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SUMMARY' 

The Current Situation 
The situation wi th respect to the statistical analysis of data for avian 
reproduction experiments is a fairly confused one. An exarnination of the 
submissions from approximately 100 experiments revealed that a wide variety of 
different methods are employed, and that many of these are questionablt 
Assurnptions are made '.that are not statisticaUy valid, and tests are carried out 
that are inefficient at detecting the kind of treatment effects that are 
expected. These problems reduce the abili ty of the experiments to assess whether 
the test substances have the potential to cause reproductive effects. 

There appear to be a nurnber of reasons for this situation: 

1. Multiplicity of Variables and Methods 
There are several types of variable to be analysed in an experiment, and for sorne 
variable types there are a wide variety of methods that could be applied. 

,2. Current Methods are Too General 
The most efficient methods are those that test specificaUy for a negative effect 
on reproduction that increases as the dose level increases. But the methods 
actually employed are usually general methods as they are much better known. 
'l'hese general methods test for any pattern of differences among treatments. 

,~_ Current Methods Ignore Data Structure 
Methods shouldtake into account the fact that treatments are applied on a pen 
bilais, but this is difficult and time-consuming and in practice it is much easier 
to treat the data as if the treatments had been applied independently to each 
egg, chick or adult bird. 

,i,,,, Data Complexi ties 
'l'he data sets frequently contain features that complicate the analysis, such as 
Il multi-Ievel structure or variation in the nurnbers of eggs or chicks per pen. 

G. The Objectives are Not Clear 
It is not clear whether the effect of the test substance should be tested at each 
dose level, or whether a general test over aU levels is sufficient. 

,§,' Lack of Information in Current Protocols 
11xisting proto cols offer only general guidance on statistical methods and do not 
d:l.scuss the many complexities that can occur. 
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Main Objective: Identify the Best Methods 
It was assumed that when a data set is analysed, the effect of the test substance 
should be tested at each dose level. The main objective of this report is to 
identify methods that are statistically valid and fUlly efficient at carrying out 
these tests. To achieve this, the following plan was adopted: , 

- Decide on ? set of criteria that the methods should me et in order to ensure 
their validity and efficiency. 

- Classify the variables to be analysed according to their statistical 
( characteristics 

- Consider what statistical assumptions are appropriate for each variable 
class. 

- For each variable class and each set of assumptions, identify as many methods 
as possible that meet the criteria for validity and efficiency. 

Results Achieved 
The search for improved methods was successful; For each variable class a number 
of methods have been identified that appear to be a major improvement over 
current methods. Sorne of these are extensions of methods currently employed and 
sorne represent new approaches. 

Recommended Methods 
The·methods most commonly recommended are: 

- weighted t-tests 
- weighted tests of linear trend 

Weights are employed to accommodate complexities in the data. 

Other methods are also recommended in certain circumstances. These include: 

Least Squares Methods 
unweighted t-tests 
LSD test 

Qualitative Methods 
2x2 chi-square test. 
Fisher's exact test 

unweighted trend tests Cochran-Armitage test 
Williams test 
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Non-Parametric Methods 
Mann-Whitney test 
Rerandomization tests 



Recommended Test Type 
For maximum efficiency, aIl statistical tests should be one-tailed tests that 
test specifically for the effect most likely to occur a negative effect on 
reproduction that increases in magnitude as the dose level increases. 

Second Objective: Identification of the NOEC 
Once a result is obtàined for each dose level in a data set, it is desirable to 
identify the NOEC (the highest dose level in the experiment at which there is no 
observed effect of the test substance). A second objective of this report is to 
examine procedures to determine the NOEC from the pattern of significant or non-
significant results at the different dose levels. l 

:!,hird Objective: Examination of Data Quality 
A further objective is to consider the issue of data quality. Because of the 
nature of avian reproduction experiments, there is a danger that inadequate data 
quality could seriously reduce the chances of detecting harmful treatment 
rnJ!fects. Factors that could affect data quality include mortality, disease, and 
.tnconsistency in the birds' reproductive capabilities. Sorne measures that can 
bu taken to ensure a minimum acceptable quality level are suggested. 

Gl.1I1plusion 
l)iI~pi te the complexities invol ved in the statistical analysis of data from avian 
l'tlproduction experiments, a number of promising methods were identified and the 
IJI'OQpects for improving the methods of statistical analysis employed in 
~\Ibll1i8Sions appear to be good. 

tll.!;lJlfilr Studies Planned 
ln Il later study, sorne of the statistical methods recommended in this report will 
hl! QVllluated further by testing them on actual and simulated data. 
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1. INTRODUCTION 

1.1 Data ta be Analysed'for AR Experiments 
In avianreproduction (AR) experiments, the treatments are a control and a series 
of dose levels of the test substance. Each treatment is applied ta a specif{ed 
number of pens, wi th'. each pen containing a specified number of male and female 
birds. Data are collected on a large number of variables (described in section 
2). Sorne of these are measurements (e.g. egg weight), sorne are counts (e.g. 
number of eggs laid per pen), and sorne are proportions (e.g. the per cent of e,~gs 
set which hatch per pen). In general each data set has the structure tof 
individual subjects (eggs, chicks or adult birds) within pens within treatments. 

1.2 Scope of This Report 
The planning and analysis of AR experiments touches on a number of subjects of 
a statistical nature: 

- the design of the experiment 
- the selection of the dose levels of the test substance 
- the quality of the data produced 
- statistical analysis of the data ta test the effect of the test substance 
- the conclusions ta be drawn from the test results 

Only sorne of these tapies are within the scope of this report. The main focus 
is on statistical analysis, with sorne attention also given ta the data quality 
and ta the conclusions ta be drawn. The experimental design is not discussed, 
as i t appears ta be reasonable ta assume that a simple one-way design is 
employed. The selection of the dose levels is not considered as i t is 
essentially a biological question (and is discussed in Mineau, Boersma and 
Collins, in press). The only assumption made in this report is that the levels 
can be considered ta be equally spaced in sorne scale for analysis purposes. 

1. 3 Obj ecti ves 

Main Objective: Identify Superior Methods for Testing Effects 
The main objective of this report is ta evaluate potential methods of data 
analysis for testing the effect of the test substance, and ta identify the most 
promlslng ones. In a later study (Collins and Mineau, in prep.) these methods 
will be examined further by applying them ta actual or simulated data. 
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Second Objective: Determine the'NOEC 
Another question is that of what conclusions to draw from the test results once 
they are obtained. The determination of the NOEC, or highest dose at which there 
is no observed effect, is considered to be an important conclusion in this 
respect. A second objective of this report is to examine procedures for 
determining the NOEC from the test results. 

Third Objective: : Examine Data Quality 
There appears to be a danger that the ability of AR experiments to detect harmful 
effects could be compromised by inadequate data quality, caused by factors such 
as mortality, disease or reproductive failure unrelated to the trefltments 
applied. A third objective of this report is to examine this aspett and 
recommend possible measures to ensure that the quality is acceptable. 

1.4 The Complexity of the Data Analysis Situation 
The statistical analysis of data from AR experiments is not a simple matter, and 
neither is the evaluation of potential methods. In a typical experiment there 
are several different types of variables to be analysed (measurements, counts and 
proportions), each of which has specifie features that could affect the analysis. 

Another factor is the complexity of the data sets. For many variables the data 
sets have a multi-Ievel structure, with individual subjects (adult birds, eggs 
or chicks) grouped within pens and pens grouped wi thin treatments. Another 
common feature is variation in the number of subj ects (particularly eggs or 
chicks) from one pen to another. There can also be differences in the amount of 
random variation in a variable from one pen or treatment to another. 

There is also the question of what statistical tests or test procedures are 
appropriate. Currently in sorne cases only an overall test of the test substance 
is run; in sorne cases each dose level is compared to the control, while in sorne 
each treatment is compared to each other treatment. Sorne of these tests are 
general tests that could be applied to any set of treatments, while sorne are 
tailored specifically to the ordered nature of the treatments in AR experiments 
(a control and a set of increasing dose levels of the test substance). 

Because of this mul tiplici ty of variable types, data complexities and test 
procedures, the situation facing those who analyse data from AR experiments is 
a difficult one. A number of different established methods could be employed, 
and the ongoing increase in computing power means that procedures that were once 
considered too calculation-intensive are now feasible. 
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No consensus has emerged as to what n\ethods"are most appropriate. Protocols on 
AR experiments generally do not help to resolve these questions as their focus 
is on the methodology of the experiment and not on the statistical analysis. 

1.5 Organization of This Report 
The first section of the report is this introduction. t The other sections are: 

Section 2. Description and Classification of the Variables 
Four different classes of variable are defined, based on the variable type 
(measurement or countjproportion) and the subject that the variable is taken from 
(adult birds or eggsjchicks). f 

Class Subject Variable TYEe 
l Adult Birds Measurement 
2 Adult Birds Count or Proportion 
3 Eggs or Chicks Measurement 
4 Eggs or Chicks Count or Proportion 

Section 3. The Current Statistical Situation 
In this section the statistical methods currently employed are evaluated, and 
areas are identified where improvement appears to be needed. 

Section 4. Methods Recommended for Each Variable Class 
The objectives of the analysis are defined, and criteria are set out concerning 
validi ty and efficiency. The characteristics of each class of variable are 
discussed, and methods are identified that appear to meet the criteria. 

Section 5. Determination of the NOEC 
The determination of the NOEC from the results of the tests of each dose level 
is discussed, and recommendations are made concerning the procedure to employ. 

Section 6. Examination of Data Quality 
The issue of data quality is discussed and sorne measures to ensure an acceptable 
level of quality are suggested. 

AEEendix A: This contains further information on the statistical methods 
referred to in sections 3 and 4. 

AEEendix B: This contains information on supplemental statistical procedures 
such as transformations, weighting schemes, and tests of homogeneity of variance. 
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2. DESCRIPTION AND CLASSIFIÇATION OF VARIABLES 

2.1 Experimental Procedure 
The following is a brief description of the experimental procedure for AR 
experiments. Further information is available from the U.S. EPA guidelines 
'Avian Reproduction Test' (U.S. EPA Hazard Evaluation Division, 1986, EPA 540/~-
86-139). 

In AR experiments the effect of the test substance on avian reproduction is 
assessed under laboratory conditions by adding it to the birds' di et in various 
concentrations. The treatments are a control and a series of dose levels oflhe 
test substance. Each treatment is applied to a specified number of pens, with 
each pen containing a specified number of male and female birds (e.g. 1 male, 2 
females). 

The experiments are run in two phases a pre-egg-Iaying phase and an egg­
laying phase. In the first phase, which is typically la weeks in length, the 
birds are fed the test substance but no reproductive activity occurs as the 
diurnal light conditions are maintained at a normal winter cycle. 

The egg-Iaying phase, which is typically from 8 to 14 weeks in length, begins 
when the lighting is changed to a spring cycle and the birds begin reproductive 
activities. Eggs are laid at a rate of up to one per day per female bird during 
this phase, and are incubated until hatching. The chicks are placed in an 
enclosure and raised for 14 days. The adult birds are sacrificed at the end of 
the experiment. 

This section con tains a description of the variables commonly analysed in AR 
experiments, and their classification according to statistical characteristics. 
These variables comprise a fairly comprehensive list and include aIl of the main 
variable types; however it was not feasible to include every possible variable. 

2.2 Variables From Adult Birds 

2.2.1 Observations Made on Adult Birds 
The weight of each bird is typically measured at a number of points during the 
experiment. Any mortality during the course of the experiment is noted. At the 
end of the experiment the bird is sacrificed and a gross necropsy carried out. 
In addition the food consumption is measured for each pen. 
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2.2.2 Variables Derived 
Two classes of variables were defined - those that are measurements or derived 
from measurements, and those that are counts or proportions. 

Class 1. Measurement Variables for Adult Birds 
- weight (at various times) 
- weight change (over various periods) 
- food consumption per bird 

Class 2. Counts or Proportions for Adult Birds 
- the number or proportion of hens that lay eggs 
- mortality during the experiment 
- necropsy observations (e.g. the number or proportion that develop a 

particular condition) 

2.3 Variables From Eggs or Chicks 

2.3.1 Observations Made on Eggs and Chicks 
When the eggs are laid, they are sometimes weighed and are then inspected for 
cracks. Sorne eggs are removed from the experiment at this point for measurement 
of shell thickness. The remaining eggs are then set in an incubator, checked for 
fertility at 14 days, and checked for a viable embryo at 21 days. 

At hatching the chicks may be weighed and are placed in an enclosure. Excess 
chicks are removed from the experiment if the enclosure can not hold them aIl. 
The remaining chicks then grow for 14 days, at which time they are sacrificed and 
possibly weighed again. 

At each stage the number of eggs or chicks surviving that stage is recorded for 
each pen, and the eggs or chicks that have not survived or are not viable are 
removed. Figure l illustrates the progress of the eggs and chicks through the 
experiment. 

2-2 



-

EGGBLAlD 

f 
1 OHECK FOR CIWlKB 1 

---1 
"-

1 

REMOVE 
'; 1 SET IN lNCUBATOR 

1 FORSHELL 
MEAB'DllE:MENT t 

CHECK P'ERTILlTY 
AT 14DAYB 

t 
CHECK EMBHYO 

Kr 21 MYS 

t' 
EOOSHATCH 

1 

---1 "-

REMOVE EXCESS RAlSE OHlCKS 
OEICKS FOR 14DAYS 

+ -

Figure 1. Stages of the Experiment 

2.3.2 Variables Derived 
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Two different variable classes were defined - those that are measurements or 
derived from measurements, and those that are counts or proportions. Typical 
variables for these classes are: 

Class 3. Measurement Variables for Eggs or Chicks 
- egg weight 
- egg shell thickness 
- chick weight (at hatching and 14 days) 
- chick weight gain 
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C1ass 4. Counts or Proportions for Eggs or Chicks 

Counts 
At each stage of the experiment, counts of the surviving eggs or chicks are; 
tabulated for each pen. In addition, 'estimated counts' can be calculated that ' 
take into account the removal of eggs for shell measurement or the removal of 
excess chicks at hatching (which represent the numbers that would have survived 
if the removals had not occurred). Sorne examples of counts are: 

Actual Counts 
- number of eggs laid 
- number of non-cracked eggs 

Estimated Counts 
- estimated number of eggs hatched 
- estimated number of chicks alive at 14 days 

Illustrations of the calculation of an estimated count are: 

Estimated number of eggs hatched 

= (non-cracked eggs) x eggs hatched 
eggs set 

Estimated number of chicks alive at 14 days 

= (non-cracked eggs) 

Proportions 

x eggs hatched x 
eggs set 

14-day chicks 
chicks retained 

The proportions of eggs or chicks that have survived a particular stage or set~ 
of stages are calculated from the counts. Sorne of these are actual proportions}l 
that are ratios of actual counts, and sorne are estimated proportions that taka'i 
into account the removal of eggs for shell measurement or the removal of excess" 
chicks at hatching. Sorne examples of proportions are: 
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Actual Proportions 
- Proportion of eggs laid that are not cracked 
- Proportion of eggs set that are fertile after 14 days 
- Proportion of eggs set that hatch 
- Proportion of chicks retained that survive to 14 days 

Estimated Proportions 
- Estimated proportion of eggs laid that hatch 
- Estimated proportion of eggs laid that produce chicks that survive to 14 days 

An illustration of the calculation of an estimated proportion is: 

Estimated proportion of eggs laid that produce 14-day chicks 

= non-cracked eggs x eggs hatched x 14-day chicks 
eggs laid eggs set chicks retained 

Note: The calculations for estiInated counts and proportions assume that the eggs 
removed for measurement of shell thickness were selected at random from the non­
cracked eggs. However, it is possible that the eggs removed were designated in 
advance as suggested in the OECD protocol. In this case the counts and 
proportions are tabulated for the non-designated eggs only, and there is no need 
to allow for the removal of eggs for shell measurement since these eggs were not 
in the data set to start with. 
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3. CURRENT STA~ISTICAL TEST METHODS 

3.1 Sources of Information on Current Methods 
Information on the methods currently employed for testing the effect of the test 
substance was obtained from these sources: 

1. Submissions from'approximately 100 AR experiments 

2. Existing protocols for AR experiments: 

- the U.S. EPA protocols 
'Avian Reproduction Experiments' (1986), EPA 540;9-86-139, and 
'Avian Reproduction Test' (1982), EPA 540;9-92-024 

- the ASTM protocol 'Standard Practice for Conducting Reproductive Studies 
With Avian Experiments' (1984) 

- the OECD protocol 'Avian Reproduction Test' (1984) 

Although the main concern of these protocols was to set out the experimental 
procedure, they did contain sorne information on statistical methods. The AS TM 
proto col suggests a somewhat more comprehensive approach than the EPA or OECD 
protocols and also provides a fairly lengthy list of statistical references. 

3. Documents on experiments in toxicology and teratology: 

- the OECD guidelines 'One-Generation Reproduction Toxici ty Test' (1981) and 
'Two-Generation Reproduction Toxicity Test' (1983) 

the WHO publication 'Principles for Evaluating Health Risks to Progeny 
Associated with Exposure to Chemicals During pregnancy' (1984) 

These documents are relevant because from a statistical point of view experiments 
in toxicology and teratology have much in common wi th AR experiments. The 
treatments are a control and a set of concentrations of a test substance, and the 
structure of the data sets is usually similar. The experimental unit is 
generally a litter of mice or rats rather than a single subject, as the unit is 
the pen in AR experiments. Many of the variables have similar features, for 
example sorne of the key variables are counts or proportions (e.g. the proportion 
of subjects that develop a particular condition) as they are in AR experiments. 
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However, little information was obtained from these documents. The OECD 
guidelines simply state that appropriate statistical methods should be employed, 
while the WHO paper contains a general discussion of statistical analysis but 
does not specify any particular methods. 

3.2 Background Information on Current Methods 

Experimental Design 
From the suggestions made with respect to data analysis, it appears that the EPA 
and ASTM protocols assume an experimental design with a simple random all'cation 
of pens to treatments. Most of the submissions employed this design, although 
sorne employed a more complex design su ch as a blocked design in order to minimize 
the variation in temperature or humidity from one treatment to another. (The 
OECD protocol does not appear to make any specifie assumptions concerning 
experimental design.) 

Test Type and Confidence Level 
The test type and confidence level to be employed are not specified in the 
protocols, although it is fairly safe to assume that statistical tests are to be 
two-tailed tests run at the 5% confidence level since this is generally the norm. 
In aIl of the submissions it appears that this was the type and level of test 
that was carried out. 

