REPORT SERIES (CANADIAN WILDLIFE SERVICE)

$$
7004025 \text { E M. }
$$

Studies of bird hazards to aircraft

Canadian Wildlife Servic Report Series-Number 14 Ottawa 1971

Issued under the authority of the Honourable Jean Chrétien, P.C., м.P. Minister of
Indian Affairs and Northern Development
Information Canada
Ottawa 1971
Cat. No. R65-8/14
Price 1.2
Desion: Gottschalk+Ash Ltd

nemem

 par V. E. F. SolmanBird control and air safety by V.E. F. Solman

15 A bird-warning system for aircraft in fight by W. W. H. Gunn and V. E. F. Solman
23 A Canada goose migration through the southern interior of British Columbia by M. T. Myres and S. R. Cannings

35 Radar observations of bird movements in east-central Alberta
by W. John Richardson and W. W. H. Gunn
69 Numbers, speeds, and directions of migrating geese from analysis of a radar display at Fort Willi
by J. Murray Speirs,
J. J. C. Kanitz, and J. Novak

77 The M33C track radar ($3-\mathrm{cm}$) as a tool to study height and de
by Hans Blokpoel

95 A preliminary study on height A preliminary study on height
and density of nocturnal fall migration and density of noct

05 Other publications in the report serie

Birds and aircraft have collided, with damage to both, since the early days of aviation. The first recorded human death resulting from a bird-aircraft collision occurred in 1910. As aircraft became mor numerous and their speeds increased, damage became more serious and cos The first serious turbine engine crash caused by birds occurred in 1960 and took
more than 60 human lives. Since then, birdaircraft collisions in the United States have caused about 100 deaths. In Canada no lives have been lost, but 10 military aircraft have crashed, and a number of commercial aircraft have been damaged. In 1963 the National Research Counc Canada, at Minister of the Department of Transport,
founded the Associate Committee on Bird founded the Associate Committee on Bir which are represented the National Research Council, the Department of Transport, the Department of National Defence, the Canadian Wildlife Service, the Canadian Airline Pilots' Association, Air Can ada, Canadian Pacific Airlines, and the engine manufacturers, has studie
lem and recommended solutions.

While engineering solutions may be
ossible they will take time. Meanwhile, habitat management at airports has resulte in fewer birds being attracted to those areas. That has reduced the likelihood of bird strikes near airports.

Radar study of bird movements aloft has helped to define the timing, duration,
direction, speed and location direction, speed, and location of major
movements of large birds considered to be a major hazard to aircraft in flight. Rela tions between major bird movements an weather parameters are being studied. Since 1965 we have been experimenting with forecasting bird migration movements in relation to weather forecasts. The method is being refined with the hope that bird haz
ard forecasts for aircraft will eventually be as accurate as present thunderstorm foreas accu
casts.
The following papers set out the general nature of the habitat management tech-
niques found useful in reducing bird hazrds at airports, the radar technique used to gather data or expermens in forecasting bird hazards aloft, and details of some ypes of bird movement revealed by radar
V. E. F. Solman
V.E. F. Solman \dagger

Depuis les premiers jours de l'aviation, les oiseaux et les avions sont entrés en collisio et les deux en ont souffert. La première perte de vie humaine due à une collision de cette nature remonte a 1910 . Avec laugmentation du nombre et de la vitesse des
avions, les dommages devinrent plus séavions, les dommages devinrent plus se-
rieux et plus coûteux. Le premier écraserieux et plus couteux. L'importance d'un avion turbopro-
ment pulsé attribuable a une collision avec des de plus de 60 personnes. Depuis lors. les collisions entre oiseaux et avions ont entraîné une centaine de pertes de vie aux Etats-Unis. Au Canada, on ne rapporte pas de victimes, mais dix avions militaires se sont écrasés et plusieurs avions commer iaux ont été endommagés.
En 1963, le Conseil national de recherches du Canada, à la demande du sous-m mixte sur l'étude des dommages causés aux avions par les oiseaux. Ce comité, au sein duquel sont représentés le Conseil national de recherches, le ministère des Transports, le ministère de la Défense nationale, le Service canadien de la faune, l'Association canadienne des pilotes de lignes, Air Ca nada, les Lignes aériennes du Canadien Pale problème et recommandé des solutions.
Les solutions d'ordre technique prendront du temps à se réaliser. La conservation des habitats à proximité des aéroport a contribué à diminuer le nombre des
oiseaux attirés dans ces secteurs. On a don
réduit le danger des collisions avec ces reduit le danger des collisions avec
volatiles prés des pistes d'aviation.
L'étude par radar des migrations d'oi-
seaux nous a aidés à déterminer le temps,
la durée, la direction, la vitesse et les endroits des déplacements en groupe des gros oiseaux qui constituent un grave danger pour les avions en vol. Les grandes migra-
tions de ces oiseaux sont étudiées en fonction de paramètres météorolologiques.
Depuis 1965, nous avons tenté de prévoir le trajet de migration des oiseaux en nous basant sur les prévisions atmosphériques.
Nous essayons de perfectionner not Nous essayons de perfectionner nos mé-
thodes, espérant prévenir les dangers que les oiseaux représentent pour les avions en plein vol, en vue d'obtenir une précision semblable à celle des prévisions d'orages. La documentation suivante dresse un qui ont permis de réduire les dangers aux quels les avions sont exposés à cause des oiseaux, et explique la technique consistan à utiliser le radar pour réunir des donné a des fins expérimentales, en vue de pre enir les risques de collisions avec la gent ailée et d'étudier en détail certains genres de migrations d'oiseaux.
V.E. F. Solman

Fatal accidents have been caused by bird aircraft collisions since 1910. In 1960 a turbine-engined aircraft crashed at Bos Massachusetts, after a bird strike by starlings. Over 60 lives were lost. That crash, and one in 1962, caused by bird damage to the aircraft structure, which a bird liazard to aircraft.
The Canadian Wildlife Service has been providing biological information to airport operators to reduce the attractiveness of airports to birds since the late 1940 's. In 1962, at the request of the Department of Transport, the National Research Council of Canada appointed the Associate Com mittee on Bird Hazards to Aircraft to stud On that committee are represented the D partment of Transport, which is responsibl forment Canadian airports, the Department of National Defence, which has a similar responsibility for military aerodromes, the major airlines, the engine manufacturers, the National Research Council, the Canadian Airline Pilots' Association, and the Canadian Wiltined the magnitude of the problem and the potential magnitude of the problem and the potential
for serious accident and loss of human life. Initially, there was emphasis on the engineering aspects. Consideration was given to designing aircraft and aircraft power plants that could withstand contacts with birds without suffering serious damage. The engineers soon realized that the for hich eped aircraft are solare that is difficult to desimn mechanical compo nents of reasonable size and weight to withstand them. For example, a 4 -pound bird struck at a speed of 300 miles per hou exerts a force of 14 tons, at 600 mph 57 tons. The other approach to the prob lem, that of trying to keep the birds out of the way of
Biological studies at a number of major airports showed that many species of birds
used airport areas for feeding, resting, and ven nesting. When we examined the prob em in detail, we found that airports were ttractive to birds for a number of reason The first recommendation of the committe was to reduce the attractiveness by altering the ecology of the airport environment. In nany cases that was a relatively simple atter. Garbage dumps and other attracti ports. Small bodies of water which attracted aquatic and other birds were draine or filled, or the birds were prevented from using them. Nesting and perching sites ould be eliminated or rendered unusable. The pioneering work on improving the airport habitat to reduce bird attraction has been described by Munv Bird 1966
Birds that persisted in visiting airport driven off by patrols armed with pyrotech nic devices, distress call players, or other mechanical means. Considerable testing of pyrotechnic devices has been carried out There are now available for airports reasonably reliable shot-gun selts that fir a small explosive projectile. There are, aso, good tape players, amplifiers and loud bird removal. We have encouraged manufacture of effective automatic acetylene
exploders designed to our requirements which work well with certain species of irds. In some countries radio-controlle model aircraft are used to harass birds at irports.
Any mechanical method requires decion on the part of the human operator to use the equipment effectively. Human movation is the biggest need in the continuing battle to keep birds out of the way of aircraft.
The committee also investigated the posbilities of using falcons trained to drive ifds away from certain airports. Tw Both gave satisfactory results within the limitations of falcon operation. Those limitations include inability to operate in the

hours of darkness and unwillingness to fly in high wind or heavy rain. There are
also occasions on which the falcons, whi also occasions on which the falcols, wimply
are relatively high-strung animals, simplemen refuse to work. Falcons are being used at some airports in other countries with good results in clearing single species of birds from aerodromes during hours of daylight Most civil and military flying is a round the-clock operation. Simpler and more ferred by most authorities.

The Canadian program of bird removal from airports has been quite successful. One of our major airlines, which was experiencing increasing numbers of damaging
bird strikes up to 1965 , reported a 20 per cent drop in the number of strikes in 1966 . Although the number of aircraft and flight
*Air Canadd's cost of repairs due to bird strike
has declined as follows (average per year): has deci
$1958-62$
$1963-68$
$1963-68$
1969
has increased since then and the number of bird strikes has risen, there has been a reduction in damage because smaller birds are being struck. The reasonses which have been brought about by the Department of Transport at a number of major Canadian airports. That work has cost hundreds of thousands of dollars, but in the first test cases resulting from the 1960 Boston crases caused by birds, when over 60 human
$\$ 100,000$ per human life lost. The dollar cost of that one crash would likely exceed the cost of reducing the bird hazard to a very muc lower level at several major airports. civil aircraft may not be hazardous to human life, they do result in a variety of expenses to the airline. Consider the case of a DC8 taking off on a long flight with full fuel load and an acceptable level of passenger seat occupancy. On take-off bird is struck and catastrophic damage occurs to one engine. The pilot has no full load, but has a problem of immediatel returning to base for an engine change and for rerouting of passengers and ba gage on another aircraft. Since his take-off weight is greater than his acceptable landing weight, he must jettison fuel before he can land. In addition to the $\$ 200,000$ cost of an engine replacement, the airline is faced
with the problem of jettisoning thousands with the problem of jettisoning thousands of gallons of fuel, of making an emergency
landing with its attendant hazards, and then of providing alternate means of trave for the hundred passengers and their bag gage. The time of the circuit, fuel jettian hour. By that time it landing may exceed an hour. By that time it may not be possible for the passengers to board another ai time for important commitments. No in has yet worked out what it costs an airline to inconvenience seriously a hundred pas. sengers, nor what it means in terms of reuse of that airline by the passengers in subsequent fights.
One airline has published a figure of a million pounds sterling worth of mechanical damage each year through bird strikes,
Another airline published a foure of re los of two million dollars over a period of 5 years. A third airline reported 75 engine changes due to bird strikes in $2 \frac{1}{2}$ years of flying.
Differe
different tird aircraft-engine types have when flown on the se rates and costs, even the same times. In aircraft that mount en-
gines in pairs close together, when a bird causes one engine to break up catastroph ically, portions of the bird or engine may be projected forward and taken into the to it also. aware of the damage caused by a bird strike. If it is a landing strike and does not interrupt too many schedules, the only cost to the airline is for engine replacement and the time lost while the engine is changed Initially, the civil airlines had about near quiports and the remainder in fight between airports. The military situation is almost exactly the reverse: fewer strikes at airports and more strikes en route. The high rate of strikes away from bases is related to the role of military aircraft which make many fights at low altitude and high speed.
The CF-104 aircraft has been found to be particularly vulnerable to serious bird dam-
age. Because it is a single-engined aircraft, an engine strike by a bird may easily involve the loss of the aircraft. In 6 ye Canada lost ten CF-104's through bird strikes and two more under conditions strongly suggestive of bird impact damage The Department of National Defence is because of the possibility of a pilot being killed and the cost of the aircraft.

- Major ecological changes have bee made at military airports to reduce the bird problem there. However, because many strikes occur away from airports, the com mittee has been studying the details of bird movements and migrations which could be encountered by aircraft in flight. To do that, we have used the
really effective, radar.
Much of the information about bird migration available in the literature is based on observation, either in daylight or by moon watching. In both cases, the observed birds are those that can be seen from the ground under the prevailing conditions of visibility.

Some of our radar studies have been made on a continent-wide basis using as nany as 18 radar stations. We use conhotography of the plan mosition pictur copes to provide permanent records for study. One frame is exposed for each swee of the radar antenna (six frames per miute). When projected at normal speed the films compress the time scale by a factor of 240 times and simplify cataloging observations
Examination of the film record has hown that many of the early ideas about data, the only kind that could be obtained by visual observation. Our recent experience is similar to that of our colleagues using radar in Europe. There, also, earlier data on bird migration times and patterns have been shown by radar observation to have been less than complete
During either spring or autumn migr tion birds generally begin their migratory
flight when conditions are favourable. Bird flying north in the spring and entering a outhward-moving cold air mass usually top moving north. If the condition is sufficiently severe, they may reverse their irection. We have radar films from many oints in Canada which show that sort of weather It appears that movement in favourable weather and back-tracking when the situation gets too bad may be the rule or many species in spring northward mi gration, rather than an exception as we sed to consider it.
Our studies of bird migration have hown that the major hazard to aviation re gull-sized or larger occurs in rather limited times and locations. We believe that it is possible to forecast when and where those major novements will occur in spring and autumn. After the forecast is made, radar surveillance would permit cur rent reports on the movements. We have accuracy experimentally for military fying.

Much of the bird migration across Can ada is in a general north-soutl direction and much of the airline traffic is east-west. Considering that tens of millions of ducks, about $5,000,000$ geese, 300,000 sandhill cranes, 100,000 swans, and millions of smaller birds move across the civil and mil ities for collision are large ear, he possibilshort periods and in prescribed locations Keeping aircraft away from major bird migrations is not too different from keepin them away from thunderstorms. Thunder storms are short-duration phenomena a sociated with severe turbulence and are potentially clamaging to aircraft. Much tim and effort go into forecasting the time, place, and duration of thunderstorms and craft to avoid them. We believe that as ou bird hazard forecast technique improves we can provide bird hazard warnings that will be similar in their value to thunder storm warnings. The regular traffic contro procedures by which civil aircraft and most military aircraft are manipulated in tion hazard in the same way they now take nccount of thunderstorms. We have made experin of high bird hazard situations for military purposes. Details of that work were de scrithed by Gunn and Solman (1967). Eve in this early stage of our studies we can forecast some of the hazard situations with enough detailed information abo movements of birds to permit the corre fions with weather patterns which will be necessary to make really good forecasts of high utility. We are now comparing month of radar bird observations with the weathe One iteme same and adjacent areas. information is the trimerine mech is which initiates waves of hird mization For some species we have clues. We know Ior instance, that in James Bay we have in October a build-up of blue and lesser snow geese from nesting grounds farther north.

We know that large groups of leave the build-up area during a period o within 24 hours after the passage of b co front, when there is a strong favourable wind and clear skies
In other words, we know that two of the four to seven cold fronts that pass through the southern end of James Bay in Octobe of any year will initiate movements of to aircraft ge altitudes betwitut a hazard thousand feet over a route of six and ten miles from James Bay to the Gulf of Mexico The moving geese may occupy an area 100 miles long, 30 or 4.0 miles wide, and 2,000 feet in depth moving in a southerly direction at a speed of 60 or 70 knots, depending on the strength of the tail wind several cold fronts that go through the area during the critical perid the the ones which trip the integrating mechanism the geese and start their movement. We know that for each cold front that passes without a goose movement, the likelihood
movernent on the next cold front is increased. We believe further study will help us understand the triggering mechanism so we can issue a warning before the in the air we can use radar to monitor their progress to provide warnings along their route about the likelihood of encountering a quarter of a million geese in any given part of the sky.
Through limitations in distribution of radar height-finding equipment our knowledge of the altitudes of migranls is not
complete as we would wish. By using special radar techniques we hope to get information on bird heights to supplement the information we get from pilots As our studies continue and our computer correlations work out more of the ment we believe it will be possible for ment, we believe it will be possible for air
craft to avoid large groups of migrant birds, Some of the European sludies with which we have been involved, including those which we initiated on behalf of the military units in Europe, have suggested that local
movements of birds from roosting areas to feeding areas may create a hazard as severe as that caused by major migrations. culls from large feeding areas such as gar bage dumps to resting areas. In one case that kind of movement occurred several times each day and took thousands of gulls across a fight route approaching a majo aerodrome. There had been damaging strikes on gulls near that aerodrome which were difficult to understand until radar . surveillance showed the type of bird move ment and its regularity. Once the timing
of bird movement was recognized, it was possible to schedule aircraft landings and possible to schedule aircraft landings and
take-offs to avoid the major periods of gull traffic. There are North Americat situations where gulls and even blackbirds pose a similar problem. We believe it would be useful to study local bird movement patterns around airports for the problem may be more widespread than is now realized. he techuique of time-lapse photography of a radar scope is relatively simple and for bird surveillance but also for recording aircraft traffic patterns. It would not be difficult to construct a unit to produce time-lapse photographic records of radar scope traces for use by a dispatcher. Quickly processed time-lapse movie records of what had happened within range of hi radar during the preceding 10 or 15 mi of forecasts of bird movement. That would permit minute adjustments of aircraft traffic patterns to make use of the safe portions of the sky and to avoid those which were heavily cluttered with birds. By using modern techniques we can carry through the same skies travelled by mil hooug of birds with fes traveled by mil than have caused loss of life and high costs in past years. For less than the multihon dollar expenditure which is now required to repair aircraft damage, we can modify the use of presently available radar o save dollars and human life.

Munro, D. A., and R. D. Harris. 1963. Du Danger (exodrou Dics Oiseaux Près De fird hazard at Canadian airports.). Colloque L Problène Des Oiseaux Sur Les Aerodromes Symposium on the Problen of Birds on Air-
pors) Institut National De La Recherche Agre homiture, Paris, p. $173-206$.
Solman, V. E. F. 1966. The ecological control of hird hazards to aircratt, Proccedings Third Bird Control Seminar. Bowling Green State University, Bowling Green, Ohio, Septenber 13, 196. p. 38.52

Gunn, W. W. H., and V. E. F. Solman. 1967 A bird warning system for aircraft in fight.
Problems of Birds as Pests, Academic Press London, England.

```
Previously published in The Problems of Birds as Pests, Academic Press, London, England, 1967. Reprinted in slightly revised form by permission of the Institute of Biology.
Environmental Research Associates, Toronto
FStaft Specialist, Canadian Wildlife Service,
400 Laurier Ave. West, Ottawa.
```


The theme of this paper is that radar can eadily detect flights of birds and that this information can be used effectively in flight ignificantly the number of bird torikes Since military number of bird strikes. arry out training flights and missions at all seasons and all times of day or night thas been argued that losses of aircraft and even crew owing to bird strikes have be accepted as one of many operational iternation at coraplex of national an e an operation requiring split-second liming and having no leeway for dive sonary tactics to avoid birds. It has also been argued that the problems of air traffic control are mounting so rapidly because of other factors that birds are becoming relatively minor problem, scarcely wor viewpoints are valid.

Let us look at the commercial operation first. While the chance of an unforeseeable random bird strike in fight will always he hish-risk conditions within faily na ow limits. In the first place, most com mercial aircraft cruise at altitudes far higher than those used by the vast majorit of birds, so the danger of a strike in the cruise phase is very slight, and comes clos to being negligible above, say, 12,000 feet Secondly, the multi-engines of commercia aircraft mean that loss of power caused but not catastrophic. Thirdly , experience has shown that at present-day cruising peeds wind screens and the rest of the airframe will withstand the impact from one or even a few small birds without seri ous damage. The high-risk conditions are therefore narrowed down to those in whic
one engine and those in which the bird struck is large enough to do serious dam age to such vital parts of the airframe as the wind screens and stabilizer. Moreover as the risk in cruise is small, we can conand climb-out, and approach and landing. The type of risk differs to some extent with the particular flight regime. In take-off and climb-out, the time elapsed is relatively brief, but it is also the time when most power is required: engine damage is the phase, the time period is considerably longer and the speed still high, but power is relatively less important, so here we are probably more concerned with structural damage to the airframe. Finally, at landing the speed is relatively low and the time is quite short, so the risk of a serious strike the birds are of gull size or larger

-

In sum, then, for commercial operators, we are concerned mainly with the take-of climb-out, approach and landing regi,
and with small birds in dense flocks, medium-sized birds (e.g. gulls) ill relative medium-sized birds (e.g. gulls) inl relative
ly dense flocks, or large birds (geese, swan cranes, or vultures, for example) fying individually or in flocks. Moreover, since the risk in the cruise regime is relatively low (above 12,000 feet), we are concerne primarily with airport surroundings outward to a radius of $50-75$ miles.
Assume now, for the sake of argument Assume now, for the sake of argen precise and specific information at hand about bird movements of the type mentioned. What alterations to normal operational routine would federal regulatory bodies or commercial aircraft operators be prepared to make to reduce the bird-strike hazard? The first reaction to this question is likely to be "very little or none". But suppose we consider the problem in relation
to what is being done today about another aspect of air safety, the thunderstorm. aspect of air safety, the thunderstorm.
Thunderstorms are seasonal in their frequency, local and short-lived in their occurrence, difficult to track with precision, and harder still to predict with accuracy. Yet the high degree of turbulence lurking in their centres may represent a very real hazard to aircraft. Pilots in training are warned casually through them. Meteorological services go to considerable trouble to provide pre-flight and in-flight advisory information about their occurrence. Air traffic controllers in airport towers an radar centres may change runways or approach routes or altitudes to help aircraft avoid nearby thunderstorms. When there immediate vicinity of an airport, pilots may delay their take-off briefly and landings may be delayed or even diverted until conditions become less hazardous. If all this can be done for thunderstorms it can also be done for fights of birds fol lowing patterns known to be hazardous as accurate and precise as they are for thun

derstorms. This, I think, is a fair enough challenge, and all the flexibility of opera onal procedure that need be asked for, to parison of hazard between thunderstorms and bird-strikes a valid one? Squadron Leader G. W. Ovans. formerly of the Directorate of Flight Safety, Canadian Forces Headquarters, said: "We have an elaborate warning system that allows us to take appropriate precautionary measures when dealing with thunderstorms. At least in part because of those precautions, w seriously damaged by thunderstorms. Y we do lose planes and have many others extensively damaged by bird-strikes. So far we have not developed any functional warning system against bird-strikes, but if it can be done successfully for the one, it should be possible and worth while to Turning to the trike problem, we can assume first of all
hat nilitary transport aircraft encounter roughly the same types of hazards as comparahle commercial aircraft. In Canada, w io not as yet have large pure jet transport
in military service, and this reduces the siz in military service, and this reduces the sic
of our bird problems. What we do have, however, is the F-104 or Starfighter aircraft, used by our squadrons serving with NATO, and in Canada chiefly at the training centre at Cold Lake, Alberta. As you know, that is a single-engined jet aircraft hown at very low levels and very, hish particularly bad combination, since the F.-10. cruises at altitudes where birds are frequently very numerous ($250-500$ feet) and at speeds which usually preclude eithe the pilot or birds from taking avoidance action if collision seems imminent. The wind screens seem able to withstand morn
bird impacts at high speed. and the remail der of the air frame is practically invulner able to serious damage from bird strike but not so the engine. The ingestion of e
a small bird can result in serious dama which may lead to loss of power, which
wi turn means almost inevitably that the in turn means almost will crash. Fortunately, the Can dian design of ejection seat is extremely efficient, and no pilots have been lost owin to known bird strikes, but there have been nine definite and two possible losses of F-104 aircraft from bird-strikes. At roughly 1.5 million dollars per aircraft, we have felt it worth while to do a considerable amount of research on the problem.
With the Canadian military forces, the problem lies largely with ensine inges tion of birds in a particular type of aircraft the F-104, where a strike by even a small bird may he catastrophic. A strike is more ikely to occur in cruise than during the other phases of the flight regime, because most of the cruising time is spent at low ions, the problem is more specific with regard to aircraft, but considerably less with regard to the types of bird involved and the distance from the airport.
In military fying, the margin for change in flight plans can be extremely small when, for example, operational exercises are
taking place. On the other hand aking place. On the other hand, Aexibility inercial operations for much of the time particularly for training programs. In plan ning training programs over a 2 - or 3 -year period, for example, it may be possible to arrange schedules so that the peaks in flying periods do not coincide with seasonal peak
in bird migration. Fven during seasonal peaks of bird activity, it may still be po peaks of bird activity, it may still be pos-
sible to minimize flying time during hours of the day or night when bird activity is greatest. If there is some leeway in the number of days to be flown per month, an
eflicient bird elicient bird-forecast and warning system within a a given to select days and nights is relatively high or low, and recommend altitudes and flight routes with the lowest degree of hazard. It would then be up to the operations group to set a threshold for hee degree of hazard which would require
the altering or postporing of scheduled training flights. The threshold could be ad justed up or down according to the urgency or type of fight programmed.
It was, in fact, with something like that approach in mind that we in Canada made our first efforts to operate a bird-activity
forecast program that might be used for operatiogran that might be used for Canadian Forces Base at Cold Lake, Alberta, from May 1 to June 15 and again rom August 21 to October 31, 1966. WV were at that time already taking time-lapse display at Cold Lake for long-term analy of the relationship between bird movements and weather conditions. For the above periods, we extended our photographic coverage to include a series of still photographs of a similar Plan Position Indicator (PR display. One photograph was taken each posed for 10 minutes, followed by a 2 . minute pause, then re-exposed for a final minute. The result was a streak of light representing each substantial bird echo (probably indicating a flock of birds), with a break in the track at one end to indicate he direction of movement. Both Polaroid and ordinary negative film were used in was quicker and easier to handle but lacked depth. The ordinary negative film, with a wo-speed emulsion, provided better conrast and detail, and therefore seemed better for making careful assessments of bird activity, especially in high-density situa ions. The two kinds of film were often used alternately for 1 -hour periods.
livered to the duty forecaster at ans was de a.m. and 4 p.m. These were rated accordin to an arbitrary 8 -point scale set up from a selection of photographs covering the whol range of migratory intensities. They proided evidence of bird movements up to 1 or 2 hours before forcast time, which wa 4 p.m. The forecaster endeavoured to fore ast the probable density of bird movement
fr each hour of the next 24 -hour period asing his decisions on the hourly intensity pattern for the previous 24 hours; the which indicated the seasonal trend; the weather forecast for the next 24 -hour period; and a rudimentary idea of what effect this weather might have on bird movements. During the spring of 1966 , the project was carried out purely as a "dr runl", with no influence on operations; in the autumn of 1966 , some limited opera
tional use was made of the forecasts. tional use was made of the forecasts.
An over-all assessment of forecast
An over-all assessment of forecast accu
acy was made from verification of 2,068 hourly forecasts. Taking errors of plus or minus one in the rating scale as being insignificant, it can be said in summary that 77 per cent of the forecasts were accurate 11 per cent under-rated, and 12 per cent
over-rated - on the face of it a very ac ceptable rate of forecast for a first attem However, further examination showed that much of the accuracy was obtained by fore. casting a continuation of the prevailing state. The level of accuracy was much lower if only those hours of greatest bird-flight intensity are considered. Of the 119 hours when the intensity was rated at $5,6,7$, or 8 only 50 per cent of these were correctly tumn. These presumably high-risk situations amount to only 6 per cent of the total number of hours forecast, so that if this relatively small number could be forecast accurately, the practical value of the fore cast system would be greatly enhanced A review of the results of the project
brought forward three main points. First 24 -hour forecast with a 12 -hour updating, provided much more lead time than was normally required. A 6 -hour forecast with a 3 -hour updating, the standard procedur for meteorological forecasts, would have provided sufficient lead time and allowed greater accuracy in forecasting. Seco quality of the radar information. The was being operated for purposes other than bird detection, and frequent changes in set-
tings of gain, polarization, beam elevation Moving Target Indicator (MTI), and rang led to difliculty in standardizing measure-
ments of intensity of bird movement. Third ments of important, the input of ornithol.
and most imple ogical data was far too inadequate and vague to enable the forecaster to interpret with any confidence the probable intensity of bird activity in relation to the weather forecast. Not only was very little precise in-
formation supplied about the bird/weather relationship, but there was also a lack of precise information as to the kinds and numbers of birds represented by the echoes on the radar scope. The general working hypothesis for the weather was that head winds from the presumed direction of migration would be unfavourable for intensive bird migration and that opposing winds
would be favourable. It followed that, in autumn, the east side of a high-pressure sys. tem (following the passage of a cold front) was considered favourable for migration activity and, similarly, in spring, the west side of a high-pressure system or a warm sector following the passage of a warm front was considered favourable. It was also assumed that the primary direction of migration was northward in spring and
southward in autumn. Subsequent study of the time-lapse motion-picture films has shown this to be an inaccurate assumption, as the primary direction has proved to be northwest in spring and southeast in autumn - a change that would make quite a difference in the assessment of the influence The bird intensity forecasting meation. The bird intensity forecasting project at anical level, but showed serious deficiencies in input at the theoretical level. Since then, we have undertaken a program to make good those deficiencies by learning more about the bird/weather relationship tween the echoes displayed elationship be the numbers and kinds of birds they and sent. We have run a computer program to make a multivariate analysis of bird move ment data assessed from Cold Lake radar

Im over a period of 17 months in relation 0 weather data for the same station and deal with bird data and meteorological dat from one geographical point only, we did not expect to arrive at any conclusive co elations, but hoped to obtain leads that would help in the next step - an analysis of similar bird and meteorological data for the same period from six locations in Alilluminating results if we do not become wamped by computer output along the Our second step was to establish an experienced biologist at Cold Lake in 1967 with instructions to obtain quantitative in formation about radar echoes by relating them to visually verified numbers and spe cies. He is also attempting to quantify our local movements of birds that show up repetitively on the radar display. As our ornithological knowledge of the region is extended, we are preparing a manual for the guidance of biologists and others at Cold Lake participating in the bird warning forecast scheme.
Meanwhile, a good deal of progress has been made in some parts of Europe towa Netherlands, the RNAF has set up a bird warning system based on time-exposure stil photography of a radar scope at Den Helder. When bird fight intensities rise above a certain level on an 8-point scale, nearby military airports are warned by telephone and a graduated scale of precauple, since it is a direct warning based on th ple, since it is a direct warning based on th
latest photograph and avoids the uncertain ties of a forecast, but it has the drawback that it has no lead time at all and a seriou time-lag may develop if there is any delay in the transmission of information to oper tions control. In West Germany, special efforts are made to monitor and issue war tions of cranes across the country since these are high-risk birds that cross many airport approaches. The program has
vorked out well, with enthusiastic support from many field observers. Holland, Belbird warnings through a rapid communica tions network. In France a number of staions pass on to pilots reports of current radar observations of bird movements. In France, racar films taken at Aix-enPovence in the spring of 1967 showed ramatically how local movements of bird may be an even greater hazard than mig gulls made fights between a major food source at a garbage dump northwest of Marseilles and a roosting area at the edge of a lake. The flight traversed the northern pproach to the main runway at the militar ase at Istres, at a critical height, some 5 miles north of the field. That runway, the angest in Lel jet aircraft. No one who has see the films is surprised that serious and expensive strikes have occurred there. It is worth noting that while the motion-picture films pinpoint with clarity and precision this daily local movement, still pictures fai do the job, because of internittent coverage and lack of motion. Still pictures are very effective in portraying bird migration of hours, but they are usually ineffective in howing up short-term local movements ccurring in only a small portion of the dis play. The experience at Aix-en-Provence points up the need to give more attention to ocal bird movements detected by radar, ince they may well involve birds in the high-risk category, and quite specific waw present a danger.
We learned our lesson in this regard one day in October 1966 at Cold Lake, when we lost an F-104 after an encounter with ome snow geese. The bird movement inten sity forecast for that particular hour of tha day called for a low intensity of bird acwas quite correct. What the forecaster failet to say and did not know was that although the number of birds in flight would be low

a fair proportion of them would be geese that had recently arrived from the Arctic Coast a thousand miles to the north, and were moving about during the day to visit local feeding areas.

