Bird use of the Campbell River estuary Vancouver Island, British Columbia 1982 - 1984

Neil K. Dawe Ron Buechert Donald E.C. Trethewey

- Pacific and Yukon Region 1995
Canadian Wildlife Service
Environmental Conservation Branch

Technical Report Series Number 233

Environment Canada

nent Environnement

Canadian Wildlife Service Service canadien de la faune

BIRD USE OF THE CAMPBELL RIVER ESTUARY VANCOUVER ISLAND, BRITISH COLUMBIA 1982-1984

> Neil K. Dawe, Ron Buechert and Donald E.C. Trethewey

Technical Report Series No. 233 Pacific and Yukon Region 1995 Canadian Wildlife Service

This series may be cited as:

Dawe, N.K., R. Buechert and Donald E.C. Trethewey¹. 1995. Bird Use of the Campbell River Estuary, Vancouver Island, British Columbia. 1982-1984. Technical Report Series No. 233, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.

¹ Present Address: 2529 Skeena Drive, Kamloops, B.C. V2E 1V4

Published by Authority of the Minister of Environment Canadian Wildlife Service

ominister of Supply and Services Canada 1995 Catalogue No. CW69-5/233E ISBN 0-662-23534-7 ISSN 0831-6481

Copies may be obtained from: Canadian Wildlife Service, Pacific and Yukon Region, 5421 Robertson Road, RR 1, Delta, British Columbia, Canada V4K 3N2

Abstract

Campbell River estuary is situated on Discovery Passage on the east coast of Vancouver Island. To determine the abundance and distribution of migratory and resident birds on the Campbell River estuary, weekly surveys were conducted for most of the period from 31 October 1982 to 18 March 1984.

The number of bird species recorded using the study site over the study period was 125. This number includes 47 species of passerines, 28 species of waterfowl, 7 species of raptors, 13 species of shorebirds and 6 species of guils.

The estuary supported a minimum of 5,689 birds in at least one stage of their life history during the study period.

The most abundant group was the gulls (mostly Glaucous-winged) which dominated the numbers of birds in every season. Passerines and waterfowl (mostly diving ducks) shared approximately, a distant second ranking. All other bird group numbers were relatively minor in comparison. More birds used the area during the winter of 1982-1983 than in any other season during the years of study. Total numbers of birds were lowest in the winter of 1983-1984 and in the summer of 1983.

An annotated species list discusses arrival and departure dates, highest number seen in any one day, habitat use and other details for each of the species.

Concluding comments note human impacts particularly from direct disturbance of the birds that are using the estuary. Just prior to the start of the surveys, a number of islands were constructed; these are discussed with regard to bird use. Suggestions are also made for further study of the avifauna that would complete the picture of bird use of the Campbell River estuary.

Résumé

L'estuaire de la rivière Campbell est situé dans le passage Discovery, sur la côte est de l'île de Vancouver. On y a mené des relevés hebdomadaires pendant presque toute la période allant du 31 octobre 1982 au 18 mars 1984 afin de déterminer le nombre d'oiseaux migrateurs et d'oiseaux résidents et leur répartition.

Les 125 espèces d'oiseaux enregistrées cendant la périods des relevés se répartissent ainsi: 47 espèces de passereaux, 28 espèces de sauvagine, 7 espèces de rapaces, 13 espèces d'oiseaux de rivage et 6 espèces de goélands.

Le groupe le plus abondant était celui des goélands (principalement le Goéland bourgmestre) et ce, en toute saison. Il était suivi, de loin, par un groupe composé à peu près également de passereaux et d'espèces de sauvagine (surtout de canards plongeurs). Tout les autres groupes avairies présents étaient relativement peu nombreux en comparaison de ceux-ci. C'est pendant l'hiver 1982-1983 que les effectifs étaient le plus élevés et pendant l'hiver 1983-1984 et l'été 1983 qu'ils l'étaient le moins.

Une liste annotée des espèces fournit divers renseignements pour chacune: dates d'arrivée et de départ, nombre maximum observé en une journée, utilisation de l'habitat, etc.

En conclusion, on traite des incidences des activités humaines, en particulier de leurs effets directs sur les oiseaux qui fréquentent l'estuaire. Il est question également des îles construites juste avant le début des relevés, en ce qui concerne leur utilisation par led oiseaux. Enfin, on formule des suggestions visant la poursuite de l'étude de utilisation de l'estuaire de la rivière Campbell par l'avifaune.

Table of Contents

Abstract	iii
Résumé	iv
Table of Contents	V
List of Tables	vii
List of Figures	viii
List of Appendices	xiii
Acknowledgements	xiv
Introduction	1
The Study Area	2
Methods and Limitations	6
Results and Discussion	9
Bird Use of the Estuary	9
Habitat Use	9
Seasonal Numbers	12
Species Composition	16
Loons	16
Grebes	19
Cormorants	21
Herons	23
Swans	25
Geese	25
Dabbling Ducks	27
Diving Ducks	31
Raptors	44
Shorebirds	45
Gulls and Terns	49
Alcids	54
Doves and Pigeons	55
Hummingbirds	55
Kingfishers	55
Woodpeckers	55
Passerines	57
Flycatchers	57
Swallows	58
Crows and Jays	59
Chickadees	59
Bushtits	59
Creepers	59
Wrens	59
Kinglets and Thrushes	59
Waxwings	61
Shrikes	61
Charlings	C1

Wood Warbler																						61
Warbler	rs .	 ٠				•				•			•	•			•	•		•	•	61
Tanage	rs .													•				•		•	•	61
Sparro																						62
Blackbi																						63
Finches																				•		63
Weaver Finch																						64
Conclusions			•										•						•	•		64
Bird Use and Recreationa																						65
Future Studies		 •		 •	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	65
Literature Cited	• •	 •	•	 •		•		•	•		•	•	•	•	•	٠	•	•	•	•	•	66
Appendices			•	 •			•		•		•		•				•	•	•			69

List of Tables

Table 1.	Habitat types near viewing stations used during the Campbell River estuary bird survey, 31 October 1982 through 18 March 1984 (see also Figure 4)	7
Table 2.	Estimated minimum numbers of birds dependent on the Campbell River estuary 31 October 1982 through 18 March 1984, based on the maximum number of each species observed on migratory bird surveys. For species names, see Appendix II	10

List of Figures

Figure 1.	Location of the Campbell River estuary study area showing intertidal zone, marshes and selected landmarks (modified from Trethewey, in preparation)	3
Figure 2.	Some land uses and foreshore leases on the Campbell River estuary (from Bell and Thompson 1977)	4
Figure 3.	Campbell River estuary showing log handling water lot leases and location of new artificial islands (from Brownlee et al. 1984)	5
Figure 4.	Air photo of the Campbell River estuary showing the viewing stations used during the surveys	8
Figure 5.	Areas of high bird use on the Campbell River estuary during the winter-spring periods of 1973 to 1975 (from Trethewey, in preparation)	11
Figure 6.	Proportional species group use of the Campbell River estuary study area, spring 1983	12
Figure 7.	Proportional species group use of the Campbell River estuary study area, spring 1984	12
Figure 8.	Proportional species group use of the Campbell River estuary study area, summer 1983	13
Figure 9.	Proportional species group use of the Campbell River estuary study area, autumn 1982	14
Figure 10.	Proportional species group use of the Campbell River estuary study area, autumn 1983	14
Figure 11.	Proportional species group use of the Campbell River estuary study area, winter 1982-1983	15
Figure 12.	Proportional species group use of the Campbell River estuary study area, winter 1983-1984	15
Figure 13.	Seasonal variations in the distribution of loons on the Campbell River estuary, autumn 1982 to spring 1984	16
Figure 14.	Seasonal fluctuations in numbers of Common Loons (dashed line), Pacific Loons (dotted line) and all loons combined (solid line) on the Campbell River estuary, October 1982 to March 1984.	17

Figure 15.	Seasonal fluctuations in numbers of all grebes combined on the Campbell River estuary, October 1982 to March 1984	18
Figure 16.	Seasonal variations in the distribution of grebes on the Campbell River estuary, autumn 1982 to spring 1984	19
Figure 17.	Seasonal fluctuations in numbers of Double-crested Cormorants (dotted line), Pelagic Cormorants (dashed line) and all cormorants combined (solid line) on the Campbell River estuary, October 1982 to March 1984	20
Figure 18.	Seasonal variations in the distribution of cormorants on the Campbell River estuary, autumn 1982 to spring 1984	21
Figure 19.	Seasonal fluctuations in numbers of Great Blue Herons on the Campbell River estuary, October 1982 to March 1984	22
Figure 20.	Seasonal variations in the distribution of Great Blue Herons on the Campbell River estuary, October 1982 to March 1984	23
Figure 21.	Seasonal fluctuations in numbers of Trumpeter Swans on the Campbell River estuary, October 1982 to March 1984	24
Figure 22.	Seasonal variations in the distribution of Trumpeter Swans on the Campbell River estuary, autumn 1982 to spring 1984	25
Figure 23.	Seasonal fluctuations in numbers of dabbling ducks on the Campbell River estuary, October 1982 to March 1984	26
Figure 24.	Seasonal variations in the distribution of dabbling ducks on the Campbell River estuary, autumn 1982 to spring 1984	27
Figure 25.	Seasonal fluctuations in numbers of Mallards on the Campbell River estuary, October 1982 to March 1984	28
Figure 26.	Seasonal variations in the distribution of Mallards on the Campbell River estuary, autumn 1982 to spring 1984	29
Figure 27.	Seasonal fluctuations in numbers of diving ducks on the Campbell River estuary. October 1982 to March 1984	. 30

Figure 28.	Seasonal variations in the distribution of American Wigeon on the Campbell River estuary, autumn 1982 to spring 1984	31
Figure 29.	Seasonal fluctuations in numbers of Bufflehead on the Campbell River estuary, October 1982 to March 1984	32
Figure 30.	Seasonal variations in the distribution of diving ducks on the Campbell River estuary, autumn 1982 to spring 1984	33
Figure 31.	Seasonal fluctuations in numbers of Common Mergansers (dotted line), Red-breasted Mergansers (dashed line) and all mergansers combined (solid line) on the Campbell River estuary, October 1984 to March 1984	34
Figure 32.	Seasonal variations in the distribution of Bufflehead on the Campbell River estuary, autumn 1982 to spring 1984	35
Figure 33.	Seasonal variations in the distribution of Common Mergansers on the Campbell River estuary, autumn 1982 to spring 1984	36
Figure 34.	Seasonal variations in the distribution of Red-breasted Mergansers on the Campbell River estuary, autumn 1982 to spring 1984	36
Figure 35.	Seasonal variations in the distribution of Common Goldeneye on the Campbell River estuary, autumn 1982 to spring 1984	37
Figure 36.	Seasonal fluctuations in numbers of Common Goldeneye, (dashed line) and Barrow's Goldeneye (dotted line) on the Campbell River estuary, October 1982 to March 1984	38
Figure 37.	Seasonal variations in the distribution of Barrow's Goldeneye on the Campbell River estuary, autumn 1982 to spring 1984	39
Figure 38.	Seasonal fluctuations in numbers of Surf Scoters (dashed line) and all scoters combined (solid line) on the Campbell River estuary, October 1982 to March 1984.	40
Figure 39.	Seasonal variations in the distribution of Surf Scoters on the Campbell River estuary, autumn 1982 to spring	40
	1984.	41

Figure	40.	Seasonal fluctuations in numbers of Harlequin Ducks on the Campbell River estuary, October 1982 to March 1984	42
Figure	41.	Seasonal variations in the distribution of Harlequin Ducks on the Campbell River estuary, autumn 1982 to spring 1984	43
Figure	42.	Seasonal variations in the distribution of Bald Eagles on the Campbell River estuary, autumn 1982 to spring 1984	44
Figure	43.	Seasonal fluctuations in numbers of Killdeer (dashed line) and all shorebirds combined (solid line) on the Campbell River estuary, October 1982 to March 1984	46
Figure	44.	Seasonal variations in the distribution of shorebirds on the Campbell River estuary, autumn 1982 to spring 1984	47
Figure	4 5.	Seasonal variations in the distribution of Killdeer on the Campbell River estuary, autumn 1982 to spring 1984	47
Figure	46 .	Seasonal variations in the distribution of Glaucous- winged Gulls on the Campbell River estuary, autumn 1982 to spring 1984	49
Figure	47.	Seasonal fluctuations in numbers of Glaucous-winged Gulls (dashed line) and all gulls combined (solid line) on the Campbell River estuary, October 1982 to March 1984	50
Figure	48 .	Seasonal variations in the distribution of Bonaparte's Gulls on the Campbell River estuary, autumn 1982 to spring 1984	51
Figure	49 .	Seasonal fluctuations in numbers of Bonaparte's (dashed line) and Mew Gulls (dotted line) on the Campbell River estuary, October 1982 to March 1984	52
Figure	50.	Seasonal variations in the distribution of Mew Gulls on the Campbell River estuary, autumn 1982 to spring 1984	53
Figure	51.	Seasonal variations in the distribution of Herring Gulls on the Campbell River estuary, autumn 1982 to spring 1984	53
Figure	52.	Seasonal variations in the distribution of alcids on the	54

Figure 53.	Seasonal fluctuations in numbers of passerines on the Campbell River estuary, October 1982 to March 1984	56
Figure 54.	Seasonal variations in the distribution of passerines on the Campbell River estuary, autumn 1982 to spring 1984	58
Figure 55.	Seasonal variations in the distributions of American Robins on the Campbell River estuary, autumn 1982 to spring 1984	60
Figure 56.	Seasonal variations in the distribution of Dark-eyed Juncos on the Campbell River estuary, autumn 1982 to spring 1984	62

List of Appendices

Appendix I.	List of surveyors and their initials, survey dates, and sundry remarks for the Campbell River estuary	70
Appendix II.	Campbell River estuary bird check-list	72
Appendíx III.	Campbell River estuary birds surveys: Seasonal bird numbers, 31 October 1982 through 18 March 1984	7 5
Appendix IV.	Campbell River estuary birds surveys: Seasonal bird use by habitat, 31 October 1982 through 18 March 1984	89

Acknowledgements

Members of the Mitlenatch Field Naturalist Society including Doreen Andrews, Heather Asplin, Jack Conway, T. Glennie, Ted Granger, Rod Catchpole, Cody Larsen, Frances McPherson, Julie O'Sullivan, Mike O'Sullivan, Lyn Paterson, Stan Paterson, Barbara Phipps, Bill Phipps, Howard Telosky, Mary Vogel, Myrtle Wilkes and Ralph Wilkes assisted Kay Conway with the surveys.