General Approach to Statistical Analysis 
The EPA and ASTM protocols distinguish between methods for measurement variables 
and methods for counts or proportions. They suggest an ANOVA-based approach for 
measurement variables, and either a chi-square-based or ANOVA-based approach for 
counts and proportions. The OECD protocol is less specifie and makes only the 
general suggestion that an ANOVA or other acceptable method be ernployed. 

In general the submissions followed the suggestions of the EPA and ASTM 
protocols, but there was a great deal of variation from one submission to another 
with respect to the complexity of the methods employed and the amount of 
information provided on these methods. Sorne provided a considerable amount of 
information and sorne provided almost no information. 

Note: In order to preserve confidentiality, this report does not give precise 
information on the methods employed by any submission. 
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3.3 Current Methods for Measurement Variables 

3.3.1 Methods for Measurement Variables Suggested in Protocols 
The statistical approach suggested in the EPA protocols for measurement variables 
is to run an ANOVA, and to follow this with pairwise comparisons of treatment 
means if the ANOVA finds a significant effect. The test suggested for these 
comparisons is Duncan's test. The model for the ANOVA is not stated, although 
it appears that the one-way model is assumed. 

The approach suggested in the ASTM protocol is basically the same, but wider{in 
scope. For the first analysis it suggests either an ANOVA or a general linear 
models analysis, and for the pairwise comparisons Dunnett' s test and the LSD test 
are suggested as weIl as Duncan's test. Again it appears that a one-way model 
is assumed. The ASTM protocol mentions the possibility of taking into account 
unequal sample sizes in the data, but does not suggest a procedure for this. It 
also suggests that if significant treatment effects are found in the pairwise 
comparisons, the trend in effect as the dose level increases should be tested 
using regression. 

3.3.2 Methods for Measurement Variables Employed in Submissions 
Measurement variables were analysed using an ANOVA in aIl of the submissions 
where the method was specified, as suggested by the protocols. The ANOVA model 
appeared to be the simple one-way model, except for those caseS where a more 
complex design such as a blocked design had been employed. 

If the ANOVA produced significant results, most submissions carried out pairwise 
comparisons of aIl treatment means. The most common tests were those suggested 
in the protocols, but sorne others were also employed. In sorne cases the 
submissions carried out tests that involved an ordering of the treatments, such 
as a test of the trend in the treatment means as the doselevel increased or a 
comparison of control with the highest dose level. 

Since a one-way ANOVA requires a 2-level data set while most AR data sets are 3-
level (subjects within pens within treatments), a,key question is that of how the 
data was reduced from 3 levels to 2 prior to the analysis. In most cases it 
appears that the data values from all pens wi thin a treatment were pooled 
together. This in effect treats the data from a treatment as if it had come from 
a single pen, and reduces the'data set to a 2-level structure of subjects within 
treatments. The validity of this practice is discussed in section 3.6. 
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Another way to reduce the data structure to 2 levels r that appears to have been 
employed in sorne cases r is to form a data set of the pen means and then to run 
an ANOVA or other analysis on these means. However there i s then the 
complication that sorne pen means are more accurate than others, due to inherent 
differences in pen-to-pen variation or to differences in the number of subjects 
per pen. 

Submissions differed in the extent to which the variation in accuracy of the pen 
means was tested for and taken into account. Sorne went to considerable lengths 
to deal with it r while others appeared to completely ignore it. A procedure 
followed in sorne cases was to employa test for inhomogeneity of variance to 
compare the variance between pen means in one treatment to the vart.ance in 
another. Bartlett's test was generally the test employed for this purpose. 

If the differences among variances were significant r it appears that the most 
common approach was to attempt to equalize the variance by transforming the data 
(usually by a log transformation). The test for variance inhomogeneity was then 
repeated. If homogeneity was not achieved r in most cases the variance of the pen 
means was estimated separately within each treatment. Treatment effects were 
then tested by pairwise comparisons of treatment means using unequal-variance t­
tests. Another method employed for problem cases was to compar'e treatments 
pairwise using a non-parametric test such as the Mann-Whitney test. 

3.3.3 Evaluation of Current Methods for Measurement Variables 

Clarity of Objectives 
It is not clear exactly what results are to be obtained from the analysis. Since 
this is not statedr it must be inferred from the methods employed. The fact that 
an ANOVA is the recommended first stepr and also the last step if the ANOVA test 
is not significant, implies that the only result that is needed is an overall 
result obtained over all dose levels. On the other hand the use of pairwise 
comparisons for all pairs of treatments suggests that the relative rank should 
be determined for each dose level. 

It is not clear what objective is behind the suggestion in the ASTM protocol to 
run a regression of the treatment mean on the dose level if treatment effects are 
found. This may be part of the procedure for testing the treatment effects r or 
may imply that a secondary objective (which is optional and at the discretion of 
the experimenter) is to model the dose-response relationship. 
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Validity of Current Methods 
The biggest problem appears to be the practice of pooling the data from aIl pens 
within a treatment, thus reducing the data structure to 2 levels from 3. This 
usually results in an analysis that is not statistically valid for reasons set 
out in section 3.6. It appears that many of the submissions employed th!.is 
approach, although it is not possible to be sure of this because the information 
provided on the methodology was often very incomplete. 

The alternative procedure for producing a 2-level data set, which is to calculate 
the mean for each pen and then run an analysis on the pen means, is statistica{ly 
much more appropriate but requires that the variation in accuracy of the pen 
means be taken into account. Many submissions appeared to ignore this problem, 
since they used methods such as a one-way ANOVA or a multiple comparison test 
which assume that each data value has equal accuracy. For most AR data sets 
these methods would not be valid since this assumption is seriously violated. 

Sorne of the submissions dealt with the variation in accuracy of the pen means by 
estimating the wi thin-treatment variance separately for each treatment if a test 
for inhomogenei ty of variance was significant. While this approach is an 
improvement over the practice of ignoring unequal variances, i t also has 
problems. One is that the number of pens per treatment is often small, and the 
variances of the pen means would have only a few degrees of freedom. 

But the main problem is that this approach is not flexible enough. Its basic 
assumption is that aIl the pen means within a treatment have the same accuracy, 
and the only question is whether this accuracy is constant overall or varies from 
one treatment to another. It dose not distinguish between variation in accuracy 
caused by differences in the number of subjects per pen, and variation in 
accuracy caused by differences in the underlying pen-to-pen variation. For this 
reason it is not flexible enough to deal separately with each pen mean according 
to how many subjects were in that pen and to the underlying pen-to-pen variation 
in that treatment. 

Efficiency of Current Methods 
Statistical efficiency is another area where improvement could be made. Most 
submissions started with an ANOVA, and concluded that there was no treatment 
effect if the result was not significant. But ANOVA is a general method that 
tests for any differences between treatments and is not efficient in cases where 
a.specific pattern of effect is expected (as in AR experiments where we expect 
an increasing effect as the level of the test substance increases). 
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Similarly most of the tests employed for pairwise comparisons of treatment means 
are relatively inefficient for AR experiments. They are too conservative as they 
are intended for situations where the probability of error in any one of the 
tests is to be 5%. For Duncan's test the error rate is set at 5% over aIl pairs 
of treatments, while in Dunnett's test it is 5% over aIl comparisons of~ontrol 
with a non-control treatment. The LSD test, t-test or Mann-Whitney test employed 
in sorne submisslons are better choices for pairwise comparisons as the error rate 
is 5% for each test. 

Only a few submissions employed a method that invol ved the most effici'fnt type 
of test for AR experiments - a test that tests specifically for an increasing 
effect as the dose level increases, su ch as a trend test or a test of control 
against the highest dose level. And for those cases where such a test was 
employed, it is not clear if it was run on its own (as it should be) or was run 
only if an ANOVA had been carried out first and had produced a significant 
result. 

Finally, it appears that aIl submissions employed two-tailed statistical tests 
(they did not state whether their tests were one-tailed or two-tailed, but two­
tailed tests are much more common in statistics generally). However one-tailed 
tests would be much more efficient for AR experiments since we are looking 
specifically for negative effects on reproduction. 

3.4 Current Meth6ds for Counts and Proportions 

3.4.1 Methods for Counts and Proportions Suggested in Protocols 
For counts and proportions, the EPA protocol suggests either a chi-square test 
or an ANOVA. If an ANOVA is employed, the arcsine transformation is recommended 
for proportions prior to analysis. If the ANOVA finds a significant effect, 
pairwise comparisons of the treatment means are recommended. Duncan's test is 
mentioned as a possible test for these comparisons. The model for the ANOVA is 
not stated, although it appears that the one-way model is assumed. No suggestion 
is made as to what to do if a chi-square test is run and finds a significant 
effect. 
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The methods suggested in the ASTM protoçol are similar to those in the EPA 
protocols but somewhat wider in scope. For the first test either a chi-square 
analysis or a least squares analysis is suggested, wi th the least squares 
analysis being either an ANOVA or a general linear model analysis. If least 
squares analysis is employed, it mentions the possible use of weights to take 
into account unequal sample sizes in the data. Methods for deriving weights a~e 
not given. As with the EPA protocols, it appears that a one-way model is assumed 
for least squares analysis. 

If a least squares analysis is run and a significant result obtained, the ASTM 
protocol suggests pairwise comparisons of treatment means using tests such{as 
Duncan's test, Dunnett's test or the LSD test. If a chi-square test is run and 
a significant result obtained, it suggests that the treatment effect be examined 
in more detail by partitioning the chi-square statistic. No specific partitions 
are suggested. 

The ASTM protocol also suggests that if significant treatment effects are found, 
the trend in effect as the dose level increases should be examined. If a least 
squares analysis was run, the analysis suggested for trend is a linear regression 
of treatment mean against dose level. If a chi-square test was run the analysis 
suggested for trend is Armi tage' s test for a linear trend in proportions 
(referred to in this report as the Cochran-Armitage test). 

3.4.2 Methods for Counts and Proportions Employed in Submissions 
Most submissions employed either an ANOVA or a chi-square approach,as suggested 
in the protocols. The ones that employed a chi-square approach generally stated 
only that fact and did not give any further details on the methods employed. 
Those that employed ANOVA usually provided addi tional information on their 
methods. 

For the submissions that employed a chi-square approach, a key question is that 
of how the data was treated in order to allow a chi-square test to be run. A 
chi-square test for proportions requires that the data be in the form of a 
contingency table. This means that the data must be reduced from its original 
structure (with a proportion for each pen) to asimplified structure with one 
proportion per treatment. It appears that this simplification was usually 
carried out by pooling the data from aIl pens within a treatment (this practice 
is discussed in section 3.6). 
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The submissions that employed the ANOVA approach usually applied a transformation 
to proportional data prior to the analysis to stabilize the variance. This was 
generally an angular transformation although sorne others were also used. 

If the ANOVA produced significant results, most submissions then carried out 
pairwise comparisons of treatment means. The most common tests wer~ those 
suggested in th~ protocols, but seme others were also employed. In sorne cases 
tests were run that involved an ordering of the treatments, su ch as a trend test 
or a comparison of control with the highest dose level. 

For proportional variables, sorne of the submissions that followed t~e ANOVA 
approach also employed measures te allow for variation in the accuracy of pen 
counts or proportions due to variation in .the number of eggs or chicks per pen. 
Often the measure was to employ weighted data analysis, assigning larger weights 
to pens with a larger number of subjects. 

The most common procedure to deri ve a weighting scheme was Cochran' s method 
(described in section B.2.2.1 in Appendix B), which invelves establishing the 
relationship between the number of subjects per pen and the accuracy of the pen 
proportions. In other cases a much simpler plan was adopted and the weights were 
simply set equal to the number of subjects per pen. It is not clear if weights 
were employed in the pairwise comparisons in addition to the ANOVA. 

Sorne submissions appeared to follow a different approach to the problem of 
unequal variances among the pen proportions, and ran a test of homogeneity of 
variance to compare the variance within each treatment prior to carrying out the 
pairwise comparisons. (It is not clear if they did this for measurement 
variables only, or for proportions also.) 

If the inhomogeneity was significant, the procedure usually followed was te 
estimate the variance of the pen counts or proportions separately for each 
treatment and then to carry out pairwise comparisons of treatment means using 
unequal-variance t-tests. An alternative procedure followed in sorne cases was 
to carry out the pairwise treatment comparisons using a non-parametric test (the 
Mann-Whitney test). 
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3.4.3 Evaluation of Current Methods, for cdynts and Proportions 

Clarity of Objectives 
As was the case with measurement variables, it is not clear exactly what results 
are required. Since this is not stated, it must be inferred from the methods 
employed. The fact that a general test su ch as a chi-square test or an ANOVA is 
the recommended first step, and also the last step if the test is n0t 
significant, implies,that the only result needed is an overall result for aIl 
dose levels. On the other hand the use of pairwise comparisons for aIl pairs of 
treatments suggests that the relative rank should be determined for each level. 

In addition, the suggestion in the ASTM protocol to examine the trend'fin 
treatment effect as the dose level increases (if a treatment effect was found) 
may imply that a secondary objective is to model the dose-response relationship. 

Validity of Current Methods 
The biggest problem appears to be that an appreciable number of submissions 
pooled the proportions from all pens within a treatment, in order to simplify the 
data structure so that a chi-square test could be run. This procedure is not 
statistically valid, for reasons set out in section 3.6. 

For the submissions that ran an ANOVA, the most difficult aspect was to deal with 
the unequal numbers of subjects per pen and the consequent variation in accuracy 
of the pen proportions. Sorne submissions ignored this problem, which is not 
advisable. Sorne used weighted analysis, with Cochran' s approach used to 
determine the weights. This is statistically the most valid but also the most 
difficult. Sorne submissions used weighted analysis with weights equal to the 
numbers per pen; however i t is not clear if this is any improvement on an 
unweighted analysis. 

Unequal numbers of subjects per pen also caused complications for the pairwise 
comparisons of treatments. Sorne submissions again followed the convenient 
practice of ignoring this problem. Others allowed for i t by estimating the 
variance between pen proportions within treatments separately for each treatment, 
if a test for inhomogeneity of variance was significant. 

While the use of a homogenei ty of variance test is an improvement over the 
practice of ignoring unequal variances, it is not completely satisfactory. It 
allows the accuracy of pen proportions to vary from one treatment to another, but 
still makes the questionable assumption that the accuracy is constant within a 
treatment. 
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Consequently this approach is not flexible enough to take into account the 
accuracy of each individual pen proportion, which it should be with AR 
experiments. Another consideration is that a test for inhomogeneity would not 
be that powerful in any case, since the numbers of pens per treatment is 
generally small in AR data sets and the variances of the pen proportions would 
have only a few degrees of freedom. 

Efficiency of Current Methods 
Another area of concern is that of the efficiency of the statistical tests. Most 
submissions started wi th a general test - a chi-square or an ANOVA ( - and 
concluded that no treatment effect was present if the resul t was not significant. 
But for situations where a specifie pattern of effect is expected, as in AR tests 
where we expect an increasing effect as the level of the test substance 
increases, a test for that specifie pattern would be much more efficient. 

Similarly most of the tests employed for pairwise comparisons of treatment means 
are too general in nature and thus are not that efficient for AR experiments. 
Duncan's test is intended for cases where aIl pairs of treatments are to be 
tested, while Dunnett's test is intended for cases where the control is to be 
compared with each non-control treatment. The LSD test, t-test or Mann-Whitney 
test employed in sorne submissions are better choices for pairwise comparisons. 

The most efficient methods for AR experiments were carried out in only a few 
submissions. These involved tests designed specifically to detect an increasing 
effect of the test substance as the dose level increases, such as a trend test 
or a test of control against the highest dose level. It is not known whether the 
method for these submissions consisted of this test by i tself, or invol ved 
running an ANOVA first and then running the test only if the ANOVA was 
significant. If it was the latter, the advantage of using an efficient test 
would be lost. 

Current methods for counts and proportions can also be made more efficient by 
employing one-tailed tests instead of the more usual two-tailed tests, in order 
to test specifically for negative effects on reproduction. The submissions did 
not state whether they employed one-tailed or two-tailed tests, but they 
presumably used two-tailed tests since these are much more common in statistics 
generally. 
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3.5 Summary of Assessment of Current Methods 
There is considerable variation with respect to validi ty and efficiency among the 
statistical methods currently employed, and a definite need for a more effective 
and consistent set of methods. While methods were reasonably well chosen and 
well described in sorne submissions, in others they were deficient in many 
respects. And in sorne the methods were not described beyond a very brief 
reference. Improvement is needed in theareas of 

defining objectives 

choosing statistical methods that are efficient at meeting these 
objectives 

choosing methods that are statistically valid, and that can deal with 
the complexities of AR data sets 

providing an informative description of the methods employed 

In fairness to the submissions it should be recognized that the analysis of AR 
data sets in a statistically valid and efficient manner is not a simple task, 
because of the difficulties and complexities that are often present. The analyst 
is frequently faced with the need to choose between statistical validity on one 
hand and feasibility and computational convenience on the other. Another factor 
is the lack of clearly stated objectives and guidelines in the protocols. In 
addition, there do not appear to be any statistical papers or texts on the 
subject of appropriate methods for AR experiments. 
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3.6 Discussion of Pooling of Data 

3.6.1 Introduction 
A key question bath for measurement variables and for counts or proportions is 
that of whether it is permissible ta pool data values from aIl pens wlthin a 
treatment, and then ignore the pen structure in the analysis and treat the data 
as if the treatments had been applied ta individual subjects. This pooling 
reduces the data structure from its actual 3-level structure of subjects within, 
pens within treatments ta a 2-level structure of subjects within treatments. 

( 
Ta illustrate this, consider the following simplified example for a measurement 
variable. Pooling the data for the following 3-level data set 

Treatment 1 Treatment 2 
Pen 1 : 1. 5, 1. 7 f 1.4 Pen 1 : 0.6, 0.9 
Pen 2 : 1. 3, 1.2 Pen 2 : 0.9, LI, 1.4 
Pen 3 : 2.0, 2.2, 2.5 Pen 3 : 0.5, 0.8, 0.7 

would produce the 2-level set 

Treatment 1 Treatment 2 
1.5, 1.7, 1.4, 1.3, 1.2, 2.0, 2.2, 2.5 0.6, 0.9, 0.9, 1.1, 1.4, 0.5, 0.8, 0.7 

Similarly the following data set for a proportion 

Treatment 1 
Pen 1: 25/30 
Pen 2: 15/25 
Pen 3: 15/20 

would be reduced by pooling ta 

Treatment 1 
55/75 

Treatment 2 
Pen 1: 10/20 
Pen 2: 5/15 
Pen 3: 10/15 

Treatment 2 
25/50 

The data sets produced by pooling are obviously much easier ta analyse than the 
original sets. The pooled data set for the measurement variables could be 
analysed by simple least squares methods, and the pooled set for proportions 
could be analysed by contingency-table methods. Unfortunately, for reasons set 
out in 3.6.3, this practice is not statistically valid for either variable type. 
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3.6.2 Position of Protocols on Pooling of Data 
The OECD protocol does not consider this question, while the EPA and ASTM 
protocols take a position that is somewhat inconsistent. They do not state 
directly that it is permissible to pool data from aIl pens within a treatment and 
then ignore the pen structure in the subsequent data analysis. But the fact that 
they suggest an ANOVA approach with multiple comparison of treatment means f6r 
measurement data sugg,ests that they assume that the data structure has first been 
reduced to 2 levels, and then analysed as a simple 2-level data set. The obvious 
procedure to achieve this reduction is by pooling. 

