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ABSTRACT 

It is now generaliy aocepted that traditional empiiical soiutions 

to flood, dtought, and storage probiems are inadequate-- On the other hand, 

‘ 

analytical methods of solution are often intractable and therefore cannot 
» 

' “ 
.

— 

i 

_ 

be used in teal-life problems. A third solution, data generation or 

simulation, offers a computationally easy and highly efficient alternative. 

This report summatizes the background to simuiation and shows some of the 

many methods of generating data now availablei



' Data Gi‘e1zem<tingiMet:/;2:ocls~‘ici12 Hydrology 
; 

G.I__V. KIT-is and R.L..PENTLAN.D 

INTRODUCTION
” 

p"Any similarity betmeen the events described here and real streamflow 
records is not_a pure;and sublime coincidence but rather the result of 
deliberate forethought;”- Fiering (1967); 

In most cases there are three methods by uhich problems involving 
stochastic hydrology max be solved; 

" 
» g- » 

(a)‘ Empirical solutions 

(b) Analytical methods 

(c)5 Data generation 

The empirical method of problem solving has traditionally been.carried
_ 

out_with some variation of a mass curve analysis (Rippl,41883),‘ This approach 
has the following principal defects; ’ ‘

A 

”(i)' It is unrealistic to design a project on the basis of a single 
’-hydrologic sequence which is highly unlikely to re—occur during the 

lifetime of the project. A 
" " 

'tCii) The mass diagram does not facilitate the analysis of risk of water 
.shortages-during periods of low flow. 

(iii) The storage capacity determined from the Rippl_Method increases with 
I the length of the record, This causes arbitrary adjustments to be 

. made when the length of the historic record differs from the economic 
life of the proposed structure. 

’ 

' ' ‘ ' " 

For solving problems; analytical methods rapidly become very complex 
as the distributions of variables involved depart from the simplest possib1e{ 

. §ince in practical problems, distributions are invariably complex and hydrogfl 
.1ogists never have enough data, simulation or_data generation is often 
‘the only solution. 

p 

_ 

fiata generation can provide no new statistical information about 
a process} but by generating many long périqds.of record while preserving“ 
the properties of the original data; it can help solve the problem.‘ To'quote“



Fiering (1967, p. 2) again, "in practice, simulation is a tactical, not a 
strategic, victory over analytic insufficiency." ‘ 

Simulated data, if used properly, will prevent the "tailoring“-of 
water resources systems to one historical sequence of data and can thus, 
provide a realistic economic and engineering appraisal of.a project. That 
is, if a project is tested over only a single sequence of water supplies 
obtained from the historical record, then only a single estimate of its 
performance is obtained but no information is gained about its performance 
during other equally likely time series. ’ T 

.The general idea of simulation, or data generation,'is an old one. 
Even the more specific idea of simulation with the help of some particular 
stochastic process can be traced back several hundred years to near the 
beginning of probability theory, to Buffon's needle. However, the idea of 
using random sampling to estimate distribution functions is a more recent 
development due to 'Student‘ in 1908.’ ‘ 

— « 

'One of the first uses of data generation in hydrology was made by 
_,Hazen (1914). Later, Sudler (1927), employed decks of.cards and other sampling 
devices to generate non-historic flow'patterns which were then analyzed by 
the mass diagram method to develop probability distributions of reservoir 
capacities. ‘These researchers all recognized the usefulness of synthetically 
increasing the length of the hydrologic record. However, due to obvious 
flaws in the suggested methods, and because of computational difficulties, 
none of their methods.were generally accepted by water resources designers. 

DATA GENERATING 

In order to simulate any process involving a specified random 
process, a sequence of random_variables corresponding to some fixed 
distribution function, usually the normal, must be constructed. In order 
to obtain a value of a random variable with this fixed distribution function, 
uniformly distributed random numbers are commonly used. .The five steps 
involved in a simulation study then are: ' 

Model build¥up. , 

Generating uniformly distributed pseudo-random numbers. 
Randomness tests. 
Generating a set of normally distributed random numbers. 

l1'lU“¢'3U5> 

Testing generated data. 

Each of these steps are described on the following pages. 

s. A. Model Build—up 

General»Discussion 
Any phenomenon that undergoes continuous change, particularly with 

"respect to time, may be called a process. As practically all hydrologic 
phenomena change with time, they are hydrologic_processes.$ If the chance 
of occurrence of the variables involved in such a process 15 ignored and. 
.the mode} is considered to follow a definite law of certainty, but not.any_ 
.law of probability, the process and its model are described as deterministic.



If, on the other hand, the chance of occurrence of the variables is taken 
into consideration and the concept of probability is introduced in formulating 
the model, the process and the model are described as stochastic or probabil- 
istic. For example, conventional flood routing through a reservoir, and also 
unit hydrograph theory, are deterministic models since no probability theory 
is involved., Using a queuing theory model for probability routing, however, 

p 

is stochastic or probabilistic. 

Stochastic processes are generally considered to be timeédependent 
kwhile=probabi1istic processes are thought of as timerindepehdent, that is, 
the sequence of occurrence of the events involved in the process is ignored 
and the chance of their occurrence-is assumed to follow a definite probability 
distribution in which the variables are considered pure random. ‘For a time—’ 
dependent stochastic process, the sequence of occurrence of the variatés is- 
observed and used in the process. The variables may be either pure-random 

_"or non pure—random and the probability distribution of the variables may or_ 
may not vary with time. If pureerandpm,-the members of the time serie§=are. 
independent among themselves and so constitute a random.sequence. ~If non" 
pure-random, the members of the time series are dependent among themselves, 
and are composed of a deterministic component and a purearandom component, 
and so constitute a nonrandom sequence. ‘ ' 

The general model of a hydrologic process can be described as: 

X‘t=Rt‘+Pt+'E2-I-_'v - 
' ....L.(].) 

where Rt is a trend component, 
. 

p 

‘
_ 

Pt is a deterministic component, and 

at is a stochastic component. 

