CANARA « INLAND WATN'S BIRECTORATE

RRrOET Sex\es .

Ry

GB
2429
Cc27
no. 1

CANADA

REPORT SERIES No. 1

PLAIN FORTRAN

- A guide to compatibility
in computer programming

. J. J.THERRIEN

INLAND WATERS BRANCH

DEPARTMENT OF ENERGY, MINES AND RESOURCES
OTTAWA, CANADA, 1968

REPORT SERIES No. 1

PLAIN FORTRAN

A guide to compatibility
in computer programming

J. J.THERRIEN

INLAND WATERS BRANCH

DEPARTMENT OF ENERGY, MINES AND RESOURCES
OTTAWA, CANADA, 1968

TABLE OF CONTENTS

HEOOIOUTRWN
“ o & o e e

Page

PREFACE: ¢+ e veesosnnscannsenssssnssassesnsstsacsanncaes L R T S S iv
INTRODUCTION. & it e et einesinonnonsscnonessssscocesnonsonnnansns ceesens ceeeenes 1
Phase L. iuiiiiitiiniieeeeetonernneeerrenenenornresasannsnnsans Cerernaeieeas 2
Phase Il,..iueueneeeereneeenessneenneencnnssancanns A, 2
Phase III..... e e e e ee et e i i eieneeeinia e et aneaebetnn oo cennnnnes eeeereeean 2
Phase IV eeeeouineiuiieatetoneneuieronennosesaesenssinesasoasassnsansaanannsss 3
1. Names of Variables; Functions and Subprograms-------; ------- senens sesess 3
Types of Variables and Functions........c.:.... N eeee 3
 Types Of CONStaNS.cesenenenroorrenesesrnrncssenensononns Steeeeieecaaes 3
Statement Numbers...............................;.;..........; 3
SubSCTipts..oovuvunsn P et ettt teee et i iesennaa Peeaan 3
EXPTESSIONS. vt vseenaeennrnenrnsnenneneneeses e iieteseeneneeteuenanis 4
Character Data (A-Format code).............. S 6
Assignment (=) Statement............eeeeeeennses e eerereneenea e veenes 6

. Gp TP Statement...... bereses et ettt ettt et e et eenean. . 6
0. IF Statement............... ceeene G etettecartanoannes ettt eeacnanenrannans 7
1. DO StAtEmMent. s eeeeesseeetsrassosroseossanansocsasancsacasans e eeerieea 7
11.1 By-Passing the D@ Loop s e et etesseaeneesesassnaresen s eeees 8

11.2 The Value of the Loop IndeXe:scrueiireeiioneeneerannensecenenenaes 8

11.3 Transfer Of COMLTOLe .« eereevueoneresonnseensrsiriionsneennsensonnss 8

. 11.4 Changing the Value of the Index and Parameters seseeseesee 9
12. CPNTINUE Statement............. S eeeeieeseiaenteieetnasann teeasesenens 9
13, STOP StateMENTe s o eveseeneeeunrononssenssnaosneesonoesonnonnnss ereeaen . 9
14. END Statement.....eeeeeeenereeecnnnns et e eeeete et een e ees 9
15, INDUt-OUtPUL LiSTu.. s ineneneneneeurnreeerneneenenensernssesniosnnns e 9
16, TFORMAT STATEMEIIT. ot vt e v esennteesnnssennnonnnesesnneeenseennnesosoesinses 10
16.1 FOTMAt COAES. .4 tusvutvuinurnnsnseseneanasnsnsensenensoncansnnenenns 10

16.2 FORTRAN RECOTAS. vt vuturevsraneneeanaseaeennossenesnsanessennsoses 10

16.3 Brackets Within the Format.................. reeeeeees e redeeenana. 10

16.4 Carriage Control CharactersS...uuveiierinierurereserorersocncancennns 11

16.5 Correspondence of List and Format ItemsS.....oeevsnreannonnecnnnnans 11

16.6 Allowable Characters with H and A Format Codes..eetevienenennnn eees 11

16.7 Allowable Characters with I F and E Format Codes..e.veveuenrneanns 11

17. READ StatemMents « s e covevesotsonsaciosstensasssasesensscessesaoaseensesssss 11
17.1 Read With Format (BCD data)ec:vsen TR R R Beeeiienees 11

17.2 Read Without Format (Blnary o F: 1 8) seeesens - 12
18. WRITE Statements s vs e e eeeeeneeenonsaoeroonens eeneae feeeineess iedeeese 120
18.1 Write With Format (BCD data).«:eeeeeccorrenroneneneennnnrsosansnss .12
18.2 Write Without Format (Binaty data)...ceeceereeeciiensnsrsscnannncas 12

19, BACKSPACE StatemMents « e o v ousssssssnreneassoeesaennesennneassansnnennnns 13
20. REWIND StateMents « e e oenneeeenesanesansonarensesennsannesoncesassosainee 13
21. DIMENSI@N Statement......veveeveeennses e et e et et ee et s estesaansans - 13
22, COMMIN STAtemENt..euuuuieienennsenennenennennennsnennensensnnunnens 13
23. SUBROUTINE Statement. ...cveeeneneeeeneeeeeennononnnnsons cereene eeenene. 14
24, FUNCTIPN Statements c « oo eetetotonseoenseeeoneenononsscnesasasasneeenaness 14
25. CALL Statement and Function Reference...... e PRy PR 14
Examples 1 2 33_]’1(14....‘..‘.'..-.‘- e e 15
Restrlctlons 25 O oo T S 16

26. RETURN STatement eveeveereeneecasananeneneneennnsnnnns Ceeieecieeeanen. 17
27, Library FUNCLIONS cuvevernvrnerninnrnceneecosnnens e reretse ittt aaenenes 17
28. Range and Precision of Numbers.......oovvvuveen . . 17
29. S12€ Of COMSTANES 4 uuuvrrnereenneennerennoeeesaneessosanansssnneenaioses 18
30. Double Precision on the IBM 360......... e eseseciertetertecrsesneenannn 18
31. Features to be Ignored............ et e isessae sttt ettt 19

iii

iv

PREFACE

"PL,AIN FORTRAN"is a restricted but compatible FORTRAN whichisintended
for the scientist who does not wish to getinvolved in the direct comparison of different
versions of FORTRAN to determine how compatible they are. Itiscloserto FORTRAN
I thanitis to FORTRAN IV and it ensures the compatibility of programs on medium
and large scale computers. It has been used successfully to run programs on the
CDC 3100, CDC 3300, CDC 6400, UNIVAC 1108, IBM 7040 andIBM 360. The programs
produced consistent results on all these machines without changes in the source
programs, exceptin some cases where minor changes had to be made to use double-
precision on the IBM 360. : '

PLAIN FORTRAN will make programs truly compatible. Notonly willdifferent
compilers accept the source programs without printing error messages but most
important of all, the compiled programs will produce consistent re sults on the
different machines, that is, the behaviour of the program will be machine independent.

PLAIN FORTRAN will especially be useful to the research scientist who is
just starting to use computers. It will allow him to develop his skills gradually.
He normally makes use of generally available computing services over which he
hasnodirect control and therefore must make his programs asmachine {or compiler)
indépendent as posgible if he is to progress in his re search.

PLAIN FORTRAN is described in this publication without reference to existing
standards for the FORTRAN programming language. Normally the scientist has
access only to the manufacturer's FORTRAN manual. He can use the restrictions
in this publication to simplify his work and make his programs compatible without
having to examine or assess claims about the compatibility of the manufacturer's
FORTRAN, The four phases suggested at the end of the Introduction can be usedto
specify how ''plain'’ the language should be.

ACKNOWLEDGEMENTS

The author wishes tothank the personnel of the Inland
Waters Branch and the Computer Science Division whohave
through their comments, contributed significantly to this
publication. '

Readers are invited to forward their comments and
criticisms regarding contents and omissions.

PLAIN FORTRAN
A guide to compatibility in computer programming

J.J. THERRIEN .

INTRODUCTION

Anyone learning FORTRAN is faced with
the problem of separating the basic information
from the more sophisticated considerations found
in the manufacturer's manuals. Although these
manuals contain the standard FORTRAN features,
they also contain special features that may or
may not be compatible with other manufacturer's

special features. The reader usually has no way

of determining which features are not standard

or essential and which ones are truly compatible.

He might only discover that they are not
compatible when he is forced to run the programs
on other machines. In some cases he might be
obtaining wrong results and not discover the
fault (incompatibility) for some time, if ever.
These features may introduce new concepts, new
complications (which are not always explained),
and therefore new potential sources of trouble.
As a result the newcomer must wade through a lot
of material, the usefulness or even the purpose
of which, he does not quite understand.

PLAIN FORTRAN is not presented as a
series of specifications. This would be ideal
and is contemplated for the future. For now, it
is presented in the form of restrictions. It is
assumed that the reader has some very basic
knowledge of FORTRAN and that he has access to a
manual. If he adheres at all times to the
restrictions mentioned he will be able to run
his programs on almost any medium or large scale
computer without changes and he will be assured
that his programs will yield consistent results.