For proportional variables, the EPA and ASTM protocols accept the chi-square t(st 
as a valid method of analysis. Since this test requires the data to be in the 
form of a simple contingency table, this implies that the data have been reduced 
to a single proportion per treatment. Presumably this was achieved by pooling 
the pen proportions within each treatment. AIso, presumably the pen structure 
was ignored in the contingency table analysis. 

The WHO document on teratological experiments also deals with this issue. In 
these experiments, treatments are applied to entire li tters of mice or rats. The 
question discussedis whether the analysis should reflect the li tter-based 
structure of the data, or whether the data for aIl litters in a treatment should 
bepooled and the litter-based structure ignored in the analysis. The paper 
attempts to compromise by suggesting that data be analysed twice - once taking 
the litter structure into account and once with it ignored. Presumably a 
treatment effect would be considered to be present if either analysis produced 
a significant result, although this was not stated. 

3.6.3 Validity of Pooling 
This question of pooling has been discussed in a number of papers in scientific 
journals, mainly with respect to toxicological experiments where the experimental 
unit is the litter of animaIs (generally mice or rats). The strong consensus is 
that the practice of pooling the data for aIl litters within a treatment, and 
then analysing the data as if the treatments had been applied to individual 
animaIs rather than on a litter basis, is not valid (e.g. Weil (1970), and 
Haseman and Soares (1976)). The reason is that ·subjects from the same litter 
will tend to be have similar responses, resulting in a cluster of similar data 
values. 
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When data values within a treatment are averaged to obtain the treatment mean, 
the accuracy of this mean depends on the extent to which the random errors of the 
individual values cancel each other out. If the data values occur in clusters, 
there will be less cancellation of error than if the values were independent 
since there is more chance that many errors will occur in the same direction. 

As a result of this reduced error cancellation, the variance of the treatment 
means will be underestimated if the data from aIl pens or litters in a treatment 
are pooled and then analysed as if they were independent observations. The 
consequence of this underestimation of .the variance is to indfease the 
probability of finding the treatment effect to be significant. 

Paradoxically this can be used as an argument in favour of pooling, since it 
increases the chance of detecting a harmful effect of the test substance. But 
any benefits from this are offset by the fact that the decrease in the variance 
is very inconsistent from one case to another since it depends on the number of 
subjects per pen, the size of the pen-to-pen variation and other factors. AIso, 
in principle it should not be necessary to employ invalid statistical methods in 
order to detect treatment effects. 
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4. IDENTIFICATION OF PROMISING STATISTICAL TEST METHODS 

4.1 Introduction 
A large number of statistical methods that are currently being applied or cou~d 
potentially be applied to AR data sets were evaluated, and of these a number were 
recommended for each variable class. The criteria employed to evaluate the 
methods are set out in section 4.2, and the methods themselves are described in 
sections 4.3 ta 4.6. A summary is presented in Table 1. 

'{ 
Note: The statistical methods presented in this section assume that the 
experiment followed a 'one-way' design in which pens were assigned ta treatments 
by simple random allocation. The methods also assume that the same number of 
pens was assigned to each treatment, except for the possibility that extra pens 
could have been assigned ta the control. 

Further Information 
The statistical methods presented in this section are not described in detail; 
however, further information on them and on other aspects of the statistical 
analysis is given in the Appendices. 

Appendix A 
This contains information on the statistical methods, including reviews of any 
recent developments. 

Appendix B 
This contains information on supplemental statistical procedures: 

- data transformations 
- weighting procedures 

testing homogeneity of variance 
- combining pen proportions 
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Table 1. Recommended Methods by Variable C1ass and Set of Assumptions 

Possible Assumptions for Each Variable Class 

Note: Xi' denotes a pen mean, Pi' a' pen proportion, Ni the number of pens per 
l:lreatment, (J'Xi/ the variJnce of Xij' and (J'Pi/ the variance of Pij 

Statistical Measurement Prop/Count Measurement Prop/Count 
Assumptions Adult Birds Adult Birds EggsLChicks EggsLChicks 

2 2 1. (J'Xii or (J'Pi' are 
const., Ni are ~ll equal Yes Yes ( Yes 

2. 2 2 (J'Xii or (J'Pii are 
const., Ni not aIl equal Yes Yes Yes 

2 2 ,3. (J'XLi or (J'Pi' are 
const. wlthin tr~atments but Yes Yes Yes 

vary between treatments 

4. 2 2 
(J'~i' or (J'Pi' vary 
wl~in treJtments Yes Yes Yes 

5. P ii can be reduced to 
a single proportion Yes Yes 

within each treatment 

6. X" or P" have an 
irr€4ular ~istribution Yes Yes 

Methods Recommended for Each Set of Assumptions 

Set 1 
t-test 

LSD test 
Williams test 

trend test 
Abelson-Tukey test 

Set 4 
weighted t-test 

weighted trend test 

Set 2 
t-test 

LSD test 
Wi lliams test* 

trend test 

Set 5 
Chi-square test 

Fisher exact test 
Cochran-Armitage test 

Set 3 
t-test 

trend test 

Set 6 
Mann-Whitney test 

rerandomization test 
jackknifemethod 

* Williams test is applicable here only to the case of extra control pens. 
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4.2 Criteria for Evaluating Statistical Methods 

4.2.1 Introduction 
Each method was evaluated by examining the following aspects: 

statistical validity, in particular 
- whether it reflects the inherent structure of the data 
- whether it deals with the data complexities that commonly occur 

efficiency at detecting treatment effects 

whether the effect is tested at each dose level 

These topics are discussed in sections 4.2.2 to 4.2.4, and a set of criteria for 
evaluating methods are set out in section 4.2.5. 

4.2.2 Validity of the Methods 
Since treatments are applied to pens rather than to individual subjects in AR 
experiments, the statistical methods employed should use the pen as the basic 
experimental unit. The methods should reflect the fact that the basic source of 
random error in the experiment is the variation between pens within a treatment. 

Since the pen is the basic unit in the experiment, the starting point for any 
method should be the calculation of pen means, counts or proportions. Treatment 
means or proportions should then be calculated from these pen quantities, and 
their accuracy should be derived from the variation between the pen quantities 
within each treatment. To pool the data from aIl pens within a treatment, and 
then ignore the pen structure in the subsequent analysis, is not acceptable as 
the pen-to-pen variation is lost. 

The method should also be flexible enough to able to deal wi th the data 
complexities that can be expected to occur. These include 

- variation in the number of subjects per pen 
- differences in the inherent pen-to-pen variation 
- irregularities in the data 
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One potential source of irregularit1{ is that of reproductive failure in 
particular pens for reasons unrelated to the treatments applied. This is 
mentioned in the literature as a feature of AR data sets for certain variables 
(Picirillo and Quesenberry, 1980). 

4.2.3 Efficiency of the Methods 
Different statistical methods test for different kinds or patterns of treatment 
effects. The efficiency of a method for a given experimentdepends on how weIl 
matched it is to the patterns of treatment effects that occur with that type of 
experiment. The most efficient methods for AR experiments are those that test 
for one specifie pattern, which has two important features: ,( 

- It is negative in direction with respect to reproductive capability 

- It increases in magnitude as the dose level increases 

To test for an effect that increases as the dose level increases, the tests 
should make use of the ordered nature of the treatments. To test specifically 
for negative effects, the tests should be one-tailed tests rather than the two­
tai.led type that are more commonly employed in statistical analysis. 

4.2.4 Testing at Each Dose Level 
A decision was made that the statistical method should include a test of the 
effect of the test substance at each dose level. The reason is that it is 
considered important to be able to identify the NOEC (the highest dose at which 
there' is no observed effect), and this requires that a significant or non­
significant result be obtained for each dose. The process for identifying the 
NOEC is described in section 5. 

For the methods recommended in this section, the test of the effect at a given 
dose level is carried out in one of two ways: 

- by testing the difference between that dose level and control, or 
- by testing the trend over the set of treatments from control up to that dose 

level 

Note: The test of trend is carried out solely for the purpose of determining 
whether the effect is significant at that particular dose level. It should net 
be confused with procedures for modelling the dose-response relationship. 
(Modelling the dose-response curve is outside the scope of this report.) 
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4.2.5 Summary of Criteria Employed 
From the discussions in the preceding sections, the following criteria have been 
drawn up for evaluating statistical methods: 

1. Methods should be reasonably weIl established in statistics. , 
2. Methods should employ the pen as the basis of the analysis. The quantities 

analysed should be pen means, pen counts or pen proportions. It is not 
acceptable to pool the data from aIl pens within a treatment, and then 
ignore the pen-based structure of the data set in the subsequent analysis. 

,( 
3. Methods should take into account those complexities that commonly occur in 

data from AR experiments, particularly variation in the numbers of 
subjects per pen and variation in the accuracy of pen means, counts or 
proportions. 

4. Methods should test the effect of the test substance at each dose level. 

5. Each of the tests should be a one-tailed test at the 5% confidence level, 
and should test for a negative effect on reproduction that increases as 
the dose level increases. 
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4.3 Methods for Measurement Variables - Adult Birds 

4.3.1 Requirements to be Met By These Methods 
The criteria are those set out in section 4.2.5, with the following,condition 
added: 

Employ least-squares methods only. Non-parametric methods should not be 
necessary for this variable class and are not usually applied to it. 

4.3.2 Basic Variable Characteristics and Model 
For most of the variables in this class the data values are measurements made on 
individual adult birds, and the data sets have a three-Ievel structure of birds 
within pens within treatments. (An exception is food consumption, where there 
is one measurement per pen per time period.) 

In general the number of birds, and thus of measurements, will be the same for 
aIl pens. The initial number per pen is the same, and any variation would be the 
result of mortality. The initial number is either 1, 2, 3, 5 or 7, depending on 
the species and caging parameters and whether the variable is measured on males 
only, females only or on both sexes. 

For most variables the data should follow approximately the standard linear 
model: 

= 

where Xijk is the data value for the k'th bird in the j'th pen in treatment i, 
~ is the overall mean, Ti is the effect for treatment i, Eij is the random pen 
effect and eijk is the random error for an individual data value. In the 
standard model the Eij and eijk have approximately normal distributions and their 
variances CYEi/ and CYeijk

2 are roughly constant over the data set. 

Pen Means: The methods considered are aIl based on least squares analysis of pen 
means. The pen means Xij have the form 

= 

where eij is the mean of the eijk for that pen. The variance CYXij2 of Xij is 
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= 

where nij is the number of birds in the pen and CJei/ is the mean of the CJeij/ 

Treatment Means: If CJXij2 is constant (or approximately sol for aIl pens within 
a treatment, the treatment mean is calculated as the unweighted mean Xi of the 
pen means and i ts variance CJx/ has the forrn 

= = 

where Ni is the number of pens in the treatment. 

4.3.3 Common Data Complexities 

1. Variation among the nij.!. The initial number of birds per pen is the sarne 
for aIl pens. But if deaths have occurred in sorne pens during the experiment, 
the nij will vary from pen to pen for those variables measured after the deaths. 

2. Skewness in the distribution of the Xijk.!. This may produce non-linearity in 
the model and cause CJXij2 to vary wi th the size of Xij . In general these problems 
can be handled by applying a logarithmic transformation. For sorne variables the 
use of a log transformation is a fairly standard practice (e.g. pesticide 
concentrations) . 

3. Variation among the number Ni of pens per treatrnent. Differences will occur 
if extra pens were assigned to the control, or if certain pens had to be left out 
of the analysis because of problems such as sickness or mortality. 

4. Variation in CJXij2 (that is not removable by transformation). Possible 
causes for this include variation among the nij' and non-removable variation in 
CJEi/ or CJeij2. The variation among CJEi/ or CJei/ could be such that they are 
different for each pen, or they could be constant for all pens wi thin a treatment 
but vary from one treatment to another. 
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4.3.4 Cases to be Considered 
The methods that are appropriate for a gi ven data set depend on O"Xi/ and Ni' 
Four different cases have been identified. The choice of case affects not only 
the testing of treatment effects but the actual calculation of the treatment 
means. 

1 

Note: It is aésumed that any variation in O"Xi/ that is due to skewness alone has 
been removed by transformation. 

Case 1: O"Xij 2 Constant Over AlI Treatments, Ni Equal { 
Since O"X~j2 is equaf to (O"Eij 2 + O"eij2/nij)' fo.r O"Xi/ to be constant the parameters 
nij' O"Eij and O"eij must aIl be constant. For nij to be constant over aIl 
treatments, there must not have been any deaths among the adult birds up to this 
point. Each treatment mean Xi is calculated as an unweighted average of the pen 
means Xij' and the variance O"Xi 2 of the treatment means is constant and equal to 
O"Xij 2/N where N is the cornrnon value of the Ni' 

Case 2: O"Xi/ Constant Over AlI Treatments, Ni Not Equal 
2 2 The pen parameters nij' O"Eij and O"eij must be constant, but Ni can vary. The 

treatment means Xi are calculated as unweighted averages of the pen means Xij . 
The variance O"Xi2 of each treatment me an is equal to O"Xi/ /Njt and varies inversely 
with Ni' 

Case 3: O"Xij 2 Constant Within Each Treatment, But Varies Between Treatments 
Here the parameters nij' O"Eil and O"eil must be constant wi thin a treatment but can 
vary from one treatment to another. ·Treatment means Xi are calculated as 
unweighted averages of the pen means Xij . The variance O"X/ of each treatment 
me an is equal to O"Xi/ /Ni , and varies wi th both O"Xi/ and Ni' 

Case 4: O"Xij 2 Varies Between Pens Wi thin a Treatment 
If O"Xi/ varies from pen to pen within a treatment (due to variation in nij' O"Ei/ 
or O"ei/)' the situation is more complicated. To accornrnodate this variation, the 
statistical method must involve weighted least squares. In order to set up a 
suitable weighting scheme, O"Xij 2 must be modeIled as a function of nij or other 
variables and then estimated separately fàr each pen. The weight assigned 
each pen mean Xij is the inverse of this estimate of O"Xij 2 

4-8 



1 
1 

1 
! 
1 
! 

1 
1 

~: 

The treatment means are calculated as weighted means of the pen means, and 
treatment effects are tested by comparisons among these weighted treatment means. 
Methods for deriving an appropriate weighting scheme are not described here, but 
are discussed in Appendix B. It is assumed that weighting is necessary onlyat 
the pen level, and not at the level of individual measurements. 

4.3.5 Recommended Methods for the Different Cases 
No guidelines have 
given data set, as 

been set out as how to determine which case to selec,); for a 
this is largely a matter of subjective judgement. ~ 

Note - Each method involves a set of one-tailed tests at the 5% level, that test 
the effect of the test substance at each dose level. For more information on the 
methods see Appendix A. 

2 Case 1. O"Xij Constant, Ni Equal 
These methods involve standard least-squares analysis. 

- t-tests, each test compares the control mean with the mean for a particular 
dose level 

- LSD (least significant difference) tests, each test compares the control mean 
with the mean for a particular dose level 

- Williams tests, each test compares the control me an with the mean for a 
particular dose level 

Linear trend tests, each test looks at the trend in treatment me ans from 
.control up to a particular dose level 

Abelson-Tukey tests, each test looks at the trend in treatment means from 
control up to a particular dose level 
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2 Case 2. aXij Constant , Ni Not AIl Equal 

These methods involve least-squares analysis, adjusted for the variation in Ni' 

- t-tests, each test compares the control mean with the me an for a particular 
dose level 

- LSD tests, each test compares the control me an with the mean for a particular 
dose level 

Linear trend 
control up 

tests, each test looks at the trend in treatment mea~p from 
ta a particular dose level 1 

- Williams tests, adjusted for extra control pens, each test compares the 
control mean wi th the me an for a particular dose level. Note that this test 
can not be applied if Ni varies from one dose level ta another. It can be 
applied ta the case where extra pens were assigned ta the control, but the 
number of pens in the other treatments is constant. 

Case 3; aXi/ Varies Between Treatments 
These methods invol ve least-squares analysis, . 2 adjusted for the variation ln aXij 

- t-tests, adjusted for variation in aXi/ between treatments, each test compares 
the control me an with the me an for a particular dose level 

- Linear trend tests, adjusted for variation in aXij2 between treatments, each 
test looks at the trend in treatment means from control up ta a particular 
dose level 

Case 4; aXi/ Varies Between Pens Wi thin a Treatment 
These are weighted least-squares methods, with weights applied ta the pen means. 

- t-tests, adjusted for weighted analysis, each test compares the weighted 
control mean with the weighted mean for a particular dose level 

- Linear trend tests, adjusted for weighted analysis, each test looks at the 
trend in weighted treatment means from control up ta a particular dose level 
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4.4 Methods for Counts or Proportions - Adult Birds 

4.4.1 Requirements to be Met By These Methods 
The criteria are those set out in section 4.2.5. 

4.4.2 Conversion of Counts to Proportions 
It is assumed that counts will be converted into proportions before analysis, by 
dividing by the initial number nO of adult birds in the pen. This will take into 
account the fact that the counts are restricted to the range of 0 to nO' Af~r 
conversion they will be restricted to the range of 0 to 1. 

4.4.3 Basic Variable Characteristics and Model 
For these variables the data set has a two-Ievel structure of pens within 
treatments, and each data value is the proportion within a particular pen. Let 
Pij be the proportion for pen j in treatment i. Then Pij is calculated from 

= 

where nij is the number of adul t birds in the pen for that variable and Yij is the 
number of the nij for which a particular characteristic was recorded (e.g. the 
number that died in a particular phase of the experiment). 

4.4.4 Common Data Complexities 

1. Variation among the ~ij~ Although the initial number of adult birds per pen 
is the same for aIl pens, nij will vary between pens if deaths have occurred 
prior to the tabulation of that variable. 

2. The discrete nature of the proportions. In general the P ij wi 11 have a 
distribution that is approximately binomial. Since the denominators nij are 
small (either 1, 2, 3, 5 or 7 depending on caging parameters and on whether the 
proportion is calculated for males, females, or both sexes), this distribution 
will be discrete to the point where it is not reasonable to treat the Pij as if 
they were continuous variables. 
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3. Skewed distribution for the proportions. The distribution of the Pij may be 
quite skewed in sorne cases. For example consider the proportion of deaths per 
pen for an experiment where all the nij are equal to 7. A possible result would 
be ° deaths in most pens, 1 death in a few pens, and a very few pens with 2 or 
more deaths. The corresponding pen proportions will be skewed with most values 

; 
concentrated at 0, a few values at .14 and a very few at .28 or more. 