Generally a trend component can be isolated and eliminated and so model 
(l1.can be reduced to 

Xt = Pt * Et — 

‘ 

', 

c. 
I ..u...(2) 

for further analysis. 

In reality, all hydrologic processes are more or less stochastic; 
-they have been assumed deterministic or probabilistic only to simplify 
their analysis. Mathematically, a stochastic process is a family of random 
variables X(t) which is a function of time, or other parameters, and whose_, 
variate Xt is changing in time t within the range of time T. 

Quantitatively, the stochastic process may be a discrete or a 
continuous time series and can be sampled eitherncontinuously or at discrete 
or uniform intervals. A

- 

If the time series is sampled continuously, then there are two 
options open for analyzing the series: 

l.- to use an analog computer or, 

2. to digitize the data and use a digital computer; this, however,’ 
involves loss of information. »

' 

'-—~''r " - '
I



Similar1y,_if the time series is sampled at discrete intervals, then 
the data can be analyzed-by 

,1. .digital computer or, 

2; _by interpolating, using an analog compfiper. 

Hybrid computers are also available which accept analog fnnut'and produce 
digital ,_output. » 

- — ~ v g 3 

Just as the stochastic process can be divided'into-pureerandom and 
. non pure?random classes, so the deterministic-time series component can be ,." 
psubdivided, Most deterministic components are_periodic functions-but otherv 
functions such as time~trends»and~jumps exist._ The deciding-property of a” 
deterministic component is that the_value of the Variable can be.precisely —* 

of 33-. det—erm.ini:st.ic- ‘component C£=i.f,1..be:
* 

computed at any time by fitting a mathematical equation. ,The subdiyisions 

1. Trendj: This is;a unidirectiona1—diminishing or increasing 
change. ‘in. —fche.a~V.e_1_:aige vaslue bf anhidrologic VfaI.ffi.fab.1—e, suc.h’V5as’ the ‘-trend-bf 
annual precipitation often visible. A common, though often misused, method. 
of analyzing trend is by moving averages. 

2. Periodicity: This-represents a regular or oscillatory form of 
variation, such as the diurnal, seasonal, or secular changes that frequently 
exist in hydrologic data. These variations are of nearly constant length 
and may be analyzed by Fourier analysis. A Fourier series is used'toi 

. represent the time series X1,X2,...Xn with a total period T: _- 

-A0 n ‘ 

’21r't . 

’21r"tAi:- I. J’ 
‘

; 

Xt = §—1+ 
jgl 

Aj cos —Tl—-+ Bj sin —f;— ..tfut§3) 

where A0 is a cbnstant,*t'is the time, andythe amfilitudes A3»and3Bj5arei_“ 
I‘ 

expressed_ass 

Aj = E-‘X yt cos —%l£ M 

v ‘i ..;...(4) 
t=1 

_ 

’ ' 

A

. 

and " B3-l=% 2» yt_.s;in—%'-1-t— 
. 

' ’ 

_ 

>...'._..(_5)- 

where y "is the:deviation of Xf_from the arithmetic straight line trend 
' ‘for the period selected, and”with j E_1,2,;..n~being the number 

* of harmonics used in the analysis. ' 

The sum of the squared amplitudes is 

T .2: ? . 

I 

I 

. . . . .. 6~ M Z[AJ+B.JJ' 
: -<> 

and if the series is pure-random with no periodic fluctuations, the 
squared amplitude of the-series is .- 

. .1: -‘ 
e

‘ 

5402 V 

. 
5 

I 

.d
: Rm2_—rT . 

. H V 

,..._t,..(7) 

4_where 02 is the variance of the deviations y, andfl 
n” is the number of harmonics used.



stationarity 

Three tests of periodicity are available: 

(i) Schuster test: The hypothesis to be tested iszthat the series 

is not significantly different from pure-random. If k = Eli ,'then the_ 
. . m . 

probability in percent that Rjzis k times Rfizis given by Schuster (1898) as 

p5 = e-k 
, 

. . . . ..(8) 

Taking PS ? 10% as the level of significance;-the value of R? for a given 
series can-be tested to see if it differs from Rfizderived for a pure-random 
series.

_ 

' 

Corresponding to P5 = 10%; k = 2.303, thus R.2= 2.303Rfi‘= 9.21202/n, 
Substituting R-2 the value of j can be computed and the possible hidden 
periodicity found as T/j. '

A 

(ii) Walker test: According to Walker (1925); the probability that 
at least one squared amplitude Rjz will be k times Rmz is 

PW = 1 — (1—e4k) “/2 
c 

. . . . ..(9) 

which may be used for a periodicity test. as in the Schuster test. 

“’(iii) .Fisher test: Let R-2 be the largest pf the-squared amplitudes 
Rf; From Fisher (1929) the probability Pf-that RJ2/252 (where s2 is the 
unbiased estimate of 02) is greater than a given va1ue_g is: 

m’ - 

. . . 
. _. ‘ 

_ . _1 , Pf: Z c-1)1 Q) (1-mg)’ 
, 

......(1o) 
_ 

i=o 
_ 

' 

.

' 

where cm is the greatest integer less than 1/g and'j=1,2,I.. is the number 
of periods; The probability may be used for a periodicity test 
as in the Schuster test. ' "

' 

3. Persistence: Persistence means that successive members of a 
time-series are linked among themselves in some persistent manner resulting 
in non pure=randomness. Persistence is the tendency of variables to have a 
carryover effect, for the immediate antecedent conditions to influence later 
conditions. The persistence and carryover effect are related to the time 
interval between observations of such effects. f 

_ 

Z 

"' 

A simplification of the analysis of stochastic time series is 
obtained if, for all times t, statistical parameters of the distribution do 

a not change; Such processes, for which the statistics do not depend on the‘ 
c“instant t'at which the sample is being taken, are called stationary. A 
stationary process is thus a process in which ensemble averages, such as the 
autocovariance, are dependent only on the time difference T ='t1 — t2, that 

-is, they'are invariant with respect to'a translation of the time origin. 