Any statements or features that are not
specifically mentioned should be disregarded
completely. Only the essential features that

are compatible have been listed; PLAIN FORTRAN
does not pretend to include all the features
that are compatible. For example the ''PAUSE"

- statement is not mentioned. This statement is

practically useless for programs that are run in
batches in a large data céntre. The "assigned
G@ T@" statement is omitted because it accom-
plishes nothing that cannot be done with a
"computed G@ T#'. It introduces a new type of
data and its use is governed by considerations
of program execution speeds which are connected
with the way these statements are implemented on
the machine in question. These considerations
are not of prime importance while learning
FORTRAN. The EQUIVALENCE statement is also
omitted because it is only partly compatible and
it introduces many complications.

The reader will find many contradictions.
between the restrictions listed and the FORTRAN
manual he is using. For example, in section 1.1
it is said that names cannot contain more than
6 characters. If the reader happens to have a
CDC 3100 manual he will see that up to 8
characters are allowed. This of course is true
for that particular version of FORTRAN.. For the
CDC 6400 the maximm number of characters is 7,
and it is 6 for the UNIVAC 1108 and the IBM 360.
If he restricts himself to 6 chafacters he will
not have to change his programs to run them on
different machines. Such expressions as "'cannot
be used'', '"can only be'", "are not allowed",
etc... should be interpreted in this context.

In the above example one might be pre-
pared to change the size of the names if and
when another computer is used. During the com-
pilation, error messages would be printed iden-
tifying all the names that have to be shortened.

The problem is that not all incompatibilities
produce error messages. For example, in section
11.2 it is mentioned that when using D@ loops

the value of the loop index is undefined after
the looping.has been completed. In some versions
of FORTRAN it is defined and it can be deter-
mined. If the program is run on another machine
and the value is different then incorrect results
will be obtained. There will be no error mes-
sages printed because the compiler cannot warn
the user that this has happened. -As far as the
user is concerned everything will seem normal.
The results might look reasonable although they
will be erroneous. It is therefore of the
utmost importance to adhere to all restrictions
at all times becausé one can never rely on the
compiler for uprooting all the sources of errors.

Experimentation should never be used to
get around restrictions. One is sometimes
-tempted to "try and see" what the compiler will
do. For example ‘the value of the D loop index
after the loop has been completed could be
determined by running a test program and
printing its value at the end of the loop. One
might discover for jinstance that it is one higher
than the last value used in the loop. The
problem is that in some versions of FORTRAN its
value depends on what statements appear within
the loop so that conclusions drawn from the -
experiment are meaningless even for that parti-
cular version of FORTRAN, let alone for other
Versions. The results obtained might vary in
the same compiler, in different compilers for
the same version of FORTRAN and for other
versions of FORTRAN,

It might be worthwhile at this point to
explain some of the terminology. When it is
said that results are "'defined" this means that
they will be the same (within the stated preci-
sion) no matter what compiler or what version of
FORTRAN is used. Results are '‘undefined" if
there is no guarantee that this will be the case.
For the sake of simplicity the word "machine" or
"computer" has been used to designate the
yersion of FORTRAN" that is implemented on
computers of the same type. For example, in
sections 17.2 and 18.2 it is stated that binary
records can only be processed ''on the same
computer”. This actually means that they can be
processed with the same version of FORTRAN en
machines of the same type. It is difficult to
define the exact meaning of "same" without
considering specific cases in some detail. In
this example, the word "same" should indicate to
the newcomer that he can expect serious problems
if changes are made to the computing facilities
he is using. He should therefore consult an
experienced person before committing himself to
using these features.

‘ The reader who is learning FORTRAN
should not attempt to learn all the statements
or features at once. He should start with simple

programs and proceed to add mew statements to
his repertoire as required after he has mastered
the more basic ones. The following four phases
are suggested. '

PHASE I

In this phase the beginner is only con-
cerned with a main program that reads data cards
and prints results. The READ with format in
section 17.1 is only used for reading cards and
the WRITE with format in section 18.1 is only
used for printing. The A-format code in section
16 should be ignored.

The following sections and any references
to them can be c;ompl_etely ignored:

7. Character Data _
17.2 Read Without Format (Binary Data)
18.2 Write Without Format (Binary Data)
19. BACKSPACE Statement
20. REWIND Statement
22. COMMZN Statement
23, SUBR@UTINE Statement
24. FUNCTI@N Statement
25. CALL Statement and Function Refe-
rence
26. RETURN Statement
30. Double Precision on the IBM 360.

PHASE 11

Subroutine and function subprograms are
now added to the list and the WRITE with format
in section 18.1 can be used for punching cards
(as well as for printing). Note that the
COMVMPN statement and any réference to it or to
Variables stored in the CAMMJN atea should be
disregarded completely at this stage.

The folloWing sections are int‘rqduced:

23. SUBR@QUTINE Statement

24, FUNCTI@N Statement

25. CALL Statement and Function Refe-
rence

26. RETURN Statement :

30. Double Precision on the IBM 360
(only when applicable)

PHASE III

In this phase binary tapes can be used
for storing intermediate results and the COMMON
statement is added to the list.

The following sections are iptroduced:

17.2 READ Without Format (Binary Data)
18.2 WRITE Without Format (Binary Data)
20. REWIND Statement
22.- COMMBN Statement

PHASE IV 3.1 only two types of constants are allowed,

integer and real. For example 1250,

Other allowable features are added as 1250.0 and 1.25E+3,

e A

v

required,

NOTE: Fdr many applications there is no need to

proceed beyond Phase II.

In the first

two phases the newcomer should seek the
advice of an experienced programmer

whenever possible.

He should not proceed

beyond Phase II without discussing his
application with an experienced person.

1. Names of Variables, Functions and Subprograms

1.1 names can be not more than 6 characters .5. Subscripts
long; the length of a name Is 1 to 6
characters. For example the name 5.1 a variable can have not more than 3 sub-
ACC@UNT contains 7 characters and is scripts. For example ARRAY(2,1,4,I)
not valid. is not allowed as it has 4 subscripts.
1.2 the first character of any name must be 5.2 subscripted variables are dimensioned
a capital letter of the alphabet, i.e. with a DIMENSION statement only when
from A to Z. TFor example $ACCNT is not they are not in COMMEN; if they are in
valid. COMMON they are only dimensioned in the
‘ COMMPN statement. This restriction
1.3 the other characters if any, must be does not of course apply if the version
capital letters of the alphabet (i.e. of FORTRAN being used does not allow
A to Z) or digits from 0 to 9. For variables to be dimensioned in COMMEN
example "A$C'" is not a valid name while (see section 22).
"A908" is,
2. Types of Variables and Functions >3 gg%%ngeafgligYéagd%gzgg forms of sub
. : : : - .
These rules do not apply to subroutine E§2{+§;);nglzgli—§; 4, (1),
names as they do not have "'type" characteristics.
N 1.t T an 3 3
2.1 only two types of variables and func- wherg cgnszggtsd are unsigned integer
tions are allowed, integer (i.e. fixed- ™" is a nonsubscripted integer
point) and real (i.e. floating-point). variable
2.2 the type is solely determined by the
first letter of the name (type decla- The following are allowed:
Tations are not to be used): ARRAY(I,KIND,2), IND(Z*KIND‘l),
- B(10 J+11) INPUT(6) etc.
2.2.1 integer type: the first letter
of the name is alwaxs one of the The followmg are not allowed:
letters I, J, K, L, M or N. ARRAY (I,KIND,-2) , IND(KIND*2-1)
B(10,114J), INPUT(Z*S) LOUT(IND(2)),
2.2.2 real type: the first letter of TAB(-I), etc.
the name is never a letter from
I to N, i.e.”it is a letter from 5.4 subscripts must be larger than zero and
A to Hor from @ to Z. must not be larger than specified when
the array in question was dimensioned.
2.3 the contents of a variable are undefined
- until a number is stored in the location 6. Expressions

in question by the program. All loca-
tions must be initialized by the pro- -
gram.

3. Types of Constarits

The size of constants will be considered

later with the discussion of precision (see
sections 28, 29 and 30).

4.

3.2

only E can be used for real constants
containing an exponent. For example
1.0D-1 is not allowed except for double
precision as in section 30.

Statement Numbers

Statement numbers cannot be more than 4

digits long, i.e. the permissible range of
statement numbers is from 1 to 9999 inclusive.