4. Variation among the Ni~ Differences in the nurnber Ni of pens per treatment 
will occur if extra pens were assigned to the control, or if pens had to be left 
out of the analysis because of problems such as sickness or mortality. ;{ 

4.4.5 Cases to be Considered 
The simplest methods for these variables are those methods that are only 
applicable after the data structure has been reduced to a single proportion in 
each treatment. But as discussed earlier, to be statistically valid these 
methods must still take into account the pen-based structure of the experiment. 
There are procedures that appear to achieve a reduction in data structure while 
maintaining statistical validity. Two of them are discussed in section 4.4.7; 
However they do not appear to be suitable for all data sets. In particular they 
are probably not suitable for data sets with irregularities in the data. 

Note: One of these methods is Rao and Scott's method. The acceptance of this 
method is tentative and depends on the results of a forthcoming evaluation. 

Thus there are two cases to consider: 

Case 1: Methods for Treatment Proportions 
These methods analyse the data after the pen proportions Pij within each 
treatment have been combined into a single proportion. 

Case 2: Methods for Pen Proportions 
These methods are employed for situations where the Pij have not been combined, 

4-12 



4.4.6 Recommended Methods for These Cases 
No guidelines have been drawn up on how to select the appropriate case for a 
given data set as this is largely a matter of subjective judgement. 

Note - Each method involves a set of one-tailed tests at the 5% level, that test 
the effect of the test substance at each dose level. For more information on the 
methods see Appendi~ A. 

Case 1: Methods for Treatment Proportions 
The methods recommended are contingency-table methods, 
the structure of a contingency table for this case. 

t since the data sets have 

- Chi-square tests, each test compares the proportion for control with the 
proportion for a particular dose level 

- Fisher's exact tests, each test compares the proportion for control with the 
proportion for a particular dose level 

- Cochran-Armitage tests, each test looks at the trend in treatment proportions 
from control up to a particular dose level 

Case 2: Methods for Pen Proportions 
The methods set out are aIl non-parametric methods. Least-squares methods are 
considered to be inappropriate for this case because of the discrete nature and 
skewed distribution of the Pij • 

- Mann-Whitney tests, each test compares control with a particular dose level 

- Rerandomization tests, each test either compares control with a particular 
dose level or looks at the trend in treatments from control up to a 
particular dose level 

- Jackknife tests, each test either compares control with a particular dose 
level or looks at the trend in treatments from control up to a particular 
dose level 
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4.4.7 Statistically Valid Methods for Reducing the Data Structure 

Method 1. Tabulating at the Pen Level 
In sorne situations the data structure can be reduced to that of a single 
proportion per treatment wi thout appreciable loss of information, by tapulating , 
entire pens rather than subjects within pens. For example if the pen proportions i 

for a variable:consisted mainly of zero values, there would probably be little 
loss of information in tabulating the proportion of pens that are zero or non­
zero for each treatment and analysing those treatment proportions. Similarly if 
the pen proportions consist mainly of values of l, the proportion of 'fens in a 
treatment that are equal to 1 could be tabulated. 

Method 2. Rao and Scott's Method for Combining Pen Proportions 
The procedure of pooling the data from aIl pens in a treatment into a single 
proportion, and then ignoring the pen information in the data analysis,is not 
statistically valid as the error in the analysis would not take pen-to-pen 
variation (as discussed in section 3.6). However Rao and Scott have set out a 
procedure for combining pen proportions that appears to overcome this problem 
(Rao and Scott, 1992). Their solution is to pool the data from aIl pens in a 
treatment into a single proportion in the usual manner, but in the statistical 
analysis to employa variance formula that takes the variation between pens into 
account. 

Let Pij be the pen proportion for pen j in treatment i, with each Pij being equal 
to Yij/nij' and let PPi be the pooled proportion for treatment i. Then 

= = 

Statistical analysis is then run on the PPi , but they are not treated as if they 
were the simple proportions Yi/Ni as this would underestimate the variance of the 
PPi • Instead the variance of PPi is derived from the pen-to-pen variation in Pij 
within treatments. An effective sample size (Ni)eff is then obtained for each PPi 
that corresponds to its variance. In general (Ni)eff is less than Ni' 

The PPi are then put into the form of proportions: 

= 
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where (Yi)eff is the effective numerator and is defined as (PPi)(Ni)eff. According 
to Rao and Scott, PPi can be entered into statistical formulas as if it were the 
simple proportion (Yi )eff/ (Ni) eff since its denominator corresponds to its 
accuracy. 

, 
Rao and Scott's method is currently being studied for its applicability to AR 
experiments. A cUrr'ent limitation to its use is that i t takes the pooled pen 
proportions as the optimal estimate of the overall proportion for each treatment, 
thus assuming that each pen proportion Pij should be weighted by its denominator 
nij. This is a drawback since such a weighting scheme may be inappropriate ,for 
many AR data sets. However i t should be possible to make the method m're 
flexible by extending it to other weighting schemes. Rao and Scott's method is 
described further in Appendix B, section B.l. 
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4.5 Methods for Measurement Variables - Eggs or Chicks 

4.5.1 Requirements to be Met By These Methods 
The criteria are those set out in section 4.2.5, with the following condition 
added: 

Employ least-squares methods only. Non-parametric methods should not be 
necessary for this variable class and are not usually applied to it. 

4.5.2 Basic Variable Characteristics and Model 
The data sets for these variables have a three-Ievel structure of eggs or chicks 
within pens within treatments. The number of eggs or chicks will vary from one 
pen to another. The data should follow approximately the standard linear model: 

= 

where Xijk is the data value for the k'th bird in the j 'th pen in treatment if 
~ is the overall mean, Ti is the effect for treatment if Eij is the random effect 
for pen j in that treatment and eijk is the random error for the k'th data value 
from that pen. In the standard model the Eij and eijk have approximately normal 
distributions and their variances O"Ei/ and O"eijk2 are constant or approximately 
so over aIl treatments. 

Pen Means: The methods considered are aIl based on least squares analysis of the 
pen means Xij which have the form 

X .. 
IJ = ~ + T, + E" + el' J' l l J 

where eij is the mean of the eijk for that pen. The variance O"Xij 2 of Xij is 

= 

2 where nij is the number of eggs or chicks in the pen for that variable and O"eij 
is the mean of O"eijk2• 
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4.5.3 Common Data Complexities 

1. Variation among the nij. The numbers nij of eggs or chicks in a pen at any 
given stage in the experiment will in general vary from pen to pen. Often this 
variation is quite large. ,j 

2. Skewness in the distribution of the Xijk~ This may produce non-linearity in 
the model and cause O'Xij 2 to vary wi th the size of Xij . In general this situation 
can be handled by app1ying a logarithmic transformation. 

3. Variation among the number Ni of pens per treatment. Differences will oc~ur 
if extra pens were assigned to the control, if pens had to be left out of the 
analysis because of problems such as sickness, mortality or extraneous 
reproductive failure, or if there were no surviving eggs or chîcks in one or more 
pens at the stage of the experiment when the variable was measured. 

4. Variation among the O'Xij~ It is expected that there will be inhomogeneity 
in O'Xi/ within treatments (in addition to any inhomogeneity that is removable by 
transformation), because of pen-to-pen variation in the nij. In addition there 
could be non-removable variation in O'Ei/ or O'ei/. This could be such that O'Eij 2 
or O'ei/ are different for each pen, or they could be constant for aU pens within 
a treatment but vary from one treatment to another. 

4.5.4 Cases to be Considered 
Only least squares methods were considered for this variables class, the 
complexi ty of the method depending on the complexi ty of O'Xi/ and also on the Ni. 
The cases to consider are set out in section 4.3.4 in the discussion of 
measurement variables for adult birds. 

The first three cases are: 

Case 1 : O'Xij 
2 constant over aU treatments, Ni all equal 

Case 2 : O'Xij 
2 constant over aIl treatments, Ni not aU equal 

Case 3: O'Xij 2 constant over all pens in a treatment, but varies between 
treatments 
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For these cases unweighted least squares methods can be applied. However they 
are unlikely to be suitable, since 0Xi/ depends on nij and in general the nij have 
a large variation from pen to pen. Case 4, which requires weighted least squares 
analysis, is the case that is expected to be applicable for most data sets. 

Case 4: 0Xi/ varies from pen to pen within a treatment 

Note: It is as~umed that any variation in OXi/ that is due to skewness alone has 
been removed by transformation. 

Note: Methods for determining an appropriate weighting scheme and foJ testing 
for homogeneity of variance are described in Appendix B .. 

4.5.5 Recommended Methods 
No guidelines have been given concerning how to determine which case to select 
for a given data set, as this is largely a matter of subjective judgement. 

Note - Each method involves a set of one-tailed tests at the 5% level, that test 
the effect of the test substance at each dose level. For more information on the 
methods see Appendix A. 

Cases 1 to 3. Unweighted Least Squares Methods 
The methods are the same as those listed for measurement variables for adult 
birds in section 4.3.5, cases 1 to 3. Since these cases are unlikely to occur, 
the methods are not repeated here. 

Case 4. Weighted Least Squares Methods 

- t-tests, adjusted for weighted analysis, each test compares the weighted 
control me an with the weighted mean for a particular dose level 

- Linear trend tests, adjusted for weighted analysis, each test looks at the 
trend in weighted treatment means from control up to a particular 
dose level 
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4.6 Methods for Proportions or Counts - Eggs or Chicks 

4.6.1 Reguirements to be Met By These Methods 
The criteria are those set out in section 4.2.5. 

4.6.2 Conversion oi Counts to Proportions 

,1 

It is assumed that counts will be converted into proportions before analysis, by 
dividing by a suitable denominator. This will take into account the fact that 
the counts have a restricted range, since there is a limit to the number of ~gs 
that canbe laid in a pen. The denominator nU represents an upper limit to the 
number of eggs or chicks in a pen, so that after conversion the proportions are 
restricted to the range of 0 to 1. 

For most data sets, nU can be taken as the theoretical maximum nTH which is the 
number of eggs produced if each female bird were to lay one egg per day during 
the egg laying period. However pen counts may occasionally be greater than nTH , 
as sorne eggs may be laid just before the designated egg-Iaying period starts. 
To cover aIl possibilities it is suggested that nu be set either at nTH or at a 
value that is 20% larger than the largest number of eggs laid in any pen, 
whichever is greater. 

Note: If the counts for a variable are small compared to nU' the upper limit 
will have little effect and the counts will tend to follow a Poisson 
distribution. Normally a square root transformation would be applied to sueh 
variables. However this is not necessary in this case. The reason is that an 
angular transformation is applied to proportions prior to analysis, and this 
transformation is in fact equivalent to the square root transformation for these 
variables. This is discussed in Appendix B, section B.3.2. 

4.6.3 Basic Variable Characteristics and Model 
In the terminology of this report, proportional variables are either 'actual 
proportions' or 'estimated proportions'. Actual proportions are standard 
proportions, and estimated proportions are the product of two or more actual 
proportions (see section 2.3.2 for more information). For actual proportions, 
each data value is the proportion for a particular pen and the data set has a 
structure of pens within treatments. Let Pij be the proportion for pen j in 
treatment i. Then 
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where nij is the number of eggs or chicks in the pen for that variable and Yij is 
the number of the nij for which sorne characteristic was recorded (e.g. the number 
that survived a particular phase of the experiment). For proportions that have 
been converted from counts, nij is equal to the assigned value nu' 

The standard linear model for Pij is 

= 

where p is the overall average, Ti is the effect of treatment i and EiJ' is the 
random error associated with that pen. ( 

A complicating factor is that in general Eij is the sum of two components, one 
that depends on the denominator nij and one that is independent of nij' Models 
for Eij and its variance are discussed in sorne detail in section 4.6.5.1. For 
estimated proportions the situation is still more complicated (see section 
4.6.5.2) . 

4.6.4 Common Data Complexities 

1. Variation among the nij.!. nij will generally vary widely from pen to pen. (An 
exception occurs if the variable is a count that was converted to a proportion, 
in which case nij is constant and equal to the assigned value nu') 

2. The distribution of the Pij.!. The distribution of Pij is complicated by the 
fact that there are two error components. 

3. Extreme data values. Extraneous low values of Pij could occur due to 
reproductive failure in one or more pens for reasons unrelated to the treatments 
applied. 

4. Variation in the Ni.!. The number Ni of pens in a treatment can vary from one 
treatment to another if extra pens were assigned to the control, if pens have 
been removed from the experiment due to problems su ch as sickness, mortality or 
extraneous reproductive failure, or if there were no surviving eggs or chicks in 
one or more pens at the stage of the experiment when the variable was measured. 

4-20 



" 
4.6.5 The Variance of the Pen Proportions 

Modelling the Variance of Actual Proportions 
Consider an actual pen proportion Pij with denominator nij' Its variance 
of its error Eij , which can be considered to consist of two components: 

= 

is that 

Here bij is the 'binomial' component that represents the deviation of Pij from the 
expected value for that pen (i.e. sampling error), and (eb)ij is the 'extra­
binomial' component which represents the variation among these expected val~s 
from pen to pen within a treatment (i.e. real differences between pens). 

2 The variance O'pij of Pij is gi ven by the sum of the variances of bij and (eb) ij: 

= 

Since b
ij 

has a binomial distribution, O'bi/ is equal to Pij (l-Pij ) /nij' The form 
of O'ebij wlll generally not be known exactly, but i t is independent of nij' 

It appears to be reasonable to express O'ebi/ as Â Pij (l-Pij ) for sorne constant Â. 

The reason is that it should have the same tendency as O'bij2 to be a maximum when 
Pij is near .5 and to decrease to 0 as Pij increases to 1 or decreases to O. With 
this assumption, we can write 

= 

= 

The factor Pij (l-Pij ) can be removed from the variance by applying an angular 
transformation: 

Aij = arcsin(JPij) 

Note: An angular transformation is probably not necessary if the Pij are within 
the range of 0.2 to 0.8, as the factorPij(l-Pij) is relatively constant within 
that range. It is also possible for sorne cases that a different transformation 
would be more suitable for equalizing the variance. A discussion of 
transformations for proportions is presented in Appendix B. 
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The transformed proportions Aij èan be êxpressed ei ther in degrees or in radians. 
If they are expressed in degrees, their variance 0Aij2 is: 

= (l) 

The simplest situation for analysis purposes is one where 0Aij2 is cons,Fant or 
approximately c?nstant. This occurs if the factor [(l/nij ) + Âl is approximately 
constant, which,requires that Â be large enough that the variation in l/nij does 
not have much effect. 0Ai/ also will be constant for counts converted to 
proportions, since nij is set to nU in these cases and there is no variation in 
(l/nij ) . If 0Ai/ is constant, i t is not necessary to fit a model to i \' 

However in general i t is expected that 0Aij2 will not be constant, and must be 
modelled by estimating Â and substituting into equation (l). Sorne possible 

2 procedures for modelling 0Aij are discussed in Appendix B, section B.2.2. 

The Variance of Estimated Proportions 
Consider an estimated proportion Pij that is the product of two actual 
proportions: 

= 

where Qij and Rij are actual proportions. The variance of Pijis too complicated 
to model precisely. But a first order approximation can be derived from the 
formula for the variance of a product of two variables: 

(2 ) 

where p is the correlation coefficient between Qij and Rij. Using this formula 
it is possible to eS~imate 0Pi/ for each pen, provided that estima tes have been 
developed for p, 0Qij and 0Rij 

The procedure suggested is to derive models for 0Qij2 and 0Ri/' and to obtain an 
estimate of p from the data for Qij and Rij using the standard formula for a 
correlation coefficient. Estimates of p, oQij2 and 0Ri/ can then be entered into 
equation (2) to obtain a value for 0Pij2. . A corresponding procedure could bo 
developed for the case where Pij is the product of three or more actual 
proportions. 

Formula (2) can also be expressed in terms of angular-transformed variances 
substituting 0Ai/Pij (l-Pij ) for 0Pi/' and similarly for 0Qi/ and 0Rij2 
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4.6.6 Cases to be Considered 
The situation is quite complex for this variable class, as there are a wide 
variety of approaches that could be appropriate for a given data set depending 
on the circumstances. 

Least-Sguares Methods • Least-squares methods are expected to be the most efficient for analysing the pen 
proportions, provided', that they can deal wi th the complexi ties of the variance 
of the Pij . It is assumed that the transformation 

has been applied (with Aij measured in degrees) and that the variance of the Aij 
has the form 

= 

The optimum situation is one where <JA} is constant or approximately so, and 
unweighted least squares methods can be employed to analyse the Aij' But this 
situation is unlikely as discussed in section 4.6.5, since it would require that 
Â be large enough to smooth out any variation in (l/nij)' 

If <JAij 2 is not constant, then any least squares analysis will have to involve a 
weighting scherne in which weights are applied to the Aij' It will be necessary 
to fit a model to <JAi/' estimate it for each Aij' and set the weights to the 
inverse of these variance estimates. Sorne procedures for this are discussed in 
Appendix B, section B.2.2. 

Methods for Qualitative Data 
Methods for qualitative data may also be applicable, depending on the 
circumstances. For this to be the case it is necessary that the structure of the 
data first be reduced to that of a single proportion in each treatment. Methods 
for qualitative data such as contingency-table methods can then be applied, 
provided that they take into account the variance between pens in a treatment. 

As discussed in section 3.6, it is not valid to simply pool the pen proportions 
in a treatment and then analyse the pooled proportions as if they were simple 
proportions, as this does not take pen-to-pen variation into account. However 
a recently developed procedure appears to overcome this problem (Rao and Scott, 
1992). This procedure is described briefly in section 4.4.7, and in more detail 
in Appendix B, section B.1.1. 
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The suitability of Rao and Scott' s procedure for analysing variables in this 
class depends on its general validity, and also on whether it is flexible enough 
to accommodate data sets with moderate or large extrabinomial error terms. In 
its current form, the procedure assumes that the pen proportions Pij should be 
weighted by their denominators nij in calculating treatment proportion~. But 
this weighting scheme is probably not suitable for many AR data sets, since it 
assumes that the extra-binomial variance component is small (as discussed in 
section 4.6.5). 

To be applicable to AR data sets in general, it will probably be necessary to 
make the method more flexible by extending i t to include other weighting 'tchemes. 
Thus the applicability of this method depends on whether a suitable weighting 
scheme can be identified. It is currently being studied for its applicability 
to avian reproduction experiments and is tentatively recommended. 