This report was prepared under the auspices of the Pacific Coast Joint Venture in partnership with the Mid Island Wildlife Watch Society.

Pamela Whitehead, CWS, assisted with the production of the report.

Michael Dunn, CWS, reviewed the manuscript.

Introduction

Estuaries along coastal British Columbia are important to a diverse fauna, particularly resident and migratory birds (Dawe 1976, 1980, Dawe and Lang 1980, Dawe et al. 1994, Butler and Cannings 1989, Butler et al. 1989, Vermeer et al. 1992). This diverse fauna occurs as a result of two major factors: the variety of habitats that meet on these systems and the productivity of those habitats.

Habitats often associated with typical estuarine ecosystems include marine deep water areas, intertidal sand and gravel flats, cobble beaches, mudflats, spits, river and associated riparian habitats, brackish and saline estuarine marshes with their accompanying dendritic channels, and upland grass, forb, and shrub areas that grade to coastal forests.

This concentration of habitats with its accompanying edges and niches supports a tremendous diversity and abundance of wildlife. For example, inventories from the Little Qualicum River estuary, with an upland area of less than 40 ha, have reported minimums of 14 species of algae, 55 species of fungi, 22 species of bryophytes, 234 species of vascular plants, 29 species of molluscs, 62 orders of arthropods, 15 species of fishes, 4 species of amphibians, 4 species of reptiles, 220 species of birds, and 20 species of mammals (Dawe 1976, 1980, unpublished).

Nutrients and sediments brought down from the watersheds by the rivers are deposited on the deltas providing rich substrates and growing conditions for estuarine marsh plants that, along with marine vegetation such as eelgrass (Zostera sp.) and algae, drive the detritus-based estuarine food web. Net primary production of these systems with their attendant marshes and algal beds rival, and in some cases exceed, the production of the tropical rain forests (Ricklefs 1979).

These estuarine ecosystems are important to the survival of both resident and migratory birds. Estuaries act as stepping stones to the millions of birds that migrate along our coast each year providing areas where they can rest and feed during their northern and southern journeys.

In addition, British Columbia's estuaries support Canada's largest wintering populations of waterbirds. Estuaries, in concert with farmlands and freshwater wetlands, form part of a wetlands complex (Eamer 1985) that supports hundreds of thousands of wintering waterbirds. During periods of freezing, however, when farmlands and freshwater marshes are no longer accessible, estuaries become critical habitat to the birds' survival (see Dawe 1980 and Eamer 1985). They are the only ice free areas that have enough food to support the birds over the freezing periods.

In British Columbia, most efforts to document bird-use of estuaries have focused on the larger systems such as the Fraser, Squamish, and Cowichan (Butler and Campbell 1987, Butler and Cannings 1989, Trethewey 1985, Blood et al. 1976); however, the importance of the smaller British Columbia estuaries should not be overlooked (see Butler et al. 1989). Collectively, these smaller system

contribute significantly to the maintenance of our migratory and resident bird populations.

In 1982, British Columbia Forest Products began construction of a dry-land sort on the Campbell River estuary. Construction of the sort resulted in the loss of some of the marsh vegetation and to mitigate the loss of that habitat, the forest company constructed 4 islands in the estuary and planted them with marsh vegetation (see Brownlee et al. 1984). This survey, instigated and designed by the Canadian Wildlife Service, and carried out by the Mitlenatch Field Naturalists, was conducted to determine migratory bird use of the Campbell River estuary and how quickly migratory bird use would occur on the man-made islands. This report documents the results of that study of bird use and their numbers on the Campbell River estuary and the adjacent waters around Tyee Spit, British Columbia over the period 31 October 1982 through 18 March 1984.

In addition, earlier data collected by the CWS as well as observations by other naturalists have been included in this report. The results will be of interest to both the wildlife manager and the birdwatching public who want to know more about the avifauna of the Campbell River estuary.

The Study Area

The Campbell River estuary (50°03'N, 125°15'W) is situated on the east coast of Vancouver Island, British Columbia, just north of the commercial center of Campbell River. It is approximately 56 km northwest of Courtenay (Figure 1).

The surficial geology of this low-relief landscape is predominantly glacial (unconsolidated sands, gravels and tills), glacial marine and fluvial deposits overlain by soils of the Cassidy Series (gravelly loamy sands and sandy loams). Tyee Spit, which protects much of the estuary from Discovery Passage, is classified as coastal beach and is composed of shore-washed sand, gravel and stone (Bell and Thompson 1977). The mean daily temperature at Campbell River airport, ranges from a monthly average of 1.3°C in January to 17.4°C in July; the yearly average is 8.9°C. The area has a mean annual precipitation of 1537 mm including 104 cm of snow (Environment Canada AES records 1941-1970).

The Campbell River and its tributary the Quinsam River bring to the estuary a mean annual discharge of 108 cubic meters per second (Raymond et al. 1985). This flow ranks the Campbell as the third largest river on the east coast of Vancouver Island. The actual flows at any particular time are affected by the John Hart dam. During heavy rains, Nunn's Creek contributes significant freshwater onto the estuary just west of the base of Tyee Spit (Bell and Thompson 1977). The strong tidal currents of Discovery Passage are known to affect a number of parameters on the estuary including salinity and pollution levels.

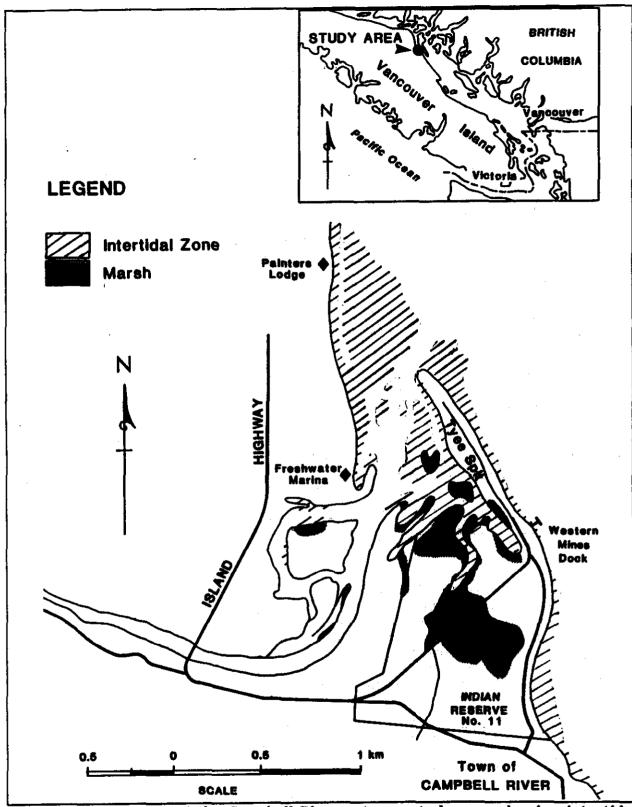
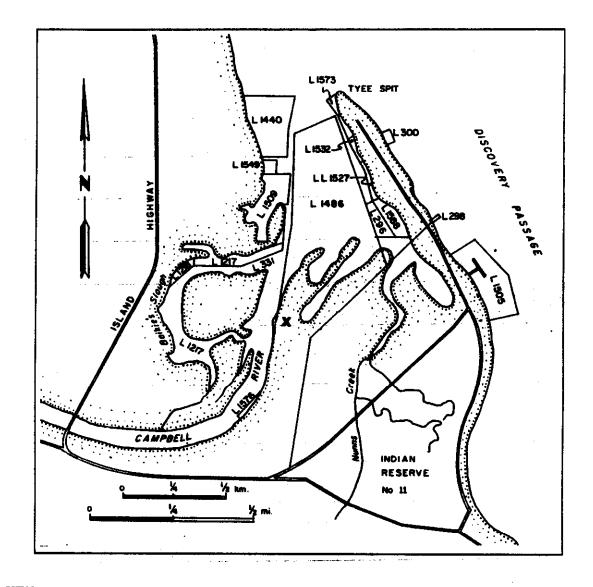



Figure 1. Location of the Campbell River estuary study area showing intertidal zone, marshes and selected landmarks (modified from Trethewey, in preparation).

KEY

- L 1505. dock, Western Mines Ltd.
- L 298. public boat launch, District of Campbell River
- L 300. boat launch ramp, (B.C. Forest Products Ltd.)
- L 1573. trailer park and marina, Tyee Trailer Park Marina Ltd.
- L 1532. float plane moorage, Trans Mountain Airlines Ltd.
- L 1527. float plane moorage, Island Airlines Ltd.
- L 296. formerly used for gravel extraction
- L 1588. log storage
- L 1588. sand and gravel storage, redi-mix plant
- L 1486. log storage, etc. (B.C. Forest Products Ltd.)
- X log dump near new dry land log-sort (B.C. Forest Products Ltd.)

Figure 2. Some land uses and foreshore leases on the Campbell River estuary (from Bell and Thompson 1977).

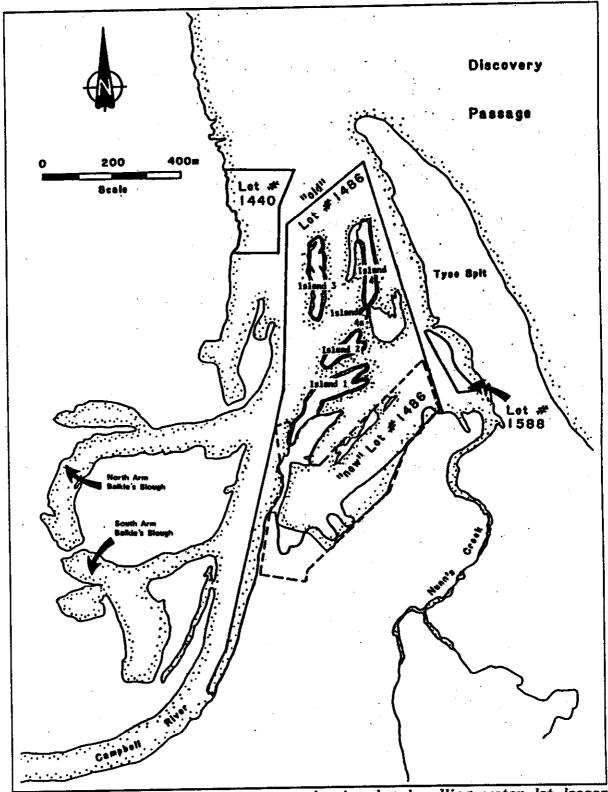


Figure 3. Campbell River estuary showing log handling water lot leases and location of new artificial islands (from Brownlee et al. 1984).

The Campbell River estuary is in the Coastal Western Hemlock Biogeoclimatic Zone. It is characterized by dry summers and wet winters. The dominant species on wet ground are Western Red Cedar, Red Alder, Skunk Cabbage and Slough Sedge; Salmonberry dominates the drier understory. For a more detailed description of the vegetation in the study area, see Table 1.

Five species of Pacific salmon, as well as Steelhead, Cutthroat Trout and Dolly Varden Char inhabit the Campbell River system. A hatchery on the Quinsam River releases approximately one million Chinook fry and 1.5 million Coho smolts each year.

The estuary of the Campbell River is used intensively for a number of industrial and commercial purposes (Figure 2). For example, the float plane bases on the estuary are considered to be among the busiest in the world. An overview of the significance of the Campbell River estuary in terms of its environmental and social values, including human activities and development and the impacts on those values is discussed as of 1977 by Bell and Thompson. Recreational values associated with the Campbell river estuary in 1981 were estimated at 103,000 user days per year (Hagen 1987).

