
[IBRARY 
I Environment Environnement Fraquency .nd ' 

Canada Canada 

G. W. Kite 

INLAND WATERS DIRECTORATE. 
WATER RESOURCES BRANCH. 
APPLED HYDROLOGY DIVISION. 
NETWORK PLANNING AND FORECASTING SECTION. 
OTTA WA. CANADA. 1974.



' FLOOD FREQpENCY AND RISK 

ABSTRACT 

Every year floods cause loss of life and millions of dollars 

worth of damage. The use of hydrologic forecasts can reduce this toll. 

While warning if impending high water is the most obvious form of forecast, 

the use of frequency and risk analyses at the planning stage can aid in 

the efficient and safe design and location of all the various structures 

and institutions making up today's society. In these ways the risk of 

flooding and its consequent losses can be minimized. 

This paper discusses the background and justification for pro- 

bability and risk analyses and recommends the use of Specific procedures 

to determine plotting positions, choose a probability distribution and 

compute design event magnitudes and their confidence limits. Other topics 

discussed include the advantages of regional analysis and design procedures 

based on.a specified project risk or hydrologic risk.
- 

It is concluded that the mean frequency should be used as a 

plotting position, that the lognormal distribution is of more practical 

use than many other distributions and that some form of risk analysis 

should be used for all hydrologic designs.- 

Chapter 6, Conclusions and Recommendations, has been written 

so that it may be read as a complete text, independent of-the main report.



FRéhUENCE ET RISQUE D'INONDATIONS 
I I 

RESUME~ 
Cheque année, les crues causent des pertes de vie et des millions 

de dollars de dégats. Il est possible de réduire ce fleau par les pré- 

visions hydrologiques. Bien que la forme la plus sure de préuision soit 

do donner un avertissement de crue imminente, l'emploi des analyses de 

fréquence et de risque au stade de la planification peut aider a la conception 

et 5 l'aménagement efficases et sflrs de toutes les diverses structures 

et institutions qui constituent la société d'aujourd'hui. Les risques 

d'inondations et leurs pertes conséquentes peuvent ainsi atre minimises. 

Le present document étudie la base et la justification des analyses 

de probabilité et de risque et recommende'l'emploi de procédes pour 

déterminer la position de tragage; choisir la distribution des probabilités 

et prbgrammer l'importance prévue des crues ainsi que leurs limites de 

diabilite. Les autres sujets traités sont les avantages de l'analyse 

régional et les procédés de prévision bases sur un risque éventuel ou 

hydrologique. 

L'auteur conclut que la fréquence moyenne devrait servir de position 

de tragage,que la distribution lognormal est beaucoup_plus pratique 

que bon nombre d‘autres distributions et que certains types d'analyses de 

riSque devraient Stre employés pour toutes-les'prévisions hydrologiques.

ii



Chapter 1 

FLOOD FREQUENCY AND RISK 

TABLE OF CONTENTS 

INTRODUCTION 

1.1 Introduction 

1.2 Arrangement of Text 

1.3 Data and Assumptions 

PLOTTING POSITION 

2.1 Introduction 

2.2 Plotting Position as an Extreme 

2.3 Plotting Position as the Mean 

2.4 Plotting Position as the Mode 

2.5 Plotting Position as the Median 

FREQUENCY DISTRIBUTIONS 

3.1 Introduction 

3.2 Discrete Distributions 

3.3 Continuous Distributions 

3.4 Comparision of Frequency Distributions 

3.5 Distribution of T-Year Events 

REGIONAL ANALYSIS 

4.1 Introduction 

4.2 Index-Flood Method 

4.3 Multiple Regression Technqiues 

4.4 Square-Grid Method 

iii 

23 

29 

30 

32 

35 

40 

51 

58 

137 

144



Table of Contents (Cont'dl 

4.5 Use of Standard Frequency Distribution 

4.6 Regional Record Maxima 

4.7 Single Station and Regional Information Content 

RISK 

5.1 The Need for Risk Analysis 

5.2 Economic Design 

5.3 Risk Design 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 General 

6.2 Data Abstraction, Graphs and Plotting Position 

6.3 Frequency Distributions 

6.4 Regional Analysis 

6.5 Risk 

Page 

183 

189 

192 

212 

215 

220 

237 

242 

245 

255 

258



1.1 

2.1 

2.2 

2.3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

- 3.8 

3.9 

3.10 

List of Tables 

Comparison of Recurrence Intervals for Annual and Partial 

Duration Series 

Plotting Positions for Maximum Events Under Modal Assumption 

Plotting Positions for Maximum Event of Extremal Distribution 

Plotting Positions under Median Assumption 

Some Values of Probability of One or More Events for a Poisson 

Distribution with A = 0.5 

Probabilities of One or More Occurrences of Events with 

Different Return Periods in Different Time Intervals 

Ordinates of the Normal Curve 

Area Under the Standard Normal Curve 

Frequency Factor for Use in Normal and Lognormal Distributions 

Plotting Positions, P, and Standard Normal Deviate, t, for 

a Range of Samples of size n Events 

Parameter 6 for Use in Standard Error of Normal and 

Lognormal Distributions 

Dimensionless Ratio of the Standard Error of the T-Year Event 

to the Standard Deviation of the Annual Events for Normal and 

Lognormal Distributions 

Frequency Factor for Lognormal Distribution 

Parameter 6y for Use in Standard Error of Lognormal 

Distribution 

33 

34 - 

36 

54 

55 

61 

64 

65 

68 

69 

69 

69 

77

81



.11 

.13 

.14 

.15 

.16 

.17 

.18 

.20 

.21 

.22 

.23 

.25 

List of Tables (Contld) 

Example of Maximum Likelihood estimation of Parameters of 

Type I Extremal (Gumbel) Distribution 

Values of the Reduced Variable, y, of the Type I Extremal 

Distribution for Some Commonly Used Return Periods, T 

Mean and Standard Deviation of Order Statistics, m/(n+l) for 

Various Sample Sizes, n 

Frequency Factor for Type I Extremal Distribution 

Parameter 6 for Use in Standard Error of Type I Extremal 

Distribution 

Parameter a for Type III Extremal Distribution Tabulated as 

a Function of the Sample Coefficient of Skewness, 71 
Values of the Reduced Variable, y, of the Type III Extremal 

Distribution for Some Commonly Used Return Periods, T 

Frequency Factor for Use in Type III Extremal Distribution 

Parameter 6 for Use in Standard Error of Type III Extremal 

Distribution 

Percentage Points of the Chi-Square Distribution 

Frequency Factor for Use in Pearson Type III Distribution 

Parameter 6 for Use in Standard Error of Pearson Type III 

Distribution 

Comparison of T—Year Event Magnitudes Using Various Frequency 

Distributions 

Comparison of Standard Errors of T-Year Events Using Various 

Frequency Distributions 

Comparison of Class Limits and Chi-Square Values for Different 

Distributions 

Page 

98 

99 

101 

102 

106 

115 

117 

119 

121 

129 

131 

133 

138 

138 

143

. 

i.................._..-._-__.__.__._.._.___..

.

.



3.26 

3.27 

3.2_s 

3.29 

3.30 

3.31 

4.1 

4.2- 

4e5 

4.4 

5.1 

List of Tables (Cont'd) 

ReSults of Tests on the Distribution of loo-Year Events 

Generated from a Lognormal Distribution 

Results of Tests on the Distribution of loo-Year Events' 

Generated from a Type I Entremal Distribution 

Results of Tests on the Distribution of loo-Year Events Generated 

from a Pearson Type III Distribution 
I. I 

Results of Tests on the Distribution of lDD-Year Events Generated 

from Different Sized Samples of a LognOrmal Distribution 
_

I 

Results of Tests on the Distribution of lOO-Year Events Generated 

from Different Sized Samples of a Type I Extremal Distribution 

Results of Tests on the Distribution of looeYear Events Generated 

from Different Sized Samples of a Pearson Type III Distribution 

Confidence Limits for Index-Flood Homogeneity Test 

Critical Miminum Values of R for Estimation of the Mean 

Critical Minimum Values of R for Estimation of the Variance, 

Including Noise Component 

Critical Minimum Values of R_for Estimation of the Variance;- 

Encluding Noise Component 

Design Return Period for Various Project Lives and Risks of 

Failure 

145 

146 

'147 

153 

154 

155 

167 

202 

203 

203 

223



2.1 

5.3 

List of Figures 

Concept of Distribution of Possible Return Periods for an 

Imaginary Sample of Ten Extreme Events 

Area Under the Standard Normal Curve, One-Tail 

Area Under the Standard Normal Curve, Two-Tail 

Graphical Technique of Estimating Parameter a in 3-Parameter 

Lognormal Distribution 

Nomogram for Use With Type I Extremal Distribution 

Comparison of Frequency Curves Form Various Distributions 

Variation of Mean, Standard Deviation and Chi—Square 

of loo-Year Events of Lognormal Distribution with Different 

Sample Sizes 

Variation of Mean, Standard Deviation and Chi-Square of loo-Year 

Events of a Type I Extremal Distribution with Different Sample 

Sizes 

Variation of Mean, Standard Deviation and Chi-Square of lOO-Year 

Events of a Pearson Type Ill Distribution with Different Sample 

Sizes 

Plot to be USed in Regional Homogeneity Test 

Average Annual Costs for Different Designs (Example Only) 

Theoretical Probability of Failure For Given Project Life and 

Design Return Period 

Standardised Varible Vs. Design Quotient 

viii 

25 

66 

66 

86 

103 

139 

150 

151 

152 

169 

218 

224 

228



CHAPTER 1 

Introduction 

1.1 Introduction'
I 

Every year floods threaten life and property_in locations 

across Canada and even more so in other areas of the world. It 

has been estimated (23) that over the period 1948 to 1970 floods- 

in Canada have caused an average damage of $5 million per year with 

the average coSt to the Federal Government of $2 million per year. 

On top of these direct costs are the loss of life, injury, inconvenience 

and other indirect losses caused by floods. 
I - 

Forecasts of flood events can generally reduce the 

damages caused by floods.' There are two ways in which this
' 

beneficial effect may be achieved. Firstly, and most obviously, 

warning of an event enables people to evacuate a danger area.' lf 

sufficient lead-time is provided vulnerable-possessions may be 

removed from the danger tone and preparations can be made, such as 

‘sandbagging, to minimize property damage. 

The second method of achieving benefits through forecasting 

is to use flood frequency analysis in the design of structures
I 

_within the flood p1ain_and for flood plain zoning. As eramples, 

a knowledge of magnitude-frequency relationships should be used in 

the design of dams, highway bridges, railway bridges, culverts, 

water-supply systems, and flood control.structures. The American 

‘Water Works Association has reported (l) that out of 293 dam failures 

in the U.S. and other countries since 1799, about 20% of the
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failures were due to faulty spillway design. Flood plain zoning en- 

sures that housing and industrial developments are not located in high- 

risk zones. Or at least, if they are located in such areas there 

can be no justification for compensation in the inevitable event 

of flood damage. High-risk zones along the banks of rivers SUS- 

ceptible to floods should be used for activities compatible with 

this risk such as parkland, recreation areas, some types of crop 

production or grazing. 

Frequency analysis is not only of use as an aid in averting 

disaster but is also a means of introducing efficient designs. When 

a hydraulic structure, through inadequate or inaccurate data or 

methods, is underdesigned, the results are regretably obvious; 

the dam may fail, the highway may flood or the bridge collapse. This 

does not happen very often and so the hydrologist, equating non- 

failure with success, is satisfied with his design techniques. Non- 

failure however, does not necessarily mean an efficient design. 

Frequently, structures are over-designed, and hence very safe, but 

also very expensive (16). A truly efficient design will be achieved 

only as the result of studies relating cost to risk and frequency 

analysis. 

The Water Resources Council of the 0.8. government (23) 

has recently noted that because of the range of uncertainty in 

design flood anlaysis there is a need for continued research and 

development to solve the many unresolved problems. Current methods



of providing design floods for hydraulic structures include the 

deterministic use of meteorologic data in techniques such as dynamic 

flow equations and the so-called Probable Maximum Flood method (PMF), and 

the stochastic use of frequency analysis techniques. The PMF and 

similar methods suffer from the major disadvantages of being entirely 

subjective and of having no associated probability level. This 

latter is particularly important since to non-technical people it 

implies that no risk is involved, that the maximum flood cannot 

exceed this certain limit. This, of course, is untrue and can some- 

times have disasterous_consequences. Yevjevich (28) has characterised 

the difference between the PMF method and the frequency analysis 

method as being between "expediency" and "truth". 

Neglecting the PMF approach, this report discusses only 

the techniques to be used in flood frequency analysis and, to a lesser 

degree, drought analysis, together with an analysis of the associated 

risk.
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1.2 Arrangement of Text 

The final section of this introductory chapter discusses 

the basic data requirements for frequency analysis and the under— 

lying assumptions of the technique. 

Once the necessary data have been abstracted then the 

frequency analysis proper can begin. To plot extreme data it is 

necessary to associate each event with an appropriate recurrence 

interVal or return period. This subject is discussed in detail 

in Chapter 2. An assumption is then made of a theoretical frequency 

distribution for the population of events and the statistical 

parameters of the distribution are computed from the sample data. 

Chapter 3 describes, for some of the distributions commonly used 

in hydrology, the form of the distribution, estimation of parameters, 

estimation of events at given return periods and estimation of 

confidence limits. The objective of Chapter 3 is to provide sufficient 

background information to enable an hydrologist to intelligently 

select a distribution to use in frequency analysis. 

A flood frequency relation over a region is usually 

preferable to one developed for a specific site for two reasons: 

(a) Because of the sample variation possible at a single 

station any single station analysis is subject to large error. This 

error can be reduced by combining data from many sites. 

(b) There are many more sites where hydrologic data are 

needed, than there are sites at which data are collected. This 

means that some form of analysis is required which can transfer 

data from gauged sites to ungauged sites.



Chapter 4 discusses the various methods of regional analysis pre- 

sently available. 

Both single station and regional frequency analyses in- 

volve risks. In determining the design flood for a project, the 

length of data available, the project life and the allowable 

probability of failure are all factors to be considered. Chapter 5 

reviews the statistical methods available to analyse these risks. 

Chapter 6 presents conclusions and recommends procedures 

to be followed. Chapter 6 has been written so that it may stand 

apart from the rest of the report. That is, for those readers with 

insufficient time to read the complete text, Chapter 6 can be read 

as an abridged version of the complete report.
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1.3 Data and Assumptions 

Starting with the original recorded hydrograph, or with 

the tabulated data abstracted frOm the hydrograph, there are 

two ways in which this data may be used in a frequency analysis. 

The first method, direct frequency analysis, is to select from the- 

total data only that information which is required in the design 

process, e.g. maximum instantaneous flow in each year (annual series) 

all instantaneous flows above a certain base flow (partial-duration), 

minimum 7-day flow in each year (annual series), etc. 

This represents a considerable loss of information, 

however, since such a few data points are utilised. Dhyr-Nielson 

(9) has discussed the effects of this loss of information on the 

estimation of probabilities of extremes. 

The second method of using the basic hydrologic data, 

simulation, is to design a mathematical model which will describe 

the observed hydrograph. This model can then be used to generate 

many sets of data from which the required events can be abstracted. 

As an example, if the object of the frequency analysis is to define 

the flow having a magnitude such that it will occur on the average 

once every 50 years, then 50 years of hydrologic data can be 

generated and the maximum flow during that period can be found. 

In addition, by generating many different sets of 50-year records, 

a distribution of 50-year flows can be found and confidence limits 

set on the mean (10). The disadvantage of the data generation 

method is that it is very unwieldy. It is practicable when



dealing with monthly data, less so for daily means and becomes 

difficult when the need is to generate flows that can be
I 

considered instantaneous. In addition, most models cannot 

successfully generate the extreme peaks and lows of a variable; 

they only operate well for average conditions. 

This report describes only the first method of analysis- 

Within the first method, direct frequency analysis, there are 

two ways in which the required data may be abstracted from the 

original recorded or tabulated data. As indicated earlier, these 

are known as annual series and partial-duration series. 

An annual series takes one event, and only one event, 

from each year of the record. A disadvantage of this abstraction 

technique is that the second or third, etc., highest events in 

a particular year may be higher than the maximum event in
I 

another year and yet they are totally disregarded. .This disadvantage 

is remedied in the partial-duration series method in which all 

events above a certain base magnitude are included in the analysis. 

The base is generally selected_low enough that at least one event 

in each year is included. Each event, to be included in the 

partial-duration series, must be separate and distinct, i.e. 

including two consecutive daily flows caused by the same 

meteorologic event is not valid; If the total number of events 

which occurred during the entire period of record are ranked 

without regard to the year in which they occurred and then the 

n top ranking events are selected, where n iS'the number of 

years of record, the events are termed annual exceedences (20).
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The recurrence interval of an event of given magnitude 

is defined as the average length of time between occurrences of 

that event. This is purely a statistical term and contains no 

inference of periodicity. The recurrence intervals of annual 

series and partial duration series have different meanings. In 

the first case the recurrence interval means the average number of 

years between the occurrence of an event of a given magnitude as 

an annual maximum. In the second case the recurrence interval 

carries no implication of annual maximum. 

Chow (5) investigated the theoretical relationship between 

these two recurrence intervals and their corresponding probabilities. 

If P is the probability of an event in a partial-duration seriesB 
being equal to or greater than x and if the number of events in 

the partial-duration series is Nm, where N is the number of years 

and m is the average number of events per year, then Palm is the 

annual probability of an event being equal to or greater than x. 

The probability of an event x being the largest of the m events 

in a year must then be 

PM = (1 - PE/m)m 1.1 

But PM is then the probability of an annual event of magnitude 

x (say, PE) and corresponds to the annual series. Substituting 
-P 

the approximation (1 - PE/m)m equal to e 
E and letting TE = l/PE 

and TM = l/PM where TE and TM are the recurrence intervals of the



partial-duration and annual series respectively. then

1 
E In TM - 1n TM - 1 T 1.2 

The following table from Dalrymple (7) compares the re- 

currence intervals of the two types of series. 

Table 1.1 

Comparison of Recurrence Intervals for 
Annual and Partial Duration Series 

Recurrence intervals (years) 

Partial- Annual 
duration' §g£ig§ 

0.5 
' ' 

1.16 

1 1.58 

1.44 
' 

_
2 

2 2.54 

5 5.52 

10 10.5 

20 
_ 

20.5 

50 50.5 

100 ' 100.5 

The difference amounts to about 10% when PE is 5 years and about 

5% when PE is 10 years. The distinction is only of importance 

at low recurrence intervals. 

To some extent the decision to use an annual series
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or a partial-duration series depends on the use to which the frequency 

analysis will be put. Some types of structure, for example erosion 

protection works, are susceptible not particularly to one peak flow 

but more to closely repeated high flows and so a partial-duration 

series analysis might be more suitable. If the design flood is 

likely to have a low recurrence interval then again the partial 

duration series may be more suitable since the smallest recurrence 

interval for the annual maximum series is one year. 

If flood flows are being investigated, they should pre- 

ferably be maximum instantaneous flows derived from a continuous 

hydrograph, Usuany, however, instantaneous flows are only avail- 

able for a comparatively few years, but older data may be available 

as maximum mean daily flows. In this case, by correlation between 

the two series, it may be possible to extend the instantaneous 

maxima back in time (13). 

In some regions it may be necessary to carry out more 

than one frequency analysis on the data. Stoddart and Watt (21) 

have described how watersheds in southern Ontario have two distinct 

types of flood; those due to precipitation only, generally occurring 

in the summer, and those due to snowmelt (sometimes combined with 

precipitation) generally occurring in the winter or spring. 

The hydrographs of these two types of flood are quite different 

and cannot be considered to be from the same population. 

Suppose that a flood of a given magnitude x would have



- 11 _ 

a recurrence interval of TP if due to rainfall and TS if due to 

snowmelt. The probabilities of not equalling or exceeding x 

are given as 

qp = l - l/TP 1.3 

and 

q5 = 1 - 1/Ts 1.4 

So that the probability of not equalling or exceeding x in any 

year, qA, is given by 

qA = qP-qs . 

'1.5 

and the recurrence interval for the annual flood equalling or 

exceeding x is 

TA 1/(1 - qA)I 
I 

I: 

I 

1.6 

T .TS T = “Bu—T 1.7 A (Tp + T5 - 1 

The frequency curve of the annual series fiill be asymptotic to both 

the rainfall and snowmelt frequency curves. Stoddart and Watt (21) 

list four possible combinations of these frequency curves. 

Most data series are incomplete. For various reasons such 

as mechanical failure, inaccessibility, flood damage to the recorder, 

etc., some flood peaks are usually missing. This may have a large 

effect on the recurrence intervals assigned to the floods on record.



Dalrymple (7) has described a method of overcoming this problem. 

By regression with a gauged stream in the same hydrologic region 
it is possible to estimate the magnitudes of the missing floods 
at the stream being analysed. As an example of a technique, 
Langbein (14) has correlated the logarithms of flows standardised' 

on a monthly basis. Dalrymple (7) used the computed flows 
as an aid in sorting the observed flows by magnitude and assigning 
recurrence intervals. The computed flows were then discarded and 
not used in the further analysis. 

On the other hand, properly authenticated historic events, 
antedating periods of consecutive records, can be used in frequency 

analysis to increase the accuracy of the analysis. Discharge 

estimated on the basis of authenticated stages of historic floods 

that occurred prior to the modern continuous stage records may 
be used in conjunction with the modern records to obtain a more 

accurate probability curve (22). 

Benson (2) studying the Susquehanna River at Harrisburg, 

Pa., found 7 historic floods with stages greater than 18.0 feet in 
the period 1786 to 1873 and a record of continuous annual maxima 

ranging from 14.3 to 30.3 feet for the period 1874 to 1947. Since 

the period of hiStorical floods may have contained an unknown number 
of events of less than 18.0 feet stage the problem was to combine 
the two types of record in the proper proportions to obtain an array 

of events properly representative of the total period. Benson (2) 

arrayed all events, historic and recent, in order of descending 

magnitude using the plotting position m/(n+1). The order number 

of those flood peaks which were lower than the lowest historical

~

~~
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event (the base event, 18.0 feet on the Susquehanna) were then 

adjusted as: 
n-tb 

Illc 3 tb + t - tb 
(m - tb)~ 

where Inc is the corrected order number, n is the original order 

number, n is the period in years from the first historical event 

to the most recent recorded event, th is the number of events 

equalling or exceeding the base event, and t is the total number 

of events.
I 

If a single historic event is known and there is not 

much difference in magnitude between that event and the highest 

event in the recent record, then the Equation 1.8 can be used with 

confidence (2).' If there is a large gap in magnitude then there 

should be some_reasonable certainty that there were few or no 

events during the ungauged interval which exceeded'the highest 

in the recent period. With a large gap in magnitude and no 

intimation of what may'have happened in between. then Equation 1.8 

is no longer applicable. Dalrymple (6) has included further . 

examples of the application of Benson's (2) method. 

6105 and Krause (10) have described the augmentation of 

recorded data with historical data for the Rivers Dnepr in the 

USSR, Elbe in Czechoslovakia, Main in West Germany and the Spree 

and Werra in East Germany. As an example, the Elbe River at 

Decin, Czechoslovakia, has a record of annual flood peaks for 

111 years (1851 to 1962). For purposes of flood frequency 

1.8



~ 

analysis historical data can be used to extend this record to 
530 years (back to 1432). In this case only the relative 
magnitudes of the historical floods were used since obviously 
the absolute magnitudes were not measured. 

G105 and Krause (10) used the historical data to 
increase the accuracy of estimation of the sample mean, i, and 

. 2 variance; 5 , as; 

x = )Ixipi 1.9 

2 - 2 S — x (xi - x) pi 1.10 

where pi is a weight given to each event, 2 pi 
= 1. For 

historical floods the weights were assigned as: 

p = l/N 1.11 

where N is the length of the historical period. The events 
of the annual record were weighted as: 

p = g g 
k 

1.12~ 
where k is the number of historical floods and n is the number of 
years in the annual record. The computed mean and standard deviation 
were then used in the standard frequency equation: 

x(K) = i + x.s
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where K, the frequency factor, depends upon the return period 

required and the distribution characteristics. 

Leese (15) has shown how historical flood marks may 

be used to achieve greater precision in the estimates of flood 

eyents and hence greater efficiency in design. The Type I extremal 

distribution (see Chapter 3 for description) was used on the 

29-year record of annual maximum discharges of the River Avon at Bath 

to estimate floods with return periods of lo, 25, 50, 100 and 1000 

years. The procedure was then repeated adding to the data 13 

historic floods determined from old flood marks: It was found that 

the sampling error of the flood estimates was reduced in the second 

case by between 8% for the lO-year flood and 18% for the 1000-year 

flood. By applying expressions for the benefits and costs of an 

imaginary structure Leese found that if the structure were designed 

on the basis of a 50-year flood then the incorporation of the 

historic data would reduce the cost of the structure by approximately 

1%. More importantly it was found that to obtain the same cost 

reduction from a continuous record would require a further 

20 years of streamflow data. 

Two assumptions implicit in any frequency analysis are 

(19): 
'

' 

(a) that the data to be analysed describe-random events, 

and 

(b) that the natural processes involved are stationary' 

with respect to time.
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This chapter has already discussed the implications of assumption 

(a) on data selection. emphasising the fact that all events used must 
be independent. Assumption (b) is more difficult to guarantee. 
The earth is in a constant state of flux with innumerable processes 
affecting the hydrologic cycle and its various components. Statistical 
tests are available (26) to check for stationarity of time series. 
Non-stationarity in hydrologic time series is generally due to one 
of two basic causes: 

(a) a slow change in hydrologic parameters such as might 
be caused by the gradual urbanisation of watersheds or (on a 

different time scale) long-term changes in temperature or 
I

E 

precipitation distribution.
5 

(b) rapid change in parameters caused by, for example, earth- 

quakes, landslides, building of dams. 

In a recent paper, Yevjevich (27) gave a plot of annual 
maximum flows of the Danube River at Orshova in Romania which shows 
a pronounced upward trend. This trend in discharge is mainly due 
to the construction of flood protection levels along the Danube 
and its major tributaries. Non-homogeneities such as this shift 
the mean value of the distribution and increase the variance. 

Another source of error is basic inconsistency in the 
data due to systematic measurement and computational errors. This 

subject has been discussed in detail by Dickinson (8), Robertson (l7), 

and Herschy (11), and the particular errors involved in determination 
of winter flows in Canada have been discussed by Rosenberg and Pentland
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(18). It might be noted at this point that the major emphasis in 

this report is on flood flows and that these are the very events 

subject to the maximum measurement error. In fact maximum flows 

are seldom, if ever, measured because of the difficulties involved 

firstly in predicting the time at which maximum flow will occur, 

secondly the difficulty in getting to the gauging site at that time 

and finally the difficulties of actually carrying out the gauging 

at the high stage and corre5ponding high velocities. As a.resu1t 

high flows are normally estimated by extrapolation of the rating 

curve, estimation of mean velocity from an isolated surface velocity 

measurement, use of the slope-area method (6) or other 

similar procedures. The resulting estimates of peak discharge 

contain a high error component which has been estimated by Blench (4) 

to be at least 125%. 

Yen and Ang (25) have termed these errors "subjective 

uncertainty" and have shown that if the individual uncertainties 

are denoted by al, 02. . . then the overall subjective uncertainty 

on, can be written as: 

_ 2 2 i a - [01 + 02 + ...] 1.14 

The first assumption made, in any frequency analysis 

and a very important one, is that the sample data available 

are good estimates of the population of events. This assumption 

is necessary so that estimates of population statistics such



as mean, variance, skew, etc. may be derived from the sample. 
Benson (3) used a theoretical frequency curve to obtain 1000 
random events. This base data was then divided into shorter re- 
cords e.g. 40 records of 25 events each, 20 records of 50 events 
each, etc. and Benson investigated the variability of the frequency 
curves of these samples compared to the original theoretical curve. 
Benson's conclusions provide estimates of the number of events 
needed in a sample before sample estimates of magnitudes at 
various return periods are comparable to the population values.
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CHAPTER 2 

Plotting Position 

2.1 Introduction 

Consider a series of 10 annual maximum discharges; Suppose 

that it is desired to plot these annual maxima on a graph in order to 

better interpret the data, perhaps detect errors, or to get an idea 

of which probability distribution to use to describe the data. The 

ordinate of such a graph conventionally contains the event magnitudes 

either on a linear or logarithmic scale while the abscissa will be 

some measure of the probability of occurrence of each event or the 

average time interval between occurrences (since this is simply the 

inverse of the probability of occurrence). Frequently the scale of 

the abscissa will be arranged So that events distributed according 

to a given distribution will plot as a straight line.
i 

The question then arises as to how to derive the probability 

of occurrence or average return period of each of the set of annual 

maximum floods. Sorting the annual events in order of magnitude it 

is apparent that the largest flood occurs once in the 10 years. But 

is 10 years the true average return period (i.e. the average interval 

between occurrences) of this flood? We do not know. In the particular 

sample a flood of this magnitude occurred only once but in other equal 

length samples of annual maxima the same magnitude of flood might 

occur several times or not at all. That is, the maximum flood in 

the 10-year sample may have a true return period of 5 years, 50 years.
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500 years or any other number of years. And yet, for practical reasons, 

some probability of occurrence must be assigned to this flood. 

For the maximum of a series of 10 annual maximum values 

it can be shown (11) that the true return period, T, has a 10% 

probability of being as low as 5 years and a 10% probability 

of being as high as 100 years. As a matter of theory (1), if the 

basic data are truly representative, a flood having a return 

period of 10 years will be equalled or exceeded in a great length 

of time, on an average of once in 10 years. In 1000 years of record 

there would be 1000/10, or 100 such floods. However, if these 

1000 years were divided into 100 periods of 10 years each, about 

37% of such periods would not experience a flood of that magnitude; 

about 37% of the periods would experience 1 such flood; about 

18% would experience 2; about 6% would experience 3; about 1.5% 

would experience 4; and about 0.5% would experience 5 or more such 

floods. 

As an illustration of the problem consider a large rain 

storm occurring simultaneously over several adjacent streamflow 

basins. Imagine that one stream has been gauged for 5 years, 

another for 10 years and another for 15 years. If the resulting 

flood runoff is the maximum in the 15 years it will have an apparent 

return period of 5 years at one gauge, 10 years at another and 

15 years at the third. Which is correct? Obviously the estimate 

based on 15 years is more correct than those based on 10 or 5 years. 

In the absence of infinite records some method of correcting for this
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variation in apparent return period with available record must be 

derived. 

Figure 2.1 illustrates the concept of all 10 annual maxima 

having distributions of possible return periods. The scales used 

here, for purposes of illustration, are linear and normal probability 

and the distributions of the possible return periods are shown as 

arbitrary bell-shaped distributions. The problem of plotting 

position is then to locate the "correct" average return period 

for each event so that the distributions can be replaced by 
point positions. 

The large variation possible in T can be shown more 

formally by considering T as an independent random variable which 

can take the values 1, 2, ... t-l, t, t+l...w where t is the 

number of years from the occurrence of one event until the 

occurrence of the next event. The distribution of T is then 

of the form: 

P(T = t) = p(1 — p)t'1 2.1 

where p is the probability of the event occuring at any one 

time. The average value of T or return period is then given by: 

E(T) =
t ll 

Ma t.P(T = t) = l/p 2.2
1 

The variance of T can similarly be expressed as: 

var T = E(T - E(T))2 2.3
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Following Lloyd (10) this expression reduces to: 

var T = (l - p)/p2 . 

I 

2.4 

For small p the variance of the return period can be approximated 

as l/p i.e. the same as the expected value. This explains the 

large observed variations in values of T. Lloyd (l0) has also 

shown that fbr non—independent sequences of events the variance 

of the return period is even larger.
I 

The problem of apparent return period varying with 

sample length is approached in practice by defining a plotting 

position for the frequency of occurrence, p. The plotting position 

is generally based on some assumption of the position of the sample 

estimate of the frequency within a population distribution of frequencies. 

A few general requirements of any plotting position can be stated 

(7) as: 

(a) The plotting position should be such that all obser- 

vations can be plotted. 

(b) The plotting position should lie between the observed 

frequencies (m - 11/1. and m/n and should be distribution 

free (m is the order of the particular event in the 

series of n maximum events. For the largest of the 

n events, m = 1).
. 

(c) The return period of a value equal to or larger than 

the largest observation should approach n, the number 

of observations.



(d) 

(e) 

The observations should be equally spaced on the 

frequency scale, i.e. the difference between the 

plotting positions of the (m + 1)th and the mth 

observations should be a function of n only and be 

independent of m. 

The plotting position should have an intuitive 

meaning and should be analytically simple.
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2.2 Plottingigosition as an Extreme 

The simplest assumption regarding the sample frequency 

in its population is that the events correspond directly to their 

observed frequency i.e. the maximum event in a series of 10 

independent maxima would have a return period of 10 and a frequency 

of occurrence of 0.1. This is known as the California method (10) 

and is given by the general equation 

In 
P 5' . I._ 

2-5 

That is, considering the frequency interval 0:1 -'0, the California 

method uses a plotting position at the upper extreme of this interval. 

