
Cnmgp H . In LAND we rers .9 /45¢»-ram;-re Rem 2:: gyexxes . 

it] 

GB 
2429 
G27 
no. 1 

~~~ 
CANADA 

REPORT SERIES No. 1 

PLAIN FORTRAN 
W 

A guide to compatibility 
in compuier programming 

. 
J. J.THERR|EN 

INLAND WATERS BRANCH 
DEPARTMENT OF ENERGY, MINES AND RESOURCES 

OTTAWA, CANADA, I968



~ 
REPORT SERIES No. 1 

PLAIN FORTRAN 
A guide to compatibility

A 

in computer programming 

J. J.THERR|EN 

INLAND WATERS BRANCH 
DEPARTMENT OF ENERGY, MINES AND RESOURCES 

OTTAWA, CANADA, I968 ‘



TABLE OF CONTENTS 

Page 

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W 

INI'RODUCTION..; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 
Phase I . . . . . . . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . . . . .- . . . . . . . . . . . . . . . . . . . . . . . . . 2 
Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
Phase III...... . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . .. 2 
Phase IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1. Names of Variables, Functions and Subprograms - - - - - - -3 - - - - - - -..- - - - - - .- - .- - - - 3 
2. Types of Variables and Functions... . . . . . . . . . . . . . . . . 3 
3. 

_ 
Types of Constants,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._ . . . . . . . . . . . . . .. 3 

4.’ Statement NumbersL.... . . . . . . . . . . . . . .. . . . . .. . . . . .... . . . . . . . . . .. . . . . . . . . .. 3 
5. subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..- . . . . . . -3 
6. Expressions....- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 
7. Character Data (A-Fomat code) . . . . . . . . . . . . . . . . . . . . . 6 

- 8. Assignment (=) Statement . . . . . . . . . . . . . . . . . . . . . . . 
.' 

. . . . . . . . . . . . . . . . . . . . 5 
9. GQ T¢_Statement . . . . ... . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-.. 5 
10. IF Stateent . . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . .- . . . . . . . . . . . . . . . . . . .. 7 
11. D91 statement . . . . . . . . . . . . . .._ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.’ 
. . . . . . . . . .. 7 

11:1 BY‘PaS5ing the DQ Loop . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 8 
11 _ 2 The Value of the Loop Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
11.3 Transfer of Control . . . . . . . . . .. . . . . . . . . . . . . . . . . .;.. . . . . . . . . . . ....... 8 

, 11,4 Changing the Value of the Index and Parameters . . . . . . . . ... . . . . . . . . .. 9 
12. C¢NTINUE Statement . . . . . . . . . . . . ...‘ . . . . . . . . . ........ . . . . . . . .._ . . . . . . . . . . . .. 9 
13. ST¢P Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . 9 
14. END Statement . . . . . . . . . . . . . . . . . . . . . . .- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 9 

. 15. Input—0utput List..._.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
16. F¢RMAT Stateent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .........:.... 10 

16.1 Format Codes. . . . . . . . . . . .1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
16.2 FORTRAN Records ..................... . .1 ................. . ._ ........ . . 10 
16.3 Brackets Within the Format . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . .. 10 
16 . 4 Carriage Control Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 - 

16. 5 Correspondence of List and Format Items. . .» . . . . . . . . . . . . . . . . . . . . . . . . . 11 
16.6 Allowable Characters with H and A Format Codes . . . . . . . . . . . . . . . . . . . 11 
16.7 Allowable Characters with I, F and E Format Codes . . . . . . . . . . . . . . . . .. 11 

17. READStatement. . . . . . . ..—..- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 
17.1 Read With Format (BCD data) . . . . . . . . s . . 

. 
.‘ . . . . . . . . . . . . . . . . V’. . . . . . . . . . . 11 

17.2 Read Without Format (Binary data) . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . .; 12 
18. WRITE Statement...;.;........ . . . . . . . . . . . . . . . ..~ . . . . . ...... . . . . . . ...;.....' 12. 

18.1 write with Format (Ba) data) . . . . . . . . . . .. . . . . . . . . . . . . . ._ . . . . . . . . . . . 12 
18.2 Write Without Format (Binary data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 

19. BACKSPACE Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..‘ . . . . . . . . . . . . . . . 13 
20. REWIND Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 
21. DIMENSI¢N Stateent . . . . . . . . . . . . . . . . . .._ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 13 
22. C¢WI¢N Statement. . ., . . . . . ..-. .; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 
23. SUBRQUTINE Statment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . ... . . . . . . .. 14 
24. FUNCTI¢N Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 
25. CALL Statment and Function Reference . . . . ... . . . . . . . . . . . . ..g . . . . . .._ . . . . . .. 14 

EXa1'|1p.1eS: 1, 4.'.'..'..'.'....‘. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... 
Restrictions; 25.1 to 25.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 

26. RETURN Statement, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . . . . . . .. 17 
27. Library Fuctions . . . . . . . . . . . . . .; . . . . . . . . .. . . . . . ..* . . . . . . . . . . . . . . . . . . . . . .. 17 
28. Range and Precision of Numbers . . . . . . . . . . . . . . . ..» . . . . . . . . . . . . . . . . . . . . . . . .. 17 
29. Size of Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .18 
30. Double Precision on the IM 360..._ . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 
31. Features to be Ignored . . . . . . . . . . ..v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 

iii



iv 

PREFACE 
"PLAIN FORTRAN" is a restricted but compatible FORTRAN whichis intended 

for the scientist who does notwish to get-involved in the direct comparison of different 
versions of FORTRAN to determine how compatible they are. It is closer to FORTRAN 
11 than itis to FORTRAN IV and it ensures the compatibility of programs on medium 
and large scale computers. It has been used successfully to run programs on the 
CDC 3100, CDC 3300, CDC 6400, UNIVAC 1108, IBM7040 and.IBM 360. The programs 
produced consistent results on all these machines Without changes in the source 
progr-arns, exceptin some cases where minor changes had to belmade to use double- 
precision on the IBM 360. -

' 

PLAIN FORTRAN will make programs truly compatible. Not only will different 
compilers accept the source programs without printing "error messages but most 
important of all, the compiled ‘programs will produce consistent results on the 
different machines, that is, the behaviour of the program will be machine independent. 

PLAIN FORTRAN will especially be useful to the research scientist who is 
just starting to use computers. It will allow him to develop his skills gradually. 
He normally makes use of generally available computing services over which he 
has no direct control and therefore must make his programs as machine (or compiler) 
independent as possible if he is to progress in his research. 

PLAIN FORTRAN is described in this publicationwithout reference to existing 
standards for the FORTRAN prograrmning language. Normally the scientist has 
access only to the manufacturer's FORTRAN manual. ‘He can use the restrictions 
in this publication to simplify his work and makephis programs compatible without ‘ 

having to examine or assess claims about the compatibility of the manufacturer's 
FORTRAN. The four phases suggested at the end of the Introduction can be usedto 
specify how "plain" the language should be. 

ACKNOWLEDGEMENTS 
The author wishes to thank the personnel of‘ the Inland 

Waters Branch and the Computer Science Division who have 

through their comments, contributed significantly to this 

publication.
' 

Readers are invited to forward their comments and 

criticisms regarding contents and omissions.



PLAIN FORTRAN 
A guide to compatibility in computer programming 

JJ.THERRIEN ' 

INTRODUCTION 

Anyone learning FORTRAN is faced with 
the problem of separating the basic information 
from the more sophisticated considerations found 
in the manufacturer's manuals.» Although these 
manuals contain the standard FORTRAN features, 
they also contain special features that may or 
may not be compatible with other manufacturer's 
special features. The reader usually has no way. 
of determining which features are not standard 
or essential and which ones are truly compatible. 
He might only discover that they are not 
compatible when he is forced to run the programs 
on other machines. In some cases he might be 
obtaining wrong results and not discover the 
fault (incompatibility) for some time, if ever. 
These features may introduce new concepts, new 
complications (which are not always explained), 
and therefore new potential sources of trouble. 
As a result the newcomer must wade through a lot 
of material, the usefulness or even the purpose 
of which, he does-not quite understand. 

PLAIN FORTRAN is not presented as a 
series of specifications. This would be ideal 
and is contemplated for the future. For now, it 
is presented in the fonn of restrictions. It is 
assumed that the reader has some very basic 
knowledge of FORTRAN and that he has access to a 
manual. If he adheres at all times to the 
restrictions mentioned he will be able to ru 
his programs on almost any medium or large scale 
computer without changes and he will be assured 
that his programs will yield consistent results. 

Any statements or features that are not 
specifically mentioned should be disregarded‘~_ 
completely. Only the essential features that 

are compatible have been listed; PLAIN FORTRANg 
does n9t_pretend to include all the features that are compatible. For example the "PAUSE" 

- statement is not mentioned. This statement is 
practically useless for programs that are run in 
batches in a large data centre. The "assigned 
GO T “ statement is omitted because it accom- 
plishes nothing that cannot be done with a 
"computed GO TO"._ It introduces a new type of 
data and its use is governed by considerations 
of program execution speeds which are connected 
with the way these statements are implemented on 
the machine in question. These considerations 
are not of prime importance while learning 
FORTRAN. The EQUIVALENCE statement is also 
omitted because it is only partly compatible and 
it introduces many complications. 

The reader will find many contradictions. 
between the restrictions listed and the FORTRAN 
manual he is using. For example, in section 1.1 
it is said that naes cannot contain more than 
6 characters. If the reader happens to have a 
CDC 3100 manual he will-see that up to 8 
characters are allowed. This of course is true 
for that particular version of FORTRAN. For the 
CDC 6400 the maximum number of characters is 7, and it is 6 for the UNIVAC 1108 and the IBM 360. 