We would like to close by outlining what might be a workable basis for an effective radar-derived information. It should work as well or better in Europe as in North America, because of the closer grouping of airfields and the greater number of weather (and bird) reporting stations.

The bird movement forecast would be prepared every 6 hours to cover the next
6 hours. In migration periods it would be updated every 3 hours, and every hour at times of high risk. It would be issued for a given region covering a number of airfields and would be as specific as possible. Prep. aration of the forecast would be the responsibility of a roster of biologists, organized in the same manner as duty meteorological lorecasters, butcovering a much larger area quired would not be impossibly large. Then duty biologist would be closely dependent on the current meteorological forecast and would have to be familiar with the synoptic situation on which it is based. It would be his responsibility to interpret the weather forecast in terms of how it was likely to affect bird movements. He will need to hav support: the experience gained from de-
tailed studies of radar films and compar weather data: information on known seasonal trends in bird movements in the region; reports of visual observations made in support of the operation; visual verification made of local movements that appear repeatedly on radar; and a backlog of genon the migratory behaviour the literature last must be weighed carefully since it may be based largely on visual observations that by themselves, can often give a very mis. leading idea of what is actually happening. The forecasts should be handled in the same general manner as local or special
weather advisories. They should be made
available with the shortest possible delay to the pilot briefing room for reference and possible action by pilots. On the same basis they should reach airfield controllers in towers and air traffic controllers in radar to issue bird movement forecasts only wh a designated degree of hazard is reached or predicted.
Forecasts for military airports should be prepared on a somewhat modified basis, in line with the differing requirements for military flights, as indicated earlier in this The
The outlined scheme needs to be strong nough to do the job but not so complex to ably take several years to set up such a scheme on a broad scale, it is appropriate to ask whether new generations of aircraft will continue to be vulnerable to birdstrikes, or whether aircraft design can overcome the problem. It seems evident that in the more immediate future aircraft are
likely to become more, rather than less, vulnerable to severe damage from birdtrikes. Larger engine intakes will accommodate larger birds. Larger aircraft carrying many more passengers will make plane loss more catastrophic. Increased speeds, such as are forecast for the take-off and climb-out of the supersonic transports, wil greatly intensify the force of impact and There is a possibility that an effective guard or bird disposal unit can be designed to rotect future jet engines. Some research has begun in the United States on this aspect of air safety. It may lead to an effective design that would greatly reduce the over 11 bird hazard. However, such a device vould not prevent strikes on the airfram ird-strike problem ill d ille acceptable risk until vertical take-off and landing aircraft are in common use. Mean while, in our opinion, any airport that oper tes without a proper bird-warning system extending outward 50 miles or so just is not trying hard enough for air safety.

Associate Professor of Zoology, Department of +20 West Bench Drive, R.R. I, Penticton, B.C.

Figure 1. Southern British Columbia. The region Figure 2. The arrows show the path of a Canada goose migration through the interior of the

During the spring of 1965 , from March 22 to June $10,16 \mathrm{~mm}$ movie films were taken of a radar display at a 23 cm (L-band) radar station in British Columbia. Impres sive, broad-front migratory movements of
birds across the area were recorded during his period. One movement detected by the this period. One movement detected by he

Figure 1

The radar echoes caused by the flocks of
The radar echoes caused by the flocks of
birds taking part in this migratory move ment were first detected close to the Canada-United States boundary. They wer moving northwards in a very narrow flight path which corresponded with the position of the southern portion of the Okanaga Valley of British Columbia (Fig. 1).
The radar echoes (which were round in
shape) were regularly of medium or large size, strong in intensity, and crowded closely upon each other. They were evidently caused by large birds, or perhaps large flocks of medium-sized birds. The line of radar echoes followed the course of the valley from south of Penticton to near Peachland, where Okanagan Lake curves
northeastwards (Fig. 2). The direction of northeastwards (Fg. 2). The drection of Valley was most frequently $340-350^{\circ}$ (NNW) along the line of the valley
(Table 1).
Near Peachland the line of echoes always left the Okanagan Valley and, crossing the mountains to the west of the valley, proceeded NNW across the Nicola Lake countr along a course that took them approxi
mately over Savona at the west end of Kamloops Lake (Fig. 2), in the direction of 100 Mile House in the Cariboo District, where they disappeared from radar view. After leaving the Okanagan Valley the echoes fanned out somewhat, so that the variation in directions of movement sometomes became as much as 60 (from
to N) and the flight path broadened.
This was a strictly diurnal movem and nothing equivalent was detected at night. It was usually first detected over the southern Okanagan Valley in the mornings between 0600 and 0900 hours Pacific Standard Time (PST), though once it did not appear until 1300 hours.
O Okanagan Valley reach hest side of little over 6,000 feet. Technical considera tions (including the distance at which the echoes were detected) permit us to deduce that the birds involved in this movement must have been flying at considerably
greater heights than this, and that the echoes on the radar display were probably being caused by flocks of birds that wer 5,000 feet.
The density of a movement of this kind cannot be strictly compared with densities cannot be strictly compared with densities
of broad-front bird movements reported
elsewhere; instead, relative densities ("very light", "light", "medium", and "heavy" movements) are provided in Table 1. The total number of echoes counted each day, and the relative rate of passage (echoes per
hour) were the basis for assessment (Table 1). The movement continued all day until between 1800 and 1930 PST in the evening,

Table 1

Table 1 of radar echoes in a line up the
Movencnts
soulhern Okanagan Valley towards the Cariboo $\begin{array}{r}\text { soulthern } \\ \text { in April } 1965 \\ \hline\end{array}$

$\begin{aligned} & \text { Date, } \\ & \text { Alp } \end{aligned}$	Period of movenent, PST	$\begin{gathered} \text { Relative } \\ \text { density } \end{gathered}$	Total no. of echoes during period	$\begin{gathered} \text { Echoes per } \\ \text { hour } \end{gathered}$	$\begin{array}{r} \text { Direction in } \\ \text { Okanagan Valley, }{ }^{\circ} \end{array}$	Weather ${ }^{\text {a }}$	Remarks
17	$0^{0730-(1915) ~}{ }^{\text {b }}$	Heavy	60	5.1	340-350	H	"Very light" density until 1015 but became "medium" after that; echoes somewhat pulsating; by 1115 the head of the line of echoes lad crossed the Thonipson River, but echoes were still appearing over the southern Okanagan; the density became "heavy" in the soulhern Okanagan at 1345.
18	.0800-?c	Medium	17	4.3	330-350	T	Movement not dense, but promincint.
20,4e	0910-1390 ${ }^{\circ}$	Light	19	1.9	$340-350$	F	"Very light" density after 1700 PST.
21	$\left.\begin{array}{r} 0730-1000 \& \\ 1300-1900^{b} \end{array}\right\}$	Heavy	46	5.9	340-350	T-H	
22	0600-?!	Heavy	62	6.4	330-350	H	At 0600 the density was "very light", but by 1000 it was "lieavy".
24	0645-(1900) ${ }^{6}$	Light	>26	>2.4	320-340	F	Density was "very light" before 1415; then a line of about half a dozen echoes moved across the southern Okanagan.

26	$1300-1800$	Light	17	3.4	340	H
2						

$\mathrm{F}=$ froutal (or low pressure syan F $=$ froutal (or low pressure system). Ap
April $23-\mathrm{H} ;$ April $25-\mathrm{H} ;$ April $27-\mathrm{H}$.
"Olsseured by the dever prest "Ol|scured by the development of a northwestwar
liroud fromt movement, probably of shorebirds. 'No radar record after 1200 PST.
and on several occasions there developed in the evening broad-front Nw movements (probably caused by shorebirds) which seemed to swamp or replace the linear movements as they declined around sunset
(Table 1) Since
for about 12 hours, with a stream of echo arriving in the southern Okanagan Valley from the south for the greater part of the day, it is clear that a large number of birds
was involved in Was involved in the movements when the
density was high Ilic probable numbers some estinates of Hepaper.
These movements were observed each
day 「rom A Aril on April April 17 to 22 (inclusive) and ${ }^{\circ}$ April 24,26 , and 28 , 1965. Details are
${ }^{\text {COn Aprill }} 19$ echoes were not seen ${ }^{\text {Okanagan Valley }}$ Okanagan Vallees, bere at few ween over the the
noring of Kamloops 3 -350 ${ }^{e} \mathrm{O}_{\mathrm{n}}$ April 20 the radar shows simultuneous movenent of liird echoes from the southern movenient of lirid echoes from the southern
Okanagan Valley towards the Caribor District and
movenenent northeastwards of widespread highblevel
given in Table 1. On April 19 the movement was not of significant proportions.
On April 21 the movement was on a broader front than usual in the morning (before 1300 PST), with widely spaced echoeseastor the southernokanagan alley, Valley as they moved northwestwards. After 1300 , however, the usual line was visible in the southern Okanagan Valley itself. On April 22 the movement formed a swath 30 miles wide, from about Kelowna-Penticton northwest to Savona-A shcroft, with den
clusters of echoes within these limits.
That the line of echoes first appeare
each morning at the southern end of the Okanagan Valley of British Columbia sug. gests the birds had spent the previous nights

A line of bright echoes in the soutlicrin Okanagan;
from 1415 they were visible nuving $300-320^{\circ}$ broken cloud; probably because of the bad wealler, sone flocks may not have been flying
as higl as usual, so tlat tlic relative density of the eccloes recorded by radar is artificially low (ecloes,/hr).
No radar record aficer 1545 PST
on the floor of the valley, probably not far south of the international boundary, in Washington State; but whether the flocks all originate from one (or a few) sites and
set off throughout the day or all set off set off throughout the day, or all set off
in the early morning from the whole lensth in the early morning from the whole lengt
of the Okanogan River Valley and Columbia River Valley is not known. It is certain that no echoes first appeared in the mornings north of Peachland (between Okanagan Lake and the Thompson River; evidently the birds which left the valley to the south each day continued on into the
Cariboo District, out of radar view, withou settling in the Nicola-Savona region.
The weather conditions under which
these movements occurred are described in a later section.

Identification

As this was a diurnal movement, and be cause it took a linear form (originating from a recognizable valley), it was natura to suspect that the species of bird produ
ing these distinctive radar movements might be diurnal birds of prey, cranes, or geese. Indeed, in 1965, Cannings had noted flocks of 42 and 140 Canada geese at Summerland on April 21, and some sandhill cranes, Grus canadensis, flying over Penticton at 1900 pst on April 26. As will be shown from observations made by Canit is virtually certain that Canada geese were responsible for the movements observed with radar.
In the spring of 1068, Cannings made a special watch for diumal migration durin April in the southern Okanagan Valley. A considerable movement of Canada geese along the valley was observed on 5 days
April 9,18 , and $20-22,1968$ (Table 2).
The peak passage occurred on the morning of April 18 , when 4,250 Canada geese were recorded in only 1 hour from 0810 to 0912 pst (Table 3) ; the flocks were spaced about 2 minutes apart in a following wind a rate of passage that was greatly in excess (about 4x) of that seeming to be detected with radar (Table 1) in was probably an exceptional occurrence; the seven flocks (1,200 geese) rec orded in another 1-hour count later the same morning (Table 3) are more nearly comparable with the findings of radar. The direction of movement of the geese was always nw over Penticton and Sum-
merland. The altitude of flight of the geese merland. The altitude of flight of the geese
observed varied, being low over Okanagan observed varied, being low over Okana
Lake on one occasion, but on April 18 most of the flocks were seen flying at about 2,000 feet a.g.l. ($=$ about 3,100 feet a.s.l.) In April 1969 Cannings repeated the watch. Migrating Canada geese were observed on April 14, 16, 17, 19, 20, 22, 23, and 26 (Table 4). The directions of move-
ment and the altitudes of flight were similar ment and the altitudes of
The 1969 passage of Canada geese was $4-5$ days later than in 1968, and the dates

Table 4 Visual observations of migrating Canada geese, April 1969				
$\begin{aligned} & \text { Date, } \\ & \text { April }^{a} \end{aligned}$	Time, PST	Number of birds	Weather ${ }^{\text {b }}$	Remarks
14	$\begin{aligned} & 0930 \\ & 1930 \\ & 190 \end{aligned}$	$\begin{array}{r} \text { Ca. } 50 \\ \text { C. } 100 \end{array}$	H	Over Penticton Over Penticton
16	$\begin{array}{r} 0930-1030 \\ 1930 \\ \hline \end{array}$	$\begin{array}{r} \text { Ca. } 400 \text { (} 4 \text { flocks) } \\ \text { Ca. } 100 \\ \hline \end{array}$	H-T	Over Penticton Ca. $4,000 \mathrm{ft}$ above valley floor at Penticton
17	1730	?	T	Flock heard above clouds, Penticton
19	0930	Ca. 100	F	NNW along Okanagan Lake; wind from south at ground level, but changed to north at 1100 PST; at higher levels from west throughour
19-20	?	Ca. 12 flocks		NNW west of Summerland, towards Brenda Mines
20	0820	>100	H	North high over mountains west of Penticton; wind from south at surface, upper wind from west
	1030	100		Ca. $5,000 \mathrm{ft}$ over the centre of the valley at Penticton
	$\begin{array}{r} 1900 \\ \text { All p.m. } \end{array}$	Ca. 200		Over centre of valley at Summerland No migrating geese seen from a mountain west of Peachland
22		200	F	Over Penticton
	0900	140		Over mountains west of Penticton
	1030	$150+200$		Over Penticton
23	$\begin{aligned} & 0745-0800 \\ & 0940-0950 \end{aligned}$	$\begin{array}{r} 3 \text { flocks } \\ 300-400(3 \text { flocks }) \end{array}$	F	Heard above clouds, Summerland North over Summerland at $2,000 \mathrm{ft}$ above valley floor; wind from south
	$\begin{aligned} & 1015 \\ & 1030 \end{aligned}$	$\begin{array}{r} 150 \\ >200 \end{array}$		NNW over Sunmerland at $3,000 \mathrm{ft}$ above valley Over Summerland
26	1200	150	T-F	Over Penticion
"On April 18 no migrating geese were seen, altlough a watch was maintained.				${ }^{4}$ Weather symbols as in Table 1. April 15-H; April 18-F; April 21-T; April 24-T; April 25-T.

(April 14. to 26) were closer to the dates of these days. The only day a large number of the movements recorded with radar in 1965 (April 17 to 28) than to the dates of goose passage in' 1968 (April 9 to 22). Also, although the passage extended over an equivalent period of time (12 to 14 days) in recorded on 8 days in 1065 and 1969 but on only 5 days in 1968. As a corollary, there was in 1969 no day with a passage as heavy as the one that occurred on April 18, 1968. This may perhaps be explained by the difference in the weather in the 2 years (dis cussed later Sandhill cranes were recorded in much eese. In 1968 flocks were seen on onad 3 days: April 18, 21 , and 23 . Canada geese were also migrating on the first two of
cranes was seen was April 23 , when six flocks were observed in the late afternoon. In 1969 flocks of cranes were seen on twice as many days as in 1968: April 13, 17 , $23-25$, and 28 . However, Canada geese ately fewer of the same days than in 1968 (only one-third: April 17 and 23). The largest number of cranes seen at one time was nearly 400 on April 28 and, as in 1968 this occurred in the late afternoon. Not only were Canada geese seen on more days than cranes, but also the number of flocks of geese seen each day was great have been responsible for the stream of echoes observed with radar for many hours each day in 1965.

Weather

Figure 3. Weather conditions in 1965 . Weather of radar echoes took place, including three of the five "heavy". or "medium" "density movements.
On April 17 , the first day movement was noted On April 17 , the frist day movement was noce
there was high pressure over Waslington State there was high pressure over Waslington State
(Fig. 3 .). On April 22 there was a ridge between
high pressure systems to the SW and NE high pressure systems to the SW and NE
(Fig 3 b). On both days movements of radar echoes were "heavy".

Figures 3 c and 3 d show the extreme frontal conditions described in the text for April 20 and
28,1965 ; movements of radar echoes were seen 28,1965 ; movements of radar echoes "light" and
on both days that were of relativel "lo "medium" density respectively. Compare Figure 3 c with Figure 5 c , and FIgure 3 d .
and 5 b . $\mathrm{H}=$ Chigh pressure area; $\mathrm{L}=$ low pressure area.

Figure 4. High pressure conditions associated
with Canada goose movements in 1968 cald 5 Figures 4 a-c slow weather naps for 3 of the Figures $4 \mathrm{a}-\mathrm{c}$ slow weather naps for 3 or the
5 days in 1968 wlen Canada goose migration was seen. Figures 4 d - f do the same for 3 of the
8 days in 1969 . 8 days in 1969.
On April 9, the first day migration was noted
in 1968 (Fig. 4 a), there was high pressure over Washington State, but an intense low lay to the N a and a cold dront was approaching from the
NW. No more migration was seen until April 18 NW. No more migration was seen until April
(Fig. 4b), when similar conditions prevailed
(see footnote d of Table 2 and compare with Fig. 5a). Apriil 14 and 16 (Fig. 4d and 4e) were the
frst 2 days In all six maps Washington Stated was eithe in an elongated ridge bet ween high pressure
areas over the Pacific to the SW and over the areas over the Pacific to the SW and over the
continental landmass to the NE or E or, less frequently, had part of a high pressure area actually centred over it. Winds were usually light,
but of variable direction. $\mathrm{H}=$ high pressure area; $\mathrm{L}=$ low pressure area.

It is not clear why movements were not also detected with radar on April 23, 25, or 27,1965 (when the area was dominated by high pressure), but it is likely that the peak of the migration was by then over and, perding days had temporarily depleted the area from which the birds originated.
1968
In April 1968 the weather was more settled than in April 1965, particularly during th main period of the movements by Canada geese. South of the international boundary here were high pressure conditions, with calm, on April 9, the day the first geese were seen (Fig. 4a), although a cold front was approaching from the Nw. Conditions were unsettled as low pressure systems an ronts crossed the region April 10 to 16, 17 to 28 there were high pressure conditions almost continuously (Fig. 4b and 4c) and movements of geese took place on 4 of the first 6 days in this period, after which
themigration seems to have been completed. The surface wind conditions associated with the goose movements in 1968 were similar to those associated with the move-
ments observed on radar in 1965 . Thus, the surface wind at Omak at 2200 pst during the nights preceding days when movement occurred was calm on 4 of the 5 nights in 1968, and no more than 6 knots on the fifth night. Similar, calm conditions were recorded at Penticton at 0400 pst on the mornings of the movements. Cannings noliced that sometimes the upper level winds Tabe southerly, sometimes northerly
In 1968.
An 1968 (unlike 1965 or 1969), the mean ninimum temperature at Omak for the 5 lights preceding movements fell to just below the freezing point, but this evidently lid not inhibit the migrating geese.
1969
In April 1969 the weather was more varishe than in 1968 (Table 4), and quite similar to that of 1965. High pressure cond lions from April 14 to 16, and again on

Figure 4

April 9, 1968-1000 PS

pril 20 , were followed by frontal condi Aons on April 18, 19, 22, and 23. he Canada goose movements of April 14, 6, and 20 (Fig. $4 \mathrm{~d}, 4 \mathrm{e}$, and 4 . s . occurre pressure conditions. Surface winds 0400 pst were light or calm at Omak and Penticton on at least 6 of the 8 days when novements were observed (thus repeating he situation in 1965 and 1968)
However, the goose movements of April 19,22 , and 23 occurred in quite pronounce rontal weather ($\mathrm{Fig} .5 \mathrm{a}, 5 \mathrm{~b}$, and 5 c), as on April 15 knots in strength both at Omak nd at Penticton (for the wind directions, see Table 4). The cloud conditions recorded at Omak confirm the evidence of the weather maps (Fig. 5) : in 1969 there was $7 / 10$ ths cloud cover or greater at 0400 psT on 4 of the 8 days that Canada goose migra ion was observed
The weather conditions associated with the 1969 visual observations therefore correlations concurrent with the 1965 radar observations than with the weather associated with the visual observations made in 1968, and so lend support to the view that the echoes on the radar flims were produce by Canada geese.
Earlier, it was concluded that the move ments of radar echoes in 1965 occurred with frontal as well as hivations show that the Canada goose movements through the southern interior of British Columbia are also not by any means restricted to periods of high pressure, or even transitional con ditions, but may also occur in frontal and even low pressure condition
It should be pointed out that low presure systems which come from the Pacific Coast are generally weakened during their hassage acrossiting effect of eastwardmoving low pressure systems upon birds migrating through the mountainous south ern interior of British Columbia in April is probably sometimes less than weather map might suggest.

Discussion and conclusions

The number of echoes that were detected by radar passing across an imaginary line at right angles to the southern Okanagan Valley on each day that movement was rec orded in 1965 is shown in Table 1. The largest number of echoes detected on any one day was 62 during a period of $92 /$ a hours on April 22 , mean number of echoes passing over a point in the valley on that day was 6.4 per hour, which is also the highest rate recorded. On days with "heavy" movements of echoes, the mean hourly rate of passage varied from 5.1 to 6.4 , while on days with light movements the comparable mean houry rate of passage recorded by r

The flocks of migrating Canada geese therved by Cannings in 1968 and 1969 ranged in size from 10 to 300 birds. On the day on which the heaviest movement of Canada geese was recorded in 1968 (Table 3) the mean number of birds per flock was 175, but for the other occasions the mea lock size was 125 birds.
Taking a figure of 150 geese per flock as n average, and each radar echo as representing one such lock of gese, the radar on single day in 1965 as they migrated up the ine of the southern Okanagan Valley was 9,300 . However, hecause the echoes deected by the radar were at altitudes above the elevations of the mountains surroun the Okanagan Valley (i.e. above 6,000 feet, , allowance must be made for flocks (such as those seen by Clying within the valley itself. It is probably reasonable to valley itself. "It is probably reasonent would involve between 10,000 and 15,000 geese flying across the region in a day. On the previous basis (a total of 269 de tected echoes and 150 geese per radar echo) the total population or Canada gee detected by radar making this migratos, 1965 , movemapear to have been around 40,350 Allowing for flocks not detected by the
radar, the population of Canada geese mirating along the southern Okanagan alley appears to number between 50,000 and 75,000 birds.
Because of its short duration and narrow fight path, and the large number of Jirds migrating together, the movement of Can ada geese (as observed with radar) is most unlikely to have involved Canada geese tha Rether these characteristics suggest that he birds were headed for a destination far to the northwest. The race of Branta cana ensis that breeds in the interior of the Yuon and in central Alaska is the lesser Canada goose (now known as B.c. paripes and this race winters in the interio alleys of the western United States, preponderantly in the states of Washington
and Oregon. It is considered to migrate rouch the interior valleys of the western tates and British Columbia. It is thought hat a part of the population of one other ace, B.c. taverneri, which breeds in west entral and northern Alaska, also migrates hrough the interior. Therefore, it is reaso ble to consider that the movements of Canada qeese described in this paper can me of B. B.c. pari pavelling with them t is interesting to note therefore that the 12 -year average for the mid-winter invenory of lesser Canada geese in the Pacific Hyway is 102,000 birds, and that in the winter of 1064/65 the number is reported In have been 92,000 (Pacific Waterfowl hyay Report No. 55, May 1966), a figure stimate in the pedy dissimilar to the uppe stimate in this paper for the number of san Valley of British Columbia in 1965 (75,000 birds).
Only once in either 1968 or 1969 (April 9, 1.069) were Canada geese observed when the ly a ground observer at a time All other recorded surface wind was strong. there was movements were observed when winds was calm at ground level, or surface tion, geese were not seen on migration
when the surface wind was strong, or even moderately strong, suggests that none were air-borne under such conditions, and that almost all of the movements probably oc. to moder enpper winds This would permit the birds to fly high. This would permit the birds to fly high, so that this station probably seldom fails to detect movements of this population of geese. The
density of radar echoes was, however, most always lower when the weather was frontal, compared with occasions when there were high pressure conditions (Table 1), and this could be due to fewer geese moving under frontal conditions. Alternately, migration may not be much hindered, but more flocks may fly within the valley out of radar view - behaviour which may explain why echoes were detected by April 19 1965, when conditions were frontal (see footnote d of Table 1), and why the heaviest of all the goose movement seen by Cannings occurred on April 18, 1968, when conditions were deteriorating (see footnote d of Table 2 and Fig. 4b). The valleys of the southern interior of British Columbia are deeply cut into the surrounding mondy, old is winer in these sheltered valleys, while warmer winds cross the region above them. The recording of calm conditions on the valley floor may not then provide any indication of the strength of the upper winds. In the early spring it would be possible for geese to be misled by these conditions and o start migrating when the upper winds ar nevertheless quite strong. It may be ne extremely close correlation of the oce rence of goose movements in April 1968 and April 1969 with calm ground condiions or only light surface winds, although the Okanagan Valley warms up rapidly it the second half of April so that mixing of valley and upper airmasses is more complete The light winds recorded at Omak and Penticton appear to be a true reflection of fairly wide spacing of the isobars, over
e southern British Columbia-Washingto Oregon region as a whole, on many of the weather maps for the periods under onsideration (Fig. 3a, 4c, 4d, and 4e) which is indicative that the winds were light over a wide area, not only in the floo lusions reagagan Valley. So, the main con nons reached earlier about the weathe conditions associated with these moveIt would appear that the Canada vane making the movements described from the radar films form a considerable hazard o aircraft flying below 15,000 feet in outhern British Columbia during the second half of April in the daytime, par icularly over the line of the Okanagan Valley as far north as Westbank, and along he line across the Nicola Lake country rom Peachland towards Savona. An equiv River Valley south of the international boundary in Washington State. Aircrat ravelling between Vancouver and towns in he Okanagan Valley, the Kootenays, and Kamloops, run a risk when crossing the southern Okanagan Valley, particularly if hey stop at Penticton airport.
Because of its form and timing, the haz rd created by these Canada geese is irds migratinc on a broad front in that is highly predictable: it occurs in day light only, in a narrow specified locality, or only 2 weeks in the spring of the year, and can be observed with radar. Consequently it is possible to take steps to min mize the hazard this movement present, In particular, it might be wise to divert uhich are normally scheduled to land at Penticton or have Penticton as their destiation. Also, it should be possible to provide private and commercial pilots with dvance warning of the risks created by his particular migratory movement of many thousands of Canada geese.