The estuary in 1980 had an area of approximately 73 hectares of which 60% was occupied by a log handling and sorting operation (Raymond et al. 1985). By August 1982, prior to the start of this bird use survey, a dry land log-sort had replaced the water-based sorting. This involved the filling of 15 hectares of relatively pristine mud flats, marsh and deeper water (Hagen 1987). At the same time, a program to rehabilitate the estuary had been undertaken which included the disuse of some log booming sites, the removal of woody debris from 23 hectares of the old aquatic sorting grounds and the creation of 4 islands (Figure 3) that were planted with estuarine marsh vegetation to mitigate the loss of marsh habitat that occurred when the dry-land sort was constructed.

Methods and Limitations

The study area was surveyed from 14 viewing stations in order to determine areas of high bird use within the estuary. See Table 1 for a list of the viewing stations and a description of the surrounding habitats based on Kennedy (1982) and Raymond et al. (1985). The locations of the viewing stations used in the study are shown in Figure 4.

Survey participants covered the study area on foot and by car, using binoculars and telescopes to count and record all birds observed from each viewing location.

Weekly surveys were conducted from 31 October 1982 through 18 March 1984. Kay Conway acted as the survey leader, under the direction of Don Trethewey. For a list of participants and survey dates, see Appendix I.

Viewing Station	Landmark	Description of Surrounding Habitat
1	north of campsite and south of Western Mining Company dock	Beach, a narrow intertidal zone, and beyond to deep (marine) waters; tidal marshes are nearby across Spit.
2	between Western Mining dock and public boat ramp	Sand and gravel spit beach, a narrow intertidal zone, and deep water; tidal marshes are just across the Spit.
3	public boat ramp (L 298)	Sand/gravel spit beach, a narrow inter-tidal zone, and beyond to deep water; tidal marshes are across the Spit.
4	Silver King	Sand/gravel spit beach, a narrow intertidal zone, and beyond to the deep water of Discovery Passage.
5	Tyee Trailer Park	Sand/gravel spit beach, intertidal zone widening to the north; beyond it, lies deep water of Discovery Passage.
6	tip of Tyee Spit	Sand/gravel spit beach, several large intertidal areas, deep water beyond; main outflow of river is visible.
7	private dock	Sand/gravel spit beach, tidal channels, new island #4 and intertidal marshes: Curex lyngbyei, Deschampsia cespitosa and Deschampsia-Potentilla communities
8	Island Air floatplane base (L 1527)	Sand/gravel spit beach, shrubs, low island and intertidal marshes: Carex lyngbyel, Deschampsia cespitosa and Potentilla-Eleocharis communities. ²
9	near the base of Tyee Spit on its western side	Gravel and sand beach, shrubs, and sheltered intertidal marsh communities: Potentilla pacifica_Eleocharis , Deschampsia cespitosa, Carex lyngbyei.
10	at the crossing of Spit Road and the tidal stream just east of Numns Creek	Deschampsia cespitosa marsh covers most of the area; the upland is shrubs. C. lyngbyei and P. pacifica- Eleocharis communities occupy the tidal channel. ²
11	at the crossing of Spit Road and Nunns Creek	Shrubs on the upland, Deschapsia cespitosa along the creek; some C. lyngbyei indicates brackish influence.2
12	near the dry land log-sort (BCFP) built on recently filled portions of marsh	Intertidal marsh communities of Carex lyngbyei and Deschampsia cespitosa; pockets of Typha latifolia marsh indicates freshwater dominance there.
13	at the tip of point near centre of the estuary (Pigure 4)	Large intertidal zone fringed by marsh communities, mostly Carex lingbyei, with patches of P. pacifica-Eleocharis and D. cespitosa; new islands are nearby. ²
14	near the main channel of the Campbell River, down stream from the BCFP log dump	Open water fringed by intertidal marsh communities: Carex Lyngbyei, P. pacifica-Eleocharis and across the river Deschampsia cespitosa.

Note¹: Areas typified by Potentilla pacifica-Eleocharis by Kennedy (1982) are typified by Juncus arcticus-Potentilla pacifica in Raymond et al. (1985).

Note2: Viewing stations 8 to 13 might be influenced by their proximity to patches of tidal shrub community typified by Myrica gale.

Table 1. Habitat types near viewing stations used during the Campbell River estuary bird survey, 31 October 1982 through 18 March 1984 (see also Figure 4).

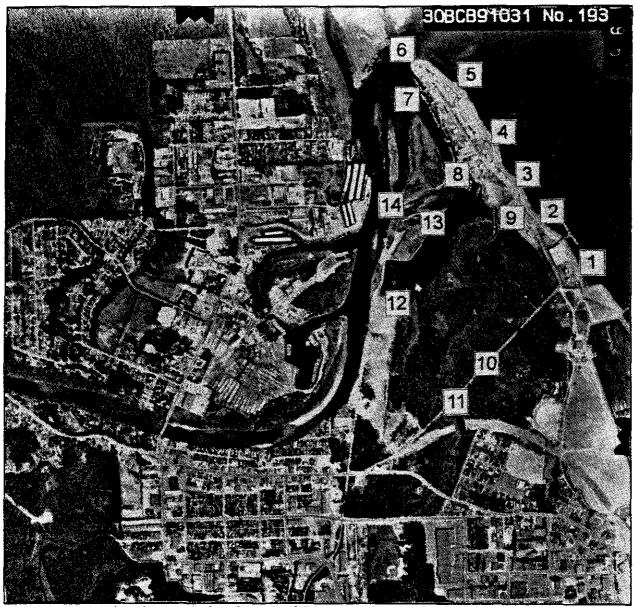


Figure 4. Air photo of the Campbell River estuary showing the viewing stations used during the surveys.

The numbers of birds recorded are considered to be generally accurate for the areas surveyed but are undoubtedly conservative due to inherent limitations (see Dawe 1982). Poor visibility due to weather, and birds underwater or shielded by vegetation during the period of observation would lead to an underestimation of the numbers of birds recorded. The data are based on observations at a particular point in time and do not necessarily reflect the total bird use of the area under observation. For example, birds dependent on the estuary only for a few days during spring and autumn migration could be missed altogether if

Species	Number	Season	Species	Number	Season	Species	Number	Season
				<u>-</u>				
RTLO	9	Win 82	СОНА	1	Win 82	BASW	54	Aut 83
PALO	59	Spr 83	NOGO	1	Win 82	STJA	2	Sum 83
COLO	23	Aut 82	RTHA	1	Aut 83	NOCR	433	Win 82
HOGR	12	Win 82	MERL	1	Aut 90	CORA	11	Sum 83
RNGR	16	Spr 83	LGPL	2	Sum 83	CBCH	7	Sum 83
EAGR	3	Win 82	SEPL	4	Win 82	BUSH	2	Spr 83
WEGR	9	Aut 83	KILL	14	Aut 82	BRCR	1	Sum 83
DCCO	29	Aut 82	GRYE	1	Aut 83	BEWR	1	Spr 83
PECO	29	Win 82	WATA	1	Aut 83	WIWR	1	Win 82
GBHE	28	Win 82	WHIM	2	Aut 83	GCKI	200	Win 83
TRUS	28	Win 82	SPSA	1	Sum 83	RCKI	2	Տատ 83
MUSW	1	Win 82	SURF	40	Sum 83	SWTH	13	Sum 83
GWFG	1	Aut 83	WESA	62	Spr 83	HETH	1	Win 82
SNGO	1	Spr 83	LESA	1	Sum 83	AMRO	104	Spr 83
BRAN	7	Spr 84	DUNL	5	Spr 83	VATH	1	Aut 83
CAGO	25	Win 83	SBDO	3	Aut 83	CEWA	5	Aut 83
WODU	1	Aut 82	COSN	1	Aut 83	NOSH	1	Aut 82
GWTE	38	Aut 83	BOGU	358	Spr 83	EUST	889	Aut 83
MALL	42	Sum 83	MEGU	303	Spr 83	OCWA	1	Sum 83
NOPI	17	Sum 83	RBGU	22	Win 82	YEWA	7	Sum 83
BWTE	9	Aut 83	CAGU	1	Spr 83	YRWA	4	Aut 83
CITE	2	Spr 83	HEGU	421	Win 82	COYE	3	Sum 83
NOSL	3	Aut 83	GWGU	1001	Win 82	WETA	1	Aut 83
AMWI	200	Aut 83	BLKI	233	Aut 82	RSTO	4	Sum 83
CANV	2	Win 83	CATE	2	Sum 83	SAVS	7	Spr 83
GRSC	26	Aut 82	COMU	15	Aut 83	FOSP	8	Spr 84
LESC	22	Aut 83	PIGU	7	Win 82	SOSP	9	Aut 83
HADU	28	Win 82	MAMU	18	Sum 83	GCSP	3	Aut 83
OLDS	9	Aut 83	RODO	34	Sum 83	WCSP	2	Spr 83
BLSC	8	Win 83	BTPI	6	Sum 83	DEJU	32	Win 82
SUSC	59	Win 83	UHNA	1	Spr 83	SNBU	2	Aut 82
WWSC	19	Aut 82	RUHU	9	Spr 83	RWBL	11	Spr 83
COGO	71	Win 83	BEKI	7	Sum 83	YHBL	1	Spr 83
BAGO	33	Aut 82	DOMO	1	Aut 82	BRBL	41	Spr 83
BUFF	83	Aut 82	OWAH	1	Aut 82	BHCO	1	Aut 83
HOME	17	Sum 83	NOFL	2	Win 82	PUFI	8	Sum 83
COME	58	Win 83	PIWO	4	Sum 83	HOFI	16	Sum 83
RBME	17	Win 82	WIFL	2	Sum 83	RECR	2	Sum 83
TUVU	3	Sum 83	PSFL	2	Spr 83	PISI	20	Win 82
OSPR	1	Sum 83	TRSW	26	Spr 83	AMGO	7	Sum 83
HAWK	1	Sum 83	VGSW	8	Sum 83	EVGR	3	Aut 83
BAEA	62	Sum 83	CLSW	25	Spr 83	HOSP	7	Spr 83
						Tota1	5689	

Table 2. Estimated minimum numbers of birds dependent on the Campbell River estuary 31 October 1982 through 18 March 1984, based on the maximum number of each species observed on migratory bird surveys. For species names, see Appendix II.

observation periods occurred on either side of their arrival and departure. Also, data were not collected at night; however, low tides on the study area during the winter months occur mostly during the night. Thus, in winter, observations were not made when the intertidal areas and algal beds were exposed, i.e. at times when they would likely be used by birds such as dabbling ducks.

Survey data were summarized using BASIC programs written by Allan Keller, CWS, and modified for seasonal summaries and statistics by the senior author (see Appendices III and IV). The summarized data were analyzed and much of the first draft of the report written by Ron Buechert under contract to the Mid Island Wildlife Watch Society. His contribution was reviewed and edited by the senior author.

Results and Discussion

Bird Use of the Estuary

Over the study period, 125 species of birds were identified in the Campbell River estuary. A total of 42,279 birds was recorded over the study period.

To estimate the minimum number of birds dependent on the Campbell River estuary, the maximum single day bird numbers for each species were summed (Table 2). A minimum of 5,689 birds depended on the Campbell River estuary for some aspect of their life history.

Habitat Use

Bird use of habitat was not directly recorded in this study. However, the approximate location of each bird is recorded as the number of the viewing station from which the surveyor made the observation. Of the 14 viewing stations defined (Table 1 and Figure 4), the area visible from station 13 near the centre of the estuary received the most bird use (22%) followed by stations 8 (17%), 6 (13%) and 7 (12%) on west side of Tyee Spit. The areas around stations 11 (1%) and 10 (2%) on Spit Road ranked lowest in bird use. The major areas of use by birds during the winter-spring periods of 1973, 1974 and 1975 combined are shown for comparison in Figure 5 (from Trethewey, in preparation).

Birds seen using the newly constructed islands were always included with the other data for each station (This affects stations 7, 8 and 13). To those records a note was often added stating where the bird was seen, but it is not known whether this was done consistently by all the surveyors. A total of 1725 birds representing 15 species were seen using the newly constructed islands during the study period: 723 Glaucous-winged Gulls, 310 unspecified gulls, 208 Bonaparte's Gulls, 153 Northwestern Crows, 133 Mew Gulls, 92 European Starlings, 20 Herring Gulls, 18 Trumpeter Swans, 16 Western Sandpipers, 14 Mallards, 11 Bufflehead, 9 unspecified scaups, 5 Killdeer and 3 Great Blue Herons. Bird use of the islands was highest during the spring of 1983.