Note: Rao and Scott's procedure is probably not suitable for data sets where 
there are irregularities in the distribution of the pen proportions. 

Non-Parametric Methods 
There may be data sets for which neither least-squares methods nor qualitative 
methods are suitable, for reasons such as irregularities in the data. For these 
cases the pen proportions can be analysed using non-parametric methods that are 
more robust and less affected by su ch problems. 

Summary: In aIl there are six cases to consider. The first three cases are 
those for which the transformed variance GAi/ is constant, and thus unweighted 
least squares methods area applicable. They correspond to the cases set out in 
section 4.3.4 in the discussion of measurement variables for adult birds. 

Case 1: GAij2 is constant over aIl treatments, and the number Ni of pens per 
treatment are aIl equal 

Case 2: 

Case 3: 

2 GAij is constant over aIl treatments, but the Ni are not aIl equal 

GAi/ is constant over aIl pens in a treatment, but varies 
treatment to another 
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However for most data sets (JAi/ will probably not be constant within treatments, 
so that cases 1 to 3 would not be appropriate. The choice is then among cases 
4, 5 and 6: 

Case 4: (JAi/ is not constant within treatments, but can be modelled in terms 
of nij.or other parameters. From this model a weighting schem~ 
can be derived. Thus weighted least squares methods can be 
employed. 

Case 5: The Pij can be combined into a single proportion in each treatment, 
and these treatment proportions can be analysed by methods fe{ 
qualitative data (taking pen-to-pen variation into account). 

Case 6: (JAij 2 can not be modelled, and qualitative methods can not be applied 
in a statistically valid manner. This requires that non­
parametric methods be employed. 

4.6.7 Recommended Methods for These Cases 
No guidelines have been set out concerning how to determine which case to select 
for a given analysis, as this is largely a matter of subjective judgement. 

Note - Each method involves a set of one-tailed tests at the 5% level, that test 
the effect of the test substance at each dose level. For more information on the 
methods see Appendix A. 

Cases 1 to 3. Unweighted Least Squares Methods 
The methods are the same as those listed for measurement variables for adult 
birds in section 4.3.5, cases 1 to 3. Since these cases are unlikely to occur, 
the methods are not repeated here. 

Case 4. Weighted Least Squares Methods 
- t-tests, each test compares the control mean with the me an for a particular 

dose level 

Linear trend tests, each test looks at the trend in treatment means from 
control up to a particular dose level 
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Case 5. Methods for Qualitative Data 
- Chi-square tests, each test compares the proportion for control with the 

proportion for a particular dose level 

- Fisher's exact tests, each test compares the proportion for control With the 
proportion for a particular dose level 

- Cochran-Armitage tests, each test looks at the trend in treatment proportions 
from control up to a particular dose level 

Case 6. Non-Parametric Methods 
- Mann-Whitney tests, each test compares control with a particular dose level 

- Rerandomization tests, each test either compares control with a particular 
dose level or looks at the trend in treatments from control up to a 
particular dose level 

- Jackknife tests, each test either compares control with a particular dose 
level or looks at the trend in treatments from control up to a particular 
dose level 
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5. IDENTIFICATION OF THE NOEC 

Position of CWS on the NOEC 
The position of the Canadian Wildlife Service is that for each variable analysed 
in an AR experiment, the dose level at which the treatment effect (if any) begins 
should be determined by identifying the NOEC (the highest dose level at whi~ 
there is no observed effect). Reasons for this are discussed in Mineau, Boersma 
and Collins (in press'). The NOEC i5 also specified in the OECD protocol as one 
of the results to be produced. 

Identifying the NOEC if Results are Consistent 
The procedure to identify the NOEC involves testing the effect at each dose level 
and examining thé pattern of significant and non-significant results. Normally 
this pattern is consistent from one dose level to another in that the effect will 
be non-significant for aIl dose levels up to a certain value and significant for 
aU levels above this value. However, exceptions can occur. Examples of 
consistent and inconsistent patterns are: 

Dose Consistent Inconsistent 
Low Not Sig. Not Sig. 
Medium Not Sig. Sig. 
High Sig. Not Sig. 

If a pattern is consistent the NOEC is determined by finding the lowest level at 
which there is a significant effect. The NOEC is the level immediately below 
this. For the consistent pattern above, the NOEC is the medium dose. If the 
effect is not significant at any of the dose levels the NOEC is at or above the 
highest dose level in the experiment. 

Identifying the NOEC if Results are Inconsistent 
If a pattern is not consistent, the situation is more difficult. It is up to the 
experimenter to decide how to identify the NOEC and to support his or her 
decision. One possible approach is to derive two different NOEC values, one by 
working down from the highest dose and one by working up from the lowest. Denote 
these by NOEC1 and NOEC2 respectively. 
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Working down from the highest dose, NOECl is the first dose level at which there 
is a non-significant effect. For the inconsistent pattern given on the previous 
page, NOECl is the high dose. Working up from the lowest dose, NOEC2 is the dose 
level just below the first level at which there is a significant effect. For the 
inconsistent pattern given on the previous page, the first leve~ wi th a 
significant effect is the medium dose and therefore NOEC2 is the low dose. 

NOECl and NOEC2 bracket the NOEC. In the event of an inconsistent pattern of 
results, both values could be presented with the statement that the NOEC is 
somewhere wi thin their range. An explanation could also be requiredjas to why 
this inconsistency occurred. t 
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6. DATA QUAVITY CONSIDERATIONS 

6.1 The Need for Data Quality Control Measures 
Statistical methods are in general conservative in detecting significant 
treatment effects. For AR experiments this presents the danger that if the data 
are of poor quality, then harmful effects of a test substance may go undetected. 
There is a particular:concern for data from thebirds in the control, since poor 
data quality for the control would cause the control mean to be an artificially 
low standard against which to compare the means for the different dose levels. 
It appears to be advisable to have measures in place that will help to ensure 
that the data quality is acceptable. ,( 

6.2 Measures Based on Variable Means 
The issue of data quality is given prominence in the OECD protocol, in which a 
number of criteria are specified that the data for the control birds should meet. 
These criteria set lower limits for the mean value for control for certain key 
variables: 

mortality among the adult birds 
number of 14-day surviving chicks 
shell thickness 

For certain other variables a normal range is set out, and the mean value for 
control is expected to be within or close to this range. These variables are 

number of eggs laid 
proportion of cracked eggs 
proportion of viable embryos 
proportion of eggs set that hatch 
proportion of hatchlings that survive to 14 days 

The other protocols do not discuss data quality to the same extent. The 1986 EPA 
protocol states that sickness, injuries or excessive mortality .among the chicks 
may indicate that the quality of the adult birds in the experiment was not 
adequate, but does notset out specifie quali ty control measures. The AS TM 
protocol does not consider the question of data quality. 

Data quality is also mentioned in sorne of the submissions, mainly with respect 
to the possible effects of sickness or in jury. Sorne of the submissions state 
that if there is disease or mortality in more than a certain proportion of the 
pens, the experiment may be rejected. 
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6.3 Measures to Detect Reproductive Failure 
A particular concern for AR experiments is the possibility that extraneous low 
data values can occur as a result of reproductive failure in particular pens, for 
reasons unrelated to the treatments applied (Picirillo and Quesenberry, 1980). 
The presence of su ch a value in the control pens would be of particular concern 

• as it would artificially lower the control mean. The presence of extraneous low 
data values would also reduce the power of statistical tests by artificially 
raising the pen-to-pen variation. 

Measures could be set out to detect reproductive failure in. the controliens, by 
specifying minimum acceptable pen values for certain variables just a minimum 
overall control values are specified in the GE CD protocol. 

Another possible approach for identifying cases of extraneous reproductive 
failure in particular pens is to employ a statistical procedure for detecting 
'outliers' or extreme data values that do not belong in a data set. This is a 
difficult area as many different procedures have been developed sorne for 
general use and sorne for specifie contexts. Care must be ta ken not to identify 
genuine data values by mistake. The choice of method is essentially a subjective 
one. Sorne possible approaches to the detection of outliers are discussed in 
Appendix B. 

6.4 Measures Based on Statistical Power 
There may also be a need for measures to ensure that the statistical tests being 
applied have sufficient power to detect treatment effects if those effects are 
large enough to be potentially harmful. The reason for additional measures is 
that ev en if treatment means are within an acceptable range and there are no 
obvious cases of reproductive failure, the power of the tests could be inadequate 
due to excessive pen-to-pen variation within treatments. 

A possible approach to deriving a measure to ensure sufficient statistical power 
could involve specifying a minimum size of treatment effect that the experiment 
should be able to detect. A possible minimum size is in fact suggested by the 
1982 EPA protocol which states that the objective of an AR experiment is ta 
detect reproductive impairment at or above ·20%. 
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Suppose that a figure of 25% is selected. For certain key variables the per cent 
effect of the test substance could be calculated at each dose level: 

Per Cent Effect = Control Mean - Dose Level Mean x 100% 
Control Mean 

If for any dose level the per cent effect is 25% or greater but the test of that 
dose level is not statistically significant, the power of the experiment could 
be considered to be insufficient. 
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A.1 Introduction 
In this appendix the methods are divided into three classes: 

Recommended Methods 
These are considered to be the most promising for AR experiments. They meet the 
objectives and the criteria for validity and efficiency set out in section 4.2.~ 
and are recommended in section 4. 

Potential Methods 
This section contains information on sorne additional methods that are relevant 
to AR experiments, but appear to be too complex to be applied on a routine basit. 

Methods Not Recommended 
These are methods that are currently employed, but are not recommended because 
they do not appear to meet the criteria set out in section 4.2.1. 
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A.2 Recommended Methods 

A.2.I Least Squares Methods 

A.2.I.I t-Tests 
Let Xij be the j 1 th data value wi thin treatment i. (Here Xij corresponds to a pen 
mean Xij in the notation of section 5.) For application to AR data sets, let the 
control be treatment I and the dose levels be treatments 2, 3, 4, etc1j Let aXij

2 

be the variance of Xij' let Ni be the number of data values (i.e. numbef of pens) 
in treatment i, let Xi be the me an for treatment i, and let Si2 be the variance 
between pen means within treatment i. Then 

and = 

There are a number of different versions of the t-test, with the choice in a 
2 gi ven case depending on aXij and Ni' 

2 Standard t-Test (aXij constant over aIl treatments 1 Ni aIl equal) 
This test is described in aIl statistics texts. Let N be the number of data 
values in each treatment. To test the difference between the control me an XI and 
the mean Xk for treatment k, first calculate the combined variance Slk2 among pen 
means within treatments land k: 

= 

The variance SXI_Xk2 of the difference XI-Xk is given by 

2 2S lk IN 

The test statistic to compare control and dose level k is 

which has a t distribution with 2(N-I) degrees of freedom. 
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t-Test Adapted to Unequal Ni.-U!Xi/ constant over aIl treat., Ni not aIl equal) 
This test is similar to the standard t-test, with sorne adjustments. The combined 
variance SIk2 wi thin treatments 1 and k is 

= 

The variance of the difference XI-Xk is given by 

= 

The statistic is 

which has at-distribution with [(NI-l)+(Nk-l)] degrees of freedom. 

t-Test Adapted to Unequal Variances (OXij 2 constant within treatments but varies 
from one treatment to another) 
Here further adjustments are necessary. 
not combined into a common estimate. 

and the statistic tw is 

The Si2 are employed directly and are 

tuv does not follow a simple t-distribution, and this causes the process of 
testing tuv to be somewhat involved. There are several different test 
procedures, which are described in most statistical texts (e.g. Snedecor and 
Cochran, 1967, p.115). The most powerful is the Welch-Aspin test (Welch, 1947) 
which requires special tables. 

An alternative procedure developed by Cochran is slightly less powerful but more 
commonly used as it employs the standard t-table (Cochran, 1964). If NI is equal 
to Nk the significance of tuv can be determined directly from the t-table using 
Nl-l degrees of freedom. However if NI is not equal to Nk, the t-table can still 
be used but a rather complicated calculation is required to get the significance 
level of tuv. A good discussion on the effects of une quaI variances is given in 
Miller (1986). 
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t-test for Weighted Analysis (OXij 2 varies within treatments) 
Let wij be the weight applied ta Xij . Assume the wij are the inverses of the 
variance of Xij . The mean for treatment i is the weighted average XWj of the Xij : 

where 

The variance of XWj-XWk is = 

and the test statistic is = 

This formula is actually a special case of the formula for the mean of a 
stratified sarnple, as discussed in sorne texts on sampling (e.g. Cochran, 1977, 
p. 91-96). The distribution of tw .can be approximated by at-distribution with 
a reduced number of degrees of freedom. The test uses the t-table, but the 
effective number ne of degrees of freedom must be worked out. A formula for this 
number was derived by Satterthwaite (1946). For our case the formula is 

= 

A.2.1.2 LSD Tests 
Least Significant Difference (LSD) tests are described in most standard texts 
(e.g. Snedecor and Cochran, 1967, p.271). They are the same as t-tests, except 
that the variance SXI-Xk2 of each mean difference Xj-Xk is calculated using the 
data from aIl of the treatments rather than the data from the two treatments in 
the test. This increases the accuracy of the variance compared ta that for the 
t-test. 

Two different versions of the LSD test are described - one with equal numbers 
Ni of data values per treatment and one with unequal Ni. The notation used is 
the sarne as in section A.2.1.1. For bath versions the variance 0Xi/ of the data 
values must be approximately constant over aIl treatments. The LSD test is not 
applicable ta data sets with unequal variances. 
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Standard LSD Test (OXij 2 constant over aIl treatments, Ni aIl equal) 
Let N be the number of pens per treatment and let R be the number of treatments. 
The combined variance S2 within aIl treatments is: 

S2 = [LiLj (Xij-Xi )2] /[R(N-1)] 

The variance of X1-Xk is SX1-Xk 
2 = 2S2/N 

and the test statistic is t LSD = (X1-Xk) /SXI-Xk 

t LSD has at-distribution with R(N-1) degrees of freedom. 

LSD Test Adapted to une~ual Ni.J2:xij 2 constant over all treat., Ni not all equal) 
The combined variance S within aIl treatments is: 

= 

= 

and the test statistic is = 

t LSD has at-distribution with degrees of freedom equal to L(Ni-1). 

A.2.1.3 The Williams Test 
This test, described in Williams (1971) and Williams (1972), was designed 
specifically for experiments that consist of a control and a series of dose 
levels of a test substance. It is only applicable to data sets where the 
variance 0Xi/ of the data values is approximately constant. The number Ni of 
data values per treatment must be the same for aIl dose levels, and the number 
of data values for control must be equal to or greater than for the dose levels. 

The test is similar to an LSD test, the only difference being that the treatment 
means may have been adjusted prior to the test. This feature is designed to 
overcome certain problems of interpretation that can occur with t-tests or LSD 
tests. 
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Wi th t-tests or LSD tests i t can happen that the resul ts of the tests at 
different dose levels are not consistent with each other. It is possible to have 
a significant effect at a lower level but a non-significant effect at a higher 
level (this problem is discussed in Appendix B, sections B.2 and B.3. For 
example suppose that the treatments are a control C and dose levels Dl, D2 and 
D3, and that the effect at D3 is less than at D2 (see Figure Al). It is possible 
that the effect at D2 is significant while that at D3 is not significaht. 

Williams 1 innovation is to remove the possibility of inconsistent resul ts in 
these cases by adjusting the dose level means. In this process, the problem 
means are averaged and the average is then substituted for these means. This 
produces a set of treatment means that form a monotonie series. In tnt example 
the original D2 and D3 means would both be replaced by the D2-D3 average . 

• 
* * 

• 
* • 

* 

c Dl D2 D3 c Dl D2 D3 

Befare Adjustment After Aqjustment 

Figure Al. Averaging of consecutive means to produce a monotonie series. 

When the adjusted dose level means are compared to the control mean, the results 
are always consistent which simplifies the interpretation of the results. 

Standard Williams Test (UXij 2 constant over all treatments, Ni aIl egual) 
This has the sarne form as the standard LSD test, in that each dose level me an i8 
cornpared to the control mean using a within-treatrnents variance that is based on 
the data from all treatments (see sectionA. 2.1. 2) . The variance SXI-Xk 2 of the 
difference between the control and dose level means is the same as in an LSD 
test, and the test statistic t W1L is given by: 

= 
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If the means have been adjusted prior to analysis, X'k is the adjusted mean. If 
they have not been adjusted X'k is the original mean. The control mean Xl is 
always the original mean. The test requires special tables of critical values, 
since the distribution of the test statistic deviates from the t-distribution 
because of the provision for averaging of dose level means. Williams' 1971 papllr 
gives the table of critical values for the one-tailed version of the test and the 
table for the two-tailed version is in his 1972 paper. 

Williams Test Adjusted for Extra Control Values (OXij 2 constant over aIl 
treatments, Ni aIl egual except for extra control pens) 
This Ms the same form as the LSD test for unequal Ni (see section A. 2.1. 2). The 
variance SXl-Xk2 of the difference between the control and dose level means is the 
same as in an LSD test for unequal Ni' and the test statistic tWILL is given by: 

= 

If the means have been adjusted prior to analysis, X'k is the adjusted mean. If 
they have not been adjusted X'k is the original mean. The control me an Xl is 
always the original mean. Critical values for this test are obtained by 
adjusting the critical values for the standard Williams test. Williams' 1972 
paper gives a formula for this adjustment. 

The Williams test has advantages over the t-test and the LSD test concerning ease 
of interpretation of the results, but would probably have only limited 
application for AR data sets. The reason is that it can not be employed in cases 
where the number of pens per treatment varies among dose levels or where the 
accuracy of the pen means is not constant. 

A.2.1.4 Trend Tests 
Trend tests are carried out over a set of consecutive treatments, and so are only 
applicable to data sets where the treatments are ordered. The test for trend 
over a set of treatments involves the linear contrast for that set. These 
contrasts are given in most statistical texts. The coefficients for contrasts 
of 2 to 5 treatments are: 
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2 Treatments: 1, -1 
3 Treatments: 1, 0, -1 
4 treatments: 3, 1, -1, -3 
5 treatments: 2, 1, 0, -1, -2 

; 

For example if,an experiment consists of a control C and increasing dose levels 
Dl' D2 and DV and the treatment means are MC' MOl' M02 and M03 ' the linear 
contrasts from C to Dl, C to D2 and C to D3 (for testing for effects at Dl, D2 
and D3 respecti vely) are: 

C to Dl: MOI - MC t 
C to D2: M02 - MC 
C to D3: 3M03 + M02 - MOI - 3MC 

Note: The trend tests for effects at Dl and D2 are the same as the LSD tests. 