6.1

only arithmetic expressions are allowed.
The only allowable operators are
addition (+), subtraction (-), multi-
plication (*), division (/) and expo-
nentiation (**). Relational (e.g. EQ,
GT,...) and logical (e.g. AND, @R,...)
operators are not allowed. Following

6.2

6.3

6.4

are allowable (arithmetic) expressions:

A

-2

2.0%A+(ARRAY (I ,N,K) /X)
IND+ (N+1)* (N+2) /2

mixed expressions are not allowed: an
expression must be either all integer

or all real. For example the expressicn
(A*I+N) is not allowed. Although they
contain two types of data the following
are not mixed expressions and are
allowed:

ARRAY(1,J,2)*B**2 where ARRAY is a
3-dimensional array

I+2*INIT(A,N) where INIT is an
integer function

The first expression is all real because
"ARRAY (I,J,2)" yields a real number and
so does '"B**2". The second expression
is all integer because the function
reference "INIT(A,N)" yields an integer
number.

brackets (parentheses) should be used
extensively (within reason) not only to
control the order of the computations
but also to make the intended meaning
clear to the reader. The order of the
computations is from left to right with
operations of the same level and the
levels are as follows: exponentiation

© (**) at the highest level, multipli-

cation (*) and division (/) on an equal
footing at the second-highest level,

and finally addition (+) and subtraction
(-) on an equal footing at the lowest
level. When brackets are used the
operations in the innermost brackets

are computed first.

For example, the following expression
is not clear to the reader: -
B*XY**X/Y**Z*YZ**Z/X+Z-2.0*CY

It should be written as follows:
(B* (XY**X) / (Y**2))* (Y2**2}/X) +(Z-
2.0*CY)

It might also be written as follows:
(Z-2.0*CY)+(B/X) * (XY**X)* (YZ**Z)/
(Y**Z)

This last expression is even simpler
and clearer.

if an expression contains a function
reference to a subprogram that changes
the value of one of its arguments, that
argument cannot appear anywhere else in
the expression.

For example, if IFUNC is a function that

-

changes the value of its first argument
then the following is not allowed:
I*J+IFUNC(I,1,N) —

The value of I in "I*J" will depend on
whether "IFUNC(I,1,N)'" has been evalu-
ated before or after "I*J" and the
order may depend on the particular
version of FORTRAN being used. For
example:

~ (I*J)+IFUNC(I,1,N)

might give results that are different
from:
I1*J+(IFUNC(I,1,N))

6.5 if an expression contains a function
. reference to a subprogram that changes
‘the value of a variable in C¢MVIN then
that variable cannot appear in the
expression.

For example, if COMP is a function that

changes the value of B which is COMMON

then the following is not allowed:
A*B+COMP(X,Y) -

The same reasoning as in 6.4 applies.
There is no guarantee that "COMP(X,Y)"
will be evaluated before "A*B" and vice
versa. The results are not defined.

- 7. Character Data

Character data are data obtained by
reading characters with an A-format code. The
use of character data should be avoided as much
as_possible. It is not essential for most
scientific computing. If it is not used, then
this section and all references to A-format codes
in section 16 .can be ignored. The manipulation
of character data will only be machine indepen-
dent if the following rules are adhered to at all
times.

7.1 character data can only be generated by
a READ statement with an A-format code.
There are no character constants, e.g.
literal constants such as 'ABC',3HABC
and 3RABC are not allowed anywhere.

- Note that H is an allowable format code
and can only be used in a FORMAT
statement (section 16). See section
16.6 for a 1list of the allowable
characters for data.

7.2 character .data should only be stored in
integer variables (subscripted or not).
Real variables should never be used for
this purpose. '

7.3 only the A-format codes Al, AZ, A3 and
A4 are allowed. A maximum of 4
characters can be stored in each loca-
tion. If less than 4 characters are
stored they are left-justified by

7.4

padding
llcll , Hd
charact

on the right with blanks. If
", v'e", and "f" represent one
er each and if 'b" represents a

single blank then reading:
- et with Al stores the same as
- reading "'cbbb™ with A4
"cd" with A2 stores the same as
- reading “cdbb' with A4
"'ede" with A3 stores the samé as

reading "cdeb” with A4

"cdef'" with A4 stores "cdef" in the

location in question.

The following rules for manipulating
character data also apply to data that
are used by subprograms through the
argument list or the CAMMPN area.
Character data can only be used as

follows

7.4.1

7.4.2

in a simple assignment statement
that does not contain operators
(i.e. computations) and that does
not involve type conversions
{e.g. integer to Teal conver-
sion). For example, the fol-
lowing are allowed:

ICH(1,I)=IN
where ICH is an array.
ICHAR=ICHE(I,2)

where ICHF is a function retur-
ning character data or an array
containing character data.

The following are not allowed:

ABC = ICHAR
IND = ICHAR1-ICHARZ
ICHAR = 2*ICHAR1+10

in an IF statement that compares
only character data and only
tests for equality, i.e. it
cannot test for one quantity
being larger or smaller than the
other. The brackets must and
can only contain the subttraction
of two quantities which are both
character data. These quanti-
ties can only be integer vari-
ables (subscripted or not) that
contain character data or func-
‘tion references that yield
character data. Since the IF
statement is only allowed to test
for equality, the first and last
statement numbers specified must
always be the same. The fol-
lowing are allowed:

IF(ICHAR1-ICHAR2)110,120,110

7.4.3

IF (IFUNC(I+1,J)-ICHAR) 1020,
90, 1020

The following are not allowed:

IF(ICHAR) 110,120,110
IF(ICHAR1-ICHARZ2) 110,120,130
IF(ICHAR1-10)110,120,110
TF(ICHAR-ABC)110,120,110
TF(ICHAR1-ICHAR2) 110,110,120
IF(ICHARI+ICHARZ) 110,120,110
TF(ICHAR1-ICHARZ-ICHAR3)110,
120,110

Because of the way character data
are stored the comparison -of
character data can produce
integer overflows in some cases,
i.e. the result of the comparison
(subtraction) is a number that
exceeds the capacity of the
machine. The IF statement will
always produce the correct
results (i.e. the numbers are
unequal when the overflow occurs)
but in some computer installa-
tions, this situation is treated
as an error. Error messages are
printed and sometimes the job is
aborted. It is possible to
prevent these overflows in a
machine independent mammer by
testing for the sign of the
values before comparing them.
They are only compared if they
have the same sign; then no
overflow can occur. If they do
not have the same sign, they are
not equal and no comparison is
performed. The rules for the IF
statement can be broken only for

. testing the sign of the values.

The fact that one value is larger
or smaller than the other is
meaningless in PLAIN FORTRAN; the
same characters might produce
opposite results on different -
machines. -

In most installations these over-
flows are tolerated to allow the
comparison of character data and
they are not treated as errors.
The comparison of -character data
should only be used if it is
absolutely essential.

in the "1ist" of a READ or WRITE
statement. When used with a
FORMAT statemént, only ‘the allow-
able (see section 16,1) A-format
codes can be used, i.e. Al, A2,
A3 or A4. The READ statement
with format stores the data as

shown in section 7.3. In the
WRITE statemient with format, the
A code specifies the number (1
to 4) of characters that are to
be written out starting at the
leftmost character stored. If
"C", "d", natt and "f" each :
represent one of the four char-
acters stored then writing
“edef" with:

Al will produce '"'c"
A2 will produce "cd"
A3 will produce "cde"
A4 will produce "cdef"

Character data can be used with
READ or WRITE statements without
format; see those statements for
general restrictions.

7.4.4 as an argument in -a CALL sta-
tement or in a function refer-
ence provided that the sub-
program in question obeys the
above rules for manipulating
character data.

8. Assigmment (=) Statement

it is of the form:

v-=e

where v is an integer or a real variable

(subscripted or not) and it

c¢annot be a function or an array

hame. ‘
e ‘is an arithmetic expression

(see section 6), either integer

or real. :

Conversion occurs after the expression
"e" has been evaluated if v and ¢ are not of the
same type (i.e. they are not both real or both
integer). The assignment statement is the onl

statement where conversion is allowed. Multiple

_replacement statefents, €.g. "A=B=C=2.0", are
not allowed. Examples of allowable statements
are:

IND = IND+1
X = (2.0*Y)-(Z* P)
ICPUNT = WNUM+2.0* (A+B)
WNUM = IC@UNT+1

Section 10.3 contains comments about

errors inherent in real (floating-point) numbers.

Only two types of G@ T@ statements are
allowed (e.g. the "assigned” G# T9 is not
allowed): :

9.1 unconditional:

GO T n

where n is a statement number

Example:
GO T$ 1100

9.2 qomguted:

GB T® (n1,n2,...;Ny),1

where n; to np are statemen
numbers :
i is a nonsubscripted integer
variable which must have a
value greater than zero and
not greater than the mumber
(m) of statements listed,
ie. 1,2, 3,...,m

Example:
G¢ T¢ (10,110,130) ,IND
where IND =1, 2 or 3

If IND is 1, control will be transferred
to statement 10; if it is 2, to statement
110, and if it is 3, to statement 130.

If it is less than 1, or larger than 3,
the results are undefined.

The following restrictions are implied
above:

9.2.1 the comma (,) that separates the
right-hand bracket. from i cannot
be omitted. The following is not
‘allowed: '

G¢ T (1100,10)1

9.2.2 i cannot be an expression. The
: following is not allowed:

Go T¢ (90,100),I-2

¢ven if I can only have values of
3 or 4.

