INLAND WATERS BRANCH

Digitizing Hydrographs and Barographs
T. W. MAXIM AND J. A. GILLILAND

TECHNICAL BULLETIN No. 15

TECHNICAL BULLETIN No. 15

Digitizing Hydrographs and Barographs

T. W. MAXIM AND J. A. GILLILAND

Contents

SECTION 1. CODING HYDROGRAPH CHARTS 1
SECTION 2. DIGITIZING 6
SECTION 3. CODING BAROGRAPHS 11
SECTION 4. DATA PROCESSING 12
APPENDIX A PROGRAM LISTING OF TAPREP2 15
APPENDIX B ADDENDUM 23
ILLUSTRATIONS
Frontispiece D-Mac Pencil Follower with console and key punch ii
Figure 1. Cross section of an observation well 1
Figure 2. Example of a hydrograph chart. 2
Figure 3. Two marked up hydrograph charts in correct time sequence 3
Figure 4. An example of a hydrograph chart 3
Figure 5. Formats for four card types 4
Figure 6. A sample data deck 5
Figure 7. Coordinate range of the pencil follower reading table 7
Figure 8. Drum card for the IBM 026 key punch. 8
Figure 9. Sample hydrograph coding sheet 9
Figure 10. Chart of a recording barometer 10
Figure 11. Drum card for IBM 029 key punch 23

Frontispiece - D-Mac Pencil Follower with console and key punch

Coding Hydrographs

MARKING HYDROGRAPH CHARTS

General
Several operations are required to be made both before and after the actual process of digitizing is performed. End points and other control data must be coded before digitizing. After the digitizing is performed, the IBM cards onto which the data were transferred must be correctly sorted and filed.

Each hydrograph chart must be oriented in the correct position. For example; consider a hydrograph chart beginning on February 27 and ending on March 3 . The time readings should increase from left to right (Figure 2).

The information usually indicated on an hydrograph is as follows: the curve itself, the data, the time and the water level; when the recorder begins to plot the curve and when the chart is removed. If any of these data are not recorded on the chart they must be obtained from another source. Note that a decrease in water level reading indicates that the water level in the well is rising as shown in Figure 1.

To mark up hydrograph charts it is convenient to use felt-tip pens with colours of red, blue and green. Red is used to mark the beginning and ending points of the curve and to write the beginning and ending dates and water levels. Green is used to mark the control points on the chart, and blue to number the charts 1,2 , etc. and indicate the "up" direction on the chart. The "up" direction on the chart refers to the direction in which the line would move if the water level were rising.

Dates on the hydrograph are coded in the following manner.

Example: 6802271605;
68 refers to the year
02 the month of the year
27 the day of the month
1605 the time in the 2400 -hour system
The following steps should be followed when coding the control data:

Step 1 - Ensure that the hydrographs are in correct order.
Step 2 - Number the hydrographs, page 1, page 2, etc., in blue.

Step 3 - Mark an arrow to indicate the 'up" direction, in blue.
Step 4 - Mark the beginning and ending points of the curve with an ' x " in red. Write the beginning and ending dates. Also write the beginning and ending water levels.
Step 5 - Mark the control points in green.
Step 6 - Place the necessary information on the coding sheet.

Figure 1. Cross section of an observation well

Refer to Figure 2.
The water level at February 27 is 5.55 feet. The date is 6802271605. At the end of the graph the footage is determined by finding the

Figure 2. Example of a hydrograph chart
difference in the number of divisions between the beginning and ending levels of the curve.

For the purpose of digitizing, the observer's measured water levels are ignored. If a gap should occur, the starting water level is assumed to be the level that the observer measured, and subsequent levels are determined by measured differences on the chart.

Gaps and Control Points

Definition: "Gap" is a term applied to data that are missing for any reason; gaps may also be used to omit data which cannot be interpreted.
Definition: A Control Point is a level marked on the hydrograph chart by the individual who is coding the hydrographs.

A control point is placed vertically above and below the beginning and ending point of the curve. Control points are necessary on every hydrograph chart. In Figure 2, 5.350 and 5.625
are the control points. One control point is always below the curve and the other is always above the curve. Control points allow the alignment of the chart vertically and horizontally. This enables the computer program to convert from the arbitrary coordinates of the pencil follower to the correct water level versus time coordinate system. The control points must be correctly assigned.

Consider two charts, say numbers 20 and 21 in Figure 3. Notice that the control points at the junction point of the two charts are identical. If a gap occurs, then the control points at a junction will be different both in water level and time.

Figure 4 shows how a gap is handled. The curve from February 25 on, appears as a straight line. Either the chart is caught or the well is frozen and the data in this interval should be omitted. The time scale is 2 hours per small division, so that the end point for the curve can be determined as shown on Figure 4.

Figure 3. Two marked up hydrograph charts in correct time sequence

Figure 4. An exomple of a hydrograph chart

NOTE: A blank card must follow the last Type 3 card in the Data Deck

Figure 6. A sample data deck

CARD TYPES

General

Four different card types are required for computer processing of the hydrograph data. These four cards are termed Type 1, Type 2, Type 3 and Type 4.

Figure 5 shows the four card types. Column 1 in all four types is reserved for identifying the card type. The number in colums 2 to 8 inclusive is identical in all four card types. In Figure 5 the number 0000026 is the number assigned to a particular well, so that all data relating to this well will be indexed with this number. Whenever additional data from the same well are to be stored, they will be stored with the appropriate existing data.

Card Type 4 and Type 3

One card of Type 4 is always placed at the beginning of a data deck. Cards of Type 3 have a special purpose and are used as a method of applying corrections. As shown in Figure 5, columns $9-18$ contain the date/time at which the correction applies. Columns 19 to 24 contain the level measured on the hydrograph chart, and columns 25 to 30 contain the true level (the check measurement). If a reliable check measurement is made at a well during a particular week and if it differs from the measurement obtained from the hydrograph charts, then a card Type 3 can be inserted to correct either the whole hydrograph or a portion of it. If correction is desired for only one hydrograph chart, then two cards of Type 3 are necessary, the first must have the date, time and water level corresponding to the beginning
date of the hydrograph chart and the second must contain as date, time and water level corresponding to the end of the chart.

Card Type 2

Card Type 2 is called the control card. When a chart is digitized, a control card must be inserted before the data deck of the digitized hydrograph chart, and another inserted after the data deck. The data on the first control card must correspond to the date at which the chart begins, and the level punched on the control card must be the level of the control point. The X-Y coordinates of the control point as indicated by the D-Mac pencil follower are punched last. The second control card must correspond to the ending date of the hydrograph chart, the level of the ending control point, and the corresponding $X-Y$ coordinates of that ending control point (see Figure 5).