Note: It is assumed that the control and the dose levels can be treated as if 
they are all equally spaced along sorne axis. If this is not reasonable, an 
alternate spacing will have to be devised and different linear contrasts worked 
out. 

As with the t-test and LSD test, there are a number of different versions of the 
trend test that could be applicable to AR data sets. The appropriate choice for 
a given case depends on the variance aXij2 of the pen means (or proportions) and 
on the number Ni of pens per treatment. The notation used is described in 
section A.2.l.l. 

Standard Trend Test (aXij 2 constant over aIl treatments, Ni aIl equal) 
The trend test for 2 or 3 treatments is the same as the LSD test. To run a trend 
test for 4 or more treatments, let the linear contrast be 

Thus for a 4-treatment contrast the values of Âl to Â4 are -3, -l,land 3. 

Then calculate the combined variance S2 within aIl treatments: 

= 
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where N is the number of 
treatments. The variance 

where SXi 
2 is the variance 

The test statistic is 

data values 
S 2 of F F is 

of Xi 

S 2 
F 

and 

S 2 
F 

= 

is 

= 

= 

~: 

per treatment and R 

r 2 2 Âi SXi 

equal to S2 IN. Thus 

which has at-distribution with R(N-l) degrees of freedom. 

is the number of 

Trend Test Adapted to Unequal Ni..JQXij 2 constant over an tr. , 
The test for 2 or 3 treatments is the same as the LSD test. 
treatments, let the linear contrast be 

Ni not aIl equal) 
To test 4 or more 

F = B·x. 1 1 

The combined variance S2 within aIl treatments is 

The variance of F is 

= 

S 2 
F = " 2 2 LÀ' SX' 1 1 = 

since SXi2, the variance of Xi' is equal to S2/Ni • The test statistic t TR is 

= 

which has at-distribution with degrees of freedom equal to r(Ni-l). 

Trend Test Adapted to Unequal Variances (UXij 2 constant within treatments but 
varies from one treatment to another) 
For this case the within-treatment variances Si2 are employed directly and are 
not combined into a common estimate. The test for 2 or 3 treatments is the same 
as the t-test for unequal variances. To test 4 or more treatments, let the 
linear contrast be 

F = 
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The variance of F is 

The test statistic 

has a distribution that approximates at-distribution. Critical values can be 
obtained from the t-table; but a special calculation is required for the 
effective number ne of degrees of freedom. An approximate formula is given by 
Satterthwaite (1946): { 

(Al) 

Trend Test for Weighted Analysis (aXij 2 varies within treatments) 
Let Wij be the weight applied to Xij . Assume that Wij is the inverse of the 
variance of Xij . The mean for treatment i is the weighted average XWi of the pen 
means: 

where 

The test for 2 or 3 treatments is the same as the weighted t-test. To test 4 or 
more treatments, let the linear contrast be 

F = ): ÂiXWi 

Its variance is S 2 
F = L 2 2 Ài SXWi = LÂ//Wi 

. S 2 Slnce XWi' the variance of XWi' is equal to l/Wi . 

The test statistic is 

which has a distribution that approximates a t-distribution. The t-table can be 
used for critical values, but a special calculation is requiredto get the 
effective number ne of degrees of freedom. Equation (Al), which gives ne for the 
case of unequal variances (Satterthwaite, 1946), can be modified by substituting 
(l/Wi ) for (Si2/Ni): 
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" A.2.1.5 The Abelson-Tukey Test 
This test, described in Abelson and Tukey (1963), is similar to a trend test but 
employs a contrast which gives greater weight tothe more extreme treatments and 
is intermediate between a trend test and a t-test or LSD test. It assumes equal 
nurnbers of data values per treatment and a constant variance for the data values. 
As with the trend test, it is only applicable to sets of 4 or more ordeq~d 

treatments and it assumes that the treatments are equally spaced in sorne scale. 
The coefficients for.4 and 5 treatments are: 

4 treatments: -.866, - .134, .134, .866 
5 treatments: -.894, -.201, 0, .201, .894 

For the case of a control C and dose levels Dl, D2 and D3, the Abelson-Tukey 
contrast for C to D3 would be (.866M03 + .134M02 - .134MOI - .866MC) where MC' MOI' 
M02 and M03 are the treatment means. The variance for this contrast can be 
obtained frèm the formula for a linear contrast given in section A.2.1.4 for the 
standard trend test, by substituting -.866, -.134, .134 and .866 for the Âj' 

According to Abelson and Tukey, their contrast is the optimal one for situations 
where the pattern of treatment effect is monotonie but unknown. The contrasts 
are optimal in the sense that they maximize the minimum power of the test over 
aIl possible monotonie treatment effect patterns. (The minimum power of a test 
occurs when the real pattern is as far as possible from that of the contrast.) 

Abelson and Tukey also suggest the use of a slightly modified version of their 
contrast, as an alternative that is simpler than the original and almost as 
efficient. In this contrast the coefficients are the same as those for a linear 
trend, except that the coefficients for the highest and lowest treatment are 
doubled. For example for a set of 4 ordered treatments the contrast for the 
linear trend test is (-3, -1, l, 3), and that for the modified version of the 
Abelson-Tukey test is (-6, -1, 1, 6). They refer to this as the 'linear-2' 
contrast. 

The standard Abelson-Tukey test would only be applicable to AR data sets with 
equal nurnbers of pens per treatment and constant variance of the pen means. 
However the 'linear-2' variation of it appears to be applicable to any data set 
for which the standard trend test is applicable. To derive the 'linear-2' 
contrast for a given situation, identify the appropriate trend test and double 
the coefficients for the control and the highest dose level. 
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A.2.2 Methods for Qualitative Data 

A.2.2.1 The Chi-Square Test (to compare 2 treatments) 
The chi-square test is the standard test to compare treatments for, data in 
contingency tables, and is described in any statistics text. It is applicable 
to data sets f,or proportional variables in which the data have been reduced to 
a single proportion per treatment. The data is then in the form of a 2 X N 
contingency table, e.g. 

Control Dose 1 Dose 2 tose 3 
No. of Eggs That Hatched x x x x 
No. of Eggs That Did Not Hatch x x x x 
Total (No. of Eggs Set) x x x x 

To compare two treatments, such as control and a particular dose level, first 
select the appropriate 2 X 2 subset of the table. The subset to compare control 
and dose level 3 for the above example is 

Control Dose 3 Total 
No. of Eggs That Hatched x x RI 
No. of Eggs That Did Not Hatch x x R2_ 
Total (No. of Eggs Set) CI C2 T 

A table of expected values is obtained from the row and column totals. The 
expected value Eij for the i'th row and j'th column is 

= 

The test statistic X2 is then calculated from the squares of the deviations of 
the Eij from the original data values 0ij: 

x2 has a chi-square distribution with 1 degree of freedom if certain conditions 
are satisfied. Its critical values are in standard tables. The critical value 
for a one-tailed test at the 5% level is 2.71. 
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One condition to be met is that the 0ij for"any row must represent the results 
of independent trials. (This condition would not hold if the table were produced 
bysimply pooling data from aIl pens within a treatment.) The other is that the 
Eij must not be too small. The usual restriction is that the Eij should aIl be 
5 or greater, although sorne texts suggest that it is permissible to have sorne 
values of Eij that are under 5. J 

Alternatively the test statistic zZT (the square root of xzi) may be used, which 
follows a standard normal distribution. A positive or negative sign is assigned 
to Z2T depending on whether the per cent for the dose level being tested is 
greater than or less than the per cent for control. The cri tical value fO{ a 
one-tailed test at the 5% level is 1.645. 

One point at issue is the question of whether or not to make a 'correction for 
continuity' as suggested in sorne texts. To make this correction, replace each 
(OWEij) in X2 by (IOWEijl-O.5). If IOWEijl is less than 0.5, then replace 
(Oij-Eij ) by O. This reduces the value of the test statistic considerably if the 
data values are small. Sorne authors (e.g. (Miller, 1986) or (Conover, 1974)) 
advise against this correction and claim that the test is then too conservative. 

A.2.2.2 Fisher's Exact Test 
This test, discussed in most statistics texts, is applicable to 2 x 2 tables and 
is the test generally recommended when the expected values are too small for the 
chi-square test to be applied. The first step in the test is to identify aIl 
possible 2 x 2 tables that have the same row and column totals as the original 
data. For the data set 

Control Dose 3 Total 
No. of Eggs That Hatched 8 2 10 
No. of Eqqs That Did Not Hatch 3 4 7 
Total (No. of Eggs Set) 11 6 17 

the set of all pOSSible tables with the same totals is 

10 0 9 1 8 2 7 3 6 4 5 5 4 6 
1 6 2 5 3 4 4 3. 5 2 6 1 7 0 

These tables have been arranged in the order of their treatment effect, the 
leftmost table having the maximum negative effect of the dose level and the 
rightmost table the maximum positive effect. 
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The probability is calculated of obtaining each table in the series, under the 
assumption that there is no difference between the treatments (assuming fixed row 
and column totals). Let a, b, c and d be the data values in a table, Ri and Cj 
be the row and column totals, and T be the overall total: 

The probabilityP of obtaining a given table by chance is 

P = gl~2~1~2l 
al bl cl dl Tl 

For our example, these probabilities are 

Prob: 

10 0 
l 6 

.0006 

9 1 
2 5 

.0170 

8 2 

3 4 

.1273 

7 3 
4 3 

.3394 

6 4 

5 2 

.3563 

5 5 
6 1 

.1425 

4 6 
7 0 

.0170 

To test whether there is a significant negative effect for this dose level using 
a one-tailed test, we sum the probabilities of the actual data set plus the other 
sets in the same tail: 

Sum of probabilities = .0006 + .0170 + .1273 = .1449 

Since this is greater than .05, the test is not significant at the 5% level. 

In general Fisher' s exact test gives resul ts that are very similar to those 
obtained for the chi-square test with the continuity correction (described in 
section A.2.2.1). Like this latter test, it has also been criticized as being 
too conservative (e.g. (Kempthorne, 1979), (Upton, 1982) and (Rice, 1988». 
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A. 2.2.3 The Cochran-Armi tage Te.st 
This test, described in Cochran (1954) and Armitage (1955), tests for linear 
trend in a set of ordered treatments within a contingency table. Consider the 
following table: 

Control Dose 1 Dose 2 Dose 3 • No. of Eggs That Hatched x x x x 
No. of Eggs That Qid Not Hatch x x x x 
Total (No. of Eggs Set) x x x x 

Let Pi be the proportion and Ni be the total for each treatment. For c;pr 
example, Pi = (Eggs That Hatched)j(Eggs That Did Not Hatch) and Ni = (Eggs Se~. 

In order to carry out this test it is necessary to define a treatment scale and 
to assign each treatment a value Ui on this scale. For example the control could 
be assigned a value of Uj = 1 and the dose levels assigned values of Ui = i for 
i = 2, 3 and 4. The test involves the calculation and testing of the trend in 
Pi as Ui increases. The formula for the trend coefficient bAC is 

= 

where Pw and Ûw are weighted means of the Pi and Ui respectively, weighted by Ni: 

and 

The test statistic is 

which has a chi-square distribution with 1 degree of freedom. The critical value 
for a one-tailed test at the 5% level is 2.71. 

Alternatively, the test statistic zAC (the square root of XAC2) may be used, which 
has the standard normal distribution. A positive sign is assigned to zAC if bAC 
is positive and a negative sign if bAC is negative. The critical value for a 
one-tailed test at the 5% level is 1.645. 

The formula for bAC is actually the same as that for a trend coefficient in a 
weighted linear regression of Pi on Ui wi th weights of Ni' but i ts variance 
differs somewhat from the corresponding regression variance because i t is 
calculated from the assumption that the Pi are binomially distributed rather than 
from the residual mean square of the regression. This method is also mentioned 
in Snedecor and Cochran (1967), p. 246. 
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A.2.3 Non-Parametric Methods 

A.2.3.1 The Mann-Whitney Test 
This test (and the Wilcoxon rank test which is equivalent to it) is tpe rank­
based counterpart to the t-test. It is widely employed and is described in most 
statistics texts. To compare two treatments using this test, assign each data 
value its rank within the combined data set. 

For example consider the data set 

with ranks 

Treatment 1 
.85 .45 .60 .25 .78 
10 5 8 3 9 

Treatment 2 
.27 .10 .58 .49 .07 
4 2 7 6 1 

The sum of the ranks is then calculated for each treatment. The test statistic 
is the smaller of thè two sums. The significance of the treatment effect is 
obtained from a special table of critical values. In situations with well­
behaved data this method is less powerful than the t-test which is its least-
squares counterpart. 
irregularities. 

However i t is more robust and less affected by data 

A factor to consider in using the Mann-Whitney test is that it compares the mean 
ranks of treatments rather than treatment means. In doing so i t makes the 
assumption that the distribution of the data values is the same wi thin each 
treatment, so that if the mean ranks are different the me ans will be different 
also. This may be a problem for AR data sets where the distributions are not the 
same for aIl treatments, su ch as those where the within-treatment variance is 
larger in one treatment than another. 

Another potential problem is that of tied ranks. When a group of data values are 
equal, they are each assigned the average rank for the group. In data sets where 
the data are categorical or discrete in nature, it is possible to have a large 
number of tied ranks and this can result in a test statistic that is erratic and 
non-normally distributed ((Lehman, 1961) or (Klotz, 1966)). Recent developments 
in statistical computing have made it feasible to overcome this problem by 
generating the exact distribution of the test statistic (Mehta et al, 1984), 
although this adds considerably to the amount of work required. 
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A number of papers have compared the performance of the Mann-Whitney test with 
that of the standard and the weighted t-tests. The data sets employed in these 
comparisons were similar to those that occur in AR experiments in that the data 
values were proportions with varying denominators. Among these papers are 
Haseman and Soares (1976), Gladen (1979), and Shirley and Hickling (1981)). They 
found that there was sorne loss of efficiency for the Mann-Whitney test relative 
to both the weighted.and unweighted t-test, although the loss was relatively 
small. This loss was attributed to the fact that the Mann-Whitney test did not 
take into account the differences in variance among the proportions. The Mann­
Whitney test is also described in general references on rank-based methods s~çh 
as Conover (1971), and Van der Laan and Verdooren (1987). ~ 

A.2.3.2 The Jackknife Method 
Thi.s is another method for dealing with data sets that have complications su ch 
as irregular distributions or data values of varying but unknown accuracies. It 

is relatively simple to apply as it does not require the use of complex models, 
but is generally not described in standard texts. A good reference for this 
method is Miller (1974). 

The following is the procedure to estimate a treatment proportion from a set of 
pen proportions using the jackknife method (the procedure would be the same to 
estimate a treatment me an from a set of pen means). Let (Pi) be a set of pen 
proportions for a particular treatment, with each Pi being derived from 

For example ni could be the number of eggs set in a pen and xi could be the 
number of these that hatch. The first step is to obtain a preliminary estimate 
PpL of the treatment proportion by simply pooling the proportions: 

= = 

However, for reasons discussed earlier in this report, PpL may not be a 
satisfactory estimate as it weights each Pi by ni. The jackknife method derives 
an improved estimate PJK of the treatment proportion that is more efficient and 
less biased than PpL' and also provides a variance estimate for PJK that takes 
pen-to-pen variation into account. 
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The next step in the jackknife test is to calculate for each pen the pooled 
proportion that would be obtained if the proportion for that pen were removed 
from the data set. Denote by P- i the pooled proportion with Pi removed: 

• 
where k takes on aIl values except j. Then for each pen calculate the pseudo­
value Ri: 

= 

where N is the number of pens. 
{ 

The j ackknife estimate PJK of the treatment 
proportion is derived from the Ri' as is its variance: 

= fi = 

and 

PJK is in fact a weighted mean of the Pi' with the weights being a complex 
function of N and the ni. The result is to give more importance to the data 
values wi th larger ni. 

The jackknife method has been employed on a test basis for analysing proportions 
by Gladen (1979) and by Crump and Howe (1988). They found it to perform about 
as efficiently as the standard t-test or the Mann-Whitney test. However, one 
problem is that in sorne cases the weights are not that stable and the value of 
PJK can be somewhat erratic. For example under extreme circumstances the value 
obtained for PJK could be outside the range of the pen means Pi. 

If applied to AR data sets, the jackknife method would only be the first step in 
the analysis and would provide estimates of treatment means and their associated 
variances. It would then be necessary to carry out statistical tests on these 
means, su ch as a sequence of t-tests or trend tests. 
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A.2.3.3 The Rerandomization Method 
Another non-parametric method is the rerandomization method, also referred to as 
the randomization method or the permutation method. In this method the 
significance of treatment effects is tested by means of new data sets that are 
generated by carrying out permutations of the original data values. In these new 
data sets the data values are the same as in the original set but are assignefl 
to treatments by random allocation. 

To illustrate this permutation process, consider a simplified data set with 
treatments C, Dl and D2, and two data values per treatment (for example these 
values could be pen proportions): 

The following 5 sets 

C Dl D2 
.30 .25 .15 
.50 .35 .20 

can be generated by reassigning the data values for Dl and 
D2 to different treatments while retaining the original values for treatment C: 

C Dl D2 C Dl D2 C Dl D2 C Dl D2 C Dl D2 
.30 .20 .15 .30 .15 .20 .30 .20 .15 .30 .15 .20 .30 .15 .25 
.50 .35 .25 .50 .35 .25 .50 .25 .35 .50 .25 .35 .50 .20 .35 

If the values for treatment C were included in the reassignment process, a total 
of 89 permuted data sets could be produced. The number of possible permutations 
increases exponentially with the size and complexity of the data set, so that for 
a typical AR data set the number would be astronomically large. 

To carry out a statistical test, the appropriate test statistic is calculated for 
the original data set and for each of the generated sets (e.g. the statistic 
might be the difference between the D2 and C means). If the value of the 
statistic for the original set is wi thin the most extreme 5% of the set of 
statistic values (from the original plus the permuted sets), the test result is 
considered to be significant at the 5% level. No tables of critical values are 
required. 

The rationale for this conclusion is that original data set plus the permuted 
sets constitute a workable approximation to the set of aIl possible outcomes of 
the experiment under the assumption that there is no treatment effect. Thus the 
distribution of the values of the test statistic obtained from these sets 
approximates the actual distribution of the test statistic. 
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Although it is very calculation-intensive, the rerandomization method should be 
more robust that least squares methods in dealing with irregular distributions 
or in handling situations where the data values are of varying but unknown 
accuracy (Edgington, 1987). The reasoning is that with the rerandomization 
approach it is not the actual value of a test statistic that is important, but 
its value relative to the values for other permuted sets. If an outli~r tends 
to affect the value for aIl permutations in the same direction, the effect on the 
relative value.of the test statistic would not be that large. 