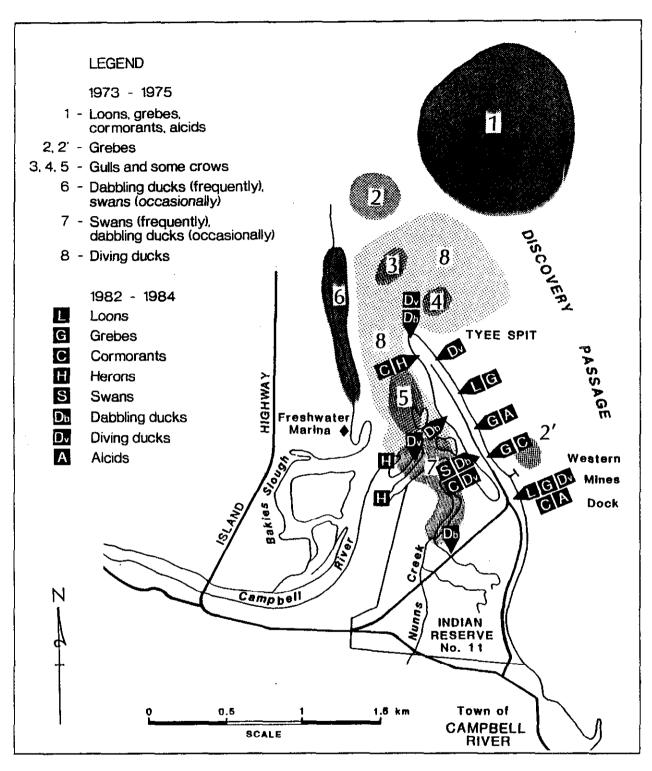


Figure 5. Areas of high bird use on the Campbell River estuary: numbered shaded areas represent the winter-spring periods of 1973 to 1975 (modified from Trethewey in preparation); black boxes mark viewing stations where birds of the group indicated by the letter were seen most from October 1982 to March 1984.

Seasonal Numbers

In every season the number of gulls seen was greater than all the other birds combined.

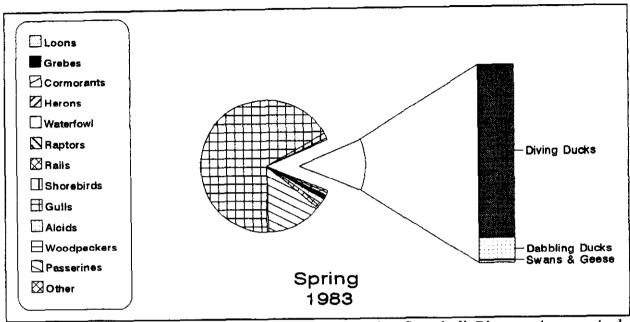


Figure 6. Proportional species group use of the Campbell River estuary study area, spring 1983.

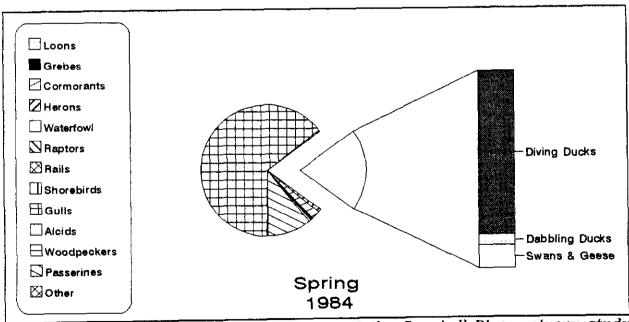


Figure 7. Proportional species group use of the Campbell River estuary study area, spring 1984.

Spring: Figures 6 and 7 show the proportions of species group use on the estuary in the spring of 1983 and the spring of 1984 respectively. In 1983, the passerines ranked second after the gulls and the waterfowl were third; the seasonal total was 7355 birds. In spring 1984, the number of waterfowl counted was higher than the tally of passerines. The total number of all birds seen in spring 1984 was only 855 because there were only 2 surveys made in that season.

Summer: Figure 8 shows the proportions of species group use on the estuary in the summer of 1983. Next to the gulls, the passerines were by far the most prominent group. Summer had a total of 5665 birds recorded.

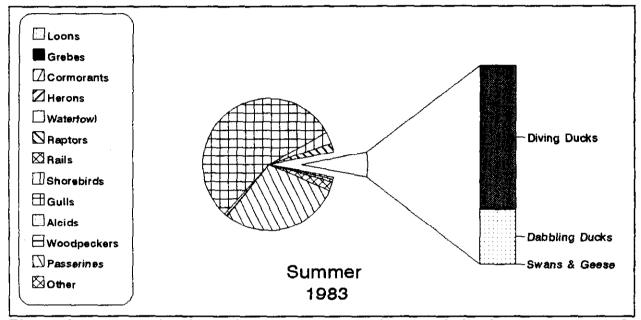


Figure 8. Proportional species group use of the Campbell River estuary study area, summer 1983.

Autumn: Figures 9 and 10 show the proportions of species group use on the estuary in the autumn of 1982 and the autumn of 1983 respectively. In 1982 waterfowl were the second highest user group with passerines ranking third; the seasonal total of all birds counted was 4044. The situation was reversed in 1983; after the gulls, the passerines were the most abundant bird group. The total number of birds counted in the autumn of 1983 was 7475.

Winter: Figures 11 and 12 show the proportions of species group use on the estuary in the winter of 1982-1983 and the winter of 1983-1984. After the gulls, waterfowl (mostly diving ducks) were the dominant group followed by passerines. The total of 11,469 birds counted during the winter of 1982-1983 was the highest of the 7 seasons surveyed. The total for the winter of 1983-1984 was 5416 birds, much less than the previous winter.

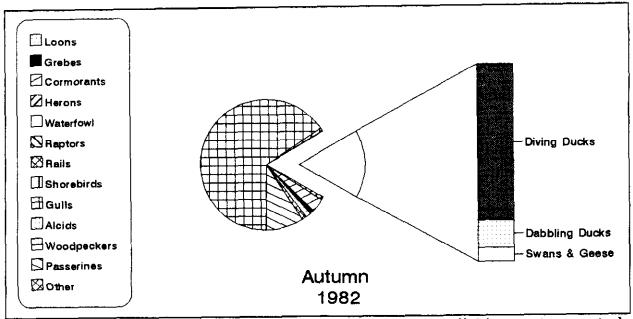


Figure 9. Proportional species group use of the Campbell River estuary study area, autumn 1982.

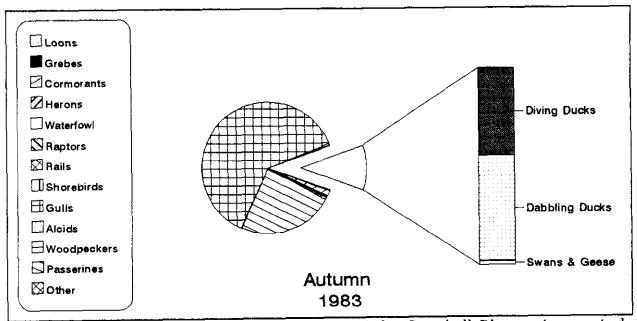


Figure 10. Proportional species group use of the Campbell River estuary study area, autumn 1983.

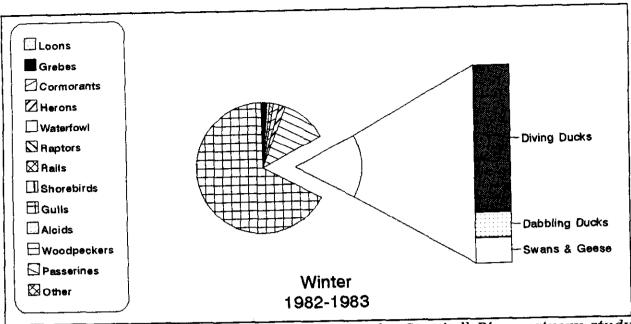


Figure 11. Proportional species group use of the Campbell River estuary study area, winter 1982-1983.

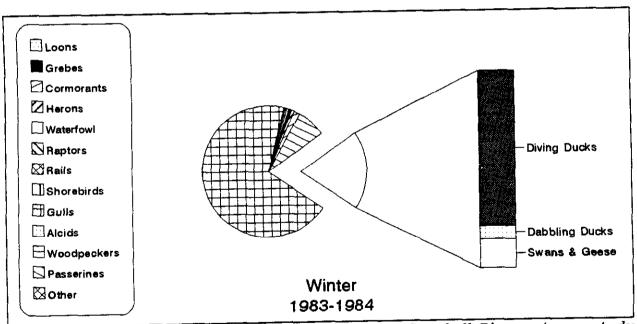


Figure 12. Proportional species group use of the Campbell River estuary study area, winter 1983-1984.

Species Composition

The following annotated species list includes summarized data from the survey period. Species groups are presented in taxonomic sequence. Within each group or subgroup, species are discussed in decreasing order of highest use of the estuary during the survey.

Loons: Three species of loons were recorded over the study period: the Common Loon, Pacific Loon and Red-throated Loon. Seasonal fluctuations in the numbers of all loons, the Common Loon and the Pacific Loon are shown in Figure 14. A combined total of 276 birds was observed (<1% of all birds) over the study period. Habitat use by loons during 1982 to 1984 (Figure 13) was similar to the 1973 to 1975 period (Figure 5).

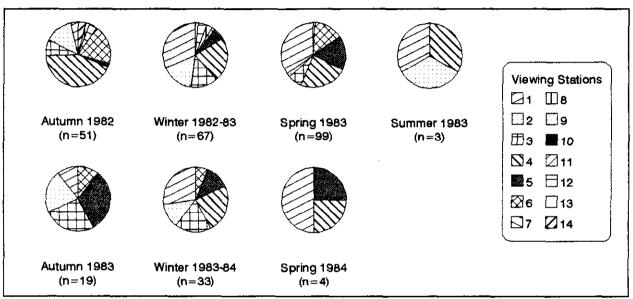
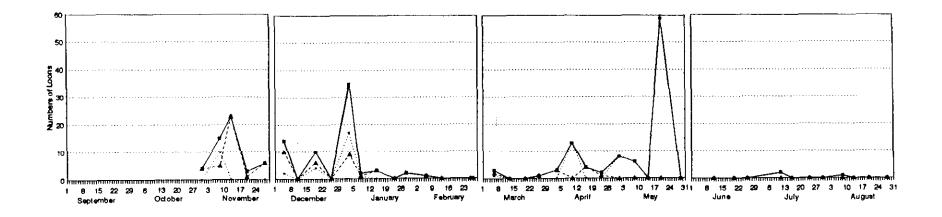



Figure 13. Seasonal variations in the distribution of loons on the Campbell River estuary, autumn 1982 to spring 1984.

Common Loon numbers totalled 135 birds over the study period (49% of all loons). The earliest arrival date was 30 October 1983 and the latest departure date was 23 April 1983. This species was seen most in autumn and winter and not at all in summer; a peak of 23 Common Loons was seen on 13 November 1982. Seasonal fluctuations in numbers of Common Loons are included in Figure 14. Nearly all of the loons of this species were seen from viewing stations 1 to 6 which overlook the deeper waters of Discovery Passage to the east and northeast of Tyee Spit but 6 birds were seen on the inner estuary (stations 7, 8, 12, 13 and 14).

A total of 127 Pacific Loons was seen (46% of all loons). The species was noted in every season but its presence was sporadic; the only period its frequency of occurrence was above 50% was from 5 December 1982 to 8 January

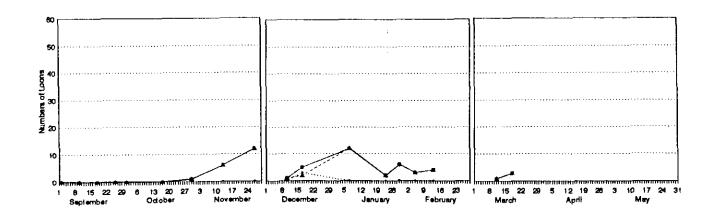
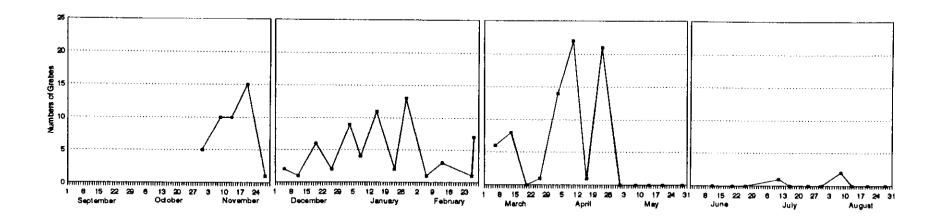



Figure 14. Seasonal fluctuations in numbers of Common Loons (dashed line), Pacific Loons (dotted line) and all loons combined (solid line) on the Campbell River estuary, October 1982 to March 1984.

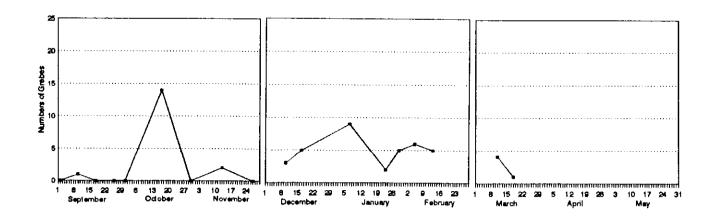


Figure 15. Seasonal fluctuations in numbers of all grebes combined on the Campbell River estuary, October 1982 to March 1984.

1983. Most of the birds were seen in spring; a peak number of 59 birds was recorded on 20 May 1983 (Figure 14). All of the Pacific Loons were observed in or near deep water (from stations 1 to 6).

