
i/ironner 

National Hydrology Resean îstitute^ 
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Abstract 

Many numerical problems in ground-water modelling deal with the 

solution of differential equations of the form 

6u/6t = (u) 

where is a differential operator in the space coordinates, but which 

is Invariant in time. If D can be approximated by a finite expression 

involving values of u at nodal points of a finite difference grid, for 

example, we obtain a set of n ordinary differential equations 

du^/dt = Au^ + c^, 1=1,n 

where n is the number of nodes at which u is evaluated, and A is an 

n X n matrix of constant coefficients. This set of equations can be 

solved as 

X.t 
u = I b e , 
1 1=1 ^'^ 

1=1,n 

or 

u = Be>̂ jt 

where the \^ are the eigenvalues of A and the columns of matrix B are 

the eigenvectors of A. 
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Resume 

De nombreux problemes numerlques en modelIsation des eaux 

souterraines exigent la solution d'equations differentielles de la forme 

ou D̂  est un operateur differentiel selon les coordonnees spatiales, 

mais invariant dans le temps. Si D peut etre approche par une 
X 

expression finie faisant intervenir des valeurs de u a des noeuds d'une 

grille de differences finies, par exemple, on obtient un ensemble de n 

equations differentielles ordinaires : 

ou n est le nombre de noeuds ou u est evalue, et A est une matrice n x n 

de coefficients constants. Get ensemble d'equations possede la solution 

suivante : 

6u/6t = D (u) 

du./dt = Au. + c 1=1 ,n 

u. = I h 
j=l 

n 
1=1,n 

ou 

u = Be^jt 

ou les \ j sont les valeurs propres de A et les colonnes de la matrlce B, 

les vecteurs propres de A. 



A Hybrid Numerical-Analytical Method for the Solution of Partial 
Differential Equations in Ground-Water Modelling 

A. Vandenberg 

INTRODUCTION 

In standard finite difference and finite element procedures for 

the solution of differential equations, both the time derivative 

6u/6t as well as the space derivatives are approximated by a finite 

expression, resulting in a set of n equations, one for each of n 

locations In the space domain defined by the boundary conditions. These 

equations can then be solved simultaneously or explicitly for the values 

of u at one time step. At, following the time for which the i n i t i a l 

condition is given at f i r s t , and thereafter at a time step. At, 

following the time of the previous solution. Since for an accurate 

solution the time steps must be kept rather small, a large number of 

steps will often be required even though the solution may be needed only 

at one point In time. It i s , however, possible to find a solution that 

is continuous in time and discrete only in the space coordinates by 

approximating the space derivatives in terms of finite differences, but 

leaving the time derivative in its infinitesimal form. It will be shown 

how the resulting set of simultaneous differential equations can be 

solved giving u^, the value of u at a l l the n locations, as an 

analytical function of time. For ease of presentation, the method will 

be demonstrated for a set of only three locations. The general equations 

for n nodes will then be given In matrix notation, and finally the method 

will be illustrated by a three-point problem. 
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THE HYBRID METHOD 

Although the method can be applied to any linear partial 

differential equation, the discussion will be based on the parabolic 

equation in two-dimensional space 

3u/3t = ot32u/3x2 + P32U/3Y2 + y ( D 

where the a, |3, and y ^re invariant with time. 

In the hybrid method. Equation 1 is replaced by an approximate 

form, for example, 

^ " l , j / ^ ^ = ^°'l,j/^'^^^^"i-l,j - 2uj,j " V l , j ^ 

' ^ P i . / ^ v ' ^ ( " l , j - l - 2 " i , j ^ " i , j . l > ^^1,J 

The subscripts i and j indicate that the values of u, a, (3, and y 

are the values at the Intersections of the ith north-south line and the 

jth east-west line of a regular grid, with spacings of Ax in the 

east-west direction and Ay in the north-south direction (Fig. 1). 