Card Type 1 and Sample Data Deck

Figure 6 shows an example of a data deck. Note the card preceding the last card in the data deck, is called a "skip card" and must always be present at the end of a data deck of a digitized

Digitizing

THE DIGITIZER

The digitizer consists of two main units: the pencil follower and an output device, the IBM 026 key-punch. The D-Mac Pencil Follower Type PF 10000 consists of two units: the reading table and the Electronic Console (readout panel).

The reading table is approximately $4-1 / 3$ feet long by $2-1 / 2$ feet wide. On the table, a rectangle is distinctly marked by four black lines. Hydrograph charts that are to be digitized must be confined within the area of the rectangle. In the X coordinate direction, the table is dimensioned from 0000 to 9999 and in the Y coordinate direction, the table is dimensioned from 0000 to 4750. Each increment of X or Y is equal to 0.1 mm . (see Figure 7).

THE STYLUS

The stylus (or "bug') is a small tracking device used to trace the curve. The "bug" consists
hydrograph chart. This card indicates that there are no more digitized data from this chart, and that a control card should follow it.

The next digitized hydrograph chart is placed behind the data deck shown in Figure 6 with its beginning and ending control cards. Note that every digitized hydrograph chart must have two control cards and that all Type 3 cards must follow the Type 4 card in the data deck.

The Type 1 card contains the digitized data of the analogue curve. There are 7 sets of $X-Y$ coordinates per card (see Figure 6). As shown on card number 0724, the X and Y coordinates both comprise four digits. These digits are punched by the key-punch when the pencil-follower control button on the stylus or 'bug' is depressed.

Time Factor

Important: All dates in digitized hydrographs and barographs must be in standard time. Thus, it is necessary to make the proper corrections of all times during the summer months when Daylight Saving Time is in effect.

Section 2

of cross-hairs mounted in a small frame to which is attached the trigger button. If the "bug' is placed anywhere within the rectangle and the trigger button depressed, the key-punch will punch out the coordinates of that particular point onto the IBM computer card.

The "bug" is connected to the reading table and a follower inside the reading table signals the position of "bug" on the table, this position is displayed on the console. The console also converts the position signals to a suitable form to feed the output device which in this case is the 026 key-punch. Whenever a reading is taken, the display indicators are frozen until the coordinate position on the reading table has been transferred onto the computer card.

Important: The 'bug" must slide on the surface of the table; do not lift it off the table surface and move it or the "following" action will be lost. Always be sure that the "bug" is working properly by moving it over the surface of the

Figure 7. Coordinate range of the pencil follower reading table
plastic which covers the hydrograph charts. If the 'bug" has not engaged the follower inside the table, a white spot of light will appear at the upper part of the table. If the "bug" is engaged properly, the $X-Y$ coordinates on the readout panel will change as the "bug" is moved.
In addition to the trigger button there is a foot pedal which may be used as an alternative to trigger the digitizer.

LINE/POSITION SWITCH

A two-position switch allows the operator to use either the "Line" mode of operation or the "Position" mode of operation. If the switch is in the "Position" mode and the button on the tracking "bug" is depressed, the digitizer will take the co-ordinates of that point once and only once. In the 'Line" mode of operation, the digitizer will take readings at a set time interval governed by the setting on a readout rate potentiometer (electronic timer) for as long as the trigger button is depressed. In the "Line" mode the "bug" must be moved along the chart continuously while the trigger button is depressed.

It is left to the discretion of the operator as to which mode of operation is used. The 'Position' mode of operation, however, is mandatory if coordinates at set time intervals on hydrograph charts are required.

DRUM CARD

The drum card fulfils an important part in the digitizer operation (Figure 8). This card
programs the key-punch to duplicate from columns 1 to 15 , skip column 16 and punch out 7 sets of $X-Y$ coordinates from the pencil follower. After the year in which the data is from and the card number are punched, the computer card is released and another blank computer card is fed in and the process repeated.

LIMIT

The maximum number of data points is 350 sets of $X-Y$ coordinates per chart. This is the equivalent to 50 cards including the skip card. The average number of cards for a hydrograph chart from a Stevens F-type recorder is about 25, depending on the amplitude of the water-level fluctuations.

DIGITIZING PROCEDURE

Here is a step by step approach to digitizing:

Step 1 - Switch on the key-punch. Press the POWER switch on the Electronic Console and then the RESET switch.
Step 2 - Insert the drum card on the drum and replace the drum in the key-punch. Put the key-punch on automatic feed and automatic duplication.
Step 3 - On the Electronic Console, set the year that the data refer to, say 65, i.e. the year 1965, and also an arbitrary card number.
Step 4 - Select the "line/position" mode of operation on the Electronic Console.
Step 5 - Punch out a one in column 1 to indicate card type 1 and the identification
number, say 0000012 , in columns 2 to 8 . Engage the drum by means of the switch located underneath the drum. Make sure there are sufficient cards in the card hopper.
Step 6 - Press the release button on the keypunch. This will release the card already punched and duplicate the number 10000012 onto the next card. At the end of each card, the year will be punched in columns 74 and 75 and the card number in columns 77 to 80 inclusive. Discard the first card.
Step 7 - Insert the hydrograph charts under the clear plastic within the confines of the rectangle. Align the charts by eye to coincide approximately with the pencil follower axis. There is sufficient room to acconmodate three hydrograph charts side by side. Place the charts from left to right in the order they were coded to avoid later confusion. These charts must be secured to avoid any movement (e.g., by the use of masking tape).
Step 8 - Digitizing may now begin. Slide the "bug" onto the initial control point at the left of the graph. When the crosshairs are directly above the control point, write the $X-Y$ coordinates of that point in the appropriate place on your coding sheet.
Step 9 - Slide the "bug" to the red 'X" which marks the beginning of the curve. Depress the trigger button on the "bug" to commence digitizing. When 7 sets of coordinates, the year and the card number have been punched onto the
computer card, the computer card is released, a new card is fed into the key-punch and the process continued.
Step 10 - When the operator reaches the end of the curve, he must move the "bug" to the ending control point and write the $X-Y$ coordinates of that control point on the coding sheet. After this is done, the operator must depress the skip button on the key-punch twice. In Figure 6, the last card in the data deck was not completed because it has only three sets of $\mathrm{X}-\mathrm{Y}$ coordinates on it. Notice that the following card has no data on it. It is called a "skip" card and one skip card must follow the end of the digitized hydrograph chart.
Step 11 - The procedure is repeated from Step 8 on, for each succeeding chart. To stop digitizing, shut off the pencil follower by pressing the POWER button. Disengage the drum on the key-punch by changing the drum switch to the OFF position and remove the drum card.
Step 12 - The operator must punch out the control cards from the coding sheet and then insert them into the Type 1 card data deck at the proper places. An example of a coding sheet is shown in Figure 9.
Step 13 - Place the digitized hydrograph data deck into the appropriate filing cabinet. It is convenient to use different coloured computer cards for each card types. Use one colour for Type 1 cards, a second colour for Type 2 (control) cards and so on. Cards corresponding to a particular hydrograph chart can then be easily located.

