a single scalar dependent variable, a disadvantage of the method is the appearance in 
(3.2) of the characteristic value 0, which itself is a_n u_nknown. A more convenient, if somewhat more 
elaborate, method "of obtaining the free solutions, is now desc_ribed in this section. 

The transport field M is independent of depth and as the motion takes place in a basin 

completely enclosed by rigid boundaries on which M ' H = 0. M mall be Tepfesented 35 

M 2 M‘? + W 
where M"’ and M‘(’ are given in terms of two scalar functions 4) and (1/: 

M¢s—hv¢;M"* =—[v(p] (3.3) 

(12 and ((1 are the potential and stream functions for the transport field. From _(3.3) it can be seen that 
M‘(’ represents the solenoidal part of M and h" M¢ represents the irrotational part. That is, 

\7- [h“ W] = o and V-[h" M] = v- [H1 M‘(’] = + v- n" vi) (3.4a) 

\__$

\



________._._.i 

__._...'—V.._ 

V-M\“=oandv-M=v-M¢=-V-hv¢ (3.4b) 

In order to satisfy the boundary condition M - n = 0, it is required that 

M4’-n=O,'M‘(’-n=0 (3.5) 

on the boundaries. The conditions (3.5) imply that

8 
h -—¢- = 0; ip = 0 (3.6) an 

on the boundary. 

It can now be shown that M4’ and M)!’ as defined by (3.3) and (3.5) determine uniquely the 
total transport field M, that is, 

Ii”/IaM—(M<°+M")=o 

To prove the latter statement, it is first noted that V - [h" ll7l]= 0 from (3.4a), so that, e.g., 
h" M = — V 123. However, V - M = 0 from (3.4b); hence -V - M = V - hVgi> = 0_ As the normal 
component of M = 0 on the boundary, so is that of hV It follows then thatifi = constant and 
M = O. 

The determination of M4’ and M‘” in terms of M proceeds by conversion of (3.3) into the 
inhomogeneous elliptic equations: 

V-h\7¢=-V-M,V-h"Vi/1=V-[h"M] (3.7) 

with homogeneous boundary conditions (3.6). Since M itself is an unknown, but satisfies the 
dynamic equations, the governing equations are converted into conditions on (b and 111, from which M is 
then reconstructed using (3.3). For this purpose, it and lb a_re represented in terms of the spectra of the 
elliptic operators appearing in (3.7). That is, the characteristic value problems are considered first: 

)7 ' h V¢oz = ‘ 7\a</5oz 

3 (3.83) 

a 
(pa = 0 on the boundary
n 

V°h_lVWa=‘l-lallla

h 

(3.8b) 
h'l $0, = 0 on the boundary*. 

Here or is a binary index used for enumeration of the spectral components. These problems can now be 
shown to be self-adjoint. Hence, the characteristic values Ra, pa are real and the characteristic 
functions (pa, ilxa each form a complete and internally orthogonal set. Since (150,, (pa may be chosen as 
real without any loss of generality, the orthogonality statement may be written as: 

_ ¢, ¢ _ _ - fh‘Ma M,,dA—>\o,_/¢,,¢,,dA—c’AH’50,,, (39, 

_/h-‘M3-M§dA=u,,, .pa;p,,dA=c’Afi’5O,,, 

‘The factor h'1 in condition (3.8b) imposes a more stringent condition than required by (3.6). However, this is 
necessary to make (3.8b) self-adjoint.



Here C2 E gFl and A is the surface area of the basin. 804; is the Kronecker delta. In accordance with 
(3.3), 

M3 = — hV¢a, M3 = — [v wa] (3.10) 

were defined in the orthogonality statement (3.9). 

Now the (non-dimensional) expansion coefficients are defined: 
1 -_ 1 _ C2Afi2fh1Mg-M¢dA 67$’/h‘M3-MdA P015 

(3.11) 

h" M;’;- M‘(’ dA h" Mg - M dA 1 1 

q“ c’Afi’ c’Afi2 

to represent Md’ and M“’. in view of the orthogonality condition (3.9), the sums on the right of 

' 

(3.12) 
MW zgqa 

are least squares approximations to M‘’’ and M“’,when the sums span the complete spectra of (3.8a) and 
(3.8b) (with the usual restrictions on quadratic integrability and continuity of M‘’’, M“’, and their 
derivatives). 

After orthogonal bases are established for M‘? and M4’ , it now remains to obtain an appropriate 
basis for the height field §. From the continuity equation, it may be shown that ¢a forms a sufficient 
basis for 5’. For convenience 

ya 2 ca‘ ma)‘/1 
¢,,, (3.13) 

The orthonormality relation among (‘a is then 

_ "2 
f§a§fidA — AH 50“, 

The non-dimensional expa_nsion coefficients are: 

_ 1 

7,, 
— AW/-§a§dA (3.14) 

Pertaining to an expansion 

§= §ya§a (3.15) 

In representations (3.12) and (3.15), the expansion coefficients pa, qa, 7a are time-dependent. 
Associated with these expansions are the Parceval relations. 

K¢
I 

K41 

1/2,; (firlfirl (MW dA 1/; M c’ZaIp}x 

%p(fi)"1fh'l (MW dA 14 M c“Xa:qf, 

P = lfigp‘/§2dA = %Mc2z::'ya



where M E p fiA is the mass of the fluid in the basin, K¢ and K‘(’ are the kinetic energies associated 
with the irrotational and solenoidal parts of the flow field, and P is the potential energy. 

By substituting the expansions (3.12) and (3.15) in the equations (2.1) and (2.2) with T5 = 0 
and approximating TB by (2.5), then by isolating the spectral expansion coefficients, we obtain 

d p * T“ + xpa — f§AaB pfl - £333”, qfi — uaya = 0 (3.16a) 

dq * fii + xqa — rgicafi pp — f§Daflqfi = o (3.16b)

d {L4 + :20, pa = o (3.16c) 

Here the following definitions are introduced: 

Aug 5 {M?i.IM2§’J}. Baa E {MWXI} 
(3.17) 

can 5 {'V'<‘5:I'V'§1 Dare 5 {""3u[""é’]} 

where the notation {A, B} is used for 

: ‘I {A,B}——C2Afi2 h A BdA 

which represents the inner product of the two vectors A and B. From (3.17) it can be seen that 

A043 = - Afla, B043 = - C50,, Dag = -D30, (3.18) 

In equations (3.16a), (3.16b), and (3.16c) Va is given by 
_ 1/ 

ya = (c2 A0,) 
2 

(3.19) 

and represents the normal mode frequency in the absence of rotation. 

