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SUMMARY *

The Current Situation
The situvation with respect to the statistical analysis of data for avian
reproduction experiments is a fairly confused one. An examination of the
submissions from approximately 100 experiments revealed that a wide variety of
different methods are employed, and that many of these are questionablé.
Assumptions are made ‘that are not statistically valid, and tests are carried out
that are inefficient at detecting the kind of treatment effects that are
expected. These problems reduce the ability of the experiments to assess whether
the test substances have the potential to cause reprcductive effects. )
1

There appear to be a number of reasons for this situation:

1. Multiplicity of Variables and Methods
There are several types of variable to be analysed in an experiment, and for some
variable types there are a wide variety of methods that could be applied.

2, Current Methods are Too General

The most efficient methods are those that test specifically for a negative effect
on reproduction that increases as the dose level increases. But the methods
actually employed are usually general methods as they are much better known.
These general methods test for any pattern of differences among treatments.

3., Current Methods Ignore Data Structure

Methods should take into account the fact that treatments are applied con a pen
basis, but this is difficult and time-consuming and in practice it is much easier
to treat the data as if the treatments had been applied independently to each
agg, chick or adult bird.

4. Data Complexities _
The data sets frequently contain features that complicate the analysis, such as
a multi-level structure or variation in the numbers of eggs or chicks per pen,

5. The Objectives are Not Clear
It is not clear whether the effect of the test substance should be tested at each
dose level, or whether a general test over all levels is sufficient.

6, Lack of Information in Current Protocols
Existing protocols offer only general guidance on statistical methods and do not
discuss the many complexities that can occur.




Main Objective: Identify the Best Methods
It was assumed that when a data set is analysed, the effect of the test substance
should be tested at each dose level. The main objective of this report is to
identify methods that are statistically valid and fully efficient at carrying out
these tests. To achieve this, the following plan was adopted:

¢

Decide on é set of criteria that the methods should meet in order to ensure
their validity and efficiency.

Classify the variables to be analysed according to their statistical
characteristics

Consider what statistical assumptions are appropriate for each variable
class.

For each variable class and each set of assumptions, identify as many methods
as possible that meet the criteria for validity and efficiency.

Results Achieved :

The search for improved methods was successful. For each variable class a number
of methods have been identified that appear to be a major improvement over
current methods. Some of these are extensions of methods currently employed and
some represent new approaches. '

Recommended Methods
The methods most commonly recommended are:
- weighted t-tests
- weighted tests of linear trend
Weights are employed to accommodate complexities in the data.

Other methods are also recommended in certain circumstances. These include:

Least Squares Methods Qualitative Methods Non-Parametric Methods

unweighted t-tests 2x2 chi-square test Mann-Whitney test
LSD test Fisher's exact test Rerandomization tests

unweighted trend tests  Cochran-Armitage test
Williams test '
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Recommended Test Type

For maximum efficiency, all statistical tests should be one-tailed tests that
test specifically for the effect most likely to occur - a negative effect on
reproduction that increases in magnitude as the dose level increases.

Second Objective: Identification of the NOEC d

Once a result is obtdined for each dose level in a data set, it is desirable to
identify the NOEC (tﬁe highest dose level in the experiment at which there is no
observed effect of the test substance)}. A second objective of this report is to
examine procedures to determine the NOEC from the pattern of significant or non-
significant results at the different dose levels. ‘1f

Third Objective: Examination of Data Quality

A further objective is to consider the issue of data quality. Because of the
nature of avian reproduction experiments, there is a danger that inadequate data
guality could seriously reduce the chances of detecting harmful treatment
slfects. Factors that could affect data quality include mortality, disease, and
inconsistency in the birds' reproductive capabilities. Some measures that can
bo taken to ensure a minimum acceptable quality level are suggested.

Dippite the complexities involved in the statistical amalysis of data from avian
fiproduction experiments, a number of promising methods were identified and the
prospects for improving the methods of statistical analysis employed in
Bubmissions appear to be good.

Fuither Studies Planned

i 8 later study, some of the statistical methods recommended in this report will
ki svaluated further by testing them on actual and simulated data.
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1. INTRODUCTION

1.1 Data to be Analysed for AR Experiments

In avian reproduction (AR) experiments, the treatments are a control and a series
of dose levels of the test substance. Each treatment is applied to a speciff%d
number of pens, with each pen containing a specified number of male and female
birds. Data are collected on a large number of variables (described in section
2). Some of these are measurements (e.g. egg weight), some are counts {(e.g.
number of eggs laid per pen), and some are proportions (e.g. the per cent of eggs
set which hatch per pen). In general each data set has the structuréﬁbf
individual subjects (eggs, chicks or adult birds) within pens within treatments.

1.2 Scope of This Report ,

The planning and analysis of AR experiments touches on a number of subjects of
a statistical nature:

the design of the experiment

the selection of the dose levels of the test substance

the quality of the data produced

statistical analysis of the data to test the effect of the test substance
the conclusions to be drawn from the test results

Only some of these topics are within the scope of this report. The main focus
is on statistical analysis, with some attention also given to the data gquality
and to the conclusions to be drawn. The experimental design is not discussed,
as it appears to be reasoconable to assume that a simple one-way design is
employed. The selection of the dose levels is not considered as it is
essentially a biological question {and is discussed in Mineau, Boersma and
Collins, in press). The only assumption made in this report is that the levels
can be considered to be equally spaced in some scale for analysis purposes.

1.3 Objectives

Main Obijective: Identify Superior Methods for Testing Effects

The main objective of this report is to evaluate potential methods of data
analysis for testing the effect of the test substance, and to identify the most
promising ones. In a later study (Collins and Mineau, in prep.) these methods
will be examined further by applying them to actual or simulated data.
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Second Objective: Determine the NOEC

Another question is that of what conclusions to draw from the test results once
they are obtained. The determination of the NOEC, or highest dose at which there
is no observed effect, is considered to be an important conclusion in this
respect. A second objective of this report is to examine procedures for
determining the NOEC from the test results. ;

Third Objective: . Examine Data Quality

There appears to be a danger that the ability of AR experiments to detect harmful
effects could be compromised by inadequate data quality, caused by factors such
as mortality, disease or reproductive failure unrelated to the treatments
applied. A third objective of this report is to examine this aspé~t and
recommend possible measures to ensure that the quality is acceptable.

1.4 The Complexity of the Data Analysis Situation

The statistical analysis of data from AR experiments is not a simple matter, and
neither is the evaluation of potential methods. In a typical experiment there
are several different types of variables to be analysed (measurements, counts and
proportions), each of which has specific features that could affect the analysis.

Another factor is the complexity of the data sets. For many variables the data
sets have a multi-~level structure, with individual subjects {adult birds, eggs
or chicks) grouped within pens and pens grouped within treatments. Another
common feature is variation in the number of subjects (particularly eggs or
chicks) from one pen to another. There can also be differences in the amount of
random variation in a variable from one pen or treatment to another. ‘

There is also the question of what statistical tests or test procedures are
appropriate. Currently in some cases only an overall test of the test substance
is run; in some cases each dose level is compared to the control, while in some
each treatment is compared to each other treatment. Some of these tests are
general tests that could be applied to any set of treatments, while some are
tailored specifically to the ordered nature cof the treatments in AR experiments
{a contrcl and a set of increasing dose levels of the test substance).

Because of this multiplicity of variable fypes, data complexities and test
procedures, the situation facing those who analyse data from AR'experiments is
a difficult one. A number of different established methods could be employed,
and the ongoing increase in computing power means that procedures that were once
considered too calculation-intensive are now feasible.
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No consensus has emerged as to what methods "are most appropriate. Protocols on
AR experiments generally do not help to resolve these questions as their feocus
is on the methodology of the experiment and not on the statistical analysis.

1.5 Organization of This Report p
The first section of the report is this introduction. The other sections are:

Section 2. Description and Classification of the Variables

Four different classes of variable are defined, based on the variable type
{measurement or count/proportion) and the subject that the variable is taken from
(adult birds or eggs/chicks). ' q

Class Subject Variable Type
1 Adult Birds Measurement
2 Adult Birds Count or Proportion
3 Eggs or Chicks Measurement
4 . Eggs or Chicks Count or Proportion

Section 3. The Current Statistical Situation
In this section the statistical methods currently employed are evaluated, and
areas are identified where improvement appears to be needed.

Section 4. Methods Recommended for Each Variable Class

The objectives of the analysis are defined, and criteria are set out concerning
validity ard efficiency. The characteristics of each class of variable are
discussed, and methods are identified that appear to meet the criteria.

Section 5. Determination of the NOEC
The determination of the NOEC from the results of the tests of each dose level
is discussed, and recommendations are made concerning the procedure to employ.

Section 6. Examination of Data Quality
The issue of data quality is discussed and some measures to ensure an acceptable
level of quality are suggested.

Appendix A: This contains further information on the statistical methods
referred to in sections 3 and 4.

Appendix B: This contains information on supplemental statistical procedures
such as transformations, weighting schemes, and tests of homogeneity of variance.
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2. DESCRIPTION AND CLASSIFICATION OF VARIABLES

2.1 Experimental Procedure

The following is a brief description of the experimental procedure for AR
experiments. Further information is available from the U.S. EPA guidelines
'Avian Reproduction Test' (U.S. EPA Hazard Evaluation Division, 1986, EPA 540/8-
86-139}. :

In AR experiments the effect of the test substance on avian reproduction is
assessed under laboratory conditions by adding it tc the hirds' diet in various
concentrations. The treatments are a control and a series of dose levels of.ghe
test substance. Each treatment is applied to a specified number of pens, with
each pen containing a specified number of male and female birds (e.g. 1 male, 2
females).

The experiments are run in two phases - a pre-egg-laying phase and an egg-
laying phase. In the first phase, which is typically 10 weeks in length, the
birds are fed the test substance but no reproductive activity occurs as the
diurnal light conditions are maintained at a normal winter cycle.

The egg-laying phase, which is typically from 8 to 14 weeks in length, begins
when the lighting is changed to a spring cycle and the birds begin reproductive
activities. Eggs are laid at a rate of up to one per day per female bird during
this phase, and are incubated until hatching. The chicks are placed in an
enclosure and raised for 14 days. The adult birds are sacrificed at the end of
the experiment. :

This section contains a description of the variables commonly analysed in AR
experiments, and their classification according to statistical characteristics.
These variables comprise a fairly comprehensive list and include all of the main
variable types; however it was not feasible to include every possible variable,

2.2 Variables From Adult Birds

2.2.1 Obgervations Made on Adult Birds

The weight of each bird is typically measured at a number of points during the
experiment. Any mortality during the course of the experiment is noted. At the
end of the experiment the bird is sacrificed and a gross necropsy carried out.
In addition the food consumption is measured for each pen.

2-1



2.2.2 Variables Derived
Two classes of variables were defined - those that are measurements or derived
from measurements, and those that are counts or proportions. '

Class 1. Measurement Variables for Adult Birds
- weight (at various times)
- weight change (over various periods)
- food consumption per bird

Class 2. Counts or Proportions for Adult Birds
- the number or proportion of hens that lay eggs ‘{"
- mortality during the experiment
- necrcopsy observations {e.g. the number or proportion that develop a
particular condition)

2.3 Variables From Eggs or Chicks

2.3.1 Observations Made on Eggs and Chicks

When the eggs are laid, they are sometimes weighed and are then 1nspected for
cracks. Some eggs are removed from the experiment at this point for measurement
of shell thickness. The remaining eggs are then set in an incubator, checked for
fertility at 14 days, and checked for a viable embryo at 21 days.

At hatching the chicks may be weighed and are placed in an enclosure. Excess
chicks are removed from the experiment if the enclosure can not hold them all.
The remaining chicks then grow for 14 days, at which time they are sacrificed and
possibly weighed again.

At each stage the number of eggs or chicks surviving that stage is recorded for
each pen, and the eggs or chicks that have not survived or are not viable are
removed., TFigure 1 illustrates the progress of the eggs and chicks through the
experiment.
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Figure 1. Stages of the Experiment

2.3.2 Variables Derived

Two different variable classes were defined - those that are measurements or
derived from measurements, and those that are counts or proportions. Typical
variables for these classes are:

Class 3. Measurement Variables for Eggs or Chicks
- egg weight
- egg shell thickness
-~ chick weight (at hatching and 14 days)
- chick weight gain
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Class 4. Counts or Proportions for Eggs or Chicks

Counts
At each stage of the experiment, counts of the surviving eggs or chicks are’
tabulated for each pen. In addition, 'estimated counts' can be calculated that .
take into accoﬁnt the removal of eggs for shell measurement or the removal of §
excess chicks at hatching (which represent the numbers that would have survived ;
if the removals had not occurred). Some examples of counts are: .

Actual Counts
- number of eggs laid
- number of non-cracked eggs

e,

Estimated Counts
- estimated number of eggs hatched
- estimated number of chicks alive at 14 days

Illustrations of the calculation of an estimated count are:

Estimated number of eggs hatched

= (non-cracked eggs) x  eggs hatched
' eggs set

Estimated number of chicks alive at 14 days

= (non-cracked eggs) X eqgs hatched x 14-day chicks
eggs set chicks retained

Progottions
The proportions of eggs or chicks that have survived a particular stage or set

cof stages are calculated from the counts. Some of these are actual proportions
that are ratios of actual counts, and some are estimated proportions that tak
into account the removal of eggs for shell measurement or the removal of exce
chicks at hatching. Some examples of proportions are:
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Actual Proportions :
- Proportion of eggs laid that are not cracked
- Proportion of eggs set that are fertile after 14 days
- Proportion of eggs set that hatch
- Proportion of chicks retained that survive to 14 days

Estimated Proportions
- Estimated proportion of eggs laid that hatch
- Estimated proportion of eggs laid that produce chicks that survive to 14 days

An illustration of the calculation of an estimated proportion is: -{
Estimated proportion of eggs laid that produce 14-day chicks

= non-cracked eggs X eggs hatched x 14-day chicks
eggs laid eggs set chicks retained

Note: The calculations for estimated counts and proportions assume that the eggs
remcved for measurement of shell thickness were selected at random from the non-
cracked eggs. However, it is possible that the eggs removed were designated in
advance as suggested in the OQECD protocol. In this case the counts and
proportions are tabulated for the non-designated eggs only, and there is no need
to allow for the removal of eggs for shell measurement since these eggs were not
in the data set to start with.
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3. CURRENT STATISTICAL TEST METHODS

3.1 Sources of Information on Current Methods
Information on the methods currently employed for testing the effect of the test
substance was obtained from these sources:

3
1. Submissions from:approximately 100 AR experiments

2. Existing protocols for AR experiments:

- the U.$. EPA protocols 4
"Avian Reproduction Experiments' (1986}, EPA 540/9-86-139, and
'Avian Reproduction Test' (1982}, EPA 540/9-92-024

- the ASTM protocol 'Standard Practice for Conducting Reproductlve Studies
With Avian Experlments {1984)

- the OECD protocol 'Avian Reproduction Test' (1984)

Although the main concern of these protocols was to set out the experimental
procedure, they did contain some information on statistical methods. The ASTM
protocol suggests a somewhat more comprehensive approach than the EPA or OECD
protocels and also provides a fairly lengthy list of statistical references.

3. Documents on experiments in toxicology and teratclogy:

- the OECDIguidelines 'One~Generation Reproduction Toxicity Test' (1981) and
'Two-Generation Reproduction Toxicity Test' (1983)

- the WHO publication 'Principles for Evaluating Health Risks to Progeny
Associated with Exposure to Chemicals During Pregnancy' (1984)

These documents are relevant because from a statistical point of view experiments
in toxicology and teratology have much in common with AR experiments. . The
treatments are a control and a set of concentrations of a test substance, and the
structure of the data sets is usually similar. The experimental unit is
generally a litter of mice or rats rather than a single subject, as the unit is
the pen in AR experiments. Many of the variables have similar features, for
example some of the key variables are counts or proportions (e.g. the proportion
of subjects that develop a particular condition) as they are in AR experiments.
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However, little information was obtained from these documents. The OECD
guidelines simply state that appropriate statistical methods should be employed,
while the WHO paper contains a general discussion of statistical analysis but
does not specify any particular methods.

3.2 Background Information on Current Methods

Experimental Design

From the suggestions made with respect to data analysis, it appears that the EPA
and ASTM protocols assume an experimental design with a simple random allgcation
of pens to treatments. Most of the submissions employed this design, although
some employed a more complex design such as a blocked design in order to minimize
the variation in temperature or humidity from one treatment to another. (The
QECD protocol does not appear to make any specific assumptions concerning
experimental design.)

Test Type and Confidence Level

The test type and confidence level to be employed are not specified in the
protocols, although it is fairly safe to assume that statistical tests are to be
two-tailed tests run at the 5% confidence level since this is generally the norm.
In all of the submissions it appears that this was the type and level of test
that was carried out.

General Approach to Statistical Analysis

The EPA and ASTM protocols distinguish between methods for measurement variables
and methods for counts or proportions. They suggest an ANOVA-based approach for
measurement variables, and either a chi-square-based or ANOVA-based approach for
counts and proportions. The OECD protocol is less specific and makes only the
general suggestion that an ANOVA or other acceptable method be employed.

In general the submissions followed the suggestions of the EPA and ASTM
protocols, but there was a great deal of variation from one submission to another
with respect to the complexity of the methods employed and the amount of
information provided on these methods. Some provided a considerable amount of
information and some provided almost no information.

Note: 1In order to preserve confidentiality, this report does not give precise
information on the methods employed by any submission.
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3.3 Current Methods for Measurement Variabies

3.3.1 Methods for Measurement Variables Suggested in Protocols

The statistical approach suggested in the EPA protocols for measurement variables
is to run an ANOVA, and to follow this with pairwise comparisons of treatment
means if the ANQVA finds a significant effect. The test suggested for these
comparisons is Duncan's test. The model for the ANOVA is not stated, although
it appears that the one-way model is assumed.

The approach suggested in the ASTM protocol is basically the same, but widergin
scope. For the first analysis it suggests either an ANOVA or a general linear
models analysis, and for the pairwise comparisons Dunnett's test and the LSD test
are suggested as well as Duncan's test. Again it appears that a one-way model
is assumed. The ASTM protocol mentions the possibility of taking into account
unequal sample sizes in the data, but does not suggest a procedure for this. It
also suggests that if significant treatment effects are found in the pairwise
comparisons, the trend in effect as the dose level increases should be tested
using regression. ' '

3.3.2 Methods for Measurement Variables Employed in Submissions

Measurement variables were analysed using an ANOVA in all of the submissions
‘where the method was specified, as suggested by the protocols. The ANOVA model
appeared to be the simple one-way model, except for those cases where a more
complex design such as a blocked design had been employed.