Writing out Equation 2 once for each of the nodes (l,j) results 

in the set of ordinary differential equations 

dUj/dt 
= 1̂1 "l"^]2 "2"^3 "3"̂ 1 

du^/dt 
= 2̂1 "l"^22 "2"̂ 23 "3"̂ 2 

du^/dt 
= 3̂1 "l'^32 "2-'̂ 33 "3"S 

(3) 

or in matrix notation 

du/dt = Au + c (4) 
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where A Is the matrix 

1̂1 1̂2 1̂3 

2̂1 2̂2 2̂3 

-̂ 31 3̂2 ̂ 33-

and c is a vector of constants, deriving in part from the constants y 

in Equation 1 and partially from constant values of u on the boundaries 

of the domain of definition of u, as will be shown in the example. The 

Figure 1. Notation used in the finite difference approximation. 
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boundary conditions, which are an integral part of the problem, are thus 

already contained in Equations 3 and 4, but a set of ini t i a l conditions 

must be defined: 

U j (t=0) = u^j (5) 

It will now be shown that a solution to the set of ordinary 

differential equations (4), subject to the init i a l conditions (5), exists, 

which has the form 

X.t X2t X„t 

" l = ^ - l ^ ^ l l ^ -̂ 1̂2 ^ ^̂ 13 ^ 

X t X t X t 

"2 = ̂ -2-̂ 2̂1 ^ -̂ 2̂2 ^ -̂ 2̂3 ^ 

X t X t X t 
u- = b -+b.,. e +b„„ e +b„_ e 
3 -"3 31 32 33 

or In matrix notation 

u = b^ + Bê *̂  (6) 

where ê*" represents the vector 

X.t X^t X t 
^ 1 ^ 2 ^ n 
e , e ... e 

Note that i f the system is to reach a steady state for t ^ , then a l l 

X must be negative, and the vector b^ thus represents the steady 

state at each of the n nodes. Also, from Equation 4, at steady state, 



du/dt->0, and since u->b , we have 

Ab + c=0 

or 

b = -A~-̂ c (7) 
CO 

where A is the inverse of A. 

When Equation 6 is evaluated at t=0, we obtain the relations 

"01 = b , 
<x>l 

+ 
1̂1 

+ 
^12 

+ 
1̂3 

"02 = ^»2 
+ 

2̂1 
+ 

2̂2 
+ 

2̂3 
(8) 

"03 = ̂ -3 + 3̂1 
+ 

3̂2 
+ 

3̂3 

which will be used later on to completely define the matrix B. 

In order to find the vector X and the matrix B, Equation 6 

Is differentiated: 

\,t \jt Xgt 

dUj/dt = b^j \^ e + b j 2 ^2 ® ^13 S ® 

\ t \ t \ t 

du^/dt = 1>21 1̂ ^ ^ ^22 2̂ ® ^ 2̂3 3̂ ® 

\ t \ t X t 
dug/dt = b 3 j e + 5 3 2 X 2 0 + b33 X3 e 

or 

du/dt = BXê *̂  (9) 

Xt 
where Xe is the vector X̂ e , i=l,n. 
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Combining Equations 9, 4 , and 6 gives 

Au + c = BXê *̂  

and 

A(b + Be^^) + c = BXê *̂  (10) 

which must hold for all values of t. 

At very large t, and given that all X must be negative, we find 

Ab + c = 0 
03 

which result was already obtained earlier. 

Therefore Equation 10 can be rewritten 

ABê *' = BXê "" (11) 

The elements (ab) . of the maitrix AB are given by 
1' 3 

n 

and we have from Equation 11: 

X t X t X t X t X t X t 

(ab)j^ e +(ab)^2 ® '̂ ^̂ '̂ 1̂3 ® =*̂11 \ ® "̂^̂12 ̂ 2 ̂  ^^13 S ® 

(12) 

X.t X„t X t X.t X-t X t 

(ab)2j e ^(^^^22 ^ •*"̂ '̂̂ 2̂3 ® "̂ 2̂1 \ ^ "̂ 2̂2 ̂ 2 ̂  ^̂ 23 S ® 

(13) 



\ t X. t X„t X t \ t X t 
(ab)3j e +(ab)32 e ̂  +(ab)33 e " =h^^ \^ e +532 X2 e +533 X3 e 

