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' ABSTRACT

It is now generally aécepted that traditional empirical soiutions
to flood, d%ought,‘and storage problems dre inadequafe,- On the other hand,
analytical methods of solution are often intractable and tﬁeref@re ¢annot
be used in real-life problems. A third solution, data éeneration or |
simulation, offers a computationally easy aﬁd highly efficient alternative.
This report summafizes the background to simuiation and shows some of the

many methods of generating data now available.




Data G‘en-era'»ting' Metb'ods;.z'n Hydrology

" G.W.KITE and R.L. PENTLAND

INTRODUCTION

"Any 51m11ar1ty between the events described here and real streamflow
records is not a pure and sublime c01nc1dence but rather the result of
dellberate forethought (1 F1er1ng (1967) .

In most cases there are three methods by wh1ch problems 1nvolv1ng
stochast1c hydrology may, be solved : y ,

(é)- Emp1r1ca1 solutlons
. (b) Analytical methods
(c)- Data'generation

The emp1r1cal method of problem solving has traditionally been. carrled
out with some variation of a mass curve analys1s (R1pp1 1883) " This approach
hds the following’ pr1nc1pal defects

”(i)' It is unreal1st1c ‘to de51gn a pro;ect on- the basis of a single
- -hydrologic sequence which ‘is highly un11ke1y to re- occur during the
11fet1me of the prOJect

'7(ii) The mass d1agram does not fac111tate the analys1s of rlsk of water
.shortages durlng per1ods of low flow.

(iii) "The storage capac1ty determ1ned from the Rippl Method increases with
' the length of the record., This causes arbitrary adjustments to be
. made when the length of the historic record d1ffers from the economic
life ‘of the proposed structure: '

For solv1ng problems, analyt1cal methods rapidly become very complex
as the distributions of variables involved depart from the simplest possible.
. Since in practical problems distributions are 1nvar1ably complex -and hydro-
~logists never have enough data; simulation or data generatlon is often
“the only‘solutlon »

Data generatlon can provide no new statistical information about

a process but by generating many long périods of record whilé preserving-
the propertles of the or1g1na1 data, it can help 'solve the problem © To quote™




Fiering:(1967 p. 2) again, "in practice, simulation is a tactical, not a
strategic, victory over analytlc insufficiency."

Simulated data, if used properly, will prevent the "tailoring" .of
water resources systems to one historical sequence of data and can thus
prov1de a realistic economic and englneerlng appraisal of a project. That
is, if a project is tested over only a single sequence of water supplies
obtalned from the historical record, then only a singlé estimate of its
performance is obtained but no 1nformat10n is gained about its performance
during other equally likely time series.

.The general ‘idea of simulation, or data genefatlon, is an old one.
Even the more spec1f1c idea of simulation with the help of some particular
stochastic process can be traced back several hundred years to near the
beginning of probability theory, to Buffon's needle. However, the idea of
using random sampling to estimate distribution functlons is a more recent
development due to 'Student”.in 1908. - :

One of the first uses of data generation in hydrology was made by
.Hazen (1914). Later, Sudler (1927), employed decks of cards and other sampling
devices to generate non-historic flow patterns which were then analyzed by

the mass dlagram method to develop probability distributiofis of reservoir
capac1t1es - These researchers all recognized the usefulness of synthetically
increasing the length of the hydrologic record. However, due to obvious

flaws in the suggested methods, and because of computational difficulties,

none of their methods were generally accepted by water resources designers.

DATA GENERATING

In order to simulate any process involving a Specified Tandom
process, a sequence of random variables corresponding to some fixed
distribution function, usually the normal, must be constructed. In order
to obtain a value of a random variableé w1th this fixed d1str1but10n function,
uniformly distributed random numbers are commonly used. . The five steps
involved in a -simulation study then are: -

Model build- -up.
Generating un1form1y dlstrlbuted pseudo random numbers.

Randomness tests. , _
Generating a set ‘of normally dlstrlbuted random numbers

Testlng generated data

Each of these steps are described on the following pages.

A. Model Build-up

General- Discussion

Any phenomenon that undergoes continuous change, partlcularly with
‘respect to time, may be called a process. As practically all hydrologic
phenomena change with time, they are hydrologlc processes. . If the chance
of occurréfice of the varlables involved in such a precess is ignored and
.the model is considered to follow a definite law of certainty, but not any
. law of probablllty, the process and its model are described as deterministic.




If, on the other hand, the chance of occurrence of the variables is taken

into consideration and the concépt of probability is introduced in formulating
the model, the process and the model are described as stochastic or probabil-
istic. For example, conventional flood routing through a reservoir, and also
unit hydrograph theory, are deterministic models: since no probability theory
is involved. Using a queuing theory model for probability routing, however;
1s stochastlc or probab111st1c

: Stochastic processes are generally considered to be time-dependent
while probabilistic processes are thought of as time-independent, that is,
the sequencé of occurrence of the events involved in the process is ignored
and the chance of their occurrence is assumed to follow a definite probability
distribution in which the variables are considered pure random. ' For a time- -
dependent stochastic process, the sequence of occurrence of the variatés is -
observed and used in the process. The variables may be either pure-random

- or non pure-random and the probability distribution of the variables may or
may not vary with time. If pure:random, the: members of the time series are -
independent among themselves and so constitute a ramdom sequence. If non-
pure-random, the members of the time series are dependent among themselves,
and are composed of a deterministic component and a pure-random component

and so constitute a nonrandom sequence.