If the ANOVA produced significant results, most submissions carried out pairwise
comparisons of all treatment means. The most common tests were those suggested
in the protocols, but some others were also employed. In scme cases the
submigssions carried out tests that involved an ordering of the treatments, such
as a test of the trend in the treatment means as the dose level increased or a
comparison of control with the highest dose level.

Since a one-way ANQVA requires a 2-level data set while most AR data sets are 3-
level {subjects within pens within treatments), a key question is that of how the
data was reduced from 3 levels to 2 prior to the analysis. 1In most cases it
appears that the data wvalues from all pens within a treatment were pooled
together. This in effect treats the data from a treatment as if it had come from
a single pen, and reduces the data set to a 2-level structure of subjects within
treatments. The validity of this practice is discussed in section 3.6.
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Another way to reduce the data structure to 2 levels, that appears to have been
employed in some cases, is to form a data set of the pen means and then to run
an ANOVA or other analysis on these means. However there is then the
complication that some pen means are more accurate than others, due to inherent
differences in pen-to-pen variation or to differences in the number of subjects
per pen.

Submissions differed in the extent to which the variation in accuracy of the pen
means was tested for and taken into account. Some went to considerable lengths
to deal with it, while others appeared to completely ignore it. A procedure
followed in some cases was to employ a test for inhomogeneity of variance to
compare the variance between pen means in one treatment to the varfance in
another. Bartlett's test was generally the test employed for this purpose.

If the differences among variances were significant, it appears that the most
common approach was to attempt to equalize the variance by transforming the data
(usually by a log transformation). The test for variance inhomogeneity was then
repeated. If homogeneity was not achieved, in most cases the variance of the pen
means was estimated separately within each treatment. Treatment effects were
then tested by pairwise comparisons of treatment means using unequal-variance t-
tests. Another method employed for problem cases was to compare treatments
pairwise using a non-parametric test such as the Mann-Whitney test.

3.3.3 Evaluation of Current Methods for Measurement Variables

Clarity of Objectives

It is not clear exactly what results are to be obtained from the analysis. Since
this is not stated, it must be inferred from the methods employed. The fact that
an ANOVA is the recommended first step, and also the last step if the ANOVA test
is not significant, implies that the only result that is needed is an overall
result obtained over all dose levels. On the other hand the use of pairwise
comparisons for all pairs of treatments suggests that the relative rank should
be determined for each dose level.

It is not clear what objective is behind the suggestion in the ASTM protocol to
run a regression of the treatment mean on the dose level if treatment effects are
found. This'may be part of the procedure for testing the treatment effects, or
may imply that a secondary objective (which is optional and at the discretion of
the experimenter) is to model the dose-response relationship.
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Validity of Current Methods

The biggest problem appears to be the practice of pooling the data from all pens
within a treatment, thus reducing the data structure to 2 levels from 3. This
usually results in an analysis that is not statistically valid for reasons set
out in section 3.6. It appears that many of the submissions employed this
approach, although it is not possible to be sure of this because the information
provided on the methbdology was often very incomplete.

The alternative procedure for producing a 2-level data set, which is to calculate
the mean for each pen and then run an analysis on the pen means, is statisticagly
much more appropriate but requires that the variation in accuracy of the pen
means be taken into account. Many submissions appeared to ignore this problem,
since they used methods such as a one-way ANOVA or a multiple comparison test
which assume that each data value has equal accuracy. For most AR data sets
these methods would not be valid since this assumption is seriously violated.

Some of the submissions dealt with the variation in accuracy of the pen means by
estimating the within-treatment variance separately for each treatment if a test
for inhomogeneity of variance was significant. While this approach is an
improvement over the practice of ignoring unequal variances, it also has
problems. One is that the number of pens per treatment is often small, and the
variances of the pen means would have only a few degrees of freedom.

But the main problem is that this approach is not flexible enough. 1Its basic
assumption is that all the pen means within a treatment have the same accuracy,
and the only guestion is whether this accuracy is constant overall or varies from
cne treatment to another. It dose not distinguish between variation in accuracy
caused by differences in the number of subjects pér pen, and variation in
accuracy caused by differences in the underlying pen-to-pen variation. For this
reason it is not flexible enough to deal separately with each pen mean according
to how many subjects were in that pen and to the underlying pen-to-pen variation
in that treatment.

Efficiency of Current Methods

Statistical efficiency is ancther area where improvement could be made. Most
submissions started with an ANOVA, and concluded that there was no treatment
effect if the result was not significant. But ANOVA is a general method that
tests for any differences between treatments and is not efficient in cases where
a specific pattern of effect is expected {as in AR experiments where we expect
an increasing effect as the level of the test substance increases).
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Similarly most of the tests employed for pairwise comparisons of treatment means
are relatively inefficient for AR experiments. They are too conservative as they
are intended for situations where the probability of error in any one of the
tests is to be 5%. For Duncan's test the error rate is set at 5% over all pairs
of treatments, while in Dunnett's test it is 5% over all comparisons of fcontrol
with & non-control treatment. The LSD test, t-test or Mann-Whitney test employed
in some submissions are better choices for pairwise comparisons as the error rate
is 5% for each test. '

Only a few submissions employed a method that involved the most efficrgnt type
of test for AR experiments - a test that tests specifically for an increasing
effect as the dose level increases, such as a trend test or a test of control
against the highest dose level. And for those cases where such a test was
employed, it is not clear if it was run on its own (as it should be) or was run
only if an ANOVA had been carried out first and had produced a significant
result.

Finally, it appears that all submissions employed two-tailed statistical tests
(they did not state whether their tests were one-tailed or two-tailed, but two-
tailed tests are much more common in statistics generally}. However one-tailed
tests would be much more efficient for AR experiments since we are looking
specifically for negative effects on reprcoduction,.

3.4 Current Methods for Counts and Proportionsg

3.4.1 Methods for Counts and Proportions Suggested in Protocols

For counts and proportions, the EPA protocol suggests either a chi-square test
or an ANOVA. If an ANOVA is employed, the arcsine transformation is recommended
for propertions prior to analysis. If the ANOVA finds a significant effect,
pairwise comparisons of the treatment means are recommended. Duncan's test is
mentioned as a possible test for these comparisons. The model for the ANQVA is
not stated, although it appears that the one-way model is assumed. No suggestion
is made as to what to do if a chi-square test is run and finds a significant
effect.
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The methods suggested in the ASTM protocol are similar to those in the EPA
protocols but somewhat wider in scope. For the first test either a chi-square
analysis or a least squares analysis is suggested, with the least squares
analysis being either an ANOVA or a general linear model analysis. If least
squares analysis is employed, it mentions the possible use of weights to take
into account unequal sample sizes in the data. Methods for deriving weights atre
not given. As with the EPA protocols, it appears that a one-way model is assumed
for least squares analysis. '

If a least squares analysis is run and a significant result obtained, the ASTM
protocol suggests pairwise comparisons of treatment means using tests such{as
Duncan's test, Dunnett's test or the LSD test. 1If a chi-square test is run and
a significant result obtained, it suggests that the treatment effect be examined
in more detail by partitioning the chi-square statistic. No specific partitions
are suggested. '

The ASTM protocol alsc suggests that if significant treatment effects are found,
the trend in effect as the dose level increases should be examined. If a least
squares analysis was run, the analysis suggested for trend is a linear regression
of treatment mean against dose level. If a chi-square test was run the analysis
suggested for trend is Armitage's test for a linear trend in proportions
(referred to in this report as the Cochran-Armitage test).

3.4.2 Methods for Counts and Proportions Employed in Submissions

Most submissions employed either an ANOVA or a chi-square approach, as suggested
in the protocols. The ones that employed a chi-square approach generally stated
only that fact and did not give any further details on the methods employed.
Those that employed ANOVA usually provided additional infeormation on their
metheods.,

For the submissions that employed a chi-square approach, & key question is that
of how the data was treated in order to allow a chi-square test to be run., A
chi-square test for proportions requires that the data be in the form of a
contingency table. This means that the data must be reduced from its original
structure (with a proportion for each pen) to a simplified structure with one
proportion‘per treatment. It appears that this simplification was wusually
carried out by pooling the data from all pens within a treatment (this practice
is discussed in section 3.6).
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 The submissions that employed the ANOVA approach usually applied a transformation
to proportional data prior to the analysis to stabilize the variance. This was
generally an angular transformation although some others were also used.

If the ANOVA produced significant results, most submissions then carried out
pairwise comparisons of treatment means. The most common tests weré those
suggested in the protocols, but some others were also employed. In some cases
tests were run that involved an ordering of the treatments, such as a trend test
or a comparison of control with the highest dose level.

For proportional variables, some of the submissions that followed tﬂé ANOVA
approach also employed measures to allow for variation in the accuracy of pen
counts or proportions due to variation in the number of eggs or chicks per pen.

Often the measure was to employ weighted data analysls, assigning larger weights
to pens with a larger number of subjects.

The most common procedure to derive a weighting scheme was Cochran's method
(described in section B.2.2.1 in Appendix B), which involves establishing the
relationship between the number of subjects per pen and the accuracy of the pen
proportions. In other cases a much simpler plan was adopted and the weights were
simply set equal to the number of subjects per pen. It is not clear if weights
were employed in the pairwise comparisons in addition to the ANOVA.

Some submissions appeared to follow a different approach to the problem of
unequal variances among the pen proportions, and ran a test of homogeneity of
variance to compare the variance within each treatment prior to carrying out the
pairwise comparisons. (It is not clear if they did this for measurement
variables only, or for proportions alsoc.) ‘

If the inhomogeneity was significant, the procedure usually followed was to
estimate the variance of the pen counts or proportions separately for each
treatment and then to carry out pairwise comparisons of treatment means using

unequal-variance t-tests. An alternative procedure followed in some cases was -
to carry out the pairwise treatment comparisons using a non-parametric test (the
Mann-Whitney test).
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3.4.3 Evaluation of Current Methods for Cdunts and Proportions

Clarity of Objectives

As was the case with measurement variables, it is not clear exactly what results
are required. Since this is not stated, it must be inferred from the methods
employed. The fact that a general test such as a chi-square test or an ANQVA is
the recommended first step, and also the last step if the test is ndt
significant, implies:that the only result needed is an overall result for all
dose levels. On the other hand the use of pairwise comparisons for all pairs of
treatments suggests that the relative rank should be determined for each level.

In addition, the suggestion in the ASTM protocol to examine the trendnén
treatment effect as the dose level increases (if a treatment effect was found)
-may imply that a secondary objective is to model the dose-response relationship,

Validity of Current Methods .
The biggest problem appears to be that an appreciable number of submissions
pooled the‘propcrtions from all pens within a treatment, in order to simplify the
data structure so that a chi-square test could be run. This procedure is not
statistically valid, for reasons set out in section 3.6.

For the submissions that ran an ANOVA, the most difficult aspect was to deal with
the unequal numbers of subjects per pen and the consequent variation in accuracy
of the pen proportions. Some submissions ignored this problem, which is not
advisable. Some used weighted analysis, with Cochran's approach used to
determine the weights. This is statistically the most valid but also the most
difficult. Some submissions used weighted analysis with weights equal to the
numbers per pen; however it is not clear if this is any improvement on an
unweighted analysis.

Unegqual numbers of subjects per pen also caused complications for the pairwise
comparisons of treatments. Some submissions again followed the convenient
practice of ignoring this problem. Others allowed for it by estimating the
variance between pen proportions within treatments separately for each treatment,
if a test for inhomogeneity of variance was significant.

While the use of a homogeneity of variance test is an improvement over the
practice of ignoring unequal variances, it is not completely satisfactory. It
allows the accuracy of pen proportions to vary from one treatment to another, but
still makes the questionable assumption that the accuracy is constant within a
treatment.



Consequently this approach is not flexible enough to take into account the
accuracy of each individual pen proportion, which it should be with AR
experiments. Another consideration is that a test for inhomogeneity would not
be that powerful in any case, since the numbers of pens per treatment is
generally small in AR data sets and the variances of the pen proportions would
have only a few degrees of freedom.

Efficiency of Current Methods

Another area of concern is that of the efficiency of the statistical tests. Most
submissions started with a general test - a chi-square or an ANOVA g-— and
concluded that no treatment effect was present if the result was not significant.
But for situations where a specific pattern of effect is expected, as in AR tests
where we expect an increasing effect as the level of the test substance
increases, a test for that specific pattern would be much more efficient.

Similarly most of the tests employed for pairwise comparisons of treatment means
are too general in nature and thus are not that efficient for AR experiments.

Duncan's test is intended for cases where all pairs of treatments are to be
tested, while Dunnett's test is intended for cases where the control is to be
compared with each non-control treatment. The LSD test, t-test or Mann-Whitney
test employed in some submissions are better choices for pairwise comparisons.

The most efficient methods for AR experiments were carried out in only a few
submissions. These involved tests designed specifically to detect an increasing
effect of the test substance as the dose level increases, such as a trend test
or a test of control against the highest dose level. It is not known whether the
-method for these submissions consisted of this test by itself, or involved
running an ANOVA first and then running the test only if the ANOVA was
significant. 1If it was the latter, the advantage of using an efficient test
would be lost.

Current methods for counts and proportions can also be made more efficient by
employing one-tailed tests instead of the more usual two-tailed tests, in order
to test specifically for negative effects on reproduction. The submissions did
not state whether they employed one-tailed or two-tailed tests, but they
presumably used two-tailed tests since these are much more common in statistics
generally.

3-10




3.5 Summary of Assessment of Current Methods

There is considerable variation with respect to validity and efficiency among the
statistical methods currently employed, and a definite need for a more effective
and consistent set of methods. While methods were reasonably well chosen and
well described in some submissions, in others they were deficient in many
respects. And in some the methods were not described beyond a very brief
reference. Improvemént is needed in the areas of '

- defining objectives

- choosing statistical methods that are efficient at meeting these
objectives

- choosing methods that are statistically valid, and that can deal with
the complexities of AR data sets

-~ providing an informative description of the methods employed

In fairness to the submissions it should be recognized that the analysis of AR

data sets in a statistically valid and efficient manner is not a simple task,

because of the difficulties and complexities that are often present. The analyst
is frequently faced with the need to choose between statistical validity on one
hand and feasibility and computational convenience on the other. Ancther factor
is the lack of clearly stated objectives and guidelines in the protocols. In
addition, there do not appear to be any statistical papers or texts on the
subject of appropriate methods for AR experiments.
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3.6 Discussion of Pooling of Data

3.6.1 Introduction
A key question both for measurement variables and for counts or proportions is
that of whether it is permissible to pool data values from all pens within a
treatment, and then ignore the pen structure in the analysis and treat the data
as if the treatments had been applied to individual subjects. This pooling
reduces the data structure from its actual 3-level structure of subjects within
pens within treatments to a 2-level structure of subjects within treatments.

{
To illustrate this, consider the following simplified example for a measurement
variable. Pooling the data for the following 3-level data set

Treatment 1 Treatment 2
Pen 1: 1.5, 1.7, 1.4 Pen 1: 0.6, 0.9
Pen 2 1.3, 1.2 Pen 2: 0.9, 1.1, 1.4
Pen 3: 2.0, 2.2, 2.5 Pen 3: 0.5, 0.8, 0.7
would produce the 2-level set
Treatment 1 Treatment 2

1.5, 1.7, 1.4, 1.3, 1.2, 2.0, 2.2, 2.5 0.6, 0.9, 0.9, 1.1, 1.4, 0.5, 0.8, 0.7

Similarly the following data set for a proportion

Treatment 1 » Treatment 2
Pen 1: 25/30 Pen 1: 10/20
Pen 2: 15/25 Pen 2: 5/15
Pen 3: 15/20 Pen 3: 10/15

would be reduced by pooling to

Treatment 1 Treatment 2
55/75 25/50

The data sets produced by pooling are obviously much easier to analyse than the
original sets. The pooled data set for the measurement variables could be
analysed by simple least squares methods, and the pooled set for proportions
could be analysed by contingency-table methods. Unfortunately, for reasons set
out in 3.6.3, this practice is not statistically valid for either variable type.
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3.6.2 Position of Protocols on Pooling of Data

The OECD protocol does not consider this question, while the EPA and ASTM
protocols take a position that is somewhat inconsistent. They do not state
directly that it is permissible to pool data from all #ens within a treatment and
then ignore the pen structure in the subsequent data analysis. But the fact that
they suggest an ANOVA approach with multiple comparison of treatment means fér
measurement data suggests that they assume that the data structure has first been
reduced to 2 levels, and then analysed ag a simple 2-level data set. The obvious
procedure to achieve this reduction is by pooling.

For proporticnal variables, the EPA and ASTM protocols accept the chi-square tgst
as a valid method of analysis. Since this test requires the data to be in the
form of a simple contingency table, this implies that the data have been reduced
tc a single proportion per treatment. Presumably this was achieved by pooling
the pen proportions within each treatment. Also, presumably the pen structure
was ignored in the contingency table analysis.

The WHO document on teratological experiments also deals with this issue. In
these experiments, treatments are applied to entire litters of mice or rats. The
question discussed is whether the analysis should reflect the litter-based
structure of the data, or whether the data for all litters in a treatment should
be pooled and the litter-based structure ignored in the analysis. The paper
attempts to compromise by suggesting that data be analysed twice - once taking
the litter structure into account and once with it ignored. Presumably a
treatment effect would be considered to be present if either analysis produced
a significant result, although this was not stated.

+ 3.6.3 Validity of Pooling

This question of pooling has been discussed in a number of papers in scientific
journals, mainly with respect to toxicological experiments where the experimental
unit is the litter of animals {generally mice or rats). The strong consensus is
that the practice of pooling the data for all litters within a treatment, and
then analysing the data as if the treatments had been applied to individual
animals rather than on a litter basis, is not wvalid {e.g. Weil (1970), and
Haseman and Soares (1976)). The reason is that subjects from the same litter
will -tend to be have similar responses, resulting in a cluster of similar data
values.
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When data values within a treatment are averaged to obtain the treatment mean,
the accuracy of this mean depends on the extent to which the random errors of the
individual values cancel each other out. If the data values occur in clusters,
there will be less cancellation of error than if the values were independent
since there is more chance that many errors will occur in the same ditection.

As a result of this reduced error cancellation, the variance of the treatmentj
means will be underestimated if the data from all pens or litters in a treatment
are pooled and then analysed as if they were independent observations. The
consequence of this underestimation of the variance is to ind@ease the
probability of finding the treatment effect to be significant.

