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Abstract 

The forward finite difference formulation of linear partial 

differential equations leads to the matrix equation 

u""^ = Au" . C 

In which the matrix A and the vector c are constant whenever the 

differential equation and boundary conditions have no time-dependent 

coefficients. By a slight artifice, this equation can be changed to 

n+1 n 
u = A* u 

after which, on the m*"*̂  successive squaring of A*, the value of u is 

calculated at a time that Is 2̂^ times the original time step. 

i V 



Resume 

La fo rmu la t i on a d i f f e r e n c e s f i n i e s en avant d ' e q u a t i o n s aux 

d e r i v e e s p a r t l e l l e s condu i t a I ' equa t i on m a t r i c l e l l e 

n+1 , n , 
u =̂  Au + c 

dans l a q u e l l e l a ma t r i ce A et l e vec teur c sont des cons tan tes , t a n d l s 

que I ' equa t i on d i f f e r e n t i e l l e et l e s c o n d i t i o n s l i m l t e s ne possedent pas 

de c o e f f i c i e n t s dependant du temps. Par un a r t i f i c e s i m p l e , c e t t e 

equa t ion peut s ' e c r i r e 

u"^^ = A* u " 

i eme 

apres q u o i , a l a m mise au c a r r e s u c c e s s i v e de A * , l a v a l e u r de u 

es t c a l c u l e e au moment ega l a 2"" f o i s l e pas temporel i n i t i a l . 

V 



A Foreward Finite Difference Procedure with Exponentially 
Increasing Time Steps: The Method of Successive Squaring 

A. Vandenberg 

IMTRODUCTION 

of a l l the procedures for the. numerical solution of partial 

differential equations, the forward finite difference method is the 

simplest, since values of the independent variable at the space nodes 

after a time step At are calculated explicitly from values before the 

time step, avoiding the need for simultaneous solution at all the nodes, 

which is characteristic of implicit procedures. The forward method, 

however, has been abandoned in practice, since the time step must always 

be kept under a maximum critical size for the method to remain stable. 

In this paper, however, it will be shown that for certain types of 

boundary value problems involving linear differential equations, the step 

size of the forward finite difference formulation can be increased each 

iteration by a factor of two. 

THE METHOD 

To develop the method, the parabolic equation in two-space 

dimensions will be used, although the method may be applied equally well 

to other types of linear equations: 

3u/dt = ct(x,y)3^u/3x'' + 3 (x ,y) 3^u/3y^ + Y(x,y) 

1 

(1) 



In conjunction with Equation 1, a set of boundary conditions is 

prescribed: 

u = U(x,y) on (2a) 

du/ds = 6(x,y) on (2b) 

CjU + C2du/ds = e(x,y) on (2c) 

where du/ds = the derivative in the direction perpendicular to the 

boundary or r^, and are constants, and the a, p, 

Y, 6, e, and U must be independent of time. 

In the forward finite difference method. Equation 1 is replaced 

by its finite difference approximation 

n . , ,n _ n , n x . , /n -,n n . ' 
" i , j ' h,j (Vl.j -2Ui,j+u.^l,j) + k^,j (u. . _ i - 2 u^^Au..^^) . Y. . 

(3) 

2 

^ i , j = ^ . j ^'^^"^ 

. = 3. . At/Ax2 
•I 

^ i . j = ^ i . j 

the superscript n indicates the value of u at time t = nAt, and the 

subscripts 1 and j designate the value of the variable at the 

intersection, in the x-y plane, of the ith vertical grid line and the jth 

horizontal grid line of the finite difference grid (Fig. 1). 

Equation 3 is then applied to each of the intersections (nodes) 

in turn, except for nodes on the boundary element r̂ ,̂ which have a 

constant value. Boundary conditions of type (2b) and type (2c) are 
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replaced by finite difference approximations from which the value of u at 

the boundary node is expressed in terms of values at nearby internal 

nodes. 

In matrix notation, then, one iteration, which carries the 

solution forward in time from t = nAt to t = (n+1)At, is expressed by 

the equation 

u"^^ = Au" + c (4) 

3 



where u" and u"^^ are the vectors of nodal values of u at t = nAt 

and t = (n+l)At, respectively, at al l the m nodes where u is not 

constant; A is the m x m matrix resulting from applying Equation 3 to al l 

of the interior nodes in turn, replacing nonconstant boundary nodes where 

they occur by appropriate expressions derived from (2b) and (2c); and c 

is a vector of constant terms deriving from the term J in 

Equation 3 and from constant boundary values on F^. 