Now the column vectors are defined: 
-) -> —) 
P E col(pa), O '=' co|(qa), R E co|('ya) (3.20) 

-> 
S _ 

:ulDl 

vi 

and the matrices 

A 2 lAa,3| , B 2 IBM! , c 2 Iowa . D 2 lDa,3l 

<V> E diagonalva 
‘A more general friction law where A = A (h) with h = h(x,y) may be adopted than the one indicated by (2.5), if 

necessary. The only difference that would result in the spectral equations 3.16a and 3.16b is that the second term 
Apa and Aqa on the left of each equation is replaced by §{7t Mg, Mg} pg and §{A M3, M3 } qg, respectively.



Equations (3.16a), (3.16b), and (3.16c) may be written in the following form: 

-) — + a3 = 0 (3.21)

I 

>\|*“fA: -fB E-<V> 
a E — fC 

: 

7\| — ‘FD 
: 

0 (3.22) 

<V> I 0 
:

0 

then 

(a—ai)§’=o 

The values of 0 are now the eigenvalues of the matrix a so that detv. la-oll= 0. These eigenvalues 0 
represent the normal mode frequencies for the rotating basin. The relations (3.18) and (3.21) show 
that a is an antisymmetric matrix. The associated eigenvectors then give the expansion coefficients 
pa, qa, ‘ya. Use of these in (3.12) and (3.15) gives the M‘’’ and M"’ components of the transport 
vector M and the height field of the normal modes. 

After the normal modes have been determined in the manner described above for an arbitrary 
basin, the procedure described in t_he next section can be used to construct the forced solution. It should 
be noted that obtaining the normal modes by solving the Neumann and Dirichlet problems (3.8a) and 
(3.8b) is much simpler than obtaining them by solving the problems posed by (3.1) and (3.2). The pro- 
blems (3.8a) and (3.8b) for an arbitrary basin may be solved using Galerkin methods or a direct nume- 
rical finite-difference method. Application of this procedure to determine the normal modes for Lake 
Ontario will be discussed elsewhere. 

4. FORCED SOLUTION 

Various methods, as mentioned in the introduction, have been considered for the construction 
of the forced solution. These methods fall into two categories. One method gives a formal solution to 
the problem in terms of an integral over time for a set of either coupled or uncoupled equations. The 
other deals with finite-difference i_ntegrat_ion of the problem i_n time only. 

In the formal solution two alternate procedures are given which differ only in the explicit details 
and which are labelled for convenience as Methodl and Method /I. 

Method I 

This method was used by Reid (1958) to study the edge wave resonance problem. Although 
this method may be developed with a linear, bottom friction law having a constant friction coefficient 
A, this effect is ignored and 735 = 0. Neglect of bottom friction is not such a drastic assumption, as it 
may seem at first, in the study of storm surge problems, which are transient in nature. During the 

* 
l is the identity matrix.
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V: 

y‘ 

transient stage when the wind stress force is acting on the surface, the effects of bottom friction will 
be an order of magnitude smaller. Hence, the neglect of the TB term in the equations, at least as a 
first approximation, can be justified. 

The dynamic equations (2.1) and (2.2) are now considered. if 73 = 0 and MF and §,: denote 
the normal modes or the free solutions, then they satisfy the equations 

am. 
at —r[M,.]=—gfihv§F (4.1)

a 
T‘: + v-M. = o ((4.2) 

satisfying the boundary condition (2.6). 

In order to establish the normal mode functions, let 

M. = Mia (x,y) ei 01"“! (4.3) 

§.= = I... (x.y) e‘ “i ‘°” ‘ (4.4) 

where Mia , (‘jg are the space dependent normal mode functions and C1 is a wave number vector which 
represents the wave numbers in the x and y directions. For an arbitrary basin with variable bottom 
topography, for any given a, there are three allowable values of the frequency oi(a). These are 
designated as 01(01): j 

= 1,2,3 and denotes the two gravitational modes and one rotationa_l mode such 
systems permit. For a basin with uniform depth, the spectrum of rotational modes is absent when the 
coriolis parameter is treated as a constant. Substitution of (4.3) and (4.4) into (4.1) and (4.2) yields 
the normal mode equations. 

so. (a) Mia — r[M,,,,] — g E h v go, (4.5) 

iaj (W) + V_' = 0 

The normal mode functions M50) and (‘jg are in general complex. A condition of orthogonality exists 
among these eigenfunctions in the generalized Hilbert sense and this may be deduced as follows. 

If Mk}; , (‘[5 (the asterisk indicates a complex conjugate) are the normal mode functions 
associated with 0; (B), then the conjugate equations satisfied by these are: 

— io; ()3) Mk}, — f[Mk'5] — gfih vgk}, (4.7) 

— (of, ((3) tk}, + v- Mk}, 0 (4.8) 

Now multiply (4.5) by Mk} / g H h, (4.6) by §k'5 , (4.7) by Mia / g H h, (4.8) by fia, and add the 
resulting equations. The terms involving the coriolis parameter drop out. Integrating of the res_ulting 
expression over the area of the basin and using the boundary condition of vanishing normal component 
of the transport field yield the quadratic relation: 

M. - M ' , 

g
. 

If 0] (a) 95 0,: (B) then the integral vanishes. lfj = k , a = Bthen the integral does not vanish because 
the integrand is a sum of squares of real quantities. Consequently 0] (at) = 01' (oz) , i.e., all eigenvalues



10 

are real. The condition of orthogona_lity among the eigenfunctions may then be stated as: 

_/.((Mja - Mk'B) (g E h)" + fm {(5) 'd A = Xiafiik 80,5 (4_9) 

Here 8,; is the Kronecker delta; X,“ represents the norm of the set of eigenfunctions and is closely 
related to the energy of the normal modes. 