Simmary

Acknowledgements

Radar observations of biral movements in east-central

Alberta

W. John Richardson* and W. W. H. Gunn \dagger

1. Distinctive movements of medium-large, bright, echoes were detected with radar moving NNW up the southern Okanagan V alley of British Columbia on a narrow front in daylight hours between April 17 NE near Peachland, the line of echoes ne near Peachland, the line of echoes and fanned out across the Nicola Lake country wnw-n towards the Cariboo District. The birds involved were evidently flying at elevations above 6,000 feet and probably between 8,000 and 15,000 feet. 2. Observations made in the southern the spring migration in April 1968 and the spring migration in April 1968 and
April 1969 have identified the species re April 1969 have identified the species re
sponsible for the movement, with reason able certainty, as the Canada goose, Branta canadensis, probably mainly of the race parvipes.
2. It is estimated that between 10,000 and 15,000 Canada geese may be involved
on a day with "heary" movement, and that on a day with "heavy" movement, and that
between 50,000 and 75,000 geese may mi. grate up the southern Okanagan Valley during the 12 -day period in the second half of April.
3. The Canada goose movements in 1965, 1968, and 1969 occurred when sur face winds were light, or there was calm. quently when there were high pressure conditions, the movements also occurred when frontal conditions extended across the region.
4. The radar observations suggest that during long-distance flights Canada geese fly over the mountains of southern Br
Though flocks of geese flying below
Though flocks of geese flying below the
level of the mountain ridges would not have been detectable, the radar station concerned probably detects all of the separate long.haul movements of this population of geese across the region in the spring. goose movements is discussed.

The radar films were taken for the Associate Committee on Bird Hazards to Aircraft of the National Research Council of Canada by the personnel of the radar sta-
tion, and the films are deposited at N.R.C. tion, and the films are deposited at N.R.C.
in Ottawa. Mr M. S. Kuhring, Chairman in Ottawa. Mr. M. S. Kuhring, Chairman
of the Associate Committee, kindly allowed of the Associate Committee, kindly allowe the films. The Canadian Wildlife Service supplied substantial financial support during this study of the films, and this is gratefully acknowledged also. Dr. W. W. H Gunn made a number of suggestions whic led to several improvements in the pape
We also thank those Okanagan Valley We also thank those Okanagan Valley visual observations of migration in 1968 and 1969.

Section of Neurobiology and Behavior, Division of Biological
Environne

Introduction

Methods

Since the discovery that modern surveillance radar routinely detects bird move ments (Harper, 1957; Sutter, 1957; Houghton and Coultas, 1958; Tedd and Lack, 1958), there have been many radar
studies of migration in Europe and North America (see Myres, 1964b, and Eastwood 1967, for bibliographies). These studies have provided much new information abou
migration routes, the height of migration, migration routes, the height of migration, the relationships between visible and actua amount of migration and weather. Radar has also provided information of relevance to theories of migrational orientation (reviewed by Eastwood, 1967; also Bellrose, 1967; Evans, 1968a,b; Graber, 1968; Steidinger, 1968; Lack, 1969; Parslow,
1969). In spite of the extensive use of 1969). In spite of the extensive use of
radar by ornithologists in the last decade, the major published studies of migration in North America are confined to coastal New England (Drury and Keith, 1962, Nisbet, 1963a,b; Drury and Nisbet, 1964; Nisbet and Drury, 1967a,b, 1968) and the northern Mississippi Basin (Bellrose
and Graber 1963. Hassler et al, 1963; Bellrose, 1964, 1966, 1967; Graber, 1968) In 1963 a radar study of bird movements was begun by the Canadian Wildlife Service in association with the National Research Council's Associate Committee on Bird Hazards to Aircraft. Since then, time-lapse films have been taken at various
times of 24 diffan eight provinces of Candar displays in sites in France of Canada, at two rad seven sites in the United States. The major purpose of this study has been to find means of reducing the number of bird-aircraft strikes (Gunn and Solman, 1968; Blokpoel, 1970); hence the methods of recording and anal
ysing data Ysing data have not always been those
most sutable poses, especially studies of orientational albility. However, many of erientational interest have been accumulated. Reports on a number of radar studies of specialized ${ }^{\text {ty }}$ Pres of bird activity are currently in preMaration or in press. However, this is the
first paper dealing with migration in general and based on our standard filmassessment procedures. We will describe the radar view of migration from one in east-central Alberta and include an analysis of correlations between migration
volume and weather and the effects of wind volume and weather and the effect
direction on migration direction.

Radar and filming
This paper is based on time-lapse filming This paper is based on time-lapse filmin $\left(54^{\circ} 24^{\prime} \mathrm{N} ; 110^{\circ} 17^{\prime} \mathrm{W}\right)$ from April 1 to June 10, 1965, and from September 10, 1965, to November 30, 1966. Film was available for 11,077 of a possible 12,216 hours (90.7 per cent) in these periods. The radar was a high-powered L-band arveillance installation with a Plan Poai tion Indicator (PPI) display showing an Target Indicator (MTI) circuitry was always used in the central part of the
display (out to about 30 miles range).
Beyond that range normal video was used.
Radar adjustments sometimes made ver ew birds visible in the central MT1 are of the display (e.g., in Fig. 1, intensity
levels 7 and 8). Also, an irrecularly shaped area containing few bird echoes is visible near the centre of intensity levels 2,4 and 6 in Figure 1. This occurred because the echoes from some of the birds flying above areas of intense ground clutter tend to be suppressed with ge gred tis pho have observed this phenomenon on a num-
ber of different types of radar. Besides the suppression of some echoes near the centre of the display by various radar adjustment and over areas of ground clutter, echoes from most birds within a few miles of th radar site were suppressed by
The radar operated at five sweeps per were exposed per minute, with one frame per sweep. Later, five frames were exposed every 2 minutes, with successive sweeps being recorded and skipped in sequence A clock and a date card situated beside the PPI were included in every frame. Edmonton and Calgary, Alberta, Regina and Yorkton, Saskatchewan, and Beausejour, Manitoba, are presented for comparison. The last two sites (numbered 4 and 6 respectively on Fig. 7) had radars comparable to that at Cold Lake. The first

hree sites (numbered 18, 103, and 29 in is. 7) had $550-\mathrm{kw}, 23 \mathrm{~cm}$ Air Traffic Control radars similar to those described by Richardson and Haight (1970).

Data recorded

In order to analyse the large amount of filmed radar data obtained at Cold Lak had to develop a standard numerical re cording system. We recorded bird activity visible with radar in terms of units which ne will events. An event consists of

continuous flow of bird-echoes showing similar characteristics and behaviour over a period of time. Events may range from a few echoes making a local movement a tew miles long tho radar coverage area. Gradual changes over time in the intensity, direction, and echo size of a flight were not considered grounds for dividing the activity into separate events, but discontinuous changes in these parameters (indicating separate types of
birds or types of movements) caused us to

divide the fight into separate events. Wh there was unavoidably some degree of ity fell naturally into separate events. Occasional arbitrary decisions about ho to divide the activity into events had no resultant effect on the analysis of weather correlations with migration volume, because this analysis was based on the total mount of activity each night rather "event" and "movement" have equivalent meaniug in this paper.

For each event, a wide variety of information was abstracted from the time-lapse film. General data included the date, the tart, peak (greatest intensity), and end times, and indications of how precisely the start and end times could be determined. At each of the start, peak, and end times, the following were recotled: (i) the three mose or less arbitrarily defined 7 -grade ordinal scale), (iii) the position of the eve on the radar display (either in certain octants or over the whole display), (iii the proportion of the display containing bird echoes. and (iv) the type of movemen e.f. a local Aight (defined here as beginuing and ending on the display) ; a fight begin ning on the cisplay and moving out of
range; a flight entering one side of the display and leaving the other; a roosting light; a disoriented fight. Two other parameters, the mean direction of flight (estimated by eye to the nearest 10°) and the intensity of flight (see below), were recorded every hour throughout the duration of the event. All these data were place on punch cards for machine analysis
The intensity of each event was est each hour by eye in terms of the ?-level arbitrarily defined ordinal scale illustrated in Figure 1. The scale is based on the number of echoes per unit area at various distances from the centre of the display At low intensities, the scale takes into account the progressive "thinning" phemomenon (Nisbet, 1963a) and tlie supantenna. ("Thinning"" is the progressive decline in number of echoes per unit area on the display as one moves from the entre to the periphery.) At moderate and high intensities, the display is saturated lo some diy covered with birct echoes) ou thisme distance from the centre. Hence, for moderate and heavy movement. A lightly changed intensity scale was in use When the October and November 1966 unsitted froe assessed. These data have been unitted from the analysis whenever this
change would require a different interpre tation of the results. We are aware of the difficulties involved in obtaining quantitative radar olservations (Nisbet, 1963
We claim only that our data provide a ough estimate of our data prolume me sured on an ordinal scale. The accuracy f our density estimates is considered in the Discussion.

Data analysed

The Cold Lake ralar data were subjected to various types of analysis using comypes of movemients detected by the rad vere recorded, the analyses considered here cleal only with long-distance "migraory" movements, which were defined as hose events that either entered the radar coverage area from out of range, or moved out of range, or both. Unless otherwise tad, we dia not consider local g -di (defined above). Totals of 873 long-d corded (exclusive of local roosting flights corded (exclusive of local roosting fights et al. 1962)

Basic data units
We used different basic units for different parts of the analysis.
(i) The description of migration is
\qquad (ii) The analysis of correlations between volume of nocturnal migration and weathe is lased on the total amount of activity To determine this total, all the mier events events (usually none, or one, but occasion ally two) occurring on a given night within a given 90°-wide range of directions were allocated a single number representing the peak intensity of movement in that range of directions during the night. On those one movement during oue night in a single range of directions, the following procedure was used. When the events were of unequal intensity, the overall peak intensity was taken as that of the peak intensity of th
strongest event. This procedure was fol lowed because the relation of the lower. tensity levels is such that, for example, simultaneous intensity-2 and intensity-3 events looked at together do not appear to show as many birds as a single intensity-4 movement. On nights when two movements did occur in the same direction range, both movements were usually of low intensity
When there were two events with the sam peak intensity, the total intensity was taken as the peak intensity of each single event plus one (i.e. two intensity- 3 events in a single directional category were assigned an overall intensity of 4). This reflects the general appearance of the display when tw events of equal intensity occur simula neously. On most nights there was no direction ranges, and hence this summation procedure was not needed.
(iii) The analysis of the effects of wind direction on direction of nocturnal migra tion is based on "event-nights". An event night is that portion of any migratory even occurring between sunset and sunrise While an event reaching its peak intensity at nig lorms an evenon 8 , , include two event-nights.

Methods of analysing relationships between migration volume and weather The statistical analyses of correlations between intensity and various weather parameters are based on the peak intensity of directions of flight each night. Since we have not yet accurately determined the number of birds represented by each of the values in our intensity scale, procedures based on interval scales of measureme (such as calculating mean intensities or using multiple regress a normal intensity of nocturnal movement changes from one part of a migration sea son to another and from year to year, we considered it advisable to develop a morli fied intensity scale wherein each night's
intensity was compared to the normal in ensity at hat lice of year. The computer exceeded on 25,50 , and 75 per cent of the nights in 15 -day periods centred on each day. This was done separately for NW (range W to N) and SE (range S to E) movements. We drew smoothed " 15 -day moving quartile" curves through these values (Fig. 2 and 3) and recorded the intensities of NW and SE movement each night as being in the "moving quartiles" are analogous to a mov ing average, but are appropriate to an ordinal scale. Thus, a night whose intensity was in the first quartile had very little migration relative to the normal for that time of year, while a night in the fourth quartile had an intensity reached on less than one-quarter ing on quartile curve were alternately (by date) assigned the quartile intensity values above and below the curve.
The analysis procedures applied to the normal migration situations (W to N movement in spring and E to S in autumn) differed from those applied to reverse mi ration (SE in spring and NW in autumn) ituations there were relatively few nights with no movement in the relevant direction and there were large shifts over a period of weeks in the normal intensity (Fig. 2 and 3). Hence the modified 4 -level (quartile) scale was used, and the distributions of weather parameters at each of these 4 evels of migration were compared by nonarametric procedures (Siegel, 1956). In only a few nights had any movement. Hence the fourth quartile was usually the only one containing nights of non-zero intensity. Rather than use the quartile scale for these ypes of movement, we compared the disibutions of weather parameters on nights aving no movement with those on nights and Whitney U-test (Siegel, 1956).
Relationships between intensity and synoptic weather situation were examined

Figure 3

wing the U.S. Weather Bureau Daily Weather Maps. In the analyses of correla tions between intensity and individual
weather parameters we used weather parameters we used punch-card
records of hourly observations of surf records of hourly observations of surface weather at CFB Cold Lake. Figure 10 indi near sunset. Hence we chose weather bega tions at sunset for use in the a preliminary examination of the data re
vealed that sunset temperature relative to normal and relative to that 24 hours earlie was better correlated with intensity than maximum or minimum temperatures relahe to their respective normal values for emperature parameters were first two main analysis. The weather data were xamined relative to nocturnal intensity of w (range W to N) and SE (range E to S) movement in spring (April 15 to June 15), autumn (August 1 to October 31), and winter (December 1 to March 15)

Results

Figure 4. Mean directions of nocturnal longdistance movements through the year. Events night
their hour of highest intensity during the nigh are included; the mean direction of each of these at the hour of peak intensity is presented. The left and right diagrams of each pair (5) events,
intensity $(1-4$) and highinintensity intenspectively. The relative lengths of lines show the number of movements in each direction pro. portional to the number in events included is given
tion. The total number tion. The total number to the of each diagram.

General description of activity
General description of acts bird activity routinely out to 50 nautical miles from the antenna site and occasionally $70 \mathrm{n} . \mathrm{m}$. away This activity consists of local (beginning and ending within radar range) and long distance (appearing from out of range moving out of range, or both) movements. Both local and long the year ments occu wh varying frequency and intensity. Local movements were more common by day than by night in all seasons except winter (181 with hour of highest intensity by day vs 75 by night in spring, summer, and autumn; 14 by day vs 35 by night in winter). Long-distance moveme were roughly as common by day as by night except in fall, whener, the peak intensity of long-distance movements was on average higher at night than in the day except in winter, when they were nearly equal. This paper deals only with long. distance movements unless otherwise noted Virtually all long-distance movements visible on the Cold Lake radar are "broad front movements". While there are several flat and is devoid of pronounced valleys or rows of hills that might concentrate the birds. Although the predominant flight direction by both day and night is SE in fall and NW in spring, low-intensity movements in other directions are common in both se sons. In winter and summer both NW and se movement occurs. Because there is long.
distance movement throughout the year, migration seasons are hard to define. Figures 2 and 3 indicate the peak migration period

Direction of fight

Distributions of mean directions of longdistance nocturnal and diurnal movements Figures 4 and 5 respectively. In January and February the low-intensity movements (peak intensity 1 to 4) usually moved either north or south. Northward movements were more common than southward ones

Figure 4

$\overline{\text { oct }}$

Jundy

- $\overline{\text { Nov-Dec }}$

Figure 5
Apr-May
June-July

especially at night. In March most (69 per cent) of the nocturnal movements were in the range of directions WNW-NNE, while the diurnal events were scattered over a wide range of directions. In April and May and virtually all (96 per cent) of the high intensity (5 to 8) nocturnal events were in the range west to north; most of the remainder (70 per cent) were in the range east to south. The diurnal events were agai more scattered. In particular, there was considerable movement in the NE as well as most of the movements were directed in either the range west to north or the range east to south. While diurnal activity was predominantly to the sse, nocturnal activity was roughly equally split between NW and SE
By August, the predominant direction was clearly sE. Although many low-intensit high-density and about half of the low.
intensity nocturnal events were in the auumn E to SSW range of directions. The low-intensity movements tended to go sse, while the stronger events went E and ESE. A similar situation occurred in September nocturnal events usually went SE. The E and ESE to se shift in the predominant direction of high-intensity events from August and September to October occurred in both 1965 and 1966 and was statistically ignificant ($P<.01$ for the hypothesis grov Smirnov test modified for circula distributions - Batschelet, 1965). Diurnal events from August to October had a wide catter of mean directions. In November and December there was a wide range of directions by both day and night, but move ments in the ran
Figures 6 and 7 show the mean direction of long-distance nocturnally peaking high-

Figure 6. Distributions of mean directions of high-intensity $(5-8)$, nocturnally peaking, long
distance movements in spring (April-June) at five prairie radar sites. The relative lengths of
lines show the number of movements in each lines show the number of movements in each
direction proportional to the number in the mostdirection proporitional The total number of events in used direction. Thed is given on the figure.

Figure 7. Distributions of mean directions of high-intensity ($5-8$), nocturnally peaking, long-
distance moveruents in autumn (Ausust--October) distance movements in autumn relative lengths of at six prairie radar sites. The rements in each
lines show the number of movemen direction proportional to the number in the mos used direction. The total num
cluded is given on the figure.

antensity events at Cold Lake and sever other prairie sites in spring and autumn espectively. It is apparent that the NWais of migration observed at Cold Lake is ypical of sites in central Alberta and in
Saskatchewan. In se Manitoba, spring migration is more typically to the N than the NW. Data are too sparse to show whether autumn migration in SE Manitoba is more to the south than at sites farther west.
to the south than at sites farther west.
At Calgary, Alberta, 300 miles SW of Cold Lake, migration seems to be predominantly on a N-S axis.
Figure 8 and Table 1 show the influence of wind direction on the direction of nocturnal migration by seasons. Low-intensity movements tended to be directed down wind. In autumn, small movements with (expected direction), while with SE winds both forward and reverse movements occurred. High-intensity movements, on the contrary, were nearly always NW in spring and SE in autumn. Hence, the direction and the amount of variability in direction were less dependent on wind direction in highintensity movements than in low-intensity movements. There was, nevertheless, some
indication that wind direction affected the direction of autumn high-intensity movements. The vector mean direction of the 14 autumn movements occurring with winds in the range nnw to Ne was 159°, while that of the 17 movements with SSE to SW winds was 114°. However, there was wide variability among the mean flight direclions and among directions of individu

Changes in direction during

movement
The data presented above refer to the direc lion of each event at its hour of greatest intensity. However, there are often shifts in a moverection from the start to the end of day and night and throughout by both direction of an event rarely shifted by mor than 30°. Examination of Figure 9 suggest hat with the possible exception of autumn

Figure 8

Heavy moventent in spring

Light movement in autumn

Heavy movement in autunn
wind \qquad sind

Figure 8. Mean directions at hour of peak inten.
sity of nocturnal light $(1-4)$ and heavy (5-8) long-distance movements in spring (April 1 to June 15s) and autuman (July 16 to October 31)
with variou wid with various wind directions. The radial line oul-
side each circle indicates the overall vector side each circle indicates the overall vector mea
direction. The relative lengths of lines show the number of movements in each direction propor tional to the number in the most-used direction. below and to the right of each diagram.

Table 1
Directions of nocturnal long-distance movement
in spring and autuma

$\begin{aligned} & \text { Wind } \\ & \text { direction } \end{aligned}$	Time*			Spr				Autunn					
		Intensity 1-4			Intensity 5-8			Intensity 1-4			Intensity 5-8		
		Mean, ${ }^{\circ}$	$\mathrm{AD}^{\circ}{ }^{\circ}$	N	Mean, ${ }^{\circ}$	AD, ${ }^{\circ}$	N	Mean ${ }^{\circ}$	AD, ${ }^{\circ}$	N	Mean, ${ }^{\circ}$	AD, ${ }^{\circ}$	N
NNE fo E	1	300	41	18	325	16	4	223	51	21	143	50	
	2	306	34	17	322	18	3	228	55	22	120	51	
	3	324	23	7	327	20	5	199	58	17	115	-	
Ese ios	1	339	35	26	323	23	12	358	71	46	97	46	
	2	337	35	26	327	56	13	353	72	43	100	34	21
	3	334	34	18	337	20	10	31	66	23	104	33	20
SSW to W	1	20	61	8	335	-	1	136	44	19	126	21	29
	${ }^{2}$	21	64	10	335	-	1	126	45	20	128	20	29
	3	97	69	12	345	-	2	131	44	18	137	23	29
WNW io N		170	56	21	307	29	5	176	51	22	142	41	28
	2	169	50	20	304	32	4	189	49	19	142	37	24
	3	179	69	17	255	-	2	156	40	13	145	40	15

Wind directions are surface wind direction at CFB the maximum possible niean vector length$\begin{array}{ll}\text { Wind directions are surface wind direction al Crs } & \text { the maximum possible niean vector ength- } \\ \text { Cold Lake at the time of the start, peak, and end } & \text { Batschelet, 1965s. This measure is conparable to }\end{array}$ of the event night. pring and aut 16 to October 31 .
Jult Mean is the vector nean of the movement means. $A D$ is the mean angular deviation $(=\vee 2(1-r)$,

Table 2
Table 2
Change in mean direction between start and end
of nocturnal long-ditance migrationseseason events Season

Season	Intensity	Shift (Mean \pm St. Dev.)*	N	Significancet \dagger
April-May	$\begin{aligned} & 1-4 \\ & 5-8 \end{aligned}$	$\begin{aligned} & +17.1 \pm 24.6^{\circ} \\ & +30.0 \pm 31.6 \end{aligned}$	55 9	$\begin{aligned} & P<.001 \\ & P \simeq .02 \end{aligned}$
August-Nove	$\begin{aligned} & 1-4 \\ & 5 \end{aligned}$	$\begin{array}{r} +9.0 \pm 22.7 \end{array}$	$\begin{aligned} & 67 \\ & 39 \end{aligned}$	$\bar{P}=0.021$

Positive slifts clockwise; negalive counter clockwise.
nocturnal events, shifts clockwise are more frequent and larger than shifts counterlock wise. This possibility was clearly con firmed (in autumn also) by the analysis of 2. The table indicates that for both low. nd ligh-intensity events in both sprin and fall, the mean shift between starting and ending times is significantly different from zero and in the clockwise direction. Because high-intensity movements tended to last longer than those of low intensity see below), one might expect greater dir
ional shifts on the average with high

Testing hypothesis that mean shift is zero
using 2.tailed t-test.
intensity events. This appears to be the case in both spring and autumn, but only the autumn difference is significant ($P \simeq 8$ and $P<.01$ respectively for hypothesis that 2-sample 1-tail tests - Siegol 1056) Thample 1-tail lests - Siegel, 1056)
xamine the mean directions of movements early and late in the night when only those occasions within certain wind-direction ranges are considered. With various combinations of season, surface wind direction, and intensity of migration, both clockwis
and counter-clockwise shifts are seen.

Time
1 Starting time of event-night or sunset, whici-lever was later. Events beginning after midnight
were not included. 2 Were not included.
3 Ending time of event-night or surrise, whichever was earlier. .ventints ending before midnight
were not included.

Heavy spring movements with SE (follow ing) winds show a clear clockwise shift from early to late in the night, but heavy autumn movements with NW wind do not Of the eight situations with side winds (NNE to E and SSW to W) relative to the normal NW-SE axis of movement, three
show some degree of shift of their direcshow some degree of shift of their direc-
tion of movement into the wind. These thre cases are light spring movement with NNE cases are light spring movement wibh Nnt with both Ne and sw winds. The other five cases show no change, have very few data, or are not directed on the NW-SE axis of movement and so are not being subjected oo side winds. While the three cases of shilt taken as evidence of thercompensation for teral wind drift, the chifts are small and inconsistent. Furthermore, differences be tween wind direction at the surface and at the level of flight are frequent enough tha serious biases may result from the use of orface data. Unfortunately, upper wind lata were not available at frequert inter-

Figure 10. Distributions of starting times of nigratory movements in April to November beginning within radar range. morning and afternoon
ments beginning in the morn are plotted relative to sunrise and sunset, respectively.

Figure 11. Proportoon of the diurnally (...) and nocturnally $(-)$ peaking migratory events ha ing each echo size as the most frequent size. as the most frequent size is plotted relative to the
number of events recorded with the seasonaly nost common size. .otal number of movements and the probabiily that the durnal and nocturnal
distributions are identical (2 -tailed Kolmogorov. Smirnov test) are given.
gradually to reach a peak usually before near midnight. There was a parallel sea
onal variation in sunset time and peak sonal variation in sunset time and peak
time. On the average (but not on all nights), the intensity was maintained at or near its peak until well after midnight, especially in autumn. A gradual decline in intensity until dawn then occurred. During he migration seasons, little or no increas in the typical intensity was apparent at dawn.
During the winter and to a lesser extent during the summer, an increase in intensity during the summer, an increase in intensity
on the average did occur at dawn. This was followed by a gradual decline through the day. Particularly in summer but also in winter, an increase in intensity occurred again at sunset
Further details of hour-to-hour changes intensity are given in Richardson, 1970.

Timing of long-distance movements Most events which reached their peak in tensity during the day began within a few hours of sunrise, but some began in the afternoon. In contrast, nocturnally peaking events usually began between 4 hours before sunset and 2 hours after sunset. Most heavy (intensity 5-8) nocturnally peaking
events began before sunset (42 of 59); 11 began between sunset and midnight; and only 6 began between midnight and sunrise The above analysis of starting times is based on all long-distance events; that is, it includes those which entered the radar coverage area from out of range as well as Whes movements which began within rang When only the latter are examined, the nal and nocturnal movements to sunrise and sunset respectively can more clearly be seen (Fig. 10). These nocturnal movements tended to begin at or after sunset while diur tal ones usually began at or before sunrise. Almost all (73 of 78) the heavy-intensit between 1 lo peaked at night. Most peaked before sunrise Low-intensity (1-4) eve reached their peak intensities at all hours,

but with concentration at and just after sunrise and sunset
Nearly all (96 per cent) diurnally peak ing events ended by 3 hours after sunset. events peaking at night ended by sunris events peaking at night ended by sunrise. High-intensity nocturnally peaking events 47 compared 86 before midnight (of turnal events), and most ended near sunris eday. Thus, heavy nocturnal events tended to end later than smaller ones.