The general model of a Hydrologic pfocess can be.described as:

Xt = R *+ P + €p : : ceeena (D)
where Rt is.a trend comnonent;vl

Pt is a detérministic‘component, and

et 1is a stochastic component.

Generally a trend. component can be isolated and eliminated and so model
(1). can be reduced to

X¢ = Pt + g¢ - o . . e ea(2)
for further analysis.

In reality, all hydrolog1c processes are more or less stochastlc,
“they have been assumed deterministic or probabilistic only to simplify
their analysis. Mathematlcally, a stochastic process is a famlly of random
variablés X(t) which is a function of time; or other parameters, and whose
variate X; is changlng in time t within- the range of time T

Quantitatively, the stochastic process may be a discrete or a
continuous time series and can be sampled either continuously or at dlscrete

or uniform intervals.

If the time series is sampled continuously, then there are two
options open for analyzing the: series:

1. to use an analog computer or;

2. to digitize the data and use a d1g1tal computer; thlS, however,'
1nvolves loss ‘of information. -

e — - n



Similarly, if the time series is sampled at discrété 1ntervals, then
the data can be analyzed by : : v

1. d1g1ta1 computer or,
2. by 1nterpolat1ng, u51ng an analog computer

Hybrld computers are also avallable which accept analog 1nput and produce
d1g1ta1 output : ' -

Just .as the stochastlc process can be d1V1ded 1nto pure- random and

. non pure-tandom classes, so the deterministic time series component: can be ..~ °

subdivided. Most deterministic components are periodic funetions -but other
functions such as time ‘trends-and jumps exist. The deciding property of a
deterministic component is that. the value of the variable can be precisely
computed at any time by f1tt1ng a mathematlcal equatlon ..The subdivisions
of a determ1n15t1c component can be: ‘ ~J,' [ERTIE

1. Trend Th15 1s a un1d1rect10na1 d1m1n15h1ng or 1ncrea51ng
change in the. average value of a hydrologlc variable, suchas the trend of .
afinnal prec1p1tat10n often visible. A common, though often misused, method
of ana1y21ng trend is. by mov1ng averages.

2. Per10d1c1ty: ThlS represents a regular or osc1llatory form of
variation, such as the diurnal, seasonal, or secular changes that frequently
exist in hydrologic data. These variations'are of nearly constant length
and may be analyzed by Fourier analysis. A Fourier series is used to:
 represent the time series X;,X,,...X, with a total period.T:

A no[ 0, el
x o= _0 + v A. cos _2_‘".11 + B- sin z_ﬂJi ".‘.'-__(3)
t g1 ) T ) 2T S

where Ao is a constant “t'is the time, and the amplltudes AJ and’ BJ are‘
: expressed as. )

As =;2_ X yt cOos _2_11.13 . : . . V‘...‘.;.(4)
J n T . .
t=1 . .
' n . : )
and BJ=£ T y't 5111@)1. o : . ...'._..(_5)‘
: Ny T - T : S

where y"1s the deV1at10n of Xg. from the arlthmetlc stralght 11ne trend
' “for the perlod sélected, and with j= 1 250,10 be1ng the number
- of harmonlcs used in the analy51s

The sum of the squared amplltudes is _ . .
. W2 2 ' . .

Y R.%= . ; S ., 6

ISR @

and if the series is pure-random with no per10d1c fluctuatlons, the mean
squared amplitude of the series is o

g2 ) : ’ a ‘ .;
RZ"4 A : .....“".(7)’
n = . : T
- where o2 is the variance of theé deviations y, afd"

n  is the number of harmonics used.




Three tests of per10d1c1ty are available:

(1) SchUSter test: The hypothesis to be tested 1szthat the series
is not‘significantly different from pure-random. If k = Elé , ‘then the
v . : n .

2is k times R is given by Schuster (1898) as

probability in percent that RJ

Taklng P = 10% as the level of 51gn1f1cance, the value of RZ ' for a given
séries can be tested to see if it differs from Ry derived for a pure- random
series.

" Corresponding to Ps = 10%; k = 2.303, thus R = 2.303R7 = 9.21202/n.
Substituting R: 2 the value of 3 can be computed and” the possible hidden
periodicity found as T/j.

(ii) Walker test: Accordlng to Walker (1925), the probability that
at least one squared ampliﬁude RJ will be k times Rmz is

Py =1 - (l-e-k) /2 I (9)

whlch may be ‘used for a per10d1c1ty test ‘as in the Schuster test.

C (i) . Flsher test Let Ri® be' the largest of the squared amplltudes
Rf; From Fisher: (1929) the.probability Pg that Ry?/252 (where §2 is the
unbiased estimate of o2) is greater than a g1ven value g is:

m . .
: 3y r1ioyd-1 :
Pe= ) (D d) a-ig)? e (10)
_ i=o o . .
where m is the greatest integér less than 1/g and j=1,2,... is the number

of ‘periods. The probab111ty may be used for a per10d1c1ty test
as in the Schuster test.