Most hydrologic time series are regarded as being stationary because 
-—many mathematical methods developed for treating randomstime series either: 
require that the series be stationary or are concerned with reducing the 
series to approximate stationarity. -

c
'



Two types of stationarity are commonly distinguished; strict 
stationarity implies that all population parameters are independent of the 
time itself. This type of stationarity-is difficult to prove and so the 
idea of a weakly stationary process has been introduced in which the mean, 
variance, and autocorrelation are independent of time. This is sometimes 
termed a second order stationary process. Similarly, a process in which 
the third moment or the covariance of three values is independent of time,, 
is called a third order stationary series. ' -' 

Since most hydrologic processes in practice show periodic or seasonal? 
fluctuations, they do not satisfy even the.weakly stationary conditions of.’ 
having a constant mean. A modified model taking this into account is 
described by the equation 

X(t) = nxm + y(t) 
” 

_ 

....}(11) - 

where uX(t) is a stochastic property of some parameter of X, and 

y(t) is a stationary series. 

A process in which all the properties change with time is termed 
non-stationary or evolutive. ‘ 

— 

‘ 
A « 

As an example, an annual virgin flow with no significant change in 
river basin characteristics or climatic conditions for the period of record 
is considered as a stationary time series. If it is affected by man's 
activities in the river basin, or natural catastrophe, or slow modifications 
of the rainfall and runoff conditions the recorded or historical flow is a 
non—stationary time series. As such, the mathematics is complicated which 
further explains why most hydrologic processes are treated as stationary. 

As a test for stationarity, the sample may be split into four or 
five parts and the means and variance of each section tested to see if they 
are from the same population, or if they are significantly different from 
each other. _lf it is shown that all the parts are from the same population, 
then the series is called quasi-stationary or self-stationary. ‘ ' 

_ 

, 
‘Having discussed time series in general, the generation models so 

far developed can be briefly summarized. These models can be subdivided 
into single station analysis and multivariate analysis. 

Single Station Analysis 

, 
One of the simplest models to assume is a Markov linear model of

4 

lag one; that is, it is assumed that the variable at time t is a function 
.of_the antecedent value only. 

‘Zt=p1Zt_1-0-gt ..,'..(12) 

where S Z‘= z§—- is the standardized value of-the time series X.. 
I 

pl is the lag one autocorrelation coefficient of the time series. 
5 pis an independent random variable. 

In terms of variance, equation (12) can be expressed as 

var Zt = pl? var Zt_1 + var at 2 A 

.‘.--Q-(13).



Because var Zt = var Zt_1 = 1 the variance of the random component is 

var at = 1 - p12 .....(14) 

Therefore because it is more convenient in data generation to always use a 
random variable with unit variance, equation (12) can be modified to 

NI—- 

zt =’o1 zt_1 + (1 - 012) at » .....(15) 

This equation is suitable for generating values of a time series belonging 
to one population. If, however, the time series is composed of several 
sub—series, as for example monthly streamflow, where it might be said that 
the January streamflow belongs to a different population than the July 
streamflow, then equation (15) can be modified as: ' " 

+ pl 3%-(X—X) +.Sy (1 - 012) at. .,..,(l6) -<I

' 

N14 

.Y = 

where Y, Y and Sy are the flow to be simulated and the long term mean‘ 
and standard deviation of the flows in the month being simulated, 
and ' 

X, ii and Sx are the flow in the antecedent month and the long termj 
mean and standard deviation of the flows in the antecedent menth. 

W 1
. 

g 

In‘ equation (16), Sy (1 — p12)2 represents the standard error of 
estimation and at is a number drawn at random from a distribution with. 
mean = 0 and standard deviation = l.~ ’ ‘ 

The main disadvantage of this model is that, while preserving-the 
serial correlation of lag 1, it does not preserve the correlation between 
other nonéadjacent time periods.U Roesner and Yevjevich (1968) found that 
series of monthly runoff_in the western United States were well fitted by 
a Markov first order logarithmic model. Yagil (1963) introduced a method 
in which he considered annual flows to be independent of one another, and 
then generated monthly flows with a multiple lag model. ' " ' 

Let ai,j be the multiple regression coefficient of month j on month i 
‘ 

6 

(j = 2,3 —-— 12 and i = 1,2 --- (j 4 1)) ' 

Rj is the multiple correlation coefficient between month j and 
all preceding months. ‘ 

Xj is the mean historical flow in month j- 

e is a random normal deviate with a mean : O and a variance ='l. 

Sj is the standard deviation of the historieal flows of month j, 

j is the generated flow for month j in the year under consideration.



.Then, X can be computed as:_ 

X1 = X1 + 81 S1 
- _ 

4

1 

¥2 
= X2’* 91,2 (X1 - X1) + £2.32 (1 - R22)2

‘ 

' }.,..(17) 
,

.

i 

' 
A 1 

Xn ‘Kn ‘‘ 
a.1,n (X1 ' X13 * 5" ~"*‘n—1,n (Xn—1 “ in-1) Ennsniui ’ R592 

This model could easily be adapted to generate monthly flows without 
considering annual flows to be independent} A linear regression analysis 
with any number of desired lags could be done for each month, and the 
generation for each month carried out with an equation similar to the last 
equation above. Such an investigation was in fact described by Fiering 

' (l967);_ However, despite the introduction of 20 lags in his regression 
‘ana1ysis,_he still failed to introduce as much long—term persistence into 
his record as existed in historical flows. This weakness, that is, the lack 
of long—term persistence in generated streamflows, is common to all methods_ 
developed prior to 1968.. ’ 

Recent efforts have been concentrated on developing models'which 
would preserve long<term persistence. Mandelbrot and Wallis (1968) introduced 
a model termed ”self—similar fractional Brownian motionfl. ~This is"a form of 
moving average representation using an extremely long memory. 

MultivariatevAnalysis 

If flows at more than one site are to be generated, it is necessary. 
not only to take into account the interrelationship between flows at

9 

different stations but also to preserve the relevant eharacteristics at 
each site. Three multivariate models suggested by Eiering (1964), Beard. 
(1965); and Matalas (1967) are discussed in the following sub-sections: 

(a) Fiering T1964): _The original variables Xi, X2 Q-—‘Xn 
4 representing standardized flows at n stations are subjected to a principal 
component analysis. 