From Equation 12 we deduce 

(ab)j^ = b^^ 

and from Equation 13 

(ab)2i = b2^ X̂  

and from Equation 14 

(ab)3j = bg^ X̂  

which, written out in f u l l , give 

11 ̂ 11 
+ 

1̂2 2̂1 
+ 

1̂3 3̂1 = h l \ 
21 ^1 

+ 
^22 2̂1 

+ 
2̂3 3̂1 -^21 \ 

31 1̂1 
+ 

3̂2 2̂1 
+ 

3̂3 3̂1 = 3̂1 \ 

(14) 

or 

or 

(a^l-X^) 1̂2 1̂3 

2̂1 
(a22-Xi) 2̂3 

= 0 

'31 3̂2 

(A-X^I)b^^ = 0 (15) 
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where I Is the identity matrix. Similarly, by equating a l l terms in e 

we obtain 

(A - X 2 l ) b j 2 = 0 (16) 

and equating all terms in e 

(A-X3l)b^3 = 0 (17) 

Thus the \^ are the n eigenvalues of A, and the vectors 

"12 "13 

''21 "22 "23 

"31 "32 "33 

are the eigenvectors of A. 

For each eigenvalue X̂ , the corresponding eigenvector is 

determined except for an arbitrary multiplier. Thus, supposing that 

corresponding to each X. we obtained the eigenvectors E. .: 
J 1' J 

Eigenvalues: X̂  X2 X3 

Eigenvectors: 

1̂1 

2̂1 

3̂1 

1 2 

^22 

^32 

1 3 , 

^23/ 

E 
33 
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then the b.. must obey 

1̂1 = •̂1 ̂ 11 h2 • ̂ 13~^3 ̂ 13 

= •̂1 ̂ 21 • ̂ 22^h h2 • ̂ 33=̂ 3 ̂ 23 

3̂1 = •̂1 hi • ^2=^2 h2 '^33=^3 S3 

(18) 

Combining Equations 8 and 18, 

•̂ 1̂ 11 
+ 
^2^12 

+ 
^^13 = "01 - ^ » 1 

\ h l + 
^̂ 2̂ 2 

+ 
^̂ 3̂ 3 = "02 - ^ » 2 

+ 
2̂̂ 32 

+ 
^ 3 3 = "03 -^-3 

or 

Ek = u -b 
o "» 

and 

k=E~̂  <u -b ) o — 

where E ̂  is the inverse of E. 

With the determination of the multipliers k, the equation 

„ Xt u = b + Be 
0 0 

Is completely determined, and the function u can be determined for each 

of the grid points at any time. 

(19) 

(20) 
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EXAMPLE 

As an example of the method, the following three-point problem 

will be solved: Given the differential equation 

6u/6t = ai^u/ix^ + pi^u/fiy^ (2 

find expressions for u(t) at the three points Inside the domain shown In 

Figure 2. The numbers shown in the figure on the boundary points 

indicate constant values there, and the numbers in brackets at the 

internal nodes indicate the init i a l condition. 

#1 #2 #3 

Figure 2. Configuration, initial values, and boundary values of the sample problem. 

The first step in the hybrid method is to replace the right-hand 

side of (21) by a finite approximation, for which we choose 

du/dt = (a/Ax^) (u^^j ̂  - 2u^ j"*""!-! 

. (P/Ay2) ( u ^ ^ j ^ ^ - 2 u ^ ^ j . u ^ ^ j _ ^ ) 

If we choose 6x and iy such that 

a/Ax^ = p/Ay^ - p 

10 
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Equation 22 becomes 

du/dt = p ( U i - i j + + Mi,j-i + Uj.jH - 4ui j ) (23) 

Writing Equation 23 for each of the interior nodes No. 1, No. 2, and 

No. 3, and replacing values of u on the boundaries by their constant 

values, we have 

or 

Thus 

and 

d U j / d t = p(340 - 4u^ + U2) 

d U 2 / d t = p(280 + - 4u2 + u^) 

d U g / d t = p(500 ^ ^2 ~ ̂ ^3^ 

c = p 

340 

[28O 

500 

340 -4 1 0' 
"1 

du/dt = P 280 • + P 1 -4 1 
"2 

500 . 0 1 -4. 
"3 

'-4 1 0" 