3. Persistence: Pers1stence ‘means that successive members of a
time series ‘are linked among themselves in some persistent manner resulting
in non pure-randofiness. Pérsistence is the tendency of variables to have a
carryover effect, for the immediate antecedent conditions to influence later
conditions. The persistence and carryover effect are related to the t1me
interval between observations of siich effects.

Statlonarltz

A simplification of the analysis of stochastic time series is
obtained if, for all times t, statistical parameters of the distribution do’

- not change:. Such processes, for which the statistics do not depend on the
“instant t at which the samplé is béing taken, are called stationary. A

stationary process is thus a process in which ensemble averages, such as the
autocovariance, are dependent only on the time difference v = t; - t,, that

~is; they are ‘invariant with respect to a translatlon of the time origin.

Most hydrologic time series are regarded as being statlonary because
- many mathematical methods developed for treating random time series either:
require that the series be stationary or are concerned w1th reducing the
series to approximate stationarity.




Two types of stationarity are commonly dlstlngulshed strict
Stationarity implies that all population parameters are independent of the
time itself. This type of stationarity is difficult to prove and so the
idea of a weakly stationary process has been introduced in which the meaii,
variance, and autocorrelation are independent of time. This is sometimes
termed a second order stationary process. Similarly, a process in which
the third moment or the covariance of three values ‘is 1ndependent of time,:
is called a th1rd order stationary series.

Since most hydrologic processes in practice show perlodlc or seasonal*
fluctuations, .they do not satisfy even the weakly stationary conditions of
having a constarit mean. A modified model taking this into account is
described by the-equation

X(t) = ux(t) + y(t) _ o (11)
where ux(t) is a stochastic property of some parameféf of X, and
y(t) 1is a statiohary series.

A process in which all the propertles change w1th time is termed
non-stationary or evolutive. : :

As an example, an annual virgin flow with no significant change in
river basin characteristics or climatic conditions for the period of record
is considered as a stationary time series. If it is affected by man's
activities in the river basin, or natural catastrophe, or slow modifications
of the rainfall and runoff conditions the recorded or historical flow is a
non-stationary time series. As such, the mathematics is complicated which
further explains why most hydrologic,processes are,treated as stationary.

As a test for stationarity, the sample may be split into four or
five parts and the means and variance of each section tested to see if they
are from the same population, or if they are significantly different from
each .other. If it is shown that all the parts- are from the same populatlon,
then the series is called qua51 statlonary or self- statlonary

o Having discussed time.series in general the generatlon models S0
far developed can be briefly summarized. These models can bé subd1v1ded
into single station analysis and multivariate analysis.

Single Station Analysis

‘ One of the simplest models to assume is a Markov linear ‘modél of
lag one; that is, it is assumed that the variable at time t is a function
.of the antecedent value only.

Zt=pl Zy_1 * £t B ) . creee
where = Z = Zé—- is the standardized value of the time series X..
' py is the lag one autocorrelation coefficient of the time series.
€ 1is an independent random variable.

In terms of variance, equation (12) can be expressed as

. (13)

var Z, = p)? var Zg.) + var g




Because var Zt = var Zt.) = 1 the variance of the random component is
var ex = 1 - 012 L (14)

Therefore because it is more convenient in data genération to always use a
random variable with unit variance, equation (12) can be modified to

Ni—
~
p—
w
f—

Zg = 01 Zeop * (1 - 012)2 g4 S L

This equation is suitable for generating values of a time series belonging
to one population. If, however, the time series is composed of several
sub-series, as for example monthly streamflow, where it might be said that
the January streamflow belongs to a different population than the July
streamflow, then equation (15) can be mod1f1ed as: :

<
T
-
Ni=
~
|
ON
o

S _ K R .
01 gf-(x-X) + Sy (1 - 012)? e e

where Y, Y and Sy are the flow to be simulated and the long term mean:
and standard deviation of the flows in the month being simulated,
and :

X, X and Sx are the flow in the antecedent month and the- long term’
mean and standard deviation of the flows in the antecedent fmiénth.

1
_ In' equation (16), Sy (1 - Pl )2 represents the standard error of
est1mat1on and ey is a number drawn at random from a d15tr1but1on w1th
mean = 0 and standard dev1at10n 1.-

The main disadvantage of this model is that, while preserving -the
serial correlation of lag 1, it does not preserve the correlation between
other non-adjacent time perldds'. Roesher and Yev3ev1ch (1968) found that
series of monthly runoff in the western United States were well fitted by
a Markov first order logarlthmlc model. Yagil (1963) introduced a method
in which he considered annual flows to be independent of one another and
then generated monthly flows with a multiple lag model.

Let ai,j be the multiple regress1on coeff1c1ent of month j on month i
’ (j =2,3---12and i= 1,2 --- (j - 1))

Rj is the multiple correlation coefficient between month j and
all precedlng months.

Xj is the mean historical flow in month j.
j is the generated flow for month j in the year under consideration.
€ is a random normal deviate with a mean = 0 and a variance = 1.