9.2.3 i cannot be a subscripted vari-
able, a function name or an array
name. The following is not
allowed:

GO T® (90,100),INIT(2,1)

9.2.4 i must be integer; it cannot be
real. The following is mot
allowed:

G# T¢ (90,100) ,X

9.2.5 i must have a value which is
larger than zero and is not larger

than the number (m) of state-
ments specified. The following
is not allowed:

I1=14
GP T® (10,20),1

10. TIF Statement

Only the “"three-branch" arithmetic IF
statement is allowed. Logical or two-branch IF
statements are not allowed. :

IF(e)nl ,ng,n3 . .) .
vhere e is an arithmetic expression (see

Examp

section 6) which is either integer or
real.
ny,np,n3 are statement numbers

le: :

IF(I+2=N) 110,10,1000

IF(A*2.0+B) 110,10,1000

The program will branch to statement 110
if the expression in the brackets has a negative
value, to statement 10 if it is exactly zero and
to statement 1000 if it has a positive value.
The following restrictions are implied above:

10.1

10.2

10.3

the expression "e'" must be an arith-

metic expression (see section 6) and

it cannot therefore be a logical or a
relational expression. The following
is not allowed:

IF(I .GT. 16) ...

all three statement numbers n;,n, and
n3 and the two separating commas must
be present at all times and camnot be
replaced by an actual statement. The
following are not allowed:

IF(...) 10,120
IF(...) GB T@ 120

the comparison of real (floating-point)
numbers for exact equality should be
avoided because precision comes into
play and the results are therefore
machine dependent. A floating-point
number is usually stored internally in
the machine as a binary or hexadecimal
fraction of a given precision (i.e.
number of bits) and an exponent. In
general it is impossible to exactly
represent a decimal number in this
fashion. There is always a small
(plus or ninus) érror. For a given
precision, the size and sign of this
error depends on both the size of

the decimal number itself and on

the method used for converting that
number to the internal répreésenta-
tion. If computations were involved,

the error also depends on the errors of
the numbers involved and on the kind of
operations performed. Since real
numbers always have an error, one
should always think of them as having

a range and use the IF statement accor-
dingly.

For an IF statement, to find real
numbers equal, they must be identical
internally in the machine. For exam-
ple, the following statement is rather
meaningless in practice and should be
avoided:

IF(A-5.0) 10,20,10

Even if the value of A was obtained by
reading "5.0" from a card directly into
A; there is no guarantee that the above
statement will transfer control to
statement 20. The method used for
converting the source program constant
"5,0" in the IF statement to the inter-
nal representation might be slightly
different from the method used at
execution time for '"formatting" the
"5.0" from the card. Although this
situation might be rare, there have
been actual cases in the past where
this has happened. In such a case the
IF statement would find the numbers
unequal. If A was computed from other
values the chances are that the IF
statement will never transfer control
to statement 20, even if A was obtained
from the statement '"A=10.0-5.0" for
instance.

The above considerations do not apply to

integer (fixed-point) numbers because
ey are always represented exactly

in the machine and no error is-

involved. When converting from real

to integer or vice versa, the above

considerations for floating-point

mmbers should be taken into account.

DP Statement

The D@ statement can only have two forms:

Ddnm-=1i,j,k or
Mnm=i,j (same as k=1 above)

where n is a statement number specify-
ing the last statement in the
range of the loop.
m is the index of the loop. It
must be a nonsubscripted integer
variable.
i,j and k are the loop para-
meters. They must be either
unsigned integér' constants, or
unsigned (i.e. not preceded by a

minus sign) and nonsubscripted integer

variables.

When i and j are ‘integer variables they
cannot have negative values. The following is

not valid:

M
N

-4
-1

D¢ 110 IND = M,N

The value of k must under all circums-

tances be
- 3, etc...

larger than zero, i.e. it can be 1, 2,
The following is not valid:

M= -4
DS 110 I = J,K,M

11.1

11.2

By-Passing the D@ Loop .

If the value of j is smaller than the
value of i the results are undefined.
In some versions of FORTRAN the loop
will be executed once (i.e. the same
as if j had been equal to 1), while in
others, the loop will be by-passed
completely. In either case the final
value of m is undefined (see section
11.2).

When it is possible for j to be smaller
than i, an IF statement should always
be used to make sure that the program
will always behave in the same way no
matter what version of FORTRAN is used.

Exggple.lz by-passing the loop
TF(M-N) 100,100,150

100 D 140 I=M,N

140 CNTINUE

150 .iéet'l if necessary)
Example 2: executing the loop once

— IF(M-N) 110,110,100

100 N=M ‘

110 D@ 140 I=M,N

140 CONTINUE

The Value of the Loop Index (m)

The value of m is undefined after the
looping has been completed. Its value
depends on which version of FORTRAN

is being used and in some versions its
value changes according to circum-
stances.

The value of m is defined throughout

' the loop; i.e. it is available to any

statemenit that is part of the loop.
The value of m is defined outside the
loop only if control was transferred

to a point cutside the loop by an IF

11.3

or a G TP statement that was part of

the loop.

Example:
Dp 20 I=1,10
Ki=I

IE(I-N) 20,20,30
20 CONTINUE
30 K2=1

The value of X1 will always be correct
because the statement "K1=I" is within
the loop. If N is smaller than 10,

K2 will always have the correct value
because the IF statement will transfer
control to statement 30 (which is out-
side the loop) before the loop is
completed; the value of I is defined
in statement 30 because the loop was
not terminated through statement 20.

But if N is larger than or equal to 10,
the IF statement will always transfer
control to statement 20 which is within
the loop. Eventually, i.e. after the
10th time through the loop, control
will drop from statement 20 to state-
ment 30. In that case the value of

K2 is undefined; the value of I is

undefined in statement 30 because the

Toop was completed through statement
20.

The value of I should have been set at
the end of the loop to ensure correct

results under all circumstances and on
any machine. The above example should

‘have been written as follows:

DY 20 I=1,10
K1l=I
IF(I-N) 20,20,30
20 C@NTINUE
1=10
30 K2=I

The statement "I=10" defines the value

of I to be used in statement 30. The

value of K2 will always be correct no
matter what version of FORTRAN is used
and no matter what the value of N is.

Transfer of Control

The range of the D@ loop starts with
the statement immediately following
the D@ statement and includes all
statements up to and including the
statement ending the loop, i.e. state-
ment n in "D@ n m=...". The DP state-
ment itself is not part of the range.
The usual rules apply for the nesting
of loops.

L S

11.3.1 control can be transferred
from any statement within the
range to any othér statement
within or cutside the range.
See the example in 11.2.

11.3.2 control cannot be transferred
from a statement outside the
range to a statement within
the range of the loop. The
following is not allowed:

GB TP 110
100 D@ 120 I=1,10

110 A=B+C

120 CONTINUE
Example 1 in section 11.1 is valid
because the DP statement itself is

not part of the loop.

11.4 Changing the Value of the Index and
Parameters

The value of the loop index (m) and of
the control parameters (i,j,k) cannot
be changed by a statement within the
range of the loop. The following are
not allowed:

D@ 100 I=M,N D@ 1030 K=1,N
N=N+1 D¢ 1020 K=1,10
I=I-1. ...
cee 1020 CZNTINUE

100 C@NTINUE ‘e
‘e 1030 C@NTINUE
D@ 140 I-M,N,K D@ 530 I=M,N
.. DS 520 N=1,10
K=2 ...
cer 520 C@NTINUE

140 CONTINUE 530 CONTINUE

12. CONTINUE Statement

There are no compatibility problems with
: the CONTINUE statement. It is usually used at

g the end of a D@ loop to prevent an IF or a G@ T@

statement from being the last statement in the

loop. :

1 13. STOP Statement

The simple form "ST@P" can be used on
most machines. It does not actually stop the

by returning control to the operating system.
The form "ST@P n' where n is an integer constant
should never be used.

14, END Statemeﬁt

The END statement must never be used as
an executable statement, and therefore can never

machine but simply terminates the job in question

have a statement number. Return from a sub-
program should -always be performed by a RETURN
statement (not by the END statement) and a com-
puter run should always be terminated by a ST@P
statement (not by the END statement of the main
program) .

15. Input-Cutput List

' The input-output (I/0) list is used with
READ and WRITE statements. It consists of a
number of items separated by commas.

15.1 the I/0 list can only contain variables
(subscripted or not) and array names.
It cannot contain constants (except
integer constants used for subscripts
and for indexing as.in section 15.2
below). Neither can it contain expres-

sions (except for subscripts) nor
function references.

15.2 the items in the list can be indexed
as follows:

(eeeseinyene,mmiL i)

where m is the index
-1,j are the index loop para-
meters
m,i and j are the same as for a
D& statement

The value of m is‘undefined after the
indexing has been comipleted. The
indexing can be nested up to 3 levels.