Paradoxically this can be used as an argument in favour of pooling, since it
increases the chance of detecting a harmful effect of the test substance. But
any benefits from this are offset by the fact that the decrease in the variance
is very inconsistent from one case to another since it depends on the number of
subjects per pen, the size of the pen-to-pen variation and other factors. Also,
in principle it should not be necessary to employ invalid statistical methods in
order to detect treatment effects.
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4. TIDENTIFICATION OF PROMISING STATISTICAL TEST METHODS

4,1 Introduction

A large number of statistical methods that are currently being applied or could
potentially be applied to AR data sets were evaluated, and of these a number were
recommended for each variable class. The criteria employed to evaluate the
methods are set out in section 4.2, and the methods themselves are described in
sections 4.3 to 4.6. A summary is presented in Table 1, '

Note: The statistical methods presented in this section assume that the
experiment followed a 'one-way' design in which pens were assigned to treatments
by simple random allocation. The methods alsc assume that the same number of
pens was assigned to each treatment, except for the p0851b111ty that extra pens
could have been assigned to the control.

Further Information

The statistical methods presented in this section are not described in detail;
however, further information on them and on other aspects of the statistical
analysis is given in the Appendices.

Appendix A
This contains information on the statistical methods, including reviews of any

recent developments.

Appendix B
This contains information on supplemental statistical procedures:

- data transformations

- weighting procedures

- testing homogeneity of variance
- combining pen proportions
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Table 1. Recommended Methods by Variable Class and Set of Assumptions

Possible Assumptions for Each Variable Class

Note: X denotes a pen mean, g a pen proportion, N the number of pens per
n

f&eatment, ox” the variance of XH’ and GP” the variance of P;
Statistical Measurement Prop/Count Measurement Prop/Count
Assumptions Adult Birds Adult Birds Eggs/Chicks Eggs/Chicks
1. cxﬁz or Op 2 are
const., N are gll equal Yes .—— Yes f Yes
2. ‘oxrz or opﬁz are
const., N; not all equal Yes ——— Yes Yes
3. cﬁzora zmm
const. within tréatments but Yes —-—— Yes Yes
vary between treatments
4, {i Or Op; z vary
w1€h1n tregtments Yes --- Yes Yes

5. P;; can be reduced to
a single proportion - Yes - Yes
within each treatment

6. X or P;; have an
1rre&ular &Estrlbutlon -— Yes - Yes

Methods Recommended for Each Set of Assumptions

Set 1 Set 2 Set 3
t-test t-test t-test
LSD test ' LSD test trend test
Williams test Williams test’
trend test trend test
Abelson-Tukey test
Set 4 Set 5 Set 6
weighted t-test chi-square test Mann-Whitney test
weighted trend test Figsher exact test rerandomization test
Cochran-Armitage test jackknife method

* Williams test is applicable here only to the case of extra control pens.
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4.2 Criteria for Evaluating Statistical Methods

4.2.1 Introduction

Each method was evaluated by examining the following aspects:
- statistical validity, in particular
- whether it reflects the inherent structure of the data
- whether it deals with the data complexities that commonly occur
- efficiency at detecting treatment effects {
- whether the effect is tested at each dose level
These topics are discussed in sections 4.2.2 to 4.2.4, and a set of criteria for

evaluating methods are set out in section 4.2.5.

4.2.2 Validity of the Methods

Since treatments are applied to pens rather than to individual subjects in AR
experiments, the statistical methods employed should use the pen as the basic
experimental unit. The methods should reflect the fact that the basic source of
random error in the experiment is the variation between pens within a treatment.

Since the pen is the basic unit in the experiment, the starting point for any
method should be the calculation of pen means, counts or proportions. Treatment
means'or proportions should then be calculated from these pen quantities, and
their accuracy should be derived from the variation between the pen quantities
within each treatment. To pool the data from all pens within a treatment, and
then ignore the pen structure in the subsequent analysis, is not acceptable as
the pen-to-pen variation is lost.

The method should also be flexible encugh to able to deal with the data
complexities that can be expected to occur. These include

- variation in the number of subjects per pen

- differences in the inherent pen-to-pen variation

- irregularities in the data



One potential source of irregularity is that of reproductive failure in
particular pens for reasons unrelated to the treatments applied. This is
mentioned in the literature as a feature of AR data sets for certain variables
{(Picirillo and Quesenberry, 1980).

4.2.3 Efficiency of the Methods !

Different statistical methods test for different kinds or patterns of treatment
effects. The efficiency of a method for a given experiment depends on how well
matched it is to the patterns of treatment effects that occur with that type of
experiment. The most efficient methods for AR experiments are those that test
for one specific pattern, which has two important features: f

- It is negative in direction with respect to reproductive capability
~ It increases in magnitude as the dose level increases

To test for an effect that increases as the dose level increases, the tests
should make use of the ordered nature c¢f the treatments. To test specifically
for negative effects, the tests should be one-tailed tests rather than the two-
tailed type that are more commonly employed in statistical analysis.

4.2.4 Testing at Each Dose Level

A decision was made that the statistical method should include a test of the
effect of the test substance at each dose level. The reason is that it is
considered important to be able to identify the NOEC (the highest dose at which
there is no observed effect), and this requires that a'significant or non-
significant result be obtained for each dose. - The process for identifying the
NOEC is described in section 5. '

For the methods recommended in this section, the test of the effect at a given
dose level is carried out in one of two ways:
- by testing the difference between that dose level and control, or
- by testing the trend over the set of treatments from control up to that dose
level

Note: The test of trend is carried out solely for the purpose of determining
whether the effect is significant at that particular dose level. It should not
be confused with procedures for modelling the dose-response relationship.
(Modelling the dose-response curve is outside the scope of this report.)
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4.2.5 Summary of Criteria Emploved
From the discussions in the preceding sections, the following criteria have been
drawn up for evaluating statistical methods:

1. Methods should be reasonably well established in statistics.
¢

2. Methods should employ the pen as the basis of the analysis. The quantities

analysed should be pen means, pen counts or pen proportions. It is not
acceptable to pool the data from all pens within a treatment, and then

ignore the pen-based structure of the data set in the subsequent analysis.

{

3. Methods should take into account those complexities that commonly occur in
data from AR experiments, particularly variation in the numbers of
subjects per pen and variation in the accuracy of pen means, counts or
proportions. '

4. Methods should test the effect of the test substance at each dose level.
5. Each of the tests should be a one-tailed test at the 5% confidence level,

and should test for a negative effect on reproduction that increases as
the dose level increases,
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4.3 Methods for Measurement Variables - Adult Birds

4.3.1 Requirements to be Met By These Methods :
The criteria are those set out in section 4.2.5, with the followingécondition
added:

Employ least;squares'methods only. Non-parametric methods should not be
necessary for this variable class and are not usually applied to it.

(

4.3.2 Basic Variable Characteristics and Model

For most of the variables in this class the data values are measurements made on
individual adult birds, and the data sets have a three-level structure of birds
within pens within treatments. (An exception is foocd consumption, where there
is one measurement per pen per time period.)

In general the number of birds, and thus of measurements, will be the same for
all pens. The initial number per pen is the same, and any variation would be the
result of mortality. The initial number is either 1, 2, 3, 5 or 7, depending on
the species and caging parameters and whether the variable is measured on males
only, females only or on bhoth sexes,

For most variables the data should follow approximately the standard linear
model:

i3k

= u+Ti+Eij+ei}-k

where Xﬁk is the data value for the k'th bird in the j'th pen in treatment i,
p is the overall mean, Ty is the effect for treatment i, Eij is the random pen
effect - and Bjik is the random error for an individual data value. In the
standard model the E” and e ik have approximately normal distributions and their
variances cgﬁz and Geﬁkz are roughly constant over the data set.

Pen Means: The methods considered are all based on least squares analysis of pen
means. The pen means iﬁ have the form

Rl] = B+ T1 + El] + Ei]

where &;: is the mean of the &k for that pen. The variance °XH2

ij of 21] is
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Oyis” = Ogij * Oeij /Mij

2 is the mean of the o 2

where n;. is the number of birds in the pen and Toi; eijk *

13

Treatment Means: If Uﬁuz is constant (or approximately so) for all pens within

a treatment, the treatment mean is calculated as the unweighted mean X of tBe
pen means and its varlance cxf has the form

2 . 2. - 2 2
O = Oyij /N = (g5t + Oy myy) /Ny

where N; is the number of pens in the treatment. {

4.3.3 Common Data Complexities

1. Variation among the ni}: The initial number of birds per pen is the same
for all pens. But if deaths have occurred in some pens during the experiment,
the ny; will vary from pen to pen for those variables measured after the deaths.
2. Skewness in the distribution of the x1k This may produce non-linearity in
the model and cause UXn2 to vary with the size of R In general these problems
can be handled by applying a logarithmic transformatlon. For some variables the
use of a log transformation is a fairly standard practice (e.g. pesticide
concentrations). |

3. Variation among the number N, of pens per treatment. Differences will occur
if extra pens were assigned to the control, or if certain pens had to be left out
of the analysis because of problems such as sickness or mortality.

4, Variation in oypz (that is not removable by transformation). Possible
causes for this 1nclude variation among the Dy and non-removable variation in
UEUZ or °en2' The variation among UEUZ or UEI}2 could be such that they are
different for each pen, or they could be constant for all pens within a treatment

but vary from one treatment te another.
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4.3.4 Cases to be Considered

The methods that are appropriate for a given data set depend on-c'Xi]-2 and Nj.

Four different cases have been identified. The choice of case affects not only

the testing of treatment effects but the actual calculation of the treatment
means.

¢

Note: It is aesumed that any variation in GXﬁz that is due to skewness alone has
been removed by transformation.

Case 1: cgp Constant Over All Treatments, N Equal {

Since °x]2 is equal to (UEuz * Ogij /n ), for oxuz to be constant the parameters
13, 0ElJ and Uu] must all be constant. For nij to be constant over all
treatments, there must not have been any deaths among the adult birds up to this
point. Each treatment mean R is calculated as an unweighted average of the pen
means R”, and the variance Uxf of the treatment means is constant and equal to

Oku /N where N is the common value of the N;.

Case 2: cgﬁz Constant Over All Treatments, N; Not Equal

The pen parameters N5 GEnz and Ueuz must be constant, but N; can vary. The
treatment means X are calculated as unweighted averages of the pen means Xi] :
The variance oxf of each treatment mean is equal to ox” /Ni, and varies inversely ;
with N

Case 3: oxnz Constant Within Each Treatment, But Varies Between Treatments
Here the parameters i ogﬁz and oeﬁz must be constant within a treatment but can
vary from one treatment to another. . Treatment means X are calculated as

nwelghted averages of the pen means X The variance oxf of each treatment
mean is equal to Oy /Nl, and varies w1th both GXUZ and N;.

Case 4: oxﬁz Varies Between Peng Within a Treatment
If oxﬁi varies from pen to pen within a treatment (due to variation in D OE”
Or Gpij ), the situation is more complicated. To accommodate this variation, th
statistical method must involve weighted least squares. In order to set up

suitable weighting scheme, okﬁz must be modelled as a function of n; ij Orf othe
variables and then estimated separately for each pen. The weight assigned t

each pen mean Xﬁ is the inverse of this estimate of oxﬁz.
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The treatment means are calculated as weighted means of the pen means, and
treatment effects are tested by comparisons among these weighted treatment means.
Methods for deriving an appropriate weighting scheme are not described here, but
are discussed in Appendix B. It is assumed that weighting is necessary only at

the pen level, and not at the level of individual measurements. 4

4.3.5 Recommended Methods for the Different Cases
No guidelines have been set out as how to determine which case to seleci for a
given data set, as this is largely a matter of subjective judgement.

Note - Each method involves a set of one-tailed tests at the 5% level, that test
the effect of the test substance at each dose level. For more information on the
methods see Appendix A.

Case 1. Uxuz Constant, N; Equal
These methods involve standard least-squares analysis.

-~ t-tests, each test compares the control mean with the mean for a particular
dose level

LSD {least significant difference) tests, each test compares the control mean
with the mean for a particular dose level

Williams tests, each test compares the control mean with the mean for a
particular dose level

1

Linear trend tests, each test looks at the trend in treatment means from
..control up to a particular dose level

Abelson-Tukey tests, each test looks at the trend in treatment means from
control up to a particular dose level
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Case 2. cxﬁz Constant, Ni Not All Eqﬁal
These methods iavolve least-squares analysis, adjusted for the variation in Nj.

t-tests, each test compares the control mean with the mean for a particular

dose level s

LSD tests, éach test compares the control mean with the mean for a particular
dose level

Linear trend tests, each test looks at the trend in treatment mea%? from
control up to a particular dose level

Williams tests, adjusted for extra control pens, each test compares the
control mean with the mean for a particular dose level. Note that this test
can not be applied if N; varies from one dose level to another. It can be
applied to the case where extra pens were assigned to the control, but the
number of pens in the other treatments is constant.

Case 3: cgﬁz Varies Between Treatments
These methods involve least-squares analysis, adjusted for the variation in OXHZ'

- t-tests, adjusted for variation in cxﬁz between treatments, each test compares
the control mean with the mean for a particular dose level

- Linear trend tests, adjusted for variation in oxﬁz between treatments, each
test looks at the trend in treatment means from control up to a particular
dose level

Case 4: cgﬁz Varies Between Pens Within a Treatment
These are weighted least-squares methods, with weights applied to the pen means.

~ t-tests, adjusted for weighted analysis, each test compares the weighted
control mean with the weighted mean for a particular dose level

- Linear trend tests, adjusted for weighted analysis, each test looks at the
trend in weighted treatment means from control up to a particular dose level
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4.4 Methods for Counts or Proportions = Adﬁlt Birds

4.4.1 Requirements to be Met By These Methods
The criteria are those set out in section 4.2.5.

4.4.2 Conversion of Counts to Proportions

It is assumed that counts will be converted into proportions before analysis, by
dividing by the initial number ny of adult birds in the pen. This will take into
account the fact that the c¢ounts are restricted to the range of 0 to ng. Affer
conversion they will be restricted to the range of 0 to 1.

4.4.3 Basic Variable Characteristics and Model
For these wvariables the data set has a two-level structure of pens within
treatments, and each data value is the proportion within a particular pen. Let

Pﬁ be the proportion for pen j in treatment i. Then Pﬁ is calculated from

Pij = ¥ij/ny;
where n;: is the number of adult birds in the pen for that variable and y;; is the

number of the nj. for which a particular characteristic was recorded (e.g. the.
number that died in a particular phase of the experiment).

4.4.4 Common Data Complexities

1. Variation among the N Although the initial number of adult birds per pen
is the same for all pens, nij will vary between pens if deaths have occurred
prior to the tabulation of that variable,

2. The discrete nature of the proportions. In general the Pij will have a
distribution that is approximately binomial. Since the denominators n;; are
small {either 1, 2, 3, 5 or 7 depending on caging parameters and on whether the
proportion is calculated for males, females, or both sexes), this distribution
will be discrete to the point where it is not reasonable to treat the Pﬁ as if
they were continuous variables. '
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3. Skewed distribution for the proportions. The distribution of the Pﬁ may be
gquite skewed in some cases. For example consider the proportion of deaths per
pen for an experiment where all the n;; are equal to 7. A possible result would
be 0 deaths in most pens, 1 death in a few pens, and a very few pens with 2 or
more deaths. The corresponding pen proportions will be skewed with most values

concentrated at 0, a few values at .14 and a very few at .28 or more.

4, Variation among the N;. Differences in the number N; of pens per treatment
. will occur if extra pens were assigned to the control, or if pens had to be left
out of the analysis because of problems such as sickness or mortality.

4.4,5 Cases to be Considered

The simplest methods for these variables are those methods that are only
applicable after the data structure has been reduced to a single proportion in
each treatment. But as discussed earlier, to be statistically wvalid these
methods must still take into account the pen~based structure of the experiment.
There are procedures that appear to achieve a reduction in data structure while
maintaining statistical validity. Two of them are discussed in section 4.4.7.
However they do¢ not appear to be suitable for all data sets. In particular they
are probably not suitable for data sets with irregularities in the data.

Note: One of these methods is Rao and Scott's method. The acceptance of this
method is tentative and depends on the results of a forthcoming evaluation.

Thus there are two cases to consider:

Case 1: Methods for Treatment Proportions
- These methods analyse the data after the pen proportions Pﬁ within eacl
treatment have been combined into a single proportion,

Case 2: Methods for Pen Proportions
These methods are employed for situations where the Pﬁ have not been combined,
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4.4.6 Recommended Methods for These Cases
No guidelines have been drawn up on how to select the appropriate case for a
given data set as this is largely a matter of subjective judgement,

Note - Each method invclves a set of one-tailed tests at the 5% level, that test
the effect of the test substance at each dose level. For more information on the
methods see Appendix A.

Case 1: Methods for Treatment Proportions
- The methods recommended are contingency-table methods, since the data sets have
the structure of a contingency table for this case.

- Chi~-square tests, each test compares the proportion for control with the
proportion for a particular dose level

- Fisher's exact tests, each test compares the propertion for control with the
proportion for a particular dose level

- Cochran-Armitage tests, each test looks at the trend in treatment proportions
from control up to a particular dose level

Case 2: Methods for Pen Proportions

The methods set out are all non-parametric methods. Least-squares methods are
considered to be inappropriate for this case because of the discrete nature and
skewed distribution of the P]

- Mann-Whitney tests, each test compares control with a particular dose level

- Rerandomization tests, each test either compares control with a particular
dose level or looks at the trend in treatments from control up to a
particular dose level

- Jackknife tests, each test either compares control with a particular dose

level or looks at the trend in treatments from control up to a particular
dose level
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4.4.7 Statistically Valid Methods for Reducing the Data Structure

Method 1. Tabulating at the Pen Level

In some situations the data structure can be reduced to that of a single
proportion per treatment without appreciable loss of information, by tqpulating |
entire pens rather than subjects within pens. For example if the pen proportions
for a variable consisted mainly of zero values, there would probably be little
loss of information in tabulating the proportion of pens that are zero or non-
zerc for each treatment and analysing those treatment proportions. Similarly if
the pen proportions consist mainly of values of 1, the proportion of pens in a
treatment that are equal to 1 could be tabulated.