Sj is the standard deviation of the historical flows of month i




.Then, X can be computed as:

X; = X1+ e S

Nl

2 =Xz +a;p (Xp - X)) + 635 (3 -R?P)

X
'
'
'
'
;
'
X

= . - : - R E 1
“n -Xn * a,; ,n Xy - Xl) + --- an_l n (Xn-l - Xn-l) + €n Sn (1 - R-2)2

This model could ea511y be adapted to generate monthly flows w1thout
considering annual flows to be independent. A linear Tegression analysis
with any number of desired lags -could be done for each month, and the ‘
generation for each month carried out with an equation similar to the last
equation above. Such an investigation was in fact described by Fiering
" (1967).. However, desplte the introduction of 20 lags in his regression
‘analy51s,_he still failed to introduce as much long-term persistence into

his record as existed in hlstorlcal flows. This weakness, that is, the lack
of long-term per51stence in generated streamflows, is common to all methods_
developed prlor to 1968.

Recent efforts have been concentrated on developlng models which
would preserve long-term persistence. Mandelbrot and Wallis (1968) 1ntroduced
a model termed "self-similar fractional Brownian motion". This is a form of
moving average representation using an extremely long memory,

erItivariatevAnalysis

If flows at more than one site are to be generated, it is necessary
not only to take into account the 1nterrelat10nsh1p between flows.at
different stations but also to preserve the relevant characteristics at
each 51te Three multivariate models suggested by Flerlng (1964), Beard

(a) Fiering (1964) _The or1g1nal varlables Xl, Xg -=- X
- répresenting standardized flows at n stations are subjected to a pr1nc1pal
component analysis.

Zy = ay; Xy * a1 Xp * --- ayp Xp o

Zp = ap) X} * ----m--mmmes asn Xn

t

t

e (18)
-

' .

-Zn'= anlxxl mmmms—me - --- apnp Xp

The coeff1c1ents aij in the above equatlons are determined from a
standard eigenvector program. It can be shown that the principal.components
Zy, Zp --- Zp are independent of each other. Therefore, the principal
component$ can be generated independently with any of the single station
models described previously. The generated principal components can then
be converted to standardized flows with the inverse matrlx of eigenvectors.




(b) Beard (1965): Streamflows are first converted to standard
normal deviates.by taking logarithms, standardizing,. and conversion with a
Pearson Type III function. The deviates are then generated with a
regre551on equation:

{ S1E

X1,t = aXp,t-1 * bY * Xzt * dX3 ¢ *----- + er (1 - R?)

where Xy ¢ deviate being generated.

X1,t-1 -antecedent deviate at stationwbeing generated.

Yy logarithm of total flow for all stat1ons for the 6 months:
precedlng the antecedent month, transformed to a normal standard

dev1ate

X2 ,t» X3,t, --- Xn,t = deviates for the same period at the other -
statlons : :

- For each month, flows. are generated at each station in turn. Those
-dt the first station require only the first two terms on the right- 51de of
the equation, those at the second, the fi¥st three terms, etc.

The generated normaﬁ deviates are finally reconverted'into,flows;

(e) Matalas (1967): This-model is an extension 'to Fiering's model.

’ In addition to preserving the felevant correlations in the.month being
generated, the model developed by Matalas also preserves the cross-correlations

of lag 1. » i .

The basic equation (in matrix notation) given below is used: -

'Xj_+l=AXi+Be

: Por m statlons X1+1 and X; are standardized flows in successive’
time perlods (each anm x 1 matrix). A and B are m x m matrices to be
defined and e isanm x 1 matrlx. - :

The matrix Mo is defined as the variance-covariance matrix, and M
as the covariance matrix with a lag of 1 time perlod . The matrix A can then
be calculated : ) :

- My o= A Mo _ : (21) -

} The matrlx B can be calculated by solving the follow1ng equatlon
k ©  with a principal component analysis:
j
{
:

B BT = Mo - M Mo-1 MyT

Young and Pisano (1968) presented a 51m11ar model whlch av01ded the
use of principal components. :

B. Generating Uniformly-Distributed Random Numbers

There are, generally speaking, two methods of generating uniformly
distributed random numbers. The first involves some physical form of
generating device, such as radiation from radioactive substances or electron



noise in valves. The results of these random physical processes .could then
be transformed into a sequence of binary digits within a computér. The:
register in which the random numbers are generated is usually: 3551gned an
address within the genéral system of addresses in the computer storage.

Then a reference ‘to the random number device reduces to a reading from
that store in the machine. ' The use of the random number device increases .
the speed of a computation because at every stage of operation of the
computer a new random fnumber. appears in a fixed 'standard cell. ‘There are,
however, two disadvantages in such devices: first, there is a risk of
instability, which must bé countered by constant preventative maintefance;
second, the results of a computation on the machine can never be exactly
reproduced. Other random number generators, not involving -computers,  are
dice, roulette, and other number games, and taking numbérs from a-telephone
d1rectory L : ' .