Example: . ‘
(X(D), (A(1,J,K) ,B(J) ,J=M,N) , I=1,
10),C(K,1) ,k=2,4)

15.3 ' in an input list, a variable that
appears as an input variable cannot be
used for a subscript or for indexing
in the same list. The following are
not allowed:

READ(10,KARD) I,IND(I+2)
READ(MAG) I,(IND(J),J=1,I)
READ(MAG) (I,IND(I),I=M,N)

The results of these operations are
undefined. There is no guarantee in
the first two examples that the I used
as a subscript and for indexing will
have the value just read in the same
statement. In some versions it will
and in other versions it might not.

Some manuals do not explain what
actually will happen in such situations.

In the third example the results are
again undefined. This is similar to
changing the value of the index of a
D@ loop. i

16.

10

FPRMAT Statement

16.1 Format Codes

The only allowable format codes are
1,F,E,X,H and A:

alw
aFw.d
aFw.d
wX

wH ,
aAl,aA2,aA3 and aA4

where a, w and d are unsigned integer
constants - ’

a is optional and denotes the number
of times the same code is to be
repeated. If it is used it must be
larger than' 1, i.e. 2,3,...

w denotes the total width of the field
and it is always largetr than zero,
i.e. 1,2,3... Note that the format
code "aAw'" has been written as aAl,
aAZ, aA3 and aA4 above because w
can only have values of 1, 2, 3 or
4 with that code (see section 7).

d denotes the number of places to the
right of the decimal. It can be
zero or larger than zero but must
always be smaller than w.

The use of literal data is not allowed;
always use the H code instead. For
example, 'ABCD' is not allowed and
AHABCD should be used instead. When
the format codes are used for output
with the WRITE statement, e.g. for
printing, the following apply:

16.1.1 I-format code: there is no
heed to allow a space for the
sign if the number is positive,
e.g. "123" can be printed with
the format code 13. The shor-
test field that can be used for
output is therefore Il if the
number is positive. If the
nimber is negative always allow
an extra space for the sign,
e.g. print "-123" with I4.

16.1.2 F-format code: always allow
Toom for a sign (even for
positive mumbers), for the
decimal point (even if d is
zero) and for at least one
digit to the left of the deci-
mal point (even if the magni-
tude of the number is less
than one). In other words in
Fw.d, the smallest value of d
is zero and its largest value

16.2

16.3

is (w=3).

16.1,3 E-format code: for the frac-
tion allow room for the sign,
for one digit to the left of
the decimal point and for the
decimal point, and for the
exponent allow room for the
TE', for the sign of the
exponent and two spaces for a
2-digit exponent. In other
words in Ew.d, the smallest
value of d is 1 (no data are
printed if d is zero) and its
largest value is (w-7).

F@RTRAN Records

The use of the slash "/" is allowed to
delineate the start of a new FPRTRAN
record only when printing.

The end of the FPRMAT statement can
also be used to start a new record.

If the list requires more format items
than are given in the format, a new
record will be started at the begin-
ning of the FORMAT statement. This
feature is never used when the F@RMAT
statement contains brackets, as in
section 16.3, i.e. repetition factors.

The F@RTRAN record should never be
longer than 132 characters when tused
with BCD information on tape or when
printing (132 includes the carriage
conttrol character). For cards, the
rec¢ord length is never longer than 80
characters. : ‘

Brackets within the FPRMAT

A group of format items can be repeated
a number of times if they are enclosed
in brackets: '

FPRMAT(...,a(item,...,item),...)

where "a" is an unsigned integer cons-
tant specifying the number of
times the items in the bracket
are to be repeated.

For example: ,
3(3A4,13) is the same as
3A4,13,3A4,13,3A4,13

16.3.1 When brackets are used, "'a"
must always be specified and
must be larger than one, i.e.
2,3,... The following is not
allowed:

very (304,13),...

16.3.2 The brackets cannot be nested,

16.4

16.5

16.6

i.e. they camnot contain other

brackets. The following is

not allowed:
.,3(3A4,2(12,11),13),..

Carriage Control Characters

When the FPRMAT statement is used for
printing, the first character is used
for carriage control and is not
printed. Although not all versions of
FPRTRAN implement carriage control the
same way, the end result should be as
shown here. The only allowable car-
Tiage control chardcters are:

blank single spacing (advance one
line before printing)
zero(0) double spacing (advance two
lines before printing)
advance to the first line of
the next page before printing.

one(1)

Correspondence of List and Format
Items

Except for the X and H format codes
which do not have corresponding list
items, there must be a one-to-one
correspondence between the items in
the list and the items in the format,
i.e. no type conversion is allowed.

16.5.1 the list item must be an inte-
ger variable for the I and A
(see section 7.2) format codes.
16.5.2 the list item must be a real
(floating-point) variable for
the F-and E-format codes.

Allowable Characters with H-and
A-Format Codes

The following 43 characters are com-
patible and can be used with the A-and
H-format codes:

A to Z capital letters, i.e. upper
case only
0 to 9 decimal digits
blank

- minus sign
decimal point
coma
slash
asterisk
dollar sign

A kN .

The above characters can be used as
data as well as for printing. The
first 2 columns of data cards must
never contdin "//'" or “/*"'; these
identify control cards on the IEM 360.
In general, the last five characters

17.

16.7

listed above, i.e. special characters,
should be avoided at the beginning of
a data card.

The following 4 characters can be used
only for printing and should be avoided
as much as possible:

+ plus sign

= equal sign

(left parenthesis
) right parenthesis

For the IBM 360, these four characters
must be punched in EBCDIC in the H
field of the source-program card
because the '"BCD" option of the com-
piler does not change these fields to
EBCDIC. They will have to be changed
back to BCD when the program is used
on other machines. These four charac-
ters should never be used as data
because the IBM 360 uses different
codes for these characters.

Allowable Character with I-,
E-Format Codes

F-and

Because of restrictions mentioned in
16.6 regarding the plus sign, "+",-no
input data should contain that sign.
This is especially true of the exponent
with E-type numbers. For example
instead of 1.0E+10 use 1.0E10 for data.
This restriction only applies to data.
It does not apply to the coding of
constants in the source program,

Blanks are only allowed as leadin
characters. Blanks cannot be useg
within or on the right-hand side of a
figure (a blank is allowed on the left-
side of an exponent). For example

1] 2" cannot be read as I3, If an
I- or F-type field contains all blanks
it is interpreted as a value of zero.

READ Statement

Provisions should always be made for the
program to recognize the end of the file by
examining the data just read, i.e. the last
record in the file should contain data that
identifies it as the last data record (End-of-
file should never be used).

17.1 Read with Format (BCD data)

READ (u,f) list

where u is the unit number of the
device (i.e. card reader, tape
unit, disc or drum). It must
be an unsigned integer variable.
It is bad practice to use a
constant because unit nmumbers

11

12

17.2

are not compatible and must be

changed for different machines

or different data centres.

f is a F@RMAT statement number.
It cannot be a variable.

"list” is' the list described in
section 15.

The only really compatible medium are
cards, provided restrictions as to
allowable characters given in section
16 are adhered to at all times. Tapes
are not usually compatible; there are
difficulties with physical record
lengths on different machines. Tapes
(or records on discs or drums) can
be processed by the same machine if
they were-written with a WRITE state-
ment with format and if the number of
characters (i.e. positions read) is
not larger than the number of charac-
ters written by the corresponding
WRITE statement. For cards, the
maximum number of characters is 80
per record, and for other devices,
the number should not exceed 132
characters per record. See section
16.2 for the processing of several
records with the same "list".

In this statement, the ''list' must
contain at least one item, it cannot
be omitted.

Read without Format (Binary Data)

READ (u) list

where u and "list' are the same as in
17.1.

This statement cannot be used to read
cards. It can only be used to read
binary tape (disc or drum) records
that were produced on the same machine
with a WRITE statement without format.
The number of items read by this sta-
tement must never be larger than the
number written in the corresponding
WRITE statement and there must be a
one-to-one correspondence: integer
(fixed-point) items must correspond to
integer items and real .(floating-point)
items must correspond to real items.
This is similar to the correspondence
of items listed in the COMMPN area in
different subprograms except that the
1ist of the READ statement can be
shorter than the list of the corres-
ponding WRITE statement. .

As far as the FPRTRAN program is con-

". cerned, each execution of this state-

ment processes one and only one, binary
record. The physical arrangement of
the data on the tape is of no signi-

. binary record.

ficance at this stage as it depends on)
the version of FPRTRAN used. It is

sufficient to say that in general, it

is more economical to process a few,

long binary records than it is to

process a large number of small (short

list) records.

The execution of this statement always
starts at the beginning of a F@RTRAN
If the list of the
previous READ statement was too short
then the remainder of the previous
record is lost for the moment. If
necessary it can later be processed by
going. back to that record with a
BACKSPACE or REWIND statement and
reading it again with a sufficiently
long list. The list may be omitted
with this statement., In that case the
record in question is by-passed com-
pletely, i.e. the file is positioned
at the next record.

