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Abstract

The forward finite difference formuiation of linear partial

differential equations leads to the matrix equation

n+l n
u

in which the matrix A and the vector ¢ are constant whenever the
differential equation and boundary conditions have no time-dependent

coefficients. By a slight artifice, this equation can be changed to
n+l n

after which, on the mth successive squaring of A*, the value of u is

calculated at a time that is 2" times the original time step.
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Résumé

lLa formulation & différences finies en avant d'équations aux

dérivées partielles conduit a l'équation matricielle

ntl _ _ n

dans laquelle la matrice A et le vecteur ¢ sont des constantes, tandis
que l'équation différentielle et les conditions limites ne possédent pas
de coefficients dépendant du temps. Par un artifice simple, cette
équation peut s'écrire

n+l n
u

= A¥ uy
\ . ieme . : *
aprés quol, a lam mise au carré successive de A*, la valeur de u

. ) . . s s
est calculée au moment égal a 2 fois le pas temporel initial.



A Foreward Finite Difference Procedure with Exponentially
Increasing Time Steps: The Method of Successive Squaring

A. Vandenberg

INTRODUCTION

Of all the procedures for the numerical solution of partial
differential equations, the forward finite difference method is the
simplest, since values of the independent variable at the space nodes
after a time step At are calculated explicitly from values before the
time step, avoiding the need for simultaneous solution at all the nodes,
which is characteristic of implicit procedures. The forward method,
however, has been abandoned in practice, since the time step must always
be kept under a maximum critical size for the method to remain stable.
In this paper., however, it will be shown that for certain types of
boundary value problems involving linear differential equations, the step
size of the forward finite difference formulation can be increased each

iteration by a factor of two.

THE METHOD
To develop the method, the parabolic equation in two-space
dimensions will be used, although the method may be applied equally well

to other types of linear equations:

Ju/dt = a(x,y)a2u/dx” + B(X,y)a2u/dy° + v(x.y) (1)



In conjunction with Equation 1, a set of boundary conditions is

prescribed:
u = U(x,y) on Fl (2a)
du/ds = §(x.,y) on F2 (2b)
c,u + c.,du/ds = e(x,y) on T (2¢)

1 2 3

where du/ds = the derivative in the direction perpendiculat to the

2 or F3, cl and 02 are constants, and the o, 8.

Y. 8, ¢, and U must be independent of time.

boundary I

In the forward finite difference method, Equation 1 is replaced

by its finite difference approximation

n n n
1,5 V4,5 Mior, 57, 5, ) T Ry U 5e172 Yy 5ty 5 Y

3)

where
1, . = a. . At/Ax2
i.j i.j
_ 2
ki,j = Bi,j At/Ax
Yl.] = Yi.] At

the superscript n indicates the value of u at time t = nAt, and the
subscripts 1 and j designate the value of the variable at the
intersection, in the x-y plane, of the ith vertical grid line and the jth
horizontal grid line of the finite difference grid (Fig. 1).

Equation 3 is then applied to each of the intersections (nodes)

in turn, except for nodes on the boundary element I'., which have a

1

constant value. Boundary conditions of type (2b) and type (2c) are



Figure 1. Notation used in the finite difference approximation.

replaced by finite difference approximations from which the value of u at
the boundary node is expressed in terms of values at nearby internal

nodes.

In matrix notation, then, one iteration, which carries the
solution forward in time from t = nAt to t = (n+l)At, is expressed by

the equation

un+l = + ¢ ' (4)



where u” and un+l are the vectors of nodal values of u at t = nAt

and t = (ntl)At, respectively, at all the m nodes where u is not
constant; A is the m x m matrix resulting from applying Equation 3 to all
of the interior nodes in turn, replacing nonconstant boundary nodes where
they occur by appropriate expressions derived from (2b) and (2c); and c
is a vector of constant terms deriving from the term Y;,j in

Equation 3 and from constant boundary values on Fl.
Thus, starting with n = 0, we calculate from u®, the vector of

initial conditions:

u1 = u(At) = Au°® + ¢

u2 = u(24t) = Au1+c = A2u° + Ac + C
W = u(3at) = Alue + 2% + A + c
ull = u(nAt) = Alu® + ¢ ?iéAi

The summation in (5), however, represents a calculating effort that one
can very well do without, and it would be much preferable to have,

instead of Equation 5, an equation of the form

or, in general,

uk+n - Anuk

for then
u2 = u(2At) = A2u°
u4 = u(4At) = A4u°

(5)

(6)

(7N



etc., and successive squaring of A would result in the calculation of u
at t = At, 2At, 4At, or in general at t = 2"At on the nth

iteration.