The set of normal mode functions and the associated frequ_encies form an essential part of the 
forced solution described by equations (2.1) and (2.2) (with 7'3 = 0), and explicit knowledge of these 
functions for the given basin is necessary. Assuming that the normal mode functions and their 
frequencies are known (this aspect was considered in the previous section), we may consider the 
solution to the forced problem to be of the form: 

M (X, Y, T) = g Aja (t) Mic; (X, V) (4.10) 
i=1

3 

§(x, y, t) = 2 § A“, (t) fig (x, v) (4.11) 
j=1 

Where Am is a complex time-dependent amplitude factor, which is closely related to the nature of the 
forcing function 7'5. The relationship between A“), and 133 is obtained in the following way: 

Substitute the solutions (4.10) and (4.11) into the governing equations (2.1) and (2.2) (with 
T3 = 0); multiply the momentum equations by Mkfi /g fihand the continuity equation by §’k'5; 
then take the conjugate equations (4.7) and (4.8) for the normal modes and multiply them by 
M / g H h and i‘ from (4_.10) and (4.11), respectively. Add all the resulting equations and integrate over 
the area of the basin. Once again the coriolis terms drop out and use of the orthogonality condition 
(4.9) results in the following equation for Aja : 

cl A-O, 

d; 
— = ' 

Bja E ‘L 
Xja g H h 

The preceding equation for Aw, is a simple ordinary inhomogeneous differential equation of the first 
order. Solution of this is 

A50, (t) =f' emgiri e‘*°i ‘°" ‘M’ 117 (4.13) 

which satisfies the initial conditions of the problem as given by equation (2.7). 

From (4.12) it can be see_n that Big represents simply the coefficients in the expansion of the 
forcing function 7-5 in terms of the normal mode functions of the flow field. Hence, if the normal 
modes are known, Aja, which represents the time-dependent amplitudes of the normal modes, is 

obtained from (4.13) and the general solution of the forced problem, by going back to (4.10) and 
(4.11). In the preceding derivation, it may be noticed that the shape and bottom topography of the 
basin are left arbitrary. However, in practice, the crux of the entire matter lies in being able to solve (or 
already having knowledge of) the normal mode functions of the basin and their frequencies. 

Method I I 

Going back to the procedure which yielded the spectral equations (3.16) for the free rotating 
problem, we follow the same steps e_xcept that 75 is taken as a prescribed nonzero quantity. This leads



to a system of inhomogeneous equations:

d 
dz“ + 7\Pa — f §(AanPa + Baaqa) ‘ "Ma = {Ts vmg} 

dq _ 
dta + 7\Cloz 'f1“;«(CapPp "' Dow 95) ‘(Ts -Mg} (4.14) 

(970: _d_t__+VaPoz=0 

where {Ts , 
M‘(¢’I°' W} is defined as in (3.17). Comparison with (4.12) shows that the time-dependent 

problem now involves the solution to a coupled set of differential equations instead of the uncoupled 
set as obtained in (4.12). By defining another column vector: 

3 {Ts ’ Mg} 
‘F’ 5 col {q-S ,mg} (4.15)

0 

To represent the forcing function, equations (4.14) may be cast into the following form: 

— + as’ = ‘F’ 
(4.16) 

Here _S>and a are the same as those defined in (3.20) and (3.22). Equation (4.16) represents an ordinary 
inhomogeneous differential equation of the first order in the matrix form. Matrix a is time-independent 
and contains the essence of the natural characteristics of the basin and may be computed once and for 
all. 

The solution of (4.16) may be obtained by the usual integrating factor method and may be 
written as 

E’ = e'“_/‘ e“ F’ (‘r)d'r - 

(4.17) 

where the meaning of the exponential matrix is as follows. lf 0 values are the characteristic values of 
the matrix a, then using the theory of similarity transformations produces 

a = E’ <a> E" (4.13) 

where < o> is a diagonal matrix of the characteristic values and '5 is a modal matrix containing the 
eigenvectors arranged in columns. The exponential matrices e‘" and e'“ are now given by 

e“ =3 <e‘"> '5” 

e'“ = 3' <e""> '3'" 

Using these in (4.17) gives 

3:? <e‘°*> Ff‘ E’ <e‘”> '5‘! i=’ (1') (£7

11
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as the formal solution for the time-dependent amplitudes of the forced problem. The expression above 
ca_n be further simplified to give 

75’ = E‘ <e‘°‘>f' <e°*> 3*‘ i=’ (1') dr (4.19) 

The integral then may be evaluated by any of the standard methods of integration. 

Finite difference integrations 

Finally, a direct numerical integration of the ordinary differential-matrix equation (4.16) or 
(4.12) may be considered by using any of the various available finite difference schemes (Baer and 
Simons, 1970), either explicit or implicit. These schemes may be written as follows: equation (4.16) 
3.5 

‘I’! 

—> dS _,—>—> ‘j: S, , 
4.‘ 

dt g( t) (20) 

The general finite-difference extrapolation formulae may be written as follows (using the notation 
of Baer and Simons): 

(a) explicit schemes: Em, 

—>t+At 4>t—pAt " _ ->t—jAt 
S ? S + At 

jg ore‘, g (421) 

(b) implicit schemes: lpn 

— n
. -§t+At =‘S>t pm 4- At a'j"g>t+(1-JlAt 

(4.22) 
[=0 

ln the above expressions, 

flp aei is) ds, 

T: _S n-i 
_ _.s_]- 

¢xEj(s)—(j>k:j°l1)"(k) 
_ n-—j _ _. 1 

a.. (S) =( 5.“) Z (—1)"( S ‘+) 
‘ J k=O k 

The parameter p is an integer representing a point in time (t — pAt) at which the function? is known; 
n represents an integer giving the time (t — nAt) at which the oldest value of the function 3 is known; 
the symbol (S) is a binomial coefficient function of s.

l 

55,. (pl 3., (pl 2 a., is) as- 

The finite-difference i_ntegrat_ion in time may be carried out for any scheme (chosen by 
giving appropriate values for p and n) in a straightforward manner. This still has an advantage over a 

complete _f,in_i«te-diifference integration of the governing partial differential equations of the problem, 
which requires a three-dimensional space-time grid. Further, as (4.16) is a linear system of 
equations, the implicit integration procedures can be used, which do not impose any limits on time 
increments. By using an Euler trapezoidal method (obtained by putting p = 0 and n = 1) 

we get



..._-r.«v 

and the use of scheme (4.22) on equation (4.16) then yields: 

—>t+1 2| -1 2| —> 2| '1 —>t+1 —>t =—- —- +—+ F +F 4.23 s <..~> <.. a>s <.. a) « » « » 

2| 
With this procedure, the matrix inversion of + a) needs to be done only once and the matrix 
multiplication on the right can be done once and for all for a given basin (using some fixed valusof 
At). Application of the implicit integration procedure to equation (4.12) results in a simpler 
equation than (4.23) and is given by 

Xt+1= 2-103 (a)At Kt+ At (—é>t+1 +§>t) 
2+iaj(oz)At 2+io3(0t)At 

where A represents the column (Am) and < > represents a diagonal matrix. Although there is no 
limit on the value ofAt used in these methods, it is well known that the Euler trapezoidal method 
gives large phase errors if At is larger than about one-sixth of a period of the fastest wave in the 
system. (Kurihara, 1965). 