In all months, high-intensity events had longer intervals between their start and their peak times and had longer durations than low-intensity movements ($P \ll .001$ in each case for hypothesis that interval independent of intensity; Kolmogorov5 mirnov 2-tail tests on intensity from start to -8 even 2 . and high-intensity events were 2 and 5 hours respectively; median intervals from start to end were 5 and 18 hours. Winter events reached their peak

Figure 13. Intensity of nocturnal movement in
autumn (August 1 to October 31) Alberta, with different synoptic weather Lake, Symbols as in Figure 12. Four nights were ex. cluded because their synoptic situation could not
be classified into any situr be classified into any situation found on the gen-
eralized map. Data for October 1966 were eot used on the NW direction figure becuuse of the
change in

Spring NW moveme

$\overline{\text { Figure } 13}$

sooner and had shorter durations than low. intensity events in other seasons ($P<.025$ and $P<.001$ respectively).

Temporal changes in intensity within

 The intensity of movementsper cent of 718 events) rose usually (84 zero to a single peak and then decreased again to zero. On rare occasions the rise was very sharp (when many echoes ap. peared simultaneously on the radar screen) Sometimes a prolonged period of peak intensity (11 per cent of the events) or a ound. The latter was particularly in movements which continued through day and a night. Since high-intensity move ents usually lasted longer than lowtensity ones, it is not surprising that high-intensity nocturnal events had flat or modal peaks more frequently than lowtensity nocturnal events $\left(P<.001 ; \chi^{2}\right.$ test $)$ Echo sizes
Figure 11 shows that, except in winter, the most prevalent size of echo in diurnal move in nocturnal movemente larger than that frequent echo movements. The second-mos by day echo size was also notably larger sons. The day-night in the migration sea apparent from an examination is readily lapse films of migration in any of the of Canada that we have studied. Echo siz become notably smaller as the activity in creases near sunset and notably larger as diurnal movements begin near sumrise. While there are many difficulties in interpreting the relationship between bird and echoes (Nisbet, 1963a; Eastwood 196 Schaefer, 1968), our results indicate tha on the average, diurnal echoes come from more birds per "lock", larger birds, or both, than do nocturnal echoes. This is not urprising in view of the evidence that most types of birds fly either individually or in istbet, 1063a; Et night (Lowery, 1951
adars have signal amplitude limiters that would tend to prevent spot size from increasing with target echoing area. The fact that many bird echoes are barely visible and hence below the limiting amplitude probably causes the variability in sp size. Lunar observations Blokpoel have Cold Lake by Mh. flocks are very rare there at night. Of 609 birds seen on 6 nights in September 1967, all except nine pairs and one flock of about 10 waterfowl passed moon individually (Blokpoel, 197lb), In late autumn one would expect a larg proportion of the migratory iow early aucomprised or waterfowl probably fly in tumn. sat night as well as by day, one would therefore expect that the difference in echo sizes between day and night. would be large and more significant eary han autumn. This was indeed the case. Tumb maximum difference between the cumula tive distribution of e in the Kolmogorovhat by night ($D_{\text {max }} \mathrm{mos}$) was 0.401 in August and September but only 0.162 in October and November. These values correspond to respective 1 -tailed significance evels of $P \ll .001$ and $.05>P>.02$ for the ypothesis that day and night sizes ar dentical.
General relationship between migraGeneral relationship weather
tion intensity and weather
We examined the relationship between the peak intensity of nocturnal migration and the synoptic weather situation as shown on the 2300 msT U.S. Weather Bureau Daily Weather Map. The data are shown diagram matically in iscriwe map which shows most of the common relationships among pressure sy tems, fronts, and wind direction at some point on the map. Next, we examined the actual weather map at 2300 on one night in a migration season and noted the locations of these synoptic ceawse area to

Table 3
Percentag
Percentage of nights with non-zero intensity of movement
$\overline{\text { Following }} \quad \overline{S_{E}^{*}} \mathrm{NW}+\mathrm{SE}^{*} \mathrm{NW}^{2}+\overline{S E^{*}} \mathrm{NW}+$
wind \ddagger
Side or
$\begin{array}{lllllll}\text { Side or } & & 54 & 55 & 91 & 97 & 40\end{array}$ $\xrightarrow{\text { Dipposing wind }} 11 \quad 10 \quad 12 \quad 54$ Direction of movement range W to N . $\ddagger \mathrm{E}$ to S for N
the w, low to the E, a cold front to the sE, and NW winds). Then, we found the location on our generalized map which had a similar position relative to the synop features as Cold Lake had relative to the actual synoptic features. At this location a migration on that night was placed. The migration on thas then repeated for each night prom which we had radar data. Northwest nd southeast movements were treated separately on different generalized maps. On most nights, the appropriate position on the generalized map wletely appropriate, no position was cosp the position most closely and roximating the true spatial relationships. On 4 autumn nights, we could not locate even an approximately appropriate position ; these nights were not plotted To minimize bias, the appropriate map location was determin in sity of migration out knowledge of the incmining the resulton it is important to compare the proportions of low-intensity and highintensity nights under different synoptic conditions and not to look only for concondrations of points (which indicate those synoptic situations which were most com mon, not necessarily that migration was itense in those situations

Fir. 12), nw migration with tensity above normal was proportionately very common with the SE or S winds on the sw and w sides of highs and the SE, E , and NE sides of lows. Heavy NW migra

Table 4
Correlations between intensity of migration and wind direction in $10^{\circ} \mathrm{F}$-temperature categories ${ }^{\prime}$ Tenperature at $\frac{\text { Winter }}{{ }^{\circ} \mathrm{F}} \frac{\text { Spring }}{\text { SE NW }} \quad \frac{\text { Autum }}{\text { SE NW }}$ sunset hour,

With respect to normal

 data for test.
Each test examines the null hypothesis that intensity is greater wilh following than with
opposing winds. The one-tailed Mann and Whiney opposing winds.
C-test was used.

Table 5
Correlati
Table 5
Correlations bet ween intensity of migration and wind direction in 10 per cent humidity categories 1 Humidity $\% \quad \overline{\text { SE NW }} \quad \overline{\text { SE NW }}$ SE NW With respect to normal With respect to normal

10	19
20	\cdots

 Lesend as in Table 4.

Figure 14

Table 6 Temperature with respect to normal with different combinations of intensity of migration ${ }^{1}$ and wind direction												
Bird	Wind			$\frac{\text { Spring }}{\text { SD }}$	N	Mean	SD	N	Intensity	Mean	SD	N
directiond	direction	Intensity	Mean				6.06	29	None	-12.80	15.37	69
Forward	All	1	${ }_{-4.39}$	${ }_{9}^{12.28}$	18	-0.29	7.76	35	Some	-6.07	14.99	
		2	${ }_{0}{ }_{0} 0.04$	8.15	23	-1.88	10.87	32				
			0.78		23	-0.32	9.80	41				
				NS			NS					
	W-N			12.52	11	-1.00	4.24	4	None			
Forward		1	$\begin{array}{r} -7.23 \\ -6.00 \end{array}$	8.69	12	-1.00	8.04	13	Some			
		2				-4.58	10.49	19				
			-1.00	6.2	10	-0.83		23				
				NS			NS					
Forward	E-S						5.87	18	None	${ }^{-11.50}$		
			-1.55	10.85	11	0.46	7.91	13	Some	-7.61	${ }^{16.07}$	
			-0.43	8.86	14	1.40	5.13	5				
		4	0.10	8.54	10	-2.00		9				
				NS			NS					
Reverse	All	None	0.16	8.12	64	-0.04	9.15	111	None	-12.31	${ }_{15.08}^{14.08}$	
		Some	-7.58	$\xrightarrow{10.43}$	24	-3.92	$\left.\begin{array}{c} 6.66 \\ (*) \end{array}\right)$	26	Some		**	
Reverse	W-N							54	None			
		None	$\begin{gathered} -2.80 .84 \end{gathered}$	12.18	18	-11.40	8.05	5	Some			
				NS								
Reverse	E-S					0.26	${ }^{7.31}$	${ }_{18}^{27}$	None			
		Some				-2.06	$\begin{aligned} & 5.20 \\ & \mathrm{NS} \end{aligned}$					

NS $P>.1 \quad(*) .1 \geqslant P>.05 * .05 \geqslant P>.01$ ${ }^{1}$ The quartile scale is used for spring NW and autumn S movement. .eather with no movement
ment is compared to weat in reverse migration and winter situations. The in reverse migrat wast was applied to the spring NW
Kruskal. Wall
and autumn SE situations white the 2 -tailed Mant
and autumn SE situations whil torn
tion frequently occurred prior to the passage of a nearby warm front, and it also flow N of a low. The intensity of migration was very frequently below normal on the z side of a high and the sw side of a low. Somewhat more nights of high-intensity NW migration occurred on the W side
low than might have been anticipaterre Reverse migration in spring ocess NW winds and a high pressure area to the w , a low to the E , or both. It was very infrequent in the synoptic situations which conmonly had strong spring vw movement
nd Whitney U.test was applied to the reverse and winter movements. The "Forward" hird direction sections refer to movements NW in spring and
winter and $S E$ in autuunn; the "Reverse" sections refer to movements SE in spring and winter and

The it in movement Fig 13) was related to the synoptic fea tures in a manner similar to that of spring SE movement. Above-normal intensities were especially common with the W , N , highs and the NW, w, and sw sides of lows. Heavy SE migration was more common than expected on the s side of lows, including ahead of the cold front and inside a warm sector. However, on these occas the winds were usually westerly and the birds were not far ahead of the cold usully oc curred in the same conditions as strong

Table 7 Temperature change from previous day with different combinations of intensity ${ }^{1}$ of migration and wind direction												
Bird direction	$\begin{aligned} & \text { Wind } \\ & \text { direction Intensiry } \end{aligned}$		Spring			Autum			Winter			
			Mean	SD	$\overline{\mathrm{N}}$	Mean	SD	N	Intensity	Mean	SD	N
Forward	All	1	-3.06	10.44	17	0.00	7.71	27	None	-1.09	9.12	65
		2	0.71	6.50	24	-1.67	6.51	33	Some	1.27	6.55	30
			2.43	7.16	21	-0.16	8.28	31			NS	
		4	0.35	$\begin{aligned} & 5.75 \\ & \text { NS } \end{aligned}$	20	1.33	$\begin{aligned} & 7.646 \\ & \hline \text { NS } \end{aligned}$	40				
Forward	W-N	1	-7.40	9.78	10	0.75			None			
		2	1.25	6.66	12	-3.58	5.47	12	Some			
		3 4	0.44	7.75	9	${ }^{-1.58}$	6.58 881	${ }_{23}^{19}$				
		4		ns	9	-0.39	$\begin{aligned} & 8.81 \\ & \text { NS } \end{aligned}$	23				
$\overline{\text { Forward }}$	E-S	1				0.25	8.90	16	None	3.25	9,32	20
		2	0.18	7.31	11	1.25	5.80	12	Some	1.70	${ }^{6.62}$	23
		3	2.92		13	2.60	4.16	5			NS	
		4	0.33	5.72	9	1.88	4.36	8				
				NS			NS					
Reverse	All	None	2.10	6.77	58	0.27	7.81	108	None			85
		Some	4.13	7.77	24	-1.57	6.04	23	Some	1.40	9.12	10
Reverse	W-N	None	2.39	7.02	13	-0.98			None			
		Some	-4.78	8.82	18	-5.40	7.89	5	Sonte			
							${ }^{2} 5$					
Reverse	E-S	None Some				$\begin{array}{r} 1.54 \\ -0.07 \end{array}$	$\begin{aligned} & 7.56 \\ & 5.02 \end{aligned}$	$\begin{aligned} & 26 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { None } \\ & \text { Some } \end{aligned}$			

Legend as in Table 6.
spring Nw migration. It virtually never occurred in the conditions typically asso ciated with autumn SE migration. It should be emphasized that in Figures 12 and 13 , the weather at 2300 MST is considered. While the peak intensity usually ccurred about that time, it occasionally Was not reached until several hours later. the conditions may change considerably in a few hours.

Winter movements

Both northerly and southerly movements accurred throughout the winter. This might anuary the normal daily maximum and minimum temperatures are $+6^{\circ}$ and $-12^{\circ} \mathrm{F}$. There was movement w , nw, or most commonly N on 31 nights between Secember 1, 1965, and March 15, 1966.

Only 9 of these 31 movements occurred on iights when the surface temperature rose bove freezing at any time during the two preceding or one following days, and 5 of these 9 nights were in March. During the period January 19 to 28,1966 , the temperature never rose above $-12^{\circ} \mathrm{F}$, and on 4 of these 10 nights small Nevertheless, movements to the N or nW occurred. The surface wind was easterly on each of these 4 nights. The movements persisted for periods of 3 to 19 hours, although individual birds did not necessarily fly that long. Nearly all the winter movements were ery light thece small movements involve yery few birds compared to the large spring ad autumn movements. However, on one occasion (January 17/18, 1966) mediumintensity north and later south flights oc-
curred. A movement to the N and nne at 1400 (about 2 hours before sunset) and reached its peak intensity around sunset. This flight began with a low pressur s. At sunset the surface wind was SE , the temperature was $25^{\circ} \mathrm{F}$ (15° above the normal sunset hour value for that the and 12 above the sunset temperature ped 7 millibars in the previous 6 hours and the sky was $9 / 10$ overcast. The low and an associated cold front moved through about 2100 , some 5 hours after sunset. that time, the northerly flight ended and a new southerly fight began. Thereafter the winds were northerly. It is not known whether the same birds were involved in the northerly and southerly flights. The
began again at 0600 , reached medium
intensity briefly at 0800, and continued intensity briefy at 0800 , and continued at 18 th , the wind was nNw at 16 mph , the
temperature was $-0^{\circ} \mathrm{F}$, and the pressure had risen 3.5 millibars in the preceding 6 hours as the low moved away to the east This sequence of movements, the heaviest conditions for noth and south migration season flights.

Correlations between wind direction

 and intensity of migration Intensity of nocturnal flights was strongly correlated with wind direction in five of th spring autumn and winter; SE ill spring and autumn but apparently not winter). In each of these five types of movement, the intensity distributions with NE, SE, SW, and Nw winds differed significantly P<.001 in each case; Kruskal-Wallis lests, and in each case the intensities withfollowing winds were markedly liigher than the intensities with opposing winds (Fig. 14). With side winds, the intensit distributions were lower than with follow ing winds for reverse and winter move-
ments, but not always for migration in the

Table 8
c pressure change from 6 hours befor
Barometric pressure change from 6 hountion
sunset to sunset with different combination

Bird	$\begin{aligned} & \text { Wind } \\ & \text { direction Intensity } \end{aligned}$		Spring			Autumn			Winter			
			Mean	SD	N	Mean	SD	N	Intensity	Mean	SD	$\stackrel{\mathrm{N}}{6}$
Forward	All		10.61	29.62	18	-21.31	26.35	29	None		32.38	${ }_{31}^{69}$
		2	-6.04	26.00	24	6.94	31.64	${ }^{35}$	Some		$\stackrel{25.46}{* *}$	
		3	-8.74	24.72	${ }^{23}$	1.56	${ }^{30.88}$	${ }_{41}^{32}$				
		4	-7.39	$\underset{\text { NS }}{21.38}$	23	-4.73	${ }_{\text {*** }}^{27.13}$					
Forward						11.00	22.32	4				
	w-N	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 23.00 \\ 2.00 \end{array}$	$\begin{array}{r} 27.00 \\ 27.69 \end{array}$	12	16.39	30.08	${ }_{19}^{13}$	Some			
		3)	13.20	20.29	10	$\xrightarrow{16.58}$	${ }_{24.15}^{21.99}$	${ }_{23}^{19}$				
		45		NS			$\stackrel{24.15}{\mathrm{NS}}$					
Forward	E-S					-30.28	20.53	18	None	-20.20		20
				19.64	11	${ }^{-30.15}$	$\begin{aligned} & 24.63 \\ & 36.78 \end{aligned}$	13 5	Some		$\stackrel{20.85}{\text { NS }}$	
		3	-15.50	22.38	$\begin{aligned} & 14 \\ & 10 \end{aligned}$	${ }_{-30.89}$	${ }_{20.3}^{36.78}$					
		4		NS			NS					
Reverse	All	None	-1072	24.57	64	-4.45	29.19	111	None	${ }_{1.23}^{-9.23}$	${ }^{28.64} 4$	87
		Some	15.04	$\underset{\substack{19.87 \\ * * *}}{ }$	24	-19.65	$\stackrel{29.90}{*}$	26			NS	
Reverse	W-N											
		None	5.40	${ }_{18.57}$	18	14.40	12.12	5	Some			
		Some	18.22	(*)			NS					
	E-S					-29.63	$\begin{aligned} & 22.34 \\ & 24.61 \end{aligned}$	18	None			
		Some				-33.28						

Legend as in Table 6. Pressure change is measured in tenths of millibars.
normal direction. While intensities of spring NW movement appeared to be higher with SW side winds than with SE following winds, sw winds occurred on only 4 days significant Figure 14 and Table. 3 indicate that reverse and winter movements occurred on only about 10 per cent of the nights without following winds, while the forwar direction spring and autumn movements occurred with any but directly opposing winds (all ig ide winds), While the analysis summarized in Figure 14 showed no significant relationship, Table 3 shows that SE movement in winter was twice as frequent with following wind as without. The absence of significant correlation using the Kruskal. Wallis test resulted from the in this type of activity.

The above analysis is based on the oris nal 0 to 8 intensity scale. When the intensity distributions based on quartile curves were examined with the four different wind directions, we again foun significant effect of wind on intensity $P<.02$ for spring NW movement and W. markedly higher with following than with opposing winds and intensities with side winds.
Because (i) there are previous reports that both temperature and wind direction are correlated with intensity, (ii) tempera ture and wind direction are strongly interconflicting evidence about the relative mag nitude of the partial correlations of intensity with wind direction and temperature

Table 9 Wind speed with different combinations of intensity ${ }^{1}$ of migration and wind direction											
Bird direction	$\begin{aligned} & \text { Wind } \\ & \text { direction Intensity } \end{aligned}$		Spring			Autumn			Winter		
			Mean	SD	N	Mean	SD	N	Intensity	Mean	SD
$\overline{\text { Forward }}$	All	1	10.67	6.21	18	8.45	4.41	29	None	9.41	5.21
		2	9.13	4.43	24	9.89	7.55	35	Some	8.26	5.73
		3	8.74	5.54	23	7.94	5.11	32			NS
		4	8.74	4.94	23	9.63	4.18	41			
				NS			NS				
Forward	W-N	1	12.91	5.38	11	11.00	6.48	4	None		
		2	12.00	3.79	12	14.46	10.24	13	Some		
		3)			10	9.42	5.19	19			
		4)	10.30	3.38	10	10.74	4.38	23			
				NS			NS				
Forward	E-S					9.00	2.95	18	None	8.55	3.40
		$2\}$	8.64	3.59	11	7.92	3.69	13	Some	9.30	5.31
		3	10.00	5.86	14	8.00	3.24	5			NS
		4	10.00	3.94	10	9.78	${ }^{4.30}$	9			
Reverse	All			N17			5.83				
		None	${ }^{8} 80.83$	5.10	24	9.81	3.69	26	Some	${ }_{10,54}^{8.85}$	5.64
				(*)			NS				NS
$\overline{\text { Reverse }}$	W-N	None	10.93	5.11	15	11.44	6.66	54	None		
		Some	12.50	4.59	18	8.00	4.80	5	Some		
Reverse	E-S					8.04	3.67	27	None		
		Some				9.78	2.36	18	Some		

Legend as in Table 6. Wind speed measured in
(Richardson, 1966; Nisbet and Drury 1968; Richardson and Haight, 1970, looked for relationships between intensity of migration and wind direction when only days with temperatures in various $10^{\circ} \mathrm{F}$. ranges were considered. The temperature at sunset relative to normal and relative to the previous day were both used (Table 4) Considering temperature relative to (e. mal, 12 combinations of movement type gory (e.g., 0 to $9^{\circ} \mathrm{F}$ above normal) had sufficient data to be used. Here, sufficient data means 5 or more nights with each of following and opposing wind. Of the 12 situations with sufficient data, 7 showed significantly $(P<.05)$ greater intensity If there is no actual correlation within 10°. temperature ranges the probability of ob. taining significant differences in 7 of 12
tests (using the $P=.05$ criterion of sig nificance in each test) is less than 0.0001 . migration is correlated with wind direction within 10°-ranges of temperature relative to normal.
Considering temperature change from the previous day, of 10 situations with suffi ent data, 8 showed significantly $(P<.05)$ pposing winds. The probability of obtain$\ln g 8$ or more significant ($P<.05$) dif. ferences in 10 tests if there is no actual relationship is again less than 0.0001, so we conclude that intensity is also correlate with wind direction within 10°-ranges of temperature change.
contrast to the results of our Ontari 970), humidity is here and Haight correlated with intensity as is temperature.

Hence we examined the data to see if the correlation between wind direction and in ensity was also maintained when only da widertain ranges of humidity we considered. In examining the relationship etween intensity and wind direction with 10 per cent ranges of humidity relative to normal, we found 18 situations with sufficient data (Table 5). Of these, 7 showed with following than with greater intensity Also 7 of 16 itution hepsing more migration with following than with opposing winds within 10 per cent humidity change categories. The probabilities of obtaining at least 7 of 18 and 7 of 16 sig. correlations are both less than 0.0001 .
Hence, we conclude that intensity is corelated with wind direction within 10 per or relative to the previous day.

Correlation between temperature and intensity of migration
It was expected that temperature would be high and/or increasing with Nw movement and low and/or decreasing with SE move ments, since temperatures are correlated with wind direction and wind direction pring Nw mint int showed thation. pirection of correlation with temperature both relative to normal and relative to the previous day (low and decreasing mean emperature with little movement; higher and relatively stable mean temperature wit tronger movement). However, these dif Tables 6 and 7) Autumn SE movement howed no evidence of correlation with emperature. Spring SE reverse movement was significantly correlated with low and decreasing temperature as expected. The correlation with decreasing temperature following winds were considered: that with low temperature dropped below the signif ance level. Autumn NW reverse novemen was almost significantly correlated with low
but not decreasing) temperature when all ays were considered. This is the opposite rection to that expected. in winter there re no obvious correlations with tempera ificotly higher with both NW and SE th without such movement. is is the expected direction of correlation for NW but not for se movement.
When examining the results of many tatistical tests, one must remember that using $P=.05$ as a significance crite,
Type I error (Johnson and Leone, 1964:197) will be made on the average in 5 per cent of the tests. There is only a small (0.004) probability of obtaining 4 signifl ant $(P<.05)$ cosis of Type I errors, sug. pesting a genuine correlation between emperature relative to normal and intensity. However, this is not the case for the temperature change situation (Table 7), where only 2 of 14 differences are signifi cant (and these are not independent)
Correlation between barometric pres sure trend and intensity
In view of the relationships between preswre pattern positions and direction and intensity of wind (Fig. 12 and 13), one would expect days with strong SE and NW movement to have higher and lower pressure trends respectively than days with littlo SE or NW movement. Table 8 shows this to not all significant. When only days with following or opposing winds were conered, none of the differences was significant at the $P=.05$ level.

Wind speed and cloud extent vs

 intensityoo clear differences in wind speed or cloud atent were found when the values of these rameters on days with much migration were compared with those on days with little movement (Tables 9 and 10). From the results of others (e.g., Lack, $1963 \mathrm{a}, \mathrm{b}$; Parslow, 1969) and from energetic considerations, we expected the mean wind

Table 10 extent with different combinations of
Cloud extent with different combinations of
intensity ${ }^{1}$ of migration and wind direction

Bird direction	$\begin{array}{r} \text { Wind } \\ \text { direction } \end{array}$	Intensity	Spring			Autumn			Winter			
			Mean	SD	N	Mean	SD	N	Intensity	Mean	SD	N
							3.45	29	None	6.31	3.46	
Forward	All	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 7.17 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 3.09 \\ & 3.40 \end{aligned}$	${ }_{24}^{18}$	6.63	2.83	35	Some	6.48	4.02	
		3	6.22	3.57	23	6.66	3.32	32				
		4	5.48	3.09	23	5.56	${ }_{\text {W }}^{3.41}$	41				
				NS								
Forward	W-N	1	7.09	2.59	11	5.25	3.59	13	None			
		2	6.58	3.53	12	$\underset{\substack{7.00 \\ 50}}{ }$	2.58	13 19				
		$3)$	6.80	2.04	10	5.79 6.30	${ }_{3} 3.81$	23				
		$4)$		NS			$\begin{aligned} & 3.20 \\ & \text { NS } \end{aligned}$					
Forward	E-S					6.28	3.71	18	None	7.70		${ }_{23}^{20}$
		23	6.91	3.70	11	6.23	3.11	${ }_{5}^{13}$	Some	7.48	NS	
		3	5.71	3.87	14	8.00	1.87	5				
		4	4.90	$\stackrel{3.78}{\text { NS }}$	10	3.67	$\stackrel{4.09}{\text { NS }}$					
$\overline{\text { Reverse }}$	AI!				64	6.27	3.25	111	None	6.39	3.62	87
		Some	7.21	2.83	24	5.85	$\begin{aligned} & 3.33 \\ & \text { NS } \end{aligned}$	26	Some	6.23	$\begin{aligned} & 3.79 \\ & \text { NS } \end{aligned}$	13
$\overline{\text { Reverse }}$	W-N	None			15	${ }_{5}^{6.28}$		$\stackrel{54}{5}$	None			
		Some	7.11	$\begin{aligned} & 2.74 \\ & \hline \text { NS } \end{aligned}$	18	5.60	$\begin{array}{r} 3.58 \\ \text { NS } \end{array}$					
Reverse	E-S					6.04	3.71	${ }^{27}$	None			
		Some				5.78	3.52					

Legend as in Table 6. Cloud extent in tenths of the sky covered.
peed to be lower with strong than with ight migration when only days with oppos ng wind wise This was not he case.
view of the sky is necessary for orien ation, one might expect the mean cloud xtent would be less with strong than with ight migration. Except with strong autu migration against opposing wid,
was little indication of such an effect
(Table 10). Cloud extent refers here to the raction of the sky over Cold Lake covere loud conditions frequently vary consider ably over short intervals of space or time, this is probably not a very good measure o the ability of the birds to see the sky

Correlations between humidity and

Constiy

Because strong spring Nw migration tends
occur in the west sides of high pressure areas (Fig. 12), lower humidity was expected with strong than with light Nw movement. This was the case (Table 11). The direction of this correlation persisted when only days with following wind were considered, but it was no longer significant Table 12 suggests that humidity tenden be rela NW movement occurred, while it tended to be rising with light movement. However this difference was not significant Intensity of autumn se movement was sig. nificantly correlated with humidity, but not in a linear fashion. The correlation of high mean humidity with slightly above-normal intensity persisted when days with either
following wind or opposing wind were confollowing wind or opposing wind were conded to occur with higher humidity than when no SE movement was occurring, but this

Table 11
Relative humidity with respect to normal with
different combinations of intensity ${ }^{1}$ of migratio
and wind direction