By first considering the observed maxima arranged in a decreasing 

order of magnitude the observed frequency increasing is equally 

legitimately given by 

p=¥ ' 2.6 

which corresponds to the lower extreme of the frequency interval 

noted above. Since the frequencies zero and unity do not exist for 

an unlimited variate the largest observation of the series cannot 

be plotted using the function (m-1)/n and the smallest observation 

cannot be plotted using the function m/n. These two functions 

therefore fail Gumbel's conditions (7) and are not acceptable as 

plotting positions unless an upper or lower limit to the population 

can be envisaged.
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2.3 Plotting Position as the Mean 

Foster (6) has pointed out that there is no reaSonable 

basis for assuming that the maximum event in a sample represents 

exactly the simple (California) frequency. Instead he contended 

that this maximum event is representative of the whole class of 

possible events occurring with frequencies less than that of the 

maximum in the sample, i.e. for a sample of 10 the maximum event 

represents the interval 0.10 to 0, and therefore should be plotted 

at the mean of this class interval (i.e. at 0.05 in our example). 

The Foster (or sometimes called Hazen) plotting position is given 

by the general equation~ p = 
2m 

Enl 2.7 

Equation 2.7 is a compromise between Equations 2.5 and 2.6. When 

m = 1, the largest event of the sample, this plotting position claims 

that an event which has already happened once in n years will occur, 

in the mean, once in 2n years. 

Similarly if the observed frequency of an event is 

assumed to be the mean of the population of frequencies for 

that event, p, then 

=ftl) g1-zl/“3 dz mg 
[3 dz 

where Z is the frequency of occurrence of the event in the n year 

'3! 

period. For the maximum value, p = 5%? so that for a 10-year
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sample the maximum value would have an assigned average return period 

of 11 years. Use of the mean frequency leads to the general 

equation 

= l— ' 

P n+1 
2.9 

where m is the order of the flood, m being 1 for the largest and 

n for the smallest event in the n years of record. The probability 

p is thus the average of the probabilities of all events with rank 

n in a series of periods each of n years.l
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2.4 Plotting Position as the Mode 

Another assumption possible is that the observed frequency 

is the mode (by definition the event which occurs most frequently) 
of the population of frequencies. Equation 2.1 has no mode and 

so the type of probability distribution must be incorporated. As 

an example Equation 2.1 can be used with Gumbel or Type I extremal 

distribution (7): 

z = (e‘e-y)“ 2.10 
where y is a linear function of discharge. For the mode of any 
distribution the probability density is a maximum i.e. dZ/dy = 0 

and dZZ/dy2 < 0, which for Equation 2.10 yields 
1/" 

2.11
1 P‘I'CE) 

For the maximum annual event in a 10-year record this equation 

indicates an average return period of 10% years. The plotting 

positions for the maximum events in samples of different size 

are giVen in the following table:
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Table 2.1 

Plotting Positions for Maximum Event 
Under Modal Assumption 

Sample . 
Plotting 

Sizegn) Positiongpl 

2 - 0.595 

5 0.181 

10 
' 

0.0951 

20 
_ 

0.0488 

50 0.0198 

100 . 0.00995 

ioo . 0.00499 

500 0.00199 

1000 ' 0.000999 

It is clear that as the sample size gets larger, p is not Significantly 

different from the simple plotting pesition p s min. 
I

_ 

Blythe (4) computed the mode of a distribution of eXtreme 

values as
I 

a: 02+ 3) 
mode = u - a -T-—-1r-—————§) 2.12 

where u, a, 81 and 82 are respectively the mean, standard deviation, 

coefficient of skew and coefficient of kurtosis. From the normal 

distribution the probability of occurrence of this mode can be 

determined. For the maximum values of samples of different sizes 

Blythe (4) provided the following table:
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Table 2.2 

Plotting Positions for Maximum 
Event of Extremal Distribution 

Sample 
Size Sn!

2

5 

10 

20 

60 

100 

200 

500 

1000 

Plotting 
Position (p) 

0.306 

0.143 

0.077 

0.041 

0.014 

0.0087 

0.0046 

0.0018 

0.00092 

No plotting positions are available by this method for events other 

than the maximum of the sample, and Blythe recommended that for 

practical applications the Foster (6) plotting position (Equation 2.7) 

should be used.
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2.5 Plottingi?osition as the Median 

A further possible assumption is that at any given order 

of magnitude within a sample set of events, the return period used 

should be the median of all possible return periods obtained from 

a population of equally sized samples. The return period to be 

used at any given order of magnitude, j, within a sample of size 

n events is then given by 

T = up]. 2.13 

where pj is the solution of the binomial equation 

5‘1 n i n-i 
z (1 ) p. (1 -- p.) s 0.5 2.14 

i=0 '3 J 

that is, pj is a solution of a polynomial of order equal to the 
sample 

size n and having a number of terms equal to the numerical value 

of j.- 

In effect,this method results in a return period of 

approximately 1.44 n for the largest flood in a period of n years. 

This occurs because, for example, the event with a return period of 

144 years has an equal chance of being exceeded or not exceeded 

in any period of 100 years. 

As an example of the use of the median assumption in assigning 

plotting positions, the maximum event in a sample of 10 maxima would 

have computed return period, T, of 14.92 years. Beard (3) gave 

the plotting positions for the sequence of 10 maxima as in Table 2.3
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Table 2.3 

Plotting Positions Under 
Median Assumption 

magnitude plotting 
order position 

m p 
1 .067 

2 .164 

3 .258 

4 .355 

5 .452 

6 .548 

7 .645 

8 .742 

9 .836 

10 .933 

The theoretical values of the plotting positions are tedious to 

compute requiring the solution of a polynomial of degree equal to 

the sample size and Beard (3) has recommended that the Foster 

equation (Equation 2.7) which can be transformed (2) to 

Pj = P1 + (j - l) (1 - 2p1)/n - 1 2.15 

where p1 = 1/2n should be used as an approximate solution. 

Banerji and Gupta (2) proposed an alternate solution 

to Equation 2.15 as 

I" 2.161 
pl 1 - 0.5
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In practice the procedure advocated by Banerji and Gupta (2) is 

to compute p1 from Equation 2.16, compute the increment 

(1-2p1)/n-1 and then compute pj for j = 2, 3....n/2 from Equation 

2.15. The remaining plotting positions pj, j = n/Z; (n/2+l)...n 

can be calculated as 

pcmmz a 0.5 2.17 

pn_j+1 = 1.0 - pj - 
- 

' 2.18 

Beard (3) and Hardison and Jennings (8) have demonstrated 

that for a normal distribution the average exceedence probability, 

p, for an event with a 10 year return period estimated from a sample 

of 10 events is 0.1261. As the length of the sample increases so 

the average exceedence probability decreases until as n + n, 

5 + p where_p is the simple probability exceedence estimated as 

p = m/n. 

Chow (5) lists many other plotting positions most of which 

have no theoretical basis.
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CHAPTER 3 

Frequency Distributions 

3.1 Introduction 

One of the most common problems faced in hydrology is the 

estimation of a design flood or drought from a fairly short record 

of streamflows. Plotting the magnitude of the measured events 

(annual maxima for example) some kind of pattern is generally 

apparent. The question is how to use this pattern to extend the 

available data and enable the design event to be derived. 

If a large number of observed or measured events are 

available from a period of record at least as long as the return 

period of the required design event then the problem is simplified. 

In the extreme if a large enough sample were available (say one 

million events) then the design event and its confidence interval 

could be derived directly from the sample data. This amount of 

data will not be available, however, and so the sample data is 

generally used to fit a frequency distribution which is then used to 

extrapolate from the recorded events to the required design events. 

The fitted frequency curve can be extrapolated either graphically 

or by estimating the parameters of some standard frequency distribution 

which is assumed to describe the recorded events. 

Graphical methods have the advantages of simplicity and 

visual presentation and the fact that no assumption of distribution
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type is made. These advantages are outweighed, however, by the 

disadvantage that, given twenty engineers to fit a curve through 

a set of points, it is highly probable that at least twenty different 

curves would result. In other words the method is highly subjective 

and is not compatible with the other phases of engineering design. 

Numerous different probability or frequency distributions 

have been used in hydrology (6). Discrete distributions such as 

the binomial and Poisson have been used to define the average 

intervals between events (18) and to evaluate risks (22). Continuous 

distributions such as the normal and lognormal have been used for 

both annual series (19.) and partial duration series (6) to define 

the magnitude of an event corresponding to a given probability of 

occurrence. The two types of distribution have also been combined 

(14), (37), (42) to give models of frequency of occurrence and frequency 

of magnitude of extreme events. 
I

I 

There are two sources of error in using a frequency 

distribution to estimate event magnitudes. The first'source of 

error is that it is not known which of the many distributions 

available is the "true" distribution, i.e., which distribution, 

if any, the events naturally follow. This is important because 

the sample events available are usually for relatively low return 

periods (i.e. around the centre of the probability distribution) 

while the events it is required to estimate are generally of large 

return period (i.e. in the tail of the distribution). Many
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distributions have similar shape in their centres but differ 

widely in the tails. It is thus possible to fit several distributions 
to the sample data and end up with several different estimates of 
the T-year event. Chi-square and similar tests of goodness of 
fit can be used to choose the distribution which best describes 

the sample data but this does not overcome the basic problem. 

Once a distribution has been chosen then the second source 
of error becomes apparent. The statistical parameters of the 
probability distribution must be estimated from the sample data. 
Since the sample data is subject to error the method of fitting 
must minimise these errors and must therefore be as efficient 
as possible. There are four parameter estimation techniques in 
current use: 

1. method of moments, 

2. method of maximum likelihood, 

3. least squares, and 

4. graphical. 

The method of moments (44) defines the rth moment, u;, about the 

origin, x = O, as:
m 
2 f. x 3.1 

where n is the number of events, fi is the frequency of the 

event xi and m is the number of distinct frequencies such that:
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The rth moment, pr, about the mean, pl, is given by: 

f (x 41')" 
3'3 

i i 1
' 

IIME 

1.1 

Clearly then the arithmetic mean is equal to the first moment about 

the origin and the variance is equal to the second moment about 

the mean. 

The principle of maximum likelihood (15) states that for 

a distribution with a probability density function. f(x;a,8,...) where 

a, B ... are parameters-to be estimated (e.g. mean, variance; 

etc.), then the probability of obtaining a given value of x, xi, 

is proportional to f(xi;a,8f...) and the joint probability, L, 

of obtaining a sample of n values x1, x2, ,.. xn is proportional 

to the product 
II

I 

n -
. 

L = H f(x.;u,B;...) . . 3.4 
i=1 1' 

This is called the likelihood; the method of maximum likelihood 

is to estimate_a, B, ..., such that_L is maximised. This is obtained 

by partially differentiating In L with respect to each of the 

parameters and equating to zero. 

The least squares estimation method (47) consists of 

fitting a theoretical function to an empirical distribution. The 

sum of squares of all deviations of observed points from the fitted 

function is then minimised. Thus to fit a function
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9 = f(x;a.B----) 3.5 

the sum to be minimised is 

S = (y. - 9.) 3.6 

S = . 
- .' ... (y1 f(X1.a,B )) 3.7 

where xi and y1 are coordinates of observed points, a, B, ... are 

parameters and n is the sample size. To obtain the minimum sum of 

squares Equation 3.8 is partially differentiated with respect to 

the parameter estimates a, b ... 

0) 

II

M
5

A ‘< I ‘<) V 0) 

II

M
5

A ‘< H
I ‘<) V 

' 

1 1 
3a ab 

These partial derivatives give a number of equations equal to the 

number of parameters to be estimated. In order that the least 

Squares method be an efficient estimator three conditions must 

be satisfied: 

1. the deviations yi — 91 be normally or at least 

symmetrically distributed. 

2. the pepulation variance of the deviations be independent 

of the magnitude of yi. 

3. the population variance of the deviations along the 

least squares curve be constant. 

The graphical method consists of fitting a function 

9 = f(x;a.B.-.) 3.9
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visually through the set of coordinate pairs. To estimate m 

parameters, m points on the curve are selected giving m equations 

to solve. The process may be simplified by trying various types 

of graph paper using transformed coordinates until a straight line 

fit is possible. 

In ascending order of efficiency the four methods of 

estimation may be listed as graphical, least squares, method of 

moments, maximum likelihood. To offset its great efficiency. 

however, the method of maximum likelihood is somewhat more 

difficult to apply. 

There are also general criteria with which a distribution 

should comply before being used in hydrology. As an example, 

since negative flows are unacceptable a distribution should be 

bounded on the lower tail. This criterion would eliminate both the 

normal and the double exponential or Gumbel distributions. 

In fact, both of these distributions are used in hydrology by 

ignoring negative flows, replacing them with zeros, or treating the 

probability of zero flow as a probability mass (47). 

Having selected a distribution and estimated-its parameters 

the question is how to use this distribution in the frequency analysis. 

Chow (6) has proposed a general equation for hydrologic frequency 

analysis 

x(K) a u + K.a 3.10 

where x(K) is the event magnitude at a given frequency of occurrence.
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u and a are estimates of the population mean and standard deviation 

and K is a frequency factor which is a function of the recurrence 

interval and the distribution. For any chosen distribution a 

relationship can be derived between the recurrence interval and 

the frequency factor. 

A measure of the variability of the resulting event magnitudes 

is the standard error of estimate. Each method of estimating the 

parameters of a distribution can also be used to derive the variance 

of estimates. The standard error of estimates is derived by the method 

of moments (32) as follows:
1
2

2 
("i ' xi) /“ 3.11 tr II 

II 

M3 

1 1 

where ii is the computed estimate of recorded event xi. 

The differences between the recorded and the computed 

events may have two origins: 

l. The choice of a theoretical distribution for the sample 

may be wrong, and 

[J n The errors in the parameters of the chosen distribution 

due to the shortness of the sample data. The standard 

error of estimate accounts for only the second of these 

sources. 

Cramer (10) has shown that any function of the first two moments '

E 

of a distribution, such as the general frequency equation, Equation 3.12, 

tends to normality as n increases with a variance given by: 
2 2 

.2 3x 2 a 5 = = .— (K) var x(K) var u a" 
+ var a 332 

2 8x 3x 2 _ °°" (M 3 an W 3.12
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where u and 02 are the mean and variance of the original distribution, 

estimated from the sample as: i

n 
u= Z xi/n 3.13 

i=1 

and
n 2 2 o — '2 (xi - u) /(n-1) 3.14 
1=1 

From Equation 3.12 the derivatives are obtained as: 

3x 
3; _ 1 3.15 

and 

_,3x =I<_ 
30 20 3.16 

so that Equation 3.14 becomes: 

2 K2 2 K 2 
S (K) = var u + 332 var a + a-cov (u,o ) 3.17 

Alternatively, an expression in terms of var 0 instead 

of var 02 may be derived as follows:- 

SZ(K) = var x (K) = var [u + Ko] 3.18 

3.19 52(K) = var u + K2 var a + 2K cov (u,o) 

The expression for var u is independent'of the original 

distribution and is given by:
2 

3.20 DIG varu=
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Kendall and Stuart (24) have given general expressions for var o 

and cov (u,o) as follows

~ 
— 

4nu2 3.21 

and 

“3 
cov (u,o) = 3.22 

2nd?2 

where uz, us and u4 are the second, third and fourth central 

moments of the distribution. 

Substituting Equations 3.20, 3.21 and 3.22 in Equation 3.19 

and simplifying yields a general expression

u 
erV-—1 3. 5(K) = 

n 23 

where

1 
Ku K2(u - Hz) ’ 6=1+ 3 +———4 2 “"372 2 -- 
“2 4“2 

which can he used with any form of distribution. Since the moments 

are not distribution-free it must be evaluated separately for each 

distribution. 

For distributions such as the lognormal, extremal Type III 

and log-Pearson Type III, which are logarithmic transformations of - 

simple distributions there are two possible methods of computing event 

magnitudes and standard errors of event magnitudes. The first method 

is to develop analytical relationships for the frequency factor K and
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.the parameter 6 of the transformed distributions and use these 

with the mean and standard deviation of the original data, in Equations 

3.10 and 3.23. The second method is to logarithmically transform the 

original data and use the mean and standard deviation of the logarithms 

in Equations 3.10 and 3.23 together with the K and 6 values for the 

simple untransformed distribution. 

If the distribution of the T-year event were known, then 

confidence limits could be derived for the event. Two methods can 

be used to find this distribution: analytical and empirical. 

The analytical approach'utilises the probability distribution 

fitted to the observed data. Cramer (10) has shown that for a sample 

of n values fitted with a distribution having a probability density 

function f(x) and a cumulative probability function F(xJ then the density 

function, g(x), of a random variable 1(K) is given by 
. n ,

. 

g(x) = (n-m)(Mx))"‘c1-c))“"“'1£(x) 3.25 

where m is n.P and P is the cumulative probability associated with event 

magnitude x(K). Now if G(x) represents the cumulative probability 

function of the_random variable xT 

Gm =f°- g(x) dx 
I 

3.26 
o

. 

then the upper or lower confidence limits, x0, for the T-year event, 

x(K), may be found by solving Equation 3.26 for different levels of 

significance. For example, for the 95% upper confidence limit xo 

must be found for GCx) = 0.95.
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Unfortunately the evaluation of Equation 3.26 for X0 involves 

a lot of approximations and still must be carried out by a numerical 

iteration process. Because of these computational difficulties the 

second method of deriving confidence limits, the empirical method, is 

frequently used. In the empirical method Equations 3.10 and 3.23 are 

used to compute the mean T-year event, x(K), and the standard error 

of the T-year event, 5(K). The assumption is then made that the 

distribution of T-year events is normal so that the confidence interval 

is given by 

(H l-J -4 x(K) i t.S(K) 

where t is the standard normal deviate corresponding to the required 

confidence level. 

Section 3.4 of this report discusses in detail the circumstances 

in which this assumption of normality may be applicable.
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3.2 Discrete Distributions 

3.2.1 Binomial 

Tossing a coin or drawing a card from a pack are examples 

of a Bernoulli trial. Bernoulli trials operate under three 

conditions: 

1. Any trial can have only one of two possible outcomes; 

success or failure, true or false, rain or no rain, etc. 

2. Successive trials are independent. 

3. Probabilities are stable. 

Under these conditions the probability of x successes 

in n trials is given by the binomial distribution as 

p(x) = (12);“q 3-28 

where (2), sometimes written as a (only if 3.x > 0) or C:- is 
the number of combinations of n events taken x at a time, 

n “3 3 29 
x x! (n-xi! . 

p is the probability of occurrence of an event, for example the 

probability of success in tossing a coin, q is the probability of 

failure, 

q = 1-}, 3.50 

and x is the variate or the number of successful trials. 

As an example of the use of the binomial distribution 

suppose that a dam has a projected life of 50 years and we wish to 

evaluate the probability that a flood with a return period of 100
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years will occur once during the life of the dam. Then p = l/T = .01, 

q = l-p = 0.99, x = 1 and n = 50, so that 

p(1) = (.01)1 (.99)49 = 0.306 3.31 

i.e., there is about a 31% chance that an event of that magnitude 

will occur once in the life of the dam.
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3.2.2 Poisson 

The terms of a binomial expansion are a little inconvenient 

to compute in any large number. Provided that p is small (say < 0.1) 

and n is large (say n > 30) and the mean n.p is constant and well 

defined, it can be shown (44) that 

Uncut-re"A - eA = e + Ae + ——ET-+ ..... 3.32 

as p—rO, q—vl and n—NB. 

This is known as the Poisson expansion and is generally~ written 
Ax 6" 3 33 p(x) = 

x.
' 

where A = n.p is the mean. The finite binomial distribution can 

thus be approximated by the infinite Poisson distribution provided 

that the following four conditions apply: 

1. The number of events is discrete. 

2. Two events cannot coincide. 

3. The mean number of events in unit time is constant, and 

4. Events are independent. 

Repeating the previous example, the probability that a 

100 year return period flood will occur once in a 50 year period 

is seen to be 

Pcl) = 0.5:Ie-0'5 
_ 

3.34 

p(1) = 0.303 3.35



which agrees well with the result obtained from the binomial 

expansion. 

Equation 3.33 will give not only the probability of one event 

occuring in a given time but also the probability that two events may 

occur in that time, that three may occur, etc., etc. The probability 

that one or more events occur will therefore be given as a summation 

of Equation 3.33. 

p(1,2...m) = i p(x) 3.36 

but 

1 x 0 

II 0 I P(1,2...~) 

or, 

P(1,2...w) 

Table 3.1 shows, for A = 0.5, the variation of P(x), x = l, 2, 3, 4 

and at x = w. 

Table 3.1 

Some Values of Probability of One or More Events for a Poisson 
Distribution with A = 0.5 

Variate Probability, 
Value, x P(l...x) 

1 0.30326 
2 0.37908 
3 0.39171 
4 0.39329 

m 0.39347 

"5 mm = '5? pm - No) 3.37 

3.38 

II p.- l (D (N 2,. VJ
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Abbreviating the probability of one or more occurrences 

Pfl, 2, ... a) to P and replacing A, the average number of events 

per time period, by At/T where At is the time interval being 

considered (e.g. project life) and T is the event return period, 

then Equation 3.39 becomes: 

e-At/T P = 1 - 3.40 

Hall and Howell (18) have prepared a table (Table 3.2) showing 

values of P for different time intervals and return periods 

Table 3.2 

Probabilities of One or More Occurrences of Events With 
'Different Return Periods in Different Time Intervals 

Time ' Return Period T 
Interval 

' ' 

At .1 .2 .4 l 2 4 10 20 40 100 200 

.632 .393 .221 .095 .049 .025 .010 .005 .003 .001 .0005 

.865 .632 .393 .181 .095 .049 .020 -.010 .005 .002 .001 

.982 .865 .632 .380 .181 .095 .039 .020 .010 .004 .002 
1 1.000 .993 .918 .632 .393 .221 .095 .049 .025 .010 .005 
2 1.000 1.000 .993 .865 .632 .393 .181 .095 .049 .020 .010- 
4 1.000 1.000 1.000 .982 .865 .632 .330 .181 .095 .039 .020 
10 1.000 1.000 1.000 1.000 .993 .918 .632 .393 .221 .095 .049 
20 1.000 1.000 1.000 1.000 1.000 .993 .865 .632 .393 .181 .095 
40 1.000 1.000 1.000 1.000 1.000 1.000 .982 .865 .632 .330 .181 
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .993 .918 .632 .393 
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .993 .865 .632 

I

a

1 

#NH 

Note that, in this table, both At and T must be meaSured in the same 

time units. Hall and Howell (18) have extended this type of table 

to time intervals of 5 to 35 days. Since the probabilities in such
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tables are cumulative, by taking differences it is possible to 

compute probabilities of one or more occurrences of events with 
return periods between different values. For example the probability 
of one or more occurrences within 10 days of flood events with 
return periods between 10 and 100 years is 0.0024. 

Under the assumptions that flood exceedences are independent 
identically distributed random variables and that the counting process 
for exceedences is a nonhomogeneous Poisson process, Todorovic and 
Woolhiser (42) have derived a one-dimensional distribution function 
for the time of occurence of the largest event in some time interval. 

If z(t) represents the number of flood peak exceedances in 
the time interval (O,t) and A(t) is the expected value of z(t) 

Act) -"- 5320:): 

then the probability that the time of occurrence T(t) of the largest 

momentary flood exceedance in the time interval (O,t) will be less 

than or equal to U, P(T(t) :_U), is given by: 

Pcrct)stn = exp —/\(t) 
g 

+ -§E%%% (1 - exp %-/\(t)§) 3.42 

The expression A(t) was derived by Todorovic and Woolhiser (42) as a
% 

finite Fourier series. 

Risk is discussed in more detail in a later chapter but 

it may be pointed out in passing that since from Equation 3.33, 
using A = At/T, 

9(0) = e'At/T 3.42
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then the return period, T, of a design flood with a risk of failure 

p(0) in a project life At is: 

T = At/ln p(o) 3.44 

e.g. for a 5% risk of failure (i.e. risk of an event of given 

magnitude occurring) in a 50 year life the project must be designed 

for a flood with return period of 975 years!
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3.3 Continuous Distributions 

3.3.1 Normal or Gaussian 

General 

A distribution is said to be normal if the variable can 

take any value from -w to +3 and the probability density function 

_ _ 2 
(xag) 

e _ 
3.45 

is defined as: ~ f(x) = 
oxfifiF 

where u and o are the population mean and standard deviation of the 

variable. The normal distribution is applicable if: 

1. The variable is continuous, 

2. Consecutive values are independent, and 

3. Probabilities are stable. 

The normal distribution can be shown to be (44) a limiting case 

of the binomial when p + q + 5 and n + a. 

One of the features of the normal distribution is that 

the mean, mode and median are all the same. The normal distribution 

is also unusual in that the means and standard deviations derived 

by the methods of moments, least squares and maximum likelihood 

are identical. For the higher orders, all odd moments are zero and 

all even moments can be expressed in terms of a so that the normal 

distribution is completely defined by the first two moments. 

If the variable, x, is standardised, i.e. forced to a mean of 

zero and unit variance by subtracting the mean and dividing by the 

standard deviation, and is denoted by t
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then Equation 3.45 becomes~ 2 
f(t) = 1 e't ’2 3.45 

\/2! 

which is known as the standard normal distribution. Equation 3.46 

has been approximated (accuracy > 2.27 x 10-3) by a series of 

polynomials (1) such as: 

' 

2 4 6 -1 
f(t) (a0 + alt + azt + ast ) 3.47 

where _ 

a0 = 2.490895, a2 = -0.024393 

.a1 - 1.466903, 
I 
a5 - 0.178257

_ 

Tables of the ordinates of the normal curve are also available (44) 

such as Table 3.3.
- 

The probability corresponding to any interyal in the 

range of'the variate is represented by the area under the probability 

__2 
41.53;).

I PM =_[ -—1'—e 
. dx -3.4s 

_D a 

density curve, 

Standardising, the cumulative probability corresponding to 

Equation 3.46 is: 

t '

2 
pct) -f xii-J" 

’2 dt 3.49



Similarly, Abramowitz and Stegun (1) list several.approximations 

for Equations 3.49. A convenient polynomial approximation with an 

error term less than 1 x 10—5 is

2 Mt) = 1-f(t)(a1q + azq + a3q3) 3.50 

where q is 1.0/(1.0+p.t), t is the positive standard normal deviate and p, a1. 

a2 and 33 are constants with values 

p = 0.33267 a2 = -0.12017 

a1 = 0.43618 a3 = 0.93730 
Tables of the area under the standard normal curve are also available 

such as Table 3.4.
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Table 3.3 

Ordinates of the Normal Curve 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0 .3989 
1 .3970 
2 .3910 
3 .3814 
4 .3683 

.3521 

.3332 

.3123 

.2897 

.2661 

OOOOO 

DQNOU‘I 

.2420 

.2179 

.1942 

.1714 

.1497
n

o 

o

- 

#‘ANHO 

HHHHI—l 

.1295 

.1109 

.0940 

.0790 

.0656 
1009a 

2.0 .0540 
2.1 .0440 
2.2 .0355 
2.3 .0283 
2.4 .0224 

5 .0175 
6 .0136 
.7 .0104 
8 .0079 
9 .0060 

0 .0044 
1 .0033 
2 .0024 
3 .0017 
4 .0012 

0101010148 

.0009 

.0006 

.0004 

.0003 
MMMMM I Wfi‘ld‘m 

.0002. 

.3989 

.3965 

.3902 

.3802 

.3668 

.3503 

.3312 

.3101 

.2874 

.2637 

.2396 

.2155 

.1919 

.1691 

.1476 

.1276 

.1092 

.0925 

.0775 

.0644 

.0529 

.0431 

.0347 

.0277 

.0219 

.0171 

.0132 

.0101 

.0077 

.0058 

.0043 

.0032 

.0023 

.0017 

.0012 

.0008 

.0006 

.0004 

.0003 

.0002 

.3989 

.3961 

.3894 

.3790 

.3653 

.3485 

.3292 

.3079 

.2850 

.2613 

.2371 

.2131 

.1895 

.1669 

.1456 

.1257 

.1074 

.0909 

.0761 

.0632 

.0519 

.0422 

.0339 

.0270 

.0213 

.0167 

.0129 

.0099 

.0075 

.0056 

.0042 

.0031 

.0022 

.0016 

.0012 

.0008 

.0006 

.0004 

.0003 

.0002 

.3988 

.3956 

.3885 

.3778 

.3637 

.3467 

.3271 

.3056 

.2827 

.2589 

.2347 

.2107 

.1872 

.1647 

.1435 

.1238 

.1057 

.0893 

.0748 

.0620 

.0508 

.0413 

.0332 

.0264 

.0208 

.0163 

.0126 

.0096 

.0073 

.0055 

.0040 

.0030 

.0022 

.0016 

.0011 

.0008 

.0005 

.0004 

.0003 

.0002 

.3986 

.3951 

.3876 

.3765 

.3621 

.3448 

.3251 

.3034 

.2803 

.2565 

.2323 

.2083 

.1849 

.1626 

.1415 

.1219 

.1040 

.0878 

.0734 

.0608 

.0498 

.0404 

.0325 

.0258 

.0203 

.0158 

.0122 

.0093 

.0071 

.0053 

.0039 

.0029 

.0021 

.0015 

.0011 

.0008 

.0005 

.0004 

.0003 

.0002 

.3984 

.3945 

.3867 

.3752 

.3605 

.3429 

.3230 

.3011 

.2780 

.2541 

.2299 

.2059 

.1826 

.1604 

.1394 

.1200 

.1023 

.0863 

.0721 

.0596 

.0488 

.0395 

.0317 
40252 
.0198 

.0154 

.0119 

.0091 

.0069- 

.0051 

.0038 

.0028 

.0020 

.0015 

.0010 

.0007 

.0005 

.0004 

.0002 

.0002 

.3982 

.3939 

.3857 

.3739 

.3589 

.3410 

.3209 

.2989 

.2756 

.2516 

.2275 

.2036 

.1804 

.1582 

.1374 

.1182 

.1006 

.0848 

.0707 

.0584 

.0478 

.0387 

.0310 

.0246 

.0194 

.0151 

.0116 

.0088 

.0067 

.0050 

.0037 

.0027 

.0020 

.0014 

.0010 

.0007 

.0005 

.0003 

.0002 

.0002 

.3980 

.3932 

.3847 

.3725 

.3572 

.3391 

.3187 

.2966 

.2732 

.2492 

.2251 

.2012 

.1781 

.1561 

.1354. 

.1163 

.0989 

.0833 

.0694 

.0573 

.0468 

.0379 

.0303 

.0241 

.0189 

.0147 

.0113 

.0086 

.0065 

.0048 

.0036 

.0026 

.0019 

.0014 

.0010 

.0007 

.0005 

.0003 

.0002 

.0002 

.3977 

.3925 

.3836 

.3712 

.3555 

.3372 

.3166 

.2943 

.2709 

.2468 

.2227 

.1989 

.1758 

.1539 

.1334 

.1145 

.0973 

.0818 

.0681 

.0562 

.0459 

.0371 

.0297 

.0235 

.0184 

.0143 

.0110 

.0084 

.0063 

.0047 

.0035 

.0025 

.0018 

.0013 

.0009 

.0007 

.0005 

.0003 

.0002 

.0001 

.3973 

.3918 

.3825 

.3697 

.3538 

.3352 

.3144 

.2920 

.2685 

.2444 

.2203 

.1965 

.1736 

.1518 

.1315 

.1127 

.0957 

.0804 

.0669 

.0551 

.0449 

.0363 

.0290 

.0229 

.0180 

.0139 

.0107 

.0081 

.0061 

.0046 

.0034 

.0025 

.0018 

.0013 

.0009 

.0006 

.0004 

.0003 

.0002 

.0001 

Note:' 1: = (x-u)/a
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Estimation of Parameters 

The parameters of the normal distribution can be derived 

by the method of maximum likelihood as previously described. The 

joint probability function of a sample of n values x ... xn is1 

given by the likelihood 

L = f (xi;a,8...) f (x2;a,B...) ...... f (xn;a,3...) 

which, for the normal distribution, is, 
n n

2 
L = ——-JL——- exp .E (xi-u) 

1—1 G ’2“ ———_fifi;r.___ 

Taking logarithms: n
2 

'2 (xi—U) 
_ fl 2 i=1n In L — 

2 1n 2n — E-ln a - ___§32_____ 

Differentiating with respect to the two parameters u and 02 and 

equating to zero:

n L 2 
g; = 2 (xi - u)/o = 0 

i=1 
and n 

2 (xi ' p)G 
3L _ _ n + i=1 s o 532— o 03 

Now, from Equation 3.54 

n n 
2 x. — 2 u = 0 

i=1 1 i=1 
and since u is a constant 

“H 
H
M
= 

t H
i 

3.51 

3.52 

3.53 

3.54 

3.55 

3.56 

3.57
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So that from Equation 3.56 the maximum likelihood estimate of u is 

:1 

fi: 
IIM 

x./n 3.58 
. 1 1 1 

Similarly, from Equation 3.55
n 
2 (xi - u)2 - 

E = 3,59 
0' 0' 

so that the maximum likelihood estimate of 02 is

2 n 2 6 = 2 (xi -u) /n 3.60 
i=1 

Frequency Factor 

_ It has been explained in the introduction to this chapter 

that a standard equation 

x(K) = u + K0 3.61 

can be used in the frequency analyses. For the case of the normal 

distribution the frequency factor, K, is given by the standard 

normal deviate, t, in Equation 3.49. Thus, from Equation 3.49, 

knowing the probability of occurrence, the corresponding value of 

the standard normal deviate can be derived and substituted in 

Equation 3.61 in place of K to give the required event magnitude. 

The easiest way of obtaining the standard normal deviate 

is from tables of the area under the normal curve such as Table 3.4. 