Figure 8. Drum card for the IBM 026 key punch

Figure 20. Chart of recording barometer

Coding Barographs

BAROGRAPH CHART STRUCTURE

A recording barometer produces barograph charts. Figure 10 is the chart of a Short and Mason 'Micro-Barograph'.

The procedure for coding barograph charts is similar to that for coding hydrograph charts with two exceptions. First, barograph charts have one curved axis and, second, barograph units are in millibars rather than feet of water.

PROJECTED TIME AND CARD TYPES

Since the barograph charts have one curved axis and the digitizer operates in rectangular coordinates only, it is necessary to calculate the time at the center of the chart. In Figure 10 the observer indicated that the recorder was put into operation at 0800 hours. A vertical line must therefore be projected through the starting point of the plotted curve until it intersects the center of the chart at 29.75 mb .

The time at the intersection of the vertical line and the center of the barograph chart will be the time which is used as the date of the control point at the beginning of the chart. The time at this intersection is 1300 hours. The control point must be marked on this vertical line and, in this particular case, it is assigned the value 030.00 mb .

The same procedure is followed in determining the ending time which is 1030 hours. The format for the control card (Type 2 card) is the same and the only difference is that the control point is 030.00 mb instead of, say, 05.658 feet. The control point 030.00 will be placed in the same columns as shown on the coding sheet of Figure 5 and only the decimal point will be shifted
to the right by one column.
Type 4 cards in barograph charts are identical to those in hydrograph charts but no elevation is recorded. It is left blank.

The Type 1 card format is the same as for hydrograph charts.

The card Type 3, unlike card Type 2, does not use the projected vertical line time in the date when making a correction. The actual time is used. For example, perhaps a correction is necessary at the beginning of the chart in Figure 10. The date on the Type 3 card will be 6706190800 . The time is taken from the intersection of the barometric curve and the curved axis time scale.

GENERAL

It is convenient to paste barograph charts together to make one smooth curve and so reduce the number of control points. This is done by matching the end of one chart exactly with the beginning of a second chart and thus producing a smooth curve for two weeks. The reading table is large enough to accommodate three charts. Thus, only two control points will be necessary instead of the six required if the charts were handled separately. This is assuming that there are no gaps in this 3-week period.

The limit on the number of cards between two control points is still 50 . In digitizing barograph charts, it is strongly advised that the 'Position" mode of operation of the digitizer be used.

Other procedures for digitizing barograph charts are the same as for digitizing hydrograph charts.

Data Processing

GENERAL
The purpose of digitizing hydrographs or any other time series is to convert the data into a form which is readily processable by a computer. Users of the procedures described in this report will generally require considerable volumes of data so that the standard medium on which the hydrographs are presented is magnetic tape.

The program is designed to run on the Department's CDC 3100 computer and the data are written on tape in the binary mode. The program used for conversion, TAPREP2, is written in FORTRAN IV (CDC version) and therefore cannot be directly used on other computers, although special CDC features such as EOFCKF and ENCODE/DECODE have been avoided. However, logical IF statements are used. A 1isting of TAPREP2, with subroutines is given in Appendix A.

TAPE FORMAT
The tape output by TAPREP2 is in the following format:

Record No.

Contents

1 Tape identification (fixed point)
2 Hydrograph/barograph identification (fixed point)

3 Hyd/bar ident (fixed point), elevation of measuring point (floating point)

4 - N Hyd Id (fixed point), year (fixed point), minute (floating point), gauge height (floating point) x 18
$N+1$ same as for 4 th and subsequent records except that last fields with no data are filled with zeros.
$N+2$ next hydrograph ID.
$\begin{aligned} & \text { last record on } \\ & \text { tape }\end{aligned} \quad\left(\begin{array}{llll}0 & 0 & 0.0 & 0.0\end{array}\right) \times 18$

Gaps within a particular hydrograph are signified by a value of -100 for the minute field of one time/water level recording.

INPUT TO TAPREP2
Digitized data may be input to TAPREP2 in three possible ways:

1. No existing tape,
2. O1d tape exists, new data are not from a well already on tape,
3. 01d tape exists, new data are from a well for which records already exist on the old tape.

In each case a new tape is produced, containing the old data, if any, and the new data are inserted at the appropriate point if it continues pre-existing data.

CARD SEQUENCES

1. No pre-existing tape. Only one hydrograph/ barograph can be processed in any one run.

Card No.	Contents ${ }^{1}$		Format ${ }^{2}$
1	IBAROM, BARTIMF, BARPF, SENCHAR, PENRAD	120	(I5,4F5.0)
2	$\begin{aligned} & \text { I, IDREEL } \\ & (\mathrm{I}=2) \end{aligned}$	100	($\mathrm{I} 1, \mathrm{I} 7)$
3	Card type 4*	110	(I1, I7 , F8.3)
4-K	Card type 3*	103	(I1, I7, 5I2, 2F6.3)
$K+1$	blank		
$K+2$	Card type 2*	107	(I1,I7,5I2,F6.3,2F4.0)
$\mathrm{K}+3-\mathrm{N}$	Card type 1*	111	(I1, I7, 8X, 14F4.0)
$N+1$	Card type 2	107	

At the end of a set of hydrograph data, place two blank cards after last card type 2.

1. Variable names correspond to those in the program listing.
2. Format numbers are statement numbers and correspond to FORMAT statements in the program 1isting.

* See Figure 7.

2. Old tape exists. New data are not from a well already on tape. Only one hydrograph/ barograph can be processed in any one run. Card sequence is same as for 1 above except that on card 2, $\mathrm{I}=1$, and a blank card must be inserted between cards 2 and 3 .
3. Old tape exists, new data are from a well or wells for which data already exist on old tape. Any number of hydrographs can be processed in one run, as long as the card data are presented in the same order as the wells on the tape, and data exist for all wells.