Bird	Win			Spring			utumn			Winter		
direction	direction	Intensity	Mean	SD	N	Mean	SD	N	Intensity	Mean	SD	N
Forward	Al	1	9.56	19.14	18	1.48	12.30	29	None	3.32	8.90	69
		2	13.00	19.12	24	1.29	14.66	35	Some	1.61	10.49	31
		3	1.70	16.62	23	9.69	17.03	32			NS	
		4	-3.00	13.65	23	1.15	13.19	41				
$\overline{\text { Forward }}$	w-N	1	9.82	18.84	11	1.00	10.23	4	None			
		2	15.42	20.00	12	-0.08	17.69	13	Some			
		${ }^{3}$)				9.63	15.81	19				
		$4)$	5.70	16.53	10	3.26	13.13	23				
Forward	E-S	$\left.{ }_{2}^{1}\right\}$	8.55	17.27	11	${ }_{1}^{4.49}$	${ }_{11.38}^{12.35}$	${ }_{13}^{18}$	None	${ }_{2.87}^{6.05}$	9.18 10.98	${ }_{23}^{20}$
		3	2.14	16.63	14	, 12.60	18.69	5				
		4	-5.50	10.90	10	-4.22	15.03	9				
				NS			NS					
Reverse	All	None	2.25	17.42	64	2.49	14.64	111	None			87
		Some	12.92	17.86	24	6.50	$\begin{array}{r} 14.56 \\ \text { NS } \end{array}$	26	Some	8.00	${ }_{8}^{8.65}$	13
Reverse	W-N	None	9.53	18.94	15	4.00	15.18	54	None			
		Some	11.50	18.60	18	9.00	14.98	5	Some			
Reverse	E-S	None				0.78	12.14	27	None			
		Some				5.89	15.77	18	Some			

1Legend as in Table 6 . Relative humidity in per
cent relative to normal.
difference disappeared when only nights with following winds were considered. correlation with humidity. Winter days with SE movement had higher humidity than those without SE movement, while winter days with NW movement tended to have lower humidity than those without NW wind situations were considered
We were interested in the possibility that the correlation of spring NW intensity with humidity might be the result of autocorrelation of humidity with other weather parameters to which the birds might be responding. A rigorous analysis was not possible because of the ordinal nature of the data (see Discussion). However, ap.
plication of the non-parametric Kendall partial rank correlation procedure (Siegel,
956) to various pairings of likely paramers thed that autocorrelation neithe of humidity and temperature nor of humidity and pressure gradient was responsible for the apparent intensity-humidity correlation (Table 13). This result might have been anticipated from the absence of strong temperature or pressure correlatio days with SE winds.
The situations under which the various ypes of movement usually occurred will be ummarized and discussed below

Discussion

Direction of movement in different parts of North America
Albert Sache heavier movement W in spring and SE in autumn. In SE Ma toba, they more commonly go N than NW in spring. The results of other workers, moving from east to west across the confinent, are as follows: Lowery (1951:455) howed that in the E and SE United States, spring migration is more to the NE than to
the N. Moon-watching studies in southern Ontario (Richardson, unpubl.) reveal that this is also the case there. The predominant directions of migration in E Massachusett and in Nova Scotia and New Brunswick are NE or ENE in spring and SW in autumn (Drury and Nisbet, 1964; Nisbet and Drury, 1967a; Richardson, unpubl.). In general flow of migrants are slightly E of N in spring (but not NE) and slightly E of sin autumn (Bellrose and Graber, 1963). At Havana, Illinois, and at St. Louis, Missouri, the mean directions of autumn duck migration are Ssw and s respectively, while farther west at Des Moines, Iowa, and Kansas City they are both sse (Bellrose,
1064) Mallard ducks (Anas platyrhyn. chos) banded in Illinois are recovered to the Nw rather than to the N (Bellrose, 1966). The mean directions of spring migration in 1948 at Stillwater, Oklahoma, Columbia, Missouri, and Ottumwa, Iowa, were all approximately NNW, although that at Lawrence, Kansas, was slightly E of N (Lowery, 1951). The Ottumwa results are 3 or 4 nights of data are available from each of the other three sites
In summary, the above results suggest a gradual shift in the predominant axis of migration from Ne-sw in the east through $\mathrm{N}-\mathrm{s}$ in the eastern plains area to NW -SE in the central and western plains of the United States and Canada. This is doubtless in North America: the distance between the mountains to the west and the ocean to the east progressively increases as one moves
north from the Gulf of Mexico to Canad In Alberta, the $\mathrm{NW}-\mathrm{SE}$ migration axis tains, which are only about 300 miles sw of Cold Lake and much closer to the Edmonton and (especially) Calgary radar sites. The apparent exception to the general pattern found at Calgary may reflect the proximity of that site to the mountains. The wintering areas of most Anseriform, Char through Alberta are largely east of the longitude of Cold Lake.

Changes in direction over the course

of a movement
When all spring or autumn small or large long-distance nocturnal events are examined as groups, slight but statistically significan late in the night are apparent (Table 2 Fig. 9). Clockwise shifts during the night have also been found by Drury and Nisbet (1964), Nisbet and Drury (1967a), Graber (1968), and Steidinger (1968) Gehring (1963) found a clockwise shift during the day in Switzerland. While it i possible that birds passing early in the rections from those passing later, especially in coastal New England it is also poscible that individual birds characteristically change their direction to the right while in flight. If the latter possibility actually occurs and if the birds start to fly each night in the direction they were flying at the end of the last flight, the elliptical migration routes discussed by Bellrose and Graber (1968:63), and Parslow (1969:67) would result. Such routes may have evolved to take advantage of prevailing wind directions. Gehring (1963), Graber (1968), and Steidinger (1968) all found that the clockwise shift could not he explained by wind change. Likewise, the clockwise spring nocturnal movements when only nights with surface winds in the range east to south are considered (Table 1). How-
er, the shift in heavy autumn movement disappears when only nights with west to horth winds are considered.

ariations in direction betwee

maller movements were found to occur in virtually all directions at all times of the year; generally they were directed down wind. In contrast, high-intensity moveents were nearly always directed NW in direction, but most frequently occurred with following winds. These results seem easonable if one accepts the postulate hat it is energetically advantageous for birds to fly with following winds. Presum bly (i) certain proportions of the migratory birds in the Alberta area possess of several different ranges of direction, (i) a larger proportion of these hirds riented along the NW-SE axis than in her directions, (iii) each of these bird jas a mechanism determining whether or not to fly at a given time, (iv) one of the nputs to the timing mechanism is wind direction or related factors, and (v) fol"preferred" direction for that bird) are more likely to result in migration than pposing wind situations. Such a system has heen proposed by Evans (1966a) and Nisbet and Drury (1967a). This system would result in predominantly downwin flight each day, with the largest flights always directed NW in spring and SE in au The possible occurrence of lateral drift caused by the wind has been extensively debated because of its importance to the ries of orientation (see Nisbet and Drury, 1967 for references; also Bellrose, 1967; vans, 1968a,b; Steidinger, 1968; Lack, 069; Parslow, 1969). We have found that ewind direction on a given day has
small movements which may occur on that day and, at least in autumn, a smaller effect on strong movements. Much of this effect
is probably explained by the selection of is probably explained by the selection of
following wind situations for migration as discussed above. Whether or not there is any residual lateral drift cannot be de termined from our data.

Reverse movements

It is difficult to believe that the normal migration direction of many birds past
Cold Lake is NW in autumn or sE in spring Nevertheless, considerable numbers of Nevertheless, cons idirected (Fig. 4-8). Th
movements are so suggests that in at least some birds, the orientation systems referred to above dire individual birds in different directions different times within the same season. Possible reasons for these changes for specific cases: (i) following of "diversion lines" along the edge of geographic or habitat barriers (e.g., Wallraff and Kiepenheuer, 1962; Bergman and Donner, 1964; Mueller and Berger, 1967), (ii) adaptive response to being over water at dawn (Baini confu Nisbet, 1960; Myres, 1964a), (iii) confusion of a celestial orientation system (Lee
1963), (iv) inaccuracy in the mechanism of the orientational system (Gehring, 1963; Steidinger, 1968), (v) overshooting of the goal area (Bellrose, 1966; Mueller and Berger, 1969), and (vi) "redetermined" orientation after lateral drift caused by the wind (e.g., Evans, 1968b). With the possib that these sugrested reasons apply to the "reverse" flights in Alberta. Possibilities iii, iv, and vi may occasionally occur, bu these would probably produce shifted but not totally reversed directions.
Reverse migration seems to occur in more restricted synoptic weather situations than forward migration (Fig. 12 and 13;
Richardson and Haight, 1970). Southward flight in spring in response to a return of cold weather would seem to have some selective advantage, but northward autumn flights cannot be explained in this manner.
For some reaso a For some reason, a few NW autumn movements began with sie area close to the west
with a high pressure
see Fig. 13 and below). The significance of reverse movements to theo
Most radar and moon-watching studies, including this one, have found that reverse migration is frequent, but usually involves migaler movements than the large forward direction flights (e.g., Lowery, 1951; Lowery and Newman, 1955, 1966; Drury and Keith, 1962; Gehring, 1963; Lack, 1963a.b; Lee, 1963; Drury and Nisbet Haight (1970) found that reverse starling migration in Ontario is not only rather common but also frequently quite intense In contrast to these studies, Hassler et al. (1963:70) found that reverse autumn mi gration is very uncommon in Illinois. Fur thermore, moon-watching in 10 and 24 total of 164 hours on 31 what only about 5 per cent of the migrants are directed to 5 wards the southern half of the compass in spring and the northern half in autumn (Richardson, unpubl.). Nevertheless, re verse movements are frequently seen on radar. This apparent contradiction resu from the difere the narrow-beam shor Moon-watching an by Hassler et al. (1963) can detect individual birds and so give a fair indication of the actual number of bir moving in each direction. Moderate and high-power surveillance radars with PPI displays (used in all the radar studies mentioned above except that of Hassler et al.) have lower resolution and, to oversimplify, amount of echoing-area in a given volume of space. Whether there is 5 or 50 times the threshold echoing-area per pulse vol ume has little effect on the appearance of the display in that area. Hence, high-power radars tend to underemphasize the volu of large movements and overemphasi mall reverse (involving echo counts and examination of "thinning") are made. Further more, moon-watching and narrow-beam radars sample a larger volume of space
at high than at low altitude. If reverse migrants tend to fly lower than forwar migrants, a smaller proportion of the re verse than of the forward migas. However be detected with these tec high-power surwe have evidence we use are quite capable of detecting very low-fying migrants.
While we therefore conclude that reverse migration constitutes only a small propor tion of the total migration past a given area during a season and that reverse movement usually involve comparatively few bird, both moon-watching and radar indicate that at many times in forward moverent. The phe reverse th is certainly worth further study.

Intensity of movemen

s noted above, there are many difficulties in estimating numbers of birds from radar displays. These problems are of two types. (i) The amount of echo on the screen is not necessarily linearly related the air We are just now developing the capabil. ity of calibrating the surveillance radar using moon-watching and a narrow-beam radar (Blokpoel, 1971a,b). In the mean time, we have had to use an arbitrary ordinal intensity scale and statistical mehod appropriate to ordinal data rather than more desirabli al procedures.
(ii) There are various possible sources of error in the application of the ordinal intensity scale to the data. In the first plact adjustments of the radar over which we had no control may change the apparent intensity. Secondly, the presence of anomalous propagation (AP Eastwoo, of the film especially difficult. Although AP and bird echoes can almost always be distinguished on the time-lapse film, AP sometimes tends to obscure bir echoes at long range and at other times increases the range to which birds are visible. The use of the quarnle sements ant
of the "some vs none" analysis for revers and winter flights minimized these two sources of error. A third possible problem
is that birds flying high are more likely to is that birds flying high are more likely to
be detected by radar than those flying low especially at greater distances from the antenna. Wilcock (1964) has found that large low-altitude visible movements may not be detected by radar, and Evans (1966b) has presented evidence that visi (i.e., low-altitude diurnal) migration may constitute a significant fraction of the total migration in some areas. Wemust therefor qualify all our results by stating that the may be biased in favour of birds flying a medium and high altitudes. However, w enough to be detected, since (i) the mod height of those migrating birds flying above 1200 feet a.g.l. at Cold Lake is usually well above 1200 feet (Blokpoel, 1971b), (ii) we have detected low-altitude starling roost ing and gull fights in Ontario using surveil lance radars with much lower power (550 have used a height finder radar to measure the heights of many bird echoes visible on a high-power surveillance radar PPI and have found that very low migrants are visible on the PPI. A fourth source of error is the assigning of intensity values by eye rather than by any procedure involving . ho counts. This source of error is minim -ives very similar results (he same film sity scale value in nearly all cases). A fifth possible source of error is that, on the av erage, birds flying upwind will have lower groundspeeds than those flying downwin (although Bellrose, 1967, has provided didence that the difference may not be will the as expected. The MTI system of echoes moving upwind more the it of echoes moving downwind. This in turn will reduce the maximum detectable range of birds moving upwind, and so on the verage will lead to a reduced apparent
ensity at each distance from the centre
f the display compared to what would be
een if the same birds were flying downwind. This source of error is minimized in our case because Normal Video rather than Considering beyond about $30 \mathrm{n} . \mathrm{m}$. range. Considering all these possible sources of error, one might suspect that our estimates eless for are so cruce as to be on migration. Fortunately this does not seem to be the case. Preliminary results uggest that errors of more than 1 or at most 2 scale values (on our 0 to 8 scale) are unusual (Blokpoel, 1971b). How ver, many more data will be needed to onfirm this. The reason for the apparent relative accuracy of our estimates in spit robably that migration density frequently varies by two and occasionally by three orders of magnitude from night to night Newman and Lowery, 1964; Nisbet and brury, 1968:502; Blokpoel, 1971b, ichardson, unpubl.). In contrast, most of he sources of error are by factors coniderably less than ten.

Weather and migration any authors have looked for correlaions between weather and day-to-day varations in the volume of bird migration (see Lack, 190 for review). Hore rece papers are cited by Nisbet and Drury 1968). It has been believed for many eastern North America most commonly ove north with falling pressure and a outherly flow of warm air associated with high pressure area moving away to the ast, a low approaching from the west, or oth (e.g., Bagg et al., 1950). This was confirmed statistically by Richardson (1966). Curtis (1969) has recently published an nare and arival in spring with various ture and arrivatin spring whin various tumn migration occurs with rising pres. ure and a northerly flow of cold air as a low pressure area moves away to the east, a high pproaches from the west, or both (e proathes from the west, or both (e.g.,

Recent studies have attempted to determin (i) whether conclusions based on radar riginal conclusing data are similar to the ual observations, (ii) how well these generalizations apply to different species and different geographic areas, and (iii)
what specific proximate factors are involve what specific proximate factors are involve migrate at a given time (Richardson and Haight, 1970). We shall discuss each of these questions in the light of the Alberta data.
(i) Direct observa
sgereal the Alber data In general, the Alberta data support the
original ideas about relationships betwe pressure patterns and intensity of migration Fig. 12 and 13). However, strong migra tion did not occur on all the nights with upposedly favourable conditions. Mor urprisingly, considerable migration oc curred on some nights with supposedly man (1966) obtained similar results by examining different sites on the same nights rather than the same site on different nights. The pressure trend was indeed more negative in spring and more positive in autumn with heavy than with light migration, but only the autumn difference was significant (Table 8). Also as expected, spring intenumn intensities with Nw winds (Fig 14) On the other hand, there was little difference in temperature and temperature change between days with high- and low-intensity migration.
(ii) Differenter in the requses to weathe Different birds in different areas sometime migrate with different weather conditions or example, Nisbet and Drury (1968:520) ound more NE migration in spring when they were near the centre of a high pres
ure area, than a day or two later when sure area, than a day or two later when roaching low They believed that earlier uthors had reported more migration in
the warm sector because "most of the pre vious studies were of grounded or diun migrants, and were based by for force such birds tend to be concentrated or forced down by the disturbed weather associ and Haight (1970) have found that starlings, which also migrate NE in spring, depart proportionately more frequently in the warm sectors of lows than near the centres of highs. That study was based on direct radar observations of starling migration departures, and so was not
Spring and autumn forward and reverse Spring migration appeared to be more closely related to a NW-SE than to a $\mathrm{W}-\mathrm{E}$ pressure gradient; this is perpendicular to their NE-SW axis of flight. In contrast, Fig ures 12 and 13 suggest that migration in Alberta is strongest with a ne-sw pressure gradient (perpendication). This difference NW-SE axis o mparent if these figures are compared with the corresponding ones for starling migration (Richardson and Haight 1970: Fig. 3 and 4). Heavy autumn SE migration in Alberta is proportionately most frequent on the NE or even N sid highs and the w and sw sides of lows autumn sw (and spring sw reverse) staron the E and SE sides of highs and the NW and w sides of lows. Heavy spring NW migration in Alberta is most frequent on the sw and w sides of highs and SE, E, NE, and even N of lows; spring NE starling migration is most frequent SE or 5 of lows. When these pressure-gradient directions trend correlations (Table 8), one finds that both forward and reverse movements in both spring and autumn of both starlings in Ontario and all birds in Alberta are all strongest and most frequent when the pressure gradient is falling from the birds righ oo their left. Sunds.
geostrophic winds.
However, as noted above, Nisbet and Drury (1968) found more NE migration
long the East Coast with se winds and near the centre of a high than with SW winds in the warm sector of a low. . it is adaptively more ado the coast to select condition with onshore SE side winds and little chan of a rapid change to offshore winds than to select conditions with forlowing sur to but an appreciable chance old front behind the warm sector suddenly arrive.

(iii) Respo

Many authors have attempted to determine
Many authors have attempted to determ are which in the mechanism determining whether or not a bird will fly at a given time. Some studies have examined only the simple correlations between intensity and variou parameters one at a time. Since different weather variables are highly interrelated, his method is of little assistance in determining causal relationships. However, it is useful in providing a description of the conditions under which much and little Lack (1963a,b), Gruys-Casimir (1965), and Nisbet and Drury (1968), have applied multiple linear regression procedures to study the amount of correlation between each weather variable and intensity, other parameters being equal. This method could not be used here because our Other diffiis ordinal rather than inle regression model are discussed by Richardson and Haight (1970). A third approach, that used here, is to examine the relationship between migration volume and one weather variable at a time when only those days with one or more other variables in certain re.
ranges of values ane of the above methods allows us to determine conclusively which parameters the birds respond to and which they ignore. Nevertheless, some indication have been obtained.
(i) There is an obvious simple correlation between intensity and wind direction
for NW spring, sE autumn, and most other types of movement (Fig. 14). More impo tantly, this correlation persisted in $10^{\circ} \mathrm{F}$ temperature categories and inetion has been considered by most North American authors to show the strongest simple correla tion of any parameter with the volume of migration. Of the several parameters which have been found by various authors to correlated with migration volume, only wind direction and rain show the sam rection of corrent movement. That is, migration is almost always heavier with following than with opposing winds regardless of than with opposing of movement, whereas at different times and places intensity may be positively or negatively correlated (or uncorrelated) with temperad, cloud extent, pressure change, and atmospheric stability.
(ii) Pressure trend shows clear simple correlation with intensity, but at least in autumn this trend disappears when only nights with following (or opposing) wind are considered (Table 8). If birds were reacting to pressure changes per se, on would expect the correa following (or opposing) winds have similar pressure trends. (iii) Intensity of normal direction migration was not obviously related to temper ature (Tables 6 and 7). This was unex pected, in view of the correlation between intense migration and s winds in spring and NW winds in autumn (fig. in North previous studies ound correlations between intensity and temperature (e..g., Mueller and Berger, 1961; Richardson, 1966; Nis and Berger, 1961; Ret and Drury, 1968; Richardson and Haight, 1970), but some have not (e.g., Raynor, 1956; Hassler et al., 1963). In contrast to the situation with normal migration, we did find relationships between intensity of reverse mor autumn. The unexpected direction of the autumn correlar tion was the result of very low temperature
on the few nights having reverse migration with opposing winds (Table 6) (iv) Wind speed and cloud extent show no obvous simple correlation with inten sith nor following correlation when were considered. Again, if the birds were strongly influenced by either of these factors, correlation on nights with following wind would be
expected.
(v) In spring, the relationship between high intensity of NW movement and low SE wind were considered (Table 13). The correlation was also not the result of autocorrelation of humidity and temperature or pressure trend (Table 13). This indicate that these birds may be using low humidity as an indicator of the preferred time for ${ }^{\text {nw }}$ migration. Nisbet and Drury (1968) found a negative partial correlation bemultiple regression method. Richardson (1966) found that, on the average, spring "waves" of migrants in Ontario occurred with rising but near-normal humidity. Ho humidity might be measured by the birds not clear.
The above results suggest but do not prove that birds flying over Cold Lake spring NW movement) humidity. They also uggest that pressure trend, temperature, wind speed, and cloud extent are not major cues used in the system which deermines whether or not to fly on a given night. However, the absence of any appaonly that birds respond to that parameter and also to another correlated with the first in an opposing manner. We suspect that at least some of the last four parameters listed above may have modifying influences on he responses to other factors by the Alberta irds and that they may be more importan In ge birds than others
evolved short-term migration timing have anisms placing different weights on the separate weather parameters depending
upon season and species. More specifically the particular pattern of weights would depend primarily upon the "preferred" d rection. The pattern would serve to initia for survival Since most hirds in tions seem more likely to fly with following than with opposing winds, and since there are obvious energetic reasons for flying with tail winds, we believe that wind direc tion is a key factor in the timing mechan isms of most birds. The other factors into situation. At present, it is probably safest to describe the typical values of all weather parameters when heavy migration of a given type occurs rather than to attemp to single out individual factors besides wind direction. We agree with Curtis (1969:244) that "the effects of specific weather comin relation to the general weather situation rather than independently" Thus we find the following:
(i) Heavy SE autumn migration in Al. berta usually occurs with a high to the w , SW, or s and/or a low to the E or NE. The wind is from the Nw and the pressure is higher than the previous day. The temferent from that on days of little movem The humidity situation is unclear (Table 11). These conditions are somewhat different from those prevailing when there is SE reverse movement in spring (see below) It is not obvious why temperature should not be lower with heavy than with light migration in view of the strong correlat (ii) Heavy SW' autumn starling migra ion in Ontario usually occurs on days with geostrophic winds between N and E (surface winds between NW and E) on the E , SE, or S sides of highs or on the NW or W sides of lows. The temperature is both low and lower than the previous day; the umidity is near normal.
Alberta almost never ocurs unless the in a high to the w or sw and/or a low to
he ne or E. The winds are from the NW, he temperature is low and falling, and the pressure is rising. The humidity is high and it is on the average cloudier than when dity, temperature and cloud correlations were not found with autumn SE migration, probably because spring reverse sE movement tends to occur closer to the low than heayy autumn SE migration (Fig. 12 and 13).
(iv) W' inter NW and SE movements i Alberta occur in similar conditions to retively, except for temperature relationships. Both winter and reverse movements rarely occur without following winds while for ward migration in spring and autumn is frequent with side as well as following winds (Table 3). Lack (1963b) also found correlated with wind direction. While believed that lapwings (Vanellus vanellus) andertake northward flights to Britain in winter to take advantage of unfrozen areas farther north, this is obviously not the case at Cold Lake in midwinter
(v) Heavy NW spring migraion in the W or SW side of a high or the SE, E, NE, or N side of a low. The temperature is moderate and not increasing much more than when little movement occurs; the pressure is falling. The humidity is typically lower than when little migration occurs and perhaps slightly lower than the previous day. The intensity is greater on the average on on days with SE wind and higher humidity (vi) Heavy NE spring starling migration in Ontario typically occurs with sw winds SE or S of a low. On these days the temperature is high and rising (compared to low and falling on days without movement), but the humidity is not obviously different from days with no movem (emperature aver-
and Haight, 1970). The ages higher relative to normal here than ages higher relative o normal hene because
with heavy Alberta Nw movement bin heavy starling flights occur later in the
transition from high to low pressure than NW flights at Cold Lake, probably because the wind shifts from SE to Sroaches. Also, moves away and increases in temperature with southerly increases in temperature
airflows are likely to be greater in southern Ontario than in Alberta, since flows of maritime tropical air from the Gulf of Mexic frequently reach Ontario but do not reach Cold Lake. For the same reasons, the Al humidity relative to days with no movement than the movements of Ontario starlings. than the movements of (vii) NW autumn reverse migration in Alberta occurs near the centres of highs and in the area of s flow and falling pressure when there is a high to the E and/or
a low to the or Nw. Most flights have the a low to the W or NW. Most flights have the near-normal and stable temperature and However, the few flights occurring with However, the few flights occurring wh
nw winds just before the high passed by had low temperatures. The usual condition when NW autumn reverse migration occurred more closely resemble the typical conditions when spring NW movement occurred in Alberta than the stred in Ontario. By the hypothesis proposed earlier involving selection of conditions with falling pressure gradient from right to left and following winds, heavy NE spring migration in Massachusetts would be expected to occur in the same conditions as Ne starlin migration in Ontario. However, it appa ently occurs in condivy Alberta NW and Ontario Ne migration (Nisbet and Drury, 1968). As in Alberta, it is associated with SE winds and low humidity. However, it is also associated with rising humidity and high temperature, which are to be expect later in the transition from high to low pressure than is typical as noted earlier, perhaps it is more advantageous to avoid the warm sectors and the possibility of encountering a cold front while in fight near the coast than it is disadvantageous to

We gratefully acknowledge the advice and assistance provided by many individuals and organizations. Cpl. P. P. Desfosses and his staff abstracted the data from film taken by the personnel of 42 Radar Squadron, RCAF.Mr. W. R.F ryers of the developing the coding procedure. Drs. God on and Klodman, Mr. F. B. Muller, and especially Mr. A. von Toen of the Atmos pheric Research Section, Meteorological Branch, Department of Transport, gave valuable advice regarding data coding and machine analysis of data. Mr. M. E. Haig assisted with the analysis of data. Administrative problems were handed by Mr. . Kuhring and Dr. V.E. F. Solman. Mr. Blokpoel and of the analysis and preparation of the manuscript. This study was financed by the Canadian Wildife Service on behalf of the Associate Committee on Bird Hazards to Aircraft of the National Research Council of Canada

Bagg, A. M., W. W. W. H. Gunn, D. S. Miller,
J. T. Nicliols, W. Smith, and F. P. Wolf J. T. Niclols, W. Smith, and F. P. Wolfarth
1950. Barometric pressure-patterns and spring bird migration. Wisosn Bull. $62: 5-15$
Baird, J., and I. C. T. Nisbet. 1960. Northward fall migration on the Atlantic coast and its

Batschelet, E. 1965. Statistical methods for the anaysis of problems in animal orientation and cer-
tain biologgical rhythms. ABS, Washington. 57 p.

Bellrose, F. C. 1964. Radar studies of waterfowl migration. Trans. N.Am. Wildl. and Nat. Re

Bellrose, F. C. 1966. Orientation in waterfo
Belliose, F. C. 1967. Radar in orientation
research, Proc. XIV Intern. Ornithol. Congr. research,
$281-309$.
Bellirose, F. C., and R. R. Graber. 1963. A r dar study of the fight direction of nocturnal mi-
grants. Proc. XIII Intern. Ornithol. Congr. $362-389$. Bennett, H. R. 1952. Fall migration of birds at

Bergman, G., and K. O. Donner. 1964. An
analysis of the spring migration of the Common land. Acta Zool. Fennica 105:3-59.
Blokpocl, H. 1970. An attempt to forecast the intensity of nocturnal fall migratio

Blokpoel, H. 1971a. The M33C track radar $(3-\mathrm{cm})$ as a tool to study height and density ,

Blokpoel, H. 1971b. A preliminary study on This publication.

Curtis, S. G. 1969. Spring migration and weather
Drury, W. H., and J. A. Keith. 1962. Rada tudies of songbird migration

- W. Her

Drury, W. H. Jr., and I. C. T. Nisbet. 1964 in southeastern New England. Bird-Banding 35 : in suath
69-119.
Eastwoed, E. 1967. Radar ornithology
Methuen, London. 278 p .

Erood E G. A Ited and C. C. Bider 962. Radar ring angels and the rossting behavi
of Starlings. Proc. Roy. Soc. (B) $156.242-267$. East wood, E., and G. C. Rider. 1966. Grouing of nocturnal migrants. Nature 211:143-11 vans, P. R. 1966a. Migration and orientation of passerine night migrants in northeast Engla
Zool, Lond. $150: 319-369$.
Evans, P. R. 1966b. An approach to the anal ysis of visible migration and a comparison with
radar observations. Ardea $54: 14$ 4.