Method 2. Rac and Scott's Methed for Combining Pen Proportions

The procedure of pooling the data from all pens in a treatment into a single
proportion, and then ignoring the pen information in the data analysis, 'is not
statistically valid as the error in the analysis would not take pen-to-pen
variation (as discussed in secticon 3.6). However Rao and Scott have set out a
procedure for combining pen proportions that appears to overcome this problem
(Rao and Scott, 1992). Their sclution is to pool the data from all pens in a
-treatment into a single proportion in the usual manner, but in the statistical
analysis to employ a variance formula that takes the variation between pens into §
account.

Let Pﬁ be the pen proportion for pen j in treatment i, with each Pﬂ being equal ;

to Yﬁ/nﬁ' and let PP; be the pooled proportion for treatment i. Then
PP; = Lyyj/Ing = Yi/Nj
Statistical analysis is then run on the PPy, but they are not treated as if they

were the simple proportions Y;/N; as this would underestimate the variance of the

PP;. Instead the variance of PP; is derived from the pen-to-pen variation in P”

within treatments. An effective sample size (Nﬂeffis then obtained for each Pﬁ
that corresponds to its variance. In general (Nj)ops is less than N;.

The PP; are then put into the form of proportions:

PPy = (¥j)ess/ (Njdofs
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where (Y;).¢; is the effective numerator and is defined as (PP;)(Nj)y¢. According
to Rac and Scott, PP; can be entered into statistical formulas as if it were the
simple proportion (Y&)ﬁf/(Nﬂeff since its denominator corresponds to its
accuracy.

Rao and Scott's method is currently being studied for its applicability to %R
experiments. A current limitation to its use is that it takes the pooled pen
proportions as the'oﬁtimal estimate of the overall proportion for each treatment,
thus assuming that each pen proportion Pﬁ should be weighted by its denominator
nj;- This is a drawback since such a weighting scheme may be inappropriate_for
many AR data sets. However it should be possible to make the method mbre
flexible by extending it to other weighting schemes. Rac and Scott's method is
described further in Appendix B, section B.1.
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4.5 Methods for Measurement Variables - Eggs or Chicks

4.5.1 Requirements to be Met By These Methods
The criteria are those set out in section 4.2.5, with the following condition
added:

Employ least-squares methods only. Non-parametric methods should not be
necessary for this variable class and are not usually applied to it.

4.5.2 Basic Variable Characteristics and Model

The data sets for these variables have a three-level structure of eggs or chicks
within pens within treatments. The number of eggs or chicks will vary from one
pen to another. The data should follow approximately the standard linear model:

Xl]k = n o+ Tl + El] + 61]k
where Xﬁk is the data value for the k'th bird in the j'th pen in treatment i,
1 is the overall mean, T, is the effect for treatment i, Eﬁ is the random effect
for pen j in that treatment and &5k is the random error for the k'th data value
from that pen. In the standard model ;he Eﬁ an? €5k have approximately normal
distributions and their variances Opi and 0,:,° are constant or approximately

so over all treatments.

eij

Pen Means: The methods considered are all based on least squares analysis of the
pen means Xﬁ which have the form

Xl] = n+ Tl + El] + 81]

where éﬁ is the mean of the &jik for that pen. The variance GXUZ of Rﬁ is

2 2 2
%" = Opij * Teij /Myj

where n,. is the number of eggs or chicks in the pen for that variable and oerz

. 1] ]
is the mean of o

2
eifk *
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4,5.3 Common Data Complexities

1. Variation among the nﬁ. The numbers ny; of eggs or chicks in a pen at any
given stage in the experiment will in general vary from pen to pen. Often this
variation is quite large. , 3

2. Skewness in the distribution of the Xﬁk; This may produce non-linearity in
the model and cause oxﬁz to vary with the size of Xﬁ. In general this situation
can be handled by applying a logarithmic transformation.

J. Variation among the number N, of pens per treatment. Differences will oc%ur
if extra pens were assigned to the contrcl, if pens had to be left out of the
analysis because of problems such as sickness, mortality or extranecus
reproductive failure, or if there were no surviving eggs or chicks in one or more
pens at the stage of the experiment when the variable was measured.

in Uxﬁz within treatments (in addition to any inhomogeneity that is removable by
transformation), because of pen-to-pen variation in the Dy;. In addition there -
could be non-removable variation in cEﬁz or °eﬁ2' This cquld be such that OEHE
or ceﬂz are different for each pen,. or they could be constant for all pens within

a treatment but vary from one treatment to another.

4. Variation among the oyuz It is expected that there will be inhomogeneity
Xij

4.5.4 Cases to be Considered

Only least squares methods were considered for this variables class, the
complexity of the method depending on the complexity of oxﬁz and also on the N;.
The cases to consider are set out in section 4.3.4 in the discussion of
measurement variables for adult birds.

The first three cases are:
Case 1: oxﬁz constant over all treatments, Ni all equal
Case 2: cxﬁz constant over all treatments, Ni not all equal

Case 3: cxﬁz constant over all pens in a treatment, but varies between
treatments
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For these cases unweighted least squares methods can be applied. However they
are unlikely to be suitahle, since OXHZ depends on nj; and in general the ny; have
a large variation from pen to pen. Case 4, which regquires weighted least squares
analysis, is the case that is expected to be applicable for most data sets.

' 3
Case 4: oxﬁz varies from pen to pen within a treatment

Note: It is assumed that any variation in cxﬁz that is due to skewness alone has
been removed by transformation.

Note: Methods for determining an appropriate weighting scheme and fog testing
for homogeneity of variance are described in Appendix B..

4.5.5 Recommended Methods
No guidelines have heen given concerning how to determine which case to select
for a given data set, as this is largely a matter of subjective judgement.

Note - Each method involves a set of one-tailed tests at the 5% level, that test
the effect of the test substance at each dose level. For more information on the
methods see Appendix A. ‘

Cases 1 to 3. Unweighted Least Squares Methods

The methods are the same as those listed for measurement variables for adult
birds in section 4.3.5, cases 1 to 3. 8Since these cases are unlikely to occur,
the methods are not repeated here. ‘

Cagse 4, Weighted Least Squares Methods

- t-tests, adjusted for weighted analysis, each test compares the weighted
control mean with the weighted mean for a particular dose level

- Linear trend tests, adjusted for weighted analysis, each test looks at the

trend in weighted treatment means from control up to a particular
dose level
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4.6 Methods for Proportions or COuhts ~'E§gs or Chicks

4.6.1 Reguirements to be Met By These Methods
The criteria are those set out in section 4.2.5.

4.6.2 Conversion of Counts to Prgﬁortions

It is assumed that counts will be converted into proportions before analysis, by
dividing by a suitable denominator. This will take into account the fact that
the counts have a restricted range, since there is a limit to the number of e@gs
that can be laid in a pen. The denominator n; represents an upper limit to the
number of eggs or chicks in a pen, s0 that after conversion the proportions are
restricted to the range of 0 to 1.

For most data sets, ny can be taken as the theoretical maximum npy which is the
number of eggs produced if each female bird were to lay one egg per day during
the egg laying period. However pen counts may occasionally be greater than Dy,
as some eggs may be laid just before the designated egg-laying period starts.
To cover all possibilities it is suggested that n; be set either at ny or at a
value that is 20% larger than the largest number of eggs laid in any pen,
whichever is greater.

Note: 1If the counts for a variable are smaill compargd to nj, the upper limit
will have 1little effect and the counts will tend to follow a Poisson
distribution. Normally a square root transformation would be applied to such
variables. However this is not necessary in this case. The reason is that an
angular transformation is applied to proportions prior to analysis, and this
transformation is in fact equivalent to the square root transformation for these
variables. This is discussed in Appendix B, section B.3.2.

4.6.3 Basic Variable Characteristics and Model

In the terminology of this report, proportional variables are either 'actual
proportions" or ‘estimated proportions’'. Actual proportions are standard
proportions, and estimated proportions are the product of two or more actual
proportions (see section 2.3.2 for more information). For actual proportions,
each data value is the proportion for a particular pen and the data set has a
structure of pens within treatments. Let Pij be the proportion for pen j in
treatment i. Then '

Pij = ¥ij/ny;
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where nyj ig the number of eggs or chicks in the pen for that variable and ¥ij is
the number of the nyj for which some characteristic was recorded (e.g. the number
that survived a particular phase of the experiment). For proportions that have
been converted from counts, nﬁ is equal to the assigned value Ij.

The standard linear model for Pﬁ is

where p is the overall average, 75 is the effect of treatmenf i and EH is the
random error associated with that pen. !

A complicating factor is that in general Eﬁ is the sum of two components, one
that depends on the denominator Dy and one that is independent of D Models
for Eﬁ and its variance are discussed in some detail in section 4.6.5.1., For
estimated proportions the situation is still more complicated (see section

4.6,5.2).

4.6.4 Common Data Complexities

1. Variation among the Djj. Djj will generally vary widely from pen to pen. (An
exception occurs if the variable is a count that was converted to a proportion,

in which case nﬁ is constant and equal to the assigned value nU.)

2. The distribution of the Pise
fact that there are two error components.

The distribution of Pﬁ is complicated by the

3. Extreme data values. Extraneous low values of Pij could occur due to
reproductive failure in one or more pens for reasons unrelated to the treatments
applied.

4. Variation in the N;. The number N; of pens in a treatment can vary from one
treatment to another if extra pens were assigned to the control, if pens have
been removed from the experiment due to problems such as sickness, mortality or |
extraneous reproductive failure, or if there were no surviving eggs or chicks i
one or more pens at the stage of the experiment when the variable was measured
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4.6.5 The Variance of the Pen Proportions

Modelling the Variance of Actual Proportions
Consider an actual pen proportion Pﬁ with denominator nﬁ. Its variance is that
of its error Ei

, which can be considered to consist of two components:

j 3

Here bﬁ is the 'binomial' component that represents the deviation of Pﬁ from the
expected value_for that pen (i.e. sampling error)}, and (eb)” is the 'extrg—
binomial' component which represents the variation among these expected valies
from pen to pen within a treatment (i.e. real differences between pens).

The variance cpﬁz of P.; is given by the sum of the variances of bﬁ and (eb)ﬁ:

ij

2 - .2 2

Opij = Opij * Debij
Since bj has a binomial distributicn, cbﬁz is equal to Pﬁ(l-Pﬁ)/n”. The form
of Tghij will generally not be known exactly, but it is independent of njj-
It appears to be reasonable to express Oébﬁz as A Pij(l'Pij) for some constant }.
The reason is that it should have the same tendency as Ubﬁz to be a maximum when
Pﬁ is near .5 and to decrease to 0 as Pﬁ increases to 1 or decreases to 0. With
this assumption, we can write

2 .

= Pﬁ(l-Pﬁ}(l/nﬁ + 1)

The factor Pﬁ(l“Pﬁ) can be removed from the variance by applying an angular
transformation:
Aﬁ = arcsin(JEﬁ)

Note: An angular transformation is probably not necessary if the PH are within
the range of 0.2 to 0.8, as the factor‘Pﬁ(l—Pﬁ) is relatively constant within
that range. It is alsc possible for some cases that a different transformation
would be more suitable for equalizing the wvariance. A discussion of
transformations for proportions is presented in Appendix B.
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The transformed proportions Aﬁ can be éxpressed either in degrees or in radians.
If they are expressed in degrees, their variance ohnz is: |

ouit = 82L0(1/my) + A (1)

The simplest situation for analysis purposes is one where GAHZ is cons}ant or
approximately constant. This occurs if the factor [(1/nf) + Al is approximately
constant, which}requires that 1} be large enough that the variation in 1/nﬁ does
not have much effect. ohﬁz also will be constant for counts converted to
proportions, since I is set to Iy in these cases and there is no variation in
(1/n;). 1If oyt is comstant, it is not necessary to fit a model to ifi

However in general it is expected that UAHZ will not be constant, and must be
modelled by estimating )} and substituting into equation (1). Some possible
procedures for modelling chﬁz are discussed in Appendix B, section B.2.2.

The Variance of Estimated Proportions .
Consider an estimated proportion Pﬁ that is the product of two actual
proportions:

Pig = Qi Ryj

where Qﬁ and Rﬁ are actual proportions. The variance of Pﬁ-is too complicated
to model precisely. But a first order approximation can be derived from the
formula for the variance of a product of two variables:

20 2 2,0, 2 2p. 2
Opii° /Pyt = 9i57/Q4" + Opii"/RyyT 2 p Cpii0Rii/ Q4R (2)

where p is the correlation coeff1c1ent between Q and R} Using this formula
it is possible to estlmate Upi for each pen, prov1ded that estimates have been
developed for p, 00” and Opiy”

The procedure suggested is to derive models for UQHZ and ORHZ, and to obtain an
estimate of p from the data for Qﬁ and Rﬁ using the standard formula for a
correlation coefficient. Estimates of pi GQHZ and cﬂﬁz can then be entered into
.equation (2) to obtain a value for Gh . A corresponding procedure could ba
developed for the case where Pi; is the product of three or more actual

proportions.

ij

Formula (2) can also be expressed in terms of angular-transformed variances by
"substituting ohﬁzPﬁfl-Pﬁ) for Gpﬁz, and similarly for GQﬁZ and URHZ.
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4.6.6 Cases to be Considered ' v

The situation is quite complex for this variable class, as there are a wide
variety of approaches that could be appropriate for a given data set depending
on the circumstances.

Least-Squares Methods s
Least-squares methods are expected to be the most efficient for analysing the pen
proportions, provided?that they can deal with the complexities of the variance
of the P; It is assumed that the transformation

jo

Aﬁ = arc51n(JPﬁ) i
has been applied (with Aﬁ measured in degrees) and that the variance of the Aﬁ'
has the form

opit = 8210(1/ng5) + Al

The optimum situation is one where chﬁz is constant or approximately so, and
unweighted least squares methods can be employed to analyse the Aﬁ' But this
" situation is unlikely as discussed in section 4.6.5, since it would require that

1 be large enough to smooth out any variatien in (1/nﬁ).

If GAHZ is not constant, then any least squares analysis will have to involve a

weighting scheme in which weights are applied to the Aﬁ. It will be necessary
to fit a model to ohﬁz, estimate it for each Aﬁ, and set the weights to the
inverse of these variance estimates. Some procedures for this are discussed in
Bppendix B, section B.2.2. '

Methods for Qualitative Data

Methods for qualitative data may alsoc be applicable, depending on the
circumstances. For this to be the case it is necessary that the structure of the
data first be reduced to that of a single proportion in each treatment. Methods
for qualitative data such as contingency-table methods can then be applied,
provided that they take into account the variance between pens in a treatment,

As discussed in section 3.6, it is not valid to simply pool the pen proportions
in a treatment and then analyse the pooled proporticns as if they were simple
proportions, as this does not take pen-to-pen variation into account. However
a recently developed procedure appears to overcome this problem (Rao and Scott,
1992). This procedure is described briefly in section 4.4.7, and in more detail
in Appendix B, section B.1.1.
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The suitability of Rao and Scott's procedure for analysing variables in this
class depends on its general validity, and also on whether it is flexible enough
to accommodate data sets with moderate or large extrabinomial error terms. In
its current form, the procedure assumes that the pen proportions P:.. should be i

1] |
weighted by their dencminators nj; in calculating treatment proportion§. But
this weighting scheme is probably not suitable for many AR data sets, since it
assumes that the extra-binomial variance component is small (as discussed in

section 4.6.5).

To be applicable to AR data sets in general, it will probably be necessary to
make the method more flexible by extending it to include other weighting’_chemes.
Thus the applicability of this method depends on whether a suitable weighting
scheme can be identified. It is currently being studied for its applicability
to avian reproduction experiments and is tentatively recommended.

Note: Rao and Scott's procedure is probably not suitable for data sets where
there are irregularities in the distribution of the pen proportions.

Non-Parametric Methods

There may be data sets for which neither least-squares methods nor qualitative
methods are suitable, for reasons such as irregularities in the data. For these
cases the pen proportions can be analysed using non-parametric methods that are
more robust and less affected by such problens.

Summary: In all there are six cases to consider. The first three cases are
those for which the transformed variance ogﬁz is constant, and thus unweighted
least squares methods area applicable. They correspond to the cases set out in
section 4.3.4 in the discussion of measurement variables for adult birds.

Case 1: Gﬁﬁz is constant over all treatments, and the number N; of pens per
treatment are all egual

Case 2: cﬁﬁz is constant over all treatments, but the N; are not all equal

Case 3: ohﬁz is constant over all pens in a treatment, but varies from one
treatment to another
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However for most data sets Ghﬁ? will probably not be constant within treatments,
s0 that cases 1 to 3 would not be appropriate. The cheoice is then among cases
4, 5 and 6:

Case 4: oﬁnz is not constant within treatments, but can be modelled in terms
of njj or other parameters. From this model a weighting scheme
can be derived. Thus weighted least squares methods can be
employed.

Case 5: The P;; can be combined into a single proportion in each treatment,
and these treatment proportions can be analysed by methods fo
qualitative data (taking pen-to-pen variation into account).

Case 6: chuz can not be modelled, and qualitative methods can not be applied
in a statistically valid manner. This requires that non-
parametric methods he employed.

4.6.7 Recommended Methods for These Cases
No guidelines have been set out concerning how to determine which case to select
for a given analysis, as this is largely a matter of subjective judgement,

Note - Each method involves a set of one-tailed tests at the 5% level, that test
the effect of the test substance at each dose level. For more information on the
methods see Appendix A.

Cases 1 to 3. Unweighted Least Squares Methods

The methods are the same as those listed for measurement variables for adult
birds in section 4.3.5, cases 1 to 3. Since these cases are unlikely to occur,
the methods are not repeated here.

Case 4. Weighted Least Squares Methods
- t-tests, each test compares the control mean with the mean for a particular
dose level

~ Linear trend tests, each test locks at the trend in treatment means from
control up to a particular dose level
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Case 5. Methods for Qualitative Data
- Chi-square tests, each test compares the proportion for control with the
proportion for a particular dose level

- Fisher's exact tests, each test compares the proportion for control yith the
proportion for a particular dose level

- Cochran-Armitage tests, each test looks at the trend in treatment proportions

from control up to a particular dose level

Case 6. Non-Parametric Metheods
- Mann-Whitney tests, each test compares control with a particular dose level

- Rerandomization tests, each test either compares control with a particular
dose level or looks at the trend in treatments from control up to a '
particular dose level

- Jackknife tests, each test either compares control with a particular dose
level or looks at the trend in treatments from control up to a particular
dose level
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5. IDENTIFICATION d? THE NOEC

Position of CWS on the NOEC

The position of the Canadian Wildlife Service is that for each variable analysed
in an AR experiment, the dose level at which the treatment effect (if any) begins
should be determined by identifying the NOEC (the highest dose level at which
there is no observed effect)}. Reasons for this are discussed in Miﬁeau, Boersma
and Collins (in press). The NOEC is also specified in the OECD protocol as one
of the results to be produced.