As an example consider the determination of t for an event with a 

mean return period of 100 years. The cumulative probability of 

non-exceedence, as a percentage, associated with this T value is 

99%, (l-l/T). Of this, 50% is constributed by the integral of
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the standard normal density curve from -w to 0 leaving 49% from 

the integral from 0 to x. 

table it is found that t is given as 2.33. 

t 0.00 0.61 

Area Under the Standard 

0.02 0.03 

Table 3.4 

0.04 0.05 

Normal Curve 

0.06 0.07 0.08 

Looking up 0.49 in the body of the 

0.09 

0 .0000 
1 .0398 
2 .0793 
3 .1179 
4 .1554 

.1915 

.2257 

.2580 

.2881 

.3159 

60000 .-... 

‘OmNO‘U'I 

.3413 

.3643 

.3849 

.4032 

.4192 

HHHI—II-I

. 

. 

.

. 
hMNI-Io 

.4332 

.4452 

.4554 

.4641 

.4713 

HHD—‘HD—I

. 

. 

. 

.

. 

DMVO‘UI 

.4772 

.4821 

.4861 

.4893 

.4918 

NNNNN 

#MNI—IO 

.4938 

.4953 

.4965 

.4974 

.4981 

II.- 

DmVO‘U'I 

NNNNN 

.4986 

.4990 
MOI I 

H0 

0040 
0438 
0832 
1217 
1591 

1950 
2291 
2611 
2910 
3186 

3438 
3665 
3869 
4049 
4207 

4345 
4463 
4564 
4649 
4719 

4778 
4826 
4865 
4896 
4920 

4940 
4955 
4966 
4975 
4982 

4987 
4991 

0080 
0478 
0871 
1255 
1628 

1985 
2324 
2642 
2939 
3212 

3461 
3686 
3888 
4066 
4222 

4357 
4474 
4573 
4656 
4726 

4783 
4830 
4868 
4898 
4922 

4941 
4956 
4967 
4976 
4983 

4987 
4991 

0120 
0517 
0910 
1293 
1664 

.2019 
2357 
2673 
2967 
3238 

3485 
3708 
3907 
4082 
4236 

4370 
4485 
4582 
4664 
4732 

4788 
4835 
4871 
4901 
4925 

4943 
4957 
4968 
4977 
4983 

4988 
4991 

0159 
0557 
0948 
1331 
1700 

2054 
2389 
2704 
2995 
3264 

3508 
3729 
3925 
4099 
4251 

4382 
4495 
4591 
4671 
4738 

4793 
4838 
4875 
4904 
4927 

4945 
4959 
4969 
4977 
4984 

4988 
4992 

0199 
0596 
0987 
1368 
1736 

2088 
2422 
2734 
3023 
3289 

3531 
3749 
3944 
4115 
4265 

4394 
4505 
4599 
4678 
4744 

4798 
4842 
4878 
4906 
4929 

4946 
4960 
4970 
4978 
4984 

4989 
4992 

0239 
0636 
1026 
1406 
1772 

2123 
2454 
2764 
3051 
3315 

3554 
3770 
3962 
4131 
4279 

4406 
4515 
4608 
4686 
4750 

4803 
4846 
4881 
4909 
4931 

4948 
4961 
4971 
4979 
4985 

4989 
4992 

0279 
0675 
1064 
1443 
1808 

2157 
2486 
2794 
3078 
3340 

3577 
3790 
3980 
4147 
4292 

4418 
4525 
4616 
4693 
4756 

4808 
4850 
4884 
4911 
4932 

4949 
4962 
4972 
4980 
4985 

4989 
4992 

0319 
0714 
1103 
1480 
1844 

2190 
2518 
2823 
3106 
3365 

3599 
3810 
3997 
4162 
4306 

4430 
4535 
4625 
4699 
4762 

4812 
4854 
4887 
4913 
4934 

4951 
4963 
4973 
4980 
4986 

4990 
4993 

0359 
0753' 
1141 
1517 
1879 

2224 
2549 
2852 
3133 
3389 

3621 
3830 
4015 
4177 
4319 

4441 
4545 
4633 
4706 
4767 

4817 
4857 
4890 
4916 
4936 

4952 
4964 
4974 
4981 
4986 

4990 
4993 

Note: t (x-u)/a 
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The corresponding event magnitude is therefore i + 2.330. It 

should be noted that this is using the standard normal curve in 

a one-tail manner as compared to the more usual two-tail method 

commonly employed in statistical tests. 

Figures 3.1 and 3.2 compare the concepts of the one and 

two tail applications of the standard normal curve for an area under 

the curve of 0.95. 

As a convenience, the frequency factors (standard normal 

deviates) for the normal (and lognormal) distribution are given 

in Table 3.5 for some commonly used cumulative probabilities. Table 

3.5 also shows the standard normal deviates for the two—tail situtation 

which would be used in many statistical tests. 

Table 3.5 

Frequency Factor for Use in Normal and Loggormal Distributions 
I 

Cumulative Probability, P, % 

50 80 90 95 98 99 

Corresponding Return Period, T, Years 

2 5 lo 20 ' 50 100 

Frequency Factor 

0 0.842 1.282 1.645 2.054 2.326 

Two-Tail Standard Normal Deviate 

0.674 1.282 1.645 1.960 2.326 2.376 

It is sometimes useful to combine tables of the standard normal 

deviate with the plotting position m/(nfilj in which m is the rank of 

the event in descreasing order of magnitude. Table 3.6 is a sample table 

of this type.
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Polynomial approximations are also available (1) to 

obtain the standard normal deviate corresponding to a given 

probability level. As an example, if the cumulative probability is- 

P(t), then Q(t) = 1 - P(t). Now if 

w =‘lln(1/Q(t) 2) 3.62 

than 
c +c w+c wz‘ o 1 2 t 2"""‘—‘2‘—3 3.63 

1+d1w+d2w +d3w 

where . 

co = 2.515517; d1 = 1.432788 

c1 = 0.802853; d2 = 0.189269 

c2 = 0.010328; d3 = 0.001308 

This approximation is particularly useful when digital computers are 

used since it avoids the reverse integration in Equation 3.49. The 

error term in the approximation is stated (1) to be less than 

4.5 x 10-4. As a sample calculation, Substituting P(t) - 0.95 

gives w = 2.44775 and t = 1.64521. 

Standard Error of Estimate 

The general equation for the standard error of estimate 

from the method of-moments is:
2 

500‘..— 1+177f-—r— ' - 

“2 4"‘2 ' 

For the normal distribution the central moments are given by: 

2 
_ 

'

- 

u2 = a 3.65 

u3 = 0 _ 

3.66 
and 

= 3.14 3.67
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Substituting Equations 3.65 to 3.67 into Equation 3.64, 

taking the square root and simplifying, results in 

500 = 150/411 3.68 

where 
2 1 

5 = (1 + t /2)2 3.69 

since for the normal distribution the frequency factor, K, in 

Equation 3.64 is equal to the standard normal deviate, t. Table 3.7 

provides values of the parameter 5 for some common cumulative 

probabilities. 

Table 3.6 

Plotting Positions, P, and Standard Normal 
Deviate, t, for a Range of Samples of Size n Events 

Event n = 19 n = 20 n = 21 n = 22 n = 23 
Rank == 
No.(m) P t P t P t P t P t 

% % 8 % % 

1 5.0 1.64 4.8 1.67 4.5 1.69 4.3 1.71 4.2 1.73 
2 10.0 1.28 9.5 1.31 9.1 1.34 8.7 1.36 8.3 1.38 
3 15.0 1.04 14.3 1.07 13.6 1.10 13.0 1.12 12.5 1.15 
4 20.0 .84 19.0 .87 18.2 .91 17.4 .94 16.7 .97 
S 25.0 .67 23.8 .71 22.7 .75 21.7 .78 20.8 .8‘ 

6 30.0 .52 28.6 .57 27.3 .61 26.1 .64 25.0 .67 
7 35.0 .39 33.3 .43 31.8 .47 30.4 .51 29.2 .55 
8 40.0 .25 38.1 .30 36.4 .35 34.8 .39 33.3 .43 
9 45.0 .13 42.9 .18 40.9 .23 39.1 27 37.5 .32 
10 50.0 .00 47.6 .06 45.5 .12 43.5 .16 41.7 .21 

11 55.0 -.13 52.4 -.06 50.0 .00 47.8 .05 45.8 10 
12 60.0 -.25 57.1 -.18 54.5 -.12 52.2 -.05 50.0 00 
13 65.0 -.39 61.9 -.30 59.1 -.23 56.5 — 16 54.2 - 10 
14 70.0 —.52 66.7 -.43 63.6 -.35 60.9 - 27 58.3 - 21 
15 75.0 -.67 71.4 -.57 68.2 -.47 65.2 -.39 62.5 - 32 

16 80.0 -.84 76.2 -.71 72.7 -.61 69.6 -.51 66.7 -.43 
17 85.0 -1.04 81.0 -.87 77.3 -.75 73.9 -.64 70 8 -.55 
18 90.0 -1.28 85.7 -1.07 81.8 -.91 78.3 -.78 75 0 -.67 
19 95.0 -l.64 90.5 -1.31 86.4 -1.10 82.6 - 94 79 2 -.81 
20 95.2 -l.67 90.9 -1.34 87.0 -1 12 83 3 -.97 

21 95.5 -1.69 91.3 -1 36 87 5 -1.15 
22 95.7 —1 71 91.7 -1.38 
23 95.8 -1.73 

Notes: P = m/In+1), t = (x-u)/o
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Table 3.7 

Parameter 6 for Use in Standard Error 
of Normal and Lognormal Distributions 

Cumulative Probability, P, % 
50 80 90 95 98 99 

Corresponding Return Period, T, Years 
2 5 10 20 50 100 

1.0000 1.1638 1.3497 1.5340 1.7634 1.9249 

An alternate method of tabulating Equation 3.68 is as 

the ratio S(K)/o. Hardison (19) has provided tables of this type 

from which Table 3.8 has been derived. Since both 6 and the ratio 

of deviations S(K)/o are dimensionless, Tables 3.7 and 3.8 can 

equally well be used with the lognormal distribution. 

Table 3.8 
Dimensionless Ratio of the Standard Error of the T-Year Event 

_ 
to the Standard Deviation of the Annual Events for 

' Normal and Eggnormal Distributions 

Return Sample Length, n 
Period - 

T 
' 

' 2 5 10 20 50 100 

2 0.707 0.447 0.316 0.224 0.141 0.100 
5 0.782 0.495 0.350 0.247 0.156 0.116 
10 0.954 0.604 0.427 0.302 0.191 0.135 
20 1.083 0.685 0.484 0.342 0.217 0.153 
50 1.208 0.764 0.540 0.382 0.242 0.176 
100 1.364 0.863 0.610 0.431 0.273 0.193 

If v(K) is the expected coefficient of variation of the estimate 

x(K) and V(K) is the coefficient of variation of the true event 

y(K) defined respectively as 

v(K) = sag/mo 3.70



V00 = 0/u 3.71 

then from Equation 3.69: 

, 

l

2 
, _ v(I\) . 1_+ t 12 MM — -—— (l—fi H, K” 3.72

n 

Nash and Amorocho (32) have shown that as K + w, v(K) + 1/\/§§1 Graphs 

of v(K)vfn versus t for different values of V(K) show that the 

coefficient of variation has a minimum value between t = 0 and 

t = 2 and that for values of V(K) > 0.2 the mean annual event it = O) 

is less well defined than the event corresponding to t = 1. 

As an example of the computation of a confidence interval 

for a normal distribution consider the estimate of the 100 year 

event from a sample record of 50 years. The cumulative probability 

of non-exceedence of the 100 year event (area under the normal 

curve) is 99% and so from Table 3.4 the standard normal deviate, t, 

is 2.33. In Equation 3.68, 5(K) is computed as 0.2730, where o 

is the sample estimate of the population standard deviation. Using 

a 95% confidence level (two-tail) the confidence interval around the 

100 year event, x 0, is given as x t 1.96 * 0.273 a. 10010
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3.3.2 Lognormal 

General 

If the logarithms, In x, of a variable x are normally 

distributed, then the variable x is said to be lognaithmic-normally~ distributed so that 2 [ln x — u ] 
_ ___Eaz._.JL_.

Y 
f(x) = 1 e 3.73 

xoy v 21! 

where uy and oy are the mean and_standard deviation of the natural 

logarithms of x. 

Chow (6) has provided a theoretical justification for the 

use of the lognormal distribution. The causative factors for many 

hydrologic variables act multiplicatively rather than additively 

and so the logarithms of these factors will satisfy the four
I 

basic conditions for normal distributions. The hydrologic 

variable will then be the product of these causative factors. 

The mean,_uy, and standard deviation, 0y, of the 

logarithms of x can be related to the mean of x, ax, and the standard 

deviation of x, ox, from the'generalised moment function so that 

the first three moments are (5):
2 u + cry/2 

ui = ux = e V 3.74_

2a u + o 2 
= a: - (e Y - 1) (e V Y/ )2 . 3.75“2



302 a2 3n + 302/2 
u = (e y - 3e y + 2) e V V 3.76 

The coefficient of variation can be obtained from Equations 3.74 

and 3.75 as:

~

2 o a 
_ x_ y 1/2 2 ‘ E"' (e ‘ l) 3.77x 

i 

while the coefficient of skew from Equations 3.75 and 3.76 is: 

302 02 

= 
u3 

= e y - Se y + 2 3.78 Y1 3/2 (eal'_ 1)3/2 uz y 

Comparing Equations 3.77 and 3.78 the relationship between the 

coefficients of variation and skew is given as: 

Y1 = 32 + Z3 3.79 

Singh and Sinclair (38) described a mixed, or compound, 

probability distribution made up of two lognormal distributions, 

as: 

P(x) = 31P1(x) + aZP2(x) 3.80 

‘ where 

1 
x -(x - u1)2/20i

g 

P1(x) = J” e dx 3.81
3 

01 f3}
: '00



-(x - u2)2/2a§x 
P2(x) = ':E e dx 3.82 

and 

a + a - 1 3.83 

The mean, variance and coefficient of skew of the 

distribution P(x) may be estimated from the sample, or computed 

from 

u = alu1 + azuz 3.84 

2 2 2 2 o = ale1 + :1c2 + a1a2(u2 - ul) 3.85 

- 2 2 3 
3a1a2(“1 ' “2) (“1 ' °23 a1"‘2(“2 ‘ a1)(“1 ' "2) 

Y1 = _ :3 + 7 -o o 

The advantage of this method (38) is that it has the versatility 

of high parameter models without the errors and uncertainties 

which result from the use of higher order sample moments. 

Estimation of Parameters
I 

Following the maximum likelihood procedure the likelihood 

expression for Equation 3.73 is 

n n 2 n n 2 2 
1n L = - Edn 2n - Ein 0y + 1n 1E1 

l/xi - iElfin xi-uy) /20y 3.87 

02 Differentiating Equation 3.87 with respect to uy and y 
and equating 

to zero yields the maximum likelihood estimates
n 

9 = 2 1n x./n . 

3.88 
y i=1 1 

11 A2 2 
0y 2 '31 

(In lei—Hy) In 3.89
1
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For streamflows, this method presents a problem. Many streamflow 

records have the occasional zero flow and, when taking logarithms, 

this becomes -m and cannot be processed. Several solutions to this 

problem have been proposed (24) such as 

1. Add 1.0 to all data. 

2. Add small positive value (such as 0.1, 0.01, 0.001, 

etc.) to all data. 

3. Substitute 1.0 in place of all zero readings. 

4. Substitute small positive value in place of all zero 

readings. 

Ail cf these solutions affect the parameters of the distribution 

(1. and 2. affect the mean, 3. and 4. affect both the mean and 

variance) but the least damaging solution is 3., to substitute 

1.0 in place of all zero readings. Substitution of small positive 

values is to be avoided because of the large effect this has 

in a logarithmic scale. 

An alternate solution is to consider the probability 

diStribution as the sum of a probability mass at zero and a 

probability density distribution over the remainder of the range (46), 

so that: 

P{of§ x 3 x0] = P[x=o] + P[o < x 5 x0] 3.90 

In this way, if p0 is the probability of occurrence of x = 0 in any
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one year and px is the conditional probability of occurrence of 

'x in any one year given that x is not zero, then: 

P[o‘< x < :0] = px(l~- p0) 3.91 

Frequency factor 

If y = In x is normally distributed, the general frequency 

equation (e.g. Equation 3.10) can be written as: 

YCK) = uy + toy 
' 

3.92 

where, now, t is the standard normal deviate.- 

. To avoid computation of the mean and standard deviation 

of logarithms in Equation 3.92, the general frequency equation, 

Equation 3.10, may be modified by substituting for u and a from 
y(K) Equations 3.74 and 3.75 and using.e in place of x(K):

2 u + o 2 o 
ey‘K) ='e y y, 

[1 + K(e y - 1);] 3.93 

From Equation 3.93 the frequency factor for the lognormal distribution,
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K, is given by
i 

I 2 Y(|\)-uy-o/2 
K-e y '1 ‘ OT 

% 
3.94 

(e’ -1) 
But, from Equation 3.92 

Y(K) - u = to _ 

y y 
3.9: 

which, when substituted in Equation 3.94, yields:
2 

ovt - oy/Z 

i 
3.'6 

(e y - 1)‘ 

where, as beforei t is the standard normal deviate. Equation 3.96 

still involves expressions in ov. This can be avoided, however, 
.1 

by using Equation 3..7 relating the coefficient of variation of 

the ohserved events, 2, to the standard deviation of the logarithms, 

my. Substituting in Equation 3.96 yields 

Table 5.9 Siows values of K computed from Equation 3.97 for some 

commonly used return periods and various values of z, the coefficient 

of variation. Chow (5), (6) gave more comprehensive tables 

which, however, require somewhat awkward interpolation to use fer , 

values of 2. It is worth noting that in Chow's tables the first line,
I 

for a zero coefficient of skew, is equivalent to the normal 

distribution. Since the relationship between the coefficients of 

variation and skew (Equation 3.?9) does not hold for the normal



-77- 

distribution the frequency factors are independent of the coefficient 

of variation (35) at that particular coefficient of skew. 

Table 3.9 

Frequency Factor for Lognormal Distribution 

Coefficient Cumulative Probability, P, 8 
of 50 80 90 95 98 99 

Variation Corresponding Return Period, T, Years 
2 2 5 10 20 50 100 

0.0500 -0.0250 0.8334 1.2965 1.6863 2.1341 2.4370 
0.1000 -0.0496 0.8222 1.3078 1.7247 2.2130 2.5489 
0.1500 -0.0738 0.8085 1.3156 1.7598 2.2899 2.6607 
0.2000 -0.0971 0.7926 113200 1.7911 2.3640 2.7716 
0.2500 —0.1194 0.7746 1.3209 1.8183 2.4348 2.8805 
0.3000 -0.1406 0.7547 1.3183 1.8414 2.5016 2.9866 
0.3500 -0.1604 0.7333 1.3126 1.8602 2.5638 3.0890 
0.4000 -0.1788 0.7106 1.3037 1.8746 2.6212 3.1870 
0.4500 -0.1957 0.6870 1.2920 1.8848 2.6734 3.2799 
0.5000 -0.2111 0.6626 1.2778 1.8909 2.7202 3.3673 
0.5500 -0.2251 0.6379 1.2613 1.8931 2.7615 3.4488 
0.6000 "-0.2375 0.6129 1.2428 1.8915 2.7974 3.5241 
0.6500 -0.2485 0.5879 1.2226 1.8866 2.8279 3.5930 
0.7000 -0.2582 0.5631 1.2011 1.8786 2.8532 3.6556 
0.7500 -0.2667 0.5387 1.1784 1.8677 2.8735 3.7118 
0.8000 -0.2739 0.5148 1.1548 1.8543 2.8891 3.7617 
0.8500 -0.2801 0.4914 1.1306 1.8388 2.9002 3.8056 
0.9000 -0.2852 0.4686 1.1060 1.8212 2.9071 3.8437 
0.9500 —0.2895 0.4466 1.0810 1.8021 2.9103 3.8762 
1.0000 -0.2929 0.4254 1.0560 1.7815 2.9098 3.9035 

There are then two possible procedures for using a lognormal 

distribution to estimate T-year event magnitudes. The standard normal 

deviate, t, may be used with the mean and standard deviation of the 

logarithms of the recorded events, or the frequency factor, K, may 

be used with the mean and standard deviation of the recorded events. 

As an example of these two procedures consider the following 

data from Collier (7). Annual maximum discharges of the Saint John 

River at Fort Kent, New Brunswick for the 37 years 1927 to 1963 yield 

a mean discharge of 81,000 cfs, a standard deviation of 22,800 cfs and 

a coefficient of variation of 0.28. The mean and standard deviation
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of the logarithms of these 37 events are 11.263 and 0.284. 

Using the first method. the magnitude of the 100-year event 

(t = 2.326) is given by 

x(100) = 811.203 x 2.326 x 0.286 = 151,000 cfs 3.98 

Using the second method the frequency factor, K, from Table 3.9 is 

2.944 so that 

x(lUU) = 81,000 + 2.944 x 22,800 = 148,000 cfs 3.99 

The two methods thus produce comparable results and so, if the lognormal 

distribution is to be used, there is nothing to gain from the extra 

work involved in taking logarithms and computing uy and 0 

Standard Error of Estimate 

In the previous section two frequency factors were derived 

for the lognormal distribution. The standard normal deviate, t, can 

be used with the mean and standard deviation of the logarithms of 

the events (Equation 3.92) and the frequency factor, K, can be 

used directly with the mean and standard deviation of the sample 

events (Equation 3-10]. Development of these two relationships by 

the method of moments leads to two expressions for the standard error 

of estimate, S(K). 

Firstly, if the standard normal deviate is used then the 

standard error S(K), in logarithmic units, is given by Equations 3.68 

and 3.69 provided that 0y is substituted for a. Values of the
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parameter's are given in Table 3.7 for various commonly used return 

periods. From the standard error.in logarithmic units, S(K), the 

positive and negative standard errors can be derived as 

s(K) _ PSE =- x(T) (e . 1) 
' 3.100 

and 

N813 an“) (-[1 - e'smn- .. 3.101 

Hardison (19) has published graphs shewing the variation 

of S(K) with the standard deviation of the logarithms, 0y, and 

has provided tables to convert S(K) from logarithmic units back to 

the units of the basic data.
- 

'Alternatively, to avoid the computation of the standard 

deviation of the logarithms, use can be made of the equation derived 

earlier for standard error: ~ - 2 2 
2 "2, K113 K 

s .(K) = T“ [1 + 77-2- + 2 ] 
3.102 

where SZ(K) is in the same units as x2. Kendall and Stuart (24) 

define the second, third and fourth'central moments of the lognormal 

distribution as:

Y 

112 = W2p2(w2-l) 
I 

' 

_- 3.103 

113 = w3p3(w2—1)ifw2+z') 
3.104 

114 = W404(w2-1)2(w8+2w6+3w4-3) _. 
3.105 

where 
I

- 

w 'a'exp 0272 _ 

3.106
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and 

p = exp uy 3.107 

Substituting Equations 3.103 to 3.105 into Equation 3.102 

and making use of the relationship between the coefficient of 

variation, 2, and the standard deviation of the logarithms, oy, 

(Equation 3.80) results in:

2 
SZ'K) = 4— 1+(zl+32)K + (23+6z +152 +102 +2)K2/4] 3.108

1 n 

Simplifying this equation to the standard form: 

5(K) = ova/‘ln 3.109 

Table 3.10 provides values of 5y for some commonly used values of 

return period and coefficient of variation. 

Confidence limits on the event magnitude are then computed 

by this method as: 

x04) 12 t'Svo/‘ln 3.110 

assuming the normality of the distribution of x(K). 

Kaczmarek (21) has used a slightly different approach to 

derive values of 5y which differ from those in Table 3.10.
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Table 3.10 

Parameter 6 for Use in Standard Error of 
L0 ormal Distribution 

Coefficient Cumulative Probability, P, % 
of 50 80 90 95 98 99 

Variation Corresponding Return Period, T, Years 
Z 2 5 10 20 50 100 

0.0500 0.9983 1.2163 1.4325 1.6442 1.9087 2.0964_ 
0.1000 0.9932 1.2700 1.5224 1.7682 2.0767 2.2974 
0.1500 0.9848 1.3242 . 1.6190 1.9055 2.2676 2.5292 
0.2000 0.9733 1.3785 1.7214 2.0557 2.4819 2.7932 
0.2500 0.9589 1.4325 1.8292 2.2185 2.7202 3.0908 
0.3000 0.9420 1.4857 1.9420 2.3937 2.9829 3.4235 
0.3500 0.9229 1.5380 2.0596 2.5813 3.2708 3.7929 
0.4000 0.9021 1.5892 2.1816 2.7812 3.5845 4,2007 
0.4500 0.8801 1.6392 2.3080 2.9937 3.9251 4,6489 
0.5000 0.8575 1.6879 2.4389 3.2189 4.2935 5.1395 
0.5500 0.8351 1.7354 2.5742 3.4573 4.6910 5.6749 
0.6000 0.8138 . 1.7818 2.7142 3.7093 5.1190 6.2574 
0.6500 0.7945 1,3271 2.8592 3.9756 5.5790 6.8899 
0.7000 0.7784 1.8714 3.0095 4.2570 6.0729 7.5754 
0.7500 '-0.7669 1.9148 3.1655 4.5542 6,5024 8.3171 
0.8000 0.7615 1.9576 3.3276 4.8682 7.1698 9.1185 
0.8500 0.7635 1.9997 3.4962 5.2001 7.7773 9.9834 
0.9000 0.7746 2.0414 3.6719 5.5509 8.4272 10.9157 
0.9500 0.7959 2.0828 3.8552 5.9217 9.1221 11.9196 
1-0000 0.8284 2.1239 4.0466 6.3136 9.8646 12.9995



3.3.3 Three Parameter Leghormal 

General 

Just as the lognormal distribution represents the normal 

distribution of the logarithms of the variable x, so the 3—parameter 

lognormal represents the normal distribution of the logarithms of the 

reduced variable (x—a) where a is a lower boundary. The probability 

density distribution is then given by: 
[1n(x-a)-u ]2 

20
Y1 

e 3.111 f(x) = 
(x-a)oy n 

where uy and CY are now the mean and standard deviation of the 

logarithms of (x—a). 

The mean and standard deviation of the distribution 

y = ln(x-a) are related to the mean, ux, and standard deviation, ox, 

of the original distribution x by
2 

u + o /2 
u =a+ey 3’ 3.112X 

2 2/2 0 1 “+0 ox=(ey-l):ey y 3.113 
These equations may be compared with Equations 3.74 and 3.75. 

Similarly an expression is available relating the coefficients 

of variation of the distributions x and ln(x-a). Since the presence
i 

of the parameter a does not affect the variance of the distribution 

the coefficients of variation of the distributions x and (x-a) can 

be defined as:
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“a1 = ax/ux , 

' 3.114 

and 

22 = ax/(ux-a) .3.115 

so that 

22 = ux21/(ux-a) _ 
3.116 

The coefficient of skew of the 3-parameter lognormal 

distribution is related to its coefficient of variation in the same 

way as the lognormal distribution (35) (see Equation 3.79). 

Estimation of Parameters
I 

If the lower boundary, a is known (oerhaps some physical 

reason why x cannot be lower than a) then the reduced variable 

(x-a) can be determined and the analysis performed as for the 

lognormal distribution. However, if a is not known then it must 

be evaulated in terms of the statistical measures of the variable 

x. The range of possible values for a is between zero and the 

magnitude of the smallest-recorded event.
I 

I 

The maximum likelihood method yields expressions for uy 

and a; the mean and variance of the distribution 1n(x-a) similar 

to Equations 3.88 and 3.89 but substituting x-a for a:

n 
E = 2 ln(x-a)/n 3.117 
V i=1 .
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2 n A 2 a = Z 1 x.- - n ' 

y 121 
[ n( 1 a) my] / 5.113 

No direct maximum likelihood expression ‘2: parameter a is possible, 

however. Differentiating the likelihood equation with respect to 

a and equating to zero yields the expression (47)~ n n n -‘ 
l l 2 - _ -

“ 
Z . S — 2 1n (x.-a) - l L ln(x -a) - 

i=1 ‘1' a 
I 
n i=1 1 n i=1 1 

3.119 
n n 1n(x.-§) 

% : (xi-5)( + z ————§§—— = 0 
i=1 \ i=1 ‘1 

This expressxon can be solved only by an iterative procedure. 

The method of moments permits a direct solution for a but 

necessitates the compution of the smnple coefficient of skew, Y1. 

From Equation 3.116 the parameter a is defined as 

a = ux[l-zl/zz] 3.1-u 

The value of 21 can be computed directly from the observed events 

using Equation 3.114. Since the second and third moments of the 

distribution are independent of a, 2, can be obtained (29) from 

Equation 3.79. Yevjevich (47) has given the solution of Equation 3.79 as: 

1/3 1/.) 
2 1/2 _ 

2 1/2 + + Y1 + + 

Z2 = """”2‘ '
2 

where Y1 is the sample coefficient of skew. 

Computation of the coefficient of skew from small samples is 

notoriously subject to error. Sangal and Biswas (35) have 

derived a method of estimating the parameter a using only the mean,
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median and standard deviation of the original data. Their solution 

is:
2o x . a=5-____ . - 3,122 

2(ux-5) 

' where 6 is the median of x, determined as the mean of the middle l/5th 

of the data. 

As pointed out by Condie (8) the determination of a is very 

sensitive to the difference of the mean and median,_(ux - a). When 

this difference becomes small, then a takes a ridiculously large negative 

value. The assumption then would be that the original data are symetrically 

but not necessarily normally, distributed. .This follows from an 

empirical relationship for moderately skewed distributions: 

Mean - Mode = 3Gwean - Median) 3.123 

From 3.123 if Mean = Median, then Mean = Mode; thus the mean, mode and 

median coincide, which only occurs in symetrical distributions. 

Candie (8) has described a simple graphical method of 

determining the parameter a which is applicable provided that:' 

a) at least one of the graph scales, vertical or horizontal, is 

logarithmic. 

b) the curvature of the best fitting line is gradually decreasing. 

The other scale can be linear, logarithmic, normally probabilistic, time' 

scale etc. 

Referring to Figure 3.3; (x1,y1) (x2, yz), (x3,y3) are three 

points on the best-fitting line through the plotted event magnitudes 

(b-c) such that
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x ‘ X = X ' I 3.124 

The object is then to find a constant a, which will move points 
' I I 

(x1.y1). (x2.r2). (x3.y3) to POIDtS (x1,yi). (x2.y2). (x3,y3) all an 

a straight line (B-C). The straight line then is easier to extrapolate 

than the original arbitrarily curved line. 

Considering the slope of the logarithmically straight line

~~ 

B-G: 

1n(y3-a)- InCYi-a) 1n(y2-a) - Intyz-a) 
x _ x = x _ x 3.125 
3 1 2 1 

but from Equation 3.124 this reduces to 

y -a y 4a 3 2 
1n_ .= 1n 3.126 

)I'l'a- 

from which
2 

= 11231 3 m 
y1"y2'2y3 

The method is simple and can be applied to any distribution 

with a logarithmic scale such as lognormal, log-Gumbel, 1og-Pearson 

Type III. 

Frequency Factor 

The general frequency equation for the 3—parameter lognormal 

distribution is given by 

= 1n x-a = + to - 3.128 Y()uyy 
where t, the frequency factor, is again the standard normal deviate.
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Since the central moments of the 3-parameter lognormal 

are the same as for the lognormal distribution, the alternate approach 
of using a frequency factor with ux and 0x can also be 

taken. 

Standard Error of Estimate 

The standard error of the T-year event for the 3-parameter 

lognormal distribution is the same as for the lognormal, either

a 
50;) = 7—): 1+t2/2 3.129 

411 

where 5(K) is in log units, 0y is the standard deviation of the 

logarithms of the n events, x—a, and t is the standard normal deviateE 

or,

= 

where 5(h) is in the same units as x, 6y can be taken from Table 3.10 

and u is the standard deviation of x.
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3.3.4 Extreme Value Distributions 

Suppose that from N samples each containing n events the 

maximum or minimum event in each sample is selected. As n increases, 

the distribution of the N maxima or minima approaches a limiting 

or assymptotic form. The type of the limiting form depends on the 

type of the initial distribution of the Nn values. The distribution 

of the maxima or minima is given by the functional equation 

Fn(x) = F(a x+b ) 
- 3 131 

n n
' 

where an and bn are functions of n. 

Fisher and Tippett (quoted in (46)) have shown that there 

are three possible solutions to the functional equation. These are 

known, logically enough, as Types I, II and III extremal distributions. 

The Type I distribution is unbounded, the Type II has a lower limit 

and the Type III has an upper limit.