If he restricts himself to 6 characters he will 
not have to change his programs to run them on 
different machines. Such expressions as "cannot 
be used", "can only be", "are not allowed”, 
etc... should be interpreted in this context. 

In the above example one might be pre- 
pared to change the size of the names if and 
when another computer is used. During the com- 
pilation, error messages would be printed iden- 
tifying all the names that have to be shortened.



The problem is that not all incompatibilities 
produce error messages. For example, in sect-ion 
11.2 it is mentioned that when using DQ) loops 
the value of the loop index is undefined after 
the looping.has been completed. In some versions 
of FORTRAN it is defined and it can be deter- 
mined. If the program is run on another machine 
and the value is different then incorrect results 
will be obtained. There will be no error mes- 
sages printed because the compiler cannot warn 
the user that this has happened. ,As far as the 
user is concerned everything will seem normal. 
The results might look reasonable although they 
will be erroneous. It is therefore of the 
uunost importance -to adhere to all restrictions 
at all times because one can never rely on the 
compiler for uprooting all the sources of errors. 

Experimentation should never be used to 
get around restrictions. One is sometimes 

--tempted to "try and see" what the compiler will 
do. For example the value of the D0 loop index 
after the loop has been completed could be 
determined by running a test program and 
printing its value at the end of the loop. One 
might discover for instance that it is one higher 
than the last value used in the loop. The 
problem is that in some versions of FORTRAN its 
value depends "on what statements appear within 
the loop so that conclusions drawn from the — 

experiment are meaningless even for that parti- 
cular version of FORTRAN, let alone for other 
versions. The results obtained might vary in 
the same compiler, in different compilers for 
the same version of FORTRAN and for other 
versions of FORTRAN. 

It might be worthwhile at this point to 
explain some of the terminology. When it is 
said that results are "defined" this means that 
they will be the same (within the stated preci- 
sion) no matter what compiler or what version of 
FORTRAN is used. Results are "undefined" if 
there is no guarantee that this will be the case. 
For the. sake of simplicity the word "machine" or 
"computer" has been_used to designate the 
"version of FORTRAN“ that is implemented on 
computers" of the same type. For example,_ in 
sections 17.2 and 18.2 it is stated that binary 
records can only be processed "on the same 
computer". This actually means that they can be 
processed with the same version of FORTRAN on 
machines of the same type. It is difficult to 
define the, exact meaning of "same" without 
considerfing specific cases in some detail. In 
this example, the word "same" should indicate to 
the newcomer that he can expect serious problems 
if changes are made to the computing facilities 
he is using. He should therefore consult an 
experienced person before committing himself to 
using these features. 

a 

The reader who is learning FORTRAN 
should not attempt to learn all the statements 
or features at once. He should start with simple 

programs and proceed to add new statements to 
his repertoire as required after he has mastered 
the more basic ones. The following four phases 
are suggested.

' 

PHASE I 

In this phase the beginner is only con- 
cerned with a main program that reads data cards 
and prints results. The READ with format in 
section 17.1 is only used for reading cards and 
the WRITE with format in section 18.1 is only 
used for printing. The A-format code in section 
16 should be ignored. 

The ‘following sections and any references 
to them can be conpletely ignored": 

7. Character Data’ 
17.2 Read Without Format (Binary Data) 
18.2 Write Without Format (Binary Data) 
19. BACKSPACE Statement 
20. REWIND Statement 
22. CUMMON Statement 
23. ‘ SUBROUTINE Statement 
24. FUNCTION Statement 
25. CALL Statement and Function Refe- 

rence 
26. RETURN Statement 
30. Double Precision on the IBM 360. 

PHASE II 

Subroutine and function subprograms are 
now added to the list and the WRITE with format 
in section 18.1 can be used for punching cards 
(as well as for printing). Note that’ the 
C(DIVIM(DN statement and any reference to it or to 
variables stored in the CWIMON area should be 
disregarded conpletely at this ‘stage. 

The following sections are introduced: 

23. SUBR(DUTI_NE Statement 
24. FUNCTION Statement 
25. CALL Statement and Function Refe- 

rence 
26. RETURN Statement

' 

30.. Double Precision on the IBM 360 
(only when applicable) 

PHASE I II 

In this phase binary tapes can be used 
for storing intermediate results and the COIVIVMN 
statement is added to the list. 

The following sections are introduced: 

17.2 READ Without Format (Binary Data) 
18.2 WRITE Without Format (Binary Data) 
20. REWIND Statement 
22. " CQMIDN Statement



T 

PHASE IV 

dther allowable features are added as 
required. 

NOTE: 

1. Names of Variables, Functions and Subprograms 

2. 

For many applications there is no need to 
proceed beyond Phase II. In the first 
two phases the newcomer should seek the 
advice of an experienced programmer 
whenever possible. He should not proceed 
beyond Phase II without discussing his 
application with an experienced person. 

1.1 names can be not more than 6 characters 
long; the length of a name is l to 6 
characters. For example the name 
ACC@UNT contains 7 characters and is 
not valid. 

1.2 the first character of any name must be 
a capital letter of the al habet, i.e. 
from A to Z. For example ACCNT is no; 
valid; 

1.3 the other characters if any, must be 
capital letters of the alphabet (i.e. 
A to Z) 93 digits from 0 to 9. For 
example "A$C" is not a valid name while "A908" is. 

Types of Variables and Functions 

names as they do not have "type" characteristics. 

3. 

2-3 

These rules do not apply to subroutine 

2.1 only two types of variables and func- 
tions are allowed, integer (i.e. fixed- 
point) and real (i.e. floating-point). 

2.2 the type is solel determined by the 
first letter of {he name (type decla- 
rations are not to be used): 

2.2.1 integer type: the first letter 
of the name is always one of the 
letters I, J, K; E,'M or N. 

2.2.2 real type: the first letter of 
the name is never a letter from 
I to N, i.e. it is a letter from 
A to H or from @ to Z. 

in question by the program. All loca- 
tions mst be initialized by the pro- ' 

gram. 

Eypes of Constants 

The size of constants will be considered 
later with the discussion of precision (see 
.sections 28, 29 and 30). 

the contents of a variable are udefined 
util a number is stored in the location 

3.1 only two types of constants are allowed, 
integer and real. For example 1250, 
1250.0 and l.25E+3. 

3.2 only E can be used for real constants 
containing an exponent. For examle 
l.OD-l is not allowed except for double 
precision as in section 30. 

4. Statement Nubers 
Statement nubers cannot be more than 4 

digits long, i.e. the permissible range of 
statement numbers is from 1 to 9999 inclusive. 

.5. Subscripts 

5.1 a variable can have not more than 3 sub—’ 
scripts. For exampl€_KRRAY(2,l,4,I) 
is no; allowed as it has 4 subscripts. 

5.2 subscripted variables are dimensioned 
with a DIMENSI¢N.statement onl' when 
they are not in C¢MMON; if ffiey are in CMMQN they are only dimensioned in the 
C@MM¢N statement. ‘This restriction 
does not of course apply if the version 
of FORTRAN being used does not allow 
variables to be dimensioned in cemmrmv 
(see section 22).

' 

5.3 only the following seven forms of sub- 
scripts are allowed: 

(C)? 9 3 9 (c*i) 9 
(c*1+d) and (c*1-d) 

where "C" and "d" are usigned integer 
' constants 

is a mgtéiczéntsed integer 
variable ‘ 

The following are allowed; 
ARRAY(I,KIN,2),IND(2*KIND-1), 
B(l0,J+1l), INPUT(6), etc... ' 

The following are_not allowed: 
ARRAY(I,KIND,—2),IND(KIND*2-I), 
B(l0,ll#J),INPUT(2*3),@UT(IND(2)), 
TAB(-I), etc... 

5.4 subscripts must be larger than zero and 
must not be larger than specified when 
the array in question was dimensioned. 

6. Expressions 

6.1 only arithmetic expressions are allowed. 
The only allowable operators are 
addition (+), subtraction (-), multi- 
plication (*), division (/) and expo- 
nentiation (**). Relational (e.g. EQ, 
GT,...) and logical (e.g. AND, ¢R,...) 
operators are not allowed. ‘Following



6.2 

6.3 

6.4 

clear to the reader. 

are allowable (arithmetic) expressions:

A 
-2 
2.0*A+(ARRAY(I ,N,K)/X) 
IND+(N+‘1) * (N+2) /2 

mixed expressions are not allowed: an 
expression must be either all integer 
or all real. For example the expression 
(A*I+bD is ngt allowed. Although they 
contain two types of data the following 
are not mixed expressions and are 
allowed: 

ARRAY(I,J,2)*B**2 where ARRAY is a 
3Fdimensional array 
I+2*INIT(A,N) where INIT is an 
integer function 

The first expression is all real because 
"ARRAY(I,J,2)" yields a real number and 
so does "B**2". The second expression 
is all integer because the function 
reference "INIT(A,N)" yields an integer 
number. 

brackets (parentheses) should be used 
extensively (within reason) not only to 
control the order of the computations 
but also to make the intended meaning 

The order of the 
computations is from left to right with_ 
operations of the same level and the 
levels are as follows: exponentiation 

’ (**) at the highest level, multipli- 
cation (*) and division (/) on an equal 
footing at the second-highest level, 
and finally addition (+) and subtraction 
(—) on an equal footing at the lowest 
level. When brackets are used the 
operations in the innermost brackets 
are computed first. 

For example, the following expression 
is not clear to the reader: — 

B*XY**X/Y**Z*YZ**Z/X+Z—2 .O*CY 

It should be written as follows: 
cB*(xY**x)/(Y**z))*((Yz**z)/x)+(z— 
2.0*CY) 

It might also be written as follows: 
(Z—2.0*CY)+(B/X)*(XY**X)*(YZ**Z)/ 
(Y**Z) 

This last expression is even simpler 
and clearer. 