Thus, starting with n = 0, we calculate from u ° , the vector of 

initia l conditions: 

u''̂  = u(At) = Au" + c 

= u(2At) = Aû +c = A \ ° + Ac + C 

u"̂  = u(3At) = A \ ° + A ^ C + A C + C 

n-1 i (5) 
u" = u(nAt) = A ^ U " + C I A 

1=0 

The summation in (5), however, represents a calculating effort that one 

can very well do without, and it would be much preferable to have, 

instead of Equation 5, an equation of the form 

n ,n o 
u = A u° (6) 

or, in general, 

k+n .n k 
u = A u (7) 

for then 

u^ = u(2At) = A \ ° 

u'̂  = u(4At) = A'^U" 

4 



etc., and successive squaring of A would result in the calculation of u 

at t = At, 2At, 4At, or in general at t = 2"At on the nth 

iteration. 

An equation of type (7) can be obtained from Equation 4 by 

introducing an additional, dummy variable, u as the (m+l)th element of 

u and assigning to u the constant value 

u = 1 

Equation 4 can then be written as 

n+1 n 
u = A* u 

where 

1̂1 1̂2 Îm 1̂ 

2̂1 2̂2 - ̂2m 

A* = 
' 

• • 

m̂l \2 m m m̂ 

0 0 0 1 

A C 
0 1 

Thus the matrix now contains the vector of constants c as its last column, 

which is now regarded as coefficients of the dummy variable u in the 

matrix Equation 8. The last row of the matrix expresses the fact that 

-n+1 -n 
u = u 

that i s , u is a constant. 

5 



T h u s , a l ] t h e r e q u i r e m e n t s f o r s o l u t i o n o f E q u a t i o n 3 b y a 

m e t h o d o f s u c c e s s i v e s q u a r i n g a r e m e t . T h e m e t h o d w i l l b e i l l u s t r a t e d b y 

t w o e x a m p l e s . 

E X A M P L E S 

I n t h e f i r s t e x a m p l e , t h e s o l u t i o n o f E q u a t i o n 1 i s s o u g h t i n 

t h e d o m a i n s h o w n i n F i g u r e 2 ; t h e f u n c t i o n u i s c o n s t a n t e v e r y w h e r e a l o n g 

t h e b o u n d a r y w i t h v a l u e s a s i n d i c a t e d i n F i g u r e 2; t h e i n i t i a l v a l u e s a t 

t h e t h r e e i n t e r n a l n o d e s a r e I n d i c a t e d i n b r a c k e t s i n F i g u r e 2 . T h e r e 

a r e n o s o u r c e / s i n k t e r m s : y i s z e r o e v e r y w h e r e . O b v i o u s l y t h e 

s o l u t i o n w i l l t e n d t o a s t e a d y s t a t e w i t h u ^ , u ^ , a n d u ^ e q u a l t o 

1 2 0 , 1 4 0 , a n d 1 6 0 , r e s p e c t i v e l y . 

-.^ 

#1 #2 #3 

• i 1 ( 

Figure 2. Configuration, initial values, and boundary values of the first example. 

S e t t i n g 1 . a n d k . e q u a l t o 0 . 2 a t a l l n o d e s . E q u a t i o n 3 
1 , J 1 , J 

r e d u c e s t o t h e s e t o f t h r e e e q u a t i o n s : 

u " ^ ^ = 0 . 2 u " + 0 . 2 U 2 + 0 . 2 ( 1 0 0 + 1 2 0 + 1 2 0 ) 

u " " ^ ^ = 0 . 2 u " + 0 . 2 U 2 + O . 2 U 3 + 0 . 2 ( 1 4 0 + 1 4 0 ) 

6 



n+1 O.P-u" + 0 . 2 u " + 0 .2 (180 + 160 + 160) 

which, on Introduction of u is expanded to the set of four equations: 

u 
n+1 
1 

n+1 
u. 