3.3.4.1 Type 1 Extremal 

general 

The Type I distribution (or Gumbel (16)) is often used 

for maximum type events and results from 6'; initial unlimited 

distribution of exponential type which converges to an exponential 

function (6). Examples of this type of distribution include the 

normal and lognormal distributions. The derivation of the Type I 

distribution for a simple exponential function can be described (41) as 

follows: 

a? ... an be a series of independent random 

variables with a cumulative probability distribution given by: 

“m = Nevsx) 3.132 

(b) Define xn as the maximum value of e in a sample of 

length n 1.9. max av so that 
lSTSl 

Purify) = P(cvg yr E. 3y ..... ) 3.133 

or 

"(xnfzfl = [F(>')ln 3.134 

(c) Now assume that the tail of the distribution F(y) is 

exponential such that 

04 0'] NY) = l - rte—y 3.1
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(d) From Equation 3.134 if In (an) is a normalising 

constant 

Pas y+1n(an) = [F(Y+1n(an))]" 

and from Equation 3.135 

F(y+1n(a,n)) = 1_ae‘(Y+1n(an)) 

so that 

[1_ae—(y+1n(an))]2 Ptxnswlnmnn 

01‘ 

cns-yuncann [I-e'y/nJ“ 

(e) If n + w, thén: 

lim P(ay+1n(_un)) 1im [l-e-y/n]n 
n+6! n+0 

01' 

-e-Y 
11111 P( Sy+lntun)) 
n-V' 

x“' 

This is the reduced form of the cumulative probabiiity 

distribution. Substituting the expression 

Y = «(x-8) 

3.136 

3.157 

3.138 

3.139 

3.140 

3.141 

3.142
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the cumulative probability of the Type I extremal distribution becomes 
-a(x-B) 

P(x) = e 3.143 

and the probability density becomes 

{_a(x_8) _e-a(x-8 )} PM = Ge 3.144 

where P(x) is the probability of an event not exceeding x, a is a 

concentration parameter and B is a measure of central tendency. 

bstimation of Parameters 

Re-arranging Equation 3.143 the event magnitude, x, 

corresponding to a return period, T, can be expressed as: 

3 — $1n(-ln(1-1/T)) 3.145X II 

where 

-5 ll l/(l-P(x)) 3.146 

Now, provided a and B are known, the event magnitude for any 

required return period can be determined directly. 

The maximum likelihood method of estimating a and 5 

postulates (33) that a and B should be such that the probability 

of n individual maximum events x1 ... xn actually being observed 

as n annual peaks should be a maximum. The probability that x1 

occurs as an annual peak event is: 

_ -a(x -B) e{'°‘("1"3) 'e 1 3.147 P(x1) = a
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and for x :2 

_ _ _ -a(x -B) 
p(x2) = ae{ “(x2 3) e 2 3.148 

now 

p(x1.---..xn) = p(x1)p(x2)....p(xn) 3-149 

so that: 

n n 'acxi_8)
} _ n {-a Z (x.-B) - 2 e 

p(x1,-..,Xn)- a e 1 

The method of maximum likelihood then takes the logarithm 

of Equation 3.150, partially differentiates with respect to-a and 

B and equates to zero: 

L = 1n p(xi,...,xn) 
I 

3.151 

n n . 

L = n In a- a. z (x.- B)— 2 e “(‘14) 3.152 
i=1 1 i=1 

n n flt=£- z (x.-B) + z (x.-s)e'°‘("i"3) 3.153 
3a a . 1 ._ 1 i=1 1-1

n 
1;; = no — a z e'°‘"‘i‘83 3.154 

i=1 

Setting Equation'3.154 equal to zero: 
n . 

2: 
e‘“("i'3) = n 3.155 

.=1
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so that:

n 
e‘13 = n/ 2 e'°”‘ 3.156 

i=1 

or 

1 
n -uxi 

B = — 1n [n/ E e ] 3.157 
a, . i=1 

If the arithmetic mean of the series x1 ... xn is denoted 

by u, then Equation 3.153 can be written as: 

n —ax. aL _ n 06 1 . 
3; - a - n(u-B) + e HZ (xi—B)e 3.158 

1=1 
Substituting for ed; from Equation 3.156: 

n -axi 
.Z (x.-3)e 3L n n 1=1 1 — __ = _ _ _ 3. 9 3a a "(p B) + 

n -ax. la 

.2 e 1 
i=1 

Equating thlS to zero and simplifying: 

n -ux. n —uxi 
F(a.) = 2 x.e 1 -(u—1/a) 2: e :0 3.100 

i=1 1 i=1 

Equation 3.100 cannot be solved for a analytically and 

so a Taylor's expansion is often used (33) 

Fiaj+l) = F(aj+hj) 3.101 

F a. = F a. + h.F' a. 3.162 (1+1) (J) J (J) 
where F'(aj) is the first order derivative of F(a) with respect 

to (1 

n -ax. n -ax. n -ux. 
F‘(a)=- ne 1+(u—1/a)£x.e 1”; 2e 1 3.163 

. 1 . 1 a ._ 1=1 1=1 1-1



'and oj and uj+1 are successive approximations to a. The procedure 

adopted by Panchang (33) is to estimate ul from the method of 

moments (47) (see later discussion). By evaluating F(o1) and F‘(u1) 

from Equations 3.160 and 3.163 then: 

D” II 

1 
- F(u1)/F'(a1) 3.164 

and 

a2 a1 + h1 3.165 

This procedure is repeated until a sufficiently small value of 

F(aj) is obtained when 8 can be obtained.from Equation 3.157. 

In most cases only 3'or 4 successive steps will be required. 

Samuelsson (34) has described a similar procedure using 

different first estimates of a and B and suggests that the true 

parameter values can be estimated to within 1% in only 3 iterations. 

Computer programs have been written to carry out the 

maximum likelihood estimation of a and B and calculate event 

magnitudes at different return periods. As an example a sample 

sheet of the output of a program by Cuthbert and Latham (11) is 

included here as Table 3.11. 

Other methods of deriving the maximum likelihood parameter 

estimates are available (16), (46) but these are generally more 

complex. Leese (27) has described the modifications to the maximum 

likelihood equations which are needed to accomodate missing data 

and historic flood records.
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The method of moments computes estimates of the population 

mean and standard deviation as:

n 
ux = _5 xi/n 3.166 

1=1 

and 
" - 2 

0x = Z (x.—x) /(n—l) 3.167 
i=1 1 

Now, from Equation 3.142 

x = 3 + y/a 3.168 

and Gumbel (17) has shown that the mean, uv and standard deviation, 

av, of the reduced variable, y, are given by: 

“y = Y 3.169 

a» =£ 3.170 
1 do 

where y is tuler's constant, approximately 0.5772157. 

Expressing Equation 3.168 in terms of means and variances 

yields: 

Q ll "/0 J6 3.171X 

and 

.172m II In ux - xxJ? *1/11
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A simple approximation has been used by Verma and Advani (43) 

to estimate the parameters a and B. If xmax is the largest event in 

a series of n maxima and xmin is the smallest event, then the reduced 

events y and y . are defined as max min 

ymax = ucxmax - 8) 3.173 

and 

ymin = “(xmin ' 3) 3.174 

By taking the probability of exceedence of the largest event, xmax, 

as 1/n and the probability of exceedence of the Smallest event, 

xmin, as l/l.01, then the following expressions apply 

Ymax = -1n(-1n(1-1/n)) 3.175 

and 

ymin = -1n[-1n(l-1/1.01)) 3.176 

Evaluation of Equations 3.175 and 3.176 and substitution into 

Equations 3.173 and 3.174 will, by simultaneous solution,produce 

reugh estimates of a and B. By using the expansion of In and 

neglecting terms above second order,Verma and Advani (43) have 

produced expressions for a and B. 
I 

Yevjevich (47) has described a process by which estimates 

of a and B can be determined graphically. If, in Equation 3.143, 

x = B, then 

P(8) = e'1 = 0.368 3.177
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Table 3.11 

Example of Maximum Likelihood Estimation of 
Parameters of Type I Extremal (Gumbel) Distribution 

Example: OlAUUOZ St. John River at Fort Kent 

No. of Trial jth Estimate of a F(a) 

1 .00005213 -8255.38307212 
2 .00004692 -2829.58839064 
3 .oooo4222 7157.46947343 
4 .00004471 1075.79197549 
5 .00004523 38.09131435 
6 .00004525 .05290183 
7 .00004525 .00000012 
8 .00004525 -.oooooooo 

Final value for E is 60146.236146 

Plot the event magnitudes, x, versus return period, T = (n + 1)/m, on 

graph paper with a double exponential scale and fit a straight line 

through the plotted points. By entering the graph at T = 1/? {3; = 2.717 

tne value of B is determined. The slope of the best fitting straight 

line is then equal to l/u. This method is very easy to apply but 

its accuracy is not to be compared with the method of maximum likelihood. 

Lowery and Nash (28) have compared various methods of estimating 

tne parameters of the Type 1 extremal distribution. They recognise 

tne greater efficiency of the maximum likelihood technique but recommend 

moments because of the methods simplicity and lack of bias. 

Frequency Factor 

From the cumulative probability distribution (Equation 3.141) 

the expression relating the reduced variable, y, to return period, T, 

is 

Y = -ln (-1n((T-l)/T)) 3.178
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For convenience, Table 3.12 gives values of the reduced variable y 

for some common return periods. 

Table 3.12 

Values of the Reduced Variable, y, 
of the Type I Extremal Distribution 

for Some Commonly Used Return Periods, T

~ Return Reduced 
Period Variable 
T z 

2 0.3665 
5 1.4999 

10 2.2504 
20 - 2.9702 
50 3.9019 
100 4.6001 

If the n recorded events are placed in order of magnitude 

so that m = 1 for the largest event and m = n for the smallest 

event then T = (n+1)/m and Equation 3.178 can be written as 
I 

ym = -1n[-ln{(n+l-m)/(n+l)}] 
' 3.179 

If the mean, uy, and the variance, 0:, of the series 

ym, m = 1,2...n, are computed from the reduced sample as:

n 
u = E y In 3.180 
y m=l m ' 

and
n 

02 = z (y -§)2/n 3.181 
y m m=1 

and if ux and a: are the mean and variance of the recorded 
maximum 

events defined in Equations 3.166 and 3.167, then the parameters 

a and B can be defined (23) as:
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a = o /o . 2 
y 

3 18 

and

a II ux-uy/a 3.183 

Now, introducing the relationship between x and y, 

y = a(x~3) 3.184 

substituting Equations 3.182 and 3.183 for a and 3 and rearranging 

for x, gives: 

x = ux + (y-uy) ox/oy 3.185 

Comparing Equation 3.185 with the general frequency equation 

(e.;. Equation 3.12) it is apparent that for the Type I extremal 

distribution the frequency factor, K, is defined as: 

11'” 
K = —>'— 3.186

y
0 

Since uy and ov are functions of the sample size onlyP 

they can be tabulated. Table 3.13 is an example of this type of 

table. Alternatively, for a predetermined set of return periods and 

sample sizes the frequency factor, K, can be tabulated (23) as in 

Table 3.14. Coulson (9) includes a more comprehensive table. 

As an example, for a sample size of 55, Table 3.13 

gives values of uv and GV of 0.5504 and 1.1681 respectively. For 

a lUD year return neriod, Table 3.12 or Equation 3.178 gives the 

reduced variable, ym, as 4.6001 so that, from Equation 3.186,
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the frequency factor, K, is 3.4670. Alternatively this figure 

can be found directly from Table 3.14. To determine the 100 year 

event magnitude it is then only necessary to estimate the population 

mean, ux and standard deviation, ox, from the 55 recorded events and 

substitute, ux, K and ax in the general frequency equation (e.g. 

Equation 3.12). 

Table 3.13 

Mean and Standard Deviation of Order 
Statistics, m/(n+1), for Various Sample Sizes, n 

Sample Size Mean Standard 
n uy Deviation o 

10 
_ 

0.4952 0.9496 
15 0.5128 1.0206 
20 0.5236 1.0628 
25 0.5309 1.0914 
30 0.5362 1.1124 
35 0.5403 1.1285 
40 0.5436 1.1413 
45 0.5463 1.1518 
50 0.5485 1.1607 
55 0.5504 1.1682 
60 0.5521 1.1747 
65 0.5535 1.1803 
70 0.5548 1.1854 
75 0.5559 1.1898 
80 0.5569 1.1938 
85 0.5578 ' 1.1974 
90 ' 0.5586 1.2007 
95 0.5593 1.2037 
100 0.5600 1.2065
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E Table 3.14

~ Frequency Factor for Type I 
Extremal Distribution 

Sample Size Cumulative Probability, P, 8 
n 50 80 90 95 98 99 

.E Corresponding Return Period, T, Years 
3 

2 5 1o 20 so 
' 

1oo 

=g 10 -0.1355 1.0580 1.8483 2.6063 3.5874 4.3227 
.5 15 -0.1434 0.9672 1.7025 2.4078 3.3208 4.0049 

20 -0.1478 0.9187 1.6248 2.3020 3.1787 '3.8356 
25 -0.1506 0.8879 1.5754 2.2350 3.0886 3.7284 
30 -0.1526 0.8664 1.5410 2.1881 3.0257. 3.6534 

: 35 -0.k540 0.8504 1.5154 2.1532 2.9789 3.5976 
n: 40 -0.1552 0.8379 1.4954 2.1261 2.9425 3.5543 
' 45 -0.1561 0.8279 1.4794 2.1044 2.9133 3.5195 
1 50 -0.1568 0.8197 1.4663 2.0865 2.8892 3.4908 
% 55 -0.1574 0.8128 1.4552 2.0714 2.8690 3.4667 

60 -0.1580 0.8069 1.4458 2.0586 2.8518 3.4461 
65 -0.1584 0.8018 1.4376 2.0475 2.8368 3.4284 
70 -0.1588 0.7974 1.4305 2.0377 2.8238 3.4128 
75 -0.1592 0.7934 1.4242 2.0291 2.8122 3.3991 
80 -0.1595 0.7900 1.4185 2.0215 2.8020 3.3868 
85 -0.1597 0.7868 1.4135 2.0146 2.7928 3.3758 
90 -0..1600 0.7840 1.4090 2.0084 2.7844 3.3659 
95 -0.1602 0.7814 1.4048 2.0028 2.7769 3.3569 
100 —0.l604 0.7791 1.4011 1.9977 2.7700 3.3487 

Corresponding Frequency_§actor§ from Equation 3.188 
-0.l643 0.7194 1.3046 1.8658 3.5923 3.1667 

;} Weiss (45) has devised a convenient nomogram for performing 

graphically the solution of Equation 3.185 given the sample mean and 

g. standard deviation. Shown here as Figure 3.4 this nomogram is entered

~ on the left hand side with the required return period, T. From the 

intersection of the horizontal line through T with the slanting line 

3: 
through the appropriate sample size, n, draw a vertical line to 

: 

intersect the sloping line corresponding to the sample standard 

deviation, 0. From this second intersection draw a horizontal line 

to cut the right hand edge of the diagram at the value of K6, the 

numerical value to be added to the mean, ux, to give the required 

event magnitude, x. Examples of the use of this nomogram are given 

in Weiss (45) and Kendall (23). 

-.-.-.-.-=rv=4.
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Chow (5) has considered the Type I extremal distribution 

as a special case of the lognormal distribution for which the coefficient 

of skew, Y1, is a constant at 1.139. Following this procedure, 

substitution of a and B from Equations 3.17. and 3.172 into Equation 3.145, 

relating x to return period, yields: 

x = u -I% {y+ln{—ln((T-l)/T)]}o 3.187 

Comparison of this equation with the standard frequency equation gives 

the following expression for the frequency factor of the Type I extremal 

distribution: 

K = -§;{Y+1n[-ln((T-l)/T)]} 3-135 

The last line of Table 3.14 gives the values of the frequency 

factor determined from this equation. These values correspond to the 

asymptotic results of using Equation 3.136 as n + w. 

Standard Error of Estimate 

The general equation for the standard error of estimate from 

the method of moments: 
in '1 

u u- K‘Cu -u") 
2 2 . J 4 Z _ ‘ s (K) _ iT—[1+1 —377 +-————7T-——-] 3.159 

“2 4“2 

has been developed earlier in the chapter. 

Gumbel (10) gives the central moments of the Type I extremal 

distribution as: 

“2 = nz/o = 1.6449 3.190 

u3 = 2.4041 3.191 

= 3n2/20 = 14.6114 3.192
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Substituting these constants in Equation 3.189 the following 

expression results: 

52(K) = [1+1.l396K+l.1000K2] 3.193 (2 

alx

N 

Taking the square root and simplifying to: 

S(K) = 6 ox/‘ln I 

3.194 

values of 6 depend only on K and can thus be predetermined and 

tabulated for typical values of return period, T, and sample size, 

n. Table 3.15 is a sample of this type of table. Kaczmarek (21), 

Kendall (23) and Coulson (9) have given similar tables, although as 

pointed out by Lowery and Nash (28) there is a computational error 

in the table of Kaczmarek. 

Using the same example as before, the 100 year return 

period event computed from a 55 year sample will have an 5 value 

of 4.265. Knowing the standard deviation of the recorded events, 

ax, the standard error, S(K), is computed from Equation 3.194 and 

the 95% confidence limits are applied as x(K) t 1.96 S(K) 

Nash and Amorocho (32) have used the basic standard error 

equation 

52(K) = var u 9 sar 0 + 2Kcov(u,o) 3.195 

in an experimental approach. Using the relationship, 

cov(u,o) = 9 (var u)1/2 (var a)1/2 3.196
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where p is the sample linear correlation coefficient between u and 0 

Equation 3.195 becomes: 

/2 7 1 

52(K) = var u + K7var o + 2k(var L; 
/2 (var 5)1 

Table 3.15 

Parameter 0 for Use in Standard Error 
of Type I Extremal Distribution 

Sample Cumulative Probability, P, % 
Size 50 80 90 95 98 99 

n Corresponding Return Period, T, Years 
2 S 10 20 SU 100 

10 0.9305 1.8539 2.6199 3.3826 4.3869 5.1459 
15 0.9269 1.7695 2.4756 3.1814 4.1127 4.817 
21 0.9250 1.7249 2.3990 3.0745 3.9670 4.6427 
23 0.9238 1.6968 2.3506 3.0069 3.8747 4.5320 
30 0.9229 1.6772 2.3169 2.9597 3.8103 4.4548 
35 0.9223 1.6627 2.2919 2.9247 3.7624 4 39 4 
40 0.9218 1.6514 2.2725 2.8975 3.7252 4.3527 
45 0.9214 1.6424 2.2569 2.8756 3.6954 4.316 
30 0.9211 1.6350 2.2441 2.8577 3.6708 4.2874 
55 0.9208 1.6288 2.2333 2.8426 3.6502 4.2627 
60 0.9206 1.6235 2.2241 2.3297 3.6326 4 241 
65 0.9204 1.6189 2.2162 2.8186 3.6173 4.2232 
70 0.9202 1.6149 2.2093 2.8089 3.5040 4.2075 
75 0.9201 1.6114 2.2032 2.8003 3.5923 4.1931 
80 0.9199 1.6083 2.1977 2.7926 3.5818 4.1806 
85 0.9198 1.6055 2.1928 2.7858 3.572 4.1693 
90 0.9197 1.6030 2.1884 2.7796 3.5639 4 1591 
95 0.9196 1.6007 2.1844 2.7739 3.5562 4.1498 
100 0.9195 1.5986 2.1803 2.7688 3.5491 4.1414 

3.197
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Now, var u is distribution-free at ozln and Nash and Amorocho (32) 

give var a as 1.162/n so that Equation 3.197 reduces to: 

2 2 2 - 2 
82(K) = %__+ 1.1 K a + 2.1 Kpa n n 3.198 

Nash and Amorocho (32) have shown experimentally that p in 

Equation 3.180 is independent of n and has a mean value of 0.56 and 

standard deviation of approximately 0.02. Substituting the mean 

value of p in Equation 3.198 yields:

2 
52(K) = [1+l.18K+1.lK2] 3.199 5": 

which is almost identical to the theoretical relationship given 

in Equation 3.193. 

Dalrymple (12) has given the following equation for the 

standard error of the reduced variate, y, of the Type I extremal 

distribution

y 
. = 5L_ 

’

1 5 
J1; T _ 1 

3.200 

where y, the reduced variable, is given by Equation 3.142. The

~ 
- confidence interval for the reduced variable is then computed as 

Dalrymple (12) used this confidence region to determine the 

homogeneous hydrologic region in his index flood method of regional 

flood frequency analysis (see Chapter 4.)
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Panchang (33) has given the maximum likelihood estimate 

of the standard error of the Type I extremal distribution as:

1~ .. _ +6 T l S - “W [1 "7- (1-e-1n(1nT—_T))] 3.202
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3.3.4.2 Type II Extremal 

The Type II extremal distribution is derived as the logarithmic 

transformation of the Type I extremal distribution (16). In hydrology 

it is known as the log-Gumbel distribution and is used by assuming 

that the logarithms of the recorded events follow a Type I extremal 

distribution (3), (40). 

Since the distribution is a logarithmic transformation, the 

magnitude and standard error of the T-year event can be computed 

either from the K and 6 values for the Type I extremal distribution 

together with the mean and standard deviation of the logarithms of 

the recorded events or from the mean and standard deviation of the 

recorded events together with analytically derived values of K 

and 6 for the Type II extremal distribution. Since this analysis 

is complex, the first method is to be preferred.



3.3.4 Type III Extremal 

General 

The Type III, or Weibull, distribution results from an 

initial distribution in which an upper boundary applies. 

distribution is commonly used in hydrology for drought analysis (4). 

‘The cumulative probability distribution is given (6) as: 

P(xléx) = 1—e 

and the probability density is: 

130:) =g-‘é— Ef—Y- 

where a is a scale parameter equal to the order of the lowest 

derivative of the probability function that is not zero at x = y, S is 

the location or central value parameter and Y is the lower limit to 

X. 

Commonly, the tranformation 

is made (17) reducing the cumulative probability and probability 

density equations to 

P(x) = l-e_y 

3.203 

3.204 

3.205 

3.206

-

z 

i 

i 

x

a

‘
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and 

pCX) = 3%7-yca'1)/“ e'y 3.207 

The notation used so far in this chapter for distributions 

of flood events has been 

P(x) = l-m/n+l = l-l/T 
_ 

3.208 

where P(x) is the cumulative probability of an event being less 

than or equal to x and m is the order number of the recorded event, 

m being 1 for the maximum event and m being n for the minimum event. 

Following this notation, the larger the return period, T, the larger 

is the magnitude of the expected event. 

In the analysis of droughts, however, it is required that 

smaller events be associated with larger return periods and so a 

different notation is commonly used (4). If the recorded events 

are arranged in order of increasing magnitude with m being 1 for the 

minimum event and m being n for the maximum event then the 

cumulative probability of an event being less than or equal to x is 

given by 

P(x) = mln+1 = l/T ' 

_ 

' 3.209



This convention will be used for the remaining discussion of the 

i Type III extremal distribution. 

Estimation of Parameters 

For non-negative variables the calculation of the population 

moment Dr of order r about the origin may be made with the equation 

0. 

u = xr d[l--P(x)] 3.210
T 0 

Substituting variables for the reduced Type III extremal distribution

~
~ 

gives the equation (16): a 
_ {£1} 

x Y 
a x r B Y 

{-J-d = 1/. {--d d e B-Y r Y 
8 3.211 

or 
°‘

/ (5:; = y” a d e'Y 3.212 
B-Y r 0 

Now, introducing the Gamma function,

d 
P(n) = fe'xxn'ldx 3.213

0 

Equation 3.212 reduces to 

X'_Y = +1 {B_Y}r 
1‘ (1 GI)

m [J ._. t. 

From which the first four moments, vi to u4 are derived as 

ul = u = y+(B-y)P(l+1/a) 3.215
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u2 = 02 = (B-y)2 {r(1+2/a) - r2(1+l/a)} 3.216 

(3-y)3 {I‘(1+3/a) —31‘(1+2_/a)I‘(1+l/a) + 2r3(1+1/u)} 3.217 

and 

U§'Y)4 {P(1+4/a) -4r(1+3/a)r(1+1/u) + 

61‘(1+2/a) r2(1+1/a) -3I‘4(1+1/a) } 3.218 

If two new variables are defined, Abl and Ba. such that 

Abi is the standardised difference between the characteristic value 

and the mean and Ba is the standardised difference between the lower 

limit and the characteristic value, 

a: 9: A = -- 3.219 a 
. a 

and 

B = Ell 3.220 a a 

then, by substituting u and a from Equations 3.215 and 3.216 

nol 
= {l‘(1+2/a) - I‘2(1+1/u) }'1/ 2 3.221 

and 

= '- 3.222 A“ {1 r(1+1/a)} 13cl
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If the coefficient of skew, yl, is defined as usual

u 3 
Y1 = 7 3.223

a 

then from Equations 3.215, 3.216 and 3.220: 

Y1 = {F(1+3/a) ~ 3P(l+2/d)r(1+l/a) + 2F3(l+l/o)} 3: 3.224 

an expression involving only functions of a. 

Thus if the sample coefficient of skew is computed as: 

$1 = n E (Xzilf:_§__377 3 225 
(n-2)[Z(x-x) 1 

then a can be found by the solution of Equation 3.224. Knowing Bu, 

the parameter 8 can be obtained from Equation 3.219 and subsequently 

Y can be found from Equation 3.220. 

To solve Equation 3.224 tables are available, (16), (4), 

relating a (generally as l/a) to Y1, Aa and Ba. These tables are 

usually arranged in incremental steps of l/o so that for a computed 

sample skew a great deal of interpolation is needed to determine the 

corresponding values of l/a, Au and Ba. In order to avoid this 

interpolation the following regression equation has been developed 

to enable a to be calculated directly from yl: 

a = l/[a1+a2y1+a3yi+a4Yi+aSY:] 3.226 

a1 = 0.2777757913, a4 = -0.0013038566 

a2 = 0.3132617714, a5 = -0.0081523408 

a3 = 0.0575670910, 
This polynomial is valid for a range of Y1 from -1.02 to +2.00, 

has a multiple correlation coefficient of 0.9999 and a standard



error of 0.0006575. Table 3.16 has been derived from this equation. 

For convenience Table 3.16 also gives values of the parameters Au 
and Ba as computed from Equations 3.222 and 3.221. 

Parameter a for Type III Extremal Distribution Tabulated 
as a Function of the Sample Coefficient of Skewness, yl 
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Table 3.16 

Y1 

-1.00 
-0.90 
-0.80 
-0.70 
-0.60 
-0.50 
-0.40 
-0.30 
-0.20 
-0.10 
0.00" 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

If the parameter 7 can be assumed to be zero,then a much simpler, if 

less accurate, method of estimating the remaining parameters, a and B, 

11 

65.63043 
26.26360 
16.30207 
11.73785 
9.10978 
7.39676 
6.18962 
5.29236 
4.59923 
4.04809 
3.59997 
3.22914 
2.91791 
2.65366 
2.42717 
2.23149_ 
2.06133 
1.91253 
1.78181 
1.66654 
1.56457 
1.47416 
1.39386 
1.32247 
1.25900 
1.20261 
1.15260 
1.10840 
1.06954 
1.03562 
1.00634 

AG 

0.44760 
0.44229 
0.43629 
0.42952 
0.42193 
0.41343 
0.40397 
0.39350 
0.38198 
0.36938 

-0.35571 
0.34098 
0.32523 
0.30851 
0.29089 
0.27246 
0.25334 
0.23367 
0.21360 
0.19329 
0.17291 
0.15265 
0.13268 
0.11318 
0.09432 
0.07626 
0.05914 
0.04311 
0.02828 
0.01477 
0.00268. 

exists. If x = B then, in Equation 3.203 

MB) = l-e‘ 1 = 0.632 

Ba 

52.24465 
21.47978 
13.68443 
10.10381 
8.03409 
6.67757 
5.71462 
4.99218 
4.42770 
3.97273 
3.59692 
3.28029 
3.00911 
2.77366 
2.56682 
2.38329 
2.21910 
2.07116 
1.93718 
1.81524 
1.70391 
1.60204 
1.50873 
1.42324 
1.34501 
1.27360 
1.20866 
1.14991 
1.09714 
1.05020 
1.00900 

3.227
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The median of the Type III extremal distribution, M, is obtained 

by substituting P = 0.50 in Equation 3.203, 

M = {3(1n2)1/“I 3.228 

If, therefore, a graph of original variable, x, versus cumulative 

probability is drawn, where cumulative probability is estimated from 

the sample using Equation 3.209, then values of B and M can be 

extracted from the graph at P = 0.632 and P = 0.50. Substitution of 

B and M in Equation 3.228 will then yield the sample estimate of 1. 

Other methods of estimating the parameters are available 

sucu as the use of an order statistic and the use of the smallest 

observed event, but none of these methods of estimating parameters 

is foolproof. The results are only acceptable if the computed value 

of the parameter Y lies between 0 and xn, where xn is the smallest 

observed event. 

Deininger and Westfield (13) have compared the results 

of several methods, and recommend a combination of least squares and 

Fibonacci search. This method uses an initial estimate of y to 

compute values of the characteristic event, 5, and the scale parameter, 

1, by least Squares. A second estimate of v, 0 < y S xn, is then 

chosen and the procedure repeated. This is continued until the 

minimum sum of squared deviations between observed and computed events 

is obtained. The optimal technique for searching the interval 0 to 

xn is to use Fibonacci numbers (13) to choose the sample points.
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Freguencz Factor 

From Equations 3.205, 3.206 and 3.208 the following expressions 

are derived for the Type III extremal distribution: 

x = y + yl/“cs -7) 
' 

3.229 

and 

Y = -'1n(1-1/T) 3.230 

Values of y, the reduced variable, are given in Table 3.17 for some 

commonly used return periods. 

Table 3.17 

Values of the Reduced Variable, y, of the Type III 
Extremal Distribution for some Commonly Used Return Periods, T 

_ 

Return _ 

' 

Reduced 
Period Variable 

T y 

2 0.69315 
5 ' 0.22314 

10 0.10536 
20 0.05129 
50 ' 

I 

0.02020 
100 0.01005 

Knowing o, B and y, and obtaining the reduced variable, 

y, from Table 3.17, the event magnitude, x, corresponding to return 

period, T, can be computed using-Equation 3.229. 

If Equations 3.229 and 3.230 are combined,-then the following 

expression results: 

1: = y + [-1n(1-1/T)]]T/a' (8-7) 3.231
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But from previous developments, 

B-Y = B o 3.232 

and 

y = u - o (Bu—Au) 3.233 

where u and o are the mean and standard deviation of the population 

event magnitudes as estimated from the sample, and Au and 15:I are 

as defined in Equations 3.222 and 3.221. 

Substituting Equations 3.232 and 3.233 into Equation 3.231: 

1/1 7. 
. = _ _ - .- 4 x u + 0 {(AQ Ba) + Ba[ ln(l 1/T)] } 3 9 

Comparing Equation 3.234 with the standard frequency equation it is 

apparent that K, the frequency factor, is given by 

K = .-\a+Ba{[-1n(l-1/T)]1/d-1} 3.235 

This expression is dependent only upon the return period, T, and the 

coefficient of skew, Y}, of the recorded events. Table 3.18 provides 

values of K for some typical values of T and y1. 