if an expression contains a function 
reference to a subprogram that Changes 
the value of one of its arguments, that 
argument cannot appear anywhere else in 
the expression. 

For example, if IFUNC is a function that 

_._-_ 

changes the value of its first argument 
then the following is not allowed: 

I*J+IFUNC(I,l,hD 

The value of I in ”I*J" will depend on 
whether "IFUNC(I,l,N)” has been evalu- 
ated before or after "I*J" and the 
order may depend on the particular 
version of FORTRAN being used. For 
example: 

” 

(I*J)+IFUNC(I,l,N) 

might give results that are different 
from: 

I*J+(IFUNC(I,l,N)) 

6.5 if an expression contains a fuction 
— reference to a subprogram that changes 

‘the value of a variable in C®MW%N then 
that variable cannot appear in the 
expression. 

For example, if C@MP is a function that 
changes the Value of B which is C¢MMON 
then the following is not.a11owed: 

A*B+O(Z)MP(X,Y) 
"" " 

'- 

’— 
The same reasoning as in 6.4 applies. 
There is no guarantee that "C¢MP(X,Y)" 
will be evaluated before "A*B" and vice 
versa. The results are not defined. 

‘ 7. Character Data 

Character data are data obtained by 
reading characters with an A-format code. The 
use of character data should be avoided as much 
as possible. It is not essential for most 
scientific computing. If it is not used, then 
this section and all references to A—format codes 
in section 16-can be ignored. The manipulation 
of character data will only be machine indepen- 
dent if the following rules are adhered to at all 
times. 

7.1 character data can only be generated by 
a READ statement with an A—format code. 
There are no character constants, e.g. 
literal constants such as 'ABC',3HABC 
and 3RABC are not allowed anywhere. 

- Note that H is an allowable format code 
and can only be used in a FORMAT 
statement (section 16). See section 
16.6 for a list of the allowable 
characters for data. 

7.2 character.data should only be stored in 
integer variables (subscripted or not). 
Real variables should never be used for 
this purpose.

7 

7.3 only the A—format codes Al, A2, A3 and 
A4 are allowed. A maximum of 4 
characters can be stored in each loca- 
tion. If less than 4 characters are 
stored they are left—justified by



7.4 

padding on the right with blanks. If 
"c", "d", "e", and "f" represent one 
charact er each and if "b" represents a 
single blank then reading: 

- "c" with Al stores the same as 
_ 

' reading "cbbb" with A4 
"cd" with A2 stores the same as 

reading "cdb " with A4 
"cde“ with A3 stores the same as 

reading "cdeb" with A4 
"cdef" with A4 stores "cdef" in the 

location in question. 

The following rules for manipulating 
character data also apply to data that 
are used by subprograms through the 
arguent list or the CGMNQN area. 
Character data can only be used as 
follows: ' 

7.4.1 

7.4.2 

in a simple assiggment statement 
that does not contain operators 
(i.e. computations) and that does 
not involve type conversions 
Zéig. integer to real conver- 
sion). For example, the fol- 
lowing are allowed: 

ICH(1,I)=IN 
where ICH is an array. 

ICHAR=ICHF(I,2) 
where ICHF is a fuction retur- 
ning character data or an array 
containing character data. 

The following are pg; allowed: 

ABC = ICHAR 
IND = ICHARl-ICHAR2 

ICHAR = Z*ICHARl+10 

in an IE statement that compares 
only character data and only 
tests for equality, i.e. it 
cannot test for one quantity 
being larger or smaller than the 
other. The brackets must and 
can only contain the subtraction 
of two quantities which are both 
character data. These quantié 
ties can only be integer vari- 
ables (subscripted or not) that 
contain character data or func- 
‘tion references that yield 
character data. Since the IF 
statement is only allowed to test 
for equality, the first and last 
statement numbers specified must 
always be the same. The fol- 
lowing are allowed: 

IF(ICHARl—ICHAR2)110,120,110 

IF(IFUNC(I+l,J)-ICHAR)1020, 
90, 1020 

The following are pg; allowed: 

IF(ICHAR)ll0,l20,ll0 
IF(ICHARl-ICHAR2)ll0,l20,l30 
IF(ICHARl-l0)llO,l20,ll0 
IF(ICHAR-ABC)ll0,l20,ll0

A 

IF(ICHARl—ICHAR2)110,110,120 
IF(ICHARl+ICHAR2)110,120,110 
IF(ICHARl—ICHAR2-ICHAR3)110, 
120,110 

Because of the way character data 
are stored the comparison of 
character data can produce 
integer overflows in some cases, 
i.e. the result of the comparison 
(subtraction) is a number that 
exceeds the capacity of the 
machine. The IF statementfwill 
always produce the correct 
results (i.e. the numbers are 
unequal when the overflow occurs) 
but in some computer installa- 
tions, this situation is treated 
as an error. Error messages are 
printed and sometimes the job is 
aborted. It is possible to 
prevent these overflows in a 
machine independent manner by 
testing for the sign of the 
values before comparing them. 
They are only compared if they 
have the same sign; then no 
overflow can occur. If they do 
not have the same sign, they are 
not equal and no comparison is 
performed. The rules for the IF 
statement can be broken only for 

,testing the sign of the values. 
The fact that one value is larger 
or smaller than the other is 
meaningless in PLAIN FORTRAN; the 
same characters might produce 
opposite results on different 3 
machines. H 

In most installations these over- 
flows are tolerated to allow the 
comparison of character data and 
they are not treated as errors. 
The comparison of character data 
should only be used if it is 
absolutely essential. 

in the "list" of a READ or WRITE 
statement. When used with a 
F¢RMAT statement, only the allow- 
able (see section 16.1) A-format 
codes can be used, i.e. Al, A2, 
A3 or A4. The READ statement 
with format stores the data as



shown in section 7.3. In the 
WRITE statement with format, the 
A code specifies the number (1 
to 4) of characters that are to 
be written out starting at the 
leftmost character stored. If 
llcll’ Ildli, Hell Hf“ ' 

represent one of the four char- 
acters stored then writing 
"cdef" with: 

MC" 
llcdll 
Hcdell 
"cdef' 

Al will produce 
A2 will produce 
A3 will produce 
A4 will produce 

Character data can be used with 
READ or WRITE statements without 
format; see those statements for 
general restrictions. 

7.4.4 as an argument in la CALL sta- 
tement or in a function refer- 
ence provided that the sub- 
program in question obeys the 
above rules for manipulating 
character data. 

= Statement 8. Assi ent 

It is of the form; 
v~’= e

_ 

where: v is an integer or a real variable 
(subscripted or not) and it 
cannot‘ be a function or an array 
name. 

e “is an arithmetic expression 
(see section 6), either integer 
or real. ~ 

Conversion occurs after the expression 
"e" has been evaluated if v and e are not of the 
same type (i.e. they are not both real or both 
integer). The assignment statement "is the only" 
statement where conversion is allowed. Mxltiple 
_replacement statements, e~.g. "A=B=C=2.0", are 
n_ot_ allowed. Examples of a1lowabl_e statements 
are»: 

IND = INb+1 
x = (2.0*Y)—(Z* P) 

IC6UNT = wNuM+2.o*(A+B) 
WNUM = IC6UNT+l 

Section 10.3 contains comments about 
errors inherent in real (f1oat1ng—po1nt) numbers. 

9. G6 T0 statement 

Only two types of G6 T6 statements are 
allowed (e._g. the "assigned" G6 '16 is not 
allowed):

' 

9 . 1 - unconditional: 

JG6 T6n 
where n is a statement ‘n’umbe'_1; 

Example: 
G6 Tw 1100 

.9.2 coyutedz 

Ga M (n1sn22’°'-inm) 91 
where n1 to nm are statemen 

numbers - 

i’ is a inonsubscripted integer 
variable which must have a 
value greaterthan zero and 
not greater than the mxmber 
(m) of statements listed, 
i.e. l, 2, 3,..., 111. 

Example: 
G6 T6 (l0,ll0,l30) ,IND 
where IND = 1, 2 or 3 

If IND is 1, control will be transferred 
to» statement 10; if it is 2, to statement 
110, and if it is 3, to statement 130. 
If it is less than 1, or larger than 3, 
the results are Lmdefined. 

The following restrictions are implied 
above: 

9.2.1 the comma (,) that separates the 
right—hand bracket. from i cannot 
be omitted. The following is I_10_t_ 

.§ll9EE§=
' 

G6 '16 (l100,10)I 

i cannot be an egression. The 
following is g)_t_ allowed: 

G6 T6 (90,l00),I-2 

9.2.2 

even if I can only have values of 
3 or 4. 

9.2.3 i cannot’ be a subscripted vari- 
able, a function name or an array 
name. The following is n_o’c__ 

allowed: 

G6 T6 (90,100) ,INIT(2,I) 

9.2.4 i must be integer; it cannot be 
real. The following is not 
allowed: 

G6 T0 (9o,1oo),x 

i must have a value which is 
larger than zero and is not larger 

9.2.5



than the number (HQ of state- 
ments specified. The following 
is not allowed: 

I e 4 
ca Tm (10,2o),1 

10. IF Statement 

Only the "three-branch" arithmetic IF 
statement is allowed. Logical or two—5ranch IF 
statements are Q93 allowe .

' 

I1=(e)n1,n;',na 
_ _ p _ where e 15 an arithmetic expression (see 

Examp 

section 6) which is either integer or 
real. 
n1,n2,n3 are statement numbers 

le: * 

'IF(I+2=N) 110,10,1000 
IF(A*2.0+B) 110,10,1000 

The program will branch to statement 110 
if the expression in the brackets has a negative 
value, to statement 10 if it is exactly zero and 
to statement 1000 if’it has.a positive value. 