This statement is much more efficient
than the READ with format because it
does not involve data conversions,

i.e. conversion from the character
representation of the .input data to the
internal machine representation. This
statement should only be used to read
back intermediate results that were
stored on the same computer.

18. WRITE Statement

18.1 Write with Format (BCD data)

18.2

WRITE(u,f) list

where u,f and '1list" are the same as
in section 17.1

The "'1ist" may be omitted in this
statement.)

This statement can be used to punch

cards and to write BCD records on tape

(disc or drum). See section 17.1 above

for restrictions for these devices. :

This statement can also be used to -
print data. The maximum allowable

record length is 132 characters inclu-

ding the carriage control character.

Write without Format {Binary Data)

WRITE (u) list

where u and "list" are the same as in
section 17.1.

The "1ist". must contain at least one
item; it cannot be omitted in this
statement.

o

Each execution of this statement pro-
duces one binary FPRTRAN record. See
section 17.2 for restrictions. This
statement should only be used for
storing intermediate results to be
read back on the same computer.

19. BACKSPACE Statement

BACKSPACE u
where u is the same as in section 17.1.

This statement can only be used with
records on tape (disc or drum). Each execution
makes the program go back one F@RTRAN (BCD or
binary) record; after the first record has been
reached this statement has no effect.

Excessive execution time sometimes
results when using this statement on some
machines. This statement should only be used
when absolutely necessary. The REWIND statement
should be used where applicable.

20. REWIND Statement

REWIND u
where u is the same as in section 17.1.
This statement is used to reposition a
file at the first F@RTRAN record (BCD or binary)
on tape (disc or drum).

21. DIMEN$I®N Statement

This statement is used to specify the
dimensions (i.e. the maxirum value of each sub-
script) of subscripted variables that are not
in COMMPN (also see section 22). It is always
placed at the begimming of a main program or of
subprograms and precedes the first executable
statement.

No variables can have more than 3 sub-
scripts (see section 5). The list takes the
form of items separated by commas and each item
is an array name with the maximum value (larger
than one) of subscripts in brackets. The items
can only have three forms (adjustable dimensions
are not allowed): '

a(i) for one-dimensional arrays
a(i,j) for two-dimensional arrays
a(i,j,k) for three-dimensional arrays

where a is the array name, real or integer.
i,j and k are unsigned integer con-
stants (they cannot be variables)
larger than one, i.e. 2,3,...

Example:
DIMENSION A(2,4),IND(5),KIND(500,2),...

22. CQMM@N Statement

This statement is used to make data
available to both the main program and sub-
programs or just between subprograms by making
variables share the same storage locations.
Arrays that are in CQMMON must be dimensioned in
this statement (this is done in the same way as
in the DIMENSIPN statement) unless the version
of FPRTRAN being used does not allow it; in that
case they must be dimensioned in a DIMENSI@N
statement. Most versions of FPRTRAN now allow
dimensions in the COMMIN statement.

The items are listed in the following
order: first, all the real variables, then all
the integer variables (this facilitates the use
of double-precision on.some machines).

There must be a one-to-one correspondence
between the items listed in the C@MMIN area
wherever it appears in the main program and/or
in the subprograms. The number of items must be
the same, the corresponding items must be of the
same type (i.e. real or .integer) and if they are
arrays they must have exactly the same dimensions.
It is the order that is important; the names used
need not be the same although it is good practice
to have them the same whenever possible.

If the main program or one of the sub-
routines does not use all of the variables in
CAMMON then dummy variables (i.e. names that are
not used for other purposes) are inserted in
COMMON to make the lists match as specified’
above. For example in one subprogram we might
have: . g

COMMIN A(10,2) ,B@X,X,Y(50) ,IND,NUM(4,6)

while in another we might have:

COMMON A(10,2) ,B@X,XYZ,DUM(50) , IND,
~ IDUM(4,6)

where DUM and IDUM might be dummy variables.
There is-a one-to-one correspondence
between the items:

A(10,2) A(10,2) (real)
BaX BOX (real)
X XYZ (real)
Y(50) DUM(50) _ (real)
IND . IND (integer)
NUM(4,6) IDUM(4,6) (integer)

The COMMIN statement should never be used
in a program or subprogram that does not use some
data in the C@MMON area, i.e. the COMMBN state-
ment never contains only dummy variables.

The use of "labelled" COMMZN is not

allowed. There can be only one (unlabelTed)
COMMIN area. The CMMON statement never contains

13

slashes.
The following are not allOwed:

COMMEN /DATA/ A,B,C,D’
CoMMEN / / A,B,C,D

23. SUBR@UTINE Statement

The dummy arguments listed in this
statement will be replaced by the actual argu-
ments listed in a CALL statement. The arguments
in the list are separated by commas (slashes are
not allowed).] :

The dummy arguments can only be nonsub-
scripted real or integer variables, or array
names. They cannot be function or subroutine
names and they cannot be in COMMZN. When a
dummy argument Is an array name it must also
appear in a DIMENSI@N statement in the sub-
program. The dimensions specified (adjustable
.dimensions are not allowed) must be exactly the
same as those of the actual argument which will
appear in the CALL statement (or the function
reference in the case of a function subprogram).
There is one exception to this rule. When the
dummy argument in question is the name of an
Frray that is one-dimensional (i.e. one sub-
script) it can have any dimension (larger than
one) in the subprogram. It should be noted, of
course, that the value of the subscript in ‘the
subprogram must never exceed the dimension of
the corresponding actual argument in the calling
program. It should also be noted that if this
array name appears unsubscripted in an input or
output list the number of items processed will
equal the dimension specified in the subprogram,
not that of the actual argument in the calling

program.

It is possible for a subroutine sub-
program to have no arguments; in this case the
brackets are omitted and the COMMON area i5 used
to share data with the calling program. As noted
in section 24, a function subprogram always has
at least one afgument.

24. FUNCTIgN Statement

The dummy arguments listed in this state-
ment will be teplaced by the actual arguments
listed in a function reference. The restrictions
for the dummy arguments in this statement are
exactly the saine as for the SUBR@UTINE statement
in section 23.

The rules for naming functions are
explained in sections 1 and Z. The type (integer
or real) -of the function is determined solely by
the first letter of its name. A function sub-
program must always have at least one argument.

25. CALL Statanentwand Function Refereqce

The actual arguments specified in a CALL

14

statement or in a function reference must have
a one-to-one correspondence with the du

 arguments listed in the SUBRGUTINE or FUNCTI¢N

statement respectively. The number and order of
the arguments must be the same, they must be of
the same type (i.e. corresponding arguments are
either both real or both integer), and array
names always correspond to array names.

The following function subprogram will
be used as an example in explaining the way in
which arguments are used by subprograms:

FUNCTION CZMP (XD,YD)
_ COMMEN AD,BD,CD
10 XD=XD+1.0
20 BD=XD+YD
30 C@MP=YD+CD
RETURN
END

It is possible for this subprogram to
change the value of its first argument (XD) in
statement 10, and to change the value of the
second variable (BD) in COMMON in statement 20.
Although the subprogram shown above happens to
be a function subprogram the same considerations
also apply to subroutine subprograms.

In general it is possible for a'suby
program to change the value of a dummy argument
or of a variable in CAMMZN if the variable:

- appears on the left side of an assignment
. statement (e.g. statements 10 and 20%
- - appears as the loop index in a D@ statemerit

or as the loop index of an indexed (section

. 15.2) input/output list. See section 25.6
for trestrictions applying to dummy argu-
ments -

- appears as in input variable in the 1lis
of a READ statement

- is changed by another subprogram that is
referenced by the subprogram in question.

In general a yariable (i.e. location) in
COMMPN is 'mot used" by a subprogram if:

- it does not appear anywhere else in the
subprogram, i.e. it only appears in the
COMMPN statement. For example AD above is
a dummy variable.

- it is "ot used" by another subprogram that

is referenced by the subprogram in question.

: The following calling program will be
used to describe the use of arguments:

COMMON A,B,C
A=1.0
.0

B
C
X
Y

o b= o

0
0
IMP (X,Y)

Four examples will be worked out with
the above program by changing the arguments of
the function reference in statement 100 above:
CAMP(X,Y), COMP (C,Y), COMP(X,X) and COMP(X,B).
To understand the mechanism by which the actual
arguments are used in the subprogram, the func-
tion reference in statement 100 will be replaced
by a series of equivalent statements. For each
example three sets of statements will be given.
The columns entitled 'Version I' and 'Version IIY
show how two different versions of FZRTRAN might
handle the arguments while the colunm entitled
"User' shows how the user usually 'thinks' they
are handled. The results are coipared in each
case. The important thing to remember is that
the results must be independent of the version
used and the results must be the same as what
the user expects them to be. The examples are
followed by restrictions which must be observed
at all times to obtain consistently correct
results with different versions of FURTRAN.