The second technlque of generatlng un1form1y distributed random
humbers is to writé a computer program to use some recurrence relation.
This means that each successive number rj+] is formed from the precedlng
number Tj (or from a group of precedlng numbers) by applylng 'some algorithm
consisting of arithmetic¢ and logical operations: Such a sequence of numbers
is not random, but nevertheless, it may satisfy various statistical criteria
of randomness .and so is termed pseudo-random. The advantages of programming
technlques for generating uniformly. distributed pseudo-random.numbers are
the simplicity of the algorlthm and the p0551b111ty of dupllcatlng any
computation. . e

" Any program written to. compute uniformly dlstrlbuted pseudo random
numbers must comply with the follow1ng three requ1rements

1. The program must generate numbers w1th extremely weak statlstlcal
autocorrelation. Any program Written to produce a set of pseudo-random
riumbers must satlsfy the ‘established criteria for testing randomness

2. The dlstrlbutlon function of the pseudo-random numbers generated
by the program must approx1mate, as closely as p0551b1e, a unlform
distribution. . .

3. The program must be stable. The distribution function of the
pseudo;random numbers must not change during the running of the program.

A technlque for generatlng un1form1y distributed pseudo random
numbers based on the extraction of middle digits of products was proposed
by J. von Neumann (1951). An arbltrary number o is taken as, the start of
the recurrence process, where a, consists of an even number, 2k, of binary
digits. The number og is squared, producing a ak digit number a&z. The
next number in the sequence, a), is taken .as the. central. 2k binary digits
[from the (k+1)th. to the 3kth inclusive] of agz; A significant improvement
in the results is obtained if a pair of numbers o, and a; are chosen
arbitrarily, mu1t1p11ed together and the central digits used as the numbér
ay. ‘The process would then cont1nue, calculatlng ag from a; and oy, €tc.

Lehmer (1949) developed a moere sophlstlcated method. that produces
a. sequence which differs less from a uniform distribution than do the
earlier methods. Each of the above methods by truncatlon generates a
periedic sequence with a perlod not exceed1ng 2

10




A second technique for generating pseudo-random numbers is based on
the application of residues. Lehmer (1949) used the recurrence relation .

On+] = k%fnm,d ) | » e (23)

The follow1ng recurrence relation has been used to generate pseudo -random
numbers uniformly distributed over the interval (0,1):

an+1 = 2—'4'2 "Bn . R (24)

Bn+1 = 517 Bp(mod 242) . (25)
with Bo = 1. Such a relation has a period of around 240 or approximately
1012 i

There are also several techniques for generating uniformly d1str1buted
pseudo-random numbers which exploit the peculiarities of particular computers.
These méthods are based on the imitation of random chaotic processes by
shifting the d1g1ts of the mantissae of pseudo random numbers.

Sobol (1958) publlshed a program that, in ‘three operations, computes
one number in the sequence:

1. A number oy is multiplied by 1017,
2. The product 1017 oy is shifted seven places to the left.

3. The modulus of the resulting. number is normallzed and the
result is taken as “k+1 S :

v The I.B.M. 360 system uses a program in which-a, is any odd integer
w1th nine or less digits. The .integer ay is then multiplied by 65,539, If
the resulting integer is negative then the figure 2,147,483,647 is added. to
it. The figure 65,539 (ao) (plus 2,147,483,647 if. necessary) is now - .
converted to float1ng point and mu1t1p11ed by. 0.4656613 x 10~2. The result
is a pseudo-random number belong1ng to a distribution function uniformly
distributed between 0 and 1. This procedure has a periodicity of 229 terms.

C. Randomness Tests

Once a set of supposedly unlformly"dlstrlbuted random numbers or
pseudo-random: numbers. have been generated it is Tnecessary to subJect them
to various tests of .their randomness, before using them.

Kendall and Babington-Smith - (1938, 1939a 1939b) have developed a
series of four tests for checking the randomness of a distribution. In all
tests the random numbers are classified according to criteria, wh1ch vary .

from test to test, and the empirically generated distribution is compared

w1th a theoretlcal distribution, generally using as means of comparison the
X2 criterion, the Kolmogorov criterion, and the w2 criterion.

1.. Frequency test: This con51sts of counting the numbers of
pseudo-random numbers ‘being sampled that fall within-the intervals of a
dissection of the domain of definition 6f the pseudo-random numbers.

Usually the range of the distribution is divided 1nto ten or twenty equal

intervals.

11




2.. Serial test: The number of zeros and ones in-the various’
places ' of- the set of supposedly random nuitbers being tested are -¢ounted..
In ‘the case of random niibé¥s, which are uniformly-distributed over the:
interval (0, 1), the mathematlcal expectation of the digits occurring in
each place of the mantissa of a'random number is 3 since the probab111ty

of the occurrence of a  zero or a.ome is 1.

3. Gap test: This is a sequent1a1 teést in which the generated
'random numbers less than 3 are assigned to class A, and numbers greater
than } aré assigned to class B. The sampled values of the numbers of each
class, which occur in sequences and the lengths of sequences of numbetrs of -

the first and second classes, are compared w1th thelr theoret1ca1 limits.