The following restrictions are implied above: 

10.1 

10.2 

10.3 

the expression "e" must be an arith- 
metic expression (see section 6) and 
it cannot therefore be a logical or a 
relational expression. The following 
is not allowed: 

IF(I .GT. 16) ... 

all three statement numbers n1,n2 and 
n3 and the two separating commas must 
be present at all times and cannot be 
replaced by an actual statement. The 
following are ngt allowed: 

IF(...) 10,120 
IF(...) G0 T9 120 

the cgmparison of real (floating-point) 
numbers for exact egualitx should be I 

11 avoided because precision comes into 
play and the results are therefore 
machine dependent. A floating-point 
number is usually stored internally in 
the machine as a binary or hexadecimal 
fraction of a given precision (i.e. 
number of bits) and an exponent. In 
general it is impossible to exactly 
represent a decimal number in this 
fashion. There is always a small 
(plus or minus) error. For a given 
precision, the size and sign of this 
error depends on both the size of 
the decimal number itself gnd on 
the method used for converting that 
nuber to the internal representa- 
tion. If computations were involved, 

the error also depends on the errors of 
the numbers involved and on the kind of 
operations performed. Since real 
nubers always have an error, one 
should always think of them as having 
a range and use the IF statement accor- 
dingly. 

For an IF statement, to find real 
numbers egual, they must be identical 
internally in the machine. For exam- 
ple, the following statement is rather 
meaningless in practice and should be 
avoided: 

IF(A-5.0) 10,20,10 

Even if the value of A was obtained by 
reading "5.0" from a card directly into 
A, there is no guarantee that the above 
statement will transfer control to 
statement 20. "The method used for 
converting the source program constant, 
”5.0" in the IF statement to the inter- 
nal representation might be slightly 
different from the method used at 
execution time for "formattingW the 
"5.0" from the card. Although this 
situation might be rare, there have 
been actual cases in the past where 
this has happened. In such a case the 
IF statement would find the nubers 
unequal. If A was computed from other 
values the chances are that the IF 
statement will never transfer control 
to statement 20, even if A was obtained 
from the statement "A=10.0-5.0" for 
instance. 

The aboveconsiderations do 393 apply to 
inte er (fixed-point) numbers because 
they are always represented exactly 
in the machine and no error is‘ 
involved. When converting from real 
to integer or vice versa, the above 
considerations for floating-point 
numbers should be taken into account. 

D0 Statement 

The 00 statement can only have two forms: 

DQ n m 
D0 n m 

= 
%’Jf.»1‘ °r 
1,] (same as ksl above) 

where n is a statement nuber specify- 
ing the last stateent in the 
range of the loop. 
m is the index of the loop. It 
must be a nonsubscripted integer 
variable. 
i,j and k are the loop para- 
meters. They must be either 
usigned integer constants, or 
uhsigned (i.e. not preceded by a



minus sign) and nonsubscripted integer 
variables. 

When i and j are integer variables they 
cannot have negative values. fThe following is 
not valid:

M
N 

-4 
-1 

D0 110 IND = M,N 

The value of k must under all circums- 
tances be 

. 3, etc...

M 

larger than_zero, i.e. it can be 1, Z, 
The following is not valid: 

= -4 
D@ 110 I = J,K,M 

011.1 

11.2 

By—Passing the D0 Loop V 

If the value of j is smaller than the 
value of i the results are udefined. 
In some versions of FORTRAN the loop 
will be executed once (i.e. the same 
as if j had been equal to i), while in 
others, the loop will be by-passed 
completely. ‘In either case the final 
value of m is undefined (see section 
11.2). 

When it is possible for j to be smaller 
than i, an IF statement should always 
be used to make sure that the program 
will always behave in the same way no 
matter what version of FORTRAN is used. 

Example 1: by—passing the loop 
IF(M-N) 100,100,150 

100 D0 140 I=M,N 

140 OONTINUE 

150 .Eset I if necessary) 

Example 2: vexecuting the loop once 
. IF(M—N) 110,110,100 
100 N=M

‘ 

110 D0 140 I=M,N 

140 c0nT1NUE 

The Value of the Loop Index Qn) 

‘The value of m is undefined after the 
looping has been completed. Its value 
depends on which version of FORTRAN 
is being used and in some versions its 
value changes according to circum- 
stances. 

The value of m is defined throughout ‘V 

the loop; i.e. it is available to any 
statement that is part of the loop. 
The value of m is defined outside the 
loop only if control was transferred 
to a point outside the loop by an IF 

11.3 

or a_G¢ T0 statement that was part of 
the loop. 

Example:
7 

D0 20 I=1,10 
K1=I 

IFEI-N) 2o,20,30 
20 CONTINUE 
30 K2=I 

The value of K1 will always be correct 
because the statement "K1=I" is within 
the loop. If N is smaller than 10, 
K2 will always have the correct value 
because the IF statement will transfer 
control to statement 30 (which is out- 
side the loop) before the loop is 
completed; the value of I is defined 
in statement 30 because the loop was 
not terminated through statement 20. 

But if N is larger than or equal to 10, 
the IF statement will always transfer 
control to statement 20 which is within 
the loop. Eventually, i.e. after the 
10th time through the loop, control 
will drop from statement 20 to state- 
ment 30.‘ In that case the value of 
K2 is udefined; the value of I is 
undefined in statement 30 because the 
‘loop was completed through statement 
20. 

The value of I should have been set at 
the end of the loop to ensure correct 
results under all circumstances and on 
any machine. The above example should 
-have been written as follows: 

-D0 20 I=1,10 
K1=I 

IF(I—N) 20,2o,30 
20 CONTINUE 

I=10 
30 K2=I 

The statement "I=10" defines the value 
-of I to be used in statement 30. The 
value-of K2 will always be correct no 
matter what version of FORTRAN is used 
and no matter what the value of N is. 

Transfer of Qontrol 

The range_of the D0 loop starts with 
the statement immediately following 
the DO statement and includes all 
statements up to and including the 
statement ending the loop, i.e. state- 
ment n in "D0 n ms...". The DO state- 
ment itself is n93 part of the range. 
The usual rules apply for the nesting 
of loops.



11.3.1 control can be transferred from any statement within the 
range to any other statement 
within or outside the range. 
See the example in 11.2. 

11.3.2 control cannot be transferred 
frgm a statement outside the 
range to a statement within 
the rafige of the loop. The 
following is not allowed: 

G® T0 110 
100 De 120 1=1,10 

110 Aéé+c 

120 éénT1NUE ' 

Example 1 in section 11.1 is valid 
because the D® statement itself is 
not part of the loop. 

11.4 Changing the Value of the Index and 
Parameters 

The value of the loop index (H0 and of 
the control parameters (i,j,k) cannot 
be changed by a statement within the 
range of the loop. The following are 
not allowed: 

00 100 I=M,N De 1030 K=l,N 

N=N+1 D0 1020 K;l,l0 
I=I-1. ... 
... 

g , 
1020 C¢NTINUE 

100 C®NTINUE ... 
... 1030 CQNTINUE 
D¢ 140 I=M,N,K no 530 I=M,N 
... D@ 520 N=l,l0 
~K=2 ... 
... 

_ 

520 C¢NTINUE 
140 CQNTINUE 530 C¢NTINUE 

12. CQNTINUE Statement 

There are no compatibility problems with 
the CQNTINUE statement. It is usually used at 
the end of a D® loop to prevent an IF or a.G¢ T9 
statement from being the last statement in the 
loop. 

13. STOP Statement 

The simple form "ST®P” can be used on 
most machines. It does not actually stop the 
machine but simply terminates the job in question 
by returning control to the operating system. 
The form "STEP n” where n is an integer constant 
should never be used. 

14. END Statement 
The EN statement must never be used as 

an executable statement, and therefore can never 

have a statement number. Return from a sub- 
program should always be performed by a RETURN 
statement (not by the EN statement) and a com- 
puter run should always be tenninated by a ST®P 
statement (not by the END statement of the main 
progran0. 

_15. Input—Output List 
‘ The input-output (I/O) list is used with 

READ and WRITE statements. It consists of a 
number of items separated by commas. 

15.1 the I/O list can only contain variables 
(subscripted or not) and arra names. 
It cannot contain constants iexcept 
integer constants used for subscripts 
and for indexing as.in section 15.2 
beloufl. Neither can it contain expres- 
sions (except for subscripts) nor 
function references. 

15.2 the items in the list gag be indexed as follows: 

-(...,...,....,m=i,j) 

where m is the index 
—i,j are the index loop para- 
meters 
m,i and j are the same as for a 
D¢ statement 

The value of m is undefined after the 
indexing has been completed. The 
indexing can be nested up to 3 levels. 

Examle: I 
I

‘ 

((X(I),(A(I,J.K).B(J),J=M,N),I=1, 
l0),C(K,l),K=Z,4) 

15.3 ’in an input list, a variable that 
appears as an input variable cannot be 
used for a subscript or for indexing 
in the same list._ The following are 
not allowed: 

READ(10,KARD) I,IND(I+2) 
READ(MAG) I,(IND(J),J=l,I) 
READ(MAG)(I,IND(I),I=M,N) 

The results of these operations are 
undefined. There is no guarantee in 
the first two examples that the I used 
as a subscript and for indexing will 
have the value just read in the same 
statement. In some versions it will 
and in other versions it might not. 
Some manuals do not explain what 
actually will happen in such situations. 