EXAMPLE 1: A=C@MP(X,Y)
Version I Version II User
1 XD=X - -
2 YD= 2 YD=Y ==
10 XD=XD+1.0 10 X=X+1.0 10 X=X+1.0
20 B=XD+YD 20 B=X+YD 20 B=X+Y

30 COMP=YD+C 30 C@MP=YD+C 30 COMP=Y+C
31 X=XD

100 A=CoMP 100 A=COMP 100 A=COMP
Results Results Results
X=2.0 X=2.0 X=2.0
A=2.0 A=2.0 A=2.0
B=3.0 B=3.0 B=3.0

* The same results are obtained in all
three cases because this is a valid example.
Note in Version I that the subprogram does not
work directly with the actual arguments X and Y.
It first stores (statements 1 and 2) the values
of the arguments in temporary work areas (XD,YD)
and then uses the work areas to perform the
computations. Before returning to the calling
program, it stores (statement 31) the new value
of XD, in the location of the actual argument X.
The value of YD was not changed; its value is not
stored in Y for this reason.

"In Version II the actual argument X is
worked on diTectly because XD is likely to change
value as it appears on the left-hand side of the
assignment statement 10. The User usually
assumes that the subprogram is working directly
with the actual arguments X and Y at all times.
This is what he should have (and usually has) in
mind when he designs the subprogram, provided he
obeys the restrictions listed below.

Note that the variables in CEMMZN (i.e.
B and C in the calling program corresponding to
BD and CD in the subprogram) are always worked

on directly. This applies to any version of

F@RTRAN.

EXAMPLE 2: A=COMP(C,Y)

Version I

1 XD=C -

2 YD=Y

10 XD=XD+1.0
20 B=XD+YD
30 COMP=YD+C
31 C=XD
100 A=CoMP

Results
C=2.0

A=2.0
B=3.0

Version IT

2 YD=Y

10 C=C+1.0
20 B=C+YD

30 COMP=YD+C

© 100 A=COMP

Results

C=2.0
A=3.0
B=3.0

User

10 C=C+1.0
20 B=C+Y
30 COMP=Y+C

100 A=CAMP
Results
C=2.0

A=3.0
.Bé3.0

The results differ (A is 2.0 in Version
I) because this is not a valid example. See
section 25.4 for general restrictions.

EXAMPLE 3: A=COMP(X,X)

Version I Version II User

1 XD=X - -

2 YD=X 2 YD=X -
10 XD=XD+1.0 10 X=X+1.0 10 X=X+1.0
20 B=XD+YD 20 B=X+YD 20 B=X+X
30 CAMP=YD+C 30 COMP=YD+C 30 COMP=X+C
31 X=XD - ——

100 A=C¢MP 100 A=CgMP 100 A=C@MP
Results Results Results
X=2.0 X=2.0 X=2.0
A=2.0 A=2.0 A=3.0
B=3.0 B=3.0 B=4.0

Note that the results that the user
expects are not those (A and B are different) he
would get from the two versions of F@RTRAN shown.
See section 25.4 for general restrictions.

EXAMPLE 4: A=COMP(X,B)
‘ V?rsidn I Version II
1 XD=X -
2 YD=B 2 YD=B
10 XD=XD+1.0 10 X=X+1.0
20 B=XD+YD 20 B=X+YD
30 C@MP=YD+C 30 C@MP=YD+C
31 X=XD —_—
100 A=C@MP(100 A=C@MP
Results Results
X=2.0 X=2.0
A=2.0 A=2.0
B=3.0 B=3.0

User

10 X=X+1.0
20 B=X+B
30 C@MP=B+C

100 A=CoMP

Results

o

N
N RN
oo

15

16

The results that the user expects are
not those (A is different) that he would get
from the two versions of F@RTRAN shown. See
section 25.5 for general restrictions.

25.1

25.2

25.3

25.4

If the dummy argument is not an array
name (i.e. it is a nonsubscripted
variable) and it is not possible for
the subprogram to change its value
(e.g. YD in C@MP) then the correspon-
ding actual argument can be an expres-
sion (including function references),
a variable (subscripted or not) or a

constant. It cannot be an array name
(see section 25.3).. The following are
allowed:

A=COMP (X, 2. 0+Y)
A=COMP (Y ARRAY (1,J,2))

where C@MP is as described above.
The following is not allowed:
A=C@MP(2.0,Y)

because C@MP changes the value of its
first argument (XD).

If the ggggx argument is not an array
name and it is possible for the sub-
program to change its value, the actual
argument cafl only be a variable (sub-
scripted or not). See the examples in
25.1.

If the dummy argument is an array name,
the corresponding actual argument must

always be an array name and vice versa.
Tt cannot be a subscripted variable
for instance. When an argument is an
array name, it is always worked on
directly-by the subroutine, i.e. the
values of the argument are not stored
in temporary storage. The methed used
is similar to the "User" colum in the
above examples; the results are always
what one would expect by simply repla-
¢ing the dummy array name by the name
of the actual argument. The restric-
tions listed in sections 25.4 to 25.6
do not therefore apply to arguments
that are array names, whether or not
the actual argument is in CEMMZN.

If it is possible for the subprogram to
change the value of the dummy argument
then the actual argument cannot appear
twice in the same CALL statement or
function reference, nor can it be a

“variable in CAMM@N that is used by the
. subprogram in question.
example (COMP) the following is allowed:

In the above

A=CQMP (A,Y)

25.5

25.6

Although A is in COMMZN it (i.e. AD)
is not used by CAP. It would give
results similar to C@MP(X,Y) in

Example 1. The following is not
allowed: : -
A=CAMP (C,Y)

This is Example 2. The subprogram
C@MP changes the value of its first
argument (XD) and C is in COMM@N and
(i.e. CD) is used by COMP in statement

- 30, Also not allowed is:

A=COMP (X, X)

This is Example 3. The subprogram
COMP changes the value of its first
argument (XD) and the corresponding
actual argument X appears more than
once in the function reference.

If the subprogram changes the value of
a variable in C@MMJN then that variable

cannot be used as an argument. The
following is not allowed:

A=C@MP (X,B)
This is Example 4. The value of B
(i.e. BD in the subprogram) is changed
by statement 20 of the C@MP subprogram.

When it is possible for a subprogram

to change the value of a d argu-
ment (e.g. I2 in NUMZ2 below) then the

value of the corresponding actual’
argument upon returning to the calling
program is only defined if the dummy
argument in question appears in the
subprogram on the left of an assignment
statement (e.g. statement 30 in NUM2
below) or as an input variable in the
list of a READ statement. This point
is especially important when a sub-
program references other subprograms
(which in turn might reference others).
The following calling program and two
subprograms will be used as an example:

10 I=1
50 K=NUMI(T)

END

FUNCTI@N NUM1(I1)
40 NUM1=NUMZ(I1)

‘RETURN -

END
FUNCTI@N NUM2(12)
20 NUM2=I2 : :
30 I2=12+1

RETURN

END

To understand how the arguments are
used, the above statements will be
replaced by equivalent statements
(similarly as in examples 1,2, 3 and 4

above) :
Version I User
10 I=1 ...(Main).,. 10 I=1
11 I1=I ...(NOMD)... -
12 12=1I1 .. (NUM2)... -
20 NUM2=I2 ... (NOM2)... 20 NUM2=I
30 I2=I2+1 ...(NIM2)... 30 I=I+1
31 T11=I2 .+« (NUM2) -
40 NUM1=NUM2 .. (NOM1)... 40 NUM1=NUM2
50 K=NUM1 ..(Main)... 50 K=NUM1
Results Results
X=1 . K=1
I=1 1=2

Note that Version I leaves I unchanged
while the User expects it to be incre-
mented by 1. In NUM2 the value of the
actual argument I1 is reset in state-
ment 31 because the corresponding
dummy argument I2 appears on the left-
hand side of assignment statement 30,
This is not the case in NUM1 for the
actual argument I. It is not reset
before returning to the calling program
because NUM1 has no way of knowing that
NUM2 has changed the value of I1. It
assumes that I1 remained unchanged and
that therefore I need not be changed.

If in NUM1 the dummy argument I1 had
appeared on the left side of an
assignment statement or as an input
variable, then the value of the actual
argument I would have been changed by
the equivalent statement '"I=I1" fol-
lowing statement 40.

Subprogram NUM1 should be rewritten as
follows:

FUNCTI@N NUM1(I1)
K1=11
40 NUM1-NUM2 (K1)
42 T1-K1
RETURN
END

Note that the dummy argument I1 now
appears on the left of assignment
.statement 42 so that the actual argu-
ment will be changed upon returning to
the calling program. .

The above rule is also important when
a dummy argument is used as the loop
index of a D@ statement. This is only
allowed if this same dummy variable
also appears in the subprogram on the

S,

left of an assignment statement or as
an input variable; otherwise the value
of the corresponding actual argument
is undefined in the calling program.