Card sequence, same as for 1 above except that on card 2, $I=1$, and between cards 2 and 3 must be inserted a card containing IDADD in format 130. Each set of hydrograph data is finished with one blank card, then the next IDADD. IDADD is the identification of the hydrograph or barograph to which data are being added. The last set of hydrograph data is followed by one blank card, then a card with " 5 " in
col. 1, then another blank card.
OPERATION OF THE PROGRAM
Using the control points the program calculates the time/water level values for each point digitized, correcting for non-parallelism of digitizer and chart axis, curved axis on barographs and incorrect chart-time scaling. The computed values are checked against the observed check values and adjusted. The fully corrected values are output as water level, year and time in minutes within the year. Data from up to two consecutive years can be handled and leap years are automatically allowed for. The existence of gaps in the record is detected and indicated in the output. Editing for correct card type, incorrect control points, etc. is carried out and appropriate error messages are printed. After the hydrograph has been written on tape, a subroutine prints out the new data to facilitate checking. It is strongly recommended that all hydrographs and barographs be edited, using program PLOT, J10017, which produces a plot of the hydrograph.

Program Listing of TAPREP2

```
            PROGRAM TAPREP?
                                    1
C CONVERTS DATA FROM HYDROGRAPH EASURED ON PENCIL FOLLOWER TO MAGNETIC
C TAPE FORMAT. INCLUDES CHECK LEVEL MEASUREMENTS. MORE THAN ONE HYDROGRAPH
C CAN BE STORED ON SAME TAPE
            ODIMENSION IDENP(20),KPR(20),PMIN(20),WWL(20),IDENT(20),XT(350), T 2
            IYL(350),ACLEV(350),ACMIN(350),TIMC(100),IYRAC(350),IYRT(20), T 3
            2ACLEVT(20),ACMINT(20),IDENTT(20),F(10),IDDD(20),IDTEST(20)
            OCOMMON OLEV(020),ALEV(02U),MTHCK(O20),IDAYCK(O20),KHRCK(020),
                    T 5
            1MINCK(020),KYRCK(020),CORR(C20),LI,L2,L3,L4,L5,TIM(020) T 6
            INTEGER Z,Q,G,GG,END
C ASSIGN LOGICAL UNIT NUMBERS 02 = OLD TAPE, 03 = NEW TAPE
            Ll=03
                                    T 8
            2=02 T O
            L3 = 60 T T 10
            L4 = 61 T Il
            L5=59
                T }1
            REWIND L2
            REWINU LI
            NBEG = 1
                                    14
            END = 1
            JJ.JJ=1
            IDADD = 0
C READ BAROGRAPH/HYDROGRAPH CONTROL CARD. IF DATA IS BAROMETRIC IBAROM = 1
C IF DATA IS HYDROGRAPHIC IBAKOM= 2 FOR BAROGRAPHS,BARTIMF = TIME SCALE ,
C INCHES/DAY, BARPF = PRESSURE SCALE,,LINEAR INCHES/INCH PRESSURE, SENCHAR
C =CHART CENTRE IN INCHES OF PRESSURE ,PENRAD = PEN RADIUS, INCHES.
            READ (L3,120) IBAROM,BARTIMF,BARPF,SENCHAR,PENRAD (140. MARTMF/1440. 
```



```
C CHECK OLD TAPE IDENT.
            READ (L3,100) I, IDREEL T 19
C I = I IF TAPE ALREADY EXISTS. I = 2 IF NO TAPE
            GO TO (I,Z) I
    1 L8 = L5 T 21
    3 READ (L1) IDCHK i 22
            IF (IDCHK.EQ.IDREEL)2,4 (L,IOI) LI T 23
            IF (IDCHK.EQ.IDREEL)2,4 
            PAUSE 1
            IF(L8.EQ.L4) 5,6
            6 L8 = L4
                GO TO 3
            GO TO (I,己) I - \ 20
            #
            2 ~ W R I T E ~ ( L 2 ) ~ I D R E E L ~ T ~ 2 9 ~
C TRANSFER OLD DATA FROM L1 TO L2
                            GO TO (7,12)I T 30
    7 REAU (LI) IDENTK T 31
            READ (L1) IDENTK,ELEV I 32
            WR1IE (L2) IDENIK T 33
            WRITE. (L2) IDFNTK,ELEV T 34
    515 READ (L3,130) IDADD
    1.3 READ (Ll) (IDENP(J),KPR(J),PMIN(J),WWL(J),J=1,18)
                IF (IDENTK.FQ.IDFNP(1)) 9,lO T 36
    9 IF (IDADD) 519,509,519
    51% DO 511 J = 2,18
        IF (IDENP(J).EQ.0) 512,511
    511 CONTINUE
        GO TO 509
    512 IF (IDENP(J-1).EQ.IDADD) 513,509
    513 K = J-1
        DO 510 J = 1,K
        IDDD(J) = IDENP(J)
```

```
            IYRT(J) = KPR(J)
            ACMINT(J) = FMIN(JT
    510 ACLEVT(J) = WWL(J)
            K = K+1
            IDDD(K) = IDDD(K-1)
            TYRI (K) = IYRT(K-1)
            ACLEVT(K) = ACLEVT(K-1)
            ACMTNTTKT = -IOO.
            NBEG = K+1
            GO TO 12
    509 WRITE (L2) (IDENP(J),KPR(J),PMIN(J),WWL(J),J=1,18)
            50 TO T3
    10 IF (IDENP(1).GT.0) 11,12
                        T 38
    I1 DO IDENP(1).GT.O) 11,12 OM
    11 DO 14 J = 1,T8 % 40
            IDENT(J)=KPR(J)=0 T T 41
    T4 PMTNTJ = WWLTJT = 0.0 % % 42
    IDENT(1)=IDENP(1)
    WRITE ח2T TIDENT(J),RPR(J,PMIN(J),WWLTJ,J=1,18) T 44
    READ (L1) IDENTK,ELEV T 45
    WRITE (LZ) IDENTK,ELEV T 46
    GO TO 13 T 47
C CLD DATA TRANSFERTED
C READ NEW IDENTIFICATION AND M.P. ELEVATION
    12 READ (L3,110) K,IDENTK,ELMP - % 48
            IDTEST(JJJJ)=IDENTK
            JJJJ= ЈJJJT+T
            z = 0
C FOR BAROGRAPHS ELMP=0.0
            IF (K.EQ.4) 15,16 T 49
        16 IF (K.EQ.5)92,526
    526 WRITE (L4,102)
            GOTO-5
        15 GO TO (163,164) IBAROM T 51
    163 WRITE TL4,121] IDENTK
    GO TO 162 T }5
    T 53
    164 WRITETL4,122) IDENTK
    162 IF(IDENTK.EQ.IDADD) 601,1162
    6OT WRITE [E4,131)
    GO TO 60?
1162 WRTTE (Ľ) 1DENTK
    WRITE (L2) IDENTK,ELMP T 57
C READ CHECK LEVEL MEASUREMENTS
    6 0 2 N = 0
            DO 30J=1,20 re r 59
            OLEV(J) = ALEV(J) = 0.0 T 60
        30 MTHCK(J)=KYRCK(J)= IDAYCK(J)= KHRCK(J)=MINCK(J)=0 T 61
        23 READ (L3,103) K,ID ,KYR,MTH,IDAY,KHR,MIN,OBLEV,ABLEV T 62
C
                                    CARD TYPE 3
    17 IF (KYR.EQ.O) 19,20
    18 IF (K.FQ.3) 21,22,20 T 64
    18 IF (K.EQ.3) 21,22 O. T 65
    21 N=N+1
        OLEV(N)=OBLEV 隹 年 67
        T }6
        ALEV(N) = ABLEV
        T 68
        KYRCK(N) = KYR % 69
        MTHCK(N) = MTH
        T 70
        IDAYCK(N)= IDAY TR T1 T
        KHRCK(N) = KHR T 72
        MINCK(N) = MIN
        GO IO 23
        T 73
    20 WRITE (L4,104)
        GO TO 5
        T}7
        T }7
```



```
    T 76
```

```
            GO TO 5 T 78
    19 WRITE (L4,106)
    T 79
        130 FORMAT (I7)
        100 FORMAT (11,I7) T 80
    101 FORMAT (35HIWRONG TAPE MOUNTED ON LOGICAL UNIT,13) T 81
    T10 FORMAT (III,I7, -F8.3) T 82
    102 FORMAT (51H WRONG CARD NUMBER ON TYPE 4 CARD OR NO TYPE 4 CARD) T }8
    103 FORMAT (I1,I7,5I2,2F6.3)
    104 FORMAT (33H WRONG NUMBER ON LEVEL CHECK CARD) T 85
    105 FORMAT (28H NO YEAR ON LEVEL CHECX CARD) I 86
    106 FORMAT (28H LEVEL CHECK CARDS ACCEPTED ). T 87
    120 FORMAT(I5,4F5.0)
    121 FORMAT (1H1,60X,13HBAROGRAPH NO, I7)
    T`88
    T 89