Evans, P. R. 1968a. Autumn movements and orientation of waders in northeast England and
southern Scotland studied by radar. Bird Stud suthern

Evans, P. R. 1968h. Reorientation of passerine night migrants after displacement by the wind.
Brit. Birds $61: 281-303$.

Gelring, W. 1963. Radar- und Feldbeobachtunen über den Verlauf des Vogelzuges im Sch Orischen Mitteland: Beob. $60: 35-68$.
Graber, R. R. 1968. Nocturnal migration in Illinois-

Cruys-Casimi E M 1965.0 , of environmental factors in the autumn migration
of Chafinch and Starling: a field study. Arcls. erl. Zool. 16:175-259.
ann, W. W. H., and V. E. F. Solman. 1968. Aunn, barning system for aircraft in fight. In The problems of birds as pests. Academic Press,
London, p. 87-96. Reprinted in this publication.

Harper, W. G. 1957. 'Angels' on centimetric Hassler, S. S., R. R. Graber, and F. C. Bellse. 1963. Fall migration and weather, a rad study. Wilson Bull. 75:56-77.

Houghton, E. W., and F. W. A spring passage of 'anyels'
Rov. Radar Establ. J. $42: 1-9$.
Uheon N. I Pr.C. tistics and experimental design in engineering tistics and experimental design in engineering
and the physical sciences, Vol. 1. J. Wiley and and the physical sciences,
Sons, Inc., New York. 523 p.
Lack, D. 1960. The infuence of weather on
passerine migration: a review. Auk 77:171-209.

Lack D. 1963. Migration across the southen North Sea stud
lbis 105:1-54.
Lack, D. 1963b. Migration across the southern North Sea studied by radar. Part 5. Movements in agust, winter and spring, and conclusion. lbis

Lack, D. 1969. Drift migration: a correction
Lee, S. L. B. 1963. Migration in the outer
Hebrides studied by radar. lbis $105: 493-515$
Lowery, G. H., Jr. 1951. A quantitative study of the nocturnal migration of bir
Publ. Mus. Nat. Hist. $3: 361-472$.
owery, G. H., Jr. and R. J. Newman. 1955. Direct studies of nocturnal bird migration. In ecent studies in avian biology, ed. A. Woltso

Lowery, G. H., Jr., and R. J. Newman. 1966 continentwide view of bird migration on four

Mueller, H. C., and D. D. Berger. 1961 . Weather and fall migration of hawks at Cedar
Mueller, H. C., and D. D. Berger. 1967. Wind ift, leading lines, and diunal migration wilson Bull. 79:50-63.
Tueller, H. C., and D. D. Bergor. 1969. Nar gation by hawks migrating in spring. Auk

Myres, M. T. 1964a. Dawn ascent and reorienigrating at ninht cean in autumn. Ibis 106:7-51.

Myres, M. T. 1964b. Technical details of radar
equipment detecting birds, and a bibliography papers reperting the observation of birds with radar. Assoc. Commit. on Bird Hazards to Aircraft eld Note No. 9.20 p.

Newman, R. J., and G. H. Lowery, Jr. 1964. then Special Pude Mun Zht migration 1 State Univ. 3:1-39.
Nishet, I C T, 1963a Q Nishet, 1. C. T. 1963a. Quantitative study of mi.
gration with 23 -centimetre radar. Ibis 105:435-460. Nisbet, I. C. T. 1963b. Measurements with tade of the height of nocturnal miyration over Cape

Nisbet, I. C. T., and W. H. Drury, Jr. 1967a. Orientation of spring migrants studied by radar. Sird-Banding 38:173-186.
Nisbet, I. C. T., and W. H. Drury, Jr. 1967b Pt. 1. Scanning the sky-birds on radar; Pt. 2. Weather and migration. Mass. Audubon 51 :
166-174; 52:12-19.
Nisbet, I. C. T., and W. H. Drury, Jr. 1968. Short-term effects of weather on hird migration:
field study using multivariate statistics. Anim. Behav. 16:496-530.
Parslow, J. L. F. 1969. The migration of passerine night migrants across the English Channel tudied by radar. Ibis $111: 48-79$.
Raynor, G. S. 1956. Meteorological variables nd the northward movement of nocturnal lan ird migrants. Auk 73:153-175.

Richardson, W. J. 1966. Weather and late pring nigration of birds into southern Ontario.

Richardson, W. J. 1970. Temporal variations
in the volume of bird migration: A radar study in in the volume of bird migration: A radar study in
Canada. Proc. World Conf. on Bird Hazards to Aireraft p. 323 - 334 .
Richardson, W. J., and M. E. Haight. 1970 Migration departures from starling roosts. Can. J. Zool. 48:31-39.

Schaefer, G. W. 1968. Bird recognition by schaefer, G. W. 1968. Bird recognition by
radar. A study in quantitative radar ornithology.
I The problems on hirds as pests. Academic Pre $I n$ The problems of hirds as pests. Academic Pres London. p. $53-86$

Siegel, S. 1956. Nonparametric statistics for the sciences. McGraw Hill, New York ${ }^{312} \mathrm{p}$.
Steidinger, P. 1968. Radarbeobachtungen uber die Richatung und deren Streuung beim nacht. lichen ogelang im schwei
Ornith. Beob. $65: 197-226$.
Sutter, E. 1957. Radar als Hilfsmittel der Vogel zugforschung. Ornith. Beob. 54:70-96.
Tedd, J. G., and D. Lack. 1958. The detectio of hird migration by high -power radar. Proc. Roy.
Soc. (B) $149: 503-510$. Wallraff, H. G., and J. Kiepenheuer. 1962. Migracion y orientacion en aves: : observaciones en
otoño en el sur-oeste de Europa. Ardeola 8:19-40. Wilcock, J. 1964. Radar and visible migration in
Norfolk, England: a comparison. Ibis $106: 101$-109.

Numbers, speeds, nnd directions
 of miggrating geese from analysis
 of a radar display at Foret William,
 Dintario

J. Murray Speirs,* J. J. C. Kanitz* and
arious methods have been used to obtain
information on the flight speed of birds
Waterfowl have frequently been studied.
Clayton (1897:26) and an assistant, each
baseline, calculated the height, angular
aseline, calculated the height, angular Meinertzhagen (1921), Aymar (1936) and Cooke (1937) each summarized the available methods and data. Using a stop watch, another observer, and telescopic communication, Speirs (1945:135) timed he speed of several flocks of oldsquaws hrough the cut between Toronto Bay and Lake Ontario. Speedometers in automobile
have frequently been used to obtain groun peeds of birds, and air-speed indicators in aircraft have been used to obtain air
peeds of various birds.
Radar has presented a new opportunity to obtain ground speeds of birds. Using a he speeds attained by 1627 birds of 17 espeed. This method has been restricted species. This method has been restricted portable unit or to birds released in the beam.
In the present study, we analysed a $6-\mathrm{mm}$ time-lapse film of the radar display at the Fort Wiliam, Ontario, airport on ent display of echoes crossing the field rom north to south from 0300 to 1700 hours. These echoes are considered to be flocks of geese. The purpose of the analysis
was to obtain quantitative expressions for was to obtain quantitative expressions for the numbers, speeds, and directions of the

The 16 -mm film was projected at a distance of 30 feet on sheets of graph paper about 2 feet square, attached to a vertical blackboard with Scotch tape. The display ed the sheets of paper at this dista were oriented so that they paralleled th north-south direction of the radar display Individual echoes were traced across the paper with a pencil, and their flight directions measured with a protractor. The film in the projector could be stopped, reversed and reprojected to the measurement
Flight speeds
ight speeds were determined by noting given length of a target to traverse a nautical miles). Times to traverse this dis tance were read from the sweep-second hand of the clock which had been photographed with the radar display. One opera the fight path while the other operator noted the elapsed time.
Numbers of echoes were determined by counting the numbers crossing an east-we line (about 41 miles wide) about 35 miles north of the centre of the radar display at 10 -minute intervals. Knowing the speed of the targets, we then calculated the 100 miles (roughly the area of the radar display). The echoes were distributed over the whole screen, not concentrated into paths.
These measurements and observation were made by the junior authors und upervision of the senior author.

Discussion

Flight directions

Identification of the echoes
The echoes were large and bright, almost as conspicuous as those produced by aircraft. They could frequently be picked up at distances of 50 to 60 n.m. from play centre. Only very large flocks can play centre. Only very large ducks, gulls, produce such echoes: geese, deem the only
shorebirds, and blackbirds seem possibilities. Dr. W. W. H. Gunn believes that icterids can be eliminated as they
generally produce more diffuse echoes. Most ducks passing over Fort William are en route from the Prairie Prove from Northwest to southeast, rather than from north to south. Geese are known to produce echoes similar to those made by aircraft.
Canada geese are known to breed along the Hudson Bay lowland near Fort Severn, Ontario, and to migrate to Wisconsin and Illinois. If projected backward, the flight paths of the echoes in question if projected for-
origin near Fort Severn; ward, they suggest a destination in Wisward, they suggest ar. F. Graham Cooch (pers. comm.) stated that reports from (pers. comm.) staed, Ontario, suggest a major migration of blues, snows, and Canadas left October 2 and , for March article in the Ontario Loger funting for geese in the Hudson Bay area ceased shortly after the big flight was recorded on film at Fort William. Dr. Harold Hanson reporte (pers. comm.) seeing geese over Sioux Lookout, Ontario, at about the time of this radar display at Fort William. Keith Deni (pers. comm.) reported hearing one flock of "honkers" over Port Arthur, Ontario, on Octing in the Sturgeon Bay and South Gillies area southwest of Fort William, recorded in his diary 40 blue and snow geese flying southwest at $5: 15$ p.m., ber 3. Richard A. Hunt, biologist at Horicon Marsh, Wisconsin, (pers. comm wrote that there was a heast side of Horicon Marsh and along the Lake Michigan shore

The flight directions (see Table 1) were remarkably consistent, deviating on the direction tended to be slightly sath. south in the morning and slightly wes south in the afternoon. To achieve these directions with a strong north west wind (from 330°), the actual headings of the
eese must have been strongly south westerly, i.e., the geese must have compensated for the wind to a considerable heading due south. The actual headings ar calculated in Table 2 for a height of 4000 eet using the upper wind data provided by the Department of Transport (Table 3)

Some wind drift (under-compensation) is suggested however by the gradual change from slightly east of south in the morning the wind velocity slackened in the
afternoon. progress at the time the radar display showed the big flight of echoes, and is no doubt in our
were in fact geese.
The fact that they were picked up by he radar at $60 \mathrm{n} . \mathrm{m}$. indicates they were Aying quite high and might easily hav been missed by ground observers. The minimum height above ground, ander which armal conditions of refrachen, detect object he Fort William radar could deteo ofh . n . is abo it from objects down to 4000 feet. At a range of 45 n.m., by which time most of the echoes noted on the October 3 dum height would be 4000 feet.

Table 1 Radar directions of 928 flocks of geese passing over the Fort William, Ontario, region on October 3, 1965				
$\begin{aligned} & \hline \text { Hour, } \\ & \text { EST } \end{aligned}$	Number measured	Average direction, azimuth degrees	Standard deviation	$\begin{aligned} & \text { Range } \\ & \text { degree } \end{aligned}$
0300-0400	33	174.0	12.6	130-20
0400-0500	43	172.7	10.5	135-19.
0500-0600	54	173.5	10.5	135-20.
0600-0700	64	170.5	9.6	145-195
0700-0800	71	172.7	13.1	145-20.5
0800-0900	72	179.9	11.8	150-210
0900-1000	84	181.7	10.7	150-20.5
1000-1100	71	184.9	9.8	170-210
1100-1200	75	184.5	12.6	145-210
1200-1300	70	188.4	12.1	155-210
1300-1400	71	190.4	11.8	160-220
1400-1500	75	195.2	14.2	155-220
1500-1600	74	186.5	13.0	145-210
1600-1700	71	188.8	9.9	165-21

Table 2 Estimated headings and air speeds of goose flocks over Port Arthur, Ontario, on October 3, 1965, corrected for wind speed and direction at 4000 feet		
$\begin{aligned} & \text { Hour, } \\ & \text { EST } \end{aligned}$	Headings, azimuth degrees	Air speeds, knots
0300-0400	210	${ }^{27}$
400-0500	205	30
0500.0600	205	30
0600-0700	200	24
0700-0800	205	29
0800-0900	220	28
0900-1000	220	28
1000-1100	210	35
1100-1200	210	35
1200-1300	220	33
1300-1400	220	32
1400-1500	220	36
$1500-1600$	210	35
1600-1700	215	34

Figure la. Direction and ground speed in knot
FCanada goose flocks crossing Fort William of Canada goose focks crossing Fort wilme direction are indicated by the dashed lines, th mean direction is indicated by the solid lines, mean the standard diviations from the means by he shorter solid lines on each side of the mean
irection. Speeds are proportional to the length firection. Speeds are proportionain, the doted
portions indicate
lines the standard ines the standard deviations from the mean, nere the data are average speeds at the given tind 4 .
presented in Tables 1,3 , and
Figure lb. Number of flocks per 100×100 squar of focks per 130×163 on miles act 2-10ur

Numbers

Table 4 and Figure la show that the averge ground speed of the geese was about 50 knots. At this rate these flocks could have left the Hudson Bay lowlands about dawn on October 3 and some could reach Wisconsin before dark on the same day. The air speeds (see Table 2) correspo with the calculation of Canada goose ${ }_{S}^{\text {migration (}}$ (1950:112) from Jack Miner's data, i.e., 35 to 40 miles per hour (30 to 40 knots). Based on data from Cooke (1937:6), Kortright (1942:42-43) gives Canada goose speeds of 60 miles per hour (chased) and 44.3 miles per hour by theodolite. Aymar ($1936: 138$) gives 42 to 55 miles per hour for the geese. Rathbun (1934:23) tried to keep up Ford but gave up the chase at 58 mph . (Those geese had a light favouring wind.)

Table 4 Ground speeds of 651 flocks of geese over the				
Fort William			Standard	Range,
Hour,	measured	$\begin{aligned} & \text { spece, } \\ & \text { knots } \end{aligned}$	deviation	
	measur 20	- ${ }_{53}$	7.0	40-68
0300-0400	15	57	9.2	43-77
0400-0500	15	57	10.3	38-78
0500-0600	24	53.4	7.3	37-67
0600-0700	42	54.5	7.9	41-78
0700-0800	50	51.2	7.3	39.69
0800-0900	50	50.6	6.8	36-69
0900-1000	50	$\frac{50.6}{47.5}$	1	35-66
1000-1100	50	47.9	4.8	40-63
1100-1200	50	44.5	4.6	36-58
1200-3300	50	44.5	${ }^{4.6}$	33-80
$1300-1400$	50	42.2	6.3	34.63
1400-1500	50	49.0	7.4	34-69
1500-1600	50	49.0 45.7	7.4	33-67
1600-1700	50	45.7 41.4	6.9	29-63
1700-1800	50	41.4	6.9	

Figurc 1

Table 5 and Figure 1b show that the peak of the flight over Fort William was in the early afternoon ($1200-1600$), when more than 1000 flocks were in the 10,000 -square mile area covered by the radar display a any one time. Approximately 5000 flocks crossed through this 10,000 -square-mile
area between 0300 and 1700 on October 3 area between 0300 and 1700 on October 3 , If we allow 100 geese to a flock this would give an estimate of half a million geese. If we allow only 10 geese to a flock there would still be 50,000 geese. The truth is probably between these estimates. In my experience, 50 geese is about the usual flock size.

Table 5

Estimated number of goose flocks on the Fort William, Ontario, radar display (covering about $\frac{10,000 \text { square niles) on October } 3,1965}{\text { Time, }}$
\qquad
\qquad
\qquad $\begin{array}{r}-271 \\ \hline 4398 \\ \hline 396\end{array}$
ar $\begin{array}{r}\quad 398 \\ -\quad 586 \\ \hline 698 \\ \hline 1122\end{array}$

11300
1308

$\begin{array}{r}1466 \\ 1359 \\ \hline\end{array}$

The chance of a collision between an aircraft and flocks of migrating birds appears to depend on two factors: the target densit (i.e., number of flocks per unit of volume) and the effective volume swept out by the aircraft crossing the zone containing these argets. The speeds of the aircraft and of he geese do not enter into the calculations although these would no doubt affect the hances of either taking effective evasiv Gution.

Cockshutt (1966) have pro ided data on the effective area swept out y various types of aircraft in relation to ird flocks of various kinds, including eese. They have also provided data on the normal rate of climb of aircraft on take-off To get the effective area swept out by th ircraft they have added to the actual width of the aircraft the effective diameter
of the bird flock, and to its average height they have added the effective height of the bird flock. For the case of a DC-8 (say, 140 feet wide) intercepting a flock of geese say, 220 feet in diameter), the effective rea would be of the order of 10^{-4} squar $\frac{140+220)(4+6)}{6000 \times 6000}$ If the rate of climb is $1: 10$ then the aircraf would climb through approximately 10 n.m. before emerging above the zone con-
taining goose flocks. We are assuming that he geese are confined to a zone $1 n \mathrm{~m}$ in ertical range and that the aircraft Θ_{y} above this zone after take-off. The effective f the swept out in take-off would then be fhe order of 10^{-3} cubic n.m. Our max 500 target density was of the order of ssume that per 100×100 square n.m. If we ime that they were confined to a vertical imension 1500 ner 10,000 cubic n m. The chance of a collision then works out to be of the order of $10^{-3} \mathrm{x} 1500$ or 10,000
1.5×10^{-4} or about 1 in 6500 take-offs. Note that in a vertical take-off this would reduce to 1 in 65,000 , while in horizontal cruising through 100 n.m. of the zone containing
geese it would become 1 in 650 (if we assume that the geese were evenly distrib. uted vertically over the 6000 feet that we have assumed to contain all the goose locks). If in fact the geese were all cruising at about the same level, say within a vertical range of 600 feet, the probability of a collision in level flight within this zone ould increase to 1 in 65.
The hazard of geese to aircraft is greates during fall migration, which takes place when there is a strong northerly flow of air from the Hudson Bay area down to the midwestern states. This condition follows a cold front and precedes a ridge of high pressure with freezing temperatures in the Hudson Bay area. The hazard is probably greatest at elevations between 4000 and 000 feet. It may be reduced somewhat by hrough the hazardous zone ond level in this zone should obviously be avoided.

Literature cited

The Associate Committee on Bird Hazards to Aircraft of the National Research Coun cil of Canada made the radar film available to us and provided financial support. Dr. W. W. H. Gunn of this committee rea the manuscript and provided support J Paloheimo, and Dr. M. T. Myres made helpful suggestions. Dr. F. Graham Cooc Dr. Harold Hanson, and Messrs. Keith Denis and Richard A. Hunt provided infor the radar display analysed in this study. The Meteorological Division of the Canada Department of Transport provided unpub lished upper wind data used in estimating the air speeds of the birds. Messrs. Cliffor L. Crozier and Jack Murphy of the Depart ment of Transport provided information on
the characteristics of the Fort William radar display useful in estimating the height of the migrating geese.
ymar, Gordon C. 1936. Bird fight. Dodd,
Clayton, H. Helm. 1897. The velocity of a ight of ducks obtained by triangulation. Science 5 (105) :20.
Cooke, May Thatcher. 1937. Flight speed of birds. U.S. Dept, Agr. Circ. 428.13 p.
Gunn, W. W. H., and E. P. Cockshutt. 1966 Bird strike probability: strike predictions using
bserved bird density data. Can. Nat. Res. Coun. 1 , Associat Consty Bara. Canarats . Res. Coun Hed Note. No. 30 (Revised) 5 p

Hanson, Harold C., and Robert H. Smith. 950. Canada geese of the Missisisippi Flyway with special reference to an Illinois flock. Bual
Ill. Nat. Hist. Survey 25 (Art. 3 : :67-210.
Kortright, Francis H. 1942. The ducks, geese nd swans of North America. Am. Wild. Inst, and swans of North Ame
Washington, D.C. 476 p.
Meinertzhagen, R. 1921. Some preliminary Meinertzhazen, R.1921.Sone preliminary Region. Ibis (Ser. 11) 3:228-238.

Rathbun, S. F. 1934. Notes on the speed of irds in fight. Murrelet 15(1):23-24.
chnell, Gary D. 1965. Recording the fight. peed of birds by Doppler radar. Living Bird
(cirs, J. Mur dsquaw. Auk 62 (1) :135-136.
Speirs, J. Murray. 1966. The study of bird novements us
$4(2): 13-16$.

The M33C track radar (3-cm) as a tool to study height and density of bird migration
Hans Blokpoel*

Operation Bird Track, initiated and sponsored by the Associate Committee on Bird Hazards to Aircraft of the National Reearch Council of Canada, is a project to
develop a system of forecasting the inten sity of bird migration, based on data obtained by time-lapse photography o displays on $23 . \mathrm{cm}$ radar screens.

From these data an intensity scale of bird movements, ranging from 0 through 8 , was developed by arbitrarily selecting photographs to represent successive unit

Brief
 description of M33C track radar

in the scale. Thus, intensity 0 correspond with situations where there are no or ver few bird echoes visible and intensity with the greatest coverage of the radar
screen by bird echoes. This scale was used screen by bird echoes. This scale was mevents at Canadian Forces Base Cold Lake, Alberta (Fryers, 1966). It became evident that the practical value of the migration forecasts would be materially increased if one could (a) obtain an idea of the height distribution of nocturnally migrating birds, and (b) establish the numer ical relationship between each unit of th $0-8$ intensity scale.
The purpose of this paper is to report on a trial of Means of determining height distribution of night migrants and of estimating their numbers.
Radar studies on the height of migration have been carried out in Switzerland by Sutter (1957) and Gehring (1963), in England by Harper (1958), 1065,1966). and in the United States by Nisbet (1963a) and Bellrose and Graber (1963). This work has been reviewed by Eastwood (1967) in his book Rular Ornithology.
To determine the numerical relationships between the units of the intensity scale one has to compare the hourly intensities with counts or estimates of the migrating birds. the density of nocturnal (1951), who introduced the moon-watch technique. Density is expressed as the number of birds per mile of front per hour, mentioned in later work (Lowery and Newman, 1966) as the migration traffic rate. Nislet (1963b) used moon-watch data to develop a system to calculate bird densities from radar data. Trom radar data by Graber and Hassler (1962) in the United States and by Eastwood and Rider (1966) in England.

The M23C radar is an anti-aircraft radar consisting of a $10-\mathrm{cm}$ search and $3-\mathrm{cm}$ rack rad. Targets seberved on the Plan Position Indicator (PPI) screen of the search can be followed with the track radar either manually or automatically. Height and track of the target can also be plotted automatically. The RCAF provided a com. plete M33C radar set for Operation Bird Track
The PPI of the search radar did not show bird echoes. The Moving Target Indicator MTI) circuit, designed to reduce ground clutter, did not work effectively. Radar technicians told me that this
with the M33C search radar.
The track radar worked well and, ac cording to the technicians, tends to break down less frequently than the search The antenna of the track radar is
(Fis. 1). All other components are housed in the Operations Van, with the exception of the Auxiliary Power Unit.
The frequency varies between 8,500 and $9,600 \mathrm{MHz}$; the wave length is about 3 cm . The peak power is 250 kw for a pulse width of 0.25μ sec (peak power measured in th field was 180 kw). Pulse repetition
The antenna is of the phase advance type and steerable in azimuth and elevation. The beam has a width of 22 mils ($=1.2^{\circ}$, 17.78 mils $=1^{\circ}$) in both the horizonta and vertical plane. This is the angle be tween the half-power points, where the energy is half as much as at the axis of th beam. By rotating the feedhorn of the radar, a wider beam is obtained. This matic tracking of a target. The radiation pattern is shown in Figure 2. The width of the conical-scan beam is 40 mils $\left(2.2^{\circ}\right)$ between the half-power points. At these points the energy is more than half that at the beam's centre (or lens axis)
The radar echoes are represented as "pips" or "spikes" on three A-scopes (one By switching on range markers one can

stimate the slant range of the target. Azimuth and elevation can be read from dials. Height can be found from slant rang ad elevation angle.
The periscope system of the radar is particularly helpful for bird studies. This $8 x$ power periscope is mounted in the centre of the antenna and moves with it. It has three oculars inside the radar van. one man kept the bird at the intersection of the cross-hairs of the periscope (and thus in the centre of the radar beam) while another man observed the height of the spike of the bird and its range while it moved through the air.
Detailed information on this radar equip ment can be found in military ha.
(U.S. Dept. of the Army, 1956).
The M33C radar was built shortly after World War II. For many military purpose the M33C is now becoming obsolete and thus easily accessible for non-military or ganizations. Maintenance is increasingly difficult since many parts are no longer manufactured. Cannibalization is often
helpful. In the United States the M33C earch radar is used for weather ctudie (Davis, 1963)

Figure 3. Presentation of A-soppe of vertically
aimed M33C track radar, during a night of migra imed M33C track radar, during a night of migra. A, at the botom of the edge of the transmitted pulse, is the 0 .foot marker.

Effectiveness of M33C track radar in detecting birds

For a quantitative evaluation of the dat obtained with the vertically aimed track radar one has to know how many birds are
missed because the birds are flying too low or too high, or too close to the edge of the beam. Birds may also pass unnoticed due to meteorological conditions.