A dumy argument must never be used as

the loop index of an indexed (section
15.2) input/output list. -

26. RETURN Statement

This statement can only be used in a
subroutine or a function subprogram. It must
never be used in a main program to terminate the
job; the STPP statement should be used. It only
has one form, "RETURN''. Multiple returns, e.g.
"RETURN 2", are not allowed.

A subprogram can contain several RETURN
statements. A RETURN statement should always.
be executed to return control to the calling
program; the END statement should never be used
for that purpose.

27. Library Functiqns

Following is a list of thé most commonly
used library functions that are available on the
CDC 3100, UNIVAC 1108, IBM 7040 and IBM 360:

EXP,AL#G,AL#G10 ,ATAN,SIN, OPS, TAN, SQRT,
ABS and IABS.-

Because some versions of FPRTRAN allow
mixed expressions, it is necessary to specify
IABS for integer results, and ABS for floating-
point results. A more comprehensive list of
compatible library functions will be available
at a later date.

28. Range and Precision of numbers

The allowable range and/or the precision
of numbers is machine dependent. Tables 1 and 2
show what figures can be accommodated by the CBC
3100, UNIVAC 1108, IBM 7040 and IBM 360,

For integer nmumbers, the largest number
shown for the UNIVAC 1108 is for the case where
conversion to floating-point might be involved;
this is likely to be the case in most programs.
The actual number of digits is 10.3 if this
restriction does not apply. For the floating-
point numbers.,, the precision of the fraction
shown for the IBM 360 is the worst precision.
There is a loss of precision with some numbers
because normalization is performed in hexadecimal
instead of binary. The best precision that can
be obtained is 7.2 decimal digits for single
precision and 16.8 decimal digits for double
precision.

The use of double precision on the IBM
360 is mentioned in section 30. For other
machines one should consult the relevant litera-
ture and discuss the implications with an

17

of ~ Number of

Magnitude
Largestrlnteger Decimal Digits -
CDC 3100 8,388,608 6.8
UNIVAC 1108 134,217,727 8.1
IEM 7040 34,359,738,367 16.3
IBM 360 - - 2,147,483,647 : 9.2
TABLE 1 Integer Numbers
Precision of the Fractioﬁ Range of the Expdnent
Single Double Single' Double
CDC 3100 - 10.6 - -308 to +308 --
UNIVAC 1108 8.1 18 -38 to +38 -308 to +308
IEM 7040 8.1 -- -38 to +38 -
IBM 360 6.3 15.9 -78 to +76 -78 to +76

_TABLEVZ Floating-point Numbers

experienced person. The availability of double
precision does not of course depend on the
machine itself but depends on the version of
FURTRAN that is available in the particular
installation. '

29, Size of Constants

The following suggested sizes are in
relation with the tables shown in section 28.

29.1 Integer Constants

An integer ‘constant can have from 1 to
7 digits (the sign not included) and

its absolute value must not be larger
than 8,388,608, :

29.2 Real Cpnstants"

The exponent of a real constant has a

" maximm of 2 digits and tlie permissible
range is from -38 to +38 including
zero.

If single precision is used on the IBM
360, the fractional part of constants
can only have from 1 to 7 digits (not
including the sign and decimal point)
for a precision of 6.3 digits in the
. vorst case. See section 30 for the
~use of double precision on the IBM 360.

On other machines 1 to 9 digits can be
used and the precision is 8.1 digits
in the worst case.

30. Double Precision on the IBM 360

The rules. in section 2 for the names of
variables and functions, and. the rules in section
22 for listing real variables ahead of integer
variables in the C@MMIN area make it a simple

18

matter to change all variables and function sub-
programs to double precision. Insert the fol-
lowing statement ahead of the main program and

ahead of each subprogram:
IMPLICIT REAL*8 (A-H,®-Z)

This statement will specify double pre-
cision for all variables and function names
starting with the letters from A to H and from
@ to Z, i.e. all real variables and real function
names will have double precision.

Real constants are made double-precision
constants in the following way:

- constants with an exponent: use D instead
of E, for example 7.0E+2 becomes 7.0D+Z in
double precision.

- constants without an exponent: always use
8 or 9 digits (not including the sign and
decimal point), for example write
1-1,0000000" instead of "-1.0" to make it
a double-precision constant. If not more
than 9 digits are used, these constants
will be acceptable in single precision on
other machines.

Library Functions must all be changed for
double precision. Following is a list of the
double-precision version of the functions listed
in section 27:

DEXP , DLG, DL#G10 ,DATAN , DSIN,DCS , DTAN,
DSQRT ‘and DABS (IABS is integer and is
_ not therefore affected) .

‘ The above names can be used directly
where applicable, although the following scheme
will make it easier to change the program back to
single precision for other machines. Use the
single-precision names in the body of the program
and subprograms and equate the double-precision

name to the single-precision name by means of
statement functions. They are inserted just
ahead of the first executable statement of the
main program or subprogram as Tequired.

" For example:
ABS (X) =DABS (X)

B=ABS (DJG)
FIR=4.0% (A-ABS (D-2.0*W))

The first statement is not an executable
statement; it defines a statement function which
in fact will replace "ABS by DABS wherever ABS
appears in the program. The other statements
will in fact be compiled as follows:

B=DABS(D@G) and :
FIR=4.0* (A-DABS (D-2.0*W))

To change the library function names
back to single precision, simply remove the .
statement functions, e.g. "ABS(X)=DABS(X)" in the
above example.

The F-format code is not affected by the
use of double precision but the E-format code is
affected. The D-format code must be used instead
of E. Note that on output the D will appear '
instead of E as part of the output. If the data
are punched on cards, for example, they must be
read back in with a D code. This might create
difficulties if these data are to be read on
other machines. ‘

Some machines, e.g. the CDC 3100, do not
have double precision, and on some machines the
implementation of double precision is different.
On the UNIVAC 1108 all double-precision constants
must have an exponent, e.g. the only way to make
"]1.0" a double-precision constant on that machine
is to write it with a D exponent, e.g. "1.0D+0".

Note that the features mentioned in this
section should only be used on the IBM 360 and
that the IMPLICIT statement can only be used
exactly as shown above (i.e. all other type
declarations should be ignored): None of the
above features should be used for single preci-
sion. -

31. Features to be Ignored

It has been mentioned earlier that all
statements or features of FPRTRAN that have not
been mentioned specifically above are to_be
disregarded and are not to be used. Following
is a 1ist of some of the statements or features
that ‘are not to be used. The list is intended
to help the reader in identifying the most
popular features that are not to be used. The

list is not complete; features not appearing in
this list are not necessarily allowed.

Following are some of the features that
are not to be used:

Logical and relational expressions
Logical IF, two-branch IF

More than 3 subscripts and adjustable
dimensions

4. EQUIVALENCE

5. COMW@N / label / ..,

6. Assigned GP T®, ASSIGN
7

8

N =

. PAUSE, PAUSE n, PAUSE 'message'
. ST¢Pn -
9. END and ERR features for the READ
10. Format codes G,L,Z,T,R,P, and literal
constants (e.g. 'ABC')
11. END FILE a ‘
12. Direct access statements: DEFINE FILE,
READ with apostrophe, FIND
13. Type declarations IMPLICIT (except as in
section 30), REAL, INTEGER, L@GICAL, '
C@MPLEX, D@UBLE PRECISI¢N, CHARACTER
14, Slashes with dummy arguments, i.e. by
- name
15. Statement functions (except as in sec-
tion 30)
16. ENTIRY statement in' subprograms
17. RETURN n, i.e. multiple returns from
subprograms

19. DATA

20. (READ b, 1list), PUNCH, PRINT, READ TAPE,
WRITE TAPE, etc...

21. BLOCK DATA

22. ENCPDE, DECODE, BUFFER, IN, BUFFER @UT

23. Mixed mode arithmetic

24. Character Data beyond 4 characters

25. NAMELIST)

26. Variable format in READ or WRITE
27. ABNGRMAL

28. PARAMETER

The above list would be much longer if
all possible extra features on the different
machines were listed. With each version of
FZRTRAN there are a number of functions and sub-
programs which have been written in assembly
language and which are supplied by the manufac-
turer. A lot of these subprograms are not com-
patible and should not be used. It is difficult
to make a comprehensive list of these but fol-
lowing are some of these subprograms that should
not be used: . FLD,I@CHK,I¢CHKF,UNITST ,UNITSTE,
EPFCK ,EGFCKF ,AND , @R ,X¢R ,BOPL ,COMPL ,CBRT , LENGTHF ,
SLITE, SLITEF,SLITET,SLITETF ,SSWICH,SSWTCHF , DVCHK ,
DVCHKF , EXFLT ,EXFLTF , @VERFL ,@VERFLF ,ERF ,ERFC,
GAMMA ,ALGAMA, etc... A complete list of allow-
able, i.e. compatible, library functions and
subroutines will be available shortly. For the
time being one should only use the functions
listed in section 27.

19

Date Due

22 W