    72-FORMAT(TH1,60X,14HHYDROGRAPH NO ,I7) i 90
    131 FORMAT(41H THIS RUN IS AN ADDITION TO EXISTING DATA)
C COMPUTE CORRECTTONFACTORS FOR WATER LEVELS FROM LEVEL CHECK CARDS 
C CORRECTION FACTORS NOW IN CORE
C READ FIRST CARD TYPE 2
        91MN=1 (192
            Q=1 I 93
            READD(L3,IO7)K,ID,KYR,MTH,IDAY,KHR,MIN,BLEV,XTB,YLBE T T 94
            IF (K.EQ.2) 40,41
```



```
    141 WRITE (L4,108) T 97
    GOTO 5
T 97
    142 END = 2
    IF(1DAOD) 889,889,516
    E16 END = 3
    GOTO 889 T100
        40 IF (ID.EQ.IDENTK) 42,43 TlOl
        43WRITE (L4,109) KYR,MTH,IDAY,KHR,MIN,ID T102
            T103
        42 CALL TIMCONTKYR,MTH,IDAY,KHR,MINOBTI T104
            IF (2) 998,151,998 TlO5
    998 IF (BT.EQ.ET)ILI,152 % M N T106 
    998 IF (BT.EQ.ET)151,152 
    152MN = 2
    XTCIT=-100:
T108
    ACMIN(1)=-100. Tl09
    Q=2* Tl10
    151 KBYR = KYR T111
C READ SET OF HYDROGRAPH VALUES
            Z=1
                            T112
            N}=\overline{MN
        50NU = N+6 Tl14
        READ (L3,III) K,ID,TXT(IN),YLIIN),IN=N,NU) T115
        IF(XT(N).EQ.O.0)44,45 T116
    45 IF(K.EQ.1) 46,47
    4 7 \text { WRITE (L4,112) KYR,MTH,IDAY T118}
    GOTO.5
T117
    T119
    46 IF(ID.EQ.IDENTK) 48,49 T120
    49WRITE (L4,1T3)KYR,MTH,IDAY" T121
    GO TO 5 Tl22
    4 8 N = N + 7
        T123
    GOTO50 T124
C ONE SET OF HYDROGRAPH DATA READ IN
C READ SECOND TYPE 2 CARD
    44 READ(L3,107) K,ID,KYR,MTH,IDAY,KHR,MIN,CLEV,XTE,YLE T125
        IF(K.EQ.2) 51,52 Tl26
    52 WRITE (L4,108) T127
    GO-TO 5
    51 IF (ID.EQ.IDENTK) 53,54
    T128
    54 WRITE (L4,109) KYR,MTH,IDAY,KHR,MIN,ID T130
        GO TO 5
    53 CALL TIMCON (KYR,MTH,IDAY,KHR,MIN,ET) T132
        KEYR = KYR 
    T133
```

```
    DUM1 = FLOATF ((KBYR+1900)/4) T134
    DUM2 = FLOATF(KBYR +1900)/4.
                                    T135
    IF (KBYR - KEYR ) 55,56,57
    T136
C ACLEV(IB),ACMIN(IB),IYRAC(IB) NOW CONTAIN COMPLETELY CORRECTED HYDROGRAPH SET
C TRANSFER HYDROGRAPH TO TAPE L2 (O3)
C CALCULATE LEVEL/TIME PAIRS FROM MEASUREMENTS
    57 WRITE (L4,114) KYR,MTH,IDAY
            GO TO 5
        55 IF(DUM1 EQ.DUM2) 58,59
        58 TET = ET + 527040.
        GO TO 60
        59 TET = ET + 525600.
            GO TO 60
        56 TET = ET
        60 TBT = BT
        C ENDPOINTS NOW CALCULATED TO SAME YEAR
            IN=Q
        263 IF (XT(IN).EQ.O.0)261,262
        262 IN = IN + 1
        GO TO 263
            ARE ENDPOINTS IN SANE YEAR
                T137
        T138
        T147
        IN=Q
        G=0
G=0
        DIFF1=SQRTF((XTB-XT(Q))**2+(YLB-YL(Q))**2)
        DIFF2=SURTF((XTE-XT(LAST))**2 +(YLE-YL(LAST))***2) Tl54
        IFIDIFF1.GT.10.1 700.701
    700 IF(DIFF2.GT.10.) 702,704
    703 WRITE (L4,135) KEYR,BT,KEYR,ET
    1 3 5 \text { FORMAT(/// 6OH BOTH CONTROL POINTS LESS THAN I MM. FRON GRAPH IN I TI58}
    INTERVAL ,1,10X,2(I7,F10.0), 2OHPROCESSING CONTINUED) Tl59
            GO TO 702
    701 IF(DIFF2.GT.10.) 705,703
    704 ALPHA = ATANF((XT(Q)-XTB)/(YL(Q)-YLB))
        GO TO 63
    705 ALPHA = ATANF((XT(LAST)-XTE)/(YL(LAST)-YLE))
        GO TO 63
    7020ALPHA=(ATANF((XT(Q)-XTB)/(YL(Q)-YLR))
        I+ATANF((XT(LAST)-XTE)/(YL(LAST)-YLE)))/2.
        63 IF(XT(IN).EQ.0.0)61,62
COMPUTE INDIVIDUAL POINTS
        6 2 \text { DELTA = ATANF((YL(IN)-YLB)/(XT(IN)-XTB)) T169}
        IF (XT(IN).LE.XTR) 751,752
    751 G=G+1
    752DD=SQRTF((YL(IN)-YLB)**2+(XT(IN)-XTB)**2)
        YY = YLB + DD*SINF(DELTA +AIRHHA)
        TT = XTB + DD*COSF(DELTA +ALPHA)
        T173
        ACLEV(IN)=BLEV + (CLEV-BLEV)*(YY-YLB)/(YLF-YLB) Tl75
        ACMIN(IN) = TBT + (TET-TBT)*(TT-XTB)/(XTE-XTB)
        GO TO (160,161) IBAROM
    160 H=ABSF(ACLEV(IN)-SENCHAR)*BARPF/PENRAD
        THETA = ATANF (H/SQRTF(1.-H**2))
        TTT = ACMIN(IN)-PENRAD*(1.-COSF(THETA))/BARTIMF
        ACMIN(IN) = TTT
    161 IN = IN + 1 T182.
        GO TO 63
C LEVEL/TIME NOW CALCULATED TO SAME YEAR
        61 1N= IN-1
        IF (DUM1.EQ.DUM2) 64,65
    6% ENDYR = 527040.
        GO TO 66
        T170
        T171
    (XT(IN)-X(B)**2) Tl72
        T172
        T175
        1176
        T177
        T178
        T181
T185
        65 ENDYR = 525600.
T187
C CALCULATE CORRECTION FACTODS TO SAME YEAR
        66 J = 1
T189
    75 IF (CORR(J).EQ.-100.) 67.68
T190
    68 IF (KYRCK(J)-KBYR) 71,69,70
T191
```

```
        DOM2=FLOAT(KYRCK(J)+1900)/4.
        IF (DOM1.EQ.DOM2)771,772
    771 TIMC(J)=TIM(J)-527040.
        GO TO 74
    772 TIMC(J)=TIM(J)-525600.
        GO TO }7
    70 IF (DUM1.EQ.DUM2) 72,73 T194
    T2 TIMC(J)=TIM(J) + 527040. Tl95
        GO TO 74 +
    73 TIMC(J) = TMMIJ) + 525600.
        GO TO 74
    69 TIM(1J) = IIM(J)
    74 J = J+1
        GO TO 75
C CORRECT WATER LEVELS
    67 DU 16 IB =Q,IN
        IF (CORR(1).EQ-100.1 76.77
    7% & (CORR(2).EQ.-100.) 78,79
    78 ACLEV(IB)=ACLEV(IB)+CORR(1) T205
        GO TO 76 T206
    79 J = 1 T207
        IF (ACMIN(IB).LT.TIMC(J)) 80,81
    800ACLEV(IB) = ACLEV(IB) +(ACMIN(IB)-TIMC(J))*(CORR(J+1)-CORR(J))
        1/(TIMC(J+1)-TIMC(J)) +CORR(J)
            GO TO 76
        T211
    81 IF (CORR(J+1).EQ.-100.)82,83 T212
    83 IF (ACMIN(IB).LT.TIMC(J+1)) 80,84
    84 J = JT+
        T214
        GO TO 81 T215
    820ACLEV(IB) = ACLEV(IB) + (ACMINTIBT-TIMC(J-1))*(CORR(J)-CORR(J-1))/
        1(TIMC(J)-TIMC(J-1)) + CORR(J-1)
    70 CONTINUE T218
C ACLEV(IB),ACMIN(IB), IB=Q,IN NOW CONTAIN TRUE VALUES OF TIME AND WATER LEVEL
C FOR ONE SET OF DATA. TTME STILL IN TERMS OF KBYR.
C CHANGE ACMIN(IB) TO SEPARATE YEARS
            DO 85 IB=Q,IN T219
            IYRAC(IB) = KBYR T220
            IF(ACMIN(IB).GT.ENDYR) 86,85 T221
    86 IYRA(IIB)= KBYR + 1 T222
            ACMIN(IB) = ACMIN(IB) - ENDYR T223
    85 CONTINUF T224
        IN = IN-1-G T225
        GG=G+1 T226
        DO 440 IB=Q,IN T227
        IQ=IB+GG T228
        IYRAC(IB) = IYRAC(IQ) T229
        ACMIN(1B)=ACMIN(IQ) T230
        440 ACLEV(IB)=ACLEV(IQ) T231
        IC = 1 T232
    90IYRT(NBEG)=IYRAC(IC) T233
        ACLEVT(NBEG)= ACLEV(IC.) T234
        ACMINT(NPEG)=ACMIN(IC) T235
        1DDD(NREG)= IDFNTK T236
        IC IC + I T237
        IF (IC.GT.IN) 87,88 T238
    88 NBEG = NBEG + 1 T239
            IF TNBEG.GT.18) 89,90 T<40
    889 DO 500 IZ=NBEG,18 T241
        IDDD(IZ)=IYRT(IZ)=0 T242
    500 ACMINT(IZ)=ACLEVT(IZ)=0.0 T243
    89 WRITE(L2) (IDDD(IZ) ,IYRT(IZ),ACMINT(IZ),ACLEVT(IZ),IZ=1,18) T244
        NBEG = 1
        T245
        GO TO (90,92,515) END
    87 NBEG = NBFG + 1 T247
        IF (NBEG.GI.18) 999,91 T248
999 WRITE(L2) (IDDD(IZ),IYRT(IZ),ACMINT(IZ),ACLEVT(IZ),IZ=1,18) T249
    N゙BEG = 1 T250
    GO TO 91 T251
```