Z.1=- 311X1'+ 312 X2 " '" am Xn‘ 
Z2 = 321 Xi + - ‘ ‘ - ' ‘ ' ‘ ‘ "F a2n Xn
V 

I 
' 

‘ 
T

‘ 

, 

'_ .._...(1s) 

I . 

-Zn’: anlaxl T " ' ' ' ' ' ’ ' ';"' anh Xn 
The coefficients aij in the above equations are determined from.a 

standard eigenvector program. It can be shown that the pr1ncipa1_components 
Z1, Z2'—s- Zn are independent of each other. Therefore, the principal

_ 

components can be generated independently with any of the single station 
models described previously. The generated principal components can then 
be converted to standardized flows with the inverse matrix of eigenvectors.



(b) Beard (1965): Streamflows are first converted to standardv 
normal deviates by taking logarithms, standardizing,.and conversion with a 
Pearson Type III function. The deviates are then generated with a 
regression equation: 

. 

‘ 

.

1 

X1,t = aX1,t-.1 "'bYi + CX2-,t ‘‘ <1X3,t *"**" * St (1 “ R52 
..;...(19) 

where X1,t deviate being generated. 

X1,t,1 ‘antecedent deviate at station being generated. 

Yi logarithm of total flow for aLl stations for the 6 months 
'preceding the antecedent month, transformed to a normal standard 

«—deviate. - - « 

Xzgt, X3,t,'—-— Xngt = deviates for the same period at the other - 

stations. ‘ 
-

V 

~For each month, flows are generated at each station inrturn- Those 
~at the first station require only the first two terms on the right side of 
the equation, those at the second, the first three terms, etc. 

The generated normal deviates are finally reconverted into flows; 

(c) Matalas (1967): This model is an extension to Fiering's model. 
In addition to preserving the relevant correlations in the.month being 
generated, the model developed by Matalas also preserves the cross-correlations 
of lag 1. » 

: 
— » 

The basic equation (in matrix notation) given below_is used:v 

-Xj_+l=AXi+Be I 

. 

' 

. 

' -....,(20) 
. 

_ 

For m stations, Xi+1 and Xi are standardized flows in successive" 
time periods (each an m x 1 matrix). A and B are m x m matrices to be 
defined and e is an m x 1 matrix. —’

- 

The matrix M0 is defined as the variance—covariance matrix, and M1 
as the covariance matrix with a lag of 1 time period.. The matrix A can then 
be calculated. - 2 v- ’

~ 

~ M1 = A Mo 
_ 

V .....(21)- 

The matrix B can be calculated by solving the following equation 
with a principal component analysis: . - 

3 BT = M0 — M1 Mo-1 M1T_’ 7 .....(22) 

_ 

Young and Pisano (1968) presented a similar model which avoided the 
use of principal components.‘ A 

" 
< - 

B. Generating Uniformly Distributed Random Numbers 

There are, generally speaking, two methods of generating uniformly distributed random numbers. The first involves some physical form of 
generating device, such as radiation from radioactive substances or electron



noise in valves. The results of these random physical processes could then 
be transformed into a sequence of binary digits within a computer. The 
register in which the random numbers are generated is usually assigned an 
address within the general system of addresses in the computer storage. 
Then a reference to the random number device reduces to a reading from 
that-store in the machine.l The use of the random number device increases; 
the speed of a computation because at every stage Of operation of the 
computer a.new random number appears in a fixed standard cell. ‘There are, 
however, two disadvantages in_such devices: first, there is a risk of

A 

instability, which must be countered by constant preventative maintenance; 
second, the results of a computation on the machine can never be exactly 
reproduced. Other random number generators, not involving computers, are 
dice, roulette, and other number games, and taking numbers from aetelephohe 
directory. ‘ 

» 

’ 

~ 
'

‘ 

The second technique of generating uniformly distributed random 
numbers is to write a computer program to use some recurrence relation.’ 
VThis means that each successive number rj+1 is formed from the preceding _ 

number rj (or from a group of preceding numbers) by applying'some algorithm 
consisting of arithmetic and logical operations. Such a sequence of numbers 
is not random, but nevertheless, it may satisfy various statistical criteria 
of randomness,and so is termed pseudo-random. The advantages of_programming 
techniques for generating uniformly.distributed pseudograndom.numbers are 
the simplicity of the algorithm and the possibility of duplicating any 
computation. . 

' .1 .*i- ‘ L - 

"»Any program written to.compute uniformly distributed pseudo-random 
numbers must comply with the-folldwing three requirements: " ~ 

1. The program must generate numbers with extremely weak statistical 
autocorrelation.~ Any program written to produce a set of pseudo—random 
numbers-must satisfy the established criteria for testing randomness. 

. 2. The distribution function of the pseudo-random numbers generated 
by the program must approximate, as closely as possible; a_uniform,

' 

distribution. A ‘- 
. 

-' “ '
‘ 

3. The program must be stable. The distribution function of the 
pseudoerandom numbers must not change during the running of the program. 

A technique for generating uniformly distributed pseudoLrandom* 
numbers based on the extraction of middle digits of products was proposed‘ 
by J. von Neumann (1951), An arbitrary number do is taken as the start of 
the recurrence process, where_d0 consists of an even number, 2k, of binary 
digits. The number do is squared, producing a 4k digit number agg. The 
next number in the sequence, a1, is taken as the central 2k binary digits 
_[from the (k+l)th to the 3kth inclusive] bf Q32; A signifieant improvement 
in the results is obtained if a pair of numbers do and d1 are chosen 
arbitrarily, multiplied together and the central digits used as the number 
02. The process would then continue, calculating a3 from a1 and d2, etc. 

I 
Lehmer (l949) developed a more sophisticated method that produces 

a sequence which differs less from a uniform distribution than do the 
earlier methods. AEach_ofNthe;above methods by_truncation generates a 
periodic sequence, with a period not exceeding 22k.