Birds missed because they fly too low The radar had an ineffective range from 0 to 1,200 feet. One night, October 5/6, mitted an experiment to find how many birds at low altitude were picked up by the moon-watch technique (Lowery, 1951) but not by the radar. The ground wind that night fluctuated between 0 and 4 miles per hour. The surface temperature reached a low of $30^{\circ} \mathrm{F}$ at 0400 hours Mountain Stan dard Time (MST) on October 6 (data for Gear Cold Lake . Meroximately 30 miles from Primrose Lake, showed migration of medium density (intensity 4) in an easterly direction.
The moon was followed simultaneously by telescope (20 x Bushnell) and by radar The moon was kept at the intersection of he cross-hairs of the radar's periscope by ontinuous adjustment of

> Tevation of the antenna
outside the van, on the rround j mare the antenna, the distance between the telescope and the antenna being about 18 feet The radar screen was watched continuously for bird spikes. The screen-watcher and moon-watcher (who used a walkietakie) informed the recorder as soon as lassumed that observations made at exactly the same time were of the same bird. The results are shown in Table 1.
Table 1 shows that only 36 of the 44 irds seen by the moon-watcher were ob served by the radar. This would seem to ndicate that eight birds were missed by the radar because they flew too low.
watcher estimated the range of every bird

Table 1
Periods that moon-watch observations were Numbers observed by each method. Octaber $5 / 6$, 1968, Primrose Lake, Alberta

Period of observation (MST)	No. of bird spikes on radar screen	$\begin{gathered} \text { No. of birds } \\ \text { seen by } \\ \text { moon-watcher } \end{gathered}$	No. of birds observed by radar and moon-watcher at same time	
2057-2147	113	15	12	
2305-2353	101	7	4	
0153 -243	113	17	16	
0249-0309	38	5	4	
Totals	365	44	36	

Table

Moon-watcher's estimates of size, speed, and
range of birds missed by radar, October $5 /$

$\underset{\text { Time }}{\text { (MST) }}$	Estimated by moon-watcher		
	Size	Speed	Rane
2059	Medium		Medium ($6,000-9,000 \mathrm{ft}$)
2105	Very small	Slow	Very far out (beyond $10,000 \mathrm{ft}$
2125	Small	Fast	About 7,500
2313	Very small	Medium	Very far out (beyond $10,000 \mathrm{ft}$
2316	Medium	Medium	About 10,000
2321	Medium	Fast	Under 6,000
0211	Large	Slow	About 6,000
0301	Medium	Fast	About 6,000 fid

he saw. The radar range on the screen was divided with grease pencil in six segments each 3,000 feet. By comparing the estimates of the moon-watcher with the actual range shown on the radar screen, it appeared that reliable

reliable

Seven of the eight birds missed by the radar had estimated ranges of "medium" was "under 6,000 feet" but not "close by" Apparently there were no birds flying at low altitude during that night, or at least so few that none were observed by the moon watcher. During nights with low-altitude migration the radar would miss an unknow portion of the birds missed eight birds. One reason might be
hat the distance between telescope and radar antenna is so great birds flying through the "inverted cone of moonlight" need not ecessarily fy through the "inverted cone radar energy ${ }^{\prime}$. This is in all ikelihoo ot the case. Rense (1946) describes a trom simultaneous observations of two from simathers. He advises a distance of to 8 feet for optimal results. In our case the centres of the antenna and the telescope were about 18 feet apart, but instead of having two cones of moonlight, each with an apex-angle of 0.5°, we had one cone of moonlight with an apex-angle of 0.5° an ne cone of radar energy with an aper width" which will be discussed later). Cal culations, given in Appendix 1, show that
$\underset{\substack{\text { Table } \\ \text { Results }}}{ }$
Results of tests with birds carried aloft by
Prinrose Lake, Alberta. Test (a) was carried out
on November 1, 1968, tests (b) and (c) o

Slant of birds (feet)	(a) One snow bunting		(b) Two redpolls		(c) One redpoll	
	Estimated average height of bird spike (as percentage of maximal height)		Estimated ayerage heipht of bird spike (as percentage of maximal height)		$\begin{array}{r} \text { Estimated } \\ \text { average } \\ \text { height of } \\ \text { bird spike (as } \\ \text { percentage } \\ \text { of maximal } \\ \text { height) } \\ \hline \end{array}$	
4,800	100	>50				
8,700	100					
9,000 \pm	95		100	>50		
9,900	70	35				
10,200	60					
10,500			90	≥ 50		
11,400	35	27	70	>50		
12,000	30				60	35
12,300			50-60	≥ 50		
12,600					50	33
12,900	25	22				
13,500			50-60	>50	20	30
15,000	15	20				
15,600			40-50	50	15	28
17,400			30	45		
18,000			30	40	Spike barely	26
21,000			15-20	27		
24,000			Spike			

[^0]$=1^{\circ}$). The angle of vision of the periscop was 100 mils, there being 50 mils from the beam was 40 mils at the half-power poin (sec Fig. 2).
Just after release, only the bird showed in the periscope's field of vision. After a few minutes the balloons could usually be seen at the edge of the field of vision. The calibrated cross-hairs enabled us to tell at what range the balloons were entering the
beam, i.e., were coming within 20 mils of the centre. This information was important ince we wanted to study the spike of the bird and not that of the combination of bird and balloons.
The following tests gave conclusive results:
(a) On November 1, 1968, a pair of bal loons carried aloft one live snow bunting (Plectrophenax nivalis) at the end of about
300 feet of 2-min cotton twine. The balloons were 4 feet apart. Up to a range of 8,700 feet the height of the bird spike was maximal. At greater range the height began to fluctuate and the average height gradually decreased. The results are given in Table 3 The radar technicians were able to follow the balloon-bird combination out to 24,00 mum range at which a free flying buntin sized bird crossing the centre of the beam would give a bird spike that is still just detectable.
(b) On November 15, 1968, a pair of balloons carried aloft two dead common edpolls (Acanthis flammea) at the end of about 600 feet of $1.5-\mathrm{mm}$ nylon string. Th bout 15 cm . The results are given in Tall
When the birds were at a range of 12,000 feet we briefly raised the elevation of the antenna to pick up the balloons. They gave a spike that was barely noticeable. The
tring itself did not give a detectable echo.
(c) A test similar to (b) but with one
instead of two dead redpolls yielded the fesults given in Table 3. This yielded the carried out on November 15, 1968. No data were obtained for short ranges since the
radar operator had difficulty picking up th bird immediately after take-off. Tow bunting at 12000 feet produced a bird spike with an average height of only 30 per cent of maximal, whereas on November 15 a common redpoll (which is smaller than a snow bunting) at 12,000 feet produced a bird spike with an average height of 60 per cent of maximal. The ra ${ }^{\text {dar's superior performance on Novembe }}$ 15 was probably due to the fact that the crystals of the receiver had been replaced.
These tests indicate that sparrow-sized birds can be detected at altitudes up to about 15,000 feet, provided the birds fly through the centre of the beam. This height is much greater than that at which most migration is reported to occur. Nisbet (1963a) found that during nocturnal m gration over Cape Cod, Massachusetts, an
average of 90 per cent of the birds flew below 5,000 feet, the most frequent heig usually being 1,500 to 2,500 feet. It is, therefore, unlikely that migrants that cross the beam close to its centre will pass undetected because they fly too high.

Birds missed because they fi

 at the edge of the beam verted "cone match observations the indefined observation area. Birds passing beside the moon are not counted. In the case of a vertically aimed beam of radar energy the observation area is not exactly defined, since the radar energy drops from the centre to the sides. Beam width is usually given as the angle between hall-power points, i.e., points with half the 40 mils for the M33C track radar, when using conical scan.A tight flock of birds may produce a bird echo when flying outside the 40 -mil beam, while a single, small bird flying inside the 40 -mil beam may be detected only beam. Thus there is no such thing as "the" beam width of the radar. Yet one needs a
well-defined beam width (sample area) to calculate height distribution and density It was possib.
"effective be to determine what I call he "effective beam width" from the result tioned. In this calculation the number of birds observed through the telescope and its known observation area were compared with the number of birds detected by the adar and its unknown observation area. In this way the "effective beam width" was ulation the assumptionsh. The cal given in Appendix 2.
The meaning of the "effective beam width" is not that the radar detects all bird that are inside and none that are outside he beam. It means that the radar, thoug missing a few small birds that cross the beam at the edge but picking up a few big will or focks, that pass outside the beam, rough the flective bean. No attempts were made to determine the accuracy of the calculated effective beam width, since only few data were available and many assumptions had to be made.
Since the effective beam is applicable to altitudes of up to 9,600 feet (see Appendix , it can be used to deal quantitatively ioned before, 90 per cent of the nocturnal igration over Cape Cod occurred below 5,000 feet (Nisbet, 1963a).

Birds missed because of weath

conditions

 antically aimed track radar detects mknown proportiong of the them. An thove or in the clouds will pass undetected. It is, therefore, necessary to record clouds and precipitation overhead during the observation periods and to take these factors into account when assessing radar films.
Determination of

 height distributionFigure 5. Height distribution of migrants above 1,200 feet, September 27/28, 1968, Primrose Lak dicated in upper part of the figure.

In Figure 4 a schematic view is given of the effective radar beam, aimed vertically. This figure shows that the sample area increases with height and that correction factors are to be used to make the data comparable for different height bands. Assuming an even
vertical bird distribution, the numbers of birds per height band, intercepted by the vertical radar beam, relate as the surface of the bottom triangle and the trapezoids ($1: 3: 5: 7$ etc.) as is explained in the first part of Appendix 2. The 2,400- to 3,600 -foot band was chosen as the standard height band, since it is often the altitude of d sest migration
is given in factor for each height ure 4. Since the effective beann width holds for only the first 9,600 feet (see Appendix 2) the correction factor for higher altitudes is considered the same as that for the 9,000 to 9,600 -foot band.

The corrected numbers per height band give a fair idea of the height distribution
As an example of the height distribution the results for the night of September $27 / 28,1968$, are given in Table 4. During this night the sky was clear. Ground winds were southerly and light. After 2300 hours it was calm at ground level. At 2300 hours was west-southwest at 15 mph , and 5 level it was west at 13 mph (data for CFB Cold Lake). On the PPI of the search radar near Cold Lake a heavy southeasterly migration was recorded.
Table 4 shows that 90.4 per cent of the birds above 1,200 feet flew below 6,000 feet and that there was no preferred height height distribution between 1,200 and 5, feet suggests that the number of birds flying below 1,200 feet might have been small. The height distributions per observation period are plotted in Figure 5. There is a tendency for the birds to fly higher in the latter part of the night.
good comparison with night are not a

 Corrected number of birds
other workers. Graber and Hassler (1962) however, gave the height distribution of fall migrants over lllinois throughout one September night with heavy migration, using two methods which gave rather differ ent height distributions. Yet their data band and suggest that few birds were fly below 1.000 feet.

Height above ground (feet)	Per cent of 1otal of correcled numbers of birds	$\begin{aligned} & \text { Height } \\ & \text { a bove } \\ & \text { ground } \\ & \text { (foet) } \end{aligned}$	
1,200-1,800	5.1	7,800-8,400	1.2
1,800-2,400	12.6	8,400-9,000	. 7
2,400-3,000	9.7	9,000-9,600	. 3
3,000-3,600	16.7	9,600-10,200	. 3
3,600-4,200	13.4	10,200-10,800	. 5
4,200-4,800	15.9	10,800-11,400	. 2
4,800-5,400	11.2	11,400-12,000	T
5,400-6,000	5.8	12,000-12,600	T
6,000-6,600	3.1	12,600-13,200	T
6,600-7,200	1.9	13,200-13,800	T
7,200-7,800	1.1	13,800-14,400	T

Determination

of density

The effective beam width is $2^{\circ} 19^{\prime}$; the diameter of this beam at a range of 2,700 feet, the middle of the standard height band ($2,400-3,000$ feet), is 117 feet. The data for all other height bands have been corrected so as to
By adding up all the adjusted numbers one obtains the number of birds passing per 117 feet of front.
Multiplication by 45 gives the number of birds per mile of front of all migration above 1,200 feet altitude. The migration traffic rate is the number of birds per mile of front per hour.
As an example of the density of migra tion, the results for the night September
$27 / 28,1968$, are shown in Table 5 . Density
Table 5
Periods of
Periods of observations with vertically aimed
track radar at Primpose Lake., Allberta, on
September 27/28, 1968 , and the numbers of
track radar at Primrose Lake, Abera, on
Septenber 27/28, 1968, and the numbers of birds per mile of front per hour (migration traftic rate)

Period of observation (MST)	Duration of observation period (minutes)	Number of birds per mile of observation period (above 1,200 feet)	$\begin{gathered} \text { Migration } \\ \text { traffic rate } \\ \text { (above } \\ 1,200 \text { feet) } \end{gathered}$
1915-1945	30	166.5	333
1945-2045	60	1,759.5	1,760
2045-2152	67	4,081.5	3,655
2158-2252	54	$6,399.0$	7,110
2252-2336	44	7,294.5	9,947
23360040	64	11,659.5	10,930
0041-0135	54	9,405.0	10,450
0135-0231	56	5,508.0	5,901
0231-0331	60	4,113.0	4,113

of migration peaked around midnight. Thi
is in accordance with findings of Graber and Hassler (1962), who studied nocturnal all migration over Illinois. They reported hrought one of the heaviest flights of mirants through the Champaign region of llinois recorded in that year. The estimated peak flight density on that night was 1,970 irds per mile of front per hour. The night of September $27 / 28,1968$, was one of the five nights during that month that had heavy migration over the Cold Lake area and the estiunated peak density during that er hour. These figures cannot be compared very well, because of differences in equipment, location, and species involved.

Drawbacks and advantages of the

 nethod usedThe main drawback of the vertically aimed rack radar is that it is ineffective at close to echoes from ground objects caused by side and back lobes. La Grone et al. (1964) had a similar problem with their vertically aimed M33C track radar. They reduced their ineffective range from 5,900 to 2,000 feet by moving the radar van into a deep, narrow gravel pit to screen off side and range (1,200 feet) of our radar at Primrose Lake can perhaps be further decreased by building a fence of material that absorbs radar energy (pers. comm., Dr. F. R. Hunt, National Research Council).
Another disadvantage of the technique is the small sample size. Bellrose and Grabe (1963) rotated the pencil beam of their angle of 30° to detect more birds. We did not use this method since the ineffective range increases considerably at azinuths other than the one we used for routine observations. We also would have lost an unknown portion of high-flying birds. The vertical beam method provides a good ide of the bird movements overhead, but these tion of the migration over a wider area The main advantage of M33C X -band radar, with its peak power of 180 kw , is its capability to detect single, small birds that fly through the centre of the beam at ranges up to 15,000 feet. The X-band radar used by Bellrose and Graber (op. cit.) had a peak power of $45-52 \mathrm{kw}$, and the range
above which the effectiveness in detecting birds was reduced was about 6,400 feet. The effective beam width is useful when dealing quantitatively with the radar data. However, it is applicable only to altitudes up to 9,600 feet (see Appendix 2), and it accuracy was not determined because of the scarcity of the data. Given that (a) the
intensity of bird echoes usually fluctuates strongly, (b) the beam width between the half-power points is 40 mils, and (c) single

birds produced detectable echoes at ranges birds produced detectable echoes at range
up to 15,000 feet, one would have expected
the effective beam width to be in the same order of magnitude as that between the half-power points. As the effective beam width is dependent on the species composition of the migrants and their flocking patterns, it might vary during the migraion season, and even between height band
during one night. These variations would probably be small, particularly during nights of heavy migration, when both small and big birds are on the wing. Mr. A. E. Krause, University of Saskatchewan, mentioned to me that birds might be detected not only by the main beam but Howe the minor lobes of the beam as well. itary expert on the M33C radar, wrote me
that the antenna of the M33C track rodar is specially designed to produce only one is specially designed to produce only one
thin pencil beam and that "unless the antenna is damaged or incorrectly installed, minor lobes if any, are a negligible factor". Since our antenna was undamaged and properly installed by experienced technicians, there were probably no minor lobes biasing
the results. When continuing the M33C the results. When continuing the M33C ob
servation program, calibration tests should be carried out to check this assumption. The film exposure time was 6 seconds per frame. Thus two birds fying through the beam at the same height will show up as one bird spike on the film, even though they might have been flying in differen
directions and up to 5 seconds apart.
Having no accurate data in this re
I would guess that the number of birds that
passed undetected because their spike was concealed by another bird spike would be worthwhile to reduce the exposure time to diminate this source of error.

Comparison of the method used with hose of other workers A. Heigh
-cm radar. Compared with the APS radar used by Graber and Hassler (1962) and ellirose and Graber (1963), the M33C track radar has the advantage of a greater range ($15,000 \mathrm{ft}$). At close range with the APS radar no data could be obtained for
the 0 - to 1,000 foot height band. For the M33C track radar this ineffective range extended from 0 to 1,200 feet.
Eastwood and Rider (1966) used a vertically aimed, high resolution, 3 cm radar. Eastwood (1967) explained that the transmitter of this radar supplied pulse lengths of $1 \mu \mathrm{~s}$ or $0.3 \mu s$ which corresponded to minimum altitudes of 491 and 147 feet, ments of $600-8,000$ feet and $300-2,000$ feet, respectively. The M33C detected birds rom 1,200 feet to 14,400 feet.
Because of the low elevation angle of his 3 cm radar, Sutter (1957) could study only a height range of 165 of 3,000 feet. This height range was even further reduce when later a rain
(Gehring, 1963).
10-cm radar. Nisbet (1963a), who used 0 cm radar, says that "for practical rea ons, the quantitative study was restricte heights above 600 feet" since it was asually impossible to observe birds below 00 feet. He also pointed out that quanti ative observations in his paper "refer to the height distribution of flocks, which is not necessarily the same as that of he M33C track radar probably detected individual hirds rather than flocks. Harper 1058) and Lack (1960), who both used $0 . \mathrm{cm}$ radar, did not give details of the bird-detecting capabilities of their leight finding equipment.
$23-\mathrm{cm}$ radar. Interesting results were obtained by Eastwood and Rider (1965), who used a $23-\mathrm{cm}$ radar tracker which "was equipped with the M.T.I. facility, i.e. mov ing target indicator, so that bird targets well below 1,000 feet, which are normally obscured by the ground clutter, could also Their height distributions show in many cases a considerable number of bird echoes below 1,000 feet. This shows that attempts to reduce the ineffective range of the M33C track radar are well worth considering

Migration Traffic Rat

Compared with the moon-watch technique of Lowery (1951), the radar has the ad antages of a larger sample area, better detection of birds at ranges greater than 6,000 feet (Appendix 2, Table 6), ability to measure and compensate for height disribution, and simpler calculations (since the beam is vertical). Radar can be used every night, even when there is a high laye of clouds. Filming of the scope provides a ermanent record
Disadvantages of the radar are the effort De range 0-1,200 feet. In comparison, we tested the ineffective range of a $20 \times$ Bushnell telescope focused on the moon by mov ing a cardboard cut-out of a $20-\mathrm{cm}$-long bird with half-extended wings across the moon's surface. The cut-out was attached to a long stick. We are unable to give the cut-out a speed of migrating sutseds that we used, the cut-out ap. peared as an unrecognizable blur for a range of $0-100$ feet.
range of $0-100$ feet.
The moon-watcher has a well-defined sample area but this is partially undone by the fact that some birds at the edge of the moon are missed (Nisbet, 1963b).
The vertically aimed track radar proof migration over a very small area. Thus one runs the risk of studying a local phenomenon rather than a sample of largescale migration. Nisbet (1963b) used
moon-watch data to develop a system to calculate the migration traffic rate from the number of bird echoes on the scope of search radar. His results, covering an ree of possible local bias. Wher ossib
hereas Nisbet used a mixed moonwatch and radar technique, Eastwood and rider (1966) used a combination of a $23-\mathrm{cm}$ search radar to "map the general progress of angel activity across a front" (of migration) and a 3 -cm radar, directed vertically upwards as "undoubtedly the most accurate way of counting the passagtion, the radars can give an estimate of numbers of birds migrating over a large area. In Alberta we had a similar arrange. ment, i.e, a powerful search radar at Cold Lake and a vertically aimed M33C track radar at Primrose Lake, which, at al 30 miles distan

Figure 6

Appendix 1
1a Calculation of the distance at which the two lb Calculation of the distance at which the cones of moonlight start to overlap (see Fig. 6a).
The axes of the cones (AF and BG) can be con- $\begin{aligned} & \text { cone of moonlight and tive cor } \\ & \text { stari to overlap (see Fig. } 6 \mathrm{~b} \text {). }\end{aligned}$
sidered to be parallel. $\mathrm{DH}=\mathrm{FA}=\mathrm{FD}$
917 feet $=$ distance where overlap begins.
$\mathrm{FD}=\mathrm{X}$
$\mathrm{AF}=\mathrm{BG} \quad \mathrm{DG}=18$ feet -X
$\tan 1^{\circ} 14^{\prime} 30^{\prime \prime}=\frac{\mathrm{DC}}{\mathrm{GB}}$
$\tan 15^{\prime}$
$=\frac{\mathrm{FD}}{\mathrm{AF}}$ \qquad $>\mathrm{FD}=\mathrm{AF} \tan 15^{\prime}=\mathrm{GB} \tan 15^{\circ}$
$\frac{\mathrm{DC}}{\mathrm{FD}}=\frac{18 \text { feet }-\mathrm{X}}{\mathrm{X}}=\frac{\mathrm{GB} \tan 1^{\circ} 14^{\prime} 30^{\prime \prime}}{\mathrm{CB} \tan 15^{\prime}}>\mathrm{X}=\mathrm{FD}=3$ feet
$\stackrel{\mathrm{AH}}{\mathrm{F}}=\frac{\mathrm{FD}}{\mathrm{D}}$
$\overline{\mathrm{HD}}=\frac{\mathrm{D}}{\mathrm{HD}}=\tan 15^{\circ} \longrightarrow{ }^{\mathrm{HD}}=\frac{\mathrm{FD}}{\tan 15^{\prime}}=688 \mathrm{feet}=$ distance
where overlap begins.

Summary

Appendix 2 "effective beam width" Calculation of $\frac{\text { Calculation of "effective beam width" }}{\text { Part 1. In the moon-watch experiment, telescope }}$

 and antenna were trained at the moon and the birds detected by each method were counted. Assuming that radar and telescope detected allthe birds flying through their "beams", the rela. the birds flying through their "beams,
tion between the number of birds detected by radar and those observed by the moon-watcher should be the same for all height bands, whether the height distribution is even or not. This can
be shown as follows. In Figure 7 , the small con is the observation area of the telescope, the big one that of the radar. For the sake of convenience
the moon is assumed to be straight overhead. the moon is assumed to be estraight overhead.
The dark arrow on the big cone indicates the general direction of migration, TThe plane through
A, 0, and D is perpendicular to this fight direction. A, 0 , and D is perpendicular to this fight direction.
Migrating birds are observed by radar only if they cross plane AOD; by telescope if they cross plane BOC
Thus the number observed by radar in the 15,000 .
to 18,000 -foot band and the number by telescope in this band relate as the surfaces of the trapezoids $A A^{\prime} D^{\prime} D$ and $B B^{\prime} C^{\prime} C$. This relation
holds for all height bands since: Surf. AA'D'D: holds for all height bands since: : Suri.
Surf. $B^{\circ} C^{\circ} \mathrm{C}=$ Surf. $^{\prime} A^{\prime} A^{\prime} D^{\prime \prime} D^{\prime}:$ Surf.
 its usual elevations, the changes in this relatio
ship are so small that they can be neglected. ship are so smal that hey can be negsected.
Part 2. When making moon-watch observation one normally can estimate the range of the ob served birds only from their size and speed.
In our case the range of those birds that were In our case the range of those birds that were
detected by telescope and radar at exactly the same time was obtained from the radar scree
The results, given in Table 6 , show that the The results, given in Table 6 , show that the
relationship between birds observed by radar and relationship betwen birds observed by radar
birds simultaneously observed by the moon. watcher varies considerably per range band.
Table 7 shows that the radar detects, in a tistically significant way, relatively more birds at greater range than the moon-wather. The assump tion that the moon-watcher detects all birds flying
across the moon is not correct since he misses across the moon is ave correct site he hims
birds that are far away. This, of course, does not imply that the radar does detect all birds at greater range.
Yet I think it
a range of 3000 is safe to assume that all birds at close to its centre are detected by the moon-watch technique.
Tests carried out by Newman (1962) and
Nishet (1963 b) showed
Nisbet (1963b) showed that a monnted parula
warbler was clearly visible against blue sky at a warbler was clearly visible against blue sky at a
distance of a mile through a 20 x telescope. Against the background of a full moon it should
Anter be visible at much greater range
But even at the 3,000 to 6,000
But even at the 3,000 to 6,000 .foot range, birds
can easily be missed when they cross the edge of
the moon. Nisbet (1963b) calculated the edge
loss to be 25 per cent of the total number of
nyy data.
Only 36 of the 44 birds seen by the moon-
.
Watcler were observed as beird spikes by the
ccreen.watcher (Te
screen-watcher (Table 1). I argued that the radar
did not miss these birds but that the screen.
wather missed their spikes. So, 8 out of 44 , or
18 per cent of the birds seen througt he
18 per cent of the birds seen through the tele
scope passed unnoticed as bird spikes on the
scope passed unnoticed as bird spikes on the
screen. Because of this inattentiveness of the
screen. watcher I
screcn-watcher, I a ssume that 18 per cent of all
as bird spikes on the screen.
To obtain the actual number of bird spikes, the
dserved number therefore has to be multipled by $\frac{100}{122}$.
The total number of birds detected by the
radar at the 3,000 -to 6,000 -foot range was
$\frac{122}{100} \times 99=120.78$ birds. The total number of
birds fying through the cone of moonliglt at the range of 3,000 to 6,000 feet was
122
125
$\frac{122}{100} \times \frac{125}{100} \times 17=25.93$.
Thus at a range of 3,000 to 6,000 feet the radar detected 4.65 as many birds as the moon-watcler $\left(\frac{120.78}{25.93}\right)$
Using a value of 0.50° for the angle of the telescope's cone of nioonlight, the width of the
"effective beam" of the radar is $2^{\circ} 19$ or 41.25 efiective beam of the radar is $2^{\circ} 19^{\prime}$ or 41.25
mils, teast for the range 3,000 to 6,000 feet mils, at least for the range 3,000 to 6,000 feet
and thus also for 0 to 3,000 feet. (The data for the 0 - t a, 3,000 foot band could not he used, since the ineftective ranges of radar and telescope a
not the same.
Effective beam width and half-power point Effective beam width and half-power point
beamn width are virtually the same. The tests w w beam width are virtually the same. The tests with
the birds carried aloft by balloons showed that a snow bunting gave a maximum spike up to ranges of 8,700 feet, and spikes sith an average
leeight of about 70 per cent of maximal leeight of about 70 per cent of maxinanal at 9,600
feet. This means that this bird might well have feet. This means that this bird might well have
produced a clearly visible bird spike, although
of very s bet produced a clearly visible bird spike, although
of very short duration, at the half-power points
at both thes res. at toth these ranges. Thus the effective beam
widt can probably be applied to the 6,000 - to 9,500. con proabably be applied to the 6,000 - to
small small fraction of the migration takes place above
6,000 feet and possible errors due to the applica. tion of the effective bearm width on the $6,000-$ to
9,600 -foot range will thus 9,600 -foot range will thus be very snall as well.

1. A brief description is given of the M33C track radar.
2. The vertically aimed radar had an in effective range of 0-1,200 feet. Single spar row-sized birds, carried aloft by balloons, roduced detectable echoes up to a range of 15,000 feet.
3. Since a beam of radar energy is not well-defined sample area, the "effective beam width" of the vertically aimed M33C beam width is an estimate of the size of the sample area of the radar. It was calculated from results of an experiment in which the moon was followed simultaneously by telescope and radar. The "effective beam width" can be used for altitudes of up to 9,600 feet
4. A method to determine the height of distribution above 1,200 feet is describe and the results for one night are given as an example.
5. A method to determine the migration traffic rate (the number of birds per mile scribed and the results for 1,200 feet is degiven as an example.
The their results are com pared with those of other workers.

A preliminary study on height
 and density of
 nocturnal fall migration

Hans Blokpoel ${ }^{*}$

The study of the height of migrants was The study of the height of migrants was $68 / 80$ of 443 Squadron, CFB Cold Lake, Alberta. Major D. M. Broadfoot, then with the Directorate Flight Safety, Canadian Forces Headquarters, arranged the equipment for our project.
I am also indebted to Lt. Col. E. K
Fallis, then Commanding Officer, 448
Squadron, and Maj. D. F. Lemna, Senior
Project Officer, who made arrangements for the work to be carried out by 448 Squadron. Mr. W. R. Fryers, the Project Officer, co-ordinated Project 68/80 and gave valuable advice. Col. W. H. Vincent, Commanding Officer, CFB Cold Lake, pro-
ided a venicle for the Project Ieam.
My special thanks go to Cpl. P. P.
My special thanks go to Cpl. P.P.
Coburn, and MWO P. J. Koethe for their efforts during the long, cold nights of
observations.
Cpl. P. P. Desfosses assisted in devising a method to assess the radar films and upervised the evaluation tean that con sted of Mr.
Mr. A.E. K
Mr. A. E. Krause, University of Sasthe theory of rad enough to advise me thankful to Dr. W. W. H. Gunn and Mr. W. J. Richardson for their comments on the manuscript and to Dr. J. B. Gollop, Canadian Wildlife Service, for his criticism and advice.

Bellrose, F. C., and R. R. Graber. 1963. A radar study of the flight directions of nocturnal
migrants. Proc. XIII Int. Orn. Congr. $362-389$.

Davis, I G. 1963. W33C radar modification und calibrations. Report No. 2. The College of Earth and Mineral Sciences, Experiment Station

Eastwood, E., and G. C. Rider. 1965, Some
radar neasurements of the altitude of bird flight. radar neasurements of
Brit. Birdd $58: 393-426$.