$92 \mathrm{DO} 93 \mathrm{IZ}=1,18$ 1252
IDENTT(IZ) $=I Y R T(I Z)=0$ T253
93 ACMINT(IZ) = ACLEVT(IZ) $=0.0$ T254
WRITE (L2) (IDENTT(IZ), IYRT(IZ), ACMINT(IZ), ACLEVT(IZ), 12=1,18) T255
READ (L3,118)(F(KI),KI=1,8) T256
DO $94 \mathrm{KI}=1,8$ T257
If (FIKI).EQ.0.0194,96 T258
94 CONTINUE T259
WRITE (L4,119) T260
GO TO 97 T261
96 WRITE (L4,115) T262
97 JJJJ=JJJ」ー1
DO $190 \mathrm{JJ=1}$: JJJ J
CALL TEST(IDTEST(JJ))
190 REWIND L2 STOPT265
5 READ (L3,116) IA, IB T266
IF (IA.EQ.O.AND.IB.EQ.0) 98.5 T267
98 READ (L3,116) IC,IE T268
IF (IC.EQ.O.AND.IF.EQ.O) 99.5 T269
99 WRITE (L4,117) T270
107 FORMAT(I1,I7,5I2,F6.3,2F4.0) T271
108 FORMA $152 H$ WRONG CARD NO ON IYPE 2 CARD OR MISSING TYPE 2 (ARD) T272
109 FORMAT $141 H$ WRONG WELL IDENTIFICATION ON TYPE 2 CARD,5I2,5X,I7 T273
111 FORMAT(11,17,8X,14F4.0) T274
$1120 F O R M A T 165 H$ HYDROGRAPH CARD NOT TYPE 1 OR MISSING, AFTER TYPE 2 CAR T275
1D, DATE ,3I2) 1276
$1130 F O R M A T 157 H$ WRONG IDENT ON HYDROGRAPH CARD AFTER TYPE 2 CARD, DATE T277
114 FORMAT(34H TYPE 2 CARDS NOT IN SEQUENCE AT , 3 I 21 $T 278$
T 279
118 FORMAT(8F10.0) T280
119 FORMAT(///21H PROCESSING COMPLETED) T281
115 FORMAT (2OH LAST (ARD NOT BLANK) T282
116 FORMAT(I1,17) T283
117 FORMAT (///35H PROCESSING TERMINATED DUE TO ERROR) T284
REWIND L 2 T285
REWIND LI
STOP $T 286$
END T287
SUBROUTINE CORRFAC C 1
OCOMMON OLEV(O20), ALEV(O20), MTHCK(O20), IDAYCK(020), KHRCK(O20), C 2
1MINCK (O20), KYRCK(O2C), CORR (O20),L1,L2,L3,L4,L5,TIM(O20) DIMENSION N(15) C $\quad 3$