Identifying the NOEC if Results are Consistent Q
The procedure to identify the NOEC involves testing the effect at each dose level
and examining the pattern of significant and non-significant results. Normally
this pattern is consistent from one dose level to another in that the effect will
be non-significant for all dose levels up to a certain value and significant for
all levels above this value. However, exceptions can occur. Examples of
consistent and inconsistent patterns are:

Dose Consistent Inconsistent
"Low Not Sig. Not Siq.
Medium Not Sig. Sig.
High - 5iq. Not Sig.

If a pattern is consistent the NOEC is determined by finding the lowest level at
which there is a significant effect. The NOEC is the level immediately below
this. For the consistent pattern above, the NOEC is the medium dose. If the
effect is not significant at any of the dose levels the NOEC is at or above the
highest dose level in the experiment.

Identifying the NOEC if Results are Inconsistent

If a pattern is not consistent, the situation is more difficult. It is up to the
experimenter to decide how to identify the NOEC and to support his or her
decision. One possible approach is to derive two different NOEC values, one by
. working down from the highest dose and one by working up from the lowest. Denote
these by NOEC1 and NOECZ respectively.
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- Working down from the highest dose, NOEC1 is the first dose level at which there
is a non-significant effect. For the inconsistent pattern given on the previous
page, NOEC1 is the high dose. Working up from the lowest dose, NOEC2 is the dose
level just below the first level at which there is a significant effect. For the
inconsistent pattern given on the previcus page, the first leve% with a
significant effect is the medium dose and therefore NOECZ is the low dose.

NOEC1 and NOEC2 bracket the NOEC. In the event of an inconsistent pattern of
results, both values could be presented with the statement that the NOEC is
somewhere within their range. An explanation could also be required as to why
this inconsistency occurred. 'g
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6. DATA QUALITY CONSIDERATIONS

6.1 The Need for Data Quality Control Measures

Statistical methods are in general conservative in detecting significant
treatment effects. For AR experiments this presents the danger that if the data
are of poor quality, then harmful effects of a test substance may go undetected.
There is a particular concern for data from the birds in the control, since poor
data quality for the control would cause the control mean to be an artificially
low standard against which to compare the means for the different dose levels.

It appears to be advisable to have measures in place that will help to ensure
that the data quality is acceptable.

6.2 Measures Based on Variable Means
The issue of data quality is given prominence in the QECD protocol, in which a
number of criteria are specified that the data for the control birds should meet.
These criteria set lower limits for the mean value for control for certain key
variables:

- mortality among the adult birds

- number of l4-day surviving chicks

- shell thickness

For certain other variables a normal range is set out, and the mean value for
control is expected to be within or close to this range. These variables are
- number of eggs laid 7
- proportion of cracked eggs
- proportion of viable embryocs
- proportion of eggs set that hatch
- proportion of hatchlings that survive to 14 days

The other protocols do not discuss data quality to the same extent. The 1986 EPA
protocol states that sickness, injuries or excessive mortality among the chicks
may indicate that the quality of the adult birds in the experiment was not
adequate, but does not set out specific quality control measures. The ASTM
protocol does not consider the guestion of data quality.

Data quality is also mentioned in some of the submissions, mainly with respect
to the possible effects of sickness or injury. Some of the submissions state
that if there is disease or mortality in more than a certain proportion of the
pens, the experiment may be rejected.
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6.3 Measures to Detect Reproductive Failure

A particular concern for AR experiments is the possibility that extraneous low
data values can occur as a result of reproductive failure in particular pens, for
reasons unrelated to the treatments applied (Picirillo and Quesenberry, 1980).
The presence of such a value in the control pens would be of particular concern
as it would artificially lower the control mean. The presence of extranéous low
data values wo@ld also reduce the power of statistical tests by artificially
raising the pen-to-pen variation.

Measures could be set out to detect reproductive failure in the controlgFens, by
specifying minimum acceptable pen values for certain variables just as minimum
overall control values are specified in the OECD protocol.

Another possible approach for identifying cases of extraneous reproductive
failure in particular pens is to employ a statistical procedure for detecting
'outliers' or extreme data values that do not belong in a data set. This is a
difficult area as many different procedures have been develcped =~ some for
general use and some for specific contexts. Care must be taken not to identify
genuine data values by mistake, The choice of method is essentially a subjective
one. Some possible approaches to the detection of outliers are discussed in
Appendix B. :

6.4 Measures Based on Statistical Power

There may also be a need for measures fto ensure that the statistical tests being
applied have sufficient power to detect treatment effects if those effects are
large enough to be potentially harmful. The reason for additional measures is
that even if treatment means are within an acceptable range and there are no
obvious cases of reproductive failure, the power of the tests could be inadequate
due to excessive pen-to-pen variation within treatments.

A possible approach to deriving a measure to ensure sufficient statistical power
could involve specifyving a minimum size of treatment effect that the experiment
should be able to detect. A possible minimum size is in fact suggested by the
1982 EPA protocol which states that the objective of an AR experiment is to
detect reproductive impairment at or above 20%.
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Suppose that a figure of 25% is selected. For certain key variables the per cent
effect of the test substance could be calculated at each dose level:

Per Cent Effect = Control Mean - Dose Level Mean x 100%
Control Mean

#

If for any dose leveI the per cent effect is 25% or greater but the test of that
dose level is not statistically significant, the power of the experiment could
be considered to be insufficient.

6-3



APPENDIX A - INFORMATION_ON'STATISTICAL METHODS

Table of Contents

A.1 Introduction i e e e e e e e e e e e e e e e e e e e e e e s . . A-3

A.2 Recommended Methods . . . . . . . . « . +« ¢ ¢« v« o o« v« - . . . . A4

A.2.1 Least Squares Methods . . . . . « « v « & v & o o o o o o+ . . . A-4
A A A e Y -
A.2.1.2 LSD t@SES « &+ « &« v v 4 e e s 4 e v e e e s s s s+« « . A-b

A.2.1.3 Williams tests . . . . . . . . . . oo AT

1.4
1.5

A.2. Trend £estS . . v & & & « « o 4 + + v o a 4« = « + + « « . BA-8
A.2. Abelson-Tukey test . . . . . . .+ . . . v .« o o . . . . A3

A.2.2 Methods for Qualitative Data . . . + . v & « o 4 « & « + « . . A-14
A.2.2.1 Chi-square test (to compare 2 treatments}. . . . . . . . . A-14
A.2.2.2 Fisher's exact test . .. .. . . . ..+ .+ .+ .+ . .. . A-15
A.2.2.3 Cochran-Armitage test . . . . . . . . . . ... .. . . . A-17

A.2.3 Non-Parametric Methods . . . . . . « + + ¢« . & & « « « +« . . « A-18
A.2.3.1 Mann-Whitney test . . . . . . . . ... ... .. .. .A-18
A.2.3.2 Jackknifemethod . . . ... . . .. .. ... . .. . A-19
A.2.3.3 Rerandomizationmethods . . . . . . . . . . . .. .. .A21

A.3 Potential Methods . . . . . & & & « ¢ « v v 4 v « 4w = o v s 4 4 « . A-23

A.3.1 Least Squares Methods . . . . . . . . . . . . « v « 4« « « . . . A=23
A.3.1.1 Bartholomew's test . . . . . . . . .+ +. .+ +« .+ +v v . . . . . A-23
A.3.1.2 Pattern-specific tests . . . . . . . . . . . .. .. . . . A-24

A.3.1.2.1 Stepcontrasts . . . . . . . . .+ . ¢ v . .. . A24
A.3.1.2.2 Basincontrasts . . . . . . . . . . . ... .. .. .AHA-25
A.3.1.2.3 Helmert contrasts . . . . . . . . . ..+« .. .. . AHB-26

A-1



I

A.3.2 Methods for Qualitative Data . A-27
A.3.2.1 Complex-model methods for proportions . A-27
A.3.3 Non-Parametric Methods . A-28
A.3.3.1 Jonckheere's test . A-28
A.3.3.2 Shirley's test . . A-28
A.4 Methods Not Recommended (but in current use) . BA-29
A.4.1 Least Squares Methods . . A=29
A.4.1.1 One-way ANOVA . C e e . . . A-29
A.4.1.2 General multiple comparison procedures . . A-29
A.4.1.3 Dunnett's test . . A-31
A.4.2 Methods for Qualitative Data . . . . . . . . . . A-31
A.4.2.1 Chi-square test (to compare all treatments). . A-31

A.4.3 Non-Parametric Methods

A.4.3.1 Kruskal-Wallis test

FIGURES Figure Al. Averaging of consecutive means




#

A.1 Introduction _
In this appendix the methods are divided into three classes:

Recommended Methods

These are considered to be the most promising for AR experiments. They meet the
objectives and the criteria for validity and efficiency set out in section 4.2.4
and are recommended in section 4.

Potential Methods , _
This section contains information on some additional methods that are relevant
to AR experiments, but appear to be too complex to be applied on a routine basi§.

Methods Not Recommended
These are methods that are currently employed, but are not recommended because
they do not appear to meet the criteria set out in section 4.2.1.
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A.2 Recommended Methods

A.2.1 Least Squares Methods

A.2.1.1 t-Tests :

Let Xﬁ be the j'th data value within treatment i. (Here Xﬁ corresponds to a pen
mean Rﬁ in the notation of section 5.) For application to AR data sets, let the
control be treatment 1 and the dose levels be treatments 2, 3, 4, etc,. Let Okﬁz
“be the variance of Xijf let Ni be the number of data values {i.e. numbeg of pens)
in treatment i, let Ri be the mean for treatment i, and let Sf be the variance
between pen means within treatment i. Then

Ri = ijij/Ni and Si2 = [Ej(xij-ii)z]/(Ni'-l)

There are a number of different versions of the t-test,lwith the choice in a
given case depending on oxﬁz and Nj.

Standard t-Test'(owﬁz constant over all treatments, N; all equal)
This test is described in all statistics texts. Let N be the number of data
values in each treatment. To test the difference between the control mean Xl and
the mean Rk for treatment k, first calculate the combined variance Suf among pen
means within treatments 1 and k:
spt = (52 + 802

The variance SXL%kz of the difference X\-X; is given by

: 2 . 2

Syi-xk = Sy /N
The test statistic to compare control and dose level k is

to= XD /Sy

which has a t distribution with 2(N-1) degrees of freedom.
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t-Test Adapted to Unequal NL_LEXﬁZ constant over all treat., N; not all equal)
This test is similar to the standard t-test, with some adjustments. The combined
variance Snz within treatments 1 and k is

sl = [ON-1)8% + (M=1)SE1/0(N-1) + (N-1)] )
The variance of the difference Rl—ik is given by
2 _ 2 2
Syl-xk = Sw/Np + Spt/Ny
The statistic is t = (%) /Sy _ {

which has a t-distribution with [(N1—1)+(Nk-1)] degrees of freedomn.

2 constant within treatments but varies

t-Test Adapted to Unequal Variances (Oy;;
atd

from one treatment to another)

Here further adjustments are necessary. The Si2 are employed directly and are

not combined into a common estimate.

The variance of Xl—Xk is : SXLXkZ = Slz/Nl + Skz/Nk
and the statistic tUU is tuv = (_Xl”ik)/SXl_Xk

tyy does not follow a simple t-distribution, and this causes the process of

testing tUu to be somewhat involved. There are several different test
procedures, which are described in most statistical texts (e.g. Snedecor and

Cochran, 1967, p.115). The most powerful is the Welch-Aspin test {Welch, 19%47)

which requires special tables.

An alternative procedure developed by Cochran is slightly less powerful but more
commonly used as it employs the standard t-table (Cochran, 1964). If Ny is equal
to Ny the significance of tj can be determined directly from the t-table using
N;-1 degrees of freedom. However if Ny is not equal to Ny, the t-table can still
be used but a rather complicated calculation is required to get the significance
level of tyy- A good discussion on the effects of unequal variances is given in
Miller (1986).



i
: |
t-test for Weighted Analysis (oxﬁz variegs within treatments)

Let w.. be the weight applied to xij' Assume the wij are the inverses of the {

ij -
variance of Xj The mean for treatment i is the weighted average Xy of the Xij:

]'.

Ryp = Iyjwygi/W; i
where . Wl = ijij.
The variance of RWI'XWk is SXWI-XWk2 = 1/W + 1/W

and the test statistic is ty = (XX /Sy-xuk

This formula is actuwally a special case of the formula for the mean of a
stratified sample, as discussed in some texts on sampling (e.g. Cochran, 1977,
p. 91-96). The distribution of ty can be approximated by a t-distribution with
a reduced number of degrees of freedom. The test uses the t-table, but the
effective number n, of degrees of freedom must be worked out. A formula for this
number was derived by Satterthwaite (1946). For our case the formula is

n, = (1/W) + 1/w,)?
Ejiﬁﬁi[i?ﬁ:lll + Z@LEMELLEw'lll
Wy W

A.2.1.2 LSD Tests

Least Significant Difference (LSD) tests are described in most standard texts
(e.g. Snedecor and Cochran, 1967, p.271). They are the same as t-tests, except
that the variance SXLX# of each mean difference X;-¥%, is calculated using the
data from all of the treatments rather than the data from the two treatments in
the test. This increases the accuracy of the variance compared to that for the
t-test. '

Two different versions of the LSD test are described - one with equal numbers
N; of data values per treatment and one with unequal N;. The notation used is
the same as in section A.2.1.1. For both versions the variance oxﬁz of the data
values must be approximately constant over all treatments. The LSD test is not
applicable to data sets with unequal variances.
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Standard LSD Test (ogﬁz constant over all treatments, N; all equal)
Let N be the number of pens per treatment and let R be the number cf treatments.
The combined wvariance S2 within all treatments is:

sto= D405 (Xyy-Xp) A1/ IR(N-1)] ;
The variance of Xl—ik is SXL«kZ = ZSZ/N
and the test statistic is tep = (Rﬁ"ik)/SXLXk

tigp has a t-distribution with R(N-1) degrees of freedom.

LSD Test Adapted to Unequal N; (cxij2 constant over all treat., N; not all equal)
The combined variance $* within all treatments is:

st = (I30(%g-R) 1/ (Ng-1)]
The variance of [Xl—ik) is SXLXkZ = SZ/NI + Sz/Nk
and the test statistic is tiep = (X;-;) /Sy1.qx

tigp has a t-distribution with degrees of freedom egual to E(Ni-l).

.A.2.1.3 The Williams Test

This test, described in Williams (1971) and Williams (1972), was designed
specifically for experiments that consist of a control and a series of dose
levels of a test substance. It is only applicable to data sets where the
variance OXHZ of the data values is approximately constant. The number N; of
data values per treatment must be the same for all dose levels, and the number
of data values for control must be equal to or greater than for the dose levels.

The test is similar to an LSD test, the only difference being that the treatment
means may have been adjusted prior to the test. This feature is designed to
overcome certain problems of interpretation that can occur with t-tests or LSD
tests.
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With t-tests or LSD tests it can happen that the results of the tests at
different dose levels are not consistent with each other. It is possible to have
a significant effect at a lower level but a non-significant effect at a higher
level (this problem is discussed in Appendix B, sections B.2 and B.3. For
example suppose that the treatments are a control C and dose levels D1, D2 and
D3, and that the effect at D3 is less than at D2 (see Figure Al). It is possible
that the effect at D2 is significant while that at D3 is not significaht.

Williams' innovation is to remove the possibility of inconsistent results in
these cases by adjusting the dose level means. In this process, the problem
means are averaged and the average is then substituted for these means. This
produces a set of treatment means that form a monotonic series. In thé example
the original D2 and D3 means would both be replaced by the D2-D3 average.

C Dl D2 D3 C D1 D2 D3
Before Adjustment After Adjustment

Figure Al. Averaging of consecutive means to produce a monotonic series.

When the adjusted dose level means are compared to the control mean, the results
are always consistent which simplifies the interpretation of the results.

Standard Williams Test (cvi,-2 constant over all treatments, N; all equal)
adl

This has the same form as the standard LSD test, in that each dose level mean i#
compared to the control mean using a within-treatments variance that is based on.
the data from all treatments (see section A.2.1.2). The variance erxf of th
difference between the control and dose level means is the same as in an LS
test, and the test statistic ty;; is given by:

ty, = (X-X')/Spp
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If the means have been adjusted prior to analysis, X'k is the adjusted mean. If
they have ncot been adjusted X'k is the original mean. The control mean X, is
always the original mean. The test requires special tables of critical values,
since the distribution of the test statistic deviates from the t-distribution
because of the provision for averaging of dose level means. Williams' 1971 papgr
gives the table of critical values for the one-tailed version of the test and the
table for the two-tailed version is in his 1972 paper,

2

Williams Test Adjusted for Extra Control Values (UYH constant over all g
treatments, N; all equal except for extra control pens)
This has the same form as the LSD test for unequal N; (see section A. 2.1.2). The
variance SXle of the difference between the control and dose level means is the
same as in an LSD test for unequal N;, and the test statistic ty,; is given by:

tye = (R-X') /Sy

If the means have been adjusted prior to analysis, X'k is the adjusted mean. If
they have not been adjusted i‘k is the original mean. The control mean % is
always the original mean. Critical values for this test are obtained by
adjusting the critical values for the standard Williams test. Williams' 1972
paper gives a formula for this adjustment.

The Williams test has advantages over the t-test and the LSD test concerning ease
of interpretation of the results, but wounld probably have only limited
application for AR data sets. The reason is that it can not be employed in cases
where the number of pens per treatment varies among dose levels or where the
accuracy of the pen means is not constant.

A.2.1.4 Trend Tests

Trend tests are carried out over a set of consecutive treatments, and so are only
applicable to data sets where the treatments are ordered. The test for frend
over a set of treatments involves the linear contrast for that set. These
contrasts are given in most statistical texts. The coefficients for contrasts
of 2 to 5 treatments are:




1
|
}
|
i

2 Treatments: 1

3 Treatments: 1

4 treatments: 3, 1, -1, -3

5 treatments: 2, 1, 0, -1, -2

4

For example if an experiment consists of a control C and increasing dose levels
Di; D, and Dy, and the treatment means are M., My, M;; and My, the linear
contrasts from C to D1, C to D2 and C to D3 (for testing for effects at D1, D2
and D3 respectively) are:

C to D1: MD]. - MC
C to D2: My, - M

Note: The trend tests for effects at D1 and D2 are the same as the LSD tests.