0 . 2 u " + 0.2U2 + 68 u 

0 . 2 u " + 0.2U2 + 0 . 2 u " + 56 u 

n+1 
U.- 0.2U2 + 0 . 2 u " + 100 u 

u 

which also can be written in matrix form: 

where 

n+1 -. n 
u = A*u 

A = 

.2 .2 0 68 

.2 .2 .2 b6 
0 .2 .2 100 
0 0 0 1 

Successive squaring of A* results in 

.08 .08 .04 92.8 

.08 .12 .08 100.8 

.04 .08 .08 131.2 
0 0 0 1 

.014 .019 .013 113.54 

.019 .027 .019 130.82 

.013 .019 .014 153.47 
0 0 0 1 

.*8 ^ 
.00074 
.00104 
.00074 

0 

.00104 

.00148 

.00104 
0 

.00074 

.00104 

.00074 
0 

119.65 
139.50 
159.65 

1 

, Â  
.16 

0 0 0 

120.0 
140.0 
160.0 

1 
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Thus, the powers of A* converge to a l l ze ros except f o r the l a s t 

column, which e v e n t u a l l y con ta i ns the steady s t a t e s o l u t i o n o f the 

prob lem. Th i s f i n a l form i s t y p i c a l of a l l problems that a t t a i n a s teady 

s t a t e f o r t -> I t can be noted that f u r t h e r squar ing of A*"*^ has 

v i r t u a l l y no e f f e c t , that i s , f o r l a rge n 

A*2n ^ ^ , n 

Nor has the i n i t i a l c o n d i t i o n any i n f l u e n c e on the s teady s t a t e 

s o l u t i o n , which i s comple te ly determined by the boundary c o n d i t i o n s . 

A f u r t h e r note o f i n t e r e s t i s the e x i s t e n c e of the i n v e r s e 

m a t r i c e s o f A and A * , A ^ and A* ^, r e s p e c t i v e l y . From Equat ion 4 we 

have 

n / n+1 . u = A (u - c) (9) 

and from Equat ion 8 

u " - A*-' u"^.l (10) 

E i t h e r equa t ion can be used to s tep backwards through t ime, and t he re i s 

no p a r t i c u l a r reason why s tepp ing backwards beyond t =̂  0 would not be 

p e r m i s s i b l e . Equat ion 10 pe rmi ts us to do so by s u c c e s s i v e s q u a r i n g at 

an i n c r e a s i n g r a t e . I t shou ld a l s o be no ted , however, that h ighe r powers 

o f A * , as e x e m p l i f i e d by A*"^^ o f the example, become I n c r e a s i n g l y 

i l l - c o n d i t i o n e d . Thus the c l o s e r the s o l u t i o n i s to the steady s t a t e , 

the l e s s accu ra te becomes the r e t r i e v a l of p r e v i o u s s t a t e s . 

8 



Continuing the evaluation of the sample solution, we calculate 

0 5 -5 220 
5 -5 5 -560 
-5 5 0 60 
0 0 0 1 

and we thus have 

-1 
u = u (t = -At) = = A*~^ u° 

-2 
u = u (t = -2At) = A*"-̂  u 

-3 
u = u (t = -3At) = A*~"̂  u 

which gives 

u"-̂  = 220, -60, +60 

u"^ = -380, +1140, -1340 

u'^ = +12620, -14860, +7660 

Thus, although mathematically correct, the "solutions" at negative t soon 

become meaningless, physically, in this instance. 

In the second example, the result is shown when the system does 

not converge to a steady state, as for example in the configuration of 

Figure 3, in which the boundary is of the "no-flux across the boundary" 

type, that is 

du/ds =0 on r 

9 



0 0 0 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

7 =.001 

/ 0 

/ 

1 

0 0 0 

Figure 3. Configuration of the second example. 

Thus, for example, both virtual nodes, outside the boundary and opposite 

node No. 1 in the interior of the region, have the same value at a l l 

times as node No. 1. Furthermore a constant source, y = .001, 

operates at node No. 5 in the centre. Again setting 1 and k at 
1' J 1' J 

0.2, the equivalent of Equation 3 becomes 

(11) 

Applying Equation 11 to each of the nine internal nodes of Figure 3, the 

matrix A* is obtained: 

.6 .2 0 .2 0 0 0 0 0 0 

.2 .4 .2 0 .2 0 0 0 0 0 
0 .2 .6 0 0 .2 0 0 0 0 
.2 0 0 .4 .2 0 .2 0 0 0 
0 .2 0 .2 .2 .2 0 .2 0 0 
0 0 .2 0 .2 .4 0 0 .2 0 
0 0 0 .2 0 0 .6 .2 0 0 
0 0 0 0 .2 0 .2 .4 .2 0 
0 0 0 0 0 .2 0 .2 .6 0 
0 0 0 0 0 0 0 0 0 1 