Summarizing the discussions in Sections 3 and 4 shows that a procedure has been developed 
through which the normal mode frequencies and structures may be determined for an arbitrary basin. 
By using these normal mode structures, the forced response is obtained by solving equations that give 
the timedependence of the normal mode excitations. The integrations involved in the procedure, such 
as the ones in (4.12) and (4.14), can be done by Simpson's or trapezoidal rules of integration. These 
rules determine the inhomogeneous terms in these equations. The time-dependent behaviour of the 
amplitudes is obtained either from (4.13) or (4.19) by using the same procedure to evaluate the 
integrals, or by solving the system by a finite-difference integration as, for example, indicated in (4.23) 
and (4.24). As the normal modes must be calculated only once for a given basin, several of the 
quantities involved here can be stored for repeated use in future calculations. It is also obvious from the 
preceding considerations that the most advantageous method for operational purposes will be method I 

leading to equation (4.12), which is then solved by the implicit scheme given by equation (4.24).
\

13
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CHAPTER 2 

Examples of Forced Oscillations 

The application of the theory described above to som_e ideal cases is discussed, specifically, 
for the following problems. - 

A_. Respon_se of a non-rotating rectangular basin of uniform depth to a disturbance propagating 
across the basin with a given speed and making a certain angle to the north-south direction. 
Because the effects of rotation are ignored, the results are applicable only to thosecases where 
the time-scale of t_he phenomenon is less than the loca_| inert_ia period. In view of this short 
time-scale, bottom friction effects are also ignored here. 

B. Response of a rotating rectangular basin of uniform depth to a stationary wind stress. Bottom 
friction is taken into account here through a linear frictional law. 

Some of the details of the results for the two cases above will now be presented and 
discussed. 

A. DISTURBANCE PROPAGATING OVER A NON-ROTATING 
BASIN OF UNIFORM DEPTH 

5. NORMAL MODES 

A rectangular basin (- a < x < a, 0 < y S b) with uniform depth, so that h = 1 for this 
case, is considered. As rotation is ignored (as well as bottom friction), the normal mode solutions 
are: 

_ gH kn . kn Ivrv Mja— frkx) 
' 

——2a sin 2a (x +a)cos
l 

_ gfi l7r k7r _ l7Ty 
Nia — iwm) T cos Z (x + a) sin (5.1)

J 

€10‘ 
= CO5 H (x + a) cos ———”;y 

2a 

where it is assumed that the normal mode functions corresponding to the height-field have unit 
amplitude. In terms of the theory described in Section 3, the flow field in the absence of rotation 
contains only the irrotational component; the solutions in (5.1) may be considered as the solutions of 
the Neumann problem (3.8a). The binary index at represents (k,l) where k and I may take on any 
integral value between 0 and °°. The frequencies of the normal modes are given by 

2 _ — 2 k2 1 (52) 12i(oz)—gl-l7r 4-37 + b2 .
. 

As the rotational part of the flow field is zero in the case of non-rotation, the spectrum of possible 
modes contains only the gravitational modes.



6. FORCED SOLUTION 

To obtain the forced response the procedure is used which was described as Method I in 

Section 4. The norm X", of the eigenfunctions (defined in (4.9)) is calculated from (5.1) and 
is given by 

Xja = eaa b 

where 

1 if k .| 9" 0 
ea 5 

2 if k .| = 0 

As the gravity modes occur in pairs with V, (at) = — V2 (01) (as seen from (5.2)), the following 
properties are also obtained 

M10: = M2-oz - N10; = N2‘a I §1a = §2'a I Ana = A2‘a )6“ 

As noted above, the rotational mode spectrum is evanescent for this case. ‘Hence the summation 
over j for the forced solutions (4.10 and 4.11) only goes from j=1 to j=2. In view of (6.1), the 
solutions may be explicitly written as: 

_ _ igfikrr 
_ k7r |1ry M—2Re%: —fi Ad (I) Sln "E (X +3) COS

b 

_ _ igfiln k1r 
_ l1ry N — 2 Re § by Aa(t)cos 33- (x + a) sln T (6.2) 

(1 

kn ‘|7ry §=2Re%:Aa(t)cos -2: (x + a) cos T 
On the right hand sides of (6.2), Re indicates that the real pa_rt of the expression should be taken. 
The expansion coefficients Aa (t) are to be determined from (4.13) where Ba (t) is to be calculated 
from the following expression: 

|1ry i k1r 
, 

k1r Ba (t) = ——-—€a 

Va ab f|:rsx (x, y, t) —2—a- Sln Z (x + a) cos 
(6.3) 

I k I + 'rsy(x,y,t) -bl cos i (x + a) sin :y:' dA 

where Tsx . Tsy are the scalar components of the surface stress vector 1'5 . Ba (t) from (6.3) can be 
evaluated once 7-5 is prescribed as a function of x,y,t. 

If a step function stress field 1'5 propagates across the basin with speed V and at an angle 6 
measured clockwise from the north, then 

0for'y>Vt 
|Tsl = (6.4) 

‘To for 7 < Vt 
where To is some scale value of the stress and 7 E [(x + a)’ + y2]% if 0 < 0 < 1r/2. 0 = O or 1r/2 
represent a step function approaching the basin from the south or west, respectively, and if 0 < 6 < -rr/2,

15



the forcing function approaches the basin from the SW quadrant (Fig. 1). If 6 = 0 or 1r/2, the problem 
simply reduces to a one-dimensional response of the basin and can be solved exactly using, for example, 
the met_hod of c_haracteri_stics (Rao, 1967). 

TV 

I 9 

Figure 1 

A schematic diagram of the rectangular basin with the 
I A stress band approaching from an angle 0. 