 DO \(99 \mathrm{~J}=1,20\)
 DO $99 \mathrm{~J}=1,20$C 5
$99 \operatorname{CORR}(J)=-100.0$ c 6$M=0$
DO $1 \mathrm{~J}=1,20$
IF (KYRCK(J).EQ.0) 2,3
$M=M+1$1 CONTINUEC 7
C 10C 92 IF (M.EO.0) 4, 5
4 WRITE (L4,100) C 12
CORR(1) $=-100.0$
KYRCK(1) $=-1$
TIM(1) $=0.0$
$M=1$
GO TO 7
5 IF (M.EQ.1) 6,14
C 13C 14
C 15C 16C 17(186 WRITE (L4,101)C 19
C 20C CONVERT TINE VALUES TO MINUTES
14 DO $9 \mathrm{~J}=1 \mathrm{M}$ C 21
9 CALL TIMCON (KYRCK(J),MTHCK(J), IDAYCK(J),KHRCK(J),MINCK(J),TIM(J)) C 22
C PUT OBSERVATIONS IN TIME SEQUENCE
IF (M.EQ.1)47,43C 23
$43 \mathrm{DO} 10 \mathrm{Jl}=1, \mathrm{M}$ C 24
DO $10 \mathrm{~J}=2, \mathrm{M}$ C 25

```
        IF (KYRCK(J).LT.KYRCK(J-1)) 12,11 C 26
    12 IT1 = KYRCK(J)
        TEMOL = OLEV(J)
        TEMAC = ALEV(J)
        TEMTIM = TIM(J)
        KYRCK(J) = KYRCK(J-1)
        TIM(J) = TIM(J-1)
        OLFV(J)=CLEV(J-1)
        ALEV(J) = ALEV(J-l)
        KYRCK(J-1)= IT1
        TIM(J-1) = TEMTIN
        OLEV (J-1) = TEMOL
        ALEV(J-1) = TEMAC
        GO TO 10
    11 IF (KYRCK(J).EG.KYRCK(J-1))13,10
    13 IF (TIM(J).LT.TIM(J-1))15,10
    15 IT1 = KYRCK(J)
    TEMTIM = TIM(J)
    TEMOL = OLEV(J)
    TEMAC = ALEV(J)
        KYRCK(J) = KYRCK(J-1)
        TIMMJ)= TMM(J-1)
        OLEV(J)=OLEV(J-1)
        ALEV(J)=ALEV(J-1)
        KYRCK(J-1)= ITI
        TIM(J-1) = TEMTIN:
        OLEV(J-1) = TEMOL
        ALEV(J-1) = TEMAC
    10 CONTINUF
C WATER LEVEL CHECKS NOW IN TIME AND yEAR SEQUENCE
C CALCULATE CORRECTION FACTORS
    47 DO 16 J = l,M C 55
    16 CORR(J) = ALEV(J) - OLEV(J) C 56
C PRINT CORRECTION FACTORS
    7 DO 17 J = 1,M
    17 WRITE (L4,102) KYRCK(J),TIM(J),ALEV(J),OLEV(J),CORR(J)
    100 FORMAT(/46H NO LEVEL CHECKS. NO CORRECTION TO LEVELS MADE:
    101 FORMAT(/43H ONE LEVEL CHECK. CONSTANT LEVEL CORRECTION)
    IUZOFORMAT////5H YEAR,I7, GHMINISTE,F&.0,12HACTUAL LEVEL,F10.4,14HOBSER
        IVED LEVEL,FTO.4,I6HLEVEL CORRECTION,F1O.4)
        RETURN
        END
        SUBROUTINE TIMCON (I JYR,I JMTH,I JDAY,I JHR,IJMIN,TIM) T l
        DIMENSION N(15)
        N(1)=N(3)=N(5)=N(7)=N(8)=N(10)=N(12)=31
        N(4)=N(6)=N(9)=N(11)=30
        N(2)=28
        DUM1 = FLCATF((IJYR+1900)/4)
        UUM2 = FLOATF(IJYR+1900)/4.
        IF (DUM1.EQ.DUM2) 10,11
    10N(2)=29
    11 ITOP = IJMTH -1
        IDAY = 0
        L=0
    14 IF (L.GT.ITOP) 13,121
121 IF(L.EQ.0)15,12
    12 IDAY = IDAY + N(L)
    15 L=L+1
    GO TO 14
    13 IDAY = IDAY + IJDAY -1
        TIM = 1440.*FLOATF(IDAY) +60.*FLOATF(IJHR) FFLOATF(IJMIN)
        RETURN
    END T 21
        SUBROUTINE TEST (IDENTK)
        DIMENSION ID(20),KYR(20),TIM(20),WL(20) TS 2
        REWIND 02 TS
```

```
    RFAD (02) IDT
                                    TS 4
    WRITE (61,2) IDT
TS 5
    17 READ (02) IDW
    115 IF (IOW.EQ.IDENTK) 15,17
    15 WRITE (61,2) IDW
        READ (02) IDW, EL
        TS 8
        WRITE (61,3) IDW,EL
    13 READ (02) (ID(J),KYR(J),TIM(J),WL(J),J=1,18)
        IF (ID(1).EQ.0) 16,12
        TS 9
        TS 10
        TS 11
    1< IF (ID(1).EQ.1DW) 112,14
    14 IDW = ID(1)
        GO TO 115
    112 WRITE (61,4) (ID(J),KYR(J).TIM(J),WL(J),J=1,18)
        GO TO 13
    16 REWIND 2
        RETURN
    2 FORMAT (I7)
    3 FORMAT (I7,F10.3)
    4 FORMAT ((4)2I7,2F9.2)))
        END FINTS
            FINIS
```