In the third example the results are 
again undefined. This is similar to 
changing the value of the index of a 
DQ loop. ‘



16. 

10 

FQRMAT Statement 

16.1 Format Codes 

The only allowable format codes are 
I,F,E,X,H and A: 

alw 
aFw.d 
aEw.d 
wX 
WH

. 

aAl ,=aA2-,aA3 and aA4 

where a, w and d are unsigned integer 
constants i‘ ’ 

a is optional and denotes the number 
of times the same code is to be 
repeated. If it is used it must be 
larger than 1, i.e. 2,3,... 

w denotes the total width of the field 
and it is always larger than zero, 
i.e. 1,2,3... Note that the format 
code "aAw" has been written as aAl, 
aA2, aA3 and aA4 above because w 
can only have values of l, 2, 3 or 
4 with that code (see section 7). 

d denotes the number of places to the 
right of the decimal. It can be 
zero or larger than zero but must 
alwa s be smaller than w. 

The use of literal data is not allowed; 
always use the H code instead. For 
example, 'ABCD' is not allowed and 
4HABCD should be used instead. When 
the format codes are used for output 
with the WRITE statement, e.g. for 
printing, the following apply: 

16.1.1 I-format code: there is no 
need to allow a space for the 
sign if the number is positive, 
e.g. "123" can be printed with 
the format code 13. The shor- 
test field that can be used for 
output is therefore Il if the 
nuber is positive. If the 
nuber is negative always allow 
an extra space for the sign, 
e.g. print "-123" with I4. 

16.1.2 F-format code: always allow 
room for a sign (even for 
positive numbers), for the 
decimal point (even if d is 
zero) and for at least one 
digit to the left of the deci- 
mal point (even if the magnie 
tude of the number is less 
than one). In other words in 
Fw.d, the smallest value of d 
is zero and its largest_va1ue 

16.2 

16.3 

ll6.l.3 E—format Code: 

is [ws3}. 

for the frac- 
tiofi allow room for the sign, 
for one digit to the left of 
the decimal point and for the 
decflnal point, and for the 
expgnent allow room for the 
"E", for the sign of the 
exponent and two spaces for a 
Zhdigit exponent. In other 
words in Ew.d, the smallest 
value of d is 1 (no data are 
printed if d‘is zero) and its 
largest value is §w—7). 

F¢RTRAN Records 

The use of the slash "/" is allowed to 
delineate the start of a new FQRTRAN 
record only when printing. 

The end of the F@RMAT statement can 
also be used to start a new record. 
If the list requires more format items 
than are given in the fonnat, a new 
record will be started at the begin- 
ning of the FERMAT statement. This 
feature is never used when the F¢RMAT 
statement contains brackets, as in 
section 16.3, i.e. repetition factors. 

The FQRTRAN record should never be 
longer than 132 characters when used 
with BCD information on tape or when 
printing (132 includes the carriage 
control character). For cards, the 
record length is never longer than 80 
characters. —

‘ 

Brackets within the_F¢RMAT 

A group of format items can be repeated 
a number of times if they are enclosed 
in brackets: 

F@RMAT(...,a(item,...,iten0,...) 

where "a" is an unsigned integer cons- 
tant specifying the number of 
times the items in the bracket 
are to be repeated. 

For example: V 

3(3A4,I3) is the same as 
3A4,I3,3A4,I3,3A4,I3 

16.3.1 When brackets are used, "a" 
mst always be s ecified and 
must be larger tgan one, i.e. 
2.3,... 
ailowedz 

The following is ngt 

...,(3A4,I3),...~ 16.3.2 The brackets cannot be nested,



16.4 

16.5 

16.6 

i.e. they canot contain other 
brackets. The following is 
noI.allowed: 

...,3(3A4,2(I2,I1),I3),... 

Carriage Control Characters 

when the F®RMAT statement is used for 
printing, the first character is used 
for carriage control and is not 
printed. Although not all versions of 
F@RTRAN implement carriage control the 
same way, the end result should be as 
shown here. The only allowable car- 
riage control characters are: 

blank single spacing (advance one 
line before printing) 

zero(0) double spacing (advance two 
lines before printing) 

advance to the first line of 
the next page before printing. 

one(l) 

Correspondence of List and Format 
Items 

Except for the X and H format codes 
which do not have corresponding list 
items, there must be a one—to-one 
correspondence between the items in 
the list and the items in the fornut, 
i.e. no type conversion is allowed. 

16.5.1 the list item ust be an inte- 
ger variable for the I and A 
(see section 7.2) fornmt codes. 

16.5.2 the list item must be a real 
(f1oating—point) variable for 
the F-and E—format codes. 

AllQwable_Characters with H—and 
A-Format Codes 

The following 43 characters are com- 
patible and can be used with the A-and 
H—format codes: 

A to Z capital letters, i.e. upper 
case only 

0 to 9 decimal digits 
blank 

- minus sign 
decimal point 
comma 
slash 
asterisk 
dollar sign 

69-3l'\v

- 

The above characters can be used as 
data as well as for printing. The 
first 2 columns of data cards must 
never contain ”//" or "/*"; these 
identify control cards on the IEW-360. 
In general, the last five characters 

listed above, i.e. special characters, 
should be avoided at the beginning of 
a data card. 

The following 4 characters can be used 
only_fpr printing and should be avoided 
as much as possible: 

+ plus sign 
= equal sign 
( left parenthesis 
) right parenthesis 

For the IBM 360, these four characters 
must be puched in EBCDIC in the H 
field of the source—program card 
because the "BCD" option of the com- 
piler does neg change these fields to 
EBCDIC. They will have to be changed 
back to BCD when the program is used 
on other machines. These four charac- 
ters should never be used as data 
because the IBM 360 uses different 
codes for these characters. 

16.7 Allowable Character with I-, F—and 
E-Format Codes 

Because of restrictions mentioned in 
16.6 regarding the plus sign, "+",-no 
input data should contain that sign; 
This is especially true of the exponent 
with E-type nubers. For example 
instead of l.0E+l0 use l.0El0 for data. 
This restriction only applies to data. 
It does not apply to the coding of

A 

constants in the source program. 

Blanks are only allowed as leadin 
characters. Blanks cannot BE useg 
within or on the right—hand side of a 
figure (a blank is allowed on the left- 
side of an exponent). For example 
"1 2" cannot be read as I3. If an

_ 

I- or F-type field contains all blanks 
it is interpreted as a value of zero. 

17. READ Statement 

Provisions should always be made for the 
program to recognize the end of the file by 
examining the data just read, i.e. the last 
record in the file should contain data that 
identifies it as the last data record (End-of- 
file should never be used). 

17.1 Read with Format (BCD data) 

READ (u,f) list 

where u is the unit number of the 
device (i.e. card reader, tape 
unit, disc or drum). It must 
be an unsi ed integer variable. 
It is Bad practice to use a 
constant because uit numbers

11



12 

17.2 

are not compatible and must be 
changed for different machines 
or different data centres. 
f is a FDRMAT statement number. 
It cannot be a variable. 
"list" is the list described in 
section 15. 

The only really compatible-medium are 
cards, provided restrictions as to 
allowable characters given in section 
16 are adhered to at all times. Tapes 
are pg; usually compatible; there are 
difficulties with physical record 
lengths on different machines. Tapes 
(or records on discs or drums) can 
be processed by the same machine if 
they were-written with a WRITE state- 
ment with format and if the nuber of 
characters (i.e. positions read) is 
not larger than the number of charac- 
ters written by the corresponding 
WRITE statement. For cards, the 
maximum number of characters is 80 
per record, and for other devices, 
the number should not exceed 132 
characters per record. See section 
16.2 for the processing of several 
records with the same "list". 

In this statement, the "list" must 
contain at least one item, it cannot 
be omitted. 

Read without Format (Binary Data) 

READ (14) list 

where u and "list" are the same as in 
17.1. 

This statement cannot be used to read 
cards. .It can only be used to read 
binary tape (disc or drum) records 
that were produced on the same machine 
with a WRITE statement without format. 
The number of items read by this sta- 
tement must never be larger than the 
nuber written in the corresponding 
WRITE statement and there must be a 
one—to-one correspondence: integer 
(fixed-point) ites must correspond to 
integer items and real (floating-point) 
items must correspond to real items. 
This is similar to the correspondence 
of items listed in the CGMMDN area in 
different subprograms except that the 
list of the READ statement can be 
shorter than the list of the corres- 
ponding WRITE statement.

‘ 

As far as the FDRTRAN program is con- 
8 cerned, each execution of this state- 
ment processes one and only one, binary 
record. The physical arrangement of 
the data on the tape is of no signi- 

_ binary record. 

ficance at this stage as it depends on
, 

the version of FQRTRAN used. It is 
.sufficient to say that in general, it 
is more economical to process a few, 
long binary records than it is to 
process a large number of small (short 
list) records. 

The execution of this statement always 
starts at the beginning of a FDRTRAN 

If the list of the 
previous READ statement was too short 
then the remainder of the previous 
record is lost for the moment. If 
necessary it can later be processed by 
going.back to that record with a 
BACKSPACE or REWIND statement and 
reading it again with a sufficiently 
long list. The list may be omitted 
with this statement. In that case the 
record in question is by—passed com- 
pletely, i.e. the file is positioned 
at the next record. 

This statement is much more efficient 
than the READ with format because it 
does not involve data conversions, 
i.e. conversion from the character 
representation of the input data to the 
internal machine representation. This 
statement should only be used to read 
back intermediate results that were 
stored on the same computer. 