/ X ‘ 

- a 0 + 0 

The space integration for Ba in (6.3) then covers only that part of the basin over which the 
forcing function is non-zero. During the transient stage when t_he stepfunction is crossing the basin 
with 0 < 0 < 1r/2, various epochs of time must be distinguished as shown in Figure 2, which then 
.determine the domain of integration. The disturbance is assumed to be semi-infinite.

B 

be

a 

00 
EPOC H I EPOCH 2

Y

a 

Figure 2 
Various epochs of time as the stress 
band crosses the basin, 

EPOCH' 3 EPOCH 4
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TV?‘ 

_<-——7-—.—rv.————%-V 

(i) During epoch 1,the forcing is acting only in the part of the basin given by - a < x < (Vt cosec 0 - a) 
and 0 < y < (ao - x) tan 6 where a0 5 (Vt cosec 6 - al. Epoch 1 comes to an en_d when a0 = a or 
Vt, cosec 0 = 2a. 

(ii) Epoch 2 starts at time t 2 t,. The domain of integration may be split into two parts. One 
covers the area - a <x <a and 0<y<a, (IE Vt sec6 -2 a tan 0. This is the same as Epoch 1 

+ _ 
applied at t = t,. The second part covers the area — a < x < a and a < y < [“%a-) -

a 
where B = Vt sec 6. Epoch 2 ends at t; given by Vt; sec0 = b. 

(iii) Epoch 3 begins for t 2 t,,. The area of integration is now split into three parts: - a < x < a , O<y <01;-a<x<'y,a<y<b['yE(Vtsec0-atan0-b)/tan0]and'y<x<a,a<y 
< [(b - a) x + (ya - ab)] / (7 - a). Epoch 3 ends at time t3 given by Vt3 = (4a2 + b2 )1/‘’-. 

(iv) After t > t3, the entire basin is under the influence of forcing and the domain of 
integration covers - a < x < and 0 < y < b. The preceding regimes of time are for the _cases where 
Vt, cosec 9 = 2a but Vt, sec 0 < b. But, depending upon 0, a, and b, situations may exist where at 
time t, , Vt, cosec 9 < 2a while Vt, sec 0 = b. Then during epoch 1, the integration domain is the same 
as the one given earlier. Now epoch 2 is different and the domain of integration for Ba (t) covers 
(-a < x <*y,0<y<b) and ['y<x<ao,0<y<b (a,, -x) / (a0 -7)]. Epoch2 nowendsattz given 
by Vt; cosec 0 = 2a. After t = t1, the integration domainvis identical to the previous ones. It is 

a straightforward matter to evaluate the quantity Ba using the limits of integration above and hence 
A“ (t). We shall dispense with writing the explicit formulas here since they are long and tedious. 

( 1 J 1 O 5 IO I5 20 TIME 
Figure 3. Comparison of spectral solution (solid line) with the exact solution (dashed line) for 9 = 0, V = 0.5, 

and b/a = 5.
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Before Ba (t) and Au, (t) can be explicitly evaluated, the wave-numbers (kn/2a, l1r/b) or rather 
(k, I) must be ordered in some manner with respect to the binary index. This ordering is arbitrary. 
However, because the lowest modes are more excited than the higher modes when a fo_rcing 

function has a horizontal scale equal to, or larger than, the scale of the basin, the ordering is done 
in such a manner that the frequencies 110, form an ascending sequence with respect to or that is 

V1<V2<V3 

7. RESULTS 
Because a basin of uniform depth on a non-rotating plane was considered, it would suffice 

to calculate the response for values of 0 restricted to one quadrant, which was chosen here as 0 < 0 
< 11/2. The results will be presented for the height field §' at a few points on the boundary as a 
function of time for several speeds of propagation V and direction of approach 6 of the 
disturbance. Height field and time t are made non-dimensional according to: 

c2§ ct 
To a a 

where c E V g H is the speed of free long gravity waves on the surface. The speed of propagation V 
of the disturbance is also made non-dimensional (V —> V/c). 

Figure 3 shows a comparison of the spectral solution for a basin of elongation b/a = 5.0 
with V = 0.5 and 0 = 0 against the exact solution. As 0 = 0, the disturbance is propagating 
northwards along the basin and the response here simply reduces to a one-dimensional case_. The 
exact solution for this case — that is, the solution obtained by summing (6.2) over the infinity of 
normal modes —- is given by Rao (1967). This is indicated by the dashed line in Figure 3 whereas 
the spectral solution summed over the lowest ten normal modes is given by the solid line. The 
solutions on the southern boundary (S) agree very well for all time and on the northern boundary 
(N) from t 2 10. During 0 < t < 10, the spectral solution differs from the exact solution onthe 
northern boundary. This is due to the fact that the period 0 <_ t <' 10 represents the transient stage 
when the stress band is crossing the basin. The northern boundary will stay undisturbed until the 
first free gravity wave arrives there, which happens at t = 5. Then the waterilevel starts to rise until 
the forced wave arrives at t = 10. Such discontinuous behaviour, as is well known, cannot be 
represented by the spectral methods. Even though the details of the water level on the northern 
boundary during the transient period are poorly represented, however, the maxima and minima of 
the water level fluctuations and the times of their occurrence are very well predicted‘ by the spectral 
method with only a few components. 

Figures 4-7 show the water fluctuations at the four corners of a square basin. Figures 4 and 5 
represent the case when V = 0.5 and 0 = 7r/6 and 1r/3, respectively. Figures 6 and 7 represent the case 
when V = 1.5 and 0 = 11/6 and 1r/3, respectively. In all cases the height field is calculated in time up to t 

= 2t3, where t3 represents the time at which the stress band completely traversed the entire basin. The 
four corners at which the results are shown are l_abelled LL (lower left), LR (lower right), UL (upper 
left), and UR (upper right). In this notation then t3 represents the time at which the forced wave 
arrives at the upper right corner. A glance at these diagrams shows the complicated nature of the 
two-dimensional response. In the one-dimensional case, the maximum water level on the opposite 
boundary (to the point where the stress band starts its propagation at the initial time) always occurs at 
the instant when the slower of the two waves -— free and forced — arrives at the boundary. If a basin of 
length 2 in the one-dimensional case is considered, the minimum w'a't_er levels are obtained on the 
bou_nda_ry at-which the stress band starts. Time of occurrence of the minimum values is given by t = 2 
(1+ V“) if V‘ < 1, t_ 

= 4 if 1 < V" < 2 and if2 < V" <°°the minimum values are obtained at t=
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Figure 4. Water level fluctuations at points x = —a, y = 0 (LL); x = a, y = 0 (LR); x = —a, y = b (UL); 
x = a, y = b (UR); as a function of time for 9 = 1r/6, V = 0.5 in a square basin. 