We recorded a total of 12 Red-throated Loons: 2 birds on 5 December 1982, 9 birds on 3 January 1983 and 1 bird on 23 April 1983. Like the other species of loons, they were seen mainly east of Tyee spit. The only exception was 2 Red-throated Loons recorded near the dry land log-sort (station 12) in the heart of the estuary.

Grebes: Four species of grebes were recorded: Red-necked, Horned, Western and Eared; their combined total was 236 birds (<1% of all birds). Seasonal fluctuations in the numbers of grebes are shown in Figure 15. The locations where grebes were seen is combined for all 4 species in Figure 16. The data in the 1973 to 1975 study suggest similar habitat use at that time (Figure 5).

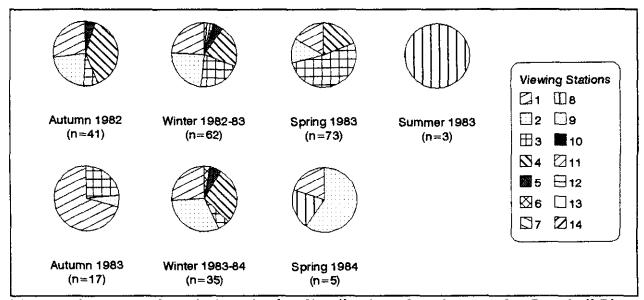
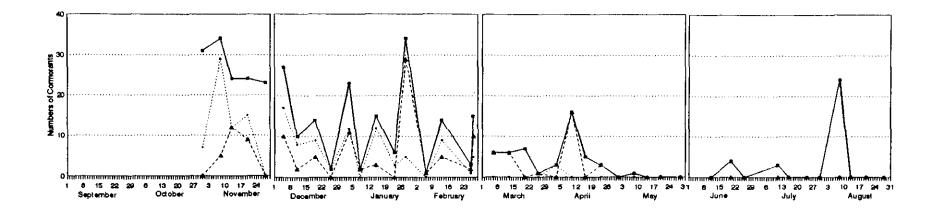



Figure 16. Seasonal variations in the distribution of grebes on the Campbell River estuary, autumn 1982 to spring 1984.

The Red-necked Grebe was the most abundant of the grebes with a total of 133 birds seen (56% of all grebes). During the periods from the earliest arrival on 17 October (1983) to the latest departure on 23 April (1983), the likelihood of spotting a Red-necked Grebe was 50% or greater on any day surveyed. In addition, 3 birds were observed during the summer of 1983. The peak number of 16 birds was recorded on 10 April 1983 and again on 23 April 1983. All of the Red-necked Grebes were seen in or near deep water (from stations 1 to 5) except 3 birds recorded on the inner estuary (at station 8) in spring 1984.

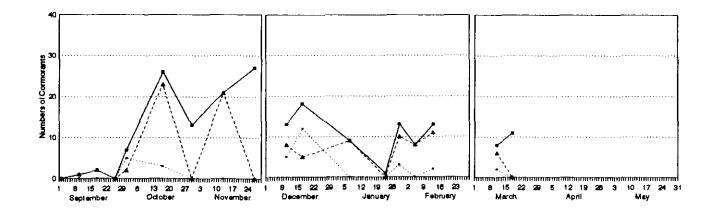


Figure 17. Seasonal fluctuations in numbers of Double-crested Cormorants (dotted line), Pelagic Cormorants (dashed line) and all cormorants combined (solid line) on the Campbell River estuary, October 1982 to March 1984.

A total of 76 Horned Grebes was seen (32% of all grebes). The earliest arrival was 10 September (1983) and the latest departure on 23 April (1983). Most Horned Grebes were seen in winter; a peak number of 12 birds was recorded on 28 January 1983. All but 1 of the birds seen in the study period were using the deep water east of Tyee Spit.

A total of 23 Western Grebes was counted. Occurrence was sporadic during the periods between the earliest arrival on 8 November (1982) and the latest departure on 23 April (1983). The peak number was 9 birds seen on 17 October 1983. All but 1 of the Western Grebes was spotted in or near deep water on the east side of Tyee Spit.

We saw a total of 4 Eared Grebes over the study period: 3 birds on 27 February 1983 and 1 bird on the 6 March 1983. They were all seen to the east of Tyee Spit (stations 1, 3 and 4).

Cormorants: Two species of cormorants were recorded with a combined total of 572 birds (1% of all birds). The total includes 146 birds (26% of all cormorants) reported simply as cormorant species; this is significant to the arrival and departure dates because in summer all of the cormorants seen were not identified to species. Figure 18 indicates the viewing stations where cormorants were seen; for comparison, the areas used by cormorants in the winter-spring periods from 1973 to 1975 are shown in Figure 5.

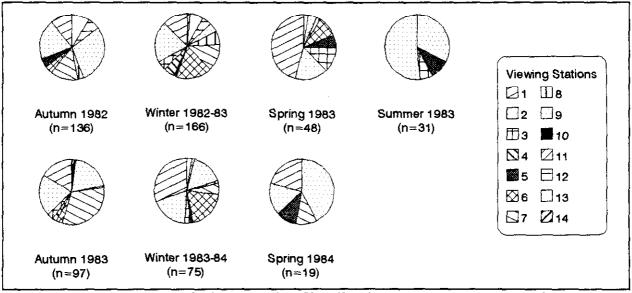
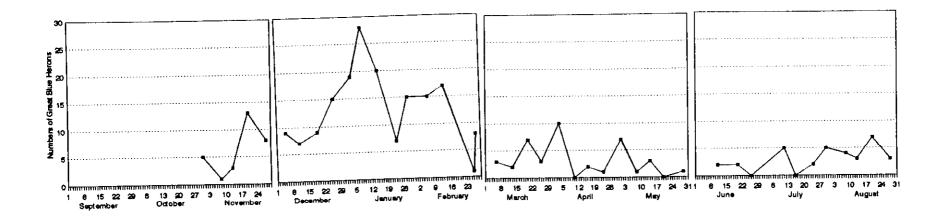



Figure 18. Seasonal variations in the distribution of cormorants on the Campbell River estuary, autumn 1982 to spring 1984.

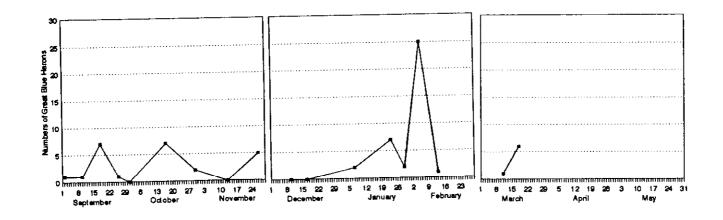


Figure 19. Seasonal fluctuations in numbers of Great Blue Herons on the Campbell River estuary, October 1982 to March 1984.

Of the cormorants identified, the Pelagic was the most abundant with a total of 245 observed (43% of all cormorants). The earliest arrival was on 10 September (1983) and the latest departure was on 8 May (1983). The birds were most abundant in winter and autumn with a peak of 29 recorded on 28 January 1982. For seasonal fluctuations in Pelagic Cormorant numbers see Figure 17. The area where most of the birds were seen was in or near the deep water to the east and north of Tyee Spit (stations 1 to 6), but many came onto the inner estuary possibly to loaf on logs.

The total number of Double-crested Cormorants recorded was 181 birds (32% of all cormorants). Earliest arrival was on 1 October (1983) and latest departure was on 3 April (1983). The Double-crested Cormorant was seen mostly in winter (58%); its numbers peaked at 29 birds on 8 November 1982 (Figure 17). The area where most of the birds were seen was in or near the deep water to the east and north of Tyee Spit (stations 1 to 6), but the inner estuary was also used extensively, perhaps for loafing and drying.

Herons: The Great Blue Heron was the only species of heron reported over the study period; a total of 341 birds were seen (<1% of all birds). Although they were seen in every season, herons occurred in the greatest numbers in winter (61%) when a peak of 28 individuals was recorded on 8 January 1983 (Figure 19). The areas used by the Great Blue Heron varied over time without any obvious seasonal cycle (Figure 20); most favoured were the sites near the dry land log-sort (station 12, 18%), near the main channel of the river (station 14, 18%), and on the western side of Tyee Spit (station 7, 18%).

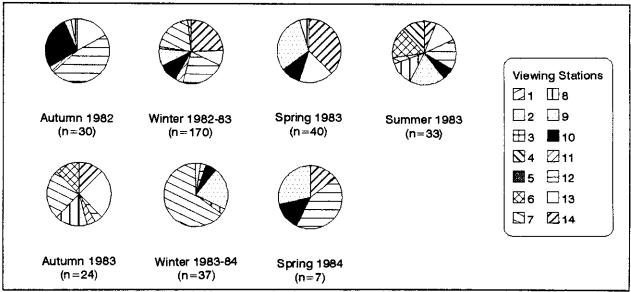
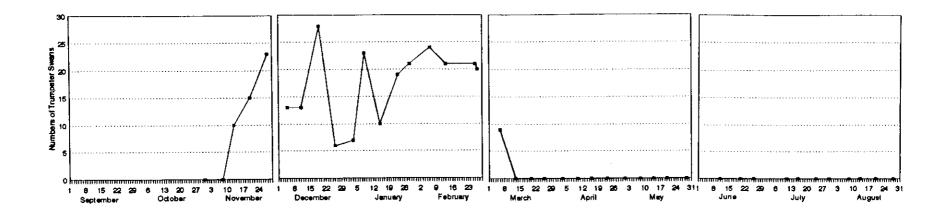



Figure 20. Seasonal variations in the distribution of Great Blue Herons on the Campbell River estuary, October 1982 to March 1984.

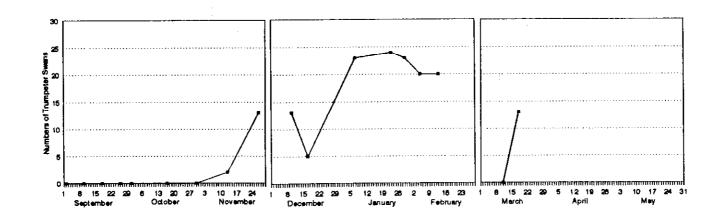


Figure 21. Seasonal fluctuations in numbers of Trumpeter Swans on the Campbell River estuary, October 1982 to March 1984.

Swans: Two species of swans were identified during the survey. The Trumpeter Swan, with a total of 439 birds (1% of all birds), accounted for all but one of the swans seen. In the periods between the earliest arrival on 13 November (1982) and the latest departure on 18 March (1984), the Trumpeter Swan had a frequency of occurrence of 93% on the surveys. Most of the swans were observed in winter (81%) with a peak of 28 birds occurring on 19 December 1982 (Figure 21). The swans were seen from every viewing station inside the estuary (stations 6 to 14, Figure 22); their preferred habitat was west of Tyee spit near the outflow and tidal channels of Nunns Creek (station 9, 55% of swans; station 10, 13%; station 8, 11%). This was the same area where the birds were seen most during 1973 to 1975 period (Figure 5).

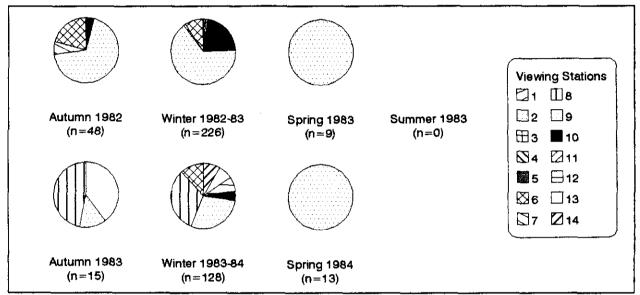
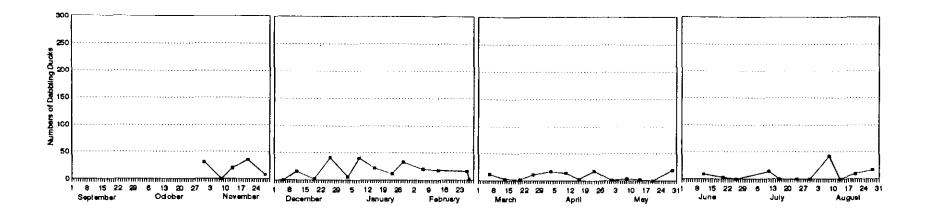


Figure 22. Seasonal variations in the distribution of Trumpeter Swans on the Campbell River estuary, autumn 1982 to spring 1984.

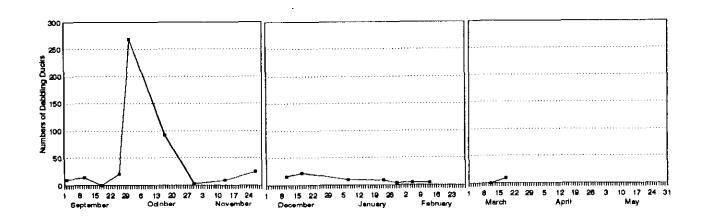

One Mute Swan was recorded on 19 December 1982 from station 12.