It may be necessary to select a simpler test statistic than would be the case for 
least squares analysis. For example if the treatment means are O~t varying 
accuracy, the optimum test statistic might be a difference of weightld means. 
But since.no linear model is developed, it would probably be necessary to employ 
a simple statistic su ch as a difference of unweighted means. 

The concept of rerandomization is well established in specifie situations. 
Fisher' s exact test involves a permutation of contingency table data, for 
example. Rank-based methods are also based on the principle of permutation of 
data values, as is the jackknife method. However only recently has 
rerandomization become feasible for moderate or large data sets because of the 
computing power needed to generate the permuted sets. For large data sets, where 
the generation of aIl permuted sets is still an intractable problem, a 
rerandomization test can still be carried out by generating a large random sample 
of permuted sets and treating it as a workable approximation to the complete set 
«Edgington, 1980), (Miller, 1986) or (Crump and Howe, 1988». Sorne decision is 
required as to the number of permuted sets to generate. 

The rerandomization approach appears to be receiving more attention because its 
use is facilitated by the increase in computing power generally available. For 
example Petrondas and Gabriel (1983) have employed it for a multiple comparison 
test using a multi-stage procedure. It has recently been applied to proportional 
data from a teratogenicity experiment, with encouraging results (Crump and Howe, 
1988). For dealing with difficult data situations the power of the 
rerandomization method appears to be as good as or better than least-squares 
methods and rank-based methods. 

However, the suitability of the rerandomization method for regulatory purposes 
has been questioned in sorne papers. One perceived drawback is that it is not 
possible to calculate exact confidence levels (Haseman and Kupper, 1979). 
Another is that the calculations are too complex for routine use (Shirley and 
Hickling, 1981). 
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A.3 Potential Methods 

A.3.l Least-8guares Methods 

A.3.l.l Bartholomew~s Test 
This test, described in Bartholomew (1959), is a least-squares test applicable 
to experiments with ordered treatments. It is similar to a trend test, except 
that it tests for any monotonie pattern of treatment effects rather than for qne 
specifie pattern. t 

Consider an experiment that consists of a control C and increasing dose levels 
Dl, D2 and D3, in which a test is to be made for a monotonie decrease in the 
underlying treatment means PC' PDI' PD2 and PD3 as the dose level increases. 
Bartholomew's test tests hypothesis Hl against the null hypothesis HO' 

wi th Pc > PD3 

HO: Pc = PDI = PD2 = PD3 

The test involves the application of an averaging process to remove any 
inconsistency in the series of mean values. This process is the same as that 
employed for Williams test in which pairs of consecutive treatment me ans are 
replaced by their average (as illustrated in section A.2.l.3). 

In this example, let the treatment means obtained from the data be MC' MDI' MD2 
and MD3.If the means are in the expected pattern of MC ~ MDI ~ MD2 ~ MD3 no 
adjustment is necessary. But if there is a deviation from this pattern, for 
example if MD2 < MD3 , then both MD2 and MD3 would be replaced by their average. 
This averaging is repeated if necessary, until a series of adjusted means Mi' is 
obtained su ch ·that MC' ~ MDI' ~ MD2 ' ~ MD3 ' . 

Assuming that the treatment means are of equal accuracy with common variance 8M
2, 

the test statistic is 
" 

where ~ is the average of the treatment means Mi (and also of the Mi'). 
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" If the treatment means are of varying accuracy, the test can still be applied 
using weighted analysis. The averaging process to produce a monotonie series of 
treatment means Mi' involves the weighted averaging of consecutive 
means. The weights are 1/SMi

2, where SMi2 is the variance of Mi' 
statistic is 

where Mw is the weighted mean of the Mi using weights of 1/SMi
2. 

treatment 
The test 

Unfortunately, 'i has a complex distribution that is a mixture of several 
different chi-square distributions, and special calculations are r~uired to 
obtain critical values. This complication is a result of the possi~ility of 
averaging to obtain a monotonie series of means. For this reason it is probably 
not suitable for application to AR data sets. 

A.3.1.2 Pattern-Specifie Tests 
These tests, described in Ruberg (1989), are interesting because they are 
designed specifically for experiments wi th ordered treatments, and invol ve linear 
contrasts that are tailored to specifie patterns of treatment effects. The 
treatments are assumed to be equally spaced in sorne scale. Unfortunately these 
tests require the treatment means to have equal accuracy, and so are probably not 
applicable to AR data sets in their present form. 

A.3.1.2.1 Step Contrasts 
Step contrasts test for asudden change in response at one of the dose 1evels. 
Each contrast compares the mean of all dose levels that are at or above' a 
particular value with the mean of aIl levels below that value. Consider an 
experiment with a control C and dose levels Dl, D2 and D3, in which the treatment 
means are expected to decrease as dose level increases. Let the treatment means 
be MC' MDl' M02 and M03' The step contrast (3MC - MDI -' M02 - M03 ) tests for a 
sudden drop in the mean between control and Dl, the contrast (Mc + MDI - M02 - M03 ) 
tests for a drop between Dl and D2, and (MC + MDl + M02 - 3MD3 ) tests for a drop 
between D2 and D3. • 

In the test procedure, all step contrasts are tested together. For each contrast 
F, a variance SF2 is derived from the within-treatment variances and at-value 
is calculated: 
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The highest t-value is identified and tested using a special table of critical 
values. If it is significant, it is concluded that a change in treatment effect 
occurs at that point in the series of treatments. The NOEC is also identified. 
For example if the contrast that has the highest t-value for our experiment is 
(MC + MOI - M02 - M03 ) and the test is significant, it is concluded that t~e 
treatment effect changes between Dl and D2 and that the NOEC is at level Dl. 

The method is most use fuI for cases where a sudden response occurs at sorne dose 
level but it is not known where this threshold occurs. It has the advantage that 
the NOEC is identified by a single test rather than by a series of tests. The 
disadvantage is that the test is inefficient at identifying treatment effe~s 
that increase linearly as the dose level increases. 

A.3.1.2.2 Basin Contrasts 
These test for a response pattern in which there is no response to the treatments 
up to a certain level and a linear response thereafter as the level increases. 
For example, consider an experiment where the treatments are a control C and a 
set of increasing dose levels Dl, D2 and D3, with treatment means expected to 
decrease as the dose level increases. Let the treatment means be Mer MOI' M02 and 
M03' The contrast (3Mc + MOI - M02 - 3M03 ) tests for a linear decrease starting 
at C, (3Mc + 3MOI - M02 - 5M03 ) tests for a linear decrease starting at Dl, and 
(MC + MOI + M02 - 3M03 ) tests for a decrease starting at D2. 

In the test procedure, all basin contrasts are tested together. For each 
contrast F, a variance SF2 is derived from the within-treatment variances and a 
t-value is calculated: 

The highest t-va1ue is identified and tested using a special table of critical 
values. If it is significant, it is concluded that a change in treatment effect 
occurs at that point in the series of treatments. The NOEC is also identified. 
For exarnple if the contrast that has the highest t-value in our experiment is 
(3MC + 3MOI - MD2 - 5MD3 ) and the test is significant, i t is concluded that there 
is a linear treatment response starting at Dl and that Dl is the NOEC. 
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The method is designed for cases where there is no response up to a sorne 
threshold level and a linear response thereafter. It has the advantage that the 
NOEC is identified.· by a single test rather than series of tests. Sorne 
disadvantages are that it is difficult to identify the correct level at which the 
linear response starts because the three contrasts are very similar, and that it 
is inefficient.at identifying treatment effects that involve sudden changes at 
certain dose levels. 

A.3.1.2.3 Helmert Contrasts t 
This third set of contrasts are similar to step contrasts in that they also test 
for a sudden jump at a particular dose level. They compare a particular 
treatment me an with the average of the means for aIl treatments that are lower 
in the order. For exarnple, consider an experiment where the treatments are a 
control C and a set of increasing dose levels Dl, D2 and D3, with treatment means 
expected to decrease as dose level increases, and let the treatment means be Mc, 
MOl' M02 and M03· The first Helmert contrast is (MC - MDI) and tests for drop in 
the mean between control and Dl, the second (MC + MDI - 2M02 ) tests for a drop 
between Dl and D2, and the third (MC + MDI .+ M02 - 3M03 ) tests for a drop between 
D2 and D3. 

Unlike step and· basin contrasts, Helmert contrasts are tested sequentially 
starting with the lowest dose. For each contrast F, a variance SF2 is derived 
from the within-treatment variances and at-value is calculated: 

For our experiment, the first test would be of Dl against control. If the result 
is significant, it is concluded that there is a jump in response between C and 
Dl and that C is the NOEC. If it is not significant, the second contrast is then 
tested to compare D2 to the average of C and Dl and so on. Because the contrasts 
are orthogonal, the tests of the different contrasts are independent of each 
other. Critical values for the tests can be calculated from the maximum modulus 
distribution. These values are set out in Hochberg and Tarnhane (1987). 

The method is efficient for cases where a sudden response occurs at sorne 
threshold level but there is minimal change below that level. The disadvantage 
is that the test is inefficient at identifying treatment effects that increase 
linearly as the dose level increases. 
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A.3.2 Methods for Qualitative Data 

A.3.2.1 Complex-Model Methods for Proportions 
Methods of analysis have been developed specifically for proportional variables, 
based on models that ,are more complex than the standard models. These models 
have the same basic form as those employed in section 5.5.5. In the notation of 
that section, the variance api/ of a proportion Pij is the sum of a binomial and 
an extra-binomial component: 

However a more complex model is employed for the extra-binomial component aebi/ 
withthese methods. The methods are theoretically interesting but are probably 
not robust enough to deal with the data irregularities that can occur with data 
from AR experiments. 

The Beta Binomial Model 
This is a generalization of the binomial model for proportional variables, 
developed by Williams (Williams, 1975), which models 0ebi/ by assuming that the 
extra-binomial term follows a beta distribution. A number of papers have 
compared the beta binomial method with other methods using Monte Carlo 
techniques, with mixed results. Although it fits sorne data sets quite weIl 
(Crowder, 1977), it is sensitive to departure from its assumptions ((Paul, 1982), 
(Haseman and Soares, 1976), and (Shirley and Hickling, 1981)). ,A study by Pack 
(1981) found that it did not provide much improvement over simpler techniques 
su ch as t-tests. 

Other Complex Models 
A number of other models have been suggested for proportional variables, each 
making different assumptions about the extra-binomial term. One of these is the 
'correlated binomial' model (Kupper and Haseman, 1978), and another is the 
'multiplicative binomial' model (Altham, 1978). Other proposed models are 
mentioned in Haseman and Kupper (1979). These methods have not received as much 
attention in the literature as the beta binomial model, but indications are that 
they have essentially the same problems ((Paul,1982) and (Crump and Howe, 1988)). 
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A.3.3 Non-Parametric Methods 

A.3.3.1 Jonckheere's Test 
Described in Jonckheere (1954) and also in Van Der Laan and Verdooren (1987), 
this test is applicable to experiments wi th ordered treatments. It is 'similar 
to Bartholomew'.s test in that it tests for the presence of any monotonie pattern 
of treatment effects rather than for a specifie pattern such as a linear trend. 

Let (Ti) be a set of ordered treatments. Suppose that it is expected that the 
data values means will decrease as the treatment number i increases. {For any 
pair (i,j) of treatments, let i be less than j. Thus we expect the data values 
(Xjl) in Tj to be less than the values (Xik ) in Ti' 

To carry out Jonckheere's test, for each treatment pair (i,j) tabulate the number 
of data value pairs (Xik'Xjl) such that Xjl > Xik (the opposite of what is 
expected), and denote this number by Nij • The test statistic is LNij , with the 
summation taken over aIl pairs of treatments. Tables of cri tical values for LNij 
are given in Hollander and Wolfe (1973). 

Jonckeere's test is employed from.time to time in biological experiments (e.g. 
Hewett and Bair, 1986), but was not considered weIl enough established to be 
included among the recommended methods. 

A.3.3.2 Shirley's Test 
This rank-based counterpart of the Williams test has been developed by Shirley 
(1977), and represents an extension of the Mann-Whitney test in the same way that 
the Williams test represents an extension of the t-test. The objective is to 
provide a rank-based test that removes the possibility of inconsistent results 
(this possibility is discussed in Appendix A section A.2.1.3, and in Appendix B). 
Williams has commented on this test and recommended minor changes (Williams, 
1986). Although it is promising in principle, it is considered to be too untried 
to be included among the recommended methods. 
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A.4 Methods Not Recommended 
These methods are in current use, but do not meet the criteria for efficiency set 
out in section 4.6. The reason is that they attempt to detect aIl patterns of 
treatment effect, and are not efficient when applied to data from experiments 
such as AR experiments in which the objective is to detect a specific pattern (ap 
increasing negative effect on reproduction as the dose level increases). 

A.4.1 Least Sguares Methods 

A.4.1.1 One-way ANOVA 
This is the standard method for testing for treatment effects in general, and is 
discussed in aIl statistics texts. It compares aIl treatment means 
simultaneously using an F-test. The standard ANOVA procedure requires that the 
within-treatment variance be constant over aIl treatments. However a weighted 
ANOVA procedure exists that is applicable to cases where the variance differs 
from one treatment to another, and is described in Scheffé (1959). 

A.4.1. 2 General Multiple Comparison Procedures 
These are procedures to compare each treatment mean with each other mean. Each 
of these pairwise comparisons employs a test statistic that is similar to that 
for a t-test or LSD test. Test statistics are of the form 

t = D/SD 

where D is the difference between two means and SD2 is the variance of D. 

However the critical values used in general multiple comparison procedures are 
more conservative than those in single tests, in order that the experiment-wide 
error rate be equal to 5% (or sorne other specified value). The critical values 
are su ch that if no treatment effects are present, the probability of ev en one 
of the pairwise mean comparisons being wrongly declared significant is equal to 
the specified level. The larger the number of pairwise mean comparisons, the 
more conservati ve the cri tical values must be. The cri tical values are in 
special tables which are given in most statistics texts. 
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The multiple comparison methods currently employed for AR experiments include 

Tukey's test 
Student-Newman-Keuls (SNK) test 
Duncan's multiple range test 

The level of conservativeness differs from one method to another, with Tukey's 
test being the most conservative, then the SNK test, then Duncan's test. (For 
AR experiments even Duncan's test is too conservative, however.) 

Tukey's Test 
This is the most widely accepted multiple comparison test for situations where 
there is a need to be able to compare any pair of treatments. The error rate 
holds even when the largest and smallest treatment means in the experiment are 
selected after the fact and compared with each other. Tukey's test requires 
equal numbers of data values per treatment and equal within-treatment variances. 
However it has been extended to the case of unequal numbers per treatment by 
Kramer (1956) and to the case of unequal within-treatment variancesby Games and 
Howell (1976). 

The SNK Test 
This is a modified, sequentially-applied version of Tukey's test in which the 
critical values are reduced when comparing means that are close together in rank 
Thus the test is more liberal for these comparisons. To compare a set of 7 
treatment means using the SNK test, for example, the me ans are first ranked. 
Tukey's test is then applied to compare the lst and 7th ranked means. If they 
are significantly different, Tukey's test is then used to compare the lst and 6th 
ranked means and the 2nd and 7th. But for these latter comparisons, the critical 
value is that for a 6-treatment experiment (while for Tukey' s test the 7-
treatment value would be used throughout). If the lst and 6th means are 
significantly different, the lst is compared with the 5th and the 2nd with the 
6th using the critical value for 5 treatments and so on. 

Duncan's Multiple Range Test 
This test is applied sequentially in the same manner as the SNK test, but is more 
liberal and has still lower critical values (Duncan, 1955). These values are 
based on Duncan's 'special protection levels' rather than on a true 
experiment-wide error rate. Duncan's test is generally considered to be too 
liberal in the statistical literature, but it is qui te widely employed. 

A-3D 



A.4.1.3 Dunnett's Test 
This is a mul Uple comparison method desigrted for experiments in which a control 
is to be compared to a number of other treatments (Dunnett, 1955). Treatment 
means are compared on a pairwise basis. Each non-control mean is compared to the 
control mean, but non-control means are not compared to each other. As with the 
general multiple comparison procedures, the test statistic is 

t = D/SD 

where D is the difference between the two means and SD2 is the variance of D. 

Cri Ucal values are set so that if there are no treatment effects, 
probabili ty of a significant result in any one of these control-non-control 
comparisons is equal to the specified confidence level. Special tables are 
needed for these critical values. The number of data values per treatment must 
be equal and the within-treatment variance must be constant. 

While Dunnett' S test invol ves fewer comparisons than the general multiple 
comparison tests and is therefore less conservative than them, it is still too 
conservative for experiments such as AR experiments where the objective is to 
test for a single pattern of treatment effects. 

A.4.2 Methods for Qualitative Data 

A.4.2.1 General Chi-Sguare Test 
If a data set for an AR experiment is reduced to a single proportion per 
treatment, it is in the form of a 2 X N contingency table. The form of such a 
data set for an experiment with a control C and dose levels Dl, D2 and D3 would 
be: 

C Dl D2 D3 
Eggs that Hatch x x x x 
Eggs that Do Not Hatch x x x x 

The chi-square test is the standard general test for treatment effects in a 
contingency table and is covered in all standard texts. It is currently common 
practice for AR experiments to apply this general test. But the chi-square test 
tests for any pattern of treatment effects, and is too conservati ve for AR 
experiments where the objective is to test for one specific pattern. 
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However, the situation is more complicated than that. It is not uncommon for 
these contingency-table data sets to have been formed by a simple pooling of aU 
the pen proportions within each treatment. But applying the chi-square test to 
such data sets is not statistically valid, as this would ignore the possibility 
of real differences between pens within a treatment (as discussed in ~ection 
3.6). The resul t is that the treatment proportions 50 formed are not as accurate 
as the sample size would suggest, so that if a chi-square test is applied to 
these data sets the test is more liberal than the confidence level of 5% 
suggests. 

Thus there are two factors to consider, one causing the test to '{be too 
conservative and the other causing it to be too liberal. It is not clear to what 
extent these factors would cancel each other out in a given case. 

A.4.3 Non-Parametric Methods 

A.4.3.1 The Kruskal-Wallis Test 
This test is the rank-based counterpart of the one-way ANOVA, and is described 
in Kruskal and Wallis (1952) and in a number of texts on non-parametric methods 
(e.g. Conover, 1971). An overall rank is assigned to each data value, and the 
test statistic is based on the total of the ranks for each treatment. It is too 
conservative for AR experiments, for the same reason as the one-way ANOVA. 
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B.1 Combining Pen Proportions by Rao and Scott's Method 

B.1.1 Combining Actual Proportions 
Let Pij be the pen proportion for pen j in treatment i. Each Pij is of the form 

" 

where nij is the number of Subjêcts per pen for the variable being analysed. 
Consider the problem of how to combine aIl the Pij within a treatment into a 
single proportion. 