10



A second technique for generating pseudo-random numbers is based on 
the application of residues. Lehmer (1949) used the recurrence relation , 

an+1 = kan(mod m) 
I 

» .....(23) 

The following recurrence relation has been used to generate pseudo-random 
numbers uniformly distributed over the interval (0,1): 

an+1 = 2"""2 
‘Bn ‘ 

p 

-...-(24) 

sn+1 = 517 Bn(mod 242) do .....(2s). 

with 80 = l. Such a relation has a period of around 2”° or approximately 
10 2. ’

» 

There are also several techniques for generating uniformly distributed 
pseudo-random numbers which exploit the peculiarities of particular computers, 
These methods are based on the imitation of random chaotic processes by 
shifting the digits of the mantissae of pseudoerandom numbers.

1 

Sobol (1958) pub1ished_a program that, in three operations, computes 
one number in the sequence: - 

1, A number uk_is multiplied by 1017. 

2. The product 1017 ak is shifted seven places to the left. 

3. The modulus of the resulting_number is normalized, and the 
result is taken as akil. . 4

. 

._ The I.B.M. 360 system uses a program in which go is any odd integer with nine or less digits. ,The;integer;ao is then multiplied by 65,539, lf 
the resulting integer is negative then the figure 2,147,483,647 is added.to 
it. The figure 65}539 (ac) (plus 2,147,483,647 if,necessary)-is now. . 

converted to floating point and multiplied by 0.4656613 x l0‘9. The result 
is a pseudo—random number belonging to a distribution function uniformly 
distributed between 0 and 1. This procedure has a periodicity of 229 terms. 

C. Randomness Tests 
Once a set of supposedly uniformly distributed random numbers or 

pseudo-random numbers have been generated¢it is necessary to subject them 
to various tests ofgtheir randomness, before using them. » 

Kendall and Babington-Smith_(l9S8, l939a, 1939b) have developed a 
series of four tests for checking the randomness of a distribution., In all 
tests the random numbers are classified according to criteria, which vary. 
‘from test to test, and the empirically generated distribution is compared 
with a theoretical distribution, generally using as means_of comparison the x2 criterion, the Kolmogorov criterion, and the m2 criterion; 

V 

l.« Fre,uency test; This consists of counting the numbers of 
pseudo-random num ers* eing sampled that fall within the intervals of a dissection of the domain of definition of the pseudo-random numbers. 
.Usua1ly'the range of the distribution is divided into ten or twenty equal intervals. 9
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2.. Serial test: The number of zeros and ones in the various?’ 
places of-the set-of supposedly random numbers being tested are-counted, 
In the case of random numbers, which are uniformly distributed over the; 
interval (0,1), the mathematical expectation_of the digits occurring in 
each place of the mantissa of a‘random number is 5'since the probability 
Of the occurrence of a'2ero or a one is %. » v. ‘ ~' ” 

3. Gap test: This is,a_sequential test in which the generated
1 lrandom numbers less than 5 are assigned to class A, and numbers greater 

than % are.assigned to class B. The sampled values of the numbers of each" 
class, which occur in sequences and the lengths of sequences ef-numbers of “ 

the first and second classes,.are compared with their theoretical limits. 

4. Poker test: The numbers of various combinations of_binary 
digits in a large sample set are counted. For example, the distribution 
test might be made on l0 binary places; ten zeros,_nine zeros, and one one, 

‘ eight zeros and two ones,—etc.~ 

If the supposedly random numbers are really pseudo-random,fi;e;, 
.have been generated by a computer program, then an additional test must be 
made to ensure that the pseudo4random_numbers imitate truly random numbers" 
ias far as periodicity parameters are concerned}_ It is advisable that thej ~ 

‘number of pseudo-random numbers used should not exceed.this periodicity, 
Wotherwise_the statistical process would be simu1ated‘by recurring pseudo- 
‘random numbers, - 

.‘ ’ 

Let the periodicity be L so that the first L successively generated 
pseudo-random numbers are distinct but the (L+l)th pseudoarandomfnumber 
coincides with one of the oi earlier numbers. Thereafter the sequence of‘ 
pseudo-random numbers, beginning with al and ending with dL,_wi1l recur 

,periodical1y.v For pseudo-random numbers distributed over the interval (0,l),‘ 
.'the number of distinct pseudoérandom numbers, N, available is}Nl= 21 where" 
ll is the number of digits in the mantissa on the computer, If successivep 

r lengths of the interval of aperiodicity L1, L2,.;gLm are arrived'at: 
.experimental1y using a certain-computer then the variable 

'

« \. 

—\r 

'1 
I 

b 

is 

_j ......(2e). 

will be distributed as Chi-square with Zm degrees of freedom, and”so a \ 

test using the Chi—square criterion will indicate the value of the length 
of the interval of aperiodicity. 

' ‘ 

A set of pseudo-random numberstwhich satisfies all these tests.is 
termed "1oca11¥ randofifi; 

A 
l 

’ V - 
‘ ‘ 

‘ 
” 

- 
' 

‘ ” 

D. "Generating Rendom‘Numbers.Fol1owing Other Distributions" 

Given a set U1, i = 1,2,... of random numbers uniformly distributed 
over the interval (0,1), it is possible to transform this set mathematically 
‘to a set of random numbers with any specified distribution. ‘First consider’ } 
the case in which the uniformly distributed randem numbers are used to 
generate a sequence of normally distributed random*numbers;

‘

12



. The most obvious approach to this transformation, as termed by 
Muller (1957), is the inverse method. To generate a normal deviate X from 
a uniform deviate U this approach derives an inverse relationship X = X(U), 
given that 

_u=-—~ e“ dt ' 
~ 

g 

.';...(27) 

The relation X = X(U) is approximated stepwise by dividing the 
interval of U(0,l) into sub—interva1s and using Chebyshev polynomials. 
If this approach is to be efficient, the approximations to X = X(U) should 
be designed to work over sub-intervals of U such that the lengths of sub. H 

intervals are a negative power of two for computers operating in the binary 
mode. At the expense of utilizing a large memory space, it is possible to 
develop a good.degree of accuracy with an extremely fast procedure. ‘ 

Box and Muller (1938) have developed a direct method of transformation 
that gives a higher degree of accuracy'than=the”inverse method, at a 
comparable speed. ‘If U1 and U2 are two-independent random numbers“from the- 
‘same uniformly distributed_density—function in the interval (0,1), then the 
random variables

, 

1 . 