The procedure to be followed is therefore to compute 

the mean, standard deviation and coefficient of skew from the 

sample data, look up the value of K for the required return period in 

Table 3.18 and compute the corresponding event magnitude, x, from the 

general frequency equation.
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Table 3.18 

Freguengy Factor for Use in Type III Extremal Distribution 

Coefficient 
of skew 50

Y 1
2 

—1.00 0.1567 
-0.90 0.1446 
-0.80 0.1321 
-0.70 0.1189 
-0.60 0.1051 
-0.50 0.0906 
-0.40 0.0754 
-0.30 0.0595 
-0.20 0.0428 
-0.10 0.0255 
0.00 0.0075 
0.10 -0.0110 
0.20 -0.0300 
0.30 -0.0493 
0.40 _-0.0689 
0.50 -0.0885 
0.60 -0.1081 
0.70 -0.1275 
0.80 -0.1466 
0.90 -0.1651 
1.00 -0.1829 
1.10 -0.2000 
1.20 -0.2162 
1.30 -0.2313 
1.40 -0.2454 
1.50 -0.2583 
1.60 -0.2701 
1.70 ' -0.2807 
1.80 -0.2900 
1.90 -0.2983 
2.00 -0.3053 

Standard Error of Estimate 

method of moments has been given 

The general expression 

u2 52(‘3’r[1*'372*'—T1 
“2 

Cumulative Probability, P, % 
8O 90 95 98 99 
Corresponding Return Period, T, Years

5 

-o.7329 
-o.7so1 
-0.7666 
-0.7825 
—o.7977 
-0.8122 
-0.8258 
-0.8385 
-o.ssoz 
-0.8607 
-0.8699 
-o.s77s 
-o.ss42 
-0.8891 
-0.8923 
-0.8939 
-0.8938 
-0.8921 

. -0.8888 
-0.8840 
-O.8777 
-0.8703 
-O.8617 
-0.8522 
-0.8421 
-0.8314 
-O.8206 
-0.8097 
-0.7990 
-0.7887 
-0.7790 

Kus 

10 20 50 100 

—1.3134 -1.8641 -2.5680 ~3.0889 
-1.3215 -1.8546 -2.5232 -3.0089 
-1.3282 -1.8430 -2.4766 -2.9282 
-1.3332 -1.8294 —2.4280 -2.8465 
—1.3366 -1.8134 -2.3771 -2.7634 
-1.3382 —1.7950 -2.3239 -2.6788 
-1.3379 -1.7741 -2.2683 -2.5928 
-1.3356 -1.7506 -2.2103 -2.5055 
-1.3313 -1.7245 -2.1502 -2.4172 
-1.3248 -1.6960 -2.0881 -2.3282 
-1.3161 -1.6650 -2.0244 -2.2390 
-1.3053 —1.6318 -1.9595 -2.1500 
-1.2923 -1.5966 -1.8938 -2.0619 
-1.2773 -1.5595 -1.8277 -1.9752 
-1.2603 -1.5210 -1.7616 -1.8902 
-1.2415 -1.4812 -1.6961 -1.8075 
-1.2209 -1.4405 -1.6315 -1.7275 
-1.1989 -1.3992 -1.5682 -1.6506 
71.1757 -1.3578 -1.5068 -1.5770 
-1.1515 -1.3165 -1.4473 -1.5071 
-1.1266 -1.2757 -1.3903 -1.4409 
-1.1013 -1.2358 -1.3359 -1.3787 
-1.0758 -1.1969 -1.2842 -1.3204 
-1.0505 -1.1594 -1.2356 -1.2661 
-1.0255 -1.1236 -1.1901 -1.2159 
-1.0013 -1.0896 -1.1477 -1.1696 
-0.9780 -1.0577 -1.1086 —1.1272 
-0.9558 -1.0279 -1.0728 1-1.0887 
-0.9351 -1.0006 -1.0403 -1.0540 
-0.9159 -0.9758 -1.0112 -1.0231 
-O.8985 -0.9536 -0.9854 -0.9959 

for the standard error of estimate by the 

as: 
2 2 K n -u ( 4 2) 3.236 

4u2
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Substituting for the second, third and fourth moments from Equations 

3.216, 3.217 and 3.218 and using the simplifications

K II {F(1+2/u) -F2(1+l/u)} 

‘< 
ll 

{I‘(1+4/a) - 4P(l+3/a)I‘(1+1/a) - +N II 

6F(l+2/a)F2(1+1/u) - 3r4(1+1/a)} 

then the standard error of estimate can be given by: 

2 2 2 
.2 o K.y K (z-x ) 5(K)=__ [1+ +____] 

n x372 4x2 

Table 3.19 provides values of 5 in the equation 

5(K) = 5 E. 
\4?— 

{P(1+3/a) — 3T(1+2/u)P(1+1/a) + 2F3(1+1/a)} 

(N 

for some commonly used values of T, the return period, and VI, the 

.237 

.238 

.239 

.240 

.241 

coefficient of skew estimated from the sample. Confidence limits can 

then be computed assuming the normality of x(K).
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Table 3.19 

Values of Parameter 6 for Use in Standard Error of 
’ Type III Extremal Distribution 

Coefficient Cumulative Probability, P, 8 
of 50 80 90 95 98 

Skew Corresponding Return Period, T, Years 
yl 2 5 10 20 50 

-1.00 0.9184 1.3162 1.5208 1.6921 1.8885 
-0.90 0.9325 1.2949 1.4807 1.6351 1.8102 
-0.80 0.9455 1.2709 1.4373 1.5745 1.7284 
-0.70 0.9574 1.2443 1.3907 1.5106 1.6436 
-0.60 0.9681 1.2153 1.3414 1.4438 1.5563 
-0.50 0.9773 1.1842 1.2896 1.3747 1.4671 
—0.40 0.9851 1.1512 1.2358 1.3036 1.3765 
-0.30 0.9912 1.1164 1.1801 1.2310 1.2851 
-0.20 0.9958 1.0798 1.1228 1.1569 1.1929 
-0.10 0.9988 1.0413 1.0635 1.0811 1.0996 
0.00 1.0000 1.0007 1.0018 1.0031 1.0046 
0.10 0.9995 0.9576 0.9373 0.9221 0.9069 
0.20 0.9971 0.9117 0.8695 0.8374 0.8053 
0.30 

_ 
0.9927 0.8631 0.7984 0.7487 0.6991 

0.40 0.9864 0.8116 0.7231 0.6546 0.5855 
0.50 0.9781 0.7571 0.6434 0.5534 0.4597 
0.60 0.9676 0.6995 0.5580 0.4411 0.3078 
0.70 0.9551 0.6389 0.4653 0.3077 0.0786 
0.80 0.9406 0.5752 0.3611 0.0845 0.3024 
0.90 0.9240 0.5092 0.2352 '0.2564 0.3990 
1.00 0.9057 0.4417 0.0828 0.3497 0.4563 
1.10 0.8858 0.3750 0.2319 0.4005 0.4865 
1.20 0.8648 0.3143 0.2867 0.4206 0.4918 
1.30 0.8431 0.2694 0.2980 0.4108 0.4701 
1.40 0.8215 0.2562 0.2644 0.3639 0.4133 
1.50 0.8009 0.2859 0.1470 0.2531 0.2963 
1.60 0.7825 0.3531 0.2447 0.1993 0.1770 
1.70 0.7676 0.4447 0.4216 0.4265 0.4350 
1.80 ' 0.7577 0.5507 0.5777 0.6032 0.6221 
1.90 0.7537 0.6644 0.7259 0.7643 0.7894 
2.00 0.7564 0.7806 0.8680 0.9154 0.9446 

99 

100 

2.0217 
1.9275 
1.8303 
1.7305 
1.6289 
1.5260 
1.4224 
1.3187 
1.2150 
1.1110 
1.0057 
0.8982 
0.7869 
0,6706 
0.5454 
0.4033 
0.2125 
0.2338 
0.3705 
0.4485 
0.4953 
0.5181 
0.5176 
0.4910 
0.4299 
0.3096 
0.1706 
0.4389 
0.6292 
0.7981 
0.9544
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3.3.5 Pearson Type IIIm 
The probability density distribution of the Pearson Type III 

distribution is of the form 

x— 
3-1 ' {7:1} 

1 ,_— pm = am) 13451} e 3.24:~ 
where a, B and y are parameters to be defined and F(B) is, as before, 

the Gamma function. 

If the substitution y = 5&1 is made,then Equation 3.342 

simplifies to 

yB-l v 
_ e _ _ PCY) - -TT§j-- : Eda 

which is a one parameter Gamma distribution described in many 

statistics texts [e.g. (47)). 

Estimation of Parameters 

The likelihood function is set up, as usual, as the 

logarithm of the sum of the probability density distributions (31): 

1 
n n 

L = -n lnF(B) - - Z (x.—y)+(B-1) Z ln(x.-y) - nBlna 3,344 a . 1 . 1 i=1 i=1 

Differentiating with respect to a, B and y and equating to zero 

gives the following three equations (29):

n 3L 1 5;: -Y) _ Eng. = o 

F——————————————————————————————————————————————————_________________JIII-IIIIIIIIlllllllllli



- 123 -

n 
%% = -n rI(3)/r(3) + z 1n(xi-v) -n1na ==o 5.246 

i=1 

aL _ n n
_ 

—Y - a -(B-1) 2 (1/(xi-YD = 0 3-247 
i=1 

The maximum likelihood solution then depends on a simultaneous 

solution of these three equations. The Psi or Digamma function, 

F'(B)/P(B) is given in many books of statistical tables e.g. Abramowitz 

and Stegun (l). levjevich (47) gives the solution of these equations 

as follows:
I 

(a) First of all Y is found by trial and error as the 

solution of the equation: 

1 + [1+4A(§]1/2' (i - 3) g 1 . 

_ 
- 

. 
= o 3.248 

1 + [Wt/311” - 4A " 1-1 {xi-fl 

where

> n
n 

.2: ln(xi-?)] 
' 3.249 '[lnci-o - 

5; 1 . 1: 

(b) Using the determined value of 7, an estimate of B 

is found from 

E = 1 + [1+4A/31'1/2 
4A 

_ 

3.250 

A correction factor. AB, tabulated by Yevjevich (47) must 

then be subtracted from the computed value of B. Condie (8) has shown 

that the correction factor AB may be determined directly from B as: 

A8 - 0.0014 + 0.0465 exp (-1.77313) 3.251
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(c) An estimate of a is now found from: 

(xi-wné = (i - 93/3 3.252
1 

a) u um:

i 

Matalas and Wallis (30) have noted that for samples exhibiting 

very small absolute values of skewness a solution by maximum likelihood 

may not be possible because of computer time constraints. Similarly 
if B < 1 then a maximum likelihood solution is not possible. 

Greenwood and Durand (15) have also noted that for the 
general Pearson Type III distribution there are no sufficient estimators 
using maximum likelihood. 

If, however, the value of y can be derived from a source other 
than the data then maximum likelihood estimates of a and B are available. 
If the arithmetic mean of the reduced series x-y is given by 

A=l n .

1 
(x-v) 3.253

1 

“M: 

then Equation 3.245 reduces to 

o = A/B 3.254 

Now if the geometric mean of the reduced series x—y is given by 

n l/n 
B = H (x-Y) 3.255 

i=1 

and if 

C = In A - ln B 3.256
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Ithen substitution of Equations 3.254 and 3.256 into Equation 3.246 and 

simplification yields 

In B - r'(3)/r(B) = c 
' 3.257 

Solution of Equation 3.257 gives an estimate of B and substitution 

back into Equation 3.254 will result in an estimate of a. Solution of 

this equation is made easier by the availability of tables of C versus 

BC. Thus calculation of C from the reduced data and interpolation 

from a tables gives BC from which 8 can be quickly found. Greenwood 

and Durand (15) have also given the following polynomial approximations 

to estimate 8 directly from C: 

for 0 SC <_' 0.5772 
3 = (0.5000876 + 0.1648852C - 0.0544274c2)/c 3.258 

for which the maximum error is 0.0088% and for 0.5772. 5 C 5.17.0
2 

a 3 8.898919 + 9.0599506 
+ 0.9775373C 3 259 Cil7.79728 + 11.968477C f Czi ' 

for which the maximum error is 0.0054%. 

Similarly a-trial and error_procedure based on the likelihood 

equations has been described by Matalas and Wallis (30). Knowing y, 

Equations 3.245 and 3.247 can be solved explicitly for a and B. First 

of all 8 is obtained from 

“ n 1 
II“ 

1 “2 260 B H 
.il xi-§)/ i:1(xi-§) 

' n 3' 

1:1 
(xi‘?)

~ 
and than a can be obtained from Equation 3.252. substituting 

a, B and 7 back into Equation 3.246 a value of 3L/38 is obtained. 

If 
I 
3L/BB l>10'8 the procedure should be repeated with a new 

value of Y.
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Estimating the parameters of the Pearson Type III distribution 

by the method of moments (29) utilises the following expressions 

for the first three central moments: 

u1 = y + a8 3.261 

u2 = «28 3.262 

u3 = 2638 3.263 
Since the fourth central moment will be used later in this 

section it is given here for convenience: 

u4 = 336“(e+2) 3.264 

if the population mean, standard deviation and skewness are 
estimated from the sample and denoted by u, 0 and Y1, then by using 
the relationship: 

_ U3 
Y1 ' 

3/2 
u2 

3.265 

and substituting Equations 3.262 and 3.263 the parameter 3 can be 
estimated from: 

. 
_ n 2 a a B - (3/11) 3..66 

Once B is determined then by solution of Equations 3.261 and 

3.262, a and y can be estimated as 

,1 a = °/3 ,2 3.267 

and 

v: u - oél/Z 3.268
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Freguency Factor 

The cumulative probability distribution of the Pearson 

Type III can be expressed as:~ -{§:ZJ 3-1 
P(x) = Grim/J: 9 °‘ {5}} dx 3.269 

If a, B and Y are derived as in the previous section 

and the probability required for a given return period, T, is 

P(x) = l - %-then to define the event magnitude, Equation 3.269 

must be solved for x0. 
_ _ 

Making the substitution yi= (x-Y)/u in Equation 3.269 

the distribution is given by: 

1 -yo 8-1 -y. - Pm -— y e _dy 3.270 MB) f0 

but from (1) 

- P0) = Ptlv) s 1-Q(x2|v) -' 3.271 

where P(x2|v) is the Chi-Square distribution with 28 degrees of 

freedom and x2 = 2y. 

So, looking up the tabulated value of x2 for probability 1 - l/T 

and 28 degrees of freedom the reduced event magnitude, yo, is obtained 

as: 

yo = x2/2 5.272
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and the expected event magnitude is given by:

2 x=77°‘-+Y 3.273 

Tables of Chi-Square distribution are commonly given in 

statistical texts, but for convenience Table 3.20 provides values 

of x2 for some commonly used probabilities and for various degrees 

of freedom. Note that in Table 3.20 the probabilities are arranged 

so that larger event magnitudes correspond to larger cumulative 

probabilities and smaller probabilities of exceedence (larger return 

periods). This table would be suitable for an analysis of maxima 

such as flood events. In the study of minima such as drought 

events, for which this distribution is sometimes used, (c.f. Chin (4)), 

these probabilities should be reversed. 

It has been found (24) that the expression 

«»; u 

is approximately normally distributed with zero mean and unit 

0: t.)

, 
variance for V>30. Thus the value of x“ for a particular probability 

level, P, and number of degrees of freedom, v, can be approximately 

computed by substituting the corresponding standard normal deviate, t, 

in the equation:

3 
X2=V31-:—V+t"lg—V‘ 3.275
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Table 3.20 

Percentage Points of the Chi-Square Distribution1 

Degrees Cumulative Probability, Pslv), 8 
of 50 75 90 95 97.5 99 

Freedom Corresponding Return Period, T, Years 
v 2 4 10 20 40 100 

l 0.46 1.32 2.71 3.84 5.02 - 6.63 
2 1.39 2.77 4.61 5.99 7.38 9.21 
3 2.37 4.11 6.25 7.81 9.35 11.34 
4 3.36 5.39 7.78 9.49 11.14 13.28 
5 4.35 6.63 9.24 11.07 12.83 15.09 

6 5.35 7.84 10.64 12.59 14.45 16.81 
7 6.35 '9.04 12.02 14.07 16.01 18.48 
8 7.34 10.22 13.36 15.51 17.53 20.09 
9 8.34 11.39 14.68 16.92 19.02 21.67 
10 9.34 12.55 15.99 18.31 20.48 23.21 

11 10.34 13.70' 17.28. 19.68. 21.92 24.73 
12 11.34 14.84 18.55 21.03 23.34 26.32 
13 12.34 15.98 19.81 22.36 24.74 27.69 
14 13.34 17.11 21.06 23.68 26.12 29.14 
15 14.34 18.25 22.31 25.00 27.49 30.58 

16 15.34 19.37 23.54 26.30 28.85 32.00 
17 16.34 20.48 24.77 27.59 30.19 33.41 
18 17.34 21.61 25.99 29.87 31.53 34.81 
19 18.34 22.72 27.20 30.14 32.85 36.19 
20 19.34 23.83 28.41 31.41 34.17 37.57 

21 20.34 24.93 29.62 -32.67 35.48 38.93 
22 21.34 26.04 30.81 33.92 36.78 40.29 
23 22.34 27.14 32.01 35.17 38.08 41.64 
24 23.34 28.24 33.20 36.42 39.36 42.98 
25 24.34 29.34 34.38 37.65 ' 40.65 44.31 

26 25.34 30.43 35.56 38.89 41.92 - 45.64 
27 26.34 31.53 36.74 40.11 43.19 46.96 
28 27.34 32.62 37.92 41.34 44.46 a 48.28 
29 28.34 33.71 39.09 42.56 .45.72 49.59 
30_ 29.34 34.80 40.26 43.77 46.98 50.89 

40 39.34 45.62 51.81 55.76 59.34 63.69 
50 49.33 56.33 63.17 67.50 71.42 76.17 
60 59.33 66.98 74.40 79.08 83.30 88.38 
70 69.33 77.57 85.53 90.53 95.02 100.42 
80 79.33 88.13 96.58 101.88 106.63 112.33 
90 89.33 98.65 107.56 113.14 118.14 _124.12 
100 99.33 109.14 118.49 124.34 129.56 135.81 

1 The function, x2, tabulated is that value of x2 with v degrees 
of freedom beyofld which (14% of the distribution lies.



- 130 - 

A refinement to the approximation may be made by substituting (t-hv) 

for t in Equation 3.275 where 

hV = v- . h60 3.276 

and h60 is tabulated in Abramowitz and Stegun (1). 

Combining Equations 3.273 and 3.275 and substituting the 

degrees of freedom, v = 28, 

x = a8 ‘1 --£— + t l—- 
3 

+ 3 277 93 V 98 Y ' 

Thus knowrng, a, B and y the value of x corresponding to any given 

probability level can be computed. 

Substituting for a and Y from Equations 3.267 and 3.268
a in “qtLOH 3.373 an expression:

~ - —]o 3.2.73 

is obtained, where Y1 is the coefficient of skew of the sample 

data. 

Comparing Equation 3.271 with the general frequency equation 

it can be seen that, for the Pearson Type III distribution, the 

frequency factor, K, is given by:
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Since K is dependent only on x2 and the coefficient of 

skew and x2 is dependent only upon the coefficient of skew (through 

the degrees of freedom, v) and the probability, then K can be 

tabulated directly._ Table 3.21 is an example.' The Soil Conservation 

3.279 

Service, U.S. Dept. of Agriculture (39) has prepared very comprehensive 

tables of frequency factors for the Pearson Type III distribution.1 

Chin (4) has given a table of frequency factors for 

probability levels suitable for analysis of minimum'events such as 

droughts. 

Table 3.21 

Frequency Factor for Use in PearSOn Type III Distribution 

Coefficient 
of Skew 

Y1

I 
.OOOHl-II-‘HHM

O

.

I
I 
I
l
l 

n-HHHHHOOOO0.0

I

O

I 

I

l

I

O 

G-hNONtDN-FO‘CDO 

«a 

«aoLL-hacaa: 

50

2 

0.3068 
0.2815 
0.2542 
0.2254 
0.1952 
0.1640 
0.1320 
0.0995 
0.0665 
0.0333 
0.0000 
-0.0333 
-0.0665 
-0.0995 
-0.1520 
-o.1640 
-0.1952 
-0.2254 
-0.2542 
-0.2815 
-0.30§9 

Cumulative Probability, P, 8 
'80 90 95 98 99 

Corresponding Return-Period, T, Years 
5 10 20 50 100 

0.7769 0.8946 0.9487 - 0.9798 0.9900 
0.7987 0.9450 1.0197 1.0686 1.0870 
0.8172 - 0.9942 1.0934 1.1658_ 1.1970 
0.8322 1.0414 - 1.1683 1.2700 1.3182 
0.8437 1.0861' 1.2431 1.3793 1.4494 
0.8516 1.1276 1.3168 1.4919 '1.5884 
0.8561 1.1657 1.3886 1.6060 .1.7327 
0.8572 1.2003 1.4576 1.7203 1.8803 
0.8551 1.2311 1.5236 1.8336 2.0293 
0.8499 1.2582 1.5861 1.9450 2.1784 
0.8416 1.2816 1.6449 2.0538. 2.3264 
0.8304 1.3011 '1.6997 2.1594 2.4723 
0.8164 1.3167 1.7505 2.2613 2.6154 
0.7995 1.3285 1.7970 2.3593 2.7551 
0.7799 1.3364 1.8392 - 2.4530 2.8910 
0.7575 1.3404 '1.8768 2.5421 3.0226_ 
0.7326 1.3405 1.9099 2.6263 3.1494 
0.7051 1.3367 1.9384 2.7056 3.2713 
0.6753 1.3290 1.9621 2.7796 3.3880 
0.6434 1.3176 1.9812 2.8485 3.4994 
0.6094 1.3026 1.9957 . 2.9120 3.6052
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Standard Error of Estimate 

The central moments of the Pearson Type III distribution 

are given earlier in the chapter in Equations 3.261 to 3-264 

Substituting these values in the general standard error equation 
2 2 

u Ku K (H - u ) 2 2 3 4 2 S(K)=—E[1+Tz+—-4—2-] 3.280 
“2 “2 

yields: 

2 3 2 2 4 2 .2 2K K - 
s (K) =°‘—n-B-[1+ 383/2+ (38“ £532) “8 )1 3.281 

(a 6) 4a 8 

which, upon substituting 

02 = 028 3.282 

and 

v1 = 2M? 3.283 

and simplyifying, gives the expression 

2 2 .2 _ g_ K 2 5 (K) - 
n [1 + K-wr1 + 2— (1+3Y1/4)] 3.284 

where 11 is the coefficient of skew estimated from the sample. 

Since the frequency factor, K, is dependent only upon the 

return period, T, and the coefficient of skew, yl, then tables of 5 

can be prepared where: 

500 = V; 3.285
n 

Table 3.22 gives values of 6 for some typical values of T and y1.
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Parameter 5 for Use in Standard Error of Pearson Type III Distribution 

Coefficient 
of Skew 50
Y 1 2 

-2.0 0.7581 
-1.8_ 0.7932 
-1.6 0.8292 
-1.4 0.8644 
-1.2 0.8974 
-1.0 0.9271 
-0.8 0.9525_ 
-0.6 0.9729 
-0.4 0.9879 
-0.2 0.9970 
0.0 1.0000 
0.2 0.9970 
0.4 0.9879 
0.6 0.9729 
0.8 0.9525 
1.0 0.9271 
1.2 0.8974 
1.4 0.8644 
1.6 0.8292 
1.8 0.7932 
2.0 0.7580 

Cumulative Probability, P,'% 
80 90 95 98 
Corresponding Return Period, T, 
5 10 20 ' 

' 50 

0.8083 0.9008' 0.9501 .0.9800 
0.8102 0.9113 0.9735 1.0173 
0.8170 0.9233 0.9980 1.0578 
0.8308 0.9388 1.0247 1.1018 
0.8531 0.9610 1.0561 1.1504 
0.8849 0.9924 1.0956 1.2065 
0.9260 1.0359 

_ 
1.1472 1.2743 

0.9758 1.0930 1.2143 1.3591 
1.0332 1.1646 1.3002 1.4661 
1.0964 1.2505 1.4065 1.5998 
1.1637_ 1.3495 1.5339 1.7632 
1.2334 1.4602 1.6816 1.9579 
1.3038 1.5804 1.8483_ 2.1836 
1.3732 1.7082 2.0319 2.4393 
1.4401' 1.8414 2.2304 2.7231 
1.5032 1.9780 2.4411 ' 3.0326' 
1.5612 2.1160 2.6619 3.3652 
1.6128 2.2534 2.8904 3.7186 
1.6572 2.3885 3.1241 4.0899 
1.6935 2.5197 3.3612 4.4769 
1.7209 2.6455 3.5996 4.8768 

99 
Years 

100 

0.9901 
1.0343 
1.0848 
1.1404 
1.2023 
1.2725 
1.3548 
1.4549 
1.5794 
1.7344 
1.9251 
2.1546 
2.4242 
2.7337 
3.0818 
3.4665 
3.8852 
4.3354 
4.8145 
5.3198 
5.8485 

Moran (31) has described a procedure for evaluating the 

standard error of estimate of a two parameter Pearson Type III 

distribution (2 parameter Gamma). When extended to the three 

parameter distribution discussed in this report the derivation is 

as follows: 

If x is the event magnitude for a given return period 

using a Pearson Type III distribution with fitted parameters 

a. S and Y then 

3x dx=—— d34- 3G 
'a_x 
38 

3x dB + --dy 
ay 

3.286
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and the standard error of estimate, $200, is given as 
2 2 2 \ 

52(x) =@—:> var a+ 
gg) 

var 8 +6? var y + 2e?@cov ((1,3) 

+ 2% (3%) cov (Bar) + 2(§—:)(:—:>cov (an) 

The differential coefficients are obtained by computing
A x for 2 values of a, 3 , 7 either side of the fitted values a, 5‘ and 

7 and determining the slopes. The variance-covariance matric 

var a cov (0.8) 00V (“#3 
var 8 CW (Sn!) 

L var Y J 

is obtained as the inverse of the symmetric matrix 
~ -!

~

~ _ 32L 
_ 32L. _ 32L 

3oz 3:188 Quay 

_ 32L 32L 
382 — 

BBBY 

_ 32L 
372 

L .. 

where L is the likelihood function defined in Equation 5.244 so that 

32L_nB 2 “ 
3oz _ ET _ E? .21 (xi _ Y) 

1: 

32L _ 
BaBB n/a 

32L _ z 
aaay 

— -n/a 

2 - %%= -n{r(s)r"(e)-rca)21r-'ce) 2 

32!. n - r= E (xi-Y) ‘ 

i=1 

3.287 

3.289 

3.291 

3.292 

3.293 a: 

3.294 i
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32L n ' -. 

.—.z-= (3-1) x (x.-v) 2 
_ 

3.295 
3" i=1 1 

Evaluation of Equations 3.290 to 3.;95. substitution into 

matrix Equation 3.289 and inversion will give the required variances 

and covariances. Combining these with the differential coefficients 

in Equation 3-287 yields the standard error of estimate. 

The return period, T, is incorporated directly in the 

expression for standard error since the differential coefficients 

are calculated as slopes at the event magnitude, x, corresponding 

to the return period, T;
I 

Santos (36) has given useful tables and a numerical example 

of this method of estimating the standard error of estimate for a 

two-parameter Pearson Type III distribution;
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3.3.6 Log-Pearson Type III 

The U.S. Federal Water Resources Council has fairly 

recently recommended that the log-Pearson Type III distribution be 

adopted as the standard flood frequencv distribution by all U.S. 

government agencies. In a paper describing the investigations behind 

this recommendation Benson (3) explained that no rigorous statistical 

criteria exist on which a comparison of distributions can be based 

and therefore the choice of log-Pearson Type III is, to some extent, 

subjective. 

The procedure used with the log—Pearson Type III distribution 

is identical to that described for the Pearson Type III except that 

the original variable is replaced with its logarithm. That is to 

say, first the logarithms of the sample data are taken and the mean, 

standard deviation and coefficient of skew of the logarithms are 

computed. Secondly the frequency factor corresponding to the computed 

coefficient of skew is found from Equation 3.279 or Table 3.21 and 

substituted, together with the mean and standard deviation of 

the logarithms, in the general frequency equation. Finally the 

antilog of the resulting figure is found. This is the event 

magnitude. The standard error, in log units is then computed from 

Equation 3.284 using oy, the standard deviation of logarithms instead 

of o.
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3.4 Comparison of Frequency Distributions 

It has been mentioned previously in this chapter that no 

statistical test can ensure that any one distribution is the best 

one to use for a particular set of_data. As an example of the. 

variation possible between distributions, seven different-distributions 

have been applied to one set of data. 

The data chosen were annual maximum mean daily flows of 

the Saint John hiver at Fort Kent, New Brunswick, for the 37 years 1927 

to 1963. These data have been described by Collier (7) who fitted 

several distributions in his study. 'For each_distribution, event 

magnitudes at return periods of 2, 5, 10, 20, 50 and 100 years were 

computed using the standard frequency equation (e.g. Equation 3.10) 

and the tables of frequency factors provided in this chapter. 

Similarly values of the standard error of estimate were Computed 

for each distribution_for each return period using Equation 3.25 

and the tables of 6 provided in this chapter. _ 

-Tables 3.23 and 3.24 list the results and Figure 3.5 compares 

the fitted distributions with those recorded data points with assigned 

return periods greater than 2 years. It is apparent from the figure 

that the various distributions, while very close at low return periods, 

rapidly separate at higher return periods. The centra1.group of 

distributions, 3-p‘arameter lognormal', lognormal, log Pearson Type III 

and Pearson Type III appear to be among the best fitting. Because-- 

in this case, the coefficient of skew of the logarithms of the data 

is very close to zero (-0.ll8) the log Pearson Type III distribution 

is indistinguishable from the lognormal. 

In Table 3.24 the standard errors for the truncated normal,
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Table 3.23 

Comparison of T-Year Event Magnitudes Using Various 
Frequency Distributions, Thousands of Cubic Feet per Second 

Frequency 
Distribution 

Truncated Normal 
Lognormal 
3-Parameter Lognormal 
Type I Extremal 
Type II Extremal 
Pearson Type III 
Log Pearson Type III 

Saint John River at Fort Kent, 1927-1963 

Cumulative Probability, P, % 
50 80 90 95 98 

Corresponding Return Period, T, Years 
2 10 20 50 

81 100 110 118 128 
78 98 111 123 137 
77 99 112 124 140 
77 100 115 129 148 
75 99 120 144 182 
80 100 111 123 134 
78 99 112 123 137 

Table 3.24 

Comparison of Standard Errors of T-Year Events Using Various 
Frequency Distributions, Thousands of Cubic Feetgper Second 

Frequency 
Distribution 

Truncated Normal 
Lognormal 
3-Parameter Lognormal 
Type I Extremal 
Type II Extremal 
Pearson Type III 
Log Pearson Type III 

Saint John River at Fort Kent, 1927-1963 

Cumulative Probability, P, 95 

80 90 95 98 
Corresponding Return Period, T, Years 

5 10 20 50 

4.36 5.06 5.75 6.61 
5.49 7.11 8.71 10.79 
5.41 7.10 8.94 11.60 
6.21 8.55 10.91 14.03 
7.71 12.88 19.74 32.14 
4.87 5.89 6.88 8.12 
4.84 5.59 6.15 7.08 

99 

100 

134 
148 
151 
162 
216 
140 
148 

99 

100 

7.22 
12.33 
13.66 
16.40 
44.67 
9.01 
7.72
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lognormal, Type I extremal and Pearson Type III were computed using 

Equation 3.23 and the relevant tables of 6 contained in this chapter. 

% For the 3 parameter lognormal, Type [I extremal and log Pearson Type III 

the standard errors shown are averages of the positive and negative 

standard errors computed from Equations 3.100 and 3.101. For small 

coefficients of skew this approximation is accurate enough. 

From an initial look at Figure 3.5 it was suspected that the 

extremal Type I and truncated normal distributions might be significantly 

different than the recorded distribution. To test this hypothesis 3 

Chi-Square test was carried out. The statistic 

k . . 

x2 = z 3.296 

is distributed assymptotically as Chi-Square with k-l degrees of freedom 

where oj is the observed number of events in the jth class interval 

and Ej in the number of eVents that would be expected from the theoretical 

distribution. If the class intervals are defined such that each interval 

corresponds to an equal probability then Ej is n/k where n is the sample 

size and k is the number of class intervals and Equation 3.296 reduces to

k 
E o - n 3.297
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The class intervals were computed for the various distributions 

as follows: 

(a) Truncated Normal 

CL = i +-ts . 
3.298 

where i and S are the sample mean and standard deviation and t is the 

standard normal deviate corresponding to the probabilities of 

exceedence, P, listed in column 2 of Table 3.25. 

(b) Lognormai 

CL = exp (xn + tSh) 3.299 

where in and Sn are the mean and standard deviation of the logarithms of 

the recorded events. 

(c) 3-Parameter bogngrmal 

CL = a + exp (xna + tsna) 3.300 

where a is the lower boundary of the distribution and ina and Sna are 

the mean and standard-deviation of the logarithms of the sample xga. 

(d) Txpe I Extremal 

- Y '“ 
_ 

CL = x + g “a~ ] s 
' 3.301 

where yfi is -ln(-1n_P) and u and o are the mean and 
standard deviation 

of the plotting positions.
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(e) se II Extremal
~

~ 

CL ‘ ym-u 
- exp (xn + l a ] Sn) 3.302 

(f) Pearson se III 
s1 2 CL = x +[ 4 

— ——] 5 3.303 
Y1 

2 ’) 

where X is the value of Chi-Square at probability P and 8/71 degrees 

of freedom, 71 is the sample coefficient of skew. 

(g) Log Pearson Type III

2 X Y 
1 2 

4 
- 
VI] Sn 3.304~ CL = exp (in +

[ 

The recorded events were then sorted in order of magnitude 

and the numbers of events within each class interval detennined for 

each distribution. 

Table 3.25 lists the computed class limits for each distribution 

together with the derived Chi-Square values. All the values of Chi-Square 

are significant at 95% for the appropriate degrees of freedom and so the 

original hypothesis cannot be proved. 

The Kolmogorov-Smirnov test can giVe no further information in 

this case since it uses plotting positions as observed frequencies.



Class 

Interval 

\IO‘Ul-BMNl-IO 

Chi-Square 

Probability

0 
0.14286 
0.28571 
0.42857 
0.57143 
0.71429 
0.85714 
1.0 
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Table 3.25 

Comparison of Class Limits and Chi-Square 
Values for Different Distributions 

Truncated 

Normal

0 
56.66 
68.10 
76.91 
85.11 
93.92 
105.36 

3.68 

Lognormal

0 
57.51 
66.32 
74.00 
81.97 
91.47 
105.48 

4.43 

3-Parameter 

Lognormal

0 
56.42 
65.24 
72.94 
80.94 
90.48 
104.58 

3.68 

Type 

I 

Extremal 

56.82 
65.67 
73.52 
81.85 
92.08 
107.76 

4.43 

Type 

II 

Extremal 

57.62 
64.34 
70.95 
78.71 
89.40 
108.68 

2.54 

Pearson 

Type 

111 

57.03 
67.14 
75.43 
83.56 
92.73 
105.37 

2.54 

Log-Pearson 

Type 

III 

57.77 
65.53 
72.66 
80.40 
90.13 
105.49 

3.68
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3.5 Distribution of T-Year Events 

As discussed earlier in this chapter, the empirical determination 

of confidence limits involves an assumption that the T-year event is 

distributed normally with mean x(K) and variance 52(K). In order to test 

the validity of this assumption, several experiments in data generation 

were conducted. 

A set of 100 uniformly distributed random numbers were 
generated in the interval 0 - 1.0. Assuming that these numbers 

could represent probabilities, the corresponding event magnitudes 

were computed according to a particular distribution. These 100- 

year event magnitudes then represented a simulated loo-year record 

of annual maximum events from which the maximum or loo-year event 

was selected. By repeating this procedure n times a set of n 

loo-year events were generated and the distribution of these events 

was tested. 

Tables 3.26, 3.27 and 3.28 show the results of these 

experiments using a lognormal distribution, a Type I extremal 

distribution and a Pearson Type III distribution. Data were generated 

using a range of values for standard deviation of the sample (and 

sample coefficient of skew in the case of the Pearson Type III 

distribution) and the resulting distributions of loo-year events 

were compared to normal and lognormal distributions using the Chi- 

Square and Kolmogorov-Smirnov tests. Comparison with tabulated 

Chi—Square and Kolomogorov-Smirnov statistics show that in nearly 

all cases the distributions of loo-year events are indistinguishable 

statistically from the normal or lognormal distributions. Out of 26
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experiments only seven loo-year distributions are statistically different 

than normal and none are statistically different than a lognormal 

distribution. The assumption of normality of the T-year event dis- 

tribution for sample size 100 would therefore seem reasonable. 