TIME 

Figure 5. Water level fluctuations at points x = —a, y = 0 (LL); x = a, y = 0 (LR); x = —a, y = 1) (UL); 
x = a, y = b (UR); as a function of time for 5 = "/3, V = 0,5,
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2V" for V" even and 2(\/'1 - 1) for V" odd. Such properties no longer hold for the two-dimensional 
case even if the length is now defined as the diagonal length. In Figs. 6 and 7, it appears as if the 
maximum values on the northeast (upper right) corner are obtained at t z 2.8, which will be the time 
required for a free gravity wave to traverse the diagonal of a square basin having sides of length 2;. This 
is, indeed, what the one-dimensional theory predicts for the case V > 1:. However, the occurrence of 
the maximum at t W 2.8 is only fortuitous and such behaviour is generally found to be not true. 
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Figure 6 
Water level fluctuations at points x = —a, y = 0

I 

(LL);x =a.,y=0(LR);x=-a,y=b(UL);x=a, 
y = b (UR); as a function of time for 9 = 17/6, V= 1.5. 

Figure 7 
Water level fluctuations at points x = —a, y = 0 
(LL);x =a,y=0(LR);x=—a,y=b(UL) x= a_, 
y = b (UR); as a function of time for 9 = 1r/3, 
v = 1.5.
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47.4.2. 

The nature of the two-dimensional response is complicated due to the multiple reflections 
obtained in the basin. As a result each corner exhibits several oscillations with different maxima and 
minima and no periodicity appears to exist even after the transient period is over and the entire 
basin is under the influence of constant forcing. From the calculations performed for 0 <6 <v1r/2, 
it appears, however, that the highest water levels a_re obtained at the northeast corner and the 
lowest at the southwest corner. The peak values are tabulated for a few cases in Tables 1 and 2. 
Table 1 gives the maximum and minimum water levels in a square basin for various speeds of 
propagation and two directions of approach (0 = 11/6, 11/3) of the disturbance. Table 2 gives data for 
aubasin whose length in y-directions is two and a half times the length in the x-direction. A_n 
inspection of the tables shows that the maximum water levels seem to be obtained for a speed of 
propagation V centered about 1.25. Furthermore, there appears to be a tendency for the 
magnitudes of maximum and minimum water levels to reach some constant values for speeds 
V > 1.75. Qualitatively this property is similar to the one—dimensiona| case where the maxima and 
minima on the appropriate boundaries are independent of the speed of propagation when V > 1. 
The results given here are for the case of a semi-infinite stress as pointed out earlier. Results for a 

finite width stress band may be obtained from these by graphical super-position of the solutions. 
The solutions may also be obtained theoretically by prescribing the forcing function (6.4) for a 

finite band width. 

Table 1. Maximum (at the northeast comer) and minimum (at the 
southwest comet) water levels as a function of V and 6 for 

a square basin 

9 = 17/6 0 = 1r/3
V 

Max. Min. Max. Min. 

0.25 1.2 -1.2 1.3 -1.4 
0.5 1.4 -1.4 1.5 -1.5 
0.75 2.3 -2.0 2.4 -2.0 
1.0 2.9 -2.1 2.9 -2.2 
1.25 3.3 -2.0 3.5 -2.1 
1.5 2.8 -2.2 2.8 -2.1 
1.75 2.9 -2.2 3.0 -2.3 
2.0 2.9 -2.2 3.0 -2.3 

Table 2. Maximum (at the northmst corner) and minimum (at the 
southwest corner) water levels as a function of V and 9 for 
a basin having north-south length two and a half times the 

mst-west length 

0 = 71/6 0 = 1r/3
V 

Max. Min. Max. Min. 

0.25 2.4 -2.4 2.3 -1.9 
0.5 3.2 -3.2 3.4 -2.5 
0.75 4.3 -3.6 4.5 -2.8 
1.0 3.8 -3.2 5.7 -2.9 
1.25 5.2 -4.3 5.4 -3.4 
1.5 4.4 -4.2 5.0 -3.6 
1.75 4.3 -3.7 3.9 -2.9 
2.0 4.3 -3.6 3.9 -2.8
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B. STATIONARY DISTURBANCE OVER A ROTATING BASIN 
OF UNIFORM DEPTH 

8. CONSTRUCTION OF THE ORTHOGONAL FUNCTIONS 

In the rotating case the normal modes are built up from the solutions of (3.8a) and (3.8b);. 
When the depth of the basin is assumed to be a constant h, = 1, and if the geometry is once again 
ta_ken to be rectangular with 0 < x < a and 0 < y < b, the solutions for dza and 30,1 are: 

_ k I 

q§a=eaCH}Q,:/‘cos flxcos :-Zy 

— k I 

tho, = 2CH/Q;/2 sin 
fix 

sin Lgy 

(8.1) 

_{\/2 ifk-|=0 Ca: 
2 ifk°|#0 

The amplitudes of qba and Ll/,1 are chosen so as to satisfy the orthonormality condition (3.9). The 
matrix coefficients A043 etc., may now be evaluated and are given by 

4eo,e,, 

{ 
k§l3,—k3,If,} A” = Ax/M A5 (kg,—kf,l (ig,—lf,) 

(8._2) 

86a M kg lg 
B = -__._ _ j___ = — c °“’ 

1:2 I15 (k3,—kf,>(I3,—If,) 
5°‘ 

The coefficients Dag are all zero for this case. The formulae given in (8.2) are only valid under the 
restriction that 

ka — k,, is odd 

Ia — 1,, is odd 

If this condition is not met, 

9. FORCED SOLUTION 

The forced solutions are presented only for the case of a stationary, time-independent 
disturbance. Then the forcing terms in (4.15) are given by 

¢ _2\/§c—fi br5xifla=0,kaisodd 
./T5'M°‘dA‘_ \/E aTsyifka=0,|aisodd 

frs - Mg, dA = o for all (ka, la) 
(9.1) 

The quantities Tsx and Tsy are constants.
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Here also the wave-number ordering is done in such a manner that the no-rotation 
frequencies Va form an ascending sequence of numbers. The response is solved using Method ll 

previously described, and for this special case of constant forcing, the solution (4.19) can be written 
as 