'

. 

'» X1 (-2 1ogeU1)2 cos 2nU2 “ - 
- '{{u;.(28) 

[a 

‘and 
. X2 = (=2 1ogeU1)2 sin 2nU2 .....(29) 

wiil beta pair of independent random numbers from the same normal distribu- 
tion with mean zero and variance unity. This is justified from the inverse 
relationships » 

s V 

'

’ 

. 2 _ .. 
.A 

_ U1: 6 -(X1; X2?) . _..«..._.(so): 

1 ._' X ’ 

"U2=-E-tanlfi 4 i_ 
V 

t‘.....(31) 

from which the joint probabiiity density of X1, X2 is 

'(X12*X22)
. 

y _ 1 
X ' ‘ ’

~ 

fCX1.X2)'- 5;"? .....(32) 

f(x1’x2) =_1_e 2-_1__e ‘2 i 

'...,.('33) 

f(X1.X2) =..f—(xr1.) .‘f(x2) , 
_ 

' 

.....'.(3;4) 

ige. X1, and X2 are normally.distributed.with mean zero and variance unity 
and are independent. 

‘A rejection approach hg;.been originated by von Neumann (1951) and 
-b §_X §_bpare“generated from 

' déV¢19ped by Teichroew (1953); normal deviates.in the truncated region_ 

Y=—2b2(U1-%)2, 
A 

’ ‘ 

.....(3s)
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if loge U2 §_Y then the normal deviate is 

x = b(2u1 — 1), 
‘ 

p, ,..,..(36) 

if loge U2 > Y then the pair of uniformly distributed random numbers (U1,U2) 
is rejected and the process repeated. For the normal distribution, this is 
an inefficient generation technique, especially if precise tail values are 
required. The probability that a pair (U1,U2) wiil generate a normal 
deviate, that is, 

. 
P‘ [U2 ie —2b2(U1'§)2] 

I 

.V 
. ..”.(37) 

is assymptotically 

%} v/§:~ 
; 

' 

_ 

i ‘A. 

f..,, ;(ss): ,- 

A further method, known as "approximation by curve fitting" has — 

‘been developed by Teichroew (1953)» A fixed number of uniform deviates is 
summed and an improved approximate normal deviate is obtained using an 

iinterpolating Chebyshev polynomial; g .
. 

V 
The approximate normal deviate X appears, using a truncated series 

for ease of computation, as ‘ 

X e alr + a3r3,+ a5r5 + a7r7 + agr9 ';:.....(39)‘v 

wherefl a1 = 3.94984e138, 
, 

.,i _i I 

,

. 

a3 = 0.2524O8784,i
‘ 

a5 = 0.07652912,. 

a7 = 0.008355968, 

.'a9 = Q.029899776, 

and r = (2-5)/4 
" ‘ 5 ' j“ - ’ .,...(4o) 

12‘ ‘ *

‘ 

where ‘z.= X Ui 5- . . . . ..(41)' 
- i=1 — 

V 

- ;s 

and U1 being the uniformly distributed-random number as before. 

The disadvantage of this method is that the value of 2 must be 
restricted to the range (2,10), meaning that normal deviates cannot be 
generated’much beyond four standard deviations from the mean.‘

' 

;Schreider’(1960) lists a further algorithm, 

xx = z — ——3l———-(25 — 102? + 152) A 

.,. .’ ._..;,;.(42) 
a '134oon2
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. 

I n V 
>

‘ 

where Z = 2 U1 “ 
’ -----(43) 

. 1. ,1 

which for practical purposes needs n to be only 2 to give a very good_ 
approximation to the normal distribution, 

A methodrof rational approximation to transform a uniform deviate to a normal deviate has been suggested by Hastings (1965): 
' "(a§+.a:z+a2z2) V 

.

i 

X =Ax* (9) = Z ‘ 
(1+b1z+b2z +b3z3) ""‘(44). 

where Z = log 11 - .....(4S) qi. 

_ :2 
; 1 w 2 e 

. 

'

= am q ——~f--e ,0<q:0£ . “mm 
A 

. /5; V 
_ 

A
. 

— x(q)
p 

and a0 = 245155177 .. bl = 1.432788‘ 

.a1 5 0.802853 
’ ‘ qzié 0.189269‘ 

a2 = 0{010328 _ 

' 

.b3 =,o.oo13os 

This method is very reliable, generally producing an absolute error.of less than 4 x 10?”. However, faster procedures requiring less memory storage 
. are available. 

Probably the most well known transformation technique utilizes the 
Central Limit Theorem. Given a set of identically_distributed"variables 
U1, U2...Uk, with each having a_mathematica1 expectation of a* and a variance of (o*)2, then the sum 

x =lu1 + ug + ,.u 
’ 

7 

N 

....,(47) 

will be asymptotically norma1.with a mathematical expectation 

a = a*n “' 
_ 

~ .. 
J 

' 4. -. ‘ 

A ‘;L...(48) 

and standard deviation 
_.

1 

o = a*n§ . 
' " 5 ” ';....(49) 

An initial set of random variables uniformly distributed over the interval (0,1) will have a mean of 0,5 and a standard deviation of 

—§: ; therefore, the sum of'n of such random numbers will have an expected’ 
2 3 ' - 

’ 

— ~. ‘ 
« A 

‘value of 

a = 0-Sh , 
_ 

' 

.....(so) 
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A 

and a standard deviation of 

E‘ 3',’ ‘ 

g 
A 

p 
.....(51) 

If, however, the uniform distribution is machine generated; and 
therefore pseudoarandom, the standard deviation will be .

‘ 

1 ‘ 

‘Zk-1- p p_. 7, 
A 

'. 
g'_ 

vi 
;

_ 

0* = t-71 k+ . 