WRITE Statement 

18.1 Write with Format (BCD data) 

18.2 

WRITE(u,f) list 

where u,f and "list" are the same as 
in section 17.1 

The "list" may be omitted in this 
statement. ‘ 

This statement can be used to punch 
cards and to write BCD records on tape 
(disc or drumo. See section 17.1 above 
for restrictions for these devices. . 

This statement can also be used to ~ 
print data. The maximu allowable 
record length is 132 characters inclu- 
ding the carriage control character. 

Write without Format (Binary Data) 

WRITE (u) list 

where u and_"list” are the same as in 
section 17.1. 

The ”1ist”.must contain at least one 
item; it cannot be omitted in this 
statement.



\_: 

Each execution of this statement pro- 
duces one binary FORTRAN record. See 
section 17.2 for restrictions. This 
statement should only be used for 
storing intermediate results to be 
read back on the same computer. 

19. BACKSPACE Statement 

BACKSPACE u, 

where u is the same as in section 17.1. 

This statement can only be used with 
records on tape (disc or drumo. Each execution 
makes the program go back one-F¢RTRAN (BCD or 
binary) record; after the first record has been 
reached this statement has no effect. 

Excessive execution time sometimes 
results when using this statement on some 
machines. This statement should only be used 
when absolutely necessary. The REWIND statement 
should be used where applicable. 

20. REWIND Statement 

REWIND u 

where u is the same as in section 17.1. 

This statement is used to reposition a 
file at the first F¢RTRAN record (BCD or binary) 
on tape (disc or druno. 

Zl. DTMENSI6N Statement 

This statement is used to specify the 
dimensions (i.e. the maximum value of each sub- 
script) of subscripted variables that are ngt 
in COMM®N (also see section 22). It is always 
placed at the beginning of a main program or of 
subprograms and precedes the first executable 
statement. 

No variables can have more than 3 sub- 
scripts (see section 5). The list takes the 
form of items separated by comas and each item 
is an array name with the maximum value (larger 
than one) of subscripts in brackets. The items 
can only have three forns (adjustable dimensions 
are not allowed); ' 

a(i) for one-dimensional arrays 
a(i.l) for two—dimensional arrays 
a(i,j,k) ‘for three—dimensional arrays 

where a is the array name, real or integer. 
i,j and k are unsigned integer Egg- 
stants (they cannot be variables) 
larger than one, i.e. 2,3,... 

Example: 
DIMENSI¢N A(2,4),IND(5),KIND(500,Z),... 

22. CMMQN Statement 
This statement is used to make data 

available to both the main program and sub- 
programs or just between subprograms by making 
variables share the same storage locations. 
Arrays that are in C®MM@N must be dimensioned in 
this statement (this is done in the same way as 
in the DIMENSI¢N statement) unless the version 
of F®RTRAN being used does not allow it; in that 
case they must be dimensioned in a DIMENSIQN 
statement. Most versions of FQRTRAN now allow 
dimensions in the C@MM®N statement. 

The items are listed in the following 
order: first, all_the real variables, then all 
the integer variables (this facilitates the use 
of double-precision on.some machines). 

There must be a one—to—one correspondence 
between the items listed in the C¢MMON area 
wherever it appears in the main program and/or 
in the subprograms. The number of items must be 
the same, the corresponding items must be of the 
same type (i.e. real or.integer) and if they are 
arrays they must have exactly the same dimensions. 
It is the order that is important; the names used 
need not be the same although it is good practice 
to have them the same whenever possible. 

If the main program or one of the sub- 
routines does not use all of the variables in C¢M®N then dumy variables (i.e. names that are 
not used for other purposes) are inserted in 
C@MM@N to make the lists match as specified‘ 
above. For example in one subprogram we might 
have: 

V
* 

CQMNMN A(l0,2),B@X,X,Y(S0),IND,NUM(4,6) 

while in another we might have: 

CMMQN A(10,2),BOX,XYZ,DUM(50),IND, 
_ 
IDUM(4,6) 

where DUM and IDUM might be dummy variables. 
There is'a one-to-one Correspondence 
between the items; 

A(l0,2) A(lO,2) (real) 
BQX BQX (real) 
X XYZ (real) 
Y(S0) DUM(S0) 

_ (real) 
IND . 

- IND (integer) 
NUM(4,6) IDUM(4,6) (integer) 

The CQMNEN statement should never be used 
in a program or subprogram that does not use some data’in the CQMNEN area, i.e. the C®MM5N state- 
ment never contains only dumy variables. 

The use of "labelled" C®MMON is not 
allowed. There can be only one (unlabelled) 
C@MMON area. The C¢MW@N statement never contains

15



slashes. 

The following are not allowed: 

C(25M1v1¢N /DATA/ A,B,C,D‘v 
C(25MM(2)N / / A,«B,-C,D 

Z3. SUBR@UTINE Statement 

The dumy arguents listed in this 
statement will be replaced by the actual argu- 

. ments listed in a CALL statement. The arguments 
in the list are separated by commas (slashes are 
pp; allowed). 

’

. 

The dummy arguments can only be nonsub- 
scripted real or integer variables, or array 
names- They cannot be function or subroutine 
names and they cannot be in CQMMQN. When a 
dummy argument is an array name it must also 
appear in a DIMENSI®N statement in the sub- 
program. The dimensions specified (adjustable 
-dimensions are not allowed) must be exactly the 
same as those of the actual argument which will 
appear in the CALL statement (or the fuction 
reference in the case of a function subprogranfl. 
There is one exception to this rule. When the 
gpy arguent in question is the name of an 
"array that is ppe—dimensional (i.e. ppe sub¥ 
script) it can have any dimension (larger than 
one) in the subprogram. It should be noted, of 
course, that the value of the subscript in the 
subprogram must never exceed the dimension of 
the corresponding actual argument in the calling 
program. It should also be noted that if this 
array name appears unsubscripted in an input or 
output list the number of items processed will 
equal the dimension specified in the subprogram, 
pp; that of the actual argument in the calling 
pI‘OgI‘aJ_I_1 . 

It is possible for a subroutine sub- 
program to have no arguments; in this case the 
brackets are omitted and the C@M@N area is used 
to share data with the calling program. ’As noted 
in section 24, a function subprogram always has 
at least one argument. 

24. FUNCTIGN Statement 

The dumy arguments listed in this state- 
ment will be replaced by the actual arguents 
listed in a function reference. The restrictions 
for the duy arguments in this statement are 
exactly the same as for the SUBRQUTINE statement 
in section 23. 

The rules for naming functions are 
explained in sections 1 and 2. The type (integer 
or real) of the fuction is determined solely by 
the first letter of its name. A function sub- 
program must always have at least one argument. 

25. CALL Staténent and Function Reference 

The actual arguments specified in a CALL 

14 

statement or in a fuction reference must have 
a one-to-one correspondence with_the ._ 

, arguments listed in the SUBR¢UTINE or FUNCTIGN 
statement respectively. The number and order of 
the arguments must be the same, they must be of 
the same type_(i.e. corresponding arguents are 
either both real or both integer), and array 
names always correspond to array names. 

The following function subprogram will 
be used as an example in explaining the way in 
which arguments are used by subprograms: 

FUNCTIQN CQ3MP (XD,YD) 
_. COMMQ)N AD,BD,CD 
10 XD_=X_D+l.0 
2.0 BD=XD+YD 
30 C(DMP=YD+CD 

RETURN 
END 

It is possible for this subprogram to 
change the value of its §ip§§_argpment (XD) in 
statement 10, and to change the value of the 
second variable (BD) in COMM®N in statement 20. 
Although the subprogram shown above happens to 
be a function subprogram the same considerations 
also apply to subroutine subprograms. 

In general it is possible for a sub: 
program to change the value of a d arguent 
pp of a variable in CWMMQN if the variable: 

- appears on the left side of an assi ent 
. statement (e.g. statements 10 and 20% 

- — appears as the loop index in a Q9 statement 
or as the loo index of an indexed (section 

. l§.2) input7output list. See section 25.6 
for restrictions applying to dummy argu- 
ments 7 

- appears as in input variable in the lis 
of a READ statement 

— is changed by another subprggram that is 
referenced by the subprogram in question. 

In general a variable (i.e. location) in 
CQMMQN is "not used" by a subprogram if: 

— it does pp; appear anywhere else in the 
subprogram, i.e. it only appears in the 
C@MW®N statement. For example AD above is 
a dummy variable. 

— it is "not used" by another subprogram that 
is referenced by the subprogram in question. 

, 
The following calling program will be 

used to describe the use of arguents:



Four examples will be worked out with 
the above program by changing the arguents of 
the fuction reference in statement 100 above: 
CMP(X,Y), CMP (C,Y), CMP(X,X) and_C@MP(X,B). 
To understand the mechanism by which the actual 
arguments are used in the subprogram, the func- 
tion reference in statement 100 will be replaced 
by a series of equivalent statements. For each 
example three sets of statements will be given. 
The columns entitled "Version I" and "Version II" 
show how two different versions of F¢RTRAN might 
handle the arguments while the colum entitled 
"User" shows how the user usually "thinks" they 
are handled. The results are compared in each 
case. The important thing to remember is that 
the results must be independent of the version 
used and the results must be the same as what 
the user expects them to be. The examples are 
followed by restrictions which must be observed 
at all times to obtain consistently correct 
results with different versions of F@RTRAN.' 

EXAMPLE 1: A=C@MP1X,Y] 

Version I. Version II User 
1 XD=X -— -- 
2 YD= 2 YD=Y *‘ 

10 XD=XD+1.0 10 X=X+l.0 l0 X=X+l.0 
20 B=XD+YD 20 B=X+YD 20 B=X+Y 
30 C@MP=YD+C 30 C@MP=YD+C 30 C@M=Y+C 
31 X=XD 

100 A=c(aMP 100 A;C(ZMP 100 A;C¢MP 

Results Results Results 

x=2.o x=2.0 x=2.o 
A=2.0 A=2.0 A=2.0 
B=3.0 B=3.0 B=3.0 
‘ The same results are obtained in all 

three cases because this is a valid example. 