A = p 1 -4 1 

_ 0 1 -4 _ 

The inverse of A is found to be 

.-1 
56p 

15 4 1 
4 16 4 
1 4 15 

11 



and, from Equation 7, 

b = 120, b „ = 140, and b _ = 160 
001 OOZ ooj 

which are the expected values (Fig. 2) at t = 

The next step is to find X, the three eigenvalues of A; that 

i s , to determine those values of X for which the determinant 

They are 

(X+4p) -p 0 

-p (X+4p) -p 

0 -p (X+4p) 

= 0 

X, = -4p X, = -4p + p/2 K = -4p - p/2 

Next, find the eigenvectors by substituting X^, X2, and X̂  in 

Equations 15, 16, ar 

example, this gives 

Equations 15, 16, and 17, respectively. For X̂^ and Equation 15, for 

for which 

0 -p 0 
1̂1 

-p 0 -p 2̂1 
= 0 

0 -p 0 1 3̂1 

11 " 1-̂ 21 = °'^31 
= -1 

Is a solution, and thus the eigenvector for \^ = -4p. Similarly the 

eigenvectors corresponding to X̂  and X̂  are determined, and the 

complete matrix E is 

12 



• 1 1 1 

E = 0 /2 V2 

.-1 1 1 

In the last step, the multipliers k. are determined from 

Ek = u„ - b 
0 oo 

or 

1 1 l ' 
•̂1 

100- 120 -20 

0 -/2 = 100- 140 = -40 

_ - l 1 1. 
3̂ 

100-
< 

160 -60 

from which 

= 20 

= -20 - 20//2 

kg = -20 + 20//2 

Thus 

B = 

20 (-20-20//2) 

0 (-20-20/2) 

L-20 (-20-20//2) 

(-20+20//2) 

(-20+20/2) 

(-20+20//2) 

and 

u^=120+20e-^P^-20(l+l//2)e-P^(^-^2)_20(i_i/^2)e-P^^^^2) 

U2=140 -20(l+/2)e-P^<^-^2)_2o^_^2)e-P^^^^2) 

U3=160-20e-^P^-20(Ul//2)e-P^^^-^2)_20(i_i/^2)e-P'^^'^^2) 

13 



Table 1 shows the hybrid solution in comparison with solutions 

obtained by the Crank-Nicholson method and the forward finite difference 

method for p = .2. 

Table 1. Comparison of Solutions by Three Different Methods 

Hybrid 
Forward Crank- method 

Time Node finite difference Nicholson u = bo»+Be^t 

1 108 106.72 106.65 
2 116 134.02 114.02 
3 140 129.57 128.67 

1 112.8 111.31 111.23 
2 128.8 123.98 123.79 
3 151.2 143.96 143.15 

1 116.32 114.44 114.35 
2 134.56 130.35 130.09 
3 156.00 151.29 150.72 

1 118.18 116.52 116.42 
2 137.38 134.25 134.01 
3 158.11 155.17 154.79 

1 119.11 117.85 117.77 
2 138.73 136.59 136.40 
3 159.10 157.28 157.04 

1 119.79 119.21 119.16 
2 139.70 138.82 138.71 
3 159.79 159.11 159.01 
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CONCLUSION 

Solution by the hybrid method is carried out in six steps: 

1. Define matrix A and vector c from the problem definition. 

2. Compute the inverse of A and the steady state vector b using 

Equation 7. 

3. Compute the eigenvalues and eigenvectors of A, the eigenvectors 

forming matrix E, columnwise. 

4. Compute the multipliers from 

Ek = u_ - b 
0 •» 

or 

k = E ^ (u - b ) 
o 

5. Compute the matrix B by multiplying the jth column of E by k^: 

6. Calculate the value of the function u at any node for any time from 

u = b + Be^^ 

Suitable routines for the calculation of eigenvalues and 

eigenvectors can be found, for example, in Wilkinson (1965) or Smith et 

a l . (1974). 

The hybrid method is s t i l l in the experimental stage; it has 

performed adequately on a 20-polnt problem, but the behaviour In larger 

problems is as yet unknown. 

No data have been compiled so far on the speed of the hybrid 

solution in comparison with standard methods; efficiency of the method 

will depend largely on the aval lability of fast numerical routines to 

find eigenvalues of large, but sparse, matrices. 
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