An equation of type (7) can be obtained from Equation 4 by
introducing an additional, dummy variable, u as the (m+1)th element of
u and assigning to u the constant value

u=1
Equation 4 can then be written as

n+l n

u = A* u (8)
where
- 1
Q12 ~-~--- qp ' Q)
91922 ——~--%n | &
. - [} ] 1 ' _ A C__
A ) [} L] [ [ 0 l
aml am2 - - - amam cm
0 o _ _ _ _ _ 0 1

Thus the matrix now contains the vector of constants c¢ as its last column,
which is now regarded as coefficients of the dummy variable u in the

matrix Equation 8. The last row of the matrix expresses the fact that

-n+l _ -n
u =u

that is, u is a constant.



Thus, all the requirements for solution of Equation 3 by a
method of successive squaring are met. The method will be illustrated by

two examples.

EXAMPLES

In the first example, the solution of Equation 1 is sought in
the domain shown in Figure 2; the function u is constant everywhere along
the boundary with values as indicated in Fiqure 2; the initial values at
the three internal nodes are indicated in brackets in Figure 2. There

are no source/sink terms: vy is zero everywhere. Obviously the

solution will tend to a steady state with ups Uy, and u, equal to
120, 140, and 160, respectively.
O O O QO
N ) )
Q S O
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N NV Ny N &

Figure 2. Configuration, initial values, and boundary values of the first example.

Setting 1 and ki j equal to 0.2 at all nodes, Equation 3

1.3

reduces to the set of three equations:

u?+l = 0.2u? + 0.2u2 + 0.2 (100 + 120 + 120)
n+l n n n
u)"" = 0.2u] + 0.2u) + 0.2u3 + 0.2 (140 + 140)



which, on introduction of u is expanded to

n+l

n+l

n+l

0

0

.2u2 + 0.2u"

3 n n
ul = 0.2ul + 0.2u

2

2

3

+ 68

3

+ 0.2 (180 + 160 + 160)

u2 = 0.2u? + 0.2un + 0.2un + 56

the set of four equations:

.2u2 + 0.2u7 + 100 u

3

which also can be written in matrix form:

where

n+l n
u = A*u

OO NN

oONNN

ONNO

68
56
100

Successive squaring of A* results in

a2 -

A* =

.08 .08 .04
.08 .12 .08
.04 .08 .08

0 0 0

.00074 .00104

.00104 .00148

.00074 .00104
0 0

92.8
100.8
131.2

1

.00074

.00104

.00074
0

' A*4

119.65

139.50

159.65
1

.014
.019
.013

A*

16

.019
.027
.019

0

.013
.019
.014

0

o

113.54

130.82

153.47
1

120.0
140.0
160.0



Thus, the powers of A* converge to all zeros except for the last
column, which eventually contains the steady state solution of the
problem. This final form is typical of all problems that attain a steady
state for t » «. It can be noted that further squaring of A*16 has
virtually no effect, that is, for large n

AR AP

Nor has the initial condition any influence on the steady state

solution, which is completely determined by the boundary conditions.

A further note of interest is the existence of the inverse
matrices of A and A¥*, A—l and A*_l, respectively. From Equation 4 we
have

W= al @™t c). (9)

(10)

Either equation can be used to step béckwards through time, and there is
no particular reason why stepping backwards beyond t = 0 would not be

" permissible. Equation 10 permits us to do so by successive squaring at
an increasing rate. It should also be noted, however, that higher powers
of A*, as exemplified by A*16 of the example, become increasingly

ill-conditioned. Thus the closer the solution is to the steady state,

the less accurate becomes the retrieval of previous states.



Continuing the evaluation of the sample solution, we calculate

and we thus have

-1

u- =u
-2

u- =u
-3

u =u

which gives

c
il

c
n

0 5 -5 220
5 -5 5 -560
-5 5 0 60
0 0 0 1
(t = -At) = ax1 e
(t = -28t) = ax 1yl
(t = -3At) = a2
220, -60,  +60

-380, +1140, -1340

+12620, -14860, +7660

Thus, although mathematically correct, the "solutions" at negative t soon

become meaningless, physically, in this instance.

In the second example, the result is shown when the system does

not converge to a steady state, as for example in the configuration of

Figure 3, in which the boundary is of the "no-flux across the boundary”

type, that is

du/ds =

0 on I’
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Figure 3. Configuration of the second example.