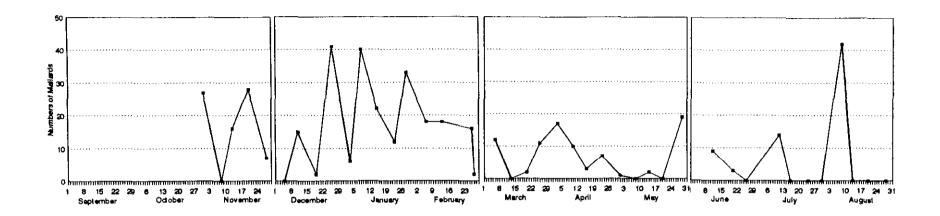
Geese: Four goose species with a combined total of 41 birds (<1% of all birds) were recorded during the study period. The Canada Goose was the most abundant; observers tallied 31 birds (76% of all geese). However, the species was present only intermittently: 2 birds on 26 December 1982, 2 birds on 13 March 1983 and 2 birds on 8 May 1983. In addition, 25 birds were observed from station 7 flying over the estuary on 23 January 1983. Most of the other birds were seen west of Tyee Spit (stations 8, 9 and 13).

We saw 7 Brant on 18 March 1984 to the east of Tyee Spit (station 5).

The Greater White-fronted Goose was recorded twice; 1 bird on 10 September 1983 and 1 bird on 1 October 1983. Both sightings were made from near the tip of Tyee Spit (stations 6 and 7).

One Snow Goose was seen on 13 March 1983 from near the dry land log-sort (station 12).




Figure 23. Seasonal fluctuations in numbers of dabbling ducks on the Campbell River estuary, October 1982 to March 1984.

Dabbling Ducks: During the study period, 8 species of dabbling ducks were recorded representing a combined total of 1045 birds (2% of all birds). The most abundant was the Mallard and the American Wigeon ranked second. The remaining species (together comprising < 12% of dabbling ducks) were: Green-winged Teal, Northern Pintail, Blue-winged Teal, Northern Shoveller, Cinnamon Teal and Wood Duck. Dabbling ducks were present in every season but always fewer than 50 birds except on 1 October 1983 when numbers climbed to a peak of 268 due to the arrival of 235 dabblers, visible from the tip of Tyee Spit (American Wigeons and Green-winged Teals, station 6). A similar peak, if it occurred in 1982, would have passed shortly before the first bird survey. Fluctuations in dabbling duck numbers are shown in Figure 23. The birds seen from the west side of Tyee Spit and Nunns Creek (stations 8, 9 and 10) together account for most of the dabbling ducks (Figure 24). Much of the remainder occurred in the inner part of the Campbell River estuary (stations 7 to 14); relatively few ducks were seen in or near deep water (stations 1 to 5).

Figure 24. Seasonal variations in the distribution of dabbling ducks on the Campbell River estuary, autumn 1982 to spring 1984.

Mallard numbers totalled 615 birds over the study period (59% of dabbling ducks). This species was present in every season with an overall frequency of occurrence of 75%. Fluctuations in numbers are shown in Figure 25. The largest proportion was recorded in winter (47%) but the peak of 42 birds was seen in summer on 8 August 1983. This duck occurred mostly west of Tyee Spit near the tidal streams of Nunns Creek; stations 10, 9 and 8 together tallied 63% of the Mallards. They were also observed from every other station that overlooks the inner estuary (Figure 26); none at all were seen in the deep water east of Tyee Spit.

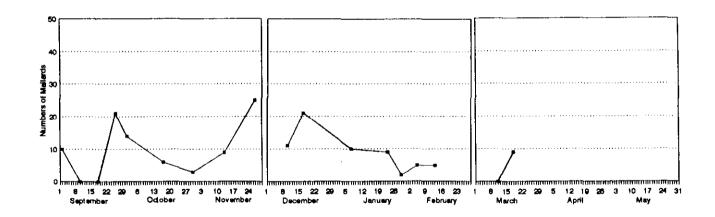


Figure 25. Seasonal fluctuations in numbers of Mallards on the Campbell River estuary, October 1982 to March 1984.

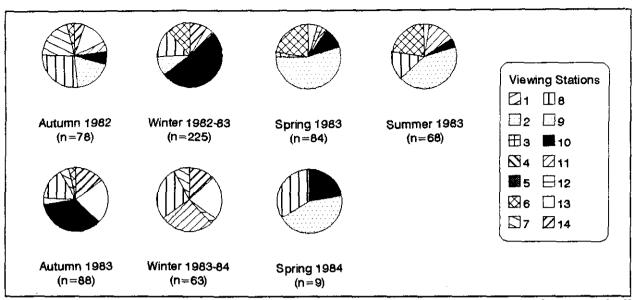
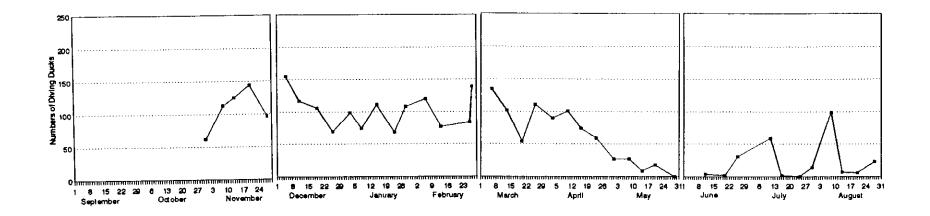


Figure 26. Seasonal variations in the distribution of Mallards on the Campbell River estuary, autumn 1982 to spring 1984.


The American Wigeon was the second most abundant dabbling duck with a total of 296 birds recorded (28% of dabbling ducks). They were present intermittently in every season but most of them were seen together; the peak number was 200 birds observed on 1 October 1983 from the tip of Tyee Spit (station 6) and the second largest number was 70 birds seen from the same location about 2 weeks later, on 17 October 1983. Other records are from west of Tyee Spit: 4 birds seen on 13 November 1982, 4 birds on 20 November 1982, 3 birds on 10 December 1983, 2 birds on 29 January 1984, 2 birds on 6 February 1983 and 1 bird on 8 May 1983 (stations 8,9,10,11; see Figure 28). The only summer record was 10 wigeons seen on 10 August 1983 in or near the deep water east of Tyee Spit (station 4).

Three species of teal were recorded with a combined total of 75 birds that includes 7 birds recorded simply as teal species.

The most abundant was the Green-winged Teal; a total of 53 were seen over the study period (5% of dabbling ducks). The earliest arrival was recorded on 1 October 1983-38 birds; 35 of them were seen from the end of Tyee Spit (station 6). The latest departure was 10 April (1983). All of the birds, other than the group of 35, occurred at various locations in the inner estuary (stations 7, 9, 10, 11, 12 and 14).

We tallied a total of 13 Blue-winged Teals during the survey: 9 birds on 17 October 1983 west of Tyee Spit (station 8, identification uncertain), 2 birds on 23 April 1983 from station 10 and 2 birds on 8 May 1983 from station 9.

Two Cinnamon Teals were reported on 23 April 1983 from close to the tidal channels near Nunns Creek (station 10).

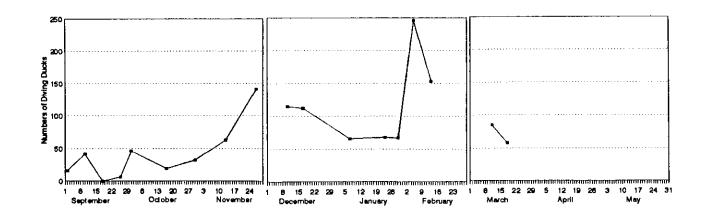


Figure 27. Seasonal fluctuations in numbers of diving ducks on the Campbell River estuary, October 1982 to March 1984.

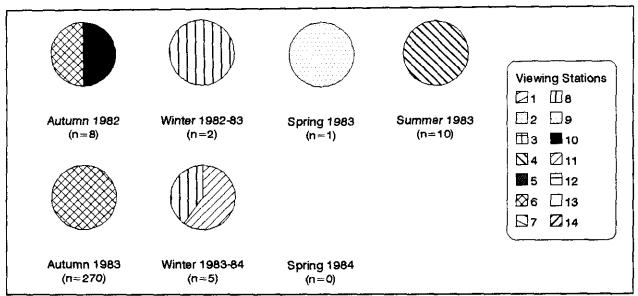
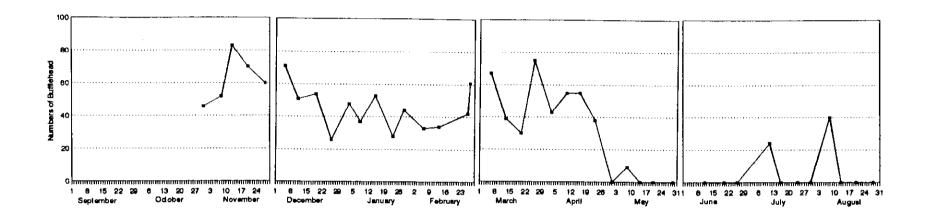


Figure 28. Seasonal variations in the distribution of American Wigeon on the Campbell River estuary, autumn 1982 to spring 1984.


Northern Pintail numbers totalled 51 birds (5% of dabbling ducks). The earliest arrival date was 28 August 1983 and the latest departure date was 17 October 1983. During this period, pintails were observed on 4 of the 7 surveys (frequency of occurrence = 57%) but the species was not seen at all outside of this period. All of the birds were seen between the area west of Tyee Spit and the tidal channels near Nunns Creek (stations 7, 8, 9 and 10).

We saw a total of 4 Northern Shovellers over the study period: 3 birds on 1 October 1983 and 1 bird on 8 May 1983. All were seen west of Tyee Spit (stations 9 and 7).

One Wood Duck was seen on 28 November 1982 near Nunns Creek (station 11).

Diving Ducks: During the course of the study, 14 species of diving ducks were recorded with a combined total of 4256 birds (10% of all birds). The most numerous by far was the Bufflehead. The Common Merganser was the second most abundant followed by the Common Goldeneye, Surf Scoter, Harlequin Duck and Red-breasted Merganser. The remaining species (together comprising approximately 8% of all diving ducks) in decreasing order of abundance were: Barrow's Goldeneye, Greater Scaup, Oldsquaw, Hooded Merganser, White-winged Scoter, Lesser Scaup, Black Scoter and Canvasback. In addition, 32 diving ducks were not fully identified.

Diving ducks were observed in every season; the highest numbers were seen in winter (51%) when there was at least 66 birds present on or near the estuary (Figure 27). Numbers were generally low from May through October. The peak number of 246 birds (mostly goldeneyes, mergansers, scoters and

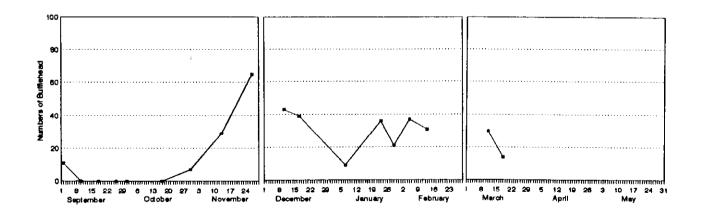


Figure 29. Seasonal fluctuations in numbers of Bufflehead on the Campbell River estuary, October 1982 to March 1984.

Bufflehead) was seen on 5 February 1984 and secondary peaks were recorded in late November or early December of both years.

Diving ducks were seen from all 14 viewing stations but the areas where they were seen most varied with the seasons (Figure 30). In autumn they were most visible from the tip of Tyee Spit (station 6, 20%) and from of the centre of the inner estuary (station 13, 17%). In winter, habitat use was very dispersed; the largest segment of the population was seen east of Tyee Spit (e.g. station 5, 15%). By spring the abundance was highest near the base of Tyee Spit looking westward into the intertidal marshes of Carex, Juncus and Deschampsia (station 9,19%) and also near the centre of the estuary (station 13, 20%). Numbers of diving ducks in summer were again highest near the tip of Tyee Spit (station 6, 36%). Over the entire 2 years of the study, the area visible from station 13 in the centre of estuary received the most use (14%).

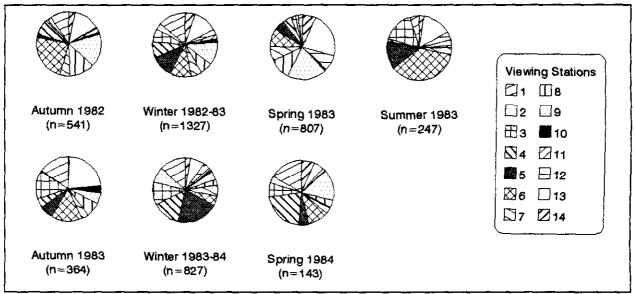
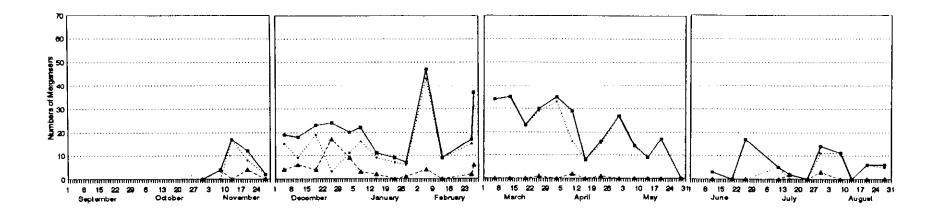



Figure 30. Seasonal variations in the distribution of diving ducks on the Campbell River estuary, autumn 1982 to spring 1984.