Note in Version I that the subprogram does not 
work directly with the actual arguments X and Y. 
It first stores (statements 1 and 2) the values 
of the arguents in temporary work areas (XD,YD) 
and thenwuses the work areas to perform the 
computations? Before returning to the calling 
program, it stores (statement 31) the new value 
of XD, in the location of the actual arguent X. 
The value of YD was not changed; its value is not 
stored in Y for this reason. 

‘In Version II the actual argument X is 
worked on directly because XD is likely to change 
value as it appears on the left-hand side of the 
assignment statement 10. The User usually 
assumes that the subprogram is working directly 
with the actual arguments X and Y at all times. 
This is what he should have (and usually has) in 
mind when he designs the subprogram, provided he 
obeys the restrictions listed below. 

Note that the variables in CMM¢N (i.e. 
B and C in the calling program corresponding to 
BD and CD in the subprograno are always worked 

on directly. This applies to any version of 
FORTRAN. ’

‘ 

EXAMPLE 2: A=COMP§C,Yj 

!§£§$2£_l lEI§i92_ll .9§§£ 

1 XD=C — 

' -- ‘ 

' 

——. 
2 YD=Y 2 YD=Y ' 7- - 

l0 XD=XD+l.0 10 C=C+l.0 10 C=C+l.0 
20 B=XD+YD 20 B=C+YD j0'B=C+Y 
30 C@MP=YD+C 30 CP=YD+C 30 COMP=Y+C 
31 C=XD »__ __ 

l00 A=C@MP 4 100 A=CMP 100 A=CflWP 

Results Results Results 

C=2.0 C=Z.0 C=2.0 
A=2.0 A=3.0 A=3.0 
B=3.0 B=3.0 .Bé3.0 

The results differ (A is 2.0 in Version 
I) because this is not a valid example. See 
section 25.4 for general restrictions. 

EXAMPLE 3: A=C¢MP(XIX] 

Version I Version II » User 

1 xp=x .- #9 
2 YD=X 2 YD=X -- 

_v 10 XD=XD+l.0 10 X=X+l.0 10 X=X+l.0 
20 B=XD+YD 20 B=X+YD 20 B=X+X 
30 C@P=YD+C 30 C@MP=YD+C 30 C@MP=X+C 
31 X=XD 

_ 

__ ,__ 
100 A=C@MP 100 AFC¢MP 100 A=CWWP 

Results Results Results 

X=Z.0 X=2.0 X=2.0 
A=2.0 AF2.0 A=3.0 
B=3.0 B=3.0 B=4.0 

Note that the results that the user 
expects are not those (A and B are different) he would get from the two versions of F¢RTRAN shown. 
See section 25.4 for general restrictions. 

EXAMPLE 4: A=C@MP(X,B) 

Version I Version II User 
1 XD=X -- -- 
2 YD=B 2 YD=B +- 

10 XDEXD+l.0 10 X=X+l.0 10 X=X+l.0 
Z0 B;XD+YD 20 B=X+YD 20 B=X+B 
30 C¢MP=YD+C 30 C¢MP=YD+C 30 COMP=B+C 
31 X=XD __ __ 

100 A=C@MP( 100 A=C¢MP 100 AFCQM 

Results Results Results 

X=2.0 X=2,0 x=2.o 
A=Z-0 A=2.0 A=4.0 
B=3.0 B=3.0 B=3_o

15



The results that the user expects are 
not those (A is different) that he would get 
from the two versions of FDRTRAN shown. See 
section 25.5 for general restrictions. 

16 

25.1 

25.2 

25.3 

25.4 

If the ggmz argument is 393 an array 
name (i.e. it is a nonsubscripted 
variable) and it is ngt possible for 
the subprogram to change its value 
(e.g. YD in CGMP) then the correspon- 
ding actual arguent can be an expres- 
sion Iincluding function references), 
a variable (subscripted or not) or a 
constant. It cannot be an array name 
(see section 25.3). The following are 
allowed: 

-A=C(25MP (x , 2 .'0+Y) 
A=C@MP(Y,ARRAY(I ,J,2)) 

where CGM is as described above. 

The following is not allowed: 

A=C¢MP(2.0,Y) 

because CDMP changes the value of its 
first argument (XD). 

If the gpgmx argument is ngt an array 
name , 

it is possible for the sub- 
program to chan e its value, the actual 
argument can on be a variable (sub- 
scripted or not). See the examples in 
25.1. 

If the ggmy argument is an array name, 
the corresponding actual argument must 
always be an array name and vice versa. 
It cannot be a subscripted variable 
for instance. When an argument is an 
array name, it is always worked on 
directly-by the subroutine, i.e. the 
values of the arguent are not stored 
in temporary storage. The method used 
is similar to the "User" column in the 
above examples; the results are always 
what one would expect by simply repla- 
cing the dummy array name by the name 
of the actual argument. The restric- 
tions listed in sections 25.4 to 25.6 
do net therefore apply to arguments 
that are array names, whether or not 
the actual arguent is in CDMMDN. 

If it is possible for the subprogram to 
change the value of the gpmy argument 
then the actual argument cannot appear 
twice in the same CALL statement or 
function reference, no; can it be a 

‘variable in CWMMQN that is used by the 
V subprogram in question. 
example (C@MP) the following is allowed: 

In the above 

A=C@MP(A,Y) 

25.5 

25.6 

Although A is in CQMMKDN it (i.e. AD) 
is not used by CMP. It would give 
results similar to CGM(X,Y) in 
Example 1. The following is ngt 
allowed: . 

A=C@MP(C,Y) 

This is Example 2. The subprogram 
CWMP changes the value of its first 
arguent (XD) and C is in CGMMDN and 
(i.e. CD) is used by CWMP in statement 

A 
30. Also not allowed is: 

A=C(Z3MP (x ,x) 

This is Example 3. The subprogram 
CDMP changes the value of its first 
arguent (XD) and the corresponding 
actual argument X appears more than 
once in the function reference. 

If the subprogram chan es the value of 
a variable in CQMMGN then that variable 
cannot be used as an argument. The 
following is not allowed: 

AsCOMP(X,B) 

This is Example 4. The value of B 
(i.e. BD in the subprogranfl is changed 
by statement 20 of the CQMP subprogram. 

When it is possible for a subprogram 
to change the value of a d argu- 
ment (e.g. 12 in NUM2 below then the 
value of the corresponding actual‘ 
argument upon returning to the calling 
program is only defined if the dummy 
argument in question appears in the 
subprogram on the left of an assignment 
statement (e.g. statement 30 in NUM2 
below) 9r_as an input variable in the 
list of a READ statement. is point 
is especially important when a sub- 
program references other subprograms 
(which in turn might reference others). 
The following calling program and two 
subprograms will be used as an example: 

10 iéi 
so K=NUMl(I) 

END 
FUNCTIGN NUMl(Il) 

40 NUMléNUM2(Il) 
‘RETURN ' 

END 
FUNCTIDN NUM2(I2) 

20 NUM2=I2 ,

- 

30 I2=I2+1 
RETURN 
END



To understand how the arguments are 
used, the above statements will be 
replaced by equivalent statements 
(similarly as in examples 1,2, 3 and 4 
above): 

Version I User 

10 I=l ...(Main)... 10 I=l 
ll I1=I ...(NUMl)... -- 
12 I2=Il ...(NUM2)... -- 
20 NM2=I2 ...(NUM2)... Z0 NUM2=I 
30 I2=I2+1 ...(NUM2)... 30 I=I+1 
31 Il=I2 ...(NUM2) -—- 
40 NUMl=NUM2 ..(NUMl)... 40 NMl=NUM2 
50 K=NUMl ..(Main)... 50 K=NUMl 

Results Results 

K=l ~ K=1 
I=l I=2 

Note that Version I leaves I unchanged 
while the User expects it to be incre- 
mented by I. In NUM2 the value of the 
_actual argument I1 is reset in state- 
ment 3l because the corresponding 
ggmy argument I2 appears on the left- hand side of assignment statement 50. 
This is not the case in NUMl for the 
actual argument I. It is net reset before returning to the calling program 
because NUMl has no way of knowing that 
NUM2 has changed the value of Il.’ It 
assumes that ll remained unchanged and 
that therefore I need not be changed. 

If in NM1 the ggmmy argment II had appeared on the left side of an 
assignment statement or as an input 
variable, then the value of the actual 
argument I would have been changed by 
the equivalent statement "I=Il" fol- 
lowing statement 40. 

Subprogram NUMl should be rewritten as 
follows: 

FUNCTI(DN NUMl(Il) 
1<1=11 

40 NUMl=NUM2(Kl) 
42 Il=Kl

, 

RETURN 
END 

Note that the guy arguent Il now 
appears on the left of assignment 
.statement 42 so that the actual argu- 
ment will be changed upon returning to 
the calling program. ’ 

The above rule is also important when 
a.dymmy argument is used as the loop 
index of a QQ statement. This is only 
allowed if this same dumy variable 
also appears in the subprogram on the 

/ . 

left of an assignment statement or as 
an input variable; otherwise the value 
of the corresponding actual arguent 
is undefined in the calling program. 

A dummy argument must never be used as 
the loo index of an indexed (section 
15.2) input7output list. — 

26. RETURN Statement 

This statement can only be used in a 
subroutine or a function subprogram. It must 
never be used in a main program to terminate the 
job; the STEP statement should be used. It only 
has one form, "RETURN". Multiple returns, e.g. 