Note: It is assumed that the control and the dose levels can be treated as if
they are all equally spaced along some axis. If this is not reasonable, an
alternate spacing will have to be devised and different linear contrasts worked
out.

As with the t-test and LSD test, there are a number of different versions of the
trend test that could be applicable to AR data sets. The appropriate choice for
a given case depends on the variance cxﬁz of the pen means {or proportions) and
on the number N; of pens per treatment. The notation used is described in
section A.2.1.1.

Standard Trend Test [oxﬁz constant over all treatments, N; all equal)
The trend test for 2 or 3 treatments is the same as the LSD test. To run a trend
test for 4 or more treatments, let the linear contrast be

Thus for a 4-treatment contrast the values.of 11 to 14 are -3, -1, 1 and 3.

Then calculate the combined variance S2 within all treatments:

= [L5 (xR 1/ IR(N-1))
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where N is the number of data values per treatment and R is the number of
treatments. The variance Sf of F is

2 _ 2 2
Sg" = ISy
where Sy;’ is the variance of X; and is equal to $°/N. Thus
8¢ = (Tal)siN
The test statistic is tp = F/S g
which has a t-distribution with R(N-1) degrees of freedom.
Trend Test Adapted to Unequal NLJEkif constant over all tr., N, not all equal)

The test for 2 or 3 treatments is the same as the LSD test. To test 4 or more
treatments, let the linear contrast be

F o= IMX
The combined variance $* within all treatments is
stos L0 (XX A1/ (8- 1))
The variance of F is Sf = Elfsxﬁ = SZE(lf/Ni)
since Sxf, the variance of Xi, is egual to Sz/Ni. The test statistic tog is
tg = F/S

which has a t-distribution with degrees of freedom equal to E(Ni—l).

Trend Test Adapted to Unequal Variances (ckﬁz constant within treatments but
varies from one treatment to another)

For this case the within-treatment variances Siz‘are employed directly and are
not combined into a common estimate. The test for 2 or 3 treatments is the same

as the t-test for unequal variances. To test 4 or more treatments, let the
linear contrast be

F o= DA%
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The variance of F is SFZ = -E}Lizsx{z = E(AiZSiZ/Ni)
since Sxf, the variance of Ri, is equal to Sf/Ni.
The test statistic tg = F/Sp 4

has a distribution that approximates a t-distribution. Critical values can be
obtained from the t-table, but a special calculation is required for the
effective number n, of degrees of freedqm. An approximate formula is given by
Satterthwaite (1946): _ t

n, = [D(4%82/M)1% /7 Sraagfsdmpt on-1)) (A1)

Trend Test for Weighted Analysis (cxﬁz varies within treatments)
Let Wi; be the weight applied to xij. Assume that wij is the inverse of the
variance of X} The mean for treatment i is the weighted average im of the pen

means.

Xy = E] i3 H where W; = ijij.

The test for 2 or 3 treatments is the same as the weighted t-test. To test 4 or
more treatments, let the linear contrast be

]

= EAIXWI

; ; 2 ? 2 2
Its variance is Sg DAt = DAS/W
since waf, the variance of Xy, is equal to 1/W;.

The test statistic is tyg = F/Sg

which has a distribution that approximates a t-distribution. The t-table can be
used for critical wvalues, but a special calculation is required to get the
effective number n, of degrees of freedom. Equation (A1), which gives n, for the
case of unequal varlances (Satterthwalte, 1946}, can be modified by substltutlng
(1/W;) for (§; /N )s

ng = DO/ SLOE M) (N-1))
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A.2.1.5 The Abhelson-Tukey Test

This test, described in Abelson and Tukey (1963), is similar to a trend test but
employs a contrast which gives greater weight to the more extreme treatments and
is intermediate between a trend test and a t-test or LSD test. It assumes equal
numbers of data values per treatment and a constant variance for the data values.
As with the trend test, it is only applicable to sets of 4 or more ordered
treatments and it assumes that the treatments are equally spaced in some scale.
The coefficients for.4 and 5 treatments are:

4 treatments: -.866, -.134, .134, .866
5 treatments: -.894, -.201, 0, .201, .894 {

For the case of a control C and dose levels D1, D2 and D3, the Abelson-Tukey
contrast for C to D3 would be (.866MD3 + . 134My, - .134Mp; - .866M:) where M., My,
Mpo and MD3 are the treatment means. The variance for this contrast can bhe
obtained from the formula for a linear contrast given in section A.2.1.4 for the
standard trend test, by substituting -.866, -.134, .134 and .866 for the Ai-

According to Abelscn and Tukey, their contrast is the optimal one for situwations’
where the pattern of treatment effect is monotonic but unknown. The contrasts
are optimal in the sense that they maximize the minimum power of the test over
all possible monotonic treatment effect patterns. (The minimum power of a test
occurs when the real pattern is as far as possible from that of the contrast.)

Abelson and Tukey also suggest the use of a slightly modified version of their
contrast, as an alternative that is simpler than the original and almost as
efficient. In this contrast the coefficients are the same as those for a linear
trend, except that the coefficients for the highest and lowest treatment are
doubled. For example for a set of 4 ordered treatments the contrast for the
linear trend test is (-3, -1, 1, 3), and that for the modified version ¢f the
Abelson-Tukey test is (-6, -1, 1, 6). They refer t¢o this as the 'linear-2'
contrast.

The standard Abelson-Tukey test would only be applicable to AR data sets with
equal numbers of pens per treatment and constant variance of the pen means.
However the 'linear-2' variation of it appears to be applicable to any data set
for which the standard trend test is applicable. To derive the 'linear-2'
contrast for a given situation, identify the appropriate trend test and double
the coefficients for the control and the highest dose level.
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A.2,2 Methods for Qualitative Data

A,2.2,1 The Chi-Square Test (to compare 2 treatments)

The chi-square test is the standard test to compare treatments for , data in
contingency tables, and is described in any statistics text. It is applicablé
to data sets for proportional variables in which the data have been reduced to
a single proportion per treatment. The data is then in the form of a 2 X N
contingency table, e.qg.

Control Dose 1 Dose 2 %ose 3
No. of Eggs That Hatched X X X X
No. of Eggs That Did Not Hatch X X X X
Total (No. of Eggs Set) X X X X

To compare two treatments, such as control and a particular dose level, first
select the appropriate 2 X 2 subset of the table. The subset to compare control
and dose level 3 for the above example is

Contrel Dose 3 Total
No. of Eggs That Hatched ' X b4 Ry
No. of Eggs That Did Not Hatch X X Ry
Total (No. of Eggs Set) C1 ¢ - T

A table of expected values is obtained from the row and columm totals. The
expected value Eﬁ for the i'th row and j'th column is

The test statistic xz is then calculated from the squares of the deviationé of
‘the Eﬁ from the original data values Oﬁ:

2= Eifj(oij'Eij)z/Eij

xz has a chi-square distribution with 1 degree of freedom if certain conditions
are satisfied. 1Its critical values are in standard tables. The critical value
for a one-tailed test at the 5% level is 2.71.
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One condition to be met is that the bﬁ for “any row must represent the results
of independent trials. (This condition would not hold if the table were produced
by simply pooling data from all pens within a treatment.) The other is that the
Eﬁ must not be too small. The usual restriction is that the Eﬁ should all be
5 or greater, although some texts suggest that it is permissible to have some
values of E” that are under 5. : ‘

Alternatively the test statistic Zr {the square root of xﬂz) may be used, which
follows & standard normal distribution. A positive or negative sign is assigned
to 2z, depending on whether the per cent for the dose level being tested is
greater than or less than the per cent for control. The critical value for a

one-tailed test at the 5% level is 1.645, i

One point at issue is the question of whether or not to make a 'correction for
continuity' as suggested in some texts. To make this correction, replace each
(035-Esj) in x* by (|0;4-Eyj]=0.5). If {0;;-E;j| is less than 0.5, then replace

(Oij-Eﬁ) by 0. This reduces the value of the test statistic considerably if the
data values are small. Some authors (e.g. (Miller, 1986) or (Conover, 1974}))
advise against this correction and claim that the test is then too conservative.

A.2.2.2 Fisher's Exact Test

This test, discussed in most statistics texts, is applicable to 2 x 2 tables and
is the fest generally recommended when the expected values are too small for the
chi-square test to be applied. The first step in the test is to identify all
possible 2 x 2 tables that have the same row and column totals as the original
data. For the data set

: Control Dose 3 Total
No. of Eggs That Hatched 8 2 | 10
No. of Eggs That Did Not Hatch 3 4 | 7
Total (No. of Eggs Set) 11 6 | 17

the set of all possible tables with the same totals is

1o ©
1 6

N0
I =
w o
W =
LW
o o
RN
o
—
NE
o o

W B

These tables have been arranged in the order of their treatment effect, the
leftmost table having the mazimum negative effect 0f the dose level and the
rightmost table the maximum positive effect.
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The probability is calculated of obtaining each table in the series, under the
assumption that there is no difference between the treatments {assuming fixed row
and column totals}. Let a, b, ¢ and d be the data values in a table, R; and Cj
be the row and column totals, and T be the overall total:

c d | R,
G G T
The probability P of obtaining a given table by chance is i
P = Rl Ryl Gl Gyl

al bl ct d! T!

For our example, these probabilities are

10 0 g 1 8 2 7 3 6 4 5 5 4 6
1 6 2 5 3 4 4 3 5 2 6 1 7 0
Prob: .0006 0170 L1273 .3394 .3563 .1425  .0170

To test whether there is a significant negative effect for this dose level using
a one-tailed test, we sum the probabilities of the actual data set plus the other
sets in the same tail:

Sum of probabilities = .0006 + 0170 + .1273 = .1449

Since this is greater than .05, the test is not significant at the 5% level.

In general Fisher's exact test gives results that are very similar to those
obtained for the chi-square test with the continuity correction (described in
section A.2.2.1). Like this latter test, it has alsc been criticized as being
too conservative (e.g. (Kempthorne, 1§79), (Upton, 1982) and (Rice, 1988)).
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A,2.2.3 The Cochran-Armitage Test

This test, described in Cochran (1954) and Armitage (1955), tests for linear
trend in a set of ordered treatments within a contingency table. Consider the
following table:

Control Dose 1 Dose 2 Dose 3
No. of Eggs That Hatched X p-{ X X
No. of Eggs That Did Not Hatch X X X X
Total {No. of Eggs Set) X X X X

Let Py be the propertion and N; be the total for each treatment. For our
example, P; = (Eggs That Hatched)/(Eggs That Did Not Hatch) and N; = (Eggs Seég.

In order to carry out this test it is necessary to define a treatment scale and
to assign each treatment a value U; on this scale. For example the control could
be assigned a value of U; = 1 and the dose levels assigned values of U; = i for
i =2, 3 and 4. The test involves the calculation and testing of the trend in
P; as U; increases. The formula for the trend coefficient by, is

by = [EN;(Py-By) (U;=0y) 1/(EN; (U0 ]
where Pw and Uw are weighted means of the P; and U; respectively, Weighted by N;:
The test statistic is gact = bycPlIN(U;=0y) %1/ [Py (1-Fy) ]

which has a chi-square distribution with 1 degree of freedom. The critical value
for a one-tailed test at the 5% level is 2.71.

Alternatively, the test statistic zp, (the square root of Xmﬁ) may be used, which
has the standard normal distribution. A positive sign is assigned to Zpe if bBC
is positive and a negative sign if by, is negative. The critical value for a
one-tailed test at the 5% level is 1.645.

The formula for by, is actually the same as that for a trend coefficient in a
weighted linear regression of P; on U; with weights of N;, but its variance
differs somewhat from the corresponding regression variance because it is
calculated from the assumption that the P; are binomially distributed rather than
from the residual mean square of the regression. This method is also mentioned
in Snedecor and Cochran (1967), p. 246.
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A.2.3 Non-Parametric Methods

|
A.2.3.1 The Mann-Whitney Test j
This test (and the Wilcoxon rank test which is equivalent to it) is the rank-
based counterpart to the t-test. It is widely employed and is described in most ]
statistics texts. To compare two treatments using this test, assign each data
value its rank within the combined data set.

For example consider the data set ' _g
Treatment 1 © Treatment 2
.85 .45 .60 .25 .78 .27 .10 .58 .49 .07
with ranks 10 5 8 3 g 4 2 7 6 1

The sum of the ranks is then calculated for each treatment. The test statistic
is the smaller of the two sums. The significance of the treatment effect is
obtained from a special table of critical values. In situations with well-
behaved data this method is less powerful than the t-test which is its least-
squares counterpart. However it is more robust and less affected by data
irregularities.

A factor to consider in using the Mann-Whitney test is that it compares the mean
ranks of treatments rather than treatment means. In doing so it makes the
assumption that the distribution of the data values is the same within each
treatment, so that if the mean ranks are different the means will be different
also, This may be a preblem for AR data sets where the distributions are not the
same for all treatments, such as those where the within-treatment variance is
larger in one treatment than another.

Another potential problem is that of tied ranks. When a group of data values are
equal, they are each assigned the average rank for the group. In data sets where
the data are categorical or discrete in nature, it is possible to have a large
number of tied ranks and this can result in a test statistic that is erratic and
non-normally distributed ((Lehman, 1961) or (Klotz, 1966)). Recent developments
in statistical computing have made it feasible to overcome this problem by
generating the exact distribution of the test statistic (Mehta et al, 1984),
although this adds considerably to the amount of work required.
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A number of papers have compared the performance of the Mann-Whitney test with
that of the standard and the weighted t-tests. The data sets employed in these
‘comparisons were similar to those that occur in AR experiments in that the data
values were proportions with varying denominators. Among these papers are
Haseman and Soares (1976), Gladen (1979), and Shirley and Hickling (1981)). They
found that there was some loss of efficiency for the Mann-Whitney test relative
to both the weighted.and unweighted t-test, although the loss was relatively
small, This loss was attributed to the fact that the Mann-Whitney test did neot
take into account the differences in variance among the proportions. The Mann-
Whitney test is also described in general references on rank-based methods sqgh
as Conover {1971), and Van der Laan and Verdcoren (1987).

A.2.3.2 The Jackknife Method

This is another method for dealing with data sets that have complications such
as irregular distributions or data values of varying but unknown accuracies. It
is relatively simple to apply as it does not require the use of complex models,
but is generally not described in standard texts. A good reference for this
method is Miller (1974).

The following is the procedure to estimate a treatment proportion from a set of
pen proportions using the jackknife method (the procedure would be the same to
estimate a treatment mean from a set of pen means). Let (Pj) be a set of pen
proportions for a particular treatment, with each Pj being derived from

By = %j/n
For example Dy could be the number of eggs set in a pen and X; could be the

number of these that hatch. The first step is to obtain a preliminary estimate
Pp, of the treatiment proportion by simply pooling the proportions:

PPL = EX]/):D.] = EHBP]/EH]

However, for reasons discussed earlier in this report, Pp may not be a
satisfactory estimate as it weights each Pj‘by n;. The jackknife method derives
an improved estimate Pjx of the treatment proportion that is more efficient and
less biased than L and also provides a variance estimate for PJK that takes

pen-to-pen variation into account.
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The next step in the jackknife test is to calculate for each pen the pooled
proportion that would be obtained if the proportion for that pen were removed
from the data set. Denote by Pﬁ the pooled proportion with Pj removed:

P'j = Exk/Enk ’ #
where k takes on all values except j. Then for each pen calculate the pseudo~
value Rj:
where N is the number of pens. The jackknife estimate Pjy of the treatment

proportion is derived from the R}, as is its variance:
and Var(Py) = E(Rj-—R)?'/[N(N—l)]

Py is in fact a weighted mean of the Pj, with the weights being a complex:
function of N and the nj. The result is to give more importance to the data
values with larger nj.

The jackknife method has been employed on a test basis for analysing proportions
by Gladen (1979} and by Crump and Howe (1988). They found it to perform about
as efficiently as the standard t-test or the Mann-Whitney test. However, one
problem is that in some cases the weights are not that stable and the value of
Py can be somewhat erratic. For example under extreme circumstances the value
obtained for Pj; could be outside the range of the pen means Pj.

If applied to AR data sets, the jackknife method would only be the first step in
the analysis and would provide estimates of treatment means and their associated
variances. It would then be necessary to carry out statistical tests on these
means, such as a sequence of t-tests or trend tests.
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A.2.3.3 The Rerandcomization Method

Another non-parametric method is the rerandomization method, also referred to as
the randomization method or the permutation method. In this method the
significance of treatment effects is tested by means of new data sets that are
generated by carrying out permutations of the original data values. In these new
data sets the data values are the same as in the original set but are assigned
to treatments by random allocation.

To illustrate this permutation process, consider a simplified data set with
treatments C, D1 and D2, and two data values per treatment (for example these
values could be pen proportionsj): i

c D D2
.30 .25 .15
.50 .35 .20

The following 5 sets can be generated by reassigning the data values for D1 and
D2 to different treatments while retaining the original values for treatment C:

¢ ol b2 ¢ DL Dz C DL D2 C DI D2 C DI D2
.30 .20 .15 .30 .15 .20 .30 .20 .15 .30 .15 .20 .30 .15 .25

.50 .35 .25 .50 .35 .25 .50 ,25 .35 .50 .25 .35 .50 .20 .35

If the values for treatment C were included in the reassignment process, a total
of 89 permuted data sets could be produced. The number of possible permutations
increases exponentially with the size and complexity of the data set, so that for
a typical AR data set the number would be astronomically large.

To carry out a statistical test, the appropriate test statistic is calculated for
the original data set and for each of the generated sets (e.g. the statistic
might be the difference between the D2 and C means). If the value of the
statistic for the original set is within the most extreme 5% of the set of
statistic values (from the original plus the permuted sets), the test result is
considered to be significant at the 5% level. No tables of critical values are
required.

The rationale for this conclusion is that original data set plus the permuted
sets constitute a workable approximation to the set of all possible outcomes of
the experiment under the assumption that there is no treatment effect. Thus the
distribution of the values of the test statistic obtained from these sets
approximates the actual distribution of the test statistic.

A-21



Although it is very calculation-intensive, the rerandomization method should be
more robust that least squares methods in dealing with irregular distributions
or in handling situations where the data values are of varying but unknown
accuracy (Edgington, 1987). The reasoning is that with the rerandomization
approach it is not the actual value of a test statistic that is important, but
its value relative to the values for other permuted sets. If an outligr tends
to affect the value for all permutations in the same direction, the effect on the
relative value .of the test statistic would not be that large.