Table 3.26 

Results of Tests on the Distribution of loo—Year Events 
Generated from a nnormal Distribution 

I: In 0 p H 
s s g .. 

.3 "as 
g 

o .3 

g _. a: o s E s 
-u 3 m 15:2 2: E E H a u a I u -H n -H 
as H: Ma 0 E o E 

H -u o 0 >1: u: u: 44 u: 
o 5- fi 5.: 8" o '... ' 

a 'o u u -u 4.. Bu 2 3—. 
5 2 "’ «43 23 '8 SE ‘3 N 
z o o o o a m c- coo 5- 3:5 a r4 > -u H m o:z m o e P a! 50 l E I fig 
3 E E .8 .5 r as r H 
9- a: :n ::r« vans fig s<tu i5 :3.3 

l 500 100 818 71 12.2 0.08 16.7 0.07 
2 200 1236 237 27.5 0.12 12.8 0.07 
3 250 1507 282 17.6 0.09 11.9 0.05 
4 300 1819 477 29.9 0.11 18.5 0.06 
5 400 2211 632 24.8 0.09 6.8 0.04 
6 500 3341 1519 48.5 0.15 13.1 0.07 

Notes: 

(a) Tabulated value of Chi-Square at 95% significance for the number of 
degrees of freedom used is 26.3. 

(b) Tabulated value of the Kolmogorov-Smirnov statistic at 95% significance 
for the sample size used is 0.14.



Test 

Number 

ems-urea 
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Table 3.27 

Results of Tests on the Distribution of lOO-Year 
Events Generated from a Type I Extremal Distfibution 

: m 
.9. ‘E ’3 
u a: E d '-H> H H 
--1 cm I: O > E I: 
a.» :H S-a > w > 
C. '5 on! O O O O 0 'HO) 7. z: -—‘| = 
13 um H>~ 5-. L- 
54 mu :5! H "-1 s. ...4 

m H c -H o o E o E H v o o > o w: m d. m a 
C c: :> OH I IE 
«1 :1 mm D o >u-c a) >£-u 0 H 13 '5 H O!!! h 00 2 U': H "JO ('3 kg 21‘. at: Mr: H“ 3 O :5 0'36 0 o o m m m c‘ :50 c‘ h Q 
-—1 -l >- '55-! U) 07.. U: 0— 
Q. 9— El :0 l E | E E S 88 35 '3 “3‘6 '5' “5'8 
3 fi 2 —~ m u u xtu 5 x m 

500 100 862 89 23.6 0.11 15.5 0.08 
200 1249 193 13.7 0.07 7.1 0.04 
250 1451 264 14.6 0.08 9.8 0.'7 
300 1669 281 22.4 0.08 17.3 0.35 
400 2035 391 28.4 0.07 11.0 0.05 
500 2464 455 9.2 0.05 4.1 0.03 

a) Tahulated value of Chi-Square at 95% significance and the 
degrees of freedom used is 26.3. 

(b) Tabulated value of Kolmogorov-Smirnov statistic at 95% 
significance for the sample size used is 0.14.
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Table 3.28 

Results of Tests on the Distribution of loo-Year 
Events Generated from a Pearson Type III Distribution 

.9. s +* 
.

H 
t: .. .5 H 'a E s 
-g o era a 44 g 44 

o u e H 'E > no > n e -u e w o o '3
o D 0 "-10 -z E E 'U ml “WI-l)‘ 

-: a a“ 2' H '2 '* H 
-u ha 0 5 '>53 13 u: Ia IE 

H G g ‘H => 0H l I 

o u 0 era a o > o > n o p 0 no -u H a H o-4 
5 2 m U 0823 2 o g 8“ 
z -o -o o 00 we 'w Me U ME 
p H H H an! Ill) %0 
a E E” E“ §8 5= '2' :5 '2 35° 
F m' m a. 2H 38 u M2 0 _MA 

1 
_ 

500 100_ 1.0 823 80 26.6 . 
0.11' 16.1 0.07 

2 - 200 1159 148 22.7 _ 
0.06 _19.4 0.05 

3 _250 - 1327- 219 27.2 0.08 15.8 0.06 
4 300 1484 195 13.4 0.06 12.8 0.05 
5 400 1790 272 12.2 0.07 18.8 0.05 
6 500 2092 360 25.4 0.10 16.4 0.08 
_7 2600 800 1.0 5146 577 25.4 0.10 20.6 0.09 

Notes: 

(a) Tabulated value of Chi-Square at 95% significance for the number 
of degrees of freedom used is 26.3. 

(b) Tabulated value of the Kolmbgorov-Smirnov statistics at 95% 
significance for the sample size used is 0.14. 

(c) Test number 7'is provided for'comparison with the results of 
Matalas and Wallis (30).

'
'
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Having shown that for the 100-year events an assumption of 

normality is not unreasonable for varying means and standard 

deviations but constant sample size (100 events) the next step 

was to investigate whether this assumption could be maintained 

for sample sizes smaller than 100. This was necessary since, in 

hydrology, a sample of 100 events would be the exception rather 

than the rule. 

From a particular distribution (again, lognormal, Type I 

extremal and Pearson Type III distributions were used) with a 

population mean of 500 and population standard deviation 250, 

a sample of 100 was generated. From the computed mean and standard 

deviation of this sample the magnitude of the loo-year event was 

calculated. This procedure was repeated 100 times so that 100 

loo-year events were available and the distribution of these events 

was checked using, as before, Chi-Square and Kolmogorov-Smirnov tests. 

The sample size was then changed from 100 to 90 and the entire 

procedure repeated. Similarly sample sizes of 80, 70, 60, 50, 

40, 30, 20 and 10 were used. 

Figure 3.6 shows the results for the lognormal distribution. 

Examining this figure it is evident that as sample size decreases 

there is a very clear increase in the standard deviation of the 

distribution of lOO-year events. This is as expected, as the 

available information is decreased this is reflected in an increased 

variance in the result. Similarly there is a small decrease in the 

magnitude of the mean of the loo-year events as sample size decreases. 

The significant result is that as sample size decreases the value of 

Chi—Square comparing the empirical distribution of the loo-year 

events to the normal distribution increases fairly rapidly. Thus for 

—.u__.
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-sma11er samples the assumption of normality is not as valid as for 

larger samples. By taking the tabulated critical value of Chi-Square 

at 95% significance for the 100 events and plotting this value on 

Figure 3.6 a minimum acceptable sample size of 10 items results. 

Thus at 95%.significance the assumption of normality 

of the distribution of loo-year events derived from a lognormal 

distribution is valid for sample sizes greater than 10. Table 3.29 

lists the detailed results for the lognormal distribution. 

Similarly Tables 3.30 and 3.31 and Figures 3.7 and 3.3 show 

the results for the Type I Extremal and Pearson Type III distributions. 

In each case the validity of the normality assumption decreases with 

decreasing sample size. 
I 

I 
~ . 

Because of the nature of the "pseudo-random" numbers used 

in digital computer generating subroutines, the data generation for 

each distribution was repeated three times using different "seeds" for' 

Ithe random number generator. 

It should be noted that the lines fitted to the plotted 

values of the mean and standard deviation Of the extreme events in_ 

Figures 3.6, 3.7 and 3.8 represent only sample variations. In the 

cases of the lognormal and Pearson Type III diStributions the theoretical 

value of the mean of extremes is constant and the sample variation 

indicated on the figures is not representative. 

Further work is being carried out on this subject and results 

will be reported.



Figure 3.6,
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VARIATION OF MEAN, STANDARD DEVIATION AND CHI4S‘QUARE OF IOO- 
YEAR EVENTS OF LOGNORMAL DISTRIBUTION WITH DIFFERENT SAMPLE 
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Figure 3. 7 

VARIATION OF MEAN, STANDARD DEVIATION AND CHI-SQUARE OF I00- 
YEAR EVENTS OF A TYPE I EXTREMAL DISTRIBUTION WITH DIFFERENT 

SAMPLE SIZES. 
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Figure, 3.8 

VARIATION OF MEAN, STANDARD DEVIATION AND CHi‘-sau_ARL—: OF 1009 
YEAR EVENTS OF A PEARSON TYPE. III; DISTRIBUTION‘WITH DIFFERENT 

SAMPLE SIZES. ‘ 
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Table 3.29 

Results of Tests on the Distribution of loo-Year 
Events Generated from Different Sized Samples of a nnormal Distribution 

.3 
.. 

«.2 H s E as 
OH: 

E 
‘H O ‘H: 

'U :H >5 ED >3 
0 .0“ O O-I-l 3 0.0 
H "40 z :43 EH an “>- 515 54 HP “I H «4.0 [-1 "4+3 0: «4° O 5'!!! 0 Elk :0 >9 ‘H: USN ‘H: {DH 

0 0> '0"! O I“ 0 IO 
N {DI-ll D Old >0! 0°F| > 
"-1 '6 HP 8-H Hui-I OH 
m “a: as 33 .° 23 3g 
0 0 “G U‘w'I hon-I O‘H-l M H ">3 as; "as a” "2:: as 
E 2‘28 E5 2.2: :5 Hz: 33° 

100 1343 124 6.80 0.023 6.80 0.040 
90 1334 127 9.80 0.043 16.10 0.040 
80 1331 124 

' 8.90 0.070 
I 5.00 0.043 

70 1326 140 ' 9.20 0.047 10.70 0.040 
60 -1314 

_ 
145 19.70 0.047 16.40 0.037 

50 1349] . 177 11.30 0.050 ' 9.20 0.040 
40 1298 174 16.10 0.083 15.20 0.073 
30 1320 229 16.10 0.047 10.10 0.047 
20 1346 322 26.30 0.120 16.40 0.073 
10 1231 347 16.40 0.063 4.40 0.033 

Notes: 

(a) Tabulated value of Chi-Square at 95% significance for the number- 
of degrees of freedom used is 26.3. - 

(b) Tabulated value of the Kolmogarov-Smirnov statistic at 95% 
significance for the sample size used is 0.14.
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Table 3.30 

Results of Tests on the Distribution of lOO-Year Events 
Generated from Different Sized Samples of a Type I Extremal Distribution

mu 
s H C H: 

“as R «‘3 .9. 8.2 
:74 E >5 5’ >5, 

"0 0d 0 O-H .D 0.5 o "-10 z :u "-1 :-—u pm u)- H: H at: MH an H "-1.0 HQ "-14.3 k: "4:: o E-H om U‘. 00 >0 '44: wk ‘H-H (En-'1 0 :> OH O I“ :2 l2 N an.) O O-H >v: o > -H U 'U H“ O-H HI-I OH 
U) H '09 «1:! HQ was H03 Md nu 3.0 0 SE OE O 00 um C‘w-i 00—: 5-1.. my... : >. 2: "3:: a: ":2 22 
5‘ §:3 3 c -H g H H -n no .4 u 
u. 2.. m8 6:: £2 53 .23 
100 1725 139 13.40 0.077 17.00 0.077 
90 1698 139 12.80 0.070 7.40 0.053 
80 1715 146 13.70 0.063 11.60 0.043 
70 1716 162 14.90 0.047 11.00 0.033 
60 1733 165 14.00 0.050 9.50 0.043 
50 1715 185 10.70 0.047 17.30 0.057 
40 1739 215 20.90 0.067 7.70 0.047 
30 1734 228 9.80 0.057 5.60 0.030 
2 1796 298 14.00 0.047 5.90 0.030 
10 1845 445 28.10 0.103 16.40 0.063 

Notes: 

(a) Tabulated value of Chi—Square at 95% significance for the number 
of degrees of freedom used is 26.3. 

(b) Tabulated value of the Kolmogarov-Smirnov statistic at 95% 
significance for the sample size used is 0.14.

h
in
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Table 3.31 

Results of Tests on the Distribution of loo-Year Events 
Generated from Different Sized Samples of a Pearson'Type III Distribution 

*3 .. a! 

.2 .2 E as 
or" > = g “I: 
e H 5 _o o no > a 

-u o w -H E-H .3 
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5 fig g2 4.5. .SE «lug 35. 
u: :gvd cn‘S i5:§ :&:g 652: 54.3 

100 1227 83 9.50 0.063 12.50 0.063 
90 1232 

_ 
96 14.00 0.047 11.30 0.047 

80 1233 88 21.50 0.053 22.10 0.077 
70 1229 97 10.10 0.043 7.40 0.023 
60 1216' 103 11.60 0.047 12.50 0.060 
50 1246 123 20.90 0.070 27.80 0.067 
40 1195 119 15.50 0.043 7.40 0.037 
30 1212 154 ' 13.70 0.037 12.50 0.047 
20 1207 160 

' 13.70 0.050 10.40 - 0.050 
10 1176 234 25.70 0.093 - 14.00 0.063 

Notes: 

(a) Tabulated value of Chi-Square at 95% significance for the number 
of degrees of freedom used is 26.3. 

(b) Tabulated value of the Kolmogarov-Smirnov statistic at 95% 
significance for the sample size used is 0.14.
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CHAPTER 4 

Regional Analysis 

4.1 Entroduction 

Chapter 3 has described some of the probability distributions 

that can be used to carry out a frequency analysis on a set of observed 

or computed data. Using any one of those techniques the event 

magnitude corresponding to a given probability of occurrence can be 

determined. This event magnitude will, however, apply only to the 

exact location at which the original observations were made. 

Frequently in hydrology it is necessary to estimate event magnitudes 

at sites where no observations have been_taken.- As an example, 

the design of a highway culvert may require the estimation of a 

design flood for a small ungauged catchment area. Regional analysis 

is the term given to techniques which make this estimation possible. 

In addition, as noted in Chapter 1, the use of more than 

one set of data tendS'to reduce the sampling error and, even for 

a gauged site, will produce more reliable event estimates than 

a single station frequency analysis. 

The earliest approach to the regionalisation problem was 

to use empirical equations relating floodflow, Q, to drainage area, A, 

within a particular region (3) such as: 

Q = CA“ 
' 4.1 

where c and n are constants. Other types of empirical equation
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(some still in use, such as the Rational Formula) related floodflow 

to rainfall intensity and area, as: 

ciA ' 

4.2 ,0 
II 

where c is a runoff coefficient, i is the rainfall intensity and 

A is the area. The objective of all these equations was to extra— 

polate from gauged basins to ungauged basins by means of parameters 

which could be estimated (rainfall intensity) or measured from 

maps (area). 

Other methods in use include that designed by 

Coulson (10) for Southern Ontario. From the records of 59 gauging 

stations in the area, together with an isohyetal map of mean annual 

precipitation, a_map of lines of equal mean annual runoff was 

drawn. Re-writing the standard frequency equation (see Chapter 3) 

as 

QT = Q (K.z +1) 4.3 

where QT is the event magnitude at the required return period, 

T, Q is the mean annual runoff, K is a frequency factor depending 

on the probability distribution used and z is the coefficient of 

variation. For an ungauged drainage basin for which an estimate 

of QT is required, Coulson (10) obtained-Q by planimetering the
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mean annual runoff isoline map for the particular basin. Using 

a Pearson Type III distribution the value of K, the frequency 

factor, depends upon the return period, T, and the coefficient 

of skew of the distribution, 11. It was found in Southern 

Ontario that the coefficient of skew could best be derived 

from the coefficient of variation as: 

Y1 = 22 4.4 

while the coefficient of variation could be obtained from the 

drainage area, A, as (14): 

z = 0.35 - 0.03 log (A + 1) 4.5 

It should be noted that this method was used only for annual flows 

and not for instantaneous maxima or minima. 

The USGS currently uses a method described as an "index- 

flood" technique (12). There are two major parts to this method. 

Firstly, basic dimensionless frequency curves are drawn representing 

the ratios of the floods at various frequencies to the mean annual 

flood for each gauged basin. Secondly, relationships are developed 

between the characteristics of drainage areas and the mean annual flood. 

Combining the mean annual flood with a regional frequency curve 

enables flood magnitudes to be estimated at any location within 

the region.
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Many modifications of the original index-flood method 

have been made (3) (11) mainly to try and increase the number of 

independent variables used to transfer the hydrologic information. 

In general there are two types of variables used: (a) physiographic 

characteristics such as drainage area, elevation, slope, percent 

of basin covered by lakes, swamps, etc. and (b) hydrometeorologic 

variables such as mean annual precipitation and mean annual temper- 

ature. 

One of the major developments since the index-flood 

technique is the "square-grid” method (26). Originally programmed 

for mean annual runoff this method has been adapted for frequency 

analyses, simulation and modelling (16), (25), (18). 

Alternate methods include the use of standard single- 

station frequency distributions modified for use as regional 

distributions and the regional record maxima technique. 

fiany of the methods used in regional analysis depend 

upon inter-station correlation of streamflows in order to produce 

time series with a uniform period of record. The final section 

of this chapter discusses information transfer together with 

the concept of effective number of years of record and number of 

stations.
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4.2 Index-Flood Method 

The basic idea behind the index-flood method (12) is to 

increase the reliability of the frequency characteristics within a 

region. If, within a hydrologically homogeneous area, a number of 

hydrometric stations have been operating and recording the 

effects of the same meteorologic factors then a combination of these 

records will provide, not a longer record, but a more reliable 

record. The following brief description of the index-flood method 

does not include all the computation details of the procedure. 

These can be obtained, if required, from Dalrymple's (12) report. 

Firstly, the data sets available within a region are 

listed, unsuitable stations eliminated, and a common period of 

record selected. Generally stations having less than 5 years 

of record of gauging regulated or controlled streams are excluded. 

Since streamflows are not pure random but contain trends and 

periodicities the period over which measurements are made becomes 

important when records are combined. A bar graph showing the 
period of record of each gauge is useful in determining which 

base period to use. The base period should be planned so as to 

include the maximum information content i.e. maximum number of 

station-years. Missing data points may be filled in by inter-station 

correlations (see section 4.6). Data points filled in in this way 

are not used directly but only as aids in assigning representative 

return periods to the recorded events. 

The index-flood method next computes return periods, T,



for each recorded event for each station in the region using the 

equation: 

T = 4.6~ 
where n is the sample size and m is the order number of an event; 

m = 1 for the maximum event and m = n for the minimum event. 

For each station a graph of T versus event magnitude is plotted 

and a smooth curve drawn through the points. No attempt is made 

to force a straight line fit or to fit any mathematical distribution. 

The mean annual event for the station is then picked off the smooth 

curve at the point T = 2.33. This is a theoretical result taken 

from the Type I extremal distribution (see Chapter 3). Benson (2) 

has confirmed experimentally that the mean annual event (i.e. the 

mean of all the observed annual maxima) does occur with a return 

period of 2.33 years. It is preferred in the index-flood method 

is irrive the mean annual event graphically rather than arithmeti— 

cally. 

Ualrymple (12) has described a test which should be used 

at this stage of the index-flood procedure to check for regional 

hydrologic homogeneity. If the standard error of estimate of the 

reduced variable, y, in a Type I extremal distribution is given by:

y e l = ._ __ 4. °v T-l 
' n 

‘4 

then, assuming a normal distribution of the estimates, 95% of the
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estimates will lie within :20y of the most probable value. If 

T, the return period of the estimate, is taken as 10 years, then

Y 
20 = 0.666e 4.8 y x/n 

' 

Since for T = 10 the reduced variable in a Type I extremal 

distribution is 2.25 (see Chapter 3) then the confidence limits 

are given by 

2.25 i 6.33/x/H 4.9 

Table 4.1, after.Dalrymp1e (125, gives the upper and lower confidence 
limits with the corresponding return periods for various values of n. 

Table 4.1 

Confidence limits for Index-Flood 
Homogeneity Test1 

Sample size lower limit upper limit 
n y-Zay TL y+20y TU 
5 -O.59 1.2 5.09 160 
10 0.25 1.8 4.25 70 
20 0.83 2.8 3.67 40 
50 1.35 4.4 3.15 24 
100 1.62 5.6 2.88 18 
200 1.80 6.5 2.70 15 
500 1.97 7.7 2.53 13 
1000 2.05 8.3 2.45 12 

1 From Dalrymple (12)
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The prOcedure used for the test is to first of all plot 

TL and TU from Table 4.1 versus n on probability scale graph paper. 

Then, for each station in the region to be tested, the ratio of the 

10—year event to the mean annual event is computed and an average 

ratio for the region calculated . Then the average ratio for the 

region is multiplied by the mean annual event for each station to 

give a modified 10—year event magnitude for each station. The 

return periods corresponding to these modified 10—year events are 

then found for each station from the individual station frequency 

curves, say TE. The effective period of record of each gauging station 

is determined as the number of recorded annual events plus one half 

the number of events computed for that station by inter-station 

correlation , say NE. Next, the coordinate pairs (TE, NE) for each 

station are plotted on the test graph showing curves of_T and TU.L 

Any station for which the plotted point is outside the confidence 

limit curves is then excluded from the homogeneous region. Figure 

4.1 is a base graph which could be photo-copied for use in this 

test. 

For each station which remains in the hydrologically 

homogeneous region ratios of events of different return periods to 

the mean annual event are computed for T values of say 1.1, 1.5, 

5, 10, 20, 50 and median values of these ratios are determined *> 

for the region. A plot of these median ratios versus return 

period is then the regional frequency curve and represents the most 

likely relationship for all parts of the region. 

The next major step in the index—flood analysis is to 

plot drainage area versus mean annual event for those stations within
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the homogeneous region and graphically fit a smooth curve through 

the points. An alternative available at this stage is to develop 

a multiple regression equation between mean annual event and 

basin characteristics. 

To define a frequency curve at any location within the 

homogeneous region the mean annual event is determined from the 

curve relating this event to drainage area. The mean annual event 

is then multiplied by the median ratios for the various return 

periods required, as determined from the regional frequency curve. 

Regional index-flood studies have been carried out for 

most of the states in the U,S. and for the South Saskatchewan River 

Basin (6), New Brunswick - Gaspé (7) and Nova Scotia (9) areas in 

Canada. 

Benson (3) has noted three deficiencies found in the 

index-flood method: 

(1) The index-flood (mean annual flood) for stations with 

short periods of record may not be typical. This means that the 

ratios of floods of different return periods to the index-flood may 

vary widely between stations. 

(2) The homogeneity test is used to determine whether the 

differences in slopes of frequency curves are greater than may be 

attributed to chance alone. This test uses the ratio of the 10-year 

flood to the mean annual flood as the slope. The test cannot practicably 

be applied at a level much higher than that of the 10-year flood 

because many individual records are too short to adequately
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define the frequenty curve at higher levels. It has been found in 

some studies that although homogeneity is apparently established at 

the 10-year level, the individual curves show wide and sometimes 

systematic differences at higher levels. 

(3) In the use of the index-flood method, it has been 

accepted that within a flood-frequency region, frequency curves may 

be combined for all sizes of drainage areas, excluding only the largest. 

Although the variation in the slope of the frequency curve with 

drainage area had been investigated at the time of each study, it 

was studied at the 10-year point where the effect is small. The 

error of neglecting this drainage-area effect has been reduced by 

giving separate and special treatment to large streams. Recent 

studies by the U.S.G.S. for which ratios of less frequent floods 

were used have shown in all regions where such data are available 

that the ratios of any specified flood to the mean annual flood will 

vary inversely with the drainage area. In general, the larger the 

drainage area, the flatter the frequency curve. The effect of 

drainage area is relatively greater for floods of higher recurrence 

intervals.
- 

In applying the indeflood.technique in Canada, Collier (6) 

has provided comments on some of the problems he encountered. It 

has been found in the foothills area of Alberta that normally the 

annual flood is due to snowmelt in the high regions usually combined 

_with rainfall from Pacific air masses moving over the mountains 

from the west. Occasionally, however, moist tropical air is sucked
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up from the southeast and heavy precipitation occurs on the foothills. 

Simple flood frequency analysis does not distinguish between these 

two types of events and, as a result, a plot of the floods on 

arithmetic—normal probability paper shows a distinct S—shape. 

Other comments made by Collier (6) included a discussion 

of the steps to take when a group of stations fails the regional 

homogeneity test as well as a discussion of the validity of the 

index-flood approach.
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_4.3 Multiple Regression Techniques 

Rather than plotting drainage area versus mean annual 

flood, as in the index-flood method, many investigators (see Benson 

(3) for a partial list) have studied the relationships between dis- 

charges at specified return periods and basin characteristics. In 

general, the relationships take the form 

C 2 3b ... z ) 4.10 QT.= f(Aa, , c 

where A, B, C...Z are independent variables and a,-b;..z are constants 

derived by multiple regression analysis. Since a similar relationship, 

but with different exponents, will be found for the mean annual 

flood, the ratio of QT to the mean annual flood will not be a 

dimensionless constant as assumed in the index-flood method, but 

will be proportionate to the basin characteristics. A further 

advantage of this multiple regression modification to the index- 

flood method is that it obviates the necessity of assuming any 

underlying distribution for the flood peaks. 

Many different procedures are available for determining 

the relevent parameters in Equation 4.10 including the simple 

linear regression, multiple linear regression, forward, backward 

and stepwise procedures. Packages of computer programs for these 

procedures are commonly available as library functions at computer 

centres.- Wampler (29) has tested and compared more than 20 

linear least squares computer programs. 

De Coursey (13) used a canonical correlation procedure



to select watershed characteristics and then derived a multiple 

regression matrix relationship 

Q = aA + b 4.11 

where Q is a column vector of peak flows at various return periods, 

A is a column vector of watershed characteristics and a and b are 

respectively a matrix and a vector of regression coefficients. This 

approach preserVes the intercorrelation between the dependent 

variables in vector Q. 

An alternate approach is to regress the basin characteristics 

not with flood magnitudes at given return periods, but with the 

parameters of a chosen probability distribution. As an example, 

if the lognormal probability distribution is used (16) then the 

mean and standard deviation of the annual events should be used 

in the correlation.
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4.4 Square Grid Method 

The definition of areal runoff in geographical areas 

exhibiting basically similar hydrological characteristics can be 

facilitated by employing the square grid technique as proposed by 

Solomon et a1 (26). As implied in the term square grid this 

technique entails dividing the study area into a uniform grid, 

the squares of which are identified in cartesian co-ordinates. 

Each square grid has associated with it a set of parameters such as 

the elevations of each corner and centre point, the percentage 

areas of the square covered by lakes, swamps, forests, urban areas 

etc., soil types, indicator of bedrock, etc., derived from topo- 

graphic maps and other information sources such as soil surveys. 

From this basic data other physiographic characteristics such as 

mean slope, azimuth of slope, barrier height in different directions, 

distance to the sea in different directions can be easily derived 

for each square. Those square grids containing meteorologic or 

hydrometric stations will also have associated with them data 

on mean annual precipitation and temperature and streamflow 

respectively. Each grid square also carries identification of 

up to four streamflow directions into and out of adjacent squares so 

that drainage basin data can be accumulated and averaged automatically. 

The grid interval determines to a large extent the 

accuracy of the results since the finer the grid the more basic 

data is available. Nevertheless, for a given set of conditions, the 

gain in accuracy obtained by further decreasing the grid interval



diminishes greatly beyond a certain value of the interval,-and ar 

further increase of the number of squares is not warranted. In 

general, the optimum grid interval is determined by the size 

of the area, the size of the individual drainage basins considered, 

the details of the available data, the computer characteristics, 

the purpose and budget of the study, etc. For usual problems, 

grid intervals between about 1 and 10 km. can be considered. In 

Canada grid sizes of 10 km, 5 km and 4 km have been used 

in studies and for the mountainous areas of British Columbia, 

physiographic data have been abstracted using a 2 km grid interval. 

The steps involved in estimating the distribution of 

mean annual runoff using the square grid method are as follows: 

(1) Using data at selected meteorological stations a 

regression equation is established between mean annual temperature 

at the stations and corresponding square grid physiographic 

characteristics. This equation is used with the data file of square 

grid physiographic characteristics to estimate the mean annual 

temperature in the remaining squares. A similar analysis is used 

to make a preliminary estimate of mean annual precipitation in 

each square. 

(2) Preliminary evaporation is estimated for each square 

using temperature, preliminary precipitation and Turc's equation (28) 

2 2%
' 

E = p/(0.9 + P /L) 4.12 

where E is evaporation in mm., P is precipitation in mm., T is



- 177 - 

temperature in degrees Centigrade, L is defined as 

L = 300 + 25T + 0.5T2 4.13 

Using this equation, E = P for PZ/L2 less than 0.1 mmz. 

(3) The preliminary estimates of precipitation and 

evaporation as described above are used to calculate a preliminary 

value of mean annual runoff for each square of the watersheds 

having flow data as: 

Runoff = Precipitation 4_Evaporation 
I 

I 
4.14 

(4) The square grid runoff as established under step (3) 

is used to compute preliminary average runoff for each basin 

having flow records, and, coefficients (K) representing the ratio 

between the recorded and computed average flow are established. 

(5) A new precipitation value is computed for each 

square of the basins having flow data, using K as a correction 

factor:
I 

Precipitation (corrected) = K x Runoff + Evaporation 4-15 

The entire error is attributed to precipitation. 

(6) Using the corrected values of the precipitation in 

each square and the precipitation data at rain gauging stations, 

a new regression equation is established between precipitation and 

physiographic factors. Data at rain gauging stations is weighted 

10 times larger than the precipitation estimates in each square.
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(7) The procedure is then repeated as often as is required; 

to obtain K values as close to l as is considered reasonable. 

(8) Once square grid runoff, precipitation and evaporation 

values are finalized in gauged basin areas, the runoff and precipitation 

distributions in ungauged areas are estimated using regression 

equations between the final precipitation and runoff in gauged 

areas and physiographic data. 

The end result of the square grid technique is a dataifile 

of mean annual temperature, precipitation and runoff for each grid 

square. Thus estimates of these parameters have been transferred 

from gauged to ungauged basins using physiographic characteristics 

as the transfer media. Solomon et a1 (26) originally applied the 

square grid method to Newfoundland but it has since been extended 

to cover all of Canada except for northern Ontario and the Arctic 

Archipelago (27). 

Pentland and Cuthbert (25) have described a method by 

which the square grid technique was extended for the generation of 

synthetic streamflow traces. The operational hydrology model 

proposed by Young and Pisano (32) was used because of the small 

number of statistical parameters required. This model uses only 

estimates of a single variance-covariance matrix and a single lag 

l covariance matrix whereas most other models require monthly 

matriCes. 

Young and Pisano's model (32) is set up as follows: 

(1) The available streamflow data are logarithmically
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transformed. 

(2) The transformed data are standardized on a monthly 

basis to eliminate the annual periodicity. 

(3) The generating equation 

x1+1 = Axi O'Be 
- 4.16 

is then used. 

For m stations, xi+1 and X1 are standardized flows in 

successive time periods (m x 1 matrices). A and B are 

m x m matrices to be defined and e is an m x 1 matrix 

of random components. 

(4) The matrix M0 is the variance-covariance matrix, 

and M1 is the covariance matrix with a lag of 1 

time period. 

_(5) The matrix A can be defined from the equation 

M =AM . 

' 

' 

4.17 

(6) The matrix B can be calculated by solving the 

equation: 

B B = M - M- M M 4.18 

(7) After having generated standardized variables, the 

data are destandardized, and the inverse logarithmic 

transform applied.
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If one or more of the stations has no recorded data, 

monthly means and standard deviations can be estimated by regreSsion 

analysis with basin physiographic characteristics derived from the 

square grid data. 

u = K A B C ... Z ‘ 4.19 

o = K A B C ... Z 4.20 

where u and o are the monthly mean mean streamflow and standard 

deviation, A, B....Z are physiographic characteristics and K1, 

K2, a1,b1....z a , b ....z are regression constants. 1’ 2 2 2 

The other parameters required by the generating model 

are variances, covariances and lagged covariances. All recorded 

data is subjected to a logarithmic transform, and standardized on 

a monthly basis. In order to estimate covariances for the streams, 

with no recorded data, a multiple regression equation is then 

established between covariances (representing cross correlations 

between stations) and the differences in physiographic characteristics 

for all pairs of gauged streams in the region. 

In the covariance matrix with a lag of one time period, 

elements of the diagonal (representing serial correlation for each 

stream) for gauged stations can be calculated directly, and can be 

estimated for ungauged stations by regression analysis. The remainder~ 

of this matrix can be estimated as the product of its diagonal and
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the variance covariance matrix calculated earlier. 
- 

Having estimated the missing parameters with the square 

grid approach, and further regression analysis, the Young and 

Pisano (32) model was applied directly by imposing the estimated 

parameters at the appropriate time. 

Pentland and Cuthbert (25) teSted the generation procedure 

on five streams in the northeast of the Province of New brunswick. 

Comparisons of simulated and recorded monthly means, standard 

deviations, serial and cross'correlations and firm flows showed 

good agreements. 

A procedure for using the square grid technique to estimate 

events at required return periods on ungauged streams has been described 

by Kite (16) for the Mackenzie hiver area, Northwest Territories. 

Basically, equations similar to 4.19 and 4.20 were developed 

relating the mean and standard deviation of the annual maximum 

instantaneous flows to the square grid physiographic data for those 

streams which are gauged. The relationships developed were then 

extended to ungauged streams and, assuming a lognormal probability 

distribution of annual extremes, event magnitudes at any required 

return period were calculated. Any other probability distribution 

thought suitable could have been used in place of the lognormal. 

Kouwen (18) has described an advanced model, based upon 

square grid techniques, used for the simulation of complete water- 

sheds. The model allows forecasts of hydrographs to be incorporated 

based on weather forecasts especially with regard-to the prediction 

of flood peaks.



The basic input to the model consists of topographic data 

such as streambed elevations and landslope, drainage channel directions, 

watershed boundary coordinates, precipitation records, streamflow 

records and a soil permeability index. 