"RETURN 2", are not allowed. 

A subprogram can contain several RETURN 
statements. A RETURN statement should always. 
be executed to return control to the calling 
program; the END statement should never be used 
for that purpose. 

27. Libragy Functions 

Following is a list of the most commonly 
used library functions that are available on the 
CDC 3100, UNIVAC 1108, IBM 7040 and IBM 360: 

EXP,AL(DG,Al(2)G10,ATAN,SIN,C(2)S,TAN,SQRT, 
ABS and IABS.‘ 

Because some versions of FWRTRAN allow, 
mixed expressions, it is necessary to specify 
IABS for integer results, and ABS for floating- 
point results. A more comprehensive list of 
compatible library fuctions will be available 
at a later date. 

28. Range and Precision of nubers 
The allowable range and/or the precision 

of numbers is machine dependent. Tables 1 and 2 
show what figures can be accommodated by the CBC 
3100, UNIVAC 1108, IBM 7040 and IBM 360. 

For integer numbers, the largest nuber 
shown for the UNIVAC 1108 is for the case where 
conversion to floating-point might be involved; 
this is likely to be the case in most programs. 
The actual number of digits is 10.3 if this 
restriction does not apply. For the floating- 
point nubers, the precision of the fraction 
shown for the IBM 360 is the worst precision. 
There is a loss of precision with some numbers 
because normalization is performed in hexadecimal 
instead of binary. The best precision that can 
be obtained is 7.2 decimal digits for single 
precision and 16.8 decimal digits for double 
precision. 

The use of double precision on the IBM 
360 is mentioned in section 30. For other 
machines one should consult the relevant litera- 
ture and discuss the implications with an

17



Magnitude of 
8 

Number of 
Largestglnteger Decimal Digits _ 

CDC 3100 8,388,608 6.8 
UNIVAG 1108' 134,217,727 8.1 
IBM 7040 34,359,7-38,367 10.3 
IBM 360‘ 2,147,483,647 V 9.2” 

TABLE 1 Integer Numbers 

Precision of the Fraction Range of the Exponent 

Single Double 
I 

Single’ Double 

CDC 3100 
' 

10.6 
_ _ 

—-. -308 t6‘+308 -- 

UNIVAC 1108 8.1 18 -38 to +38 -308 to +308 
IBM 7040 8.1 -- -38 to +38 -- 

IBM 360 6 3 15.9 -78 to +76 -78 to +76 

_TABLE 2 Floating—point Numbers 

experienced person. The availability of double 
precision does not of course depend on the 
machine itself but depends on the version of 
F¢RTRAN that is available in the particular 
installation.‘

' 

29. Size of Constants 

The following suggested sizes are in 
relation with the tables shown in section 28. 

29.1 
' 

Integer Constants 

An integer constant can have from 1 to 
‘7 digits (the sign not included) and 
its absolute value must not be larger 
than 8,388,608.

' 

29.2 Real Constants" 

The exponent of a real constant has a 
‘ maximum of 2 digits and the permissible 
range is from -38 to +38 including 
zero. 

If single precision is used on the IBM 
360, the fractional part of constants 
can only have from 1 to 7 digits (not 
including the sign and decimal point) 
for a precision of 6.3 digits in the 

. worst case. See section 30 for the 
_ 

use of double precision on the IBM 360. 

On other machines 1 to 9 digits can be 
Aused and the precision is 8.1 igits 
in the worst case.

p 

30. Double Rrecision on the IBM 360 

The rules in section 2 for the names of 
variables and functions, and.the rules in section 
22 for listing real variables ahead of integer 

‘ 

Variables in the CQMMQN area make it a simple 

18 

matter to change all variables and function sub- 
programs to double precision. Insert the fol- 
lowing statement ahead of the main program and 
ahead of each subprogram: — 

IMPLICIT REAL*8 (A-eH,(2)-Z) 

This statement will specify double pre- 
cision for all Variables and function names 
starting with the letters from A to H and from 
Q to Z, i.e. all real variables and real function 
names will have double precision. 

Real constants are made double—precision 
constants in the following way: 

- constants with an exponent: use D instead 
of E, for example 7.0E+2 becomes 7.0D+2 in 
double precision. 

— constants without an exponent: always use 
8 or'9 digits (not including the sign and 
decimal point), for example write 
"-1.0000000" instead of "-1.0" to make it 
a double-precision constant. If not more 
than 9 digits are used, these constants 
will be acceptable in single precision on 
other machines. 

Library Functions must all be changed for 
double precision. Following is‘a list of the 
double-precision version of the functions listed 
Tin section 27: 

DEx1>,DL0)G ,DL(2)G'10 ,DATAN ,DSIN ,DCQ3S ,DTAN , 

‘DSQRT and DABS (IABS is integer and is 
_ not therefore affected). 

‘ :The above names can be used directly 
where applicable, although the following scheme 
will make it easier to change the program back to 
single precision for other machines. Use the 
single—precision names in the body of the program 
and subprograms and.equate the double—precision



name to the single-precision name by means of 
statement functions. They are inserted just 
ahead of the first executable statement of the 
main program or subprogram as required. 

I For example: 
ABS(X)=DABS(X) 

1%éABs(D¢c) 

13i}1=4.0* (A-ABS(D—2 . own) 

The first statement is not an executable 
statement; it defines a statement function which 
in fact will replace“ABS by DABS wherever ABS 
appears in the program. The other statements 
will in fact be compiled as follows: 

B=DABS(D¢G) and
V 

FIR=4.0*(A-DABS(D—2.0*W]) 

To change the library fuction names 
back to single precision, simply remove the . 

statement fuctions, e.g. "ABS(X)=DABS(X)" in the 
above example. 

The F—format code is not affected by the 
use of double precision but the E-format code is 
affected. The D—format code mst be used instead 
of E. Note that on output the D will appear ' 

instead of E as part of the output. If the data 
are puched on cards, for example, they must be 
read back in with a D code. This might create 
difficulties if these data are to be read on 
other machines.

4 

Some machines, e.g. the CDC 3100, do not 
have double precision, and on some machines the 
implementation of double precision is different. 
On the UNIVAC 1108 all double-precision constants 
must have an exponent, e.g. the only way to make 
"l.0" a double—precision constant on that machine 
is to write it with a D exponent, e.g. "1.0D+0". 

.Note that the features mentioned in this 
section should only be used on the IBM 360 and 
that the IMPLICIT statement can only be used 
exactly as shown above (i.e. all other type 
declarations should be ignored). None of the 
above features should be used for single preci- 
sion.- 

31. Features to be Ignored 

It has been mentioned earlier that all 
statements or features of FDRTRAN that have not 
been mentioned specifically above are to be 
disregarded and are not_to be used. Following 
is a list of some of_tEe statements or features 
that are not to be used. The list is intended 
to help the reader in identifying the most 
popular features that are ngt to be used. The 

list is not complete; features not appearing in 
this list are not necessarily allowed. 

Fo1lowing_are some of the features that 
are not to be used: 

Logical and relational expressions 
Logical IF, two-branch IF 
More than 3 subscripts and adjustable 
dimensions 

4 EQUIVALENCE 
5. C¢MWON / label / .., 
6. Assigned G0 TU, ASSIGN 
7
8 

(NB)!-‘ 

. PAUSE, PAUSE n, PAUSE ‘message’ 

.' STEP n - 

9. END and ERR features for the READ 
10. Format codes G,L,Z,T,R,P, and literal cmBtmms(eg.'AHP) 
ll. END FILE a ‘ 

12. Direct access statements: DEFINE FILE, 
READ with apostrophe, FIND 

13. Type declarations IMPLICIT (except as in 
section 30), REAL, INTEGER, LQGICAL, 
CMPLEX, DDUBLE PRECISIDN, CHARACTER 

14. Slashes with dummy arguents, i.e. by 
« name 

15. Statement functions (except as in sec- 
tion 30) 

16. ENTRY statement in subprograms 
l7. RETURN n, i.e. multiple returns from 

subprograms 

19. DATA 
20. (READ b, list), PUNCH, PRINT, READ TAPE, 

WRITE TAPE, etc... 
21. BLDCK DATA 
22. ENCGDE, DEC@DE,BUFFER,IN, BUFFER QUT 
23. Mixed mode arithetic 
24. Character Data beyond 4 characters 
25. NAMELIST H 
26. Variable format in READ or WRITE 
27. ABNDRMAL 
28. PARAMETER 

The above list would be much longer if 
all possible extra features on the different 
machines were listed. With each version of 
FDRTRAN there are a number of functions and sub- 
programs which have been written in assembly 
language and which are supplied by the manuface 
turer, A lot of these subprograms are not com- 
patible and should not be used. It is difficult 
to make a comprehensive list of these but fol- 
lowing are some of_these subprograms that should 
not be used:. FLD,I¢CHM,I@CHKF,UNlTST,UNITSTF, 
ETzl'FcK,EoFcK1=,AND,oR ,x¢R ,.B(ML,C(Z5MPL,CBRT,LENGT'Hl_=, 
SLITE,SLITEF,SLITET,SLITETF,SSWTCH,SSWTCH,DVCH, 
DVCHKF , ED(FLT,EXFLTF ,(6VERFL ,(25VERFLF ,ERF ,ERFC , 

GAMMA,ALGAMA, etc... A complete list of allow- 
able, i.e. compatible, library fuctions and 
subroutines will be available shortly, For the 
time being one should only use the functions 
listed in section 27.

19



7 2782 3 
| 

IIIfl'»1\'mu“;i‘I;W1iun“11E,m1i'>ih1ni!iI\nflalinfll] 

Date Due
22