‘ 

y _;, - '.....(S2) 
2/? A 2n—1 

_ 

. 

s‘ ’ “ rs V

; 

where k is the number of digits in the mantissa of the computer; the standardi 
deviation of the sum of n.pseudo4random numbers will be "- 

.:;'~'1 n 2 +1 
.- 

p 

‘I 

- 

-I 

U—.2 
. I V 

>V a....(53) 

For most cases, where the pseudo~random numbers are generated with 
“an adequate number of digits, equation (51) will be morejthan~adequate.; 

An increase in the number, n, of terms in the summati9n,wil1 result_ 
A in the distribution of X being a better fit to the normal;‘although this 
u'will lead to an increase in the number of arithmetic operations needed for 
‘the-transformation.” 

, 
To produce a normal distribution with a mathematical expectation of: 

zerg and a variance of unity, a common expression is_ i 
.

I 

x é if U1 — 6,0 ; 
‘ ‘....;(54jf’, 

»
z 

The expectation is then seen to be 1%--to = Q and the standard deviation is=’} 

1‘4‘lZ.g ’ 

3 1 . 

The_problem of comparing the accuracy of this approach with others' 
1'is comp1icated.because.the Central Limit Theorem is concerned with an 
asymptotic convergence in probability. A direct measure of accuracy is" 
‘available by comparingithe actual distribution function ofkthe sum of a . 

~£inite number of uniform deviates to the limiting normal distribution function. 
For example, using equation (54), the probability of X beingggreater_than‘ 
h3.0_above the mean is-0 100700 x-1o=2. Yet this probability point, for a‘ 
normal distribution with.the Same mean and variance, gives a value of 3.0882. 

-g The differenee is —0.08§2. ‘. - 

p 

t... 

.Déspite.some loss of accuracy_above 3 standard3deviations,from the .' 
’ mean (which could be reduced by increasing n in equation (54)), the method is 
very convenient, quick; and requires.litt1e memory space. 

' 

. 
... . 

dNow consider two common cases in which the distribution to be 4 
generated is non-normal. 

“ ' 

(a)5nLog-normalzi For a 2 parameter logenormal distribution with*d 
the mean of the logarithms, Un, and the standard deviation of,the logarithms,

16



on, the value of any deviate is given by 

x__ = e “n + €j_Un p. _ 

a 
V 

. 
.l.‘. 

. 

ta 

1 . 

where ei is a standardized normally distributed random number; 

(b) A gamma distribution with 2 or 3-parameters: for any gamma 
distribution a deyiate can be defined as ‘

» 

0.

1 
||'l\/Jlx)

1 Xi=§ 5.2 
a 

._ .,,..(56) _.i ,, ,. 7 
, , 

.
_1 

where a is a multiple of 1/2. 

Using the gamma 2 parameter function the distribution is then - 

muX¢-1é‘mX 
t. 

a 
....;(B7) 

F5. 

or the gamma 3-parameter'function by 

p(x)-= 

._[_x;*:_;],. V 

.« 
PH)‘J%[&flade V 

;”.4m) 
ml? m‘ 

m isha scale factor, and 
V 

b is a lower boundary, 

To generate a gamma function of N values it is necessary to produce Zd; N normally distributed random numbers. — 

Finally; consider the case in which the random number distributiona to be generated is empirica1,.that is, it cannot be defined, or it is not ' worthwhile to define the distribution mathematically. If, for example, a simple linear regression equation 

ly 
: a + bx 

' 

;;...(59) 
were being used to relate two streamflow records, then in order to use one streamflow record to extend or fill in gaps in the second record it would ‘be necessary to'generate random numbers defined only over the period of joint record as 3 

6i = Y1 - 91 ,...,(6o) 
—where. _yi is the recorded streamflow, and 

91 is the computed streamflow.
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_being studied. Either_a theoretical distribution could be chosen, a priori, 
‘for some reason, or several distributions could be tested and the one. 

g 

A mathematical description of the distribution ofythe residuals is, 
not_easily available but the cumulative probability distribution can be 
easily plotted on linear graph paper, smoothed, and extrapolated to either 

‘ extreme§'=Similarly the cumulative probability distribution.of generated 
uniformly distributed random numbers can easily be plotted since this must 
be a straight line joining the points (0, min,), (1, max.) where the first 
coordinate in each bracket refers to cumulative probability and the second 
to the,expected minimum and maximum va1ues.of the residuals. Now, the graph 
is entered at the generated value of the uniformly distributed random number 
and the two cumulative probability distributions are used to convert this 
value to a random number following the empirical distribution of the original 
residuals. - 

' 1"‘
- 

The greatest inaccuracy-of the method occurs, of course, in the 
extension of the empirical distribution to its extremes; This extension 
of the empirical distribution can be either by extrapolation or,by fitting r 

a theoretical distribution. it ' 

,
_ 

In the latter case it would be most important that the theoretical 
distribution and the observed frequencies were well-matched at the extreme 

giving the best fit would be used. The Chi-square test of goodness of fit 
between empirical and theoretical distributions eou1d_be used-with weighted 
values of class observations, most weight being given to the class covering 
the extreme values, «The sum of the weights would be unity. 

E; Testing Generated Data 

Once a set of data has been generated to specified requirements, it 
must be tested to ensure that it meets those requirements and faithfully

' 

duplicates the statistical properties of the ‘parent’ data. Assuming that 
tests for circularity and extremes as well as the Kendall tests have been, 
carried out on the random numbers used in the generation, then the only , 

tests that are required at this stage are comparisons between properties" 
’ " 

of the generated data and the parent data such as the following. 
4 ‘* 

,1.‘ Comparison of basic statistics: ‘The basic statistics thatv 
should theoretically be preserved in the simulated data are twofold; 

a) Parameters of the probability distribution of the original 
data such as mean and variance. 

b) Parameters of the time dependence such as serial correlation 
coefficients, up to whatever order of lag was simulated. 