The program is also set up in such a way that precipitation 

data from radar, and snow pack and soil moisture measurements from 

satellite can be included. The principle characteristic of the 

simulation is that runoff passes through successive 1 km x 1 km square 

elements from higher to lower elevations. For each element there 

exist relationships between channel capacity and drainage area, 

surface storage and channel inflow, surface storage and 

infiltration, subsurface storage and channel inflow, and channel 

storage and channel discharge.
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4.5 Use of Standard Frequency Distributions 

In order to remove the necessity for personal judgement 

in drawing the preliminary frequency curves and to provide a means 

of computing confidence limits on the regional frequency curve in the 

index-flood method, Collier (6) produced an alternative regional 

analysis procedure. This procedure is recommended for regions where 

the Gumbel (Type I extremal) distribution produces reasonably reliable 

individual flood frequency curves. The procedure is described 

briefly below: 

1. All stations in the region with 10 or more years of record 

(either natural flow or with minor regulation only) are selected. 

Stations with less than 10 years of record would usually be discarded, 

and most of the selected stations should have at least 15 years 

of record. 

2. A frequency curve covering the range up to the loo-year flood is 

constructed by the Gumbel (Type I extremal) method for each of the 

individual stations. For the purpose of this discussion these will 

be called the preliminary curves. Confidence limits are constructed 

on each of the preliminary curves using the degree of confidence 

required in the regional curve. 

3. A homogeneity test is carried out exactly as in the index-flood 

method. For the purpose of this discussion it will be considered that 

each station passes the test and the region has therefore been
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demonstrated to be homogeneous. 

4. The preliminary curves are considered to be a sample composed of 

a number of different estimates of the same regional curve. The 

estimates are averaged by the method described in the next paragraph 

to obtain the required estimate of the regional curve. 

5. The averaging procedure can be carried out only if the pre- 

liminary curves are reduced to dimensionless terms (to remove 

the effect of the different sizes of the drainage basins concerned). 

This is accomplished by computing a set of flood ratios (ratio of 

flood to mean annual flood) for each of the stations over a range 

of arbitrarily selected recurrence intervals. The data for computing 

the ratios are read from the preliminary curves. 

6. For each of the selected recurrence intervals, the mean of the 

ratios from all the stations is computed. The resulting means are the 

flood ratios for the regional curve. These are plotted on Gumbel 

paper (with arithmetic ordinate scale) and the best-fit straight 

line drawn through them. The resulting line is taken as the required 

regional frequency curve. 

7. To compute confidence limits for the regional curve, a 

recurrence interval (say 50 years) is selected arbitrarily and the 

width of the confidence band at this interval is read off each of 

the preliminary curves. The width is taken as the vertical distance 

between the preliminary curve and the upper (or lower) band and it 

is expresses in cfs. The resulting figures are divided by the 

appropriate mean annual floods to produce a set of ratios, which
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are defined as the "errors" in the individual curves. The errors are 

combined by computing the square root of the sum of their squares and 

dividing this square root by the number of stations. The resulting 

ratio is taken as the "error" in the regional curve or, in other 

words it is the width of the confidence bands for the regional 

curve at the selected recurrence interval (50 years in this case). 

The procedure is repeated at another recurrence interval (say 5 

years). The "errors" from the two sets of computations are plotted 

on the regional curve by laying them off at the appropriate recurrence 

intervals in a vertical direction either side of the main curve. 

The resulting points are joined by straight lines to produce the 

required confidence bands for the regional curve. Note that these 

bands represent the same degree of confidence as was used in 

computing the confidence limits for the preliminary curves. 

8. Having obtained the dimensionless regional frequency curve, 

complete with confidence limits, it is necessary to introduce a 

relationship between mean annual flood and basin characteristics 

so that estimates may be made for ungauged drainage basins. In 

a study of the Province of Nova Scotia using Collier's procedure, 

Coulson (9) ran stepwise linear regressions of mean annual flood 

versus drainage area, size and position of lakes and swamps, main 

channel slope, average basin elevation, mean barrier elevation 

and mean annual precipitation. He ended up with an equation of 

the form 

('2 = f(AUl + xkAc) 4.21
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where Au and Ac are the drainage areas uncontrolled and controlled 

by lakes and swamps respectively, 

A -A A=—°——I: 4.22 
Ac 

where AL is the total surface area of major lakes and swamps, 

and k is a constant optimised by minimising the standard error 

of Q, the mean annual flood. 

Collier and Nix (7) used a similar approach in a flood 

frequency study of the New Brunswick-Gaspé region. 

The principal advantage of Collier's alternative procedure 

for the regional frequency curve is that since no personal judgement 

is involved, the entire procedure can be programmed for computer. 

Although Collier (6) described the alternative procedure utilising 

a Type I extremal distribution there is no reason why any other 

type of distribution thought suitable could not be used. 

Cruff and Rantz (11) have described the adaptations made by 

U.S. agencies to use the lognormal, extremal Type I (Gumbel) and 

Pearson Type III distributions in regional anlaysis. Basically 

the procedures used consist of the following steps: 

(1) The mean and standard deviation of the peak discharge data at 

each gauging station are computed for the available periods of 

record. In the case of the lognormal distribution the means 

and standard deviations of the logarithms of the peak discharge 

data are computed in the procedure described by Cruff and Rantz (11) 

but this is not strictly necessary (see chapter 3).
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(2) The computed statistical parameters are then adjusted to a 

standard base period by computing linear correlations between concurrent 
peak discharges for a long-term station and the short-term stations. 
Then

2 
01b - 01a + (02b - 02a)-R .ala/o2a 4.23 

and 

1‘1b = "1a * ("2b ' “2a)'R2'°1b/°2b 4'24 

where u and a are the means and standard deviations respectively; 
subscript 1 refers to the short-term station, 2 to the long-term 
station, subscript a refers to the short-term period and b refers

E to the base period; and R is the coefficient of correlation between 
1 and 2. 

If these equations are derived by standardising the means 
and standard deviations of the two periods of record at each station 

2 is not statistically correct and should be omitted. then the R 

In the case of the Pearson Type III distribution, for which 
skews are needed, Equations 4.23 and 4.24 are used to generate events 
at the short—term stations to complete the record for all years of 
the base period by using the relationship: 

+ R (x2 - 4.25 ‘1': u1b "2b)'°2b/°lb 

where x1 is the peak discharge to be estimated at a short-term 
station, x2 is the peak discharge measured at the long-term 
station and the other parameters are as previously defined. 
-When the full number of annual events is available for each of



the short—term stations the caefficients of shew_are computed for 

each station. 

(3) The parameters of the distribution (mean, standard deviation and 

for Pearson Type III, skewness) are then related to the basin and 

climatologic characteristics by multiple linear regression equations_ 

as explained in section 4.3 of this chapter. 

(4) For any site the mean, standard deviation (and, if necessary, 

coefficient of skew) can then be determined from the derived re; 

gression equations, and the event magnitude at return period T 

can be obtained from 

xT = u + K.o * 4.26 

where K is the frequency factor. As explained in Chapter 3 the 

frequency factor can be developed in terms of T for each distribution 

and tables are commonly available.



- 189 - 

4.6 Regional Record Maxima 

Suppose that there exists a set of n independent identically 

distributed concurrent series each containing k extreme events xij i = l,n; 

j=l,k . If the maximum event of each of the n series is abstracted and 

ordered from highest to lowest in a new series yi, i = l,n then 

the probability, P(y>yi), that another event y exceeds the ith event 

in the series of maxima yi is given by Conover and Benson (8) 

as: 
i—l m 

P(y>y.) = 2 n! /[(n-m)! k H (n+l/k-j)] 4.27 
1 m=o j=o 

As an example, Carrigan (5) has shown that for the three series of 

four events, x.., 
13 

3 69 3 

38 24 4s 

17 51 so 

32 30 83 

the series of maximum events, yi, is (83, 69, 38) and the 

probability, P(y>69), that another event y exceeds the second 

largest event in the series of maxima is 

1 m 
P(y>>69) = z 3: /[(3-m): 4 n (3+1/4-j)] 4-28 

m=o J=O 

P(y>69) = 0.180 4.29
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The analogy to be made here is with annual maximum 

streamflows recorded at a set of gauging stations within a hydro- 

logically homogeneous region. Within this homogeneous region it 

is a reasonable assumption that the same probability distribution 

is applicable to the records of maximum events on each stream. 

Just as in the index-flood method the different records could 

be reduced to an identical distribution by normalising with the 

computed mean annual floods. The procedure outlined above then
. 

takes the n independent samples of k events and forms a sample 

size nk; thus probabilities can be computed associated with return 

periods of nk years instead of only n years. The catch is that 

streamflow records are not independent but are quite strongly 

cross-correlated. This reduces the maximum return period avail- 

able from nk to f(R)nk where f(R) is some function of the correlation 

coefficient, R, between streamflow records. The expression f(R) 

varies between 1 when R = 0 (independent records) to l/n when 

R = 1 (identical records). 

The probability of another random event, y, exceeding 

one of the ordered record maxima, yi, cannot be determined 

anlaytically when the records are not independent. By assuming 

that the exceedence probability is independent of the identical 

distribution of the records, Carrigan (5) has derived the probability 

by data generation. Using the normal distribution for simplicity 

the generation model used by Carrigan (5) is 

x = B; 4.30
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where X is an n x k matrix of generated events, B is an n x n 

principal component matrix and e is an n x k matrix of independent 

normally distributed random numbers with zero mean and unit variance. 

The principal component matrix B is derived from the correlation 

matrix R of the n records of k hydrologic events as follows: 

B = EA 4.31 

where E is an n x n matrix of eigenvectors obtained from R and A 

is an n x n matrix for which the diagonal elements are the 

square roots of the eigenvalues of R and the off-diagonal elements 

are zero. 

After generation of X, the n maxima are selected and put 

in order of magnitude and the exceedence probabilities computed using 

a digital approximation to the normal distribution. 

In summary, the method extracts from the records of a series 

of gauging stations a matrix of the inter—station correlation. 

This correlation is then incorporated into a large number of 

generated events from which extreme probabilities can be measured. 

In effect the method converts the spatially-distributed information 

into time-distributed information on extreme events.



~

~ 

-192- 

4.7 Single Station and Regional Information Content 

General 

A time series may or may not consist of observed outcomes 

which are independent of one another. Streamflow is a hydrologic 

variable whose observations, equally spaced in time, are not necessarily 

randomly distributed. Because of natural storage such as groundwater, 

lakes, swamps and annual persistance as well as manmade factors such 

as reservoirs, the stochastic precipitation variable becomes modulated 

and serially correlated. This means that each unit of streamflow data 

does not contain totally new and independent information. A data 

tends to repeat some of the previously obtained information. A data 

set of N units may therefore only contain a lesser number, Ne, of 

effective data units. 

The early stage of any regional analysis procedure calls 

for the examination of available data. It is usual that some 

gauging station records will be longer than others within the 

required region and often, after selection of a base period of 

record, it will be necessary to fill in gaps in some records and 

extend other records to the full base period. This provision of 

missing data can have two general purposes:- (a) To provide 

estimates of event magnitudes in order to better obtain plotting 

positions of recorded events. This procedure is used in the 

index-flood regional analysis technique where the estimated event 

magnitudes are not themselves used at all, they are there merely 

to improve estimates for the recorded events. (b) To improve
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estimates of the parameters of a theoretical distribution of recorded 

events such as the mean and standard deviation. 

Data are not only serially correlated, but because stream- 

flows in rivers within a region are affected by the same conditions 

of precipitation and radiation, simultaneous observations of streamflow 

in different rivers will not be independent observations but will 

contain an overlap of information. Thus a region of n gauging stations 

may reduce to a much smaller number, no, of effective stations or equivalent 

independent stations.
I 

Single Station Information Content 

The purpose of maintaining records of precipitation, stage, 

streamflow, etc., is to extract from the recorded observations in- 

formation on the parameters of the underlying distribution.' Matalas 

and Langbein (21) defined the amount of information given by a 

statistical estimate, I, as the reciprocal of the variance of the 

estimate. Considering the mean, u, of a random series of N events, 

xi, i = l...N,

N 
u = Z xi/N 4.32 

i=1 

an estimate of the variance of u is given by

2 var u = o /N 4.33 

where 02 is an estimate of the population variance of the random time 

series. Defining the random series as the standard, the relative 

information content about the mean of any other time series with
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variance of the estimated mean, on, 15 _2 '2 

ID — (o /N)/ou ~ 4.34 
referred to the random series. Since variances are always positive. 

Iu can vary from zero to plus infinity. If Iu is less than unity 

the time series being tested conveys less information about the 

mean than a random series of the same length. If Iu is greater 

than unity then the time series contains more information about 

the mean than an equal length random Series. . 

Many time series exhibiting persistance, such as stream— 

flow, can be described by a simple first order linear Markov 

model (31) such as: 

4.35 

where xi and xi+ are the variable values at time i and i+l respectively,
1 

is a random component independent of x and R is the first
1 

order serial or autocorrelation coefficient where, in general, the 

5. 1+1 

k-th order autocorrelation coefficient is defined (30) as: 
n—k 

(Xi‘ {1)(xi+k - 

Rk = - 

2 
4.36 

(N—Kjo

/ 

where N is the number of observations and u and o are the sample 

estimates of the mean and standard deviation of the time series. 

For a first order linear MarkOV model the variance 

of the mean, is given (21) by 
_ N 

02 = 22 
MRI 

_ E R1(1-R1) 
4 37 

u N l—Rl N "(ilk—‘21) '~
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From Equation 4.34 the relative information content on 

the mean is 

N -1 
1+R1 2 R1 (1-R1) 

_ _ .___..____. 4.382 l-R1 N (14:1)
~ 

which is less than unity for R1 > 0. 

If a number of independent observations of a random time 

series, Ne, contain the same information content about the mean as 

the number N observations of the Markov model then
fi

1 

Iu = Ne/N 4.39
i 

and

1
2 

1 N (1-R1) 

N -1 
1 R _ + 2 R1 (1 R1) 4.40~ ~ 
l-R 

Two—Station Transfer of Information 

Interstation transfer of information is commonly used in 

regional analysis to fill in missing data or to extend short time ( 

series to a longer common base period. The method used in the 

index-flood method of regional analysis (12) is as follows: 

A graph is drawn of the flow at one station versus the flow 

at the other station for each year of the common period of record. 

A straight line is fitted by eye through the coordinate points
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and this line is then used to extend the shorter period of record. 

This process is a simplification of the least squares fitting of 

a linear regression equation of the type 

ysmx+c 4.41 

f where x and y are the annual maximum flows at the two stations, 

m is the slope and c is the intercept of the straight line. The 

missing event magnitudes are then estimated from this regression 

line and the total events, recorded and estimated are placed in 

order of decreasing magnitude. Plotting positions (see Chapter 2) 

are assigned to the recorded events on the basis of the total 

number of events and the estimated events are then discarded and 

used no further. 

Many investigators (19) (24) have found that the log— 

arithms of hydrologic events are better correlated than the 

recorded events and have used equations such as 

= 4.42 In y m1 In x + c1 

where x and y may be the recorded events or the deviations of the 

recorded events from some mean value. 

The question arises as to whether the estimated events 

actually increase the information content of the shorter time-series 

i.e. does the extended data provide better estimates of the 

population distribution parameters than the originally recorded



series? Langbein (19) has shown that to improve the significance 

of the mean of a time series the effective period of record, Ne, 

of a combined recorded and estimated record must be greater than 

NI, the number of years of recorded data, where 

N1 + N2 
Ne = N2 

1 
- 2 

4.43~ (I-Rz) 
N2 is the number of years of estimated data and R2 is the coefficient 

of determination of the simple linear regression used to provide the 

estimated data. 

If two random normally distributed time series x, 

of length N1 + N2, and y, of length N1, are linearly related with 

a simple linear correlation coefficient R, and the time series x 

is used to extend time series y by N2 data points, then the 

. 2 . . 

variance, on, of the weighted mean of series y, uy, where

~ ~ 
u = 

N1“1 + N2“2 4 44 
y N1+N2 

is given (21) by

2O 
02 = _y_ 1 _ 

N2 R2 _ (1-R2) 
u N1 N1+N2 (NI-3) 4.45 

where u1 and uz are the sample means of time series Y 
based 0“ 

N1 observations and N2 regression estimates respectively and 1
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oy is the variance of time 
series y baSed on the N1 observatiOns. 

Referring back to Equation 4.34 the information content 

on the mean of the extended time series y is seen to be: 

-3f13§T 4.46 

—1 

R - ~—-———— 4.47~ Ne = (N1+N2) 1 

For the cross-correlation to provide additional information on the 

mean,lu > 1 and from Equation 4.46 

~N2R2 N2 NZRZ 
.___._ + c 

— -< 0 4.48 
N1+N2 (N1+N2)(N1-3) (NI—3) 

from which 

2 1 R > W . 
4.49 

Similarly; Fiering (l4) concluded that correlation
1 

should not be used to augment time series for estimation of 
the 

variance unless the computed information content on the variance, j
~
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162, is greater than unity, where

N

~ 

I 2 
= 1 + 2 

2 2A(N1-1) + (N2+2)(N1-I)B 
a 2(N +N -1) 1 2 

-1 

+ (N1+N2 - 1)(N1-1)C + (N1+1)(2N1+N2-2) 4.50 

in which
J 

N +1 ' 

A = (N -1)R4 + (N +4)R2(1-R2) + 1 (1.112)2 4.51 
1 1 N1-3 

4 6R2(l-R2 5 l-Rz) B = R + _.__.___;L + 4.52 
- N -s 4 

1 1 1
;

5 

and n

2 2(N1—4)(1-R ) 
C = 

1 3 

Fiering (14) concluded that, in general, the estimate of the population 

variance will be improved if R > 0.85. 

If the two time series at and y are not random but are 

serially correlated then for an equal number of observations, N, 

the effective number of data points, Ne, has been given by
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Yevjevich (31) as: 

= v I l 

Ne N/(1+2R1R + ZRZR + ... 2R R 1) 4.54 
1 2 n-l n— 

where Rk and Ri are the kth order autocorrelation coefficients of 

the x and y time series respectively. This equation is only useful 

if all periodicities have been removed from both time series. If 

the equal—length time series x and y can be described by first 

order linear Markov models then the effective number of observations 

is given by (31): 

l-RR' N=N 11 4.55
I 

1 + RlR1
~ 

If x and y are two first order linear Markov models of 

length N1 + N2 and N1 respectively and x is correlated with y to 

provide N2 regression estimates for y then the relative information 

content for the mean of the augmented time series varies with 

2, R1, R1' and R in a complex fashion. Assuming that R1 = Rl', 

Matalas and Langbein (21) have tabulated values of Iu for different 
N1, N 

values of these variables. 

Equations such as 4.41 and 4.42 yield event magnitudes 

on the regression line and, although this does not affect the estimate 

of the mean, it does induce a bias in the estimate of the variance. 

To overcome this bias it is necessary to introduce into the generating 

equation a random variable with mean zero and variance (1-R2)o2 where



02 is the varriance of the recorded series. The true regression 

equation thus becomes:

1 

y = uy + m(x-ux) + (l — R2)z aye 4.56 

where e is a normally distributed (0,1) random number. The term 

(1-R2)%oye is the random component of the generated time series and 

in communications theory is referred to as noise. 

Under the assumptions that (a) events are independently 

distributed in time, (b) the concurrent events for the two sequences 

have a joint normal distribution, (c) the relation between the con- 

current events is defined by a linear regression, and (d) no changes 

occur in the hydrologic regimes with which the sequences are 

associated, Matalas and Jacobs (22) have evaluated the reliability 

of estimates of population parameters under conditions of noise 

and no-noise. 

Matalas and Jacobs (22) recommended the use of the 

following equations to compute the mean, uy, and variance, 0:, of 

an extended time series:

N 
_ ' 2 ' ' 

11y ' Y1 "' . m(x2 - 1(1) 4.57 

and
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2 l 2 
0 

2 2 
U = ———-——-— N l S + N -l m S 
y N1+N2+1 C 1 ) 

yl 
( 2 ) x2 

4.58 

N N 
, 

. 2 2 2 1 2 2 — - 2 
+ N -1 - _.__.___ _ 

( 2 ) a (l R )Syl + (N1+N2) 
m (x2 x1) 

where i1 and 82
l 

in the augmented series, x1 is the means of the concurrent 

are the mean and variance of the recorded events 

. . 
— 2 . 

augmenting series, x2 and SX are the mean and variance of the
2 

total number of events in the augmenting series, and 

N (N —4) (N -1) 
2 2 1 1 

a = (NZ—1)(N1-3)(N1-2) 
4'59 

Equations 4.57 and 4.58 should only be used if the interstation 

correlation coefficient, R, is greater than the critical values 

given in Tables 4.2, 4.3 and 4.4 

Table 4.2 

Critical Minimum Values of R for 
Estimation of the Mean1 

N 10 15 20 25 30 
R 0.35 0.28 0.24 0.21 0.19 

1 From Matalas and Jacobs (22)
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Table 4.3 

Critical Minimum Values of R for 
Estimation of the Variancei 
Including Noise Component 

N1 

N2 10 15 20 25 30 

10 0.65 0.54 0.52 0.42 0.38 
15 .65 .54 .51 .42 .39 
20 .65 .54 .51 .42 .39 
25 .65 .54 .50 .42 .39 
30 .65 .54 .50 .42 .39 

Table 4.4 

Critical Minimum Values of R for 
Estimation of the Variance, 
Excluding_§oise Compgnent1___ 

N1 

N2 10 15 20 25 30 

10 0.73 0.63 0.70 0.76 0.76 
15 .75 .77 .79 .80 .80 
20 .76 .79 .81 .81 .82 
25 .78 .80 .84 .83 .81 
30 .77 .80 .82 .83 .84 

fissional Transfer of Information 

As well as considering the transfer of information from 

a long-term station to an adjacent short-term station, hydrologists 

1From Matalas and Jacobs (22)
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are often interested in studying how a hydrologic Variable, Such as 

river discharge, varies with the physical parameters describing the 

drainage area. The variation may be studied by asSembling the data 

for many gauging stations and using regression analysis to define a 

relationship betwween the hydrologic variable and the physiographic 

characteristics. 

In a given region, however, rivers may rise in response 

to a rain storm that affects all the rivers in the region and, at 

another time, may be low due to a common lack of rainfall. Thus 

the flows of different streams are affected by common causes and 

are therefore not independent but cross—correlated. 

If a number n of hydrometric gauging station records 

within a hydrologically homogeneous region are intercorrelated, then. 

the effective number of stations or equivalent number of independent 

gauging stations, ne can be derived as follows (31): If the 

mean and variance of the observations at the jth gauging station 

are given by:
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where N is the number of observations at each station, then the 

estimates of the regional mean, u, and the variance of the regional 

mean, 0:, are (28) 

1
n u=fi E u. 4.62 
i=1 3 

n n-l n 
02 = %- Z a? + 37 z 2 Ri.oio. 4.63 
“ j=1 3 n j=1 i=j+1 J 3 

where Rij is the cross-correlation coefficient between stations 

i and j. 

Equation 4.63 can be simplified by defining the regional 

mean cross-correlation coefficient, i, as: 

n-l n 
2 z z Ri. 

fi _ 
j=l i=j+l 3 4.64 

' n(n-1i 

If the time-series are standardised to a common mean of 

zero and variance 02 then Equation 4.63, incorporating Equation 4.64, 

becomes:

2 
o = % [l+§(n—1)] 4-65



The relative information content on the regional mean is therefore 

given by: 

- — —1 
1n = [l+R(n-l)] 

_ 

4.66 

and the effectiVe number of stations, ne, or equivalent number of 

independent stations is: 

ne = n/[1+§(n—1)] 4.67 

In a study of regional flood frequency relations for 164 

basins in New England, Benson(4) found that using Equation 4.67 the 

effective number of gauging stations or equivalent number of 

independent stations was 3.8. In a later study, Matalas and Benson (20) 

point but that, assuming the same value of R, if n were only 20_ 

stations, ne would be 3.4 and if n were 500, ne would be 3.8. 

This illustrates the rapid arrival at the limiting number of in- 

dependent reCords. No appreciable increase in information is attained 

by using 500 stations instead of 20, if they are all within the same 

region. As.a further example, if there are an infinite number of 

stations and fi = 0.1, the effective number of stations is only 10. 

The theory of regression analysis is based on the assumption 

amongst others, that the values of the dependent variable are mutually 

independent. It is apparent, then, that in equations such as:
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x = a0 + a A + a B + a C + ..... 4.68 
l 2 3 

where x is some streamflow characteristic and A,B,C... are basin 

physiographic characteristics, the regression theory is impaired 

since the x values are not independent. Matalas and Benson (20) 

have investigated this problem very thoroughly and have concluded 

that the estimation of the regression constants, a0, a1.... and 

the subsequent estimated value 2 are not affected by interstation 

correlation. lf interstation correlation is present, however, the 

variance of a0 will be larger than if there were no correlation, 

the variances of a1, a2...an will be smaller and the variance of 

R may be larger or smaller. 

Considering a set of n gauging stations each of N observations 

but which are both serially and cross-correlated then Equations 

4.54 and 4.67 can be combined to give a total effective number 

of station-events defined as: 

N u6 = Nn/ l+§(n-l) (1+2R1 + 211 e + .,. 2R“) 4.69
2 

where R i are the average serial correlation coefficients of the 1’ 2 

n time series. 

Developing this analysis, the procedure can be used as 

a means of defining homogeneous hydrologic regions (30), (17)-
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CHAPTER 5 ~ 
Risk~ 

5.1 The Need for Risk Analysis 

The most important question facing the designer of any, 

hydrologic structure is: what is the risk of failure? The price of 

failure of a major dam is high and the risk of this occurence must 

be minimised. A study of over 1600 dams (in(8)) has shown the 

following causes of failure:

~ 

Foundation problems 40% 

Inadequate spillway 23% 

Poor construction 12% 

Uneven settlement 10% 

High pore pressure 5% 

Acts of war 3% 

Embankment slips 2% 

Defective materials 2% 

Incorrect operation 2% 

Earthquakes 1% 

100% 

In a more recent study of over 300 dam disasters (8) 

it was found that roughly 35% of the failures were due to in- 

adequate spillway design. Also of importance here is the study 

of dam failures noted by the AWWA (3). Inadequate spillway design

~
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is usually caused by inadequate design flood analysis and this is 

the direct concern of the hydrologist. Design floods are estimated 

either from frequency techniques or as the Probable Maximum 

Flood. 

As noted in Chapter 1, the technique of Probable 

Maximum Flood, despite its name, is a totally deterministic 

concept and as such has no risk associated with it. Because 

there is no proof of the existence of extreme boundaries in the 

meterorological factors which cause floods (19) the concepts of 

maximum probable precipitation, maximum probable flood and other 

similarly named imaginary events may be considered as arbitrary. 

They are concepts of expediency. 

Frequency analysis, on the other hand, accepts events of 

any magnitude as being possible although as the magnitude increases 

so the probability of occurrence decreases. 

The simplest procedure in the frequency analysis estimation 

of spillway design floods is to select a return period and use 

either graphical techniques or a mathematical distribution to derive 

the corresponding event magnitude. Some of the return periods 

commonly used for different types of structure are (in(7)): 

Major dams with probable loss of life 

Earth dam 1000 years 

Masonry or concrete dam 500 years



Costly dams with no likelihood of loss of 

life 500 years 

Moderately costly dams 100 years 

Minor dams 20 years 

In addition, McCaig and Erickson (12) note that in the 

past it has been common practice to design major dams for floods 

having theoretical return periods of up to 10,000 years. The ASCE 

Hydraulics Division Committee on Hydrometeorology (2) has suggested 

that the Probable Maximum Flood is perhaps equivalent to a design 

return period of 10,000 years. 

This elementary procedure takes no account of the in- 

crease of risk with increasing project life or of the economically 

optimum design.
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5.2 Economic Design 

A better procedure sometimes used in the design of 

hydraulic structures establishes the design spillway capacity not 

only on the magnitude and frequency of possible floods but also 

on the monetary value of the dam, the unit cost of the spillway 

and the value placed upon the lives and property of the people 

downstream of the dam. McCaig and Erickson (12) have provided 

a very clear description of this method of design using in their 

example lognormal distributions of fall and spring floods. 

If the average annual losses for a particular structure 

can be expressed as: 

C1 = £AL.P 5.1 

where AL is the incremental average loss for a particular design 

flood, x, in dollars and P is the exceedence probability of that 

design flood; and if the average annual cost of the spillway is 

given by: 

c = Ax.Q 5.2 

where Ax is the incremental cost, in dollars per cfs, of providing 

spillway capacity for flow Q cfs; then the optimum structure design 

will occur when
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is at a minimum. That is to say, for a particular structure and a 

set of flood flows there will result a particular value of C. By 

repeating the same set of flood flows with different structure 

capacities a graph of C versus capacity or design flood can be 

obtained. 

McCaig and Ericson (12) assumed a lognormal probability 

distribution for flood events so that: 

- (Y-uy)2 
l 20 

P = e y dy 
V21! 0 

Y Y

~ 
where y is the logarithm of the flood event, x, and uy and 0y are 

respectively the population mean and standard deviation estimated 

from the logarithms of the recorded flood events. 

Substituting Equations 5.4, 5.1 and 5.2 into Equation 5.3, 

differentiating and equating to zero, the optimum design capacity, 

Qd, can be obtained. 

The ASCE (2) has recently described a similar procedure 

to McCaig and Ericson but designed for the re-evaluation of the 

spillway capacity of existing dams. A series of alternate project 

designs are identified by their spillway design floods e.g. the 

500 year design project, the 1000 year design project, etc. This 

series would include the existing project. For each of the possible 

projects the costs associated with an array of floods with return 

periods varying from very low to very high are determined. 

5.4
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Damages caused by the various floods to each of the alter- 

nate project designs should include upstream damages (in the event 

of overtopping and subsequent failure of the dam) to recreation, 

piers, boats, buildings, loss of power, loss of water supply; to 

the structure itself including dam fill eroded, repair time, 

powerhouse losses, switchyard losses, etc., and damage downstream 

of the dam including deaths, injuries, property damage, compensation 

for loss of water supply, power supply, telephone, road access 

and lost employment. It is instructive to note that in the ASCE 

example (2) death was valued at $150,000, permanent disabling 

injury at $200,000 and a non-disabling injury at $10,000. The 

property damages should be determined by carrying out a stage- 

damage analysis using measured flood profiles. z 

For each project the average annual risk can be cal- 

culated by arithmetic strip integration of the area beneath the 

return period-damage curve. The cost of each alternate project 

design is known and can be converted to an average annual cost. 

This cost, sometimes known as the "operating rate" (12), may 

include items for interest, taxes, depreciation, etc., and normally 

ranges between 8 and 10 per cent of the total capital cost. Curves 

of the type shown in Figure 5.1 can then be drawn and the optimum 

project design determined. 

Note that the series of alternate projects might consist 

of one dam design with floods of successively longer return period 

being accomodated by a longer spillway, by downstream flood
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protection work, by paving the dam top and downstream dam surface to 

reduce erosion from overtopping, by construction of an upstream 

reservoir to reduce inflows or by other similar means.



5.3 Risk Design 

Neither of the two techniques described so far include 

the concept of total risk. For any hydraulic structure there 

is a total risk of failure which can be broken down into the 

risk of failure of each project component i.e. hydrologic, 

hydraulic and structural. The risk within any component can then 

by broken down into true risk and uncertainty. Yen and Ang (18) 

have used the terms objective risk and subjectiVe risk. - 

For the hydrologic component, risk is the calculable 

probability of failure e.g. occurrence of a certain flood, 

occurrence of a drought, etc. The calculation of risk is based 

on the assumption that the underlying event distribution is known. 

As an example, if it is known that flood magnitudes in a particular 

river valley location follow the lognormal distribution and that 

the time—distribution of the floods follow a Poisson distribution 

then the risk that the flood of a certain magnitude will occur 

in the next five years can be computed exactly. 

Uncertainty occurs because the basic data available 

contains random measurement and computation errors, systematic 

errors, non«homogeneity in time, 1055 of information in changing 

from a continuous record to a discrete data set and so on.* These 

imperfect data are then used to estimate the parameters of the 

assumed population distribution. Uncertainty generally increases 

as the variance of the sample data increases and decreaSes as the 

sample length increases.

~



- 221 - 

Thomas (16) has evaluated the errors in streamflow 

estimates made from a continuous stage record while Moss (13) has 

related the standard error of discharge estimates to the number 

of streamflow measurments made per year and the associated costs 

of maintaining the station. 

The effect of uncertainty on the parameters of the 

population distribution can be included in an analysis by com- 

puting the standard error of estimate of the particular dis- 

tribution at the required probability level. Confidence limits 

around the expected event magnitude can then be calculated. 

To summarize this concept, hydrologic risk is made up of 

basic risk and uncertainty both of which can be evaluated. What 

cannot be evaluated is the error caused by selecting the wrong 

distribution to fit the sample data. It is true that the goodness 

of fit of a distribution, once chosen, can be measured using the 

Chi-Square or Kolmogorov—Smirnov or similar tests and thus the 

best—fitting distribution can be selected. Generally, however, 

the sample data will occupy the central portion of a frequency 

distribution while the event magnitudes which it is required to 

compute will be in the extremes so that the best-fitting i 

distribution may not necessarily be the best to use.
I 

The computation of standard errors of estimates for 

various common distributions has been described in Chapter 3. 