4. Poker test: The numbers of various.: comblnatlons of b1nary
digits in a large sample set are counted. For: example, the d1str1but10n
tést might be made on 10 binary places, ten’ 2€T10S;,, n1ne zeros, and one one,
- eight zeros and two ones, etc. S

If the supposedly random numbers ‘are really pseudo random, iieny

. have been generated by a computer program, then an additional test must be
made ‘to ensure that the pseudo-random numbers imitate truly random numbers’
as far as periodicity parameters are concerned. It is advisable that the’
“number of pséudo-random numbers used should not exceed. this per10d1c1ty,
_otherwise the statistical process would be 51mu1ated by . recurrlng pseudo-
‘random numbers. o

Let the per10d1c1ty be L so that the flrst L succe551ve1y generated
pseudo-random numbers:are: ‘distinct but the (L+1)th pseudo-random number
coincides with one of the aj earlier numbers. Theréafter the sequénce of’
pseudo-random numbers, beginning with a; and ending with ap, will recur
-periodically. For pseudo= -random numbers’ distributed over the 1nterva1 (o, 1),
.'the Tiumber of 'distinct pseudo rafidom numbers, N, available is N = 2! where

1 is the number of d1g1ts in . the mantissa on the computer. If success1ve
- lengths of -the intefval of’ aper10d1c1ty Ly, Lo,.v.Ly are arrlved at’
.experlmentally u51ng a certaln computer then the varlable R S

i=1 | o ... (26) .

will be- d1str1buted as Chi-square w1th 2m degrees ‘of freedom, and"so a
test using the Chi-square criterion w111 indicate ‘the value of the length
of the interval of aper10d1c1ty

A set of pseudo -random numbers wh1ch satlsfles all these tests 1s
termed "locally random" :

D. Generatlng Random Numbers Follow1ng Other D1str1but10ns

Given a set Uj, i = 1,2, ...‘of random numbers unlformly d1str1buted
over the interval (0,1), it is p0551b1e to transform this set mathematlcally ‘
to a set of random numbefs with any spec1f1ed distribution. = First consider’
the case in which the uniformly distributed randoii numbers are used to
generate ‘a sequence of normally distributed random numbérs. -
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and Xp = (2 logeUl) sin 270, ... (29)

) The most obvious approach to this transformation, as termed by
Muller (1957}, is the inverse method. To generate a normal deviate X from
a uniform deviate U this approach derives an inverse relationship X = X{U),
given that

The relation X = X(U) is approximated stepwise by dividing the
interval of U(0,1) into sub-intervals and using Chebyshev polynomials.
If this approach is to be efficient, the approximations to X = X(U) should
be designed to work over sub- 1ntervals of U such that the lengths of sub-
intervals are a negatlve power of two for computers opeérating in the binary
mode. At the expense of utilizing a large memory. space, it is possible to
develop a good. degree of accuracy with an extremely fast procedure

Box and Miller (1958) have developed a direct method of transformation
that gives a"higher degree of accuracy than- the “inverse method, at a
comparable speed. If Uj-and U, are two- 1ndependent random numbers” from the-
‘same uhiformly distributed dens1ty function in the 1nterval (0 1), then ‘the
random variables : '

1 . ' -
Xy = (-2 102eUi)2 cos 27U, (28

will be a pair of 1ndependent random numbers from the same normal distribu-
tion with mean zero and variance unity. This is justified from the inverse
relationships - : : s

X2+ x.2
Uy = -(Xt+ X%) (30)
2
R = _1_ _'1 x2 _ ] '
Upg = - 7, tan Xl . : i | EPEEE (31)
from which the joint probability density of X;, X, is
- (X124X,2)
: 1 i '
f(—x‘l,XZ)-= 5 e ..... (32)
Xi© X2* ,
f(xl,xz) = -—]-'-_- e 2 ¢ _L_ e 2, (33)
£(X1,%2) = £(X)  £(X2) , e (34)

i.e. X;, and X, are normally dlstr1buted with mean zero and variance unity
and are 1ndependent

A rejection .approach has been originated by von Neumann (1951) and

"~ déveloped by Teichroew (1953) ; normal deviates in the truncated reglon

-bs Xz b are generated from

= -2b2(U1 - 132,
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if loge Uy < Y then the normal deviate is
= b2, - 1), | ) el (36)

if loge U, > Y then the pair of uniformly distributed random numbers (Uj,Usp)
is rejected and thée process repeated. For the normal distribution, this .is
an inefficient generation technique, especially if precise tail values are
required. The probability that a pair (U;,U) will generate a normal
deviate, that is,

p Elz fe -2b2(U1-202] | : _— 37)

is assymptotically ' B : IR _
1 [T : : - R |
7 _ _"77'(38);'
A further method, known as "approx1mat10n by curve fitting" has :
been developed by Teichroew (1953). A fixed number of uniform deviates is

summed and an improved approximate normal deviate is obtained u51ng an
1nterpolat1ng Chebyshev polynom1a1

The approximate normal deviate X appears, using a truncated series
for ease of computation, as

X =ar+ a3r3,+ a5r5 + asr’ + agr9 T (39)

where a, = 3.949846138, } L .

a3 = 0.252408784,
as = 0.07652912,
a; = 0.008355968,
“ag = 0.029899776,
and  r = (z-6)/4 B cev..(40)
12 : : ,
where 'z = Z Ui S e (41)-
: i=1 o . >

and U1 be1ng the uniformly d1str1buted random number as before

The dlsadvantage of thlS method is that the value of z must be.
restricted to the range (2,10), meaning that normal deviates cannot be
generated much ‘beyond four standard deviations from the méan.