3 = (l 
— E <e‘°*> '5“) a" E’ (9.2) 

If n terms each are taken in the expansions (3.12) and (3.15) (note that each of the series for M‘/’, Mll’, 
and § may be truncated at different numbers of terms, if desired), the column vector -8) has 3n 
elements and the matrix a is of the order 3n x 3n. Hence there are 3n eigenvalues, or normal mode 
frequencies. These correspond to 2n gravity modes and n viscous modes.* The 2n gravity modes consi_st 
of n complex frequencies, which represent the frequencies modified by rotation and n of their 
conjugates. After collecting the elements pa, qa , and 70, (9.2), the forced solutions for M‘7’ ,M‘/’ , and 
§are obtained from (3.12) and (3.15), and the total transport field M from the condition M = M“’ + M“’. 
These solutions in component form may be stated as follows. 

n 3n 
M(X,y,T) =CH7TR9 Z{ [(ajC;jeU’t + Xi)€;ki

1 i=1 ‘=1 

- k? + i If 
-1/2 

° sin 
ki fix 

cos —|i fly 
b2 a b 

_ n 3n ~ _. 
N(X,y,t) = CHWRC 2 {E [(C!iCi,-ea’t + x;)E;l; 

i=1 j=1 

~ -0-t _ 2 (“J Ci+n.i e + Xi+n) Ii crlm

2 ~ — . a _I/ k-7rx 
. l~7ry + 2(ozjC,+,,_j ealt + x,+,,) k,:l - + If 

2 
cos '3 sin

' 

— n 3n A: -0-1; k;7Tx Ii 

§(x, y, t) = NH Re 2 e, E oz,C,+2,,,j e ’ + x,+2n - cos 
a 

cos 
i=1 i=1 

where (15 and X] are the elements of the column vectors 
—>_ ...,_l _l—> a=co|(ozj)=— (a F) 

and 
—> _ —-> 

x Ecol (x,-)=a‘ F 

The results computed from formulae above are given in the following section in terms of the height 
3 

field §'. 

10. RESULTS 

Results obtained for the response of a rectangular basin of uniform depth to a stationary 
disturbance are presented. The basin is rotating at constant angular speed of rotation and a constant 
linear bottom friction in the problem is retained. Two specific cases are presented: (a) a high rotation 
with large friction; and (b) a low rotation with small friction. In either case, the basin is taken as a 
2 x 1 rectangle, i.e., a/b = 2; and a steady wind stress acting in the positive x-direction only is 

*These are induced by the presence of the bottom friction term and consequently represent a set of damped 
modes.
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considered so that in (9.1) 

Tsx To = constant 
'rsy=0 

The results are once again presented in terms of non-dimensional numbers. The non-dimensionalization 
is now expressed as follows: 

f‘)f/V1,t‘)V}t,)\"’)\/V1 

where v, = Crr/a is the frequency of the lowest, longitudinal no-rotat_ion mode. Hence the 
non-dimensional ti_me t = 27r represent_s the period of oscillation of the slowest no-rotation mode. The 
non-dimensional height field is given in terms of 

Czf 
3T0 

§—>\/ETTI2 

where To is a scale value of the wind stre_ss. 

The orthogonal functions (8.1) used to build up t_he normal modes (and the forced solution) 
have either symmetric or antisymmetric properties. That is, 

F (a — x , b — y) F (x,y) (symmetric) 

F(a—x,b—y) - F (x, y) (antisymmetric) 

where F can be either «pa or ll/a. This property of symmetry and antisymmetry for (be, and 1110, is 

governed by the rule: 

ka + la is odd (antisymmetric) 

k0, + la is even (symmetric) 

For the simple case considered here, there is no coupling between symmetric and antisymmetric parts, 
which means that the matrix coefficients Ao/5 . Bap . and C043 are Zero if at and [3 represent symmetric 
and antisymmetric wave-number pairs, respectively, or vice versa. Also, since any contribution to the 
forcing function (9.1) is excluded from a symmetric wave-number pair, all symmetric modes are 
omitted in the wave-number ordering of the binary index oz. The antisymmetric modes are then 
arranged so that the Va form an ascending sequence. 

A convergence test is made for the forced response for the high rotation with large friction case. 
The series for M and i’ are truncated once at ten terms each and next at fifteen terms each. The 
convergence question is examined in terms of the sum of the squares of the expansion coefficients 
(E | pa [2 + lqa I2 + I70, I2), which represents the length of the column vector After a time t =41r 
(time corresponding to two no-rotation periods), the difference "in the solutions between the two 
truncations is of the order of 2%. For earlier time periods, the convergence is better. 

Consider now the response for the high rotation with large friction case. Numerical values 
chosen for this case are 

The results are given in Figure 8 which shows the time variation of the water levels at three points on 
the boundary. These points are labelled as lower right (LR), which represents the point with the
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coordinates x=a,y = 0; center right (CR) with the coordinates x = a, y = b/2; and upper right (UR) 
with the coordinates x = a, y = b. These coordinates are indicated on the inset diagram in Figure 8. In 
the upper part of Figure 8 is given the water level variation at the point x = a/2, y = 0. The variations of 
the height fields at diagonally opposite points on the boundary are simply given by the negative values 
at each of the corresponding points in view of the antisymmetric nature of the solutions. Also given in 
Figure 8 is the response curve on the boundary x = a for the no-rotation case for purposes of 
comparison. 

v/N "I: 
.. / \ $ ..cR .4 

7 
1 1 1 I I I 1 I 1 

O 1 21 31 41 
TIME 

Figure 8. Water level fluctuations vs. time at various points on the boundary of a rotating rectangular basin. These 
points are located on the inset diagram of a rectangle along with the direction of wind stress, In this 
picture, f = 2, b/a = 0.5, A = 0.2. The non-rotational response is given by the dashed line and is valid at all 
points of the side x = a. 