Thus, for example, both virtual nodes, outside the boundary and opposite

node No. 1 in the interior of the region, have the same value at all

times as node No. 1. Furthermore a constant source, Yy = .00l,

operates at node No. 5 in the centre. Again setting 1 and ki at

i.3 3

0.2, the equivalent of Equation 3 becomes

n

_ n n n .
= 0.2 (Uy_y g ¥ U5y, YU g0 P Yy g

n )
+ ui,j) + Y (11)

Applying Equation 11 to each of the nine internal nodes of Fiqure 3, the

matrix A* is obtained:

A* = .001

covonMvMNONO
ocvBNONMOOOO
HOOOODOODOOO
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After a few successive squarings, the matrix will look like

i 1110111y .11l .11r .1l 111 .11l .111  .00328
Jiiro.11ro.1iro.iro.111r .11l .11l .11t L1110 . 00356
Jiro.111ro.11r .1l .11 .11l 0111 .11l .11l .00328
32 Jirro.11ro.111ro.111o.111 .1l L1111 .11l L1111 .00356
A*™T - L1111 .11l .11l .11l L1l L1l a1l 111 .00467
L1 o.11ro.111roo.111 o .1ibo.11l o L1l L1l .11l .00356
2111 .1i1yoo.1iro.illo.1iroo.1i1r .11l .iil .11l .00328
.11t .11y 0111 .1l .1ibo .11l L1111 .11l 111 .00356
L1 .11 .11y 111 .11 o111 .11l L1l L1111 .00328

0 0 0 0 0 0 0 0 o 1

L

A*32 represents a quasi-steady state in which the shape of the

surface representing u does not change, but its level rises uniformly at

a constant rate. The complete solution at large t can be considered to

consist of two parts: (1) an individual part, characteristic for each
node, which is steadily increasing since it is the result of the
continuously operating source at node No. 5 (this part is contained in
the last column and therefore independent of the initial condition); and
(2) a part that is equal for all nodes and is the average of the initial
values, in this case 1/9 (.111) times the sum of all the nodal values at

t = 0; it thus represents "what was in the bucket" at the beginning and

is still there, but evenly distributed over all the nodes.

EFFICIENCY IN COMPARISON WITH THE STANDARD FORWARD METHOD

Although the exponentially increasing time steps of the method
of successive squaring seem, at first sight, to provide a great
improvement in calculating efficiency, the method suffers from the
disadvantage of a larger number of operations per time step. In the

standard forward difference method, the number of additions and the

number of multiplications is approximately 3 m, 5 m, or 7 m per time

1l



step, for respectively l-dimensional, 2-dimensional, and 3-dimensional
problems, where m is the number of nodes. Thus to carry the solution
forward to t = 2nAt requires pm2n multiplications, where p = 3, 5,

or 7, and approximately the same number of additions.

In the method of successive squaring, the (m+l)m matrix elements
(not counting the last row, which does not change) must be calculated at
(m+1) additions and the same number of multiplications per element per
squaring. Also, to calculate the vector u at each step, an additional

m(m+l) multiplications and the same number of additions are required.
Thus, in the method of successive squaring for n iterations,
that is, for t = 2nAt. a total of n[(m+l)2m + m(m+l)] = nm(m+l) (m+2)

additions and the same number of multiplications are needed. And only if
(m+l) (m+2) < p 2"/n

will the method of successive squaring be more efficient than the
standard forward method. For a 2-dimensional problem with n = 10, that
is, last calculated values at t = 1024 At, the number of nodes must be
less than 21, and with 40 nodes, the solutions must be carried forward at

least to t = 8192 At = 213At for successive squaring to be the more

efficient.

APPLICATION TO IMPLICIT FORMULATIONS

Implicit finite difference methods can be expressed in matrix

form as

Aun+l = Bu" + c (12)

12



Again, if the vector ¢ and the matrices A and B are invariant,

Equation 12 can be premultiplied by A“l, the inverse of A:

AR N T NP
or

"ol a (13)
where

p=-a's
and

d=A "¢

Equation 13 can then be extended to

n+l n

where

D | d
* = PO A S
D lOll

Thus the method of successive squaring can be applied to implicit

formulations as well.

IN CONCLUSION

Although the method of successive squaring has been described
here for the solution of a particular partial differential equation and

its forward finite difference approximation, the method is applicable to

13



all types of equations that in finite approximation can be expressed by

the matrix equation

+
Aun 1 = Bun + C

provided the matrices A and B, and the vector ¢ are time invariants, and
the inverse A_l of A exists. These requirements clearly limit the
method to linear differential equations.

The method becomes efficient only after a certain number of

iterations is exceeded, which number increases with the number of nodes.

As an aside, it has been shown that it is possible to step
backwards through time to arrive from an observed state at some point in
time to a previous state that gave rise to it. A closer inspection of
this possibility may, however, reveal that this type of "historical

research” will soon abort because of round-off error.

14
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