We saw a total of 1740 Bufflehead (41% of all diving ducks). From the earliest arrival on 30 October (1983) to the latest departure on 8 May (1983), the species was present almost continuously (frequency of occurrence: 98%). Outside of this period, significant numbers of birds, likely nonbreeders, were seen on 11 July 1983, 8 August 1983 and 2 September 1983 (Figure 29). Most Bufflehead were seen in winter (46%) but the peak number of 83 birds was recorded on 13 November 1982. Birds were observed from every station but the proportions were different in each season (Figure 32). In autumn their abundance was highest near the centre of the estuary (station 13), in winter the birds were dispersed throughout the inner and outer portions of the estuary, and in spring their numbers were highest west of the base of Tyee Spit (station 9). Almost all of the birds in summer were seen east and north of Tyee Spit (stations 3 to 6).

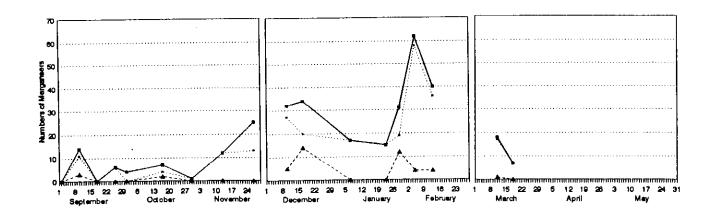


Figure 31. Seasonal fluctuations in numbers of Common Mergansers (dotted line), Red-breasted Mergansers (dashed line) and all mergansers combined (solid line) on the Campbell River estuary, October 1982 to March 1984.

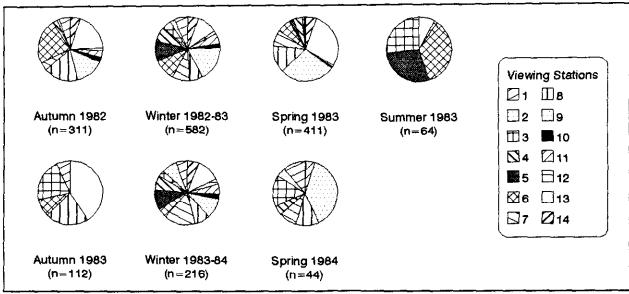


Figure 32. Seasonal variations in the distribution of Bufflehead on the Campbell River estuary, autumn 1982 to spring 1984.

Three species of mergansers were seen: the Common Merganser, the Redbreasted Merganser and the Hooded Merganser. The Common Merganser was the most abundant of the 3 and the second most numerous species of diving duck with a total of 784 birds recorded (18% of all diving ducks). It was present in every season of the study; the frequency of occurrence varied from 60% over the summer-autumn period to 97% through winter and spring. In the winter-spring period 85% of all of the Common Mergansers were seen. Interestingly, the peak numbers recorded were one year apart: 43 birds on 6 February 1982 and 58 birds on 5 February 1983 (Figure 31). Over the whole study period, this duck was seen most from the centre of the estuary (Station 13, 27%). For seasonal variations in the areas used, see Figure 33.

Red-breasted Merganser numbers totalled 120 birds (3% of all diving ducks). The species was noted in every season (Figure 31). However, other than in winter, the counts were always below 5 birds and the frequency of occurrence was low, (25% on average). Most of the birds were seen in winter (81%); the peak of 17 birds was recorded on 26 December 1982. The viewing stations that the Red-breasted Merganser was seen from were different in each season (Figure 34).

We saw a total of 56 Hooded Mergansers. They occurred in every season in roughly equivalent numbers; the lowest numbers were in winter. Most of the birds were tallied on 3 separate days: 17 birds on 26 June 1983 seen from station 13; 12 birds on 27 November 1983, 10 of which were observed from station 10; and 11 birds on 10 April 1983 seen from station 13.

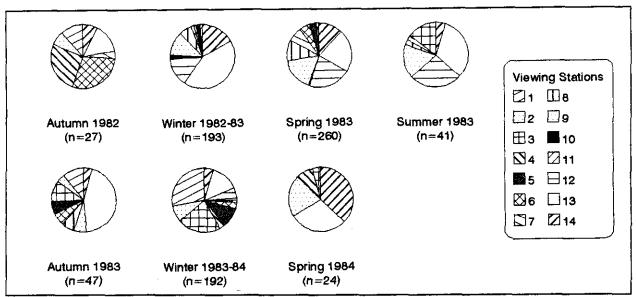


Figure 33. Seasonal variations in the distribution of Common Mergansers on the Campbell River estuary, autumn 1982 to spring 1984.

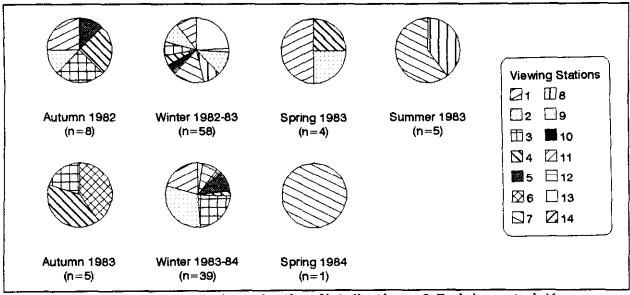


Figure 34. Seasonal variations in the distribution of Red-breasted Mergansers on the Campbell River estuary, autumn 1982 to spring 1984.

Two species of goldeneyes were seen plus 4 birds that were reported simply as goldeneye species. The Common Goldeneye was more than 3 times as numerous as the Barrow's Goldeneye. Seasonal fluctuations in the numbers of both are shown separately in Figure 36.

The Common Goldeneye ranked third in abundance among the diving ducks with a total of 431 birds seen (10% of all diving ducks). From the earliest arrival on 1 October (1983) to the latest departure on 23 April (1983), its frequency of occurrence over both seasons was 82%. The numbers present fluctuated (Figure 36); the peak number recorded was 71 birds on 5 February 1983. The Common Goldeneye was seen most in or near the deep water east and north of Tyee Spit (stations 1 to 5 and especially station 6). Seasonal variations in the distribution of the Common Goldeneye are shown in Figure 35.

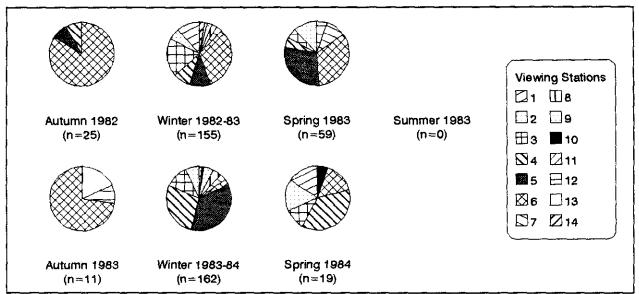


Figure 35. Seasonal variations in the distribution of Common Goldeneye on the Campbell River estuary, autumn 1982 to spring 1984.

The total number of Barrow's Goldeneye reported over the study period was 83 birds. There was apparently some confusion in separating Barrow's from Common goldeneyes by one of the teams (Kay Conway, pers. comm.). Thus, we suggest that the following information be used with caution. It has been summarized as it was reported to allow comparison with any future studies; however, doubt could be removed by simply referring to these records as goldeneye species. Apparent Barrow's Goldeneye presence was sporadic from the

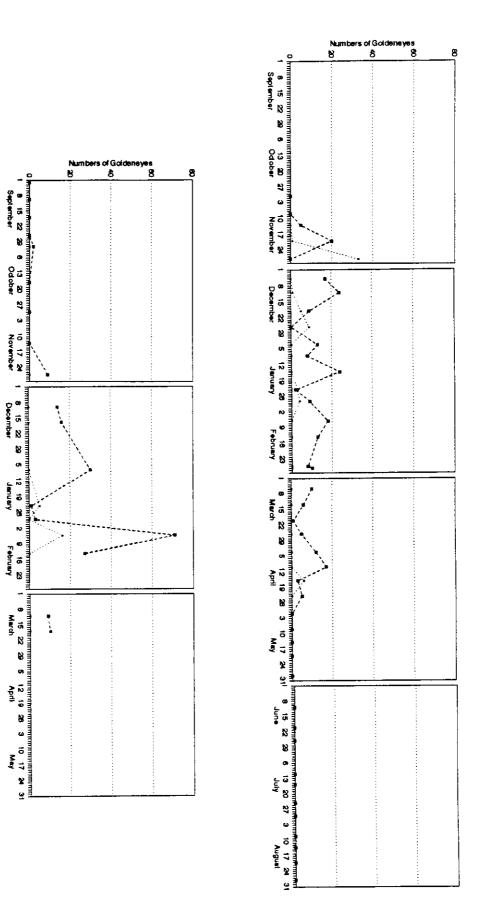


Figure 36. Seasonal fluctuations in numbers of Common Goldeneye, (dashed line) and Barrow's Goldeneye (dotted line) on the Campbell River estuary, October 1982 to March 1984.

earliest arrival on 20 November 1982 to the latest departure on 16 April 1983. It was reported most in late autumn and in winter (93%; Figure 36); when a peak number of 33 birds was recorded on 28 November 1982, the number of Barrow's Goldeneye reported exceeded the number of Common Goldeneye. Most Barrow's Goldeneye were reported from east and north of Tyee Spit (especially the areas visible from station 6) but the species was also reported near the dry land log-sort (station 12) and at other locations (Figure 37).

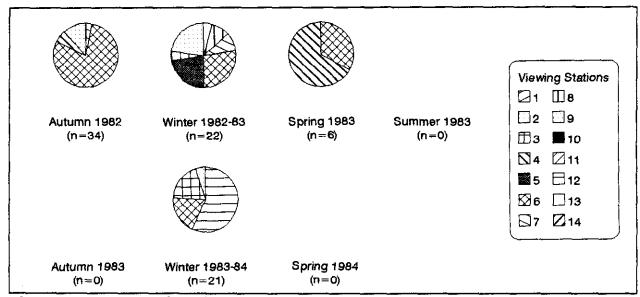
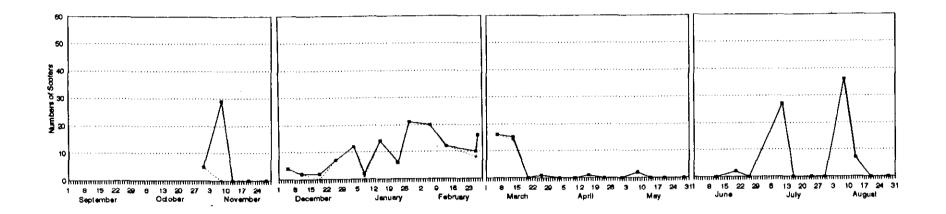



Figure 37. Seasonal variations in the distribution of Barrow's Goldeneye on the Campbell River estuary, autumn 1982 to spring 1984.

Three species of scoters, the Surf Scoter, White-winged Scoter and Black Scoter, were recorded with a combined total of 472 birds seen, including 7 birds identified simply as scoter species.

Surf Scoter numbers accounted for 85% of all scoters and ranked it fourth among diving ducks (9% of all diving ducks). It was present in every season but it was most abundant in winter (59% of the total seen); the peak of 59 birds was recorded on 5 February 1983. The lowest frequency of occurrence was in autumn (20% and 22%) in both years of the study. Erratic daily fluctuations in the numbers present on the estuary obscured all but the most general seasonal patterns (Figure 38). The majority of Surf Scoters were seen in or near deep water to the east and north of Tyee Spit (stations 1 through 6; Figure 39) however there were some seen from the inner side of the Spit (station 7).

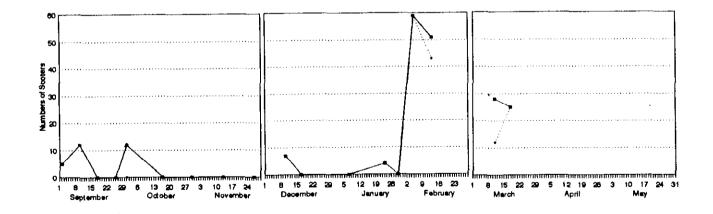


Figure 38. Seasonal fluctuations in numbers of Surf Scoters (dashed line) and all scoters combined (solid line) on the Campbell River estuary, October 1982 to March 1984.

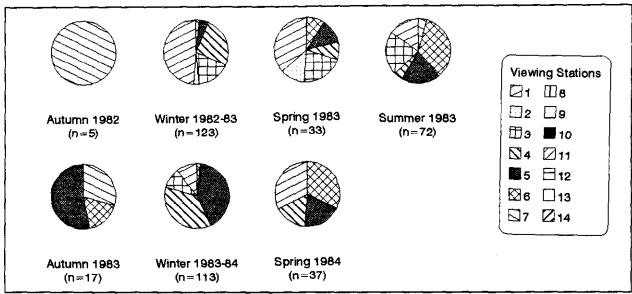



Figure 39. Seasonal variations in the distribution of Surf Scoters on the Campbell River estuary, autumn 1982 to spring 1984.