2. Autocorrelation test: The autocorrelation test should test 
calculated autocorrelation coefficients up to a lag of 25 or 30 units for 
both recorded and simulated data, and compare the two series; V 

3. Spectral analysis test: The spectrum demonstrates the proportion 
of the total variance contributed by each frequency (Granger; 1964).r The.'w, 
analysis may be carried out by applying harmonics to the autocorrelation

‘ 

function.to reveal cycles and long term trends. 
' ~ ‘~
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4. Test for long-term persistence: Hurst (1951, 1956), proposed 
a measure of long—term persistence as “ '

. 

m|w 

where R is the volume of storage necessary to maintain the average flow 
' 

for the period of record, 

.S is the standard deviation of the data, 

N is the number of years of record, and 

,K is a measure of persistence. 

_ 
The values of K computed for the observed and simulated data,should 

be compared. A 

‘
‘ 

5. ‘Duration analysis. 

6. kNon-parametric tests: 

a) Number of values above the mean compared to the_number of ‘ values below the'mean. ' ' 
’ ' 

bl; Number of quartile changes.
_ 

c), Cluster tést. 

CONCLUSION 

The report has covered the_background information necessary to the 
‘use of data generating techniques. Several of the techniques currently 
used have been described. ‘Most of these methods are available as computer 
programs and are relatively easy to use. One of the most important uses 
of data generation is in estimating floods, droughts or storage requirements 
at a given return period. While empirical or analytical techniques can 
give only one estimate of the design parameter, data generation can be used 
to obtain a best estimate of the design parameter and confidence limits on 
the estimate- ‘ 

- 

._ .: 

_ 
As an example of the efficiency of the data generation technique, consider the problem of estimating the maximum monthly discharge in any 

year, which will have a likely return period of, say, 190 years from a 
record consisting of 30 years of mean monthly flows. An empirical or analytical solution, such-as fitting a distribution to the annual maxima, 
would use only 30 pieces of information. On the other hand the data 
generation technique would use all 30 x 12 segments of information in order 
to simulate a sequence of data from which the required parameter could be.- 
determined. * 

The accuracy of the results of the data generation method depends 
on how accurately the recorded time series can be broken down into mathe- 
matically describable terms. The most important question is the distribution of the random component in the model. « . ~
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A further point of'interest is how to determine the number of 
deviates to simulate. :In many cases this can be determined from known 

_ A 

objectives or by comparing the cost of increasing the sample size with the 
V 
expected benefiits due to the increased accuracy.“ Chow and Ramaseshan; (1965), I 

describe a purely statistical technique; ". ' ‘ 
‘

J 

"”1£l¥ his the proportian of aisamfile size n from-a population which" 
can be estimated within an error level of a % of its true value at a B.% 

o_confidence level, then the required sample size is 

[5E]2:{%‘f%} 

where its is the standard normal deviate corresponding to the B % confidence7 
level:p__ 
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elements in limiting the eutrophication process. 

No. 27 An Automated Method for Determining Mercury in Water. P.D. Goulden and B.K. Afghan, 1970, 
A report describing a method for determining the mercury content in water containing 
mercury concentrations as low as 0.05 pg/l. 

No. 28 An Assessment of the Wave Agitation in the Small Boat Basin at the Canada Centre For 
- Inland Waters. T.M. Dick, 1970. 

A discussion of the results obtained from a model study of wave action in the small 
boat basin at the Canada Centre For Inland Waters, Burlington, Ontario. 

No. 29 Measurement of Discharge Under Ice Conditions. P.W. Strilaeff and J.H. Wedel, 1970. \ 

An outline of the difficulties encountered in the measurement of discharge under 
ice cover and a discussion of a possible technique for estimating river discharge 
using a single velocity in_a cross—section. 

No. 30 Prediction of Saturation Precipitation of Low Solubility Inorganic Salts from Subsurface - 
Waters under Changing Conditions of Total Concentration, Temperature and Pressure. 
R.0. van Everdingen, 1970. 

A report containing graphs that enable the determination of the degree of (under- 
or over~) saturation of aqueous solutions with respect to BaS04, CaS04, SrS0g, 
BaF2, CaF2 and MgF2 under a variety of conditions of temperature, pressure and total 
salt concentrations. Also presented are examples of the influence of temperature 
changes, dilution, evaporation, addition of common salt, and mixing, on the degree 
of saturation of the above solutions. 

No. 31 A Hydrologic Model of the Lake Ontario Local Drainage Basin. D. Witherspoon, 1970. 
A discussion of a hydrologic model proposed for the Lake Ontario local drainage 
area. The basic principles used in the model are those of water and energy balances. 
Using estimates of actual evaporation, realistic values of the regional moisture 
are obtained which, when routed, simulate the measured outflow. 

No. 32 Identification of Petroleum Products in Water. A. Demayo, 1970. 
A description of an extraction method used in the Water Quality Division laboratory 
to analyze water samples, and activated carbon samples through which water has been 
passed, for the presence of crude oil or other petroleum product. 

No. 33 Seasonal Variations, Sulphur Mountain Hot Springs, Banff, Alberta. R.0. van Everdingen, 
1970. 

A study of seasonal variations in the physical and chemical parameters of the sulfurous hot springs on Sulphur Mountain, near Banff, Alberta. In the absence of 
, accurate discharge measurements, only a Wninimum required” mixing ratio could be calculated; leading to minimum ion concentrations and'a minimum temperature for the cooler water.‘ a 

No. 34 Instrumentation for Study of Energy Budget of Rawson Lake. R. Chapil, l970. 
A report describing the equipment and procedures used, and some graphical results 
obtained mainly during 1960 in the Rawson Lake study, a hydrological study of'a small research basin in northwestern Ontario. 

No. 35 Precipitation of Heavy Metals from Natural and Synthetic Acidic Aqueous Solutions during Neutralization with Limestone. R.O. van Everdingen and J.A. Banner, 1970. 
A report describing a method in which iron, aluminum, manganese, copper, lead and 
zinc in natural and synthetic acidic water with H* concentrations ranging'from ’4.0 X 10‘3 to 6.3 x 10‘” are circulated through crushed limestone, resulting in the 
neutralization of the acidity and removal of varying amounts of the metals. 
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