It may be necessary to select a simpler test statistic than would be the case for
least squares analysis. For example if the treatment means are of; varying
accuracy, the optimum test statistic might be a difference of weighted means.
But since no linear model is developed, it would probably be necessary to employ
a simple statistic such as a difference of unweighted means. )

The concept of rerandomization is well established in specific situations.
Fisher's exact test involves a permutation of contingency table data, for
example. Rank-based methods are also based on. the principle of permutation of
data values, as is the jackknife method. However only recently has
rerandomization become feasible for moderate or large data sets because of the
computing power needed to generate the permuted sets. For large data sets, where
the generation of all permuted sets is still an intractable problem, a
rerandomization test can still be carried out by generating a large random sample
of permuted sets and treating it as a workable approximation to the complete set
{ {Edgington, 1980), (Miller, 1986) or {Crump and Howe, 1988)}). Some decision is
required as to the number of permuted sets to generate.

The rerandomization approach appears toc be receiving more attention because its
use is facilitated by the increase in computing power generally availlable., For
example Petrondas and Gabriel {1983) have employed it for a multiple comparison
test using a multi-stage procedure, It has recently been applied to proportional
data from a teratogenicity experiment, with encouraging results (Crump and Howe,
1988). For dealing with difficult data situations the power of the
rerandomization method appears to be as good as or better than least-squares
methods and rank-based methods.

However, the suitability of the rerandomization method for regulatory purposes
has been questioned in some papers. One perceived drawback is that it is not
possible to calculate exact confidence 1levels (Haseman and Kupper, 1979).
Bnother is that the calculations are too complex for routine use (Shirley and
Hickling, 1981).
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A.3 Potential Methods

A.3.1 Least-Squares Methods

A.3.1.1 Bartholomewfs Test

This test, described in Bartholomew (1959), is a least-squares test applicable
to experiments with ordered treatments. It is similar to a trend test, except
that it tests for any monotonic pattern of treatment effects rather than for gne
specific pattern.

Consider an experiment that consists of a control € and increasing dose levels
D1, D2 and D3, in which a test is to be made for a monotonic decrease in the
underlying treatment means Wer Mppr Hpp and bp3 as the dose level increases.
Bartholomew's test tests hypothesis H; against the null hypothesis Hy.

v

Hip o me 2 mpp 2 M 2 ppg with ue > iy

Ho:  We = Wpp = Vpp = ¥p3

The test involves the application of an averaging process io remove any
inconsistency in the series of mean values. This process is the same as that
employed for Williams test in which pairs of consecutive treatment means are
replaced by their average (as illustrated in section A.2.1.3).

In this example, let the treatment means obtained from the data be My, My, My
and Mpy. If the means are in the expected pattern of Moo 2 My 2 Mpy 2 Mp3 no
adjustment is necessary. But if there is a deviation from this pattern, for
example if My, < Mp;, then both My, and Mpy would be replaced by their average.
This averaging is repeated if necessary, until a series of adjusted means Mi' is
obtained such that Mp' 2 Mp' 2 Mp' 2 Nhf.

Assuming that the treatment means are of equal accuracy with common variance SMZ,
the test statistic is

¢ = L -Fy /s

where M is the average of the treatment means M; (and also of the M;').
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If the treatment means are of varyina accuracy, the test can still be applied
using weighted analysis. The averaging process to produce a monotonic series of
treatment means M;' involves the weighted averaging of consecutive treatment
means. The weights are l/sz, where sz is the wvariance of M. The test

statistic is
xz

LI -F,) /81 )
where M, is the weighted mean of the M; using weights of 1/Sm?.

Unfortunately, xZ has a complex distribution that is a mixture of several
different chi-square distributions, and special calculations are reguired to
obtain critical values. This complication is a result of the poss?gility of
averaging to obtain a monotonic series of means. For this reason it is probably
not suitable for application to AR data sets.

A.3.1.2 Pattern-Specific Tests

These tests, described in Ruberg (1989}, are interesting because they are
designed specifically for experiments with ordered treatments, and involve linear
contrasts that are tailored to specific patterns of treatment effects. The
treatments are assumed to be equally spaced in some scale. Unfortunately these
tests require the treatment means to have equal accuracy, and so are probably not
applicable to AR data sets in their present form. '

A.3.1.2.1 Step Contrasts

Step contrasts test for a sudden change in response at one of the dose levels.
Each contrast compares the mean of all dose levels that are at or above a
particular value with the mean of all levels below that wvalue. Consider an
experiment with a control C and dose levels D1, D2 and D3, in which the treatment
means are expected to decrease as dose level increases. Let the treatment means
be MC' Mppr Mpp and MDEI' The step contrast (3MC - My - My - MD3) tests for a
sudden drop in the mean between control and D1, the contrast (M, + My - Mp, - MD3)
tests for a drop between D1 and D2, and (Mo + Mpp + Mpy - 3N%3) tests for a drop
between D2 and D3.

)

In the test procedure, all step contrasts are tested together. For each contrast
F, a variance Sf is derived from the within-treatment variances and a t-value
ig calculated:

t = F/S
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The highest t-value is identified and tested using a special table of critical
values., If it is significant, it is concluded that a change in treatment effect
occurs at that point in the series of treatments. The NOEC is also identified.
For example if the contrast that has the highest t-value for our experiment is
(MC + My - P%z - Mm) and the test is significant, it is concluded that tge
treatment effect changes between D1 and D2 and that the NOEC is at level D1,

The method is most useful for cases where a sudden response occurs at some dose
level but it is not known where this threshold occurs. It has the advantage that
the NOEC is identified by a single test rather than by a series of tests. The
disadvantage is that the test is inefficient at identifying treatment effedts
that increase linearly as the dose level increases.

A.3.1.2.2 Basin Contrasts

These test for a response pattern in which there is no response to the treatments
up to a certain level and a linear response thereafter as the level increases.
For example, consider an experiment where the treatments are a contrcl C and a
set of increasing dose levels D1, D2 and D3, with treatment means expected to
decrease as the dose level increases. Let the treatment means be M,, My, ¥, and
Mp3. The contrast (3M; + My - Mp; - 3Mp3) tests for a linear decrease starting
at C, (3MC + 3MDl - My - 5F53} tests for a linear decrease starting at D1, and

(Mo + Mpy + Mp, - 3Mp3) tests for a decrease starting at D2,

In the test procedure, all hasin contrasts are tested together. For each
contrast F, a variance Sf is derived from the within-treatment variances and a
t-value is calculated:

The highest t-value is identified and tested using a special table of critical
values. If it is significant, it is concluded that a change in treatment effect
occurs at that point in the series of treatments. The NOEC is also identified.
For example if the contrast that has the highest t-value in our experiment is
(3 + 3N51 - My - 5N53) and the test is significant, it is concluded that the:e
is a linear treatment response starting at D1 and that D1 is the NOEC.
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The method is designed for cases where there is no response up to a some
threshold level and a linear response thereafter. It has the advantage that the
NOEC is identified. by a single test rather than series of tests. Some
disadvantages are that it is difficult to identify the correct level at which the
linear response starts because the three contrasts are very similar, and that it
is inefficient at identifying treatment effects that involve sudden changes at
certain dose levels.

A,3.1.2.3 Helmert Contrasts 3

This third set of contrasts are similar to step contrasts in that they also test
for a sudden jump at a particular dose level. They compare a particular
treatment mean with the average of the means for all treatments that are lower
in the order. For example, consider an experiment where the treatments are a
contrel C and a set of increasing dose levels D1, D2 and D3, with treatment means
expected to decrease as dose level increases, and let the treatment means be Mo+
Mp+ V%z and Mp3- The first Helmert contrast is (M - M) and tests for drop in
the mean between contreol and D1, the second (P% + MDl - 2N%2) tests for a drop
between D1 and D2, and the third (MC + Mpy '+ Mpy - 3M93) tests for a drop between
D2 and D3.

Unlike step and basin contrasts, Helmert contrasts are tested sequentially
starting with the lowest dose. For each contrast F, a variance SF2 is derived
from the within-treatment variances and a t-value is calculated:

For our experiment, the first test would be of D1 against control. If the result
is significant, it is concluded that there is a jump in response between C and
D1 and that C is the NQOEC. If it is not significant, the second contrast is then
tested to compare D2 to the average of C and D1 and s6 on., Because the contrasts
are orthogonal, the tests of the different contrasts are independent of each
other. Critical values for the tests can be calculated from the maximum modulus
distribution. These values are set out in Hochbérg and Tamhane (1987).

The method is efficient for cases where a sudden response occurs at some
threshold level but there is minimal change below that level. The disadvantage
is that the test is inefficient at identifying treatment effects that increase
linearly as the dose level increases.
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A.3.2 Methods for Qualitative Data

A.3.2.1 Complex-Model Methods for Proportions.

Methods of analysis have been developed specifically for proportional variables,
based on models that are more complex than the standard models. These models
have the same basic form as those employed in section 5.5.5. In the notation of
that section, the variance aPﬁz of a proportion Pﬁ is the sum of a binomial and
an extra-binomial component:

2. 2
Opij” = Pyj(1=Pyj)/nyj + Ogyi ¢

However a more complex model is employed for the extra-binomial component oesz
with these methods. The methods are theoretically interesting but are probhably
not robust enough to deal with the data irregularities that can occur with data
from AR experiments. '

The Beta Bingmial Model

This is a generalization of the binomial model for proportional variables,
developed by Williams (Williams, 1975), which models Gwiﬁ by assuming that the
extra-binomial term follows a beta distribution. A number of papers have
compared the beta binomial method with other methods using Monte Carlo
techniques, with mixed results. Although it fits some data sets quite well
(Crowder, 1977), it is sensitive to departure from its assumptions ((Paul, 1982),
(Haseman and Soares, 1976), and {Shirley and Hickling, 1981)). - A study by Pack
{1981) found that it did not provide much improvement over simpler techniques
such as t-iests.

Other Complex Models

A number c¢f other models have been suggested for proportional variables, each
making different assumptions about the extra-binomial term. One of these is the
"correlated binomial' model (Kupper and Haseman, 1978), and another is the
'multiplicative binomial' model (Altham, 1978). Other proposed models are
mentioned in Haseman and Kupper (1979). These methods have not received as much
attention in the literature as the beta binomial model, but indications are that
they have essentially the same problems ((Paul,1982) and {Crump and Howe, 1988)).

A-27



A.3.3 Non-Parametric¢ Methods

A.3.3.1 Jonckheere's Test

Described in Jonckheere (1954) and also in Van Der Laan and Verdocren (1987),
this test is applicable to experiments with ordered treatments. It is®similar
to Bartholomew's test in that it tests for the presence of any monotonic pattern
of treatment effects rather than for a specific pattern such as a linear trend.

Let (Ti} be a set of ordered treatments. Suppose that it is expected that the
data values means will decrease as the treatment number i increases.ijFor any
pair (i,j) of treatments, let i be less than j. Thus we expect the data values
(le) in Tj to be less than the values (X;) in Ty.

To carry out Jonckheere's test, for each treatment pair {i,j) tabulate the number
of data value pairs (xm,xﬂ) such that le > Xy (the opposite of what is
expected), and denote this number by Nﬁ. The test statistic is ENH’ with the
summation taken over all pairs of treatments. Tables of critical values for ENij
are given in Hollander and Wolfe (1973).

Jonckeere's test is employed from time to time in biological experiments (e.q.
Hewett and Bair, 1986), but was not considered well enough established to be
included among the recommended methods.

A.3.3.2 Shirley's Test

This rank-based counterpart of the Williams test has been developed by Shirley
(1977), and represents an extension of the Mann-Whitney test in the same way that
the Williams test represents an extension of the t-test. The objective is to
provide a rank-based test that removes the possibility of inconsistent results
{this possibility is discussed in Appendix A section A.2.1.3, and in Appendix B}).
Williams has commented on this test and recommended minor changes (Williams,
1986). Although it is promising in principle, it is considered to be too untried
to be included among the recommended methods.
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A.4 Methods Not Recommended

These methods are in current use, but do not meet the criteria for efficiency set
out in section 4.6. The reason is that they attempt to detect all patterns of
treatment effect, and are not efficient when applied to data from experiments
such as AR experiments in which the objective is to detect a specific pattern (ap
increasing negative'effect on reproduction as the dose level increases}).

A.4.1 Least Squares Methods

A.4.1.1 One-way ANQVA

This is the standard method for testing for treatment effects in general, and is
discussed in all statistics texts. It compares all treatment means
simultaneously using an F-test. The standard ANCVA procedure requires that the
within-treatment variance be constant over all treatments. However a weighted
ANOVA procedure exists that is applicable to cases where the variance differs
from one treatment to another, and is described in Scheffé (1959)}.

A.4.1.2 General Multiple Comparison Procedures

These are procedures to compare each treatment mean with each other mean. Each
of these pairwise comparisons employs a test statistic that is similar to that
for a t-test or LSD test. Test statistics are of the form

where D is the difference between two means and Sf is the #ariance of D.

However the critical values used in general multiple comparison procedures are
more conservative than those in single tests, in order that the experiment-wide
error rate be equal to 5% (or some other specified value). The critical values
are such that if no treatment effects are present, the probability of even one
of the pairwise mean comparisons being wrongly declared significant is equal to
the specified level. The larger the number of pairwise mean comparisons, the
more conservative the critical values must be. The critical values are in
special tables which are given in most statistics texts.
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The multiple comparison methods currently employed for AR experiments include

- Tukey's test
- Student-Newman-Keuls (SNK) test .
-~ Duncan's multiple range test A

The level of conservativeness differs from one method to another, with Tukey's
test being the most conservative, then the SNK test, then Duncan's test. (For
AR experiments even Duncan's test is too conservative, however.)

Tukey's Test ‘ g

This is the most widely accepted multiple comparison test for situations where
there is a need to be able to compare any pair of treatments. The error rate
holds even when the largest and smallest treatment means in the experiment are
selected after the fact and compared with each other. Tukey's test requires
equal numbers of data values per treatment and equal within-treatment variances.
However it has been extended to the case of unequal numbers per treatment by
Kramer (1956) and to the case of unegual within-treatment variances by Games and
Howell (1976). ‘

The SNK Test

This is a modified, sequentially-applied versicn of Tukey's test in which the
critical values are reduced when comparing means that are close together in rank
Thus the test is more liberal for these comparisons. To compare a set of 7
treatment means using the SNK test, for example, the means are first ranked.
Tukey's test is then applied to compare the lst and 7th ranked means. If they
are significantly different, Tukey's test is then used to compare the lst and 6th
ranked means and the 2nd and 7th. But for these latter comparisons, the critical
value is that for a 6-treatment experiment (while for Tukey's test the 7-
treatment value would be used throughout). If the 1st and 6th means are
significantly different, the 1st is compared with the 5th and the 2nd with the
6th using the critical value for 5 treatments and so on.

Duncan's Multiple Range Test

This test is applied sequentially in the same manner as the SNK test, but is more
liberal and has still lower critical values {Duncan, 1955). These values are
based on Duncan's ‘'special protection levels' rather than on & true
experiment-wide error rate. Duncan's test is generally considered to be too
liberal in the statistical literature, but it is quite widely employed.
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A.4.1.3 Dunnett's Test ' v
This is a multiple comparison method designed for experiments in which a control
is to be compared to a number of other treatments (Dunnett, 1955). Treatment
means are compared on a pairwise basis. Each non-control mean is compared to the
control mean, but non-control means are not compared to each other. As with the
general multiple comparison procedures, the test statistic is

&

where D is the difference between the two means and SDZ

is the variance of D.
Critical values are set so that if there are no treatment effects, ghe
probability of a significant result in any one of these control-non-control
comparisons is equal to the specified confidence level. Special tables are
needed for these critical values. The number of data values per treatment must
be equal and the within-treatment variance must be constant.

While Dunnett's test involves fewer comparisons than the general multiple
comparison tests and is therefore less conservative than them, it is still too
conservative for experiments such as AR experiments where the objective is to
test for a single pattern of treatment effects.

A.4.2 Methods for Qualitative Data

A.4.2.1 General Chi-Sguare Test

If a data set for an AR experiment is reduced to a single proportion per
treatment, it is in the form of a 2 X N contingency tahle. The form ¢of such a
data set for an experiment with a contrel € and dose levels D1, D2 and D3 would
be: :

| | c D1 D2 D3
Eggs that Hatch X X X
Eggs that Do Not Hatch X X X X

The chi-square test is the standard general test for treatment effects in a
contingency table and is covered in all standard texts. It is currently common
practice for AR experiments to apply this general test. But the chi-square test
tests for any pattern of treatment effects, and is too conservative for AR
experiments where the objective is to test for one specific pattern.
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However, the situation is more complicated than that. It is not uncommon for
these contingency-table data sets to have been formed by a simple pooling of all
the pen proportions within each treatment. But applying the chi-square test to
such data sets is not statistically valid, as this would ignore the possibility
of real differences between pens within a treatment (as discussed in section
3.6). The result is that the treatment proportions so formed are not as accurate
as the sample size would suggest, so that if a chi-square test is applied to
these data sets the test is more liberal than the confidence level of 5%
suggests.

Thus there are two factors to consider, one causing the test 11)§be oo
conservative and the other causing it to be too liberal. It is not clear to what
extent these factors would cancel each other out in a given case.

A.4.3 Non-Parametric Methods

A.4.3.1 The Kruskal-Wallis Test
This test is the rank-based counterpart of the one-way BANOVA, and is described
in Kruskal and Wallis {1952) and in a number of texts on non-parametric methods
{e.g. Conover, 1971). An overall rank is assigned to each data value, and the
test statistic is based on the total of the ranks for each treatment. It is too
conservative for AR experiments, for the same reason as the one-way ANQOVA.
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B.1 Combining Pen Proportions by Rao and Scott's Methed

B.1.1 Combining Actual Proportions

Let Pﬁ be the pen proportion for pen j in treatment i. Each Pﬁ is of the form

&

Fij 7 i/t

where n;; is the number of Subjects per pen for the variable being analysed.
Consider the problem of how to combine all the Pﬁ within a treatment into a
single proportion. ' {

The most obvious procedure for combining the Pﬁ within a treatment is to pool
them. The pooled treatment proportion PP, for treatment i is given by

PP, = ):]Yl]/):]nl] = Y;/N;

Although PP; is a valid estimate of the overall proportion for treatment i
(though not necessarily an efficient estimate), it is not statistically valid to
analyse it as if it were a simple proportion of Y; successes in N; trials {(as
discussed in section 3.6). Its variance would be underestimated as it is not as
accurate as a proportion obtained from N; independent trials.