The White-winged Scoter had a relatively minor presence on the Campbell River estuary; a total of 52 birds was counted over the study period (11% of all scoters). This contrasts with the Fanny Bay area where the White-winged Scoter was the most numerous scoter and the second most abundant diving duck (Dawe et al. 1995). In Campbell River the earliest arrival was 1 October (1983) and the latest departure was 26 March (1983). Unlike the Surf Scoter, the White-winged Scoter was most abundant in autumn (60%) and spring; its abundance was low in winter and it was not present at all in summer. The peak was 19 birds recorded on 8 November 1982 from station 4. The White-winged Scoter used the outer, east side of Tyee Spit but unlike other scoters, this species concentrated its activity (69%) near viewing station 4.

We saw a total of 13 Black Scoters over the study period: 3 birds on 8 November 1982 from station 8, 2 birds on 26 February 1983 from stations 1 and 5 and 8 birds on 13 February 1984 from station 6.

Harlequin Duck numbers totalled 350 birds (8% of all diving ducks). The species was present in every season; nonbreeding summer birds make the migration dates difficult to determine (Figure 40). Abundance was highest in winter (47% of the total) and autumn (36%) when a peak of 28 birds was recorded on 5 December 1982. Numbers were lowest in spring (3% of the total). The probability of seeing a Harlequin Duck on the estuary was high (frequency of

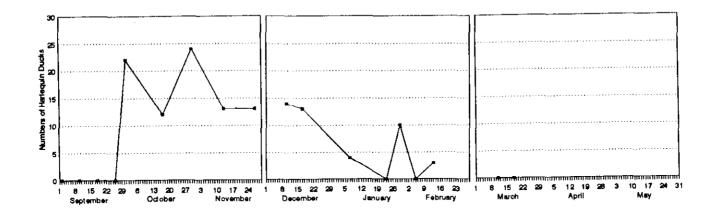


Figure 40. Seasonal fluctuations in numbers of Harlequin Ducks on the Campbell River estuary, October 1982 to March 1984.

occurrence from 45% to 92%) except during March, April, May and September (frequency of occurrence from 0% to 20%). This cycle is similar to that noted on the Cluxewe River estuary to the north but it contrasts with patterns noted in the area from Comox Harbour to Deep Bay and on the Englishman River estuary to the south where numbers typically peaked in April around the time of the herring spawn (Dawe et al. 1995, Campbell et al. 1990, Dawe et al. 1994). Almost all of the birds seen were in or near deep water east of Tyee Spit (stations 1 to 6) with a preference for the area near the base of the Spit (40% of the total throughout the study were recorded at station 1; Figure 41). Only 4 birds were seen on the inner estuary; 3 of them were near the main channel of the Campbell River (station 14) on 28 August 1983.

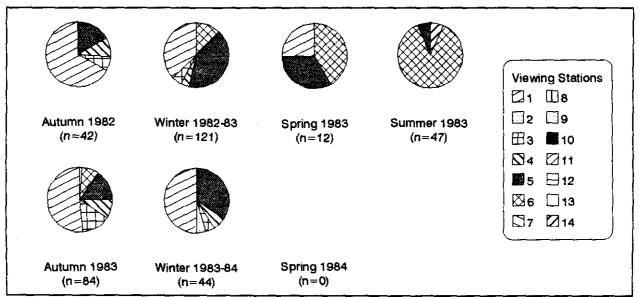


Figure 41. Seasonal variations in the distribution of Harlequin Ducks on the Campbell River estuary, autumn 1982 to spring 1984.

A total of 112 scaups of 2 species were reported during the study period including 15% that were identified simply as scaup species. The Greater Scaup was the most numerous with a total of 67 birds counted (60% of all scaups). The earliest arrival was 1 October (1983) and the latest departure was 18 March (1984). Most of the Greater Scaups were counted in one 8-day period: 20 birds on 13 November 1982 and 26 birds on 20 November 1982. The area used most was the shallow waters west of the base of Tyee Spit (near station 8).

Over the study period we saw a total of 28 Lesser Scaups (25% of all scaups): 22 birds on 27 November 1983, 6 birds on 17 December 1983. Most were seen from the centre of the inner estuary (10 birds near station 13); the remainder were seen in or near the shallow waters at the base of Tyee Spit (station 9).

We recorded a total of 58 Oldsquaw. The earliest arrival was on 13 November 1983 when the peak of 9 birds occurred; the latest departure was 13 March (1983). This species was most abundant in winter (64%). All of the birds were seen around Tyee Spit on the deep-water side (stations 1 to 6 and near the tip (stations 6 and 7).

Two Canvasbacks were observed on 23 January 1984 near the deep water east of the base of Tyee Spit (station 1).

Raptors: The total number of raptors seen was 231 (approximately 0.5% of all birds) recorded as 7 species. The Bald Eagle was by far the most abundant. The other species (together amounting to less than 5% of the raptor total) were the Turkey Vulture, Red-tailed Hawk, Merlin, Osprey, Cooper's Hawk, and Northern Goshawk as well as 2 birds recorded as hawk species.

A total of 219 Bald Eagles was tallied (95% of raptors). The species was present in every season with a frequency of occurrence that ranged from 44% to 100% over the study period. Numbers reached their highest levels in summer (over 50% of the total was seen in the 1 summer of the study) when the peak of 62 birds was seen on 11 June 1983. The Bald Eagle was observed from every viewing station; however, it was more numerous in the inner part of the estuary, west of Tyee Spit (stations 7 to 14; Figure 42).

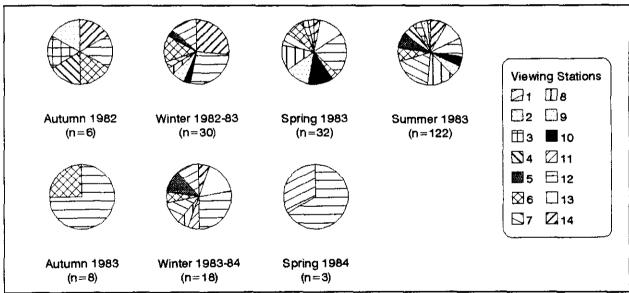


Figure 42. Seasonal variations in the distribution of Bald Eagles on the Campbell River estuary, autumn 1982 to spring 1984.

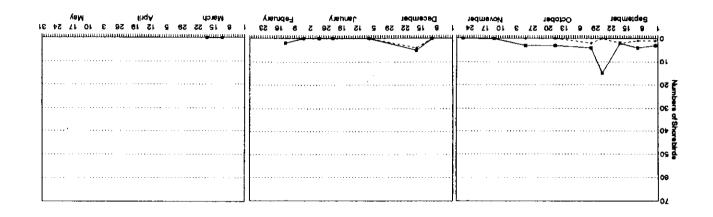
The Turkey Vulture was the second most abundant raptor with a total 3 birds seen on 28 August 1983 from near the dry land log-sort (station 12).

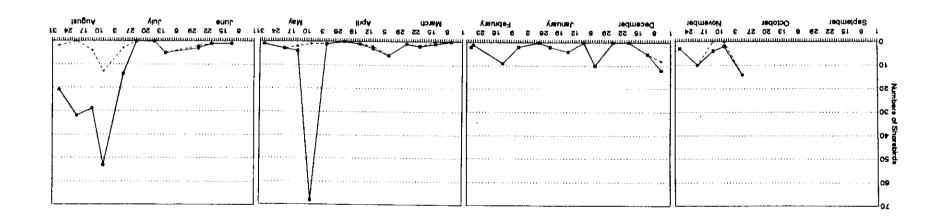
The Red-tailed Hawk was recorded on 2 occasions: one individual on 28 January 1983 and one bird on 17 October 1983. Both were observed near the tidal stream that adjoins Nunns Creek (station 10).

The Merlin was also reported twice: one bird on 26 June 1983 seen near the tidal stream that adjoins Nunns Creek (station 10), and one bird on 17 October 1983 observed from near the dry land log-sort (station 12).

There was 1 record for the Osprey; a lone bird was seen 30 July 1983 from the centre of the estuary (station 13).

We saw 1 Cooper's Hawk on 27 February 1983 near Nunns Creek (station 11).


There was 1 Northern Goshawk seen on 5 December 1982 near the main stream of the Campbell River (station 14).


Shorebirds: In total, 371 shorebirds (< 1% of all birds) were seen on the Campbell River estuary. This total represents at least 13 species of which the Killdeer, Western Sandpiper and Surfbird were the most abundant. The other species, present in equivalent numbers, together accounted for 7% of the shorebird total: Common Snipe, Dunlin, Semipalmated Plover, Short-billed Dowitcher, Lesser Golden-Plover, Whimbrel, Greater Yellowlegs, Wandering Tattler, Spotted Sandpiper and Least Sandpiper. The total also includes 15% of all shorebirds recorded simply as shorebird species.

The largest numbers of shorebirds were seen in summer (43% of the total) even though only 1 summer was surveyed. Seasonal fluctuations in numbers of all shorebirds combined are shown in Figure 43. One peak on 8 May 1983 represents the arrival of 62 Western Sandpipers. The only other period when shorebird numbers rose above 20 was in August when the numbers of Western Sandpipers, Surfbirds and unidentified shorebirds were relatively high. Most shorebird use of the estuary was centred around the tip of Tyee Spit (especially station 6; 35% of all shorebirds were seen from there). The west side of Tyee Spit (stations 8 and 9) and the centre of the estuary (station 13) were also good places to spot shorebirds (Figure 44).

A total of 133 Killdeer was reported. Despite its proportionally low numbers much of the time, the species ranked as the most abundant shorebird (36% of all shorebirds) because its frequency of occurrence in every season was the highest (60% over the study period). Seasonal fluctuations in the numbers of Killdeer were minimal (Figure 43); abundance was highest in winter (37%) but a peak number of 14 was recorded on 31 October 1982 and another peak of 13 birds was reported on 8 August 1983. This plover was seen in many locations around the estuary; most of the birds we saw were using the area around the tip of Tyee Spit and to the west (stations 5 to 9; Figure 45).

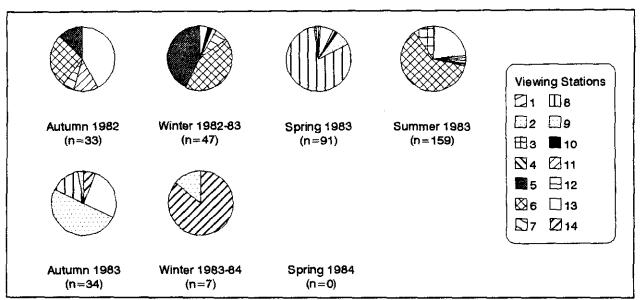


Figure 44. Seasonal variations in the distribution of shorebirds on the Campbell River estuary, autumn 1982 to spring 1984.

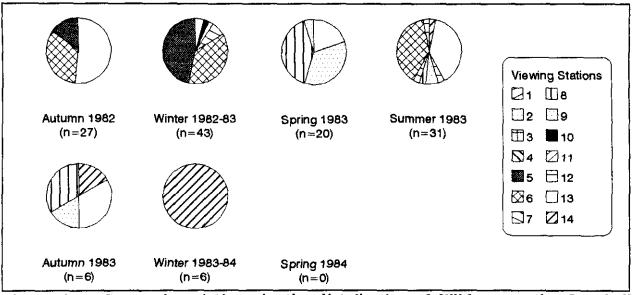


Figure 45. Seasonal variations in the distribution of Killdeer on the Campbell River estuary, autumn 1982 to spring 1984.

The total number of Western Sandpipers reported was 114 birds, ranking the species second in abundance among the shorebirds (32% of all shorebirds). Spring migration was marked by the appearance of 60 birds on 8 May 1983 visible from the west side of Tyee Spit (station 8) and 1 bird seen from each of station 6 and station 14 on the same day. The autumn migration was more dispersed: 11 birds on 30 July 1983, 25 birds on 13 August 1983, 15 Birds on 28 August 1983 and 1 bird on 10 September 1993. The major stopping points were near the tip of Tyee Spit (station 6) and near the centre of the estuary (station 13).

The Least Sandpiper was identified only once; a single bird was noted on 28 August 1983 near the tip of Tyee Spit.

The third most abundant shorebird was the Surfbird. A total of 40 were seen, all on 8 August 1993, near the tip of Tyee Spit (station 6, 20 birds), on the east side of the Spit (station 3, 15 birds) and near the centre of the estuary (station 13, 5 birds).

We saw a total of 6 Common Snipes, one bird on each of the following dates: 13 November 1982, 13 March 1983, 10 April 1983, 2 September 1983, 1 October 1983, 17 December 1983. They were seen near Nunns Creek and the adjacent tidal channels (stations 9, 10 and 11), from the centre of the estuary (station 13) and near the main channel of the Campbell River (station 14).

Five Dunlin were counted on 8 May 1983 from the west side of Tyee Spit (station 8