The most obvious procedure for combining the Pij within a treatment is to pool 
them. The pooled treatment proportion PPi for treatment i is given by 

= = 

Although PPi is a valid estimate of the overall proportion for treatment i 
(though not necessarily an efficient estimate), it is not statistically valid to 
analyse it as if it were a simple proportion of Yi successes in Ni trials (as 
discussed in section 3.6). Its variance would be underestimated as it is not as 
accurate as a proportion obtained from Ni independent trials. 

However Rao and Scott have derived a method that overcomes this underestimation 
of the variance (Rao and Scott, 1992), based on the fact that PPi is a weighted 
mean of the Pij wi th weights of nij: 

= 

Consequently an unbiased estimate Vi of the variance of PPi can be obtained from 
the variation among the Pij within treatment i. The formula for this is: 

(Cl ) 

where mi is the number of pens in treatment i. 

Rao and Scott make use of this variance to obtain an 'effective denominator' 
(Ni)eff for PPi , which is defined as the value that it gives the correct variance 
for PPi if entered as the denominator in the binomial variance formula. 
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Since the binomial variance for a prèportion P with denominator N is P(l-P)jN, 
the value of (Ni)eff is obtained from Vi and PPi by solving the equation 

= 

(Ni)eff is in general smaller than Ni' since the variance estimate Vi obtain~d 
using equation (Cl) is greater than the binomial variance estimate that would be 
obtained if PPi were .a simple proportion wi th denominator Ni. 

Once (Ni)eff is obtained, an effective numerator (Xi)eff is calculated for PPi by 
defining it as 

= 

This allows PPi to be expressed as 

= 

Since its denominator now corresponds to its variance, PPi can be entered into 
statistical formulas as if it were the simple proportion (Xi)eff!(Ni)eff according 
to Rao and Scott. 

Note: In general (Xi)eff and (Ni)eff are not integers. This could restrict the 
methods employed to analyse the PPi (for example it would appear that Fisher's 
exact test would not be applicable). 

It may appear that this procedure avoids the issue of the relative .size of the 
binomial and extra-binomial components for the variance of Pij (discussed in 
section 5.5.5). However this is not the case. The relative size of these 
components determines the best weighting scheme by which to weight the Pij in 
calculating treatment proportions. By pooling the Pij into PPi' and thus 
employing a weighting scheme with weights equal to nij' Rao and Scott are making 
the implicit assumption that the extra-binomial component is small relative to 
the binomial component. But to be flexible enough for general use, the method 
must be able to accommodate data sets where the extra-binomial component is 
moderate or large. 

This makes it advisable to consider a range of possible weighting schemes. In 
principle i t should be possible to ex tend Rao and Scott' s method to any weighting 
scheme. 
Then the 

Let Wij be the weight assigned to Pij in a general weighting 
weighted me an PWi for treatment i for this scheme is 
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and its unbiased variance estimate VWi is 

= 
" 

The effective numerator and denominator for PWi could then calculated from VWi in 
the same manner as for PPi' 

A possible approach to the question of weighting schemes would be to sflect one 
of three simple schemes: 

1. 2. 3. 

These would accommodate data sets where the extrabinomial variance component is 
small, moderate or large, respectively, compared to the binomial component. The 
procedure proposed by Cochran (1943) could be employed to determine the relative 
size of the two components. (Cochran's method is discussed in section B.2.2.1.) 

B.l.2 Combining Estimated Proportions 
Let Pij be an estimated proportion for pen j in treatment i, that is the product 
of two simple proportions. Then Pij is of the form 

= = 

Since there is no single denominator, it is not clear how Rao and Scott's method 
could be applied to combine the Pij in each treatment into a single proportion. 
A possible way of proceeding (that has not been examined for validity) would be 
to designate ei ther bij or dij as the denominator, whichever has the larger 
values. Suppose the bij are larger. Then weighting schemes corresponding to 
those of section B .1.1 could be drawn up that are based on bij instead of nij' 
This in effect treats Pij as the proportion 

= where 
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B.2 Derivation of Weighting Schemes, " 

B.2.1 A Weighting Scheme for Pen Means 
To obtain a weighting scheme for the pen means of a measurement variable, it is 
necessary to model and estimate their variance. Consider an experiment with M 
treatments, Ni pens per treatment and nij measurements per pen. Let Xijk be tlfe 
k'th measurement within pen j of treatment i. The standard linear model for Xijk 
is 

= 

where p is the true population mean, Ti is the effect of treatment i, Eij is ~e 
random effect for pen j and eijk is the random effect of measurement k. Let (lEi).2 

2 - , and (leijk be the variance of Eij and eijk respecti vely. The pen mean Xij lS then 
modelled by 

= 

where eij is the me an of the eijk for that pen. The variance (lXi/ of Xij is gi ven 
by 

2 
(lXij = 

where (lei/ is the mean of the (leij/ 

2 2 2 2 Assuming that the variances (lEij and (leijk have constant values of (lEi and (lei 
2 within each treatment, (lXij is given by 

(C2) 

To estimate (lXi/ for each pen mean, estimates of (lE/ and (le/ must be obtained for 
each treatment. The approach suggested is to base these estimates on the me an 
squares produced in a one-way ANOVA for each treatment. If a one-way ANOVA is 
carried out on the data for treatment i, the ANOVA table would be of the form: 

Source 

Variation Between Pens 

Variation Between Measurements 
Within Pens 

Total 

df 

N,-l 
1 

B-5 

Expected Mean Sguare 



The parameter ai is deri ved from the nij. If the nij for treatment i are aIl 
equal, ai is this common value. If they are not aIl equal, the formula for ai 
is 

= 

This formula is given in most tèxts (e.g. Snedecor and Cochran, 1967, p. 290). 
" 

The estima tes of O"Ei2 and O"e/ are: 

crei 2 = MS (Measurements) 

= [MS(Pens) - MS(Measurements)l/ai 

O"Xi/ is estimated for each Xij by substituting crEi2 and crei
2 into equation (C2). 

If there is reason to believe that O"E/ and O"e/ may be constant over aIl 
treatments, tests of homogeneity of variance can be applied to the estimates crE/ 
and cre/ to examine this question. A number of tests for homogeneity are 
referred to in section B.4. If no significant differences are found, it may be 
reasonable to assume that O"E/ and O"e/ are constant over aIl treatments and to 
obtain overaIl estimates crE2 and cre 2. O"Xij 2 is then estimated by substi tuting crE2 
and cr/ into equation (C2). 

Two possible procedures for deriving overall estimates are: 

- carry out a nested ANOVA over all treatments, and deri ve crl and cr/ from the 
mean squares for treatment, pen and measurement effects. 

The first procedure is the one that is recommended, as the second one involves 
considerable calculation if the numbers of pens per treatment or of measurements 
per pen are not constant. Nested ANOVA is described in most standard texts, e.g. 
Snedecor and Cochran (1967), p. 291. 

Once O"Xi/ is estimated for each pen, i ts inverse is taken as the weight to apply 
to Xij in a weighted least squares analysis. 
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B.2.2 Weighting Schemes for Pen Proportions 

B.2.2.1 Cochran's Method 
Let Pij be the proportion for the j' th pen in treatment i. Pij is equal to Yi/nij 
where nij is the number of subj ects per pen for that variable. Wi th Cochran' s 
method (Cochran, 1943) the variance api/ of Pij follows the linear model set out 
in section 5.5.5: 

= + 

The first component is the binomial sampling error due to the deviation of lii j 
from the true value for that pen, and the second is the 'extra-binomial' 
component that is due to pen-to-pen variation in the true pen values within a 
treatment. 

Cochran's method involves the identification of a model for the extra-binomial 
component aebi/ that will permit a reasonably simple weighting scheme. Cochran 
considers a number of possibilities for both the form of aebij2 and for its size 
relative to the binomial component: 

Relative Size of 2 
aebij_ Form of 2 

aebij_ 

Case 1 small nia 

Case 2 moderate constant aeb 
2 

Case 3 moderate ÀPij (l-Pij ) for constant À 

Case 4 large constant aeb 
2 

Case 5 large ÀPij (l-Pij ) for constant À 

Cochran sets out a method for estimating the approximate size of aebi/ relative 
to the binomial component, but does not indicate how to decide on its form. 
However the form ÀPij(l-Pij) would appear tobe the more likely one. The reason 
is that aebij2 would be expected to decrease to 0 if Pij increases to 1 or 
decreases to 0, rather than to remain constant. 

B-7 



2 ",D",e.=.r.=.i V~l~' n:!:g:L!w!.::e~i~gL!:h",tc5!s--=-fo~rrC~a~s~e~l'--.1.(!!O'ebij small ) 
2 For this case O'ebij' can be ignored, and O'Pij2 is approximately equal to the 

binomial variance: 
2 

O'pij = 

, 
If the Pij are within a range of roughly .2 to .8, the product Pij(l-Pij ) is 
approximately cOnstant and O'Pi/ is proportional only to l/nij' Since weights are 
to be inversely proportional to the variance, an appropriate weighting scheme for 
least squares analysis is to set the weight for Pij equal to nij' 

However if sorne of the P ij are outside of the range of .2 to .8, thetroduct 
Pij (l-Pij ) will be qui te variable and O'Pij2 will be affected by the size of Pij . 
An angular transformation 

= arcs in (JP ij ) 

will remove this dependence (angular transformations are discussed further in 
section B. 3.1) . The variance O'Aij 2 of the Aij is now dependent only on nij: 

where Aij i s measured in degrees. 
than the Pij , with the weight for 

In this case the Aij 
each Aij being nij' 

Case 2 (O'ebij 2 moderate and constant) 
For data sets that follow case 2, api/ has the form 

2 
O'pij = 

should be analysed rather 

The first step is to estimate the constant O'eb2 Cochran sets out an approximate 
procedure for this, based on a calculation of the relative size of the binomial 
and extra-binomial variance terms. This estimate O'eb2 is then used to estimate 
O'Pij2 for each Pij . The inverse of this estimateof O'Pij2 is the weight assigned 
to each Pij in a weighted least squares analysis. 
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2 Case 3 (Jebij moderate and of the form ).Pij (l-Pijll 
Here 

= 

for sorne constant Â. Before estimating Â, an angular transformation 

= 

is suggested in order 
2 The variance (JAij of 

to remove the effect of the size of Pij on the variance. 
the transformed proportions Aij now has the relati vely 

. C simple form: 

= 821/(1/nij + Â) (C3) 

where Aij is measured in degrees. A value for Â is then obtained by the same 
procedure used to estimate (Jeb 2 for case 2 and used to estimated (JAi/ for each 
Aij' The weight assigned to each Aij in a weighted least squares analysis is the 
inverse of this estimate. 

2 Case 4 (Jebij large and constant) 
For this case (JPij2 is approximately constant, since the binomial component can 
be ignored. Weights are not required and unweighted least squares methods can 
be applied to the Pij • 

2 Case 5 (Jebij large and of the form ÂPij (l-Pijll 
2 Here also the binomial component can be ignored, and (JPij is approximately given 

by 
= 

If an angular transformation such as 

= arcsin(,JPij ) 

is carried out, the variance (JAij 2 of the Aij will be approximately constant. 
In this case weights are not required and unweighted least squares methods can 
be applied to the Aij" 
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B.2.2.2 Regression Method " 
This method represents an al ternati ve to Cochran' s method for data sets that fall 
into Case 3 of section B.2.2.1. For this case, which is expected to occur qui te 
frequently, both the binomial and extra-binomial variance components of apij2 are 
present and the extrabinomial component aebi/ has the form ÂPij (1-Pij ). As shown 
in equation (C3) in section B.2.2.1, after an angular transformation is applied 

2 the variance aAij of the transformed pen proportions Aij has the form 

= 821/ (1/nij + Â) 

2 In this method aAij is modelled by the more general formula 

= 

An iterative reweighting procedure is employed to estimate aO and al: 

1. Start with sorne initial estimates âO and âl (e.g. âO = 821 and âl = 0). 

2. Use âO and âl to obtain the initial weights Wij to be assigned to the Aij' 
Each Wij is the inverse of the variance estimate for Aij : 

3. Calculate the weighted mean ÂWi for each treatment using the Wij: 

= 

4. Calculate the deviations Dij of the Aij from Âwi: 

= 

5. Carry out a linear regression of Dij2 on (1/nij)' and obtain new estimates 
âO' and âl ' from the coefficients of this regression: 

= 
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6. If the new values âO' and âl ' are sufficiently close to âO and âll i t is 
assumed that the process has stabilized and âO' and âl ' are taken as 
the final parameter estimates. If âO' and âl ' are not sufficiently close 
to âO and âjl replace âO by âO' and â j by â j ' and repeat steps 2 to 5. 
After a few iterations the values should stabilize. 

Let (âol s and (âjlS be the stabilized values of aO and al' The final weights for 
the Aij are given by the inverse of the estimate of O"Ai/ using the stabilized 
values: 
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B.3 Transformations for Proportions 

B.3.1 Angular Transformations 
Let P be a proportional variable of the form YIN, where N is a positiv~integer 
and Y is a posi ti ve integer in the range of 0 to N. If P is binomially 
distributed, its variance P(1-P)/N is dependent on the size of P. The standard 
angular transformation to remove the effect of the size of P is 

A = arcsin(JP) 
( 

The variance of cr Z of A A is dependent only on N: 

cr Z = 821/N if A is measured in degrees 
AZ 

crA = .25/N if A is measured in radians 

In order to better remove the dependence of the variance on P, a practice 
recornrnended in most texts is to replace P values of 0 by .25/N and P values of 
1 by (1-.25/N) prior to transformation. 

A variation of the angular transformation that does not require end value 
adjustments was developed by Anscombe: 

A = arcsin(JR) where R = (Y+.375)/(N+.75) 

A more recent version, called the Freeman-Tukey binomial transformation, also 
avoids the need for end value adjustments and is becoming more cornrnon in 
toxicological studies. Its form is: 

A = [arcsin(JPI ) + arcsin(JPZ») 1 2 

where Pl = Y/(N+1) and Pz = (Y+1)/(N+1) 

In a study of possible methods for the analysis of proportional data, the 
Freeman-Tukey transformation showed a distinct advantage over the standard 
transformation with end value adjustments (Haseman and Kupper, 1979). 
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B.3.2 Relation of the Angular to the Square Root Transformation 
This discussion is relevant to the conversion of a count to a proportion by 
dividing by a limit L (discussed in section 5.5.2). If a count Y is much smaller 
than the limit L, the range of Y will not be affected by Land it will have 
approximatelya Poisson distribution. The question then arises as to whether it , 
is appropriate to apply an angular transformation to Y (which is standard for 
proportions). The answer is that it is appropriate, since applying an angular 
transformation to Y is equivalent to applying a square root transformation (which 
is the standard transformation for counts). 

To show the equivalence, consider the behaviour of the function arcsin(x).~s 
x decreases to small values, the value of arcsin(x) becomes asymptotically 
proportional to x. If an angular transformation is applied to P where P is small 
and equal to Y/L, the transformed value A can be represented by 

A = arcsin(JP) = kJP = kJY/JL 

where k is a proportionality constant (k is 180/n if x is measured in degrees and 
1 if x is measured in radians). Thus if L is constant, A is proportional to JY 
which demonstrates the equivalence of the transformations. 

B.3.3 The Logit Transformation 
Another transformation for a proportion P, that is similar to but more extreme 
than the angular transformation, is the logit transformation: 

G = Loge((P+C)/(l-P+C)) 

For values of P that are close to 0 or to 1, the scale is stretched out even more 
than i t is with the angular transformations. If P is binomially distributed with 
variance P(l-P)/N, the variance of G will be approximately equal to l/(NP(l-P)). 
The constant C is a small positive value, added to stabilize the value of G for 
P values of 0 or 1. One commonly employed value of C is 1/2N (Snedecor and 
Cochran 1967, p.497), where N is the denominator of P. 
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B.4 Tests of Homogeneity of Variance 
The usual test for testing the equality of two variances is the F-test of the 
ratio of the larger variance to the smaller. For testing homogeneity among more 
than two variances, the usual test is Bartlett's test. Both these tests are 
described in standard texts. However the latter is generally considered to be , 
vulnerable to non-normality in the data. 

A number of alternative tests have been developed. Among them are: 

Levene's Test: This test involves running an ANOVA on the absolute values of the 
deviations of the data values from their treatment means (Levene, 19~). The 
inhomogenei ty is considered to be significant if the ANOVA F-test for differences 
between treatments is significant. The test is recommended in a number of 
studies, including Miller (1986), because of i ts robustness when applied to 

. non-normal data. 

Normal Score Test: Described in Fligner and Killeen (1976), this test involves 
the ranking of the absolute values of the deviations of data values from their 
treatment means. The ranks are then converted to normal scores, and an ANOVA F­
test for differences between treatments is run on these scores. The 
inhomogeneity is considered to be significant if the F-test is significant. 

In addition a number of tests are based on special ranking systems for the 
deviations of data values from their means. These include tests by Freund and 
Ansari (1957) and by Siegel and Tukey (1960). 

A comparative studY involving a large number of methods was carried out by 
Conover, Johnson and Johnson (1981), and they concluded that Levene's test and 
the normal score test were among the best. These is also a good discussion of 
these methods in Madansky (1988). 
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B.5 Identification of Outliers 
The assessment of whether or not to accept an extreme data value as a valid 
member of a data set is a difficult but sometimes a very critical matter in 
statistical analysis. The following discussion is intended only as a very brief 
introduction to this complex and difficult subject. , 
Classical methods for the identification of outliers have been based on the 
probability of extreme values occurring by chance frem random variation, using 
probability theory and assumptions about the distribution of random variation to 
derive this probability. However more recent methods tend to be more 
and less theoretically oriented. 

pragmatic 
{ 

A simple but widely used procedure is that suggested by Tukey, which involves 
setting outside limits for valid observations using the 25th and 75th percentile 
points of the data as a 'yardstick' (Tukey, 1977). Values must be within a 
certain number of multiples (usually 1.5) of the 25th - 75th percentile range. 
An assumption is necessary concerning the distribution of valid data values, but 
this assumption can be approximate in nature. This method is robust in that it 
can be applied in cases where there may be several outliers. It has been 
elaborated on by Hoaglin and Iglewicz (1987). 

Very simple approaches may also be appropriate, ev en if they involve a subjective 
element. For example Miller recommends that the data be p10tted on a probit plot 
and visually examined (Miller 1986, p. 10-14). The use of a probit plot allows 
for easy visual assessment of the degree of deviation of an extreme value from 
the distribution followed by the rest of the data set. 
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