Addendum

The D-Mac pencil follower, Model PF 10, is a more recent instrument style than the D-Mac PF 10,000 . The working area on the reading table is larger, having dimensions of 40 inches by 40 inches and the digitizer coordinates vary from 0000 to 9999 in both the X and Y coordinate directions. The pencil follower interfaces with an IBM 029 key-punch.

The standard 8-digit electronic console has an additional feature, an incremental control for x axis. The incremental control is activated by an ON-OFF switch and a selector switch located inside the front display panel. The selector switch has positions from 1 to 9 and presets the interval of X required before a reading is taken. The X coordinate display on the console consists of four digits and the selector switch affects the "tens" digit. For example, if the selector switch is in position 2, this means that if the
stylus moves a distance of 20 units horizontally, the digitizer will automatically take a reading. This feature is in addition to the line/position mode of operation. The stylus also has a better "following" action than the Model PF 10,000. This 'following" action will prevail unless the operator has moved the stylus off the working area.

Due to the change in the key-punch model, a different drum card is used (because some operational codes have been changed), see Figure 11. The drum card performs the same function as the other drum card for the 026 key-punch. The patch cords in the back of the console must also be connected in the correct fashion for this particular drum card. The key-punch must operate in the prog. 1 mode position.

As to digitizer operation, this is identical to that described in Part 2 of the report.

1

I

100
 ■

222
33

55

88

TECHNÍCAL BULLETIN SERIES

No. 1 Natural flow of North Saskatchewan River at Alberta - Saskatchewan boundary by the rim station method. E. P. Collier and A. Coulson, October 1965.*

Discusses methods of estimating the natural flow of the North Saskatchewan River at the provincial boundary by simple regression with the flow at Rocky Mountain House and also by multiple regression techniques involving precipitation.

No. 2 LACOR - Program for streamflow correlation. R. O'N. Lyons, November 1965.* A program for the IBM 1620 computer to correlate streamflow records in terms of deviations in log units from the geometric mean of each calendar month's discharges.

No. 3 Tables for computing and plotting flood frequency curves. A. Coulson, 1966. A compilation of tables for the computation and plotting of flood frequency curves according to the first asymptotic distribution of extreme values (the Gumbel method). A worked example of the use of the tables is included.

No. 4 Flood frequencies of Nova Scotia streams. A. Coulson, 1967.*
Recorded flood flow have been analysed on a regional basis and a method for estimating the flood frequency curve for any stream in Nova Scotia is outlined.

No. 5 Measurement of the physical characteristics of drainage basins. A. Coulson and P. N. Gross, 1967.

Methods of obtaining quantitative descriptions of certain physical characteristics of drainage basins are outlined using as examples Marmot Creek and Streeter Creek two of the experimental basins of the East Slopes (Alberta) Watershed Research Program.

No. 6 Hydrologic zones in the headwaters of the Saskatchewan River. D. A. Davis and A. Coulson, 1967.

The Saskatchewan River headwaters area of Alberta has been divided into seven by hydrological similar zones, based on correlations of mean monthly recorded stream discharge.

No. 7 Estimating runoff in Southern Ontario. A. Coulson, 1967.
Methods of estimating the minoff and its distribution in ungauged streams and in streams with short periods of record in the area of Southern Ontario south of the Canadian shield.

No. 8 Tables for computing and plotting drought frequency curves. W. Q. Chin, 1967. A compilation of tables for the computation and plotting of low flow frequency curves by both the third asymptotic distribution and the Pearson Type III distribution. Worked examples are included.

No. 9 Flood Frequency analysis for the New Brunswick - Gaspé region. E. P. Collier and G. A. Nix.

Presents a method of estimating the flood frequency curve from basin characteristics for any stream in a large part of New Brunswick and the Gaspe area of Quebec.

No. 10 Diefenbaker Lake - Effects of bank erosion on storage capacity. R. O. Van Everdingen. Discussion of the factors causing bank erosion on Diefenbaker Lake and their effect on the storage capacity of the lake.

* Out of print. Photo copies will be provided, if requested.

TECHNICAL BULLETIN SERIES (Cont'd)

No. 11 Some uses of a digital graph plotter in hydrology. G. W. White. Applications of computer-digital graph plotters in the preparation of graphical representation of large quantities of related data. Includes some programs and examples.

No: 12 Sediment surveys in Canada. W. Stichling and T. F. Smith.
An outline of the Sediment Survey Program of the Water Survey of Canada, including methods, instrumentation and data available.

No. 13 Climatology studies of Baffin Island, Northwest Territories. R.G. Barry and S. Fogarasi. A report of the results of a program of climatological investigations in Baffin Istand.

No. 14 Hydrogeological data for Good Spirit Lake Drainage Basin, Saskatchewan. R.A. Freeze. Presents the first water balance for the Good Spirit Lake Drainage Basin and a discussion of the methods used in the investigations.

Copies of this bulletin may be obtained by writing to:

Director,
Inland Waters Branch,
Department of Energy,
Mines and Resources,
588 Booth Street,
Ottawa, Ont.