Figure 9 
Location of the nodal line in the (x,y)- 
plane at various instants of time for 
parameter values given in Figure 8. 
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It is shown in Figure 8 that, when rotation is taken into account, the maximum water level is 

first obtained in the lower right corner of the basin, which is obviously due to the rightwa_rd deflection 
of the water body in reaction to the coriolis forces. The maximum obtained at the point labelled LR is 
larger than the corresponding value obtained when rotation is ignored. The high-water level then 
proceeds northward along the eastern edge of the basin where the subsequent peak values obt'ai'n'ed at 
points CR and UR are somewhat smaller. This may be due to the fairly high value assigned to the 
coefficient of friction here. The height fields reach minimum values at different times as shown in 
Figure 8. If there were no rotat_ion and no friction, the fluctuation of water level on the eastern 
boundary (x = a) would be such that it would reach a maximum at t = 7r and zero at t = 211 for the 
instantaneously imposed wind field considered here (see Rao, 1967). The presence of rotation and/or 
friction will prevent the water level from returning to zero value at any subsequent time after the initial 
instant. If the solution is ca_rried out over a long period, the transient effects produced by the normal 
modes in (9.2) would damp out and the solution would asymptotically approach the steady state value. 
The influence of rotation is also evident from the upper diagram in Figure 8, corresponding to the 
changes in height field at the point LC. If rotation is absent, the water leve_l will have a zero value for 
all time at this point as it coincides with the position of the stationary nodal line obtained in such a 

case. When rotation is taken into account, the nodal line is no longer fixed in space for all time, and the 
height field at LC deviates from zero as indicated. 

Figure 9 shows the position of the nodal line in the (x, y)-plane at various instants in time. As 
seen from (9.2), the general solution consists of the particular solution corresponding to the forcing 
and a contribution from the homogeneous (normal mode) solutions. In the initial stages, when the 
water level is building up under the influence of forcing, the high water moves in a clockwise sense 

Table 3. Height values (cm) on the southern boundary from spectral 
and finite-difference methods at approximately t =0.5 T. 

x Spectral Finite-difference 
(cm) (cm) 

0 -1.15 -1.12 
1/20 -1.11 
1/12 -0.98 
2/20 -0.99 
3/20 -0.85 
2/12 -0.83 
4/20 -0.72 
5/20 or 3/12 -0.61 -0.60 
6/20 -0.50 
4/12 ’ -0.38 
7/20 -0.37 
8/20 -0.24 
5/12 -0.20 
9/20 -0.12 
10/20 or 6/12 +0.004 +0.009 
11/20 0.11 
7/12 0.21 
12/20 0.24 
13/20 0.37 
8/12 0.40 
14/20 0.49 
15/20 or 9/12 0.61 0.64 
16/20 0.72 
.10/12 0.87 
17/20 0.85 
18/20 0.99 
11/12 - 1.02 
19/20 1.12 
20/20 or12/12 1.16 1.15



Figure 10. Water level fluctuations on the 
southern boundary (y = 0) as a 
function of time for f = 0.12, 
A = 10” x r, b/a = 0.5 with a 
uniform wind stress in the po- 
sitive x-direction. 
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Figure 11. Nodal line configuration at various instants of time for parameter values given in 
Figure 10.
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along the north and south boundaries (that is, along y = b and y = 0 boundaries), due to the inertial 
effects of rotation. After approximately t = 1r/2, the nodal line (and hence the high water) starts to 
travel in a counter-clockwise direction. This effect is produced by the slowest rotating normal mode, 
that is, the non-rotating fundamental longitudinal mode transformed by the effects of rotation. In the 
individual contribution_s of the normal modes to the general solution, the slowest mode is the dominant 
one, as can be seen from the spectral decomposition; this mode is characterized by a counter-clockwise 
propagation of the nodal line, which then accounts for the behaviour described above. The influerice of 
the fundamental mode persists up to approximately t = 271, when the forced solution once again starts 
to build up resulting in a rapid clockwise shift of the nodal line as evidenced by the shift of this line 
from t = 277 to t = 1077/4. The cycle of counter-clockwise propagation once again starts after t = 101r/4 
in the same manner as described above. 

The case of low rotation with small friction is considered next. The values chosen are f = 0.12 
and 7\ = 10'2f. This case has been run to compare the solution obtained by the spectral method with 
the one obtained by T. J. Simons (personal communication) using finite difference integrations. For a 
value of p" To = 1 cm’ 5'2, the dimensional values of §' from both methods are compared in Table 3. 

‘ The height field is given for various values of x on the southern boundary. The spectral solution for 
truncation of series at fifteen terms is given at t = T/2 or 11 (T is the no-rotation period of the 
fundamental longitudinal mode) and the finite-difference solution is that at t = 7/15 T; this difference 
in time at which the solutions are obtained should be rather insignificant. The comparison as can be 
seen by an inspection of the values listed in the table is favourable.

' 

Figure 10 shows schematically the change in water level along the southern boundary, at 
various instants in time over an interval corresponding to one period of oscillation of the no-rotation 
slowest longitudinal mode. The location of the nodal line on the southern boundary is indicated by an 
arrow. The initial shift of the nodal line in the clockwise direction is followed by a counter-clockwise 
propagation of the nodal line. One can see the influence of higher harmonics in the response i_n this 

case of low rotation with small friction. This is made more clear by an inspection of Figure 11, which 
shows the nodal line in the (x, y)-plane at various i_nsta,nt_s in time. Between t = 1r/2 to 31r/2, the nodal 
line configuration shows the dominance of the slowest rotating mode, and for t > 37r/2 and t < 1r/2-, 
the response is dominated by higher rotating modes.
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Summary 

The general theory for obtaining the forced re- 

sponse of an arbitrary water body by using the normal 
modes of the basin was discussed. Use of the normal modes 
in the representation of the forced solution_eliminates the 
space dependent aspect of the problem which then reduces 
the original partial differential equations governing the 
forced response to a set of ordinary time-dependent 
inhomogeneous differential equations. These equations 
determine the normal mode excitations by the forcing field. 
A procedure for determi_ni_ng the normal modes for quasi- 
static motions in an arbitrary water body including rotation 
and bottom friction was discussed along with a few 
different methods of constructing the forced response. 
Application of these methods to two simple cases was then 
considered. One case dealt with a semi-infinite stress band 
which propagates at an angle to the north-south direction 
along a rectangular basin of uniform depth. Rotation and 
bottom friction are ignored in this case. The second ca_se 
considered the response of a rotating rectangular basin of 
uniform depth to an instantaneously imposed wind stress of 
constant strength. Bottom friction is taken into account 
through a simple frictional law. Results for these two 
examples were presented. In both these cases, the method 
of using the normal modes was found to be satisfactory, 
and work is now in progress in applying these methods to 
real geophysical water bodies, e.g., the Great Lakes.
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