However Rao and Scott have derived a method that overcomes this underestimation
of the variance (Rao and Scott, 1992), based on the fact that PP, is a weighted
mean of the Pﬁ with weights of TR

Ppi = E}nl]Pl}/E]nl]
Consequently an unbiased estimate V; of the variance of PP, éan be cbtained from
the variation among the Pﬁ within treatment i. The formula for this is:

Vi = (my/(m-1)) (1/8;)F Iyngt(pys-pRy) (C1)

where my is the number of pens in treatment i.
Rao and Scott make use of this variance to obtain an 'effective denominator’
(N;)oss for PPy, which is defined as the value that it gives the correct variance
for PP; if entered as the denominator in the binomial variance formula.




Since the binomial variance for a proportion P with denominator N is P(1-P)/N,
the value of (Ni)eﬂ'is obtained from V; and PP; by solving the equation

Vi = PRy{1-PPy)/(Ny)efs
(N;) is in geheral smaller than N., since the wvariance estimate V; obtained
ileff i i g

using equaticn {Cl) is greater than the binomial variance estimate that would be
obtained if PP; were a simple proportion with denominator Ni‘

Once (Nijﬁf is obtained, an effective numerator (X;), is calculated for PP; by
defining it as .
(Xjdegr = PPi(Njlagp ' {

This allows PP; to be expressed as
PPy = (Xjlopr/ (Njdogs

Since its denominator now corresponds to its variance, PP; can be entered into
statistical formulas as if it were the simple proportion (Xi)ﬁf/(NiLﬁf according
to Rao and Scott.

Note: In general (Xi)df and (Ni)ﬁf are not integers. This could restrict the
methods employed to analyse the PP; (for example it would appear that Fisher's
exact test would not be applicable).

It may appear that this procedure avoids the issue of the relative size of the
binomial and extra-binomial components for the variance of Pij {discussed in
section 5.5.5). [However this is not the case. The relative size of these
components determines the best weighting scheme by which to weight the Pﬁ in
calculating treatment proportions. By poocling the Pﬁ into PP;, and thus
employing a weighting scheme with weights equal to Dy Rac and Scott are making
the implicit assumption that the extra-binomial component is small relative to
the binomial component. But to be flexible enough for general use, the method
must be able to accommodate data sets where the extra-binomial component is
moderate or large,

This makes it advisable to consider a range of possible weighting schemes. In
principle it should be possible to extend Rao and Scott's method to any weighting
scheme, Let Wi be thg_weight assigned to Pﬁ in a general weighting scheme.
Then the weighted mean Py; for treatment i for this scheme is
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Pyi = TywisPi5/T Wi
and its unbiased variance estimate Vi is

Vg = (m/(m-1)) (1785 Dywgst(Pys-Byp)d )
The effective numerator and denominator for ?Wi could then calculated from Vy; in
the same manner as for PP;.

A possible approach to the question of weighting schemes would be to sglect one
of three simple schemes:

1. Wl] = l'll] 2. wl] = n” * . ij
These would accommodate data sets where the extrabinomial variance component is
small, moderate or large, respectively, compared to the binomial component. The
procedure proposed by Cochran (1943) could be employed to determine the relative
size of the two components. (Cochran's method is discussed in section B.2.2.1.)

B.1.2 Combining Estimated Proportions
Let Pﬁ be an estimated proportion for pen j in treatment i, that is the product
of two simple proportions. Then P;; is of the form

]
Py = Qi By = (3yy/byy) 043/

Since there is no single denominator, it is not clear how Rao and Scott's method
could be applied to combine the P;; in each treatment into a single proportion.
A possible way of proceeding (that has not been examined for validity) would be
to designate either bij or dij as the denominator, whichever has the larger
values. Suppose the bij are larger. Then weighting schemes corresponding to
those of section B.1.1 could be drawn up that are based on bﬁ instead of n;

This in effect treats Pﬁ as the proportion

j-
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B.2 Derivation of Weighting Schemes - o

B.2.1 A Weighting Scheme for Pen Means

To obtain a weighting scheme for the pen means of a measurement variable, it is
necessary to model and estimate their variance. Consider an experiment with M
treatments, N; pens per treatment and N5 measurements per pen. Let xﬁk be tHe
k'th measurement with?n pen j of treatment i. The standard linear model for_xnk

is

t 8k

where p is the true population mean, T; is the effect of treatment i, Eﬁ is ﬁﬁe
random effect for pen j and & is the random effect of measurement k. Let OEH2
and om;k be the variance of E;s and 84 i respectively. The pen mean X] is then
modelled by

i

where e:: is the mean of the eﬁk for that pen. The variance Uxﬁz of Rﬁ is given

i
by

2 2 2
Oyij = Ogij * Teii /Mij
2 2
where Cpij” 18 the mean of the Ogiik *
Assuming that the variances oEﬁZ and caﬁkz have constant values of cmz and cﬂz
within each treatment, oxﬁz is given by
2 . 2 2
O = Opi * Oei /0jj _ (€2)

To estimate °xr2 for each pen mean, estimates of cEf and cef must be obtained for

each treatment. The approach suggested is to bhase these estimates on the mean
squares produced in a one-way ANOVA for each treatment. If a one-way ANQVA is
carried cut on the data for treatment i, the ANOVA table would be of the form:

Source ' df Expected Mean Square
e } 2 2
Variation Between Pens Ny 1 Opi" + {0
Variation Between Measurements Ejnﬁ-Ni caz

Within Pens

Total



The parameter a; is derived from the nijf‘ If the n;; for treatment i are all
equal, a; is this common value. If they are not all equal, the formula for a
is )

a4 ‘-': (Ejnij - Ejnij /Ejni]')/(Ni'l)

This formula is given in most texts (e.g. Snedecor and Cochran, 1967, P. 290},

The estimates of ckf and Uﬁz are:
6éf = MS(Measurements)
6m2 = [MS(Pens) - MS(Measurements)]/a, 'i

oxﬁz is estimated for each X“ by substituting 6ﬁ; and G,

2 into equation (C2).

2 2

may be constant over all

If there is reason to believe that g and Oei
2

treatments, tests of homogeneity of variance can be applied to the estimates G
-and Gaz to examine this question. A number of tests for homogeneity are
referred to in section B.4. If no significant differences are found, it may be
reascnable to assume that omz and Gef are constant over all treatments and to
obtain overall estimates 65 and 63. oxﬂz is then estimated by substituting Gf
and 8,2 into equation (C2).

Two possible procedures for deriving overall estimates are:

2 2 2 4 ~ 2
and Gt

- calculate §;° and 6e as the simple averages of &y

2

- carry out a nested ANOVA over all treatments, and derive §;° and Gezfrom the

mean squares for treatment, pen and measurement effects.

The first procedure is the one that is recommended, as the second one involves
considerable calculation if the numbers of pens per treatment or of measurements
per pen are not constant. Nested ANOVA is described in most standard texts, e.q.
Snedecor and Cochran (1967), p. 291.

Once oxﬁz is estimated for each pen, its inverse is taken as the weight to apply
to Xﬁ in a weighted least squares analysis.
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B.2.2 Weighting Schemes for Pen Proportions

B.2.2.1 Cochran's Method

Let Pﬁ be the proportion for the j'th pen in treatment i. PH is equal to Y1/n1]
where n;. is the number of subjects per pen for that variable. With Cochran's
method (Cochran, 1943) the variance cpuz of_P” follows the linear model set out

in section 5.5.5:

2 - 2
;7 = Pyj(1-Py5) /B3 + Ogi
The first component is the binomial sampling error due to the deviation of %ﬁ
from the true wvalue for that pen, and the second is the 'extra-binomial'
component that is due to pen-to-pen variation in the true pen values within a
treatment.

Cochran's method involves the identification of a model for the extra-binomial
component Uw:; that will permlt a reasonably simple weighting scheme. Cochran
considers a number of possibilities for both the form of oblf and for its size
relative to the hinomial component:

Relaﬁive Size of UeMjE Form of cemji
Case 1 small n/a
Case 2 moderate constant céf
Case 3 moderate APH(I-PH) for constant }
Case 4 large ' constant Ueg
Case 5 large AP”(l—Pﬁ) for constant }

Cochran sets out a method for estimating the approximate size of Uwif relative

to the binomial component, but does not indicate how to decide on its form.
However the form 1Pﬁ(1—Pﬁ} would appear to be the more likely one. The reason
is that f@bﬁz would be expected to decrease to 0 if Pij increases to 1 or
decreases to 0, rather than tc remain constant.
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Deriving Weights for Case 1 (Gmif small)
For this case oéMjg can be ignored, and cpﬁz is approximately equal to the

binomial wariance:

2
Gi" = Pyy(1-Pyy)/ny

If the Pﬁ are within a rang3 of roughly .2 to .8, the product P”(l-;ﬁ) is
approximately constant and OPH is proportional only to l/nﬁ. Since weights are
to be inversely proportional to the variance, an appropriate weighting scheme for
least squares analysis is to set the weight for Pﬁ equal to Ry

However if some of the Pij are outside %F the range of .2 to .8, the'%roduct
Pﬁ(l'Pij) will be quite variable and cpﬁ will be affected by the size of P,
An angular transformation

}'c

Alj = arCSln(JPI})
will remove this dependence (angular transformations are discussed further in

gsection B.3.1). The variance UAHE of the Ay is now dependent only on n;

j it

2

where A;; is measured in degrees. In this case the A;; should be analysed rather

]
than the Pﬁr with the weight for each AU being ngje

Case 2 (Uebﬁz moderate and constant)
For data sets that follow case 2, d?ﬁz has the form

opi’ = Pyj(1-Pyj)/ngy + Oy

The first step is to estimate the constant cuf. Cochran sets out an approximate
procedure for this, based on a calculation of the relative size of the binomial
and extra-binomial variance terms. This estimate Uef is then used to estimate
cpﬁz for each Pﬁ- The inverse of this estimate of GPHZ is the weight assigned
to each P” in a weighted least squares analysis.




4

Case 3 (oébﬁz moderate and of the form lPij(l‘Pijll
Here

7 _ - -
for some constant ). Before estimating ), an angular transformation

is suggested in order to remove the effect of the size of Pﬁ on the variance.
The variance chﬁz of the transformed proportions Aj; now has the relatively

: ]
simple form: . é

ot = 821/(1/ng + 1) | (c3)

where Aﬁ is measured in degrees. A value for } is then obtained by the same
procedure used to estimate Gmf for case 2 and used to estimated cﬁﬁz for each
Aﬁ' The weight assigned to each Aﬁ in a weighted least squares analysis is the

inverse of this estimate.

Case 4 (owif large and constant)
For this case Opj; is approximately constant, since the binomial component can
be ignored. Weights are not required and unweighted least squares methods can

be applied to the Pﬁ.

Case 5 (c%if large and of the form APH(I—PHJJ
Here also the binomial component can be ignored, and Uﬁj
by

2 ig approximately given

Oy’ = APyj(1-Pyy)
If an angular transformation such as
Aﬁ = arcsin(JPﬁ)
is carried out, the variance ohﬂz of the Aﬁ will be approximately constant.

In this case weights are not required and unweighted least squares methods can
be applied to the Aﬁ'
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B.2.2.2 Regression Method ) «

This method represents an alternative to Cochran's method for data sets that fall
into Case 3 of section B.2.2,1., For this case, which is expected to occur quite
frequently, both the binomial and extra-binomial variance components of cpﬁz are
present and the extrabinomial component Gbif has the form AP”(I-PH). As shown

g
in equation (C3) in section B.2.2.1, after an angular transformation is aPplied

the variance oﬁﬁz cf the transformed pen proportions Aﬁ has the form

opit = 821/(1/ng; + A)

In this method © 2 is modelled by the more general formula
Aij

2 .
Onij. T At ANy

Bn iterative reweighting procedure is employed to estimate a) and a;:

1. Start with some initial estimates &, and &; (e.q. g = 821 and & = 0).

2. Use 4, and 8; to obtain the initial weights Wi to be assigned to the A
Each Wi is the inverse of the variance estimate for A”:

i
< s . oa -1
Wl] = (a[] + al/rll])

3. Calculate the weighted mean Rm for each treatment using the Wiy

Byi = Iyjwyshyy/Tiwy

4. Calculate the deviations Dﬁ of the A” from Ewi:

Dy = By - By

5. Carry out a linear regression of Dﬁz on (l/nﬁ), and obtain new estimates
d,' and &' from the coefficients of this regression:

DI}Z = aO + al(l/nll)
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6. If the new values éo' and él' are sufficiently close to éo and él, it is
assumed that the process has stabilized and &' and &' are taken as
the final parameter estimates. If &;' and &;' are not sufficiently close
to éo and &, replace aO by 30' and d; by §;' and repeat steps 2 to 5.
After a few iterations the values should stahilize,

Let (ag)s and (81)g be the stabilized values of a; and a;. The final weights for
the Aﬁ are given by the inverse of the estimate of chﬁz using the stabilized
values:

Wij = [(30)3 + (al)s/nij]-l- {
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B.3 Transformations for Proportions

B.3.1 Angular Transformations

Let P be a proportional variable of the form Y/N, where N is a positive, integer
and Y is a positive integer in the range of 0 to N. If P is binomially
distributed, its variance P(1-P)/N is dependent on the size of P. The standard
angular transformation to remove the effect of the size of P is

A = arcsin(JP)

The variance of ohz of A is dependent only on N:

821/N if A is measured in degrees
.25/N if A is measured in radians

2
g Rz
Op

In order to better remove the dependence of the variance on P, a practice
recommended in most texts is to replace P values of 0 by .25/N and P values of
1 by (1-.25/N) prior to transformation.

A variation of the angular transformation that does not require end value
adjustments was developed by Anscombe:

A = arcsin{,R) where R = (Y¥+.375)/(N+.75)
A more recent version, called the Freeman-Tukey binomial transformation, also
avoids the need for end value adjustments and is becoming more common in
toxicological studies. Its form is:
A = [arcsin(yJP;) + arcsin(JPy)] / 2
where Py = Y/(N+1) and Py = (Y+1)/(N+1)
In a study of possible methods for the analysis of proportional data, the

Freeman-Tukey transformation showed a distinct advantage over the standard
transformation with end value adjustments (Haseman and Kupper, 1979).
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B.3.2 Relation of the Angular to the Square Root Transformation

This discussion is relevant to the conversion of a count to a proportion by
dividing by a limit L (discussed in section 5.5.2). If a count Y is much smaller
than the limit L, the range of Y will not be affected by L and it will have
approximately a Poisson distribution. The question then arises as to whether %t
is appropriate to apply an angular transformation to Y (which is standard for
proportions). The answer is that it is appropriate, since applying an angular
transformation to Y is equivalent to applying a square root transformation (which
is the standard transformation for counts).

To show the equivalence, consider the behavicur of the function arcsin(x). gﬁs
x decreases to small values, the value of arcsin(x) becomes asymptotically
proportional to x. If an angular transformation is applied to P where P is small
and equal to Y/L, the transformed value A can be represented by

A = arcsin(4P) = k4P = kJY/JL

where k is a proportionality constant (k is 180/n if x is measured in degrees and
1 if x is measured in radians). Thus if L is constant, A is proportional to JY
which demonstrates the equivalence of the transformations.

B.3.3 The Logit Transformation
Another transformation for a proportion P, that is similar to but more extreme
than the angular transformation, is the logit transformation:

G = Loge((P+C)/(1-P+C))

For values of P that are ¢lose t0 0 or to 1, the scale is stretched out even more
than it is with the angular transformations. If P is binomially distributed with
variance P(1-P)/N, the variance of G will be approximately equal to 1/(NP(1-P)).
The constant C is a small positive value, added to stabilize the value of G for
P values of 0 or 1. One commonly employed value of C is 1/2N (Snedecor and
Cochran 1967, p.497}), where N is the denominator of P.
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B.4 Tests of Homogeneity of Variance

The usual test for testing the equality of two variances is the F-test of the
ratio of the larger variance to the smaller. For testing homogeneity among more
than two variances, the usual test is Bartlett's test. Both these tests are
described in standard texts. However the latter is generally consider%d to be
vulnerablie to non-normality in the data.

A number of alternative tests have been developed. Among them are:

Levene's Test: This test invelves running an ANOVA on the absolute values of the
deviations of the data values from their treatment means {Levene, 1966). The
inhomogeneity is considered to be significant if the ANOVA F-test for differences
between treatments is significant. The test is recommended in a number of
studies, including Miller (1986), because of its robustness when applied to

" non-normal data.

Normal Score Test: Described in Fligner and Killeen (1976), this test involves
the ranking of the absolute values of the deviations of data values from their
treatment means. The ranks are then converted to normal scores, and an ANOVA F-
test for differences between treatments is run on these scores, The
inhomogeneity is considered to be significant if the F-test is significant.

In addition a number of tests are based on special ranking systems for the
deviations of data values from their means. These include tests by Freund and
Ansari (1957) and by Siegel and Tukey (1960). ‘

A comparative study involving a large number of methods was carried out by
Conover, Johnson and Johnson (1981), and they concluded that Levene's test and
the normal score test were among the best. These is also a good discussion of
these methods in Madansky (1988).
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B.5 Identification of Qutliers

The assessment of whether or not to accept an extreme data value as a valid
member of a data set is a difficult but sometimes a very critical matter in
statistical analysis. The following discussion is intended only as a very brief
introduction to this complex and difficult subject.

£

Classical methods for the identification of outliers have been based on the
probability of extreme values occurring by chance from random variation, using
probability theory and assumptions about the distribution of random variation to
derive this probability. However more recent methods tend to be more pragmatic
and less theoretically oriented. 4

A simple but widely used procedure is that suggested by Tukey, which involves
setting outside limits for valid chservations using the 25th and 75th percentile
points of the data as a 'vardstick' {Tukey, 1977). Values must be within a
certain number of multiples (usually 1.5) of the 25th - 75th percentile range.
An assumption is necessary concerning the distribution of valid data values, but
this assumption can be approximate in nature. This method is robust in that it
can be applied in cases where there may be several outliers. It has been
elaborated on by Hoaglin and Iglewicz (1987).

Very simple approaches may also be appropriate, even if they involve a subjective
element. For example Miller recommends that the data be plotted on a probit plot
and visually examined (Miller 1986, p. 10-14). The use of a probit plot allows
for easy visual assessment of the degree of deviation of an extreme value from
the distribution followed by the rest of the data set. '
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