10 



After a few successive squarlngs, the matrix will look like 

111 .111 .111 .111 .111 .111 .111 .111 .111 .00328 
111 .111 .111 .111 .111 .111 .111 .111 .111 .00356 
111 .11] .111 .11] .111 .11] .111 .111 .111 .00328 
111 .111 .111 .111 .111 .111 .111 .111 .111 .00356 
111 .111 .111 .111 .111 .11] .111 .111 .111 .00467 
111 .111 .111 .111 .111 .11] .111 .111 .111 .00356 
111 .111 .111 .111 .111 .111 .111 .111 .111 .00328 
111 .111 .111 .111 .111 .111 .111 .111 .111 .00356 
111 .111 .111 .111 .111 .111 .111 .111 .111 .00328 
0 0 0 0 0 0 0 0 0 1 

2 

A*̂  represents a quasi-steady state in which the shape of the 

surface representing u does not change, but its level rises uniformly at 

a constant rate. The complete solution at large t can be considered to 

consist of two parts: (1) an individual part, characteristic for each 

node, which is steadily increasing since it is the result of the 

continuously operating source at node No. 5 (this part is contained in 

the last column and therefore Independent of the initial condition); and 

' (2) a part that is equal for all nodes and is the average of the initi a l 

values, in this case 1/9 (.111) times the sum of all the nodal values at 

t = 0; it thus represents "what was in the bucket" at the beginning and 

is s t i l l there, but evenly distributed over a l l the nodes. 

EKFICIENCY IN COMPARISON WITH THE STANDARD FORWARD METHOD 

Although the exponentially increasing time steps of the method 

of successive squaring seem, at first sight, to provide a great 

improvement in calculating efficiency, the method suffers from the 

disadvantage of a larger number of operations per time step. In the 

standard forward difference method, the number of additions and the 

number of multiplications is approximately 3m, 5m, or 7 m per time 

11 
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step, for respectively 1-dimenslonal, 2~dimensional, and 3-dimensional 

problems, where m is the number of nodes. Thus to carry the solution 

forward to t = 2"At requires pm2" multiplications, where p = 3, 5, 

or 7, and approximately the same number of additions. 

In the method of successive squaring, the (m+l)m matrix elements 

(not counting the last row, which does not change) must be calculated at 

(m+1) additions and the same number of multiplications per element per 

squaring. Also, to calculate the vector u at each step, an additional 

m(m+l) multiplications and the same number of additions are required. 

Thus, in the method of successive squaring for n iterations, 

that i s , for t = 2"At, a total of n[(m+l)^m + m(m+l)] = nm(m+l)(m+2) 

additions and the same number of multiplications are needed. And only i f 

(m+l)(m+2) < p 2"/n 

will the method of successive squaring be more efficient than the 

standard forward method. For a 2-dimensional problem with n = 10, that 

is , last calculated values at t 1024 At, the number of nodes must be 

less than 21, and with 40 nodes, the solutions must be carried forward at 

13 

least to t = 8192 At = 2 At for successive squaring to be the more 

efficient. 

APPLICATION TO IMPLICIT FORMULATIONS 

Implicit finite difference methods can be expressed in matrix 

form as 

Au""̂ ^ = Bu" + c (12) 

12 



Again, i f the vector c and the matrices A and B are invariant. 

Equation 12 can be premultlplied by A , the inverse of A: 

u"'^ = A-i Bu" + A-^c 

or 

n+1 n . J 

u = Du + d 
(13) 

where 

and 

D = A ̂ B 

d = A ̂ c 

Equation 13 can then be extended to 

n+1 r.* r u = D* u 

where 

D* = D jd_ 
1 

Thus the method of successive squaring can be applied to implicit 

formulations as well. 

IN CONCLUSION 

Although the method of successive squaring has been described 

here for the solution of a particular partial differential equation and 

its forward finite difference approximation, the method is applicable to 
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all types of equations that in finite approximation can be expressed by 

the matrix equation 

Au"'^ = Bu" + c 

provided the matrices A and B, and the vector c are time invariants, and 

the inverse A ''̂  of A exists. These requirements clearly limit the 

method to linear differential equations. 

The method becomes efficient only after a certain number of 

iterations is exceeded, which number increases with the number of nodes. 

As an aside, it has been shown that it is possible to step 

backwards through time to arrive from an observed state at some point in 

time to a previous state that gave rise to i t . A closer inspection of 

this possibility may, however, reveal that this type of "historical 

research" will soon abort because of round-off error. 
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