ESchrelder (1960) lists a further algorlthm,

X=z - AL 25 o 10z%+152) . - . (42)

113‘4_(‘)01’12 T I
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where Z = :
2y .

which for practical purposés needs n to be only 2 to give a very good
approximation to the normal distribution.

A method” of rational approx1matlpn to transform a uniform deviate
to a normal deviate has been suggested by Hastings. (1965):

. '(aé+glz+a222) o "
X=X Q) = - T 240,270 529) s (44)
where Z = [log lé ..... (45):
q
t2
1 w 3 , , ) ;
and q = —— f e »,0<q<0.5 -~ .. (46)
- Vir L , .
: x(q) »
and  ag = 2.515517 - .. by = 1.432788
Ca; = 0.802853 " By = 0.189269
a; = 0.010328 . b3 = 0.001308

ThlS method 1s very reliable, generally producing an absolute error of less
than 4 x 10%%, However, faster procedures requiring less memory storage

. are avallable.

Probably the most well known transformation technique ut1112es the
Cefitral Limit Theorem. Given a set of identically distributed variables
Uy, Uz...Ug, with each having a mathematical expectation of a* and a
varlance of (¢*)2, then the sum

X =Up +Up +...Up - ceee . (47)

will be asymptotically normal with a mathematical eXpectation

a=anm - - L L (48)

and standard deviation
. ]

o = o*n? . ’ R : ’ ';.;..(49)

An initial set of random variables uniformly d15tr1buted over the
interval (0, 1) will have a mean of 0.5 and a standard deV1at10n of

—5: H therefore the sum of n of such random numbers w111 have an expected'
2Y3 -

'value of

= 0.5n ,
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"~ and a standard deviation of

A kA ’ | e (51)
If, however, the unlform distribution is machine generated and
therefore pseudo random the standard dev1at10n w111 be :

o = i 2 2 N , U . (52)
z/‘ | T

where k is the number of digits in the mantissa of the computer the standard
deviation of the sum of n pseudo random numbers will be :

n ’2E+1 ’ L
j; ko1 . | R (53)
For most cases, where the pseudo- -random numbers are generated with
an adequate number. of d1g1ts, equation (51) will be more; than adequate

An increase in the number n, of terms in the summation . w111 result
-~ in the d15tr1but10n of X being a better fit to the normal, although this
-will lead to an increase in the number of arithmetic operat1ons needed for
the transformation. : :

" To produce a normal distribution with a mathemat1cal expectat1on of
zero and a variance: of un1ty, a common express1on is_ » :

The expectatlon is then seen to be 1%—— 6 0 and the standard deV1at10n is:
1 ,12 : ’ e

ST —3-1 .

‘ The problem of comparing the accuracy of thls approach w1th others'

T is compllcated because .the Central Limit Theorem is concerried with an '
asymptotic convergence in probability. A direct measure: of accuracy is

-available by comparing :the actual distribution function ‘of the sum of a .

.. finite number of uniform deviates to thé limiting normal distribution function.

~For example, us1ng equation (54), the probability of X being greater than.
‘3.0 above the mean is- 0.100700 x- 1052, Yet this probab111ty point, for.a

normal distribution with the $ame mean and variance, gives a value -of 3.0882.
. The d1fference is '-0. 0882 - : ’ ‘ t,_ : .

Desplte some loss of accuracy above 3 standard dev1at10ns from theﬂ.'
“mean {which could be reduced by 1ncreas1ng n in equatlon (54)), the method is
very conven1ent qu1ck and requ1res 11ttle memoryspace. . ; .

‘Now con51der two common cases in whic¢h the d1str1but10n to be_'
generated is non- normal

(a) Log normal For a 2 parameter log-normal d1str1but10n with
the mean of the logarithms, Up, and the standard dev1at10n of. the 1ogar1thms
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op, the value of any deviate 1§ given by

Xi = e ¥n * €ion. : ciee.(55)

where gi is a standardized normally distributed random number.

(b) Aﬁgamma distribution with 2 or 3 parameters: for any gamma
distribution a deviate can be defined as \ .

o

1
Xi=§

s 1
1

esaN

€2 ~ e (56)
1 ' " S

where a is a multiple of 1/2.

Using the'gamma 2 parameter function the distribution is then

moxe-lemX . S e (B7)
F;'

or the gamma 3 parameter function by

PO =

1'-[&@}" , P
o : , ,
PX) = —— [X b] o ... (58)
nfz
where | m is a scale faeter, and
b is a lower.boundary.

To generate a gamma function of N values 1t is necessary to produce 2a. N
normally dlstrlbuted random numbers.