The remainder of this chapter will cover the calculation of basic 

risk, the assumption being made that the underlying distribution



~~ ~~ 
~~~~~~ 
~~~~ ~~ ~~ 
~~~ 

is known. 

Suppose that fer a time invariant hydrologic system the 

probability of occurrence of an-event, x, greater than the-design» 

‘event, x0, during a period of n years is P. Then the probability 

of non-occurrence, Q, is 1—P. 

If this design eVent has a return period of T years and 

a correspOnding annual probability of exceedence of p then: 

the probability of non—Occurrence in any one year is: 

1
, 

L = — —- 5.6 q 1 T’ 

the probability of non—occurrehCe in n years is: 

Q = (1 _ _g 5.7 

So that, finally, the probability that x will occur at least once 

in the n years is: 
V 

, 1 n
I 

2 - —— 5.8 P 1 (1 T) _
c 

This is the risk of failure and is based on the assumption of 

independence of annual events. Yen (17) has tabulated values of 

T, the required design return period, for various expected project 

lives, n, and permissible risks of failure, P. Table 5.1 is 

adapted from Yen. Figure 5g2 is based on the solution of Equation 

5.8.
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If the series of recorded or measured events are not an 

annual series but a partial duration series with an average of K 

observations per year then the probability that the T year event 

will be equalled or exceeded in n consecutive years is: 

P = 1 - [1 - 1/T.K]"K 5.9 

Figures similar to Figure 5.1 (for which K=l) can be drawn for 

all values of K, (1). 

If failure is associated not with exceedence of the 

design event but with failure to reach the design event, e.g. a 

drought design, then the return period must be redefined. 

Table 5.1 

Design Return Period for Various 
-Project Lives and Risks of Failure1 

Permissible Expected Project Life, n, in years 
risk of

_ failure 1 2 5 10 20 25 50 100 

0.99 1.01 1.11 1.66 2.71 4.86 5.95 11.4 22.2 
0.95 1.05 1.29 2.22 3.86 7.16 8.85 17.2 33.9 
0.90 1.11 1.46 2.71 4.86 9.19 11.4 22.2 43.9 
0.75 1.33 2.00 4.13 7.73 14.9 18.6 36.6 72.6 
0.50 2.00 3.41 7.73 14.9 29.4 36.6 72.6 145. 
0.33 3.00 5.45 12.9 25.2 49.9 62.1 124. 247. 
0.25 4.00 7.46 17.9 35.3 70.0 87.3 174. 348. 
0.20 5.00 9.47 22.9 45.3 90.1 113 225. 449. 
0.10 10.0 19.5 48.0 95.4 190. 238. 475. 950. 
0.05 20.0 39.5 98.0 195. . 390. 488. 975. 1,950. 
0.02 50.0 99.0 248. 495. . 990. 1,238. 2,476. 4,951. 
0.01 100. 199.5 498. 995. 1,990. 2,488. 4,977. 9,953. 

1 From Yen (17)



500 

FIGURE 5.2 
THEORETICAL PROBABILITY OF FAILURE FOR GIVEN PROJECT LIFE AND DESIGN 

RETURN PERIOD 

250 

I00

~

~ 

U1 C:

~ 

DESIG.‘ 

RETURN 

PERIOD, 

YEARS

N U"

6

~

~
~ ~ ~ 

5 IO 25 50 I00 
EXPECTED PROJECT LIFE, YEARS~

~



- 225 - 

In the event that the design return period is made equal 

to the expected project life there is a 65.4% chance of failure of 

the project. This can be shown in Equation 5.8 by putting T = n: 

_ 1 n P - 1 - (1 - a; 5.10 

In the limit as n + n 

(1 -%)“+%=o.363 ' 5.11 

and so, for large n, P tends to 63%. 

Similarly, supposing that a project has been designed 

against a hydrologic event of return period T years then the risk 

of failure after completion of n' years of the expected project 

life of n years can be calculated (14). 

Writing Equation 5.7 as 

Q = [(1 - #11711 5.12 

and using the same asymptotic approximation as in Equation 5.11, 

Gill (10) has shown that for a given value of P or Q there is a 

linear relationship between T and n, as: 

Q = ('1?i 5.13 

n = T.1n (l/Q) 5-14
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A frequently used approximation resulting from 

Equation 5.8 is: g 

T m "/P 5.15 

Gumbel (ll) termed this the "design quotient". 

The probabilities referred to above are all probabilities 

of occurrence of an event of a certain magnitude. Also of interest 

is the average probability of occurrence of all events above that 

certain magnitude. For example, in a series of n annual events 

the number, m, of events which equal or exceed the T-year event in 

(n+l)/T. The annual probability of occurrence of the maximum 

event is 1/(n+1), of the second largest event is 2/(n+l), of the 

third largest event is 3/(n+1), etc. so that, the average probability 

p of the n' events which exceed the T-year event is given by: 

1 1 2 3 n'~ ~ 
{- = (57]- + a -+ n+1+ ..... n+1 )/n' :_15 

Benson (6) has shown that this expression reduces to: 

I3 = (n+'r)/2.'r.(n+1) 5.17 

which, as n approaches infinity, becomes 

‘ 5 m 1/2T 5.18 

Thus, in general, the average probability of occurrence of 

all events above the T—year event is approximated by the probability 

of the ZT-year event. For example, the average probability of
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occurrence of all events greated than the lOO-year event is approximately 

0.005, which corresponds to the ZOO-year event. 

The expressions developed so far in this chapter have all 

been distribution-free, that is, no assumptions_have been made regarding 

the underlying event distribution. If it is required to estimate the 

event magnitude corresponding to the design return period computed 

from, for example, Equation 5.8 then a probability distribution 

must be assumed.
- 

To show the wide variation possible in the results of 

this assumption of a distribution, Figure 5.3 is reproduced from 

Gumbel (11). This figure shows the relationship between design 

quotient and the reduced variable, 2, where 

. z = (x —u)/o 5.19 

for several commonly used distributions. 

Those distributions shown on Figure 5.3 which have 

fixed skewness are the normal with 11 = 0 and the double exponential 

(or Type I extremal) with 71 = 1.3. The skewnesses have been 

arbitrarily chosen for the other distributions shown on the figure. 

Alternatively, if the assumptions are made that events 

are independent and the mean number of events in unit time is 

constant then the Binomial and Poisson distributions can be used to 

evaluate risk, as described in Chapter 3. For a Poisson distribution 

of event occurrences and an extremal Type I distribution of event 

magnitudes, Shane (15) has defined the design event, x, as:
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x = v + 7 1n (A.F) 5.20 

where v is a base flow, 7 is a parameter of the extremal distribution, 

A is the expected rate of occurrence of events, A = np, in the 

Poisson process and F is the risk factor. The maximum likelihood 

estimates of y and A are given (15) as: 

9 x - v 5.21 

and 

>9 II n /n 5.22 

where ne is the number of events recorded and n'is the period of 

record. 

Benson (5) investigated the variation which occurs when 

small samples are used to estimate a frequency distribution for 

which the parameters are known exactly. Starting with a known 

frequency curve Benson (5) constructed short random data sets, drew 

best-fitting curves and estimated events at different return periods 

from those curves. From a basic set of 1000 points, 100 records of 

ten points, 40 records of twenty—five points, 20 records of fifty 

points and 10 records-of one hundred points each were drawn. It was 

found that records of up to twenty-five points cound not define 

satisfactorily even short-term events. Long-term records (forty to 

fifty points) were found to define events magnitudes up to the



length of record with reasonable accuracy. 

‘Yen and Aug (18) haVe described a procedure fox designing 

hydraulic structures on the basis of a risk analysis. .Using as an 

example the design of an urban Sewer system, an overall project risk 

was chosen on the basis of possible property damage. ‘The hydraulic 

and hydrologic risks are combined as ah and are related to the 

structural risk, as, and overall risk, a, by 

(1 - a) = (1 — as)(1 — ah) 
' 

:5.23 

Yen and Ang then defined the combined hydraulic and hydrologic 

risks as: 

ch = P(x > QC).P(N > v) 5.24 

where P(x>QC) is the probability of an event X exceeding a design 

event, QC, (the hydrologic risk) and P(N>v) is the probability 

that N, a random variable, will exceed v, a safety factor, 

(hydraulic risk) where 

v = Qb/QC ‘5.25 

and Qb is the discharge actually used in design. N Was assumed 

to be distributed lognormally with unit mean and a variance,
20 V, equal to the total of the variances of the uncertainties 1

_ 

such as inaccuracy of measurement, systematic errors in 

computation, etc.
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= a2 + 02 + . . . . 5.26 2N
H N 

as discussed earlier in the chapter. 

If a and as are known, then ah can be determined from 

Equation 5.23 and for various values of a, the safety factor, 

corresponding values of P(X>Qc), the hydrologic risk, can be found. 

The equivalent design return period can be found from Equation 5.8 

and, assuming a probability distribution to fit the observed data, 

the corresponding event magnitude, QC, is found. Yen and Ang 

(18) used a Type I extremal distribution although any other 

suitable distribution could equally well have been used. By 

plotting values of Qc versus a (or Qb = a. Qc versus a) the 

optimum discharge can be found. 

lhus by defining rigorously the hydrologic risk the 

common hydraulic practice of using a safety factor to include 

the effects of hydraulic risk is provided with a scientific basis. 

In the event that no streamflow records are available 

at the design site, Davis et a1 (9) have described a method of 

evaluating uncertainty by considering the distribution of rainfall 

events. If the number of rainfall events per season, N, is Poisson 

distributed with mean A, i.e. 

f (xll) = Axe 
A 

5 27 N x' '~
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and if the amount of rainfall, R, per event is exponentially; 

distributed 

-uk 
fR (klu) — ue 

‘ 

5.28 

where l/u is the mean rainfall per event, then the return period 

of k units of rain in a season, T, is 

TR (klx,u) = [1 - exp(-Ae'“k)] j 5.29 

By using a linear rainfall-runoff relationship 

Q = c (R-A) 75.30 

where C is a coefficient depending upon the rainfall characteristics 

of a given watershed and A is a measure of initial abstractions, 

also depending on the watershed, then an expression for the 

probability density distribution of the flood return period, Tq, 

can be given as 

T6 (ylk,u) = [1 — exp 
{ —A+XFQ(yIu)} 

1'1 5.31 

where F (yin) is the distribution function of runoff per event.
Q 

Uncertainty is included in the analysis (9) by con- 

sidering the parameters X, u and c as variables. It was assumed
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that A and u could be described by a two parameter gamma dis- 

tribution while a beta distribution was used for c. 

The results of this approach provide design flows relying 

only on rainfall data for watersheds with ungauged streams by taking 

into account the uncertainty of the site parameters. It was found 

(9) that a closed form solution was not possible and so data generation 

was used to derive the distribution of the flood return period. 

To conclude this chapter on hydrologic risk, a final 

note on the accumulation of risk. On an individual basis a design 

return period of 1000 years is often considered safe. When it 

is considered, however, that there are now approximately 10,000 

large dams in the world (7), 1000 of which can be thought of as 

in independent basins, then the probability is 0.001 x 1000 = 110 

that the 1000-year event will be equalled or exceeded each year 

at at least one of the dam sites. Similarly, Alexander (1) has 

shown that-in Japan, where there are about 1700 dams, the average 

design return period for spillway design floods is of the order 

of 200 years. It would be expected, therefore, that on the average 

8 or 9 dams will incur design floods annually. Quite a risk!
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CHAPTER 6 

Conclusions 

6.1 General 
I 

The magnitude and frequency of occurrence of extreme 

hydrologic events is of every day importance in most parts of the 

world. Since man has, for reasons of communication, water supply, 

agriculture, etc., built most of his communities on the flood plains 

of large rivers his life-style is extremely susceptible to flood 

damage.- Today's pressure of population increases the density of 

development along the river banks. The flood of 1948 on the Fraser 

River in British Columbia caused $20 million of damange. It has 

been estimated that if the same magnitude of flood occurred today 

the damages would be over $200 million. 

At the opposite end of the water spectrum, the production 

of sufficient food to feed the world's rapidly increasing population 

necessitates the increasing use of irrigation. Mankind thus becomes 

ever more susceptible to disaster through drought. 

Proper use of existing hydrologic techniques could, through 

flood plain zoning and efficient design techniques, eliminate much 

of the present loss of life and damage caused by floods and droughts. 

The available hydrologic methods can be divided into the deterministic 

techniques of empirical equations, unit hydrograph, storm transposition 

etc., and the stochastic technique of flood frequency analysis. 

In the 1920's and 1930's the introduction of simple 

statistical analysis gave an impetus to the science of hydrology. 

. 

.., 

..__ 

_.,‘..._ 

...._..
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Very soon, however, a general distrust of probability methods began 

to grow because too many users knew too little about statistical 

analysis and they apparently expected the methods to overcome 

the lack of data (10). 

A growing use of deterministic methods, replacing the 

fall in popularity of probability techniques, led to the development 

in the late 1950's of the unit hydrograph principle. Advances 

in meteorology enabled the conditions producing storm rainfall 

to be analysed, with the result that maximum rain producing storms 

could be synthesised. This technique produced a large number of 

new, rather vague, technical terms such as Probable Maximum 

Precipitation, Maximum Possible Precipitation, Standard Project 

Storm, Maximum Probable Flood, etc., based on the premise that 

some definite limit existed for all the variables responsible 

for flood events and that, subsequently, some limit must apply to 

the flood runoff itself. The drawback to this method is that no 

probability level can be assigned to the "probable" events, be- 

cause of their deterministic origins. Similarly no confidence 

limits can be applied to these events and the non-specialist is 

left with the impression that these estimates are 100% accurate 

with no risk involved. 

The philosophical error in the Maximum Probable 

argument has been described by Yevjevich (28) and others. It is 

not reasonable to say that a precipitation of 30 inches in one. 

hour can occur but a precipitation of 30.1 inches cannot. The
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probability approach states that any variable has a finite 

probability of reaching any value between zero and infinity. As 

the variable increases in magnitude so the associated probability 

of occurence decreases and for very large events approaches zero. 

However, given enough time, even the improbable becomes certain. 

The essential stochasticity of precipitation has been recognised 

by Yevjevich (29) as being mainly due to the random nature of 

atmospheric variables such as opacity and transmitted radiation. 

The stochastic precipitation events are then somewhat attenuated 

by the water and energy storages of the oceans and continents to 

produce runoff events of mixed deterministic/stochastic nature. 

Today, the necessity of producing economically designed 

projects has produced a need for hydrologic risk analysis and a 

corresponding upsurge in the use of probabilistic methods in 

hydrology. Compared to the 1920's and 1930's, however, more 

data is available today and the theory of sampling errors and risk 

analysis is better understood. Problems still exist in the statistical 

techniques, however, and a certain amount of subjectivity is still 

involved, particularly in the choice of a frequency distribution to 

fit to the observed data. 

Users of hydrologic data can be placed in several 

categories. There are users in water planning who assess the 

potential for development in a basin or region. There are 

users in water project design interested in data related to a 

specific project or water operation system; there are users in 

construction and in administration.
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There are also users in the operations and management area working 

on the planning of project operations such as ship traffic control, 

hydroelectric systems operation, hydrometric network planning and 

flow forecasting operations. These users all have differing data 

requirements but one factor that all have in common is a frequent 

use of hydrologic probability analyses. Because of the large 

Inumber of different government and commercial data users and the_ 

large number of available methods of frequency analysis, if each 

user obtains the same basic data from the collecting agency 

and carries out their own data processing then widely differing 

results may be expected. 

In addition to the scientific inaccuracy, this procedure 

involves a wasteful duplication of time and manpower. These 

inefficiencies could be eliminated if the data collection agency 

processed the data and issued, on request, frequency analyses in 

a form suitable for direct application by the user. The data 

collection agency usually has the data on magnetic tape or other 

computer-compatible medium and can carry out the processing of the 

data very much more quickly and efficiently than many of the data 

users. In addition, the data collection agency is better aware 

of the accuracy limitations of the raw data than are many of 
the 

data users and so can tailor the anlaysis procedure to the degree 

of sophistication of the data. After all, applying a complex and 

time—consuming analysis technique to data containing large inaccuracies
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is, at best, wasteful and, at worst, misleading. There is a need, 

therefore, for a method which makes full use of the information 

content of the original data without introducing a false degree of 

security resulting from mathematical sophistication.
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6.2 Data Abstraction, Graphs, and Plottinggpositions 

Data for frequency analyses may be abstracted from the 

recorded data using either annual series or partial duration series. 

Annual series consist of one event per year; partial duration series 

consist of all events above a base magnitude, regardless of time of 

occurrence. The partial—duration series method would initially seem 

advantageous in that more data, and hence information, is incorporated. 

As shown in Table 1.1, however, this additional data increases the 

definition of event magnitudes only in the lower part of the 

frequency curve which is the area of least interest. Use of the 

partial-duration series always involves the arbitrary establishment 

of a base flow and sometimes requires subjective decisions regarding 

the independence of adjacent events. 

For these reasons and because the annual series is 

simpler to abstract and analyse it is to be preferred in frequency 

studies. 

Riggs (20) and Benson (3) have detailed many other reasons, 

but to summarise, it is usually stated that mathematical fitting 

of a standard probability distribution is preferable to plotting 

a graph and fitting a curve by eye, because:— 

(a) mathematical fitting is theoretically better, 

and (b) mathematical fitting eliminates the subjectivety of 

individual judgement. 

In fact, curve fitting by eye and by probability function are 

equally empirical since, as discussed later in this chapter, the
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true distribution of the recorded events is not known. In addition 

the very lack of subjectivity of the mathematical procedure is 

sometimes a disadvantage; the inclusion or exclusion of one or 

two events may result in large changes in the resulting frequency 

relationship. The mathematical procedure incorporates all data 

whereas the individual drawing in a curve by eye may eleCt to 

ignore some events in order to get a better-fitting curve. A 

method is not better simply because it leads to uniform answers, 

if those answers are uniformly unsound (2). 

An intermediary or semi-graphical method exists in 

which graphs are used to fit curves of standard probability dis~ 

tributions to the data. The procedure recommended is to use a 

mathematical method of fitting a standard probability distribution 

(which one will be discussed later) but to arrange for the output 

of the method always to include a plot of the data points and the 

fitted curve. In this way the procedure can be standardised and 

automated for machine computation while retaining the option of 

looking at a graph and reviewing the fitted line on the basis of 

engineering experience. 

Any type of plot of extreme events requires the con- 

sideration of plotting positions. When all analysis computations 

were done by hand, graphical techniques of analysis were extremely 

attractive because of their brevity and simplicity and the choice 

of plotting positions was therefore of great importance. Today, 

when all calculations are performed by computer, graphs are used 

only as a pictorial form of output presentation and the problem
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of plotting position has-faded somewhat in importance. 

With this in mind it would be difficult to justify 

use of any plotting position other than the mean frequency 

P = n/(n+1) 
6.l_ 

where m is the order of the event in the sorted series of n observed 

events. For the largest event in the series m = l and for the 

smallest event in the series, m = n. This method gives conservative 

results in that the return period conforms closely to the period 

of record. Benson (4) has demonstrated that this is the best 

plotting position to use for economic studies of hydrologic design. 

In certain cases it is found that one or two events 

in a series will plot well above or well below the other events. 

These are known as "outliers" and pose a very sticky statistical 

problem. Assuming that no physical reason can be found (any 

obvious error in measurement or computation, for example) then 

the decision to accept or reject the outliers must be made on 

the basis of statistical tests. Anscombe (1) has discussed the 

history and background of rejection rules and has explained the 

theory behind two commonly used rules. These rules have been 

formulated on the assumption that the population variance is 

known. Since this is not the case in hydrology, the rules ShOUId 

be used with care.
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6.3 Frequency Distributions 

6.3.1 Selection of a Distribution 

The primary objectives of frequency analysis are to 

determine the return periods of recorded events of known magnitude 

and then to estimate the magnitude of events for design return periods 

beyond the recorded range. The intermediary between these two 

objectives is the theoretical probability distribution; The sample 

data is used as an estimate of an unknown population to calculate 

the parameters of the Selected probability distribution. The fitted 

distribution is then used to estimate event magnitudes corresponding 

to return periods greater than or less than those of the recorded 

events. 

There is no general agreement among hydrologists as to 

which of the various theoretical distributions available should 

be used. The present state of the art is also such (5) that no 

general agreement has been reached as to preferable techniques, 

and no standards have been established for design purposes. As 

examples of this divergence of choice, Spence (26) compared the 

fit of the normal, lognormal, Type I extremal and log-Type I- 

extremal distributions to annual maximum flows on the Canadian 

Prairies and found that the lognormal was the best fitting; 

Cruff and Rant: (11) compared six probability distributions in 

California and found that the Pearson Type III was the most 

desirable. In other studies, Santos (22) has found the lognormal 

distribution better than the Pearson Type III, Gumbel (12) has
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explained that "It seems that the rivers know the [extreme value] 

theory. It only remains to convince the engineers...of the validity 

of this analysis", and Benson (3) has found in a study of 100 

long term flood records that no one type of frequency distribution 

gives consistently better results. In the U.S., Reich (19) conducted 

a survey of engineers and hydrologists and found that of the Extremal 

Type I, log Extremal Type I and log Pearson Type III, the log Pearson 

Type III was preferred. In Italy, Cicioni et a1 (9) tested the 

lognormal, 3-parameter lognormal, 2-parameter gamma, Pearson Type 

III and Extremal Type I distributions on 108 data sets and found the 

lognormal to be the most suitable. 

In short, no one distribution is acceptable to all 

hydrologists. 

A problem with some distribution comparison studies is 

that improper statistical techniques are used to judge the performance 

of the different probability distributions. As an example, a recent 

study fitted various distributions to sample data by a simple linear 

least squares regression on suitable transformed data. The distribution 

which gave the highest simple correlation coefficien was concluded 

to be the correct distribution for flood flows. However, the goodness 

of fit of a particular distribution to a sample set of data in no way 

guarantees that that distribution is correct for the population of 

events. This is particularly true when the purpose of the distribution 

fitting is to extrapolate from the measured data.
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Acceptance of a certain model for analysis of flood 

peaks must be based on the goals and conditions that are to be 

fulfilled and satisfied by the model (30). Goodness of fit is a 

necessary but not a sufficient condition for acceptance. Goodness 

of fit tests often used include Chi-Square and Kolmogorov-Smirnov 

(27) as well as Cramer-Von Mises and Anderson-Darling statistics 

(9). If goodness of fit were the only criterion, then high 

order polynomials would often provide a much better fit than.any 

of the standard distributions, and yet this method is not used 

because there is no hydrologic justification. The most important 

criteria in the selection of a model are that there be a sound 

theory describing the phenomenon and that the model should abstract 

the maximum information from the data using proper estimation techniques. 

-This was realised by the recent U.S. Water Resources 

Council Work Group (5) who wrote that "no single method of testing 

the computed results against the original data was acceptable 

to all those on the Work Group, and the statistical consultants 

could not offer a mathematically rigorous method." The Work 

Group concluded that a frequency distribution could not be chosen 

solely on statistical grounds but recommended that the log- 

Pearson Type III distribution be used because as a 3 parameter 

distribution it offers considerable flexibility, for a zero skewness 

it reduces to the lognormal distribution, and finally because it is 

in common use by U.S. government agencies.



The problem of choosing a distribution is not reStricted 

to hydrology by any means. In the field of bi05ciences,Katti and 

Sly (13) summarised their findings as; 

(a) No single theoretical distribution has been found 

to describe any large scale data. 

(b) For a number of data there could be two or more 

theoretical distributions that fit equally well and there is no 

way to choose between them based on fit alone. 

(c) Two or more physical models could lead to the same; 

final statistical distribution and hence the estimation of the 

parameters of the distribution may not have unique meaning. 

(d) ...different methods of estimation lead to widely 

differing estimates when the methods are consistent...there are a 

number of empirical frequencies to which the same theoretical 

frequency function has been fitted by different consistent methods..." 

Although statistical methods cannot by themsolves determine 

the correct frequency distribution, they can, in some cases, provide 

reasons why distributions may not be suitable. As an example some \ 

distributions such as the Type III Extremal, Pearson Type III and 

log Pearson Type III require the estimation of the coefficient of 

skewness from the sample data. It is well known that the variability 

of sample estimates of the coefficient of skew is large (11), (21) 

and this may be sufficient reason to prefer some other distribution. 

. 

As a second example of this process of elimination the 

following objections have been raised (3), to the use of the Type I

~
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extremal distribution (Gumbel) for flood flows: 

(a) It is assumed that the treatment derived for daily 

discharges can_also be applied to instantaneous flows. 

(b) The daily discharges are not independent events. 

(c) The 365 daily discharges in a year do not constitute 

a large number as required by the theory of extreme values. 

(d) An assumption underlying the extreme value theory 

is that all the events are part of the same statistical population; 

Yet, in many cases, the annual maximum event may be due to a variety 

of causes such as normal rainfall, snowmelt or hurricane. There are 

different physical factors controlling each of these types of 

events. The assumption of one population therefore may not be 

‘valid. 

-Whether or not these objections to the use of the Type I 

extremal distribution are sufficiently serious to deter use, 

is a matter of opinion. 

A third example of the use of statistics to eliminate 

distributions might also be mentioned; the normal distribution 

can be eliminated because it ranges from -¢ to +no and can thus 

give real probabilities to negative flows. In some cases a 

truncated normal distribution has been used in which the probability 

of events being less than or equal to zero is replaced by a probability 

mass at x = 0.
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of lower importance than the theoretical background is 

the ease of computation. Matalas and Wallis (15) found several 

computational difficulties in using the Pearson Type III and log- 

Pearson Type III distributions and recommended that the use of 

other distributions warrants consideration. Similarly Pentland and 

Cuthbert (18) found that use of the log-Pearson Type III distribution 

for the Fraser River Basin, in British Columbia, led to large 

discontinuties and unnatural flood frequencies. They substituted 

the lognormal distribution in place of the log Pearson Type III.- 

0n the basis of this study of available literature it 

is recommended that, for data sets of annual maxima containing 

less than 100 items, the lognormal distribution be used. The 

lognormal has as much theoretical justification as any other 

distribution (8) and, at the same time, it is computationally easier 

than many distributions. In a case like this where many methods 

compete it is always better to use the easiest and simplest 

method until another is,proved to be superior. 

The preferred procedure is to compute the T—year event using 

the mean and standard deviation of the recorded events rather than 

the mean and standard deviation of the event logarithms. 

For those cases in which a single lognormal probability 

distribution does not provide a suitable fit then the procedure 

of using two lognormal distributions as described by Singh and 

Sinclair (23) may be useful.
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For data sets containing more than 100 events (this 

figure is only an estimate (21) and should not imply any certain 

cutoff) then the coefficient of skew may be computed with sufficient 

accuracy to justify use of the three parameter log Pearson Type III 

distribution. If the skewness of the logarithms of the recorded 

events is zero then the log Pearson Type III is identical to the 

lognormal distribution. 

For drought flow analysis the situation is less critical 

since a known lower limit to event magnitude exists. The two 

distributions commonly used are Type III extremal and Pearson 

Type III and there is little basis for any choice between these. 

As noted earlier it is considered necessary in all cases 

to produce a graph of the observed events and the fitted frequency 

curve. There will always be times when the fitted curve will be 

poor and, by checking a graph plot, indications may be available 

as to a more suitable distribution. A good procedure is to in- 

corporate a plotting routine into any computer program producing 

frequency curves.



...u._-. 

- 252 - 

6.3.2 Estimation of Parameters 

There are four main methods of estimating distribution parameters: 

moments, maximum likelihood, least squares and graphical. It is now 

generally accepted (15) that the method of maximum likelihood is the 

most efficient method and should be used wherever possible. By computing 

relative efficiencies, Matalas (14) has shown that for low flow analysis 

the method of moments used only one-half of the sample information 

extracted by maximum likelihood. 

For the recommended lognormal distribution the maximum 

likelihood estimation method is very simple and the results are 

identical to those of the method of moments. The maximum likelihood 

method is more involved and time-consuming for the Pearson Type III 

and log Pearson Type III distributions but solutions are available 

and have been described. 

6.3.3 Frequency Factors 

For any distribution the T-year event magnitude can be 

computed from a general equation of the form: 

x(K) = u + Ko 6.2 

where u and o are sample estimates of the population mean and standard 

deviation and K is a frequency factor specific to the chosen 

distribution. For each probability distribution the frequency factor 

K, can be derived from the sample size, sample parameters, etc.
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6.3.4 Confidence Limits 

Once a suitable probability distribution has been 

chosen and the magnitude of the event, x(K), at the required 

return period, T, has been computed from the general frequency 

equation then upper and lower confidence limits should be 

established for this event magnitude. 

From the frequency curve, two methods are available to 

compute confidence limits. The analytical method uses numerical 

techniques to integrate the probability density function of the 

sample quantile. For practical distributions, however, this is very 

difficult and an empirical method is often used instead. The 

empirical method uses moments to compute the standard error of 

x(K), 5(K), from the variances of u and a then assumes that the 

T-year event is normally distributed with mean x(K) and standard 

deviation s(K) so that the confidence interval is 

we :_t.s(x) 6.3 

where t is the standard normal deviate at the required confidence 

level. 

The validity of the empirical method rests on the 

assumption of normality of the distribution of_T-year events. 

This has been tested by data generation and the results have 

been described. 0n the basis of these tests the assumption
_ 

of normality is certainly reasonable, 

Nash and Amorocho (16) have shown that, for normal 

and double exponential distribution, the standard error, 5(K),
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tends to become a fixed proportion of the T-year event magnitude 

as T tends to infinity. Thus estimating the 10,000-year event 

is possible with no greater relative error than occurs in an 

estimate of the IOU-year event, provided that one is certain that 

the assumed form of the probability distribution is correct.
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6.4 Regional Analysis 

Regional analysis techniques provide a means of 

combining records from many gauges. This provides the two ad- 

vantages of reducing standard errors of estimates at gauge sites 

and enabling estimates to be prepared for ungauged sites. 

The description of regional analysis techniques given in 

Chapter 4 divided the techniques into five main methods: index; 

flood, multiple regression, square grid, modified single station 

probability distributions, and regional record maxima. Each of the 

first four methods contains several variations, however, and these 

variations tend to overlap between methods so that the division 

becomes somewhat artificial. The index-flood method, as originally 

proposed and put into practice suffers from many defects. The 

most serious defect is that the method is totally empirical, the 

distribution of peak events is not known and all relationships are 

derived by graphical curve-fitting. 

The square grid method has a logical ordering of basic 

data which, when combined with the convenience of automatic data 

processing, provides a data file of regularly spaced physiographic, 

meteorologic and hydrologic data easily and rapidly accessible for 

many types of study. The data file can be regularly updated and may 

be enlarged by the addition of more parameters as they become 

available. Using this data file as a base, an extremely versatile 

series of analyses becomes possible. Originally the square grid
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method was used to define the areal distribution of mean annual 

runoff for preliminary province—wide water resources studies (24), 

but additional steps now available include the generation of synthetic 

monthly flows at ungauged sites (17), and, with the addition of 

meteorologic forecaSts, the use of a parametric medel to provide 

monthly forecasts of streamflow (25), as well as the provision of 

flood frequency analyses at ungauged sites. 

Using the square grid method for frequency analyses . 

combines the use of a standard frequency distribution with a more
i 

efficient data base. In recommending this square grid approach for 

regional frequency analysis the probability distribution to be used 

should be selected on the basis of the comments and recommendations 

previously made. 

Hydrologic series frequently consist of observations 

that are dependent upon one another, they are serially correlated. 

Thus each observation contains some information which has already been 

contained in previous observations. A serially or autocorrelated 

time series therefore contains less information than would an equal 

number of pure random observations. If a time series of a given 

length is correlated with a shorter time series, then the two-station 

correlation can be used to increase the information content of the 

shorter series. veither or both of the time series are autocorrelated 

then the increase in information will be less than if the time 

series were pure random. Similarly if a number of gauging stations
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are used to estimate regional parameters then the information con- 

tent of those parameters will be a maximum when all the station re- 

cords are independent and will decrease as the dependence between 

records increases.
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6.5 ‘gyflg 

Most hydraulic structures are designed on the basis of 

deterministic Probable Maximum Floods for which the risk is totally 

unknown. For those structures designed on the basis of frequency analysis, 

the hydrologic risk is generally accounted for by a simple choice of 

return period for the design flood. For any given return period 

however, the risk of project failure is proportional to the 

expected project life. 

A better procedure is to initially assign an acceptable 

overall risk to the project. This overall risk should be computed 

on the basis of the consequences and costs of failure. This 

total risk can then be subdivided into structural, hydraulic and 

hydrologic risk and the allowable hydrologic risk can be determined. 

0n the basis of this allowable hydrologic risk and the expected 

project life the required return period can be found and by assuming 

a probability distribution the corresponding T-Year event magnitude 

can be calculated. In this manner, Probable Maximum Floods or other 

deterministic estimates can often be assigned a risk and used in 

further analysis. 

To account for the uncertainties in estimation of 

distribution parameters it is usual to compute the upper 95% con- 

fidence limit for the T-Year event and design for that discharge. 

It is well to keep in mind, however, that no matter how 

sophisticated a risk analysis is undertaken, the unexpected tends 

to occur with remarkable regularity. As an example (6), the



Rincon de Bonete hydroelectric project on the Rio Negro in 

Uraguay was desinged for the lOOO-year flood of 325,000 cfs on 

the basis of 27 years of streamflow records during which the peak 

flow was 135,000 cfs. Fourteen years after construction (1959) 

as a result of prolonged heavy rainfall a flood peak 605,000 cfs 

was measured. Using the original frequency analysis the 1959 

flood has a theoretical return period of 500,000 years. Fortunately, 

the dam held and about one-half of the flood peak was absorbed by 

the reservoir which rose 15 feet above its designed maximum level.
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