Eastwood, L., and G. C. Rider Grouping of nocturnal migrants. Nature 221

Eastwood, E. 1967. Radar ornillology.
Fryers, W. R. 1966. Report on operational fore casts of bird activity. In Bird Hazards to Aircraft, of Flight Sufety, Canadian Forces Headquarters. 13 p .
Gelring, W. 1963. Radar- und Feldbeobachtur gun über den Verlauf des Vogelzuges in Schweizerischen Mittelland: Der Tagzug im

Graber, R. R., and S. S. Hassler. 1962. The effectiveness of aircratt-type (APS) radar in

Harper, W. G. 1958. Detection of bird migraHion by cen.

Lack, D. 1960. The height of bird migration
Brit, Bids $53: 5-10$ Lack, D. 1960. Th.
Brit. Bids 53:5-10.
La Grone, A. H., A. P. Deam, and G. B. Wadio Science Journal of Research. NBS/USNC URSI 68D:895-901.

Lowery, G. H., Jr. 1951. A quautitative study
of the nocturnal migration of birds. Univ. Kansas of the nocturnal migration of bird
Publ. Mus. Nat. Hist. 2:361-472.

Lowery, G. H., Jr., and R. J. Newman. 1966 continentwide view of bird migration on four migs in Orobr. Kak 8.5 7 -58
Newman, R. J. 1962. Review of Nishet 196
Nisbet, I. C. T. 1961. Studying migration by
moon-watching. Bird Migration $2: 38-42$.

Nisbet, I. C. T. 1963a. Measurenents with radar of the height of nocturnal migration over
Cape Cod, Massachusetts. Bird Banding 34:57-67. Nisbet, I. C. T. 1963b. Quantitative study of nigration will 23 -centimeter radar. Ibi 05:435-460.

Rense, W. A. 1946. Astrononly and ornilhology opular Astronomy 54:55-72
Sutter, E. 1957. Radar als Hilfsmittel der Vogelzugforschung. Orn. Beob, 54:70-96.

United States Department of the Army. and M33D. Teclinical Manual Series 9.6092^{-} (operators manual) and Teclnical Manual Series

Introdnction

Methods
 and materials

This paper presents the preliminary results of studies conducted as part of Opera tion Bird Track, a project to develop a method of forecasting the intensity of bird migration. This project, initiated and ried out on behalf of the Associate Com. mittee on Bird Hazards to Aircraft of the National Research Council of Canada.
Forecasts of the intensity of migration over the area around Canadian Forces Bas CFB) Cold Lake in east-central Alberta ave been made by Fryers (1966) and as 0 through 8 according to an arbitrary intensity scale, described by Fryers op. cit.).
oincrease the value of the migration orecasts, I attempted to discover (a) the height distribution of nocturnal migrants, b) the influence of weather on the heigh ionship between the steps of the arbitrary intensity scale.

An M33C radar was used to study the height distribution and Migration Traffic Rate of all migrants flying higher than 1,200 feet above ground level. The Migraion Traffic Rate is the number of birds per mile of front per hour, where the front
is a line perpendicular to the direction of migration (Lowery and Newman, 1966). The M33C track radar is a $3-\mathrm{cm}$ anti. aircraft radar with a peak power of 250 kw . The radar was located at the southwest shore of the panhandle of Primrose Lake $\left.54^{\circ} 49^{\prime} \mathrm{N}, 110^{\circ} 02^{\prime} \mathrm{W}\right)$, Alberta, at a elevation of 2,020 feet above sea level and out $\left(22^{\circ}\right)$ was aimed level. The pencil of the A-scopes, with its range adjusted to 8,000 feet, was filmed. The radar was ineffective through the first 1,200 feet, but was able to detect single small passerines ying across the centre of the beam at al. f the radar beam increases with the diam of the radar beam increases with height must be corrected to be comparable. From hese corrected numbers of bird echoes, he height distribution and density of m rants above 1,200 feet can be calculated Blokpoel, 1971). 1 assumed bird echoes epresented single birds rather than flocks. the M33C radar A small mountect保 ion of small "spikes", slowly changing in ize and shape, and always staying well elow maximum height. Bird spikes usually do reach maximum height and can thus easily be told from such clouds. Heavy louds and precipitation, however, show rom 1,200 to several thousand feet and aving maximum height.
Weather information was obtained fr CFB Cold Lake ($54^{\circ} 24^{\prime} \mathrm{N}, 110^{\circ} 17^{\prime} \mathrm{W}$), ocated about 30 miles south of the M33C radar. To provide more detailed information, a radiosonde balloon was released one night All times in this paper are Mountain Standard Time.

Radar films were made in the period S_{p}. tember 25 to October 31, 1968. This pape deals with the data obtained during 13 nights, or parts thereof, that were either approximately 12,000 feet. A total of 6,61 bird echoes was counted on these nights (corrected number 5,316)
A. Height distribution

The height distributions of migrants fyin above 1,200 feet on the 15 nights used for quantitative analysis are given in Table 1 The table shows that both the 50 and 90 per cent levels vary from night to night, and tha fore generally is no obvious pref
erence particular height band. The 50 and 90 per cent levels are in general not close together.
There is no consistent maximum altitud of flight. For each night the number of birds gradually decreased with height. The highest bird echoes were recorded between and $27 / 28$ Some were récorded above 14,200 feet ($16,200 \mathrm{ft}$ a.s.l.)
Although the nights with heavy migrafon have more high-altitude stragglers tha other nights, there is no indication that the 50 and 90 per cent levels are higher on hose nights than on nights with light miand 90 per cent levels are much higher than on any other night. On October 4, the 90 per cent level and, even more, the 50 pe cent level are unusually low.
To determine whether the height distribution shifts during the night, the distribution for each observation period during Table 2. These 6 nights had a total of 6,200 bird echoes (corrected number 4,972) compared to a total of 6,615 bird echoe corrected to 5,316) during all 15 nights. Lack of data prevented analysis of the light migration nights.
Table 2 shows there was no consisten hift in the height distribution from nig and 28/29 are best compared since the ra
dar observations cover similar, 8 -hour perids. Both nights show small fluctuations for he 50 and 90 per cent levels, but on Sepember $27 / 28$ the 50 per cent level tended to be higher during the latter part on change on September 28/29, apart from a ise of the 50 per cent level from 2200 to 2400 hours. (The corrected number of bird echoes from 1930 to 2000 hours on Septem ber $28 / 29$ was only 25).
On September 26/27 there were minor fluctuations but no consistent shift in heigh 50 and 90 per cent levels were much higher during the last than the first observation period. No shifts could be determined for September 30 and October 4, because too few observations were made.

3. Influence of weather on height distribution
 On September $25 / 26$ a radiosonde was re.

 at Primrose Lake at 2247 hours, while a high-intensity migration was beingrecorded by a surveillance radar near CFB Cold Lake. The direction of migration during the period 2000-0100 hours wa 140° (i.e., from 320°). Figure 1 gives weather data obtained with the radiosonde for the 2247 -to 2 ight distribution of birds above 1,200 feet for the 2205- to 2307 hour period.
Figure 1 shows there was no pronounced preference for any height band, and that palmost all birds were flying below 6,600 feet. Yet, the pressure gradually decrease from 912 milibars feet, the temperature dropped from $10^{\circ} \mathrm{C}$ at 1,000 feet to $-10^{\circ} \mathrm{C}$ at 8,200 feet, and the relative humidity and wind speed varied considerably with height. The wind direction hardly changed with height. The birds had an almost perfect tail wind at altitudes up to 7,000 feet. The dat show that, for this particulare nor a par ticular pressure, temperature, or relative humidity.

Table 1

Percentage height distribution of birds fying
above 1,200 feet in fall 1968 at Primrose Lak
Alberta

Table 2
Percentage height distribution of birds fying
ion during fall 1968 at Primrose Take migra

Of the migrants above 1,200 feet, on September 25 more than 20 per cent flew above freezing level. On September 30 the feet. About 8 and 20 per cent flew above
,200 and 3,400 feet, respectively
The data for the 6 heavy-migration nights
uggest that cloud cover and wind direction were the main factors that influenced the ight of migration during those nights.

C. The numeriel relationship

between th

sity scale

the moon-watchman (1966), who used ion, introduced technique to study migrafion, introduced the term "Migration Tral fic Rate" (MTR) to express the density of bird migration. A method for calculating M33C radar data was described by Blok.
poel (1971). The 15 nights are given is Table 4.
In many instances the observation period In many instances the observation period for which the MTR was calculated did not last exactly 60 min . or did not run from the
full hour to the full hour as shown in Table 4 . In these cases the MTR was plotted for the full hour that comprised the larger part of full hour that comprised the larger part o

Table 3 Height distribu above 1,200 fee		109,000 on of mig	0 feet) of igration,	f migrants and		$\begin{aligned} & \text { elected } \\ & \text { uring fal } \end{aligned}$	$\begin{aligned} & \text { weather dat } \\ & 11 \text { of } 1968 \text { a } \end{aligned}$	$\begin{aligned} & \text { data for } 6 \\ & 68 \text { at Primı } \end{aligned}$	6 havy.	$\begin{aligned} & \mathrm{y} \text { ake, Albation } \end{aligned}$	$\begin{aligned} & \text { ion nights } \\ & \text { oerta } \end{aligned}$							
							ate and obs	observatio	tion peric	iod MST								
	Sept. 2	.25, 220	205-2307	Sept. 2	. 26,2200	20-2300	Sept. 2	t. 27,2158	5-2252	Sept.	.28, 2200	-2300	Sept. 3	30, 2200-	-2300		ct. 4, 22	0-2300
Sky, Primrose L			Clear			Clear			Clear			vercast			vercast			vercast
Sky, Cold Lake			$\begin{array}{r} \text { Clear } \\ \mathrm{TO}=1 \end{array}$		$\begin{aligned} & \text { Scattered co, } \\ & \text { at } 28,0 \\ & \text { To } \end{aligned}$	$\begin{aligned} & \text { d cirrus } \\ & 8,00 \mathrm{ft} \\ & \mathrm{TO}=1 \end{aligned}$			$\begin{array}{r} \text { Clear } \\ \text { TO }=1 \end{array}$		$\begin{aligned} & \text { Overcast c c } \\ & \begin{array}{c} \text { at } 24, \\ \text { TO } \end{array} \end{aligned}$	$\begin{gathered} \text { cirrus } \\ 4,000 \mathrm{ft} \\ \mathrm{CO}=6 \end{gathered}$	Overcas	$\begin{aligned} & \text { ast cirrostst, } \\ & \text { at } 25,0 \\ & \text { T0 } \end{aligned}$	$\begin{aligned} & \text { stratus } \\ & 5,000 \mathrm{ft} \\ & \hline \end{aligned}$			$\begin{aligned} & \begin{array}{l} \text { umulus } \\ 2,000 \mathrm{ft} \\ \text { ssiratus } \\ 3,000 \mathrm{ft} \\ \mathrm{ro}=6 \\ \hline \end{array} \end{aligned}$
Direction of mig	ration,		140			130			120			120			140			1.50
Corrected numb of bird echoes			274			94			142			229			95			199
Height above radar site (x 100 feet)	Wind direction,	$\begin{aligned} & \text { Wind } \\ & \text { speed, } \\ & \text { snots } \end{aligned}$	$\begin{aligned} & \text { No. of } \\ & \text { birds, } \\ & \% \end{aligned}$	$\begin{gathered} \text { Wind } \\ \text { diree. } \\ \text { tion, } \end{gathered}$	$\begin{aligned} & \text { Wind } \\ & \text { speed, } \\ & \text { knots } \end{aligned}$	$\begin{gathered} \text { No. of } \\ \text { hirds, } \\ \% \end{gathered}$	Wind direction,	$\begin{aligned} & \text { Wind } \\ & \text { osped, } \\ & 0 \text { snots, } \end{aligned}$	$\begin{gathered} \text { No. of } \\ \text { birds, } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Wind } \\ \text { direc, } \\ \text { dion, } \end{gathered}$	$\begin{aligned} & \text { Wind } \\ & \text { speed, } \\ & \text { spnots } \\ & \text { kn } \end{aligned}$	$\begin{gathered} \text { No. of } \\ \text { birds, } \\ \% \end{gathered}$	Wind direction,	$\begin{gathered} \text { Wind } \\ \text { speed, } \\ \text { spots } \\ \hline \end{gathered}$	$\begin{gathered} \text { No. of } \\ \text { birds, } \\ \% \end{gathered}$	$\begin{aligned} & \text { Wind } \\ & \text { direc. } \\ & \text { dion, }{ }^{\circ} \\ & \hline \text { tion } \end{aligned}$	$\begin{gathered} \text { Wind } \\ \text { speed, } \\ \text { spuots } \end{gathered}$	$\begin{gathered} \text { No. of } \\ \text { hirds, } \\ \% \end{gathered}$
90 -						T			1^{*}			T						
84 -																		
78 -	305	22		300	14	1^{*}	290	15	1				270	32	T	310	28	
			T			5			1			T						
72 -	325	24	T	295	15	5	285	11	2			1	270	28		315	30	T
$66-$																		
			10			16			4			1			T			1
$60-$	325	28	5	255	15	10	270	9	2			2	265	21	T	310	36	T
54 -																		
48 -	325	23	6	250	10	15	270	13	6			7	270	25	3	305	40	*3
			$7 *$			12			14			9			4			2
42 -	320	25	9	205	5	6	255	15	14	275	38	24	270	25	8^{*}	305	39	7
$36-$						7			17			16			20°			12
$30-$	315	34		165	10		250	15		270	${ }^{40}$		275	30		300	42	
			20			4			14			7			19			7
24-	315	32	12	150	11	12	235	15	13	270	45	28	265	${ }^{29}$	19	295	43	43
			18			6			9			3			25			24
12 -	310	28		125	13		220	21		270	45		250	28		295	39	
6.																		
0.						90 per cent of the liirds flew, respectivcly. Asterisks indicate estimated freezing level.												
Note: Boldface and italic type indicate the height bands containing the heights below which 50 and					90 per cent of the birds flew, respectively. Asterisks indicate estimated freezing level.						$\mathrm{TO}=\text { Total Opacity. } \mathrm{T}=\text { less Ilan } 1 \text { 1wr rem. }$							

Discmssion

Table
Migration Traftic Rates of migrants fying above
解 1968 at Primrose Lake, Allerta

$\begin{aligned} & \text { Hour of } \\ & \text { observation, } \\ & \text { MST } \end{aligned}$	$\begin{gathered} \text { Sept. } \\ 25 \end{gathered}$	$\begin{gathered} \text { Sept. } \\ 26 / 27 \end{gathered}$	$\begin{gathered} \text { Sept. } \\ 27 / 28 \end{gathered}$	$\begin{gathered} \text { Sept. } \\ 28 / 29 \end{gathered}$	$\begin{gathered} \text { Sept. } \\ 29 \end{gathered}$	$\begin{aligned} & \text { Sept. } \\ & 30 \end{aligned}$	Oct_{2}	$\mathrm{Oct.}_{3}$	Oct_{4}	$\begin{gathered} \text { Oct. }_{16 / 17}^{1} \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 17 \end{gathered}$	$\underset{24}{ }$	$\begin{aligned} & \text { Oct. } \\ & 26 \end{aligned}$	${ }_{27}{ }_{27}$	Oct. 28
1700-1800	-	-	-		-	-	-	-	-	-	0^{*}	-	42	0	${ }^{0}$
1-1900	-	177	-	-	-	-	-	-	-	-	0	249	252	0	86
100-2000	-	2,040	333	2,250	1,556	-	1,091	54	-	1,350	0	270	81	0	27
2000-2100	11,944	2,866	1,760	5,297	927	-	959	36	2,376	2,070	23	396	347	0	32
2100-2200	15,157	2,958	3,655	12,060	1,602	2,727	2,005	0	5,994	-	36	274	194	0	86
2200-2300	11,941	4,226	7,110	10,287	1,130	4,280	666	95	8.952	-	35	-	$16{ }^{*}$	0	68
$2300-2400$	12,389	3,600	9,947	13,154	1,248	4,331	-	63	10,919*	-	-	-	-	0	0
2400-0100	-	1,821	10,930	11,930	-	-	-	0^{*}	-	-	-	-	-	-	-
0100-0200	-	-	10,450	9,963	-	-	-	-	-	-	-	-	-	-	-
0200-0300	-	-	5,901	11,433	-	-	-	-	-	-	-	-	-	-	-

4,113
period lasted between 13 and 3
the 2051- to 2141-hour period is shown as $2100-2200$ hours). There were 82 observation periods in total: 52 lasted from 60 to 74 min., 15 from 45 to 59 min., 10 from 30 to Migration Traffic Rates varied from
5.157 to 0 . Most nights began with small MTR's. On some nights (e.r., October 17) the MTR remained small; on other nights it rose to medium (September 26) or to large (September 28) numbers.

On September 26/27 and $27 / 28$, num. bers decreased during the latter part of the night. On September $28 / 29$, however,
MTR was still large during the 0200 0300 -hour period.
Of the 3 clear nights with heavy migration (see Table 3), the night of September 25, with strong tail winds at all levels, had the largest MTR. On September 26/27, the winds. Apparently this situation was winds. Apparently this situation was not barely exceeded 4,000 . On September $27 / 28$, the winds were not as favourable and the MTR not as large as on September 25 . Data on MTR's were available for 15 mights, but reliable intensities from films
of the scope of the surveillance radar wer

Table 5

with the M33C radar at Prinnolose Lake, Alberta,
for the same periods in the fall of 1968 ,

Intensity	Migration Traffic Rate				
	Sept. 25	Sept. $27 / 28$	Oct. 3/4	Oct. 4	Average
8 -					
7	$\begin{aligned} & 15,157 \\ & 11,941 \end{aligned}$				13,549
6	$\begin{aligned} & 11,494 \\ & 12,389 \end{aligned}$			8,952	10,945
5		7,101 9,947 10,930 5,901 10450 4,113		5,994	7,777
4		3,655			3,655
3		1,760		2,376	2,068
2		333	$\begin{aligned} & 95 \\ & 63 \\ & \hline \end{aligned}$		1.64
1			0 36		18
0			0 0		27

*Inensity scale from Fryers, 1960
obtained for only four of these nights. The ew results show a clear correlation betwee The correlation is yery erud (Table 5)
ince intensity 5 corresponded with MTR varying from 4,113 to 10,930 lirds per varying from

Method

Nisbet (1963a) combined radar and moon watch techniques to study nocturnal migra tion over Cape Cod, Massachusetts. He concluded that many species of passerine ing over an area 100 to 20 groups, exten These groups consist of 2 to 12 (aves. 6) widely separated birds

Eastwood and Rider (1966) studied
spring night migrants at the coast of Essex England. They used a $23 \cdot \mathrm{~cm}$ surveillance radar and a vertically aimed $3-\mathrm{cm}$ radar (beamwidth 0.7°) which detected single gested that "while some of the nocturnal angels which give good echoes at long ra are probably true groups of birds analogous to those observed by day, others, and perhaps the majority, are pseudo-groups whic result from the pulse-volume effect", I assumed that the vertically aimed detected single birds. Moon-watch data (angle of vision 0.5°) obtained at Cold Lake, Alberta, during September 1967 sup port this assumption. Of a total of 609 irds, only 9 "pairs" and one flock of about en birds (waterfowl) were observed. If he M33C detected many flocks or groups minimum estimates; the height distrib tions are correct assuming that de flocki and grouping birds had the same height references as single birds.
Both moon-watch (James, 1955) and radar studies (Drury and Keith, 1962) howed that passerine night migrants are het guided by topographical features. Thus Primiose Lake represent migration shore of ather than a local phenomenon.
No confidence limits for height distribu tions and MTR's could be given since the method used was based on few data (Blok

Height distribution
Nisbet (1963b), Bellrose and Graber
1963), and Eastwood and Rider (1965)
made radar studies of the height of bird migration. Nisbet's equipment permitted a se and Graber studied birds higher th 1,500 feet; and the radar used in the preent study detected single birds above 1,200 eet. The radar of Eastwood and Rider was equipped with a Moving Target Indicator 1,000 feet. Height distributions webtained with these different equipments cannot b strictly compared. Yet my results are in good general agreement with Nisbet's re sults at Cape Cod, Massachusetts (based on 22,000 echoes during 37 nights in spring and cer and over 99 per cent below 10000 fee Of the birds flying above 1,200 feet over Primrose Lake, 50 per cent were, on aver age, below about 3,500 feet, 90 per cent below about 5,000 feet, and 99 per cent below about 10,000 feet. The results of Bellrose and Graber are not suitable for comto miss birds beyo, in a rane rad started Eastwood and Rider found that about 80 per cent of 346 echoes during 4 nights in September 1962 were below 1,500 feet and about 37 per cent of 2,210 echoes during 14 nights in October and November 1902 were below 1,500 feet. Nisbet (op. cit.) believed that, on average, only $10-20$ per that many of these were of non-miorating birds (e.g., gulls, shorebirds, ducks, eese, and other sea birds). The height distributions obtained in this study suggest that on some nights (e.g., September 26/27, 1.200 feet. On other birds were flying below 25 and October 16) nights (e.g., Septemb relatively many birds below 1200 feet The results of Eastwood and Rider clearly show the advantages of the MTI.

nfluence of weather on heigh

 distribution(1065) described
gested that the freezing level operated as a ceiling for the birds. The results of this
study show that birds reezing level in considerabl above the night in the fall. Those authors also sug ested that "it is hardly reasonable to exp altitude adjustment by migrant birds in response to the variations in wind speed and direction encountered during an ex ended flight". My results for one hour eptember 26 suggest that some bir higher than usual. This would indicate that birds, once in the air, are able to detect varitions in wind direction on a clear night.

elationship between the steps of the

 -8 intensity scaleince the surveillance radar picked up bird comparison of results obtained with not,
con adars has limited value. The few results uggest that the relation between all inten ties of the $0-8$ scale and the correspondin 8 TR's may not be a simple one, but the reation between the higher intensities (4-7) and the corresponding MTR's may be re data are needed to solve this problem.

The height and density of nocturnal migra. tion during the fall of 1968 over the area around Canadian Forces Base Cold Lak Alberta, were recorded by filming an radar. The radar was located at the southwest shore of Primrose Lake $\left(54^{\circ} 49^{\circ} \mathrm{N}\right.$ lati tude, $110^{\circ} 02^{\prime} \mathrm{W}$ longitude) about 30 miles north of CFB Cold Lake. The radar detected single birds flying above 1,200 feet. The paper deals with the results for 15 nights which were either completely clear or clear up to 12,000 feet
ft the birds flying over 1,200 feet, 50 per cent were on the average below about
3,500 feet, 90 per cent below about 5,000 feet, and 99 per cent below about 10,000 feet. The highest bird echoes were recorded at 14,200 to 14,400 feet. The 6 nights with heavy migration showed no consistent shift in the height distribution during the course of the night.
bably the main factors that influence the height distribution during the 6 nights with heavy migration.
The Migration Traffic Rates (i.e., the numbers of birds per mile of front per hour), obtained from M33C data, showed sities of migration obtained from films of a scope of a surveillance radar, located near CFB Cold Lake.

I am thankful to L.t. Col. E. K. Fallis, Maj. D. F. Lemna, and Mr. W. R. Fryers, all of 448 Test Squadron, for their support. I am ding Officer of CFB Cold to Wolff, Commanding Officer of 42 Radar Squadron, and Mr. C. R. Finlay, Base Meteorological Officer, for their co-operation Special thanks are due to Cpl. P.P.Desfosses for his valuable assistance throughout the project.
Dr. J. B. Gollop, Canadian Wildlife Service, read the draft of this paper and made heipful comments and suggestions.

Bellrose, F.C., and R. R. Graber. 1963. A radar study of the fight directions of nocturnal
migrants. Proc. Int. Orn. Conur 13:362-389
Blokpoel, H. 1969. An attempt to forecast the intensity of nocturnal fall migration. Proc. World 2-5, 1969. Kingston, ont. p. 285-298.
Blokpoel, H. 1971. The M33C track radar (3.cm) as a tool to study the height

Drury, W. H., and J. A. Keith. 1962. Radar studies of songbird migration in coastal New studies of songbird migrati
England. Ilis $104: 450-489$.

Eastwood, E., and G. C. Rider. 1965. Some
radar measurements of the altitude of bird fight. radar measurements of the altitude of bird hight
Brit. Birds $58: 393-426$.

Eastwood, E., and G. C. Rider. 1966. Group-
ing of nocturnal migrants. Nature $211: 1143-1146$. 967. Radaromitholagy Methue Lantwonal, 278 p.
Fryers, W.R. 1966. Report on operational fore
casts of bird activity In Bird casts of bird activity. In Bird hazards to aircrafi, of Flightit Safett, Canadian Forces Hearectorate 13 p .
James, F. C. 1955. The influence of the Missis James, F. C. 1955. The influence of the Missis. ${ }_{37}$ U.

Lowery, G. H., Jr. and R. J. Newnan. 1966 A continentwide view of bird migration on four ,
Nisbet, I. C. T. 1963a. Quantilative study of
migration with $23-\mathrm{cm}$ radar. Ihis $105: 435-460$
Vishet, I. C. T. 1963b. Measurements with radar of the height of nocturnal migration over

```
No. 1
Whooping crane population dynamics on the
Northwest Territories, Canada by N.S. Novakows,
\(\xrightarrow{\text { Cat. }} \mathrm{N}\)
Bionomics of the sandhill craue by W. J. Stephen
Cat. N
No. 3
The breeding biology of Ross' goose in the Perry
The breding, biology of Ross goose in the Pa
River regien, Norrthwest Territories by John
River region, Northw
Ponulerion Ryder
Cant. No. R65.8/3, Price 75 cents
\begin{tabular}{l} 
Cat. No. \\
No 4. \\
\hline
\end{tabular}
chaviour and the reguation of numblers in blue
rouse by J. F. Bendell and P. W. Ellio
Vo. 5
```



```
anipps) by C. Ricclard Harington
at. No. R65.8/5, Price 50 cents
Saskatoon Wetlands Senininar (Transactions of
scrinar on small water areas in the prairie
Cat. No. Revi-8/6, Price 85.25
No. 7
Historire naturelle du Gole, Alcut torda, L, dans le
gotfe Sain-LLaurent, province de Québec, Canada,
\({ }_{\text {Cat }}^{\text {par No. K65.8/7, Price } 81.25}\)
No. No
hic dynamics of Canadian arctic fox population
by A. H. Macpherson
Cat. No. R65. \(8 / 8\), Price \(\$ 1.00\)
Cat.
Nop
Popu
Population estinuates of barren-ground carilou,
March to May, 1967 by bonald C . Thomas
Cat. No.
The nammals of Jasper National Park, Allerta
```



```
No. 11 il of sex differential in the survival of
wapiti by Donald R. Flook
Cat. No. R65-8/11, Price \(\$ 1.25\)
Breeding biology of California and ring billed
Breeding biology of Califfrinia and ring -hilled
gulls: a study of ecological adaptation to the
inland haubitat by Kees Verncer
Cat. No.
No. 13
Geographical variation in the polar bear, \(U\) rsus
maritimus Plipps by T. H. Manning
Cat. No. R65.8/13, Price \(\$ 1.00\)
```

Department of Indian Affairs
and Northern Development

[^0]: he radar and moonlight cones, with apices 8 feet apart, start to overlap each other t shorter range than two moonlight cones with apices 8 feet apart.
 Another reason might be that birds seen with the telescope at very great range are missed by the radar. This is not the case as is shown in the second part of Appendix 2. The fact that eight birds seen by the moon-watcher were not recorded by the to inattentiveness of the screen-watcher.

 Birds missed because they fly too high The maximum range at which the M33C
 track radar can detect birds was determined by manually tracking birds that were carried aloft by balloons. The balloons were "lock on" the bie the van, so that we could
 " lock on the bird, using the periscope, at
 its point of take-off. As the balloons drifted away, the range of the bird increased and the average height of its spike on the screen slowly decreased. We used red, hydrogeninflated balloons, about 2 feet in diameter Since one balloon gave detectable radar
 echoes at ranges of about 10,500 feet, long echoes at ranges of about 10,500 feet, long
 string was used to separate birds and balloons. Both cross-hairs of the periscope were provided with scales in mils (17.78 mils