Finally, consider the case in which the random number distribution
to be generated is empirical,. that is, it cannot be defined, or it is not
" worthwhile to define the distribution mathematically. If, for example, a
51mp1e linear regre551on equatlon

y=at bX
were be1ng used to relate two streamflow records, then in order to use one
streamflow record t6 extend or fill in gaps in the secofid Fecord it would

‘be necessary to generate random number$ defined only over the period of
301nt record as .

€ei=Yi - Yi eer. . (60)

~where y; is the recorded streamflow, and

¥i is the computed streamflow.
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, A mathematical description of the distribution of the residuals is
not easily available but the cumulative probability distribution can be
easily plotted on linear graph paper, smoothed, and extrapolated to either
* extreme. ' -Similarly the cumulative probability distribution.of generated
uniformly distributed random numbers can easily be plotted since this must
be a straight line joining the ‘points (0, min.}, (1, max.) where the first
coordinate in each bracket refers to cumulative prohability and the second
to the_expected minimum and maximum values of the residuals. Now, the graph
is- entered at the generated. value of the uniformly distributéd random number
and the two cumulative probability distributions are used to convert this
value to a random nuiber following the empirical distribution of the original
residuals. ‘ : S

The greatest inaccuracy of the method occurs; of course, in the
extension of the empirical distribution to its éxtremes. This extension
of the empirical distribution can be either by extrapolation or by fitting :
a theoretical distribution. o '

In the latter case it would be most important that the theoretical
distribution and the observed frequencies were well-matched at the extreme
‘being studied. Either a theoretical distribution could be chosen, a priori;
- for some reason, or several distributions could be tested and the one.
giving the best fit would be used. The Chi-square test of goodness of fit
between émpirical and theoretical distributions ¢ould be used with weighted
iaIUes of class observations, most weight being given to the class covering
the extreme values. - The suim of the weights would be unity.

E. Testing Generated Data

Once a set of data has been generated to specified requirements, it
filust be tested to ensure that it meets those requiremeﬁts’and’fajthfully
duplicates the statistical properties of the 'parent' data. Assuming that
tests for circularity and extremes as well as the Kendall tests have been |
carried out on the random numbers used in the generation, then the only o
tests that are required at this stage are comparisons between properties’ ‘
of the generated data and the parent data such as the following. ‘ e

1. Comparison of‘basiC*statistics: ‘The basic statistics that.
should theoretigally be preserveq-injthe $imulated ddta are twofold;

a) Parameters of the probability distribution of the original
data such as méan and variance. :

b) Parameters of the time dependence_such as serial correlation
coefficients, up to whatever order of lag was simulated.

2. Autocorrelation test: The autocorrelatien test should test
calculated autocorrelation coefficients up to a lag of 25 or 30 units for
both recorded and simulated data, and compare the two series.

3. Spectral analysis test: The spectrum demonstrates the proportion
of the total variancé contributed by each frequency (Granger, 1964). " The: i
analysis may be carried out by applying harmonics to the autocorrelation ’
function .to reveal cycles and long term trends. ' Lo
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4. Test for long-term persistence: Hurst (1951, 1956),4prdpqsed
a measure of long- term per51stence as ’

where R is the volume of storage necessary to maintain the average flow
' for the period of record,

L

S is the standard deviation of the data,
N is the number of years of record, and
K is a measure of persistence.

The values of K computed for the observed and 51mulated data,should
be compared.

5. Duration analysis.
6. Non-parametric tests:

a) Number of values above the mean compared to the number of
" values below the mean.

b)~ Number of quartile changes.

¢) . Cluster tést.

CONCLUSION

The report has covered the background 1nformat10n necessary to the

‘use of data generating techniques., Several of the techniques currently

used have been described. Most of these methods are available as computer
programs and are relatively edsy to use. One of the most important uses

of data generation is in estimating flooeds, droughts or storage requirements
at a given return period. While empirical or analytical techniques can
give only one estimate of the design parameter, data generation can be used
to obtain a best estlmate of the de51gn parameter and confldence limits on
the estimate. : N P

As an example of the efficiency of the data generatlon technlque,
considef theé problem of estimating the maximum monthly discharge in any
year, which will have a likely return period of, say, 100 years from a
record consisting of 30 years of mean monthly flows An empirical or
analytical solution, such as fitting a distribution to the annual maxima,
would -use only 30 pieces of information. On the other hand the data
generation technique would use all 30 x 12 segments of information ‘in order

to simulate a sequence of data from which the ¥equired parameter could be .
determined.

The accuracy of the results of the data generation method depends.
on how accurately the recorded time series can be broken down ‘into mathe-
matlcally describable terms. The most important questlon is the dlstrlbutlon
of the random component in the model.
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A further point of interest is how to determine thé number of
deviates to simulate. -In many cases this can be determined from known
objectives or by comparing the cost of 1ncrea51ng the sample size with the
~ expected benefits due té the increased accuracy. Chow and Ramaseshan, (1965),

descr1be a purely statistical technlque

CIf Pn is the proportlon of a sample size n from a populatlon Wthh

¢an be éestimated within an error level of o % of its true value at a 6

. confidence level, then the requ1red sample 51ze is

o [ 2

where tg is the standard normal deviate correspondlng to the B% comfidence7
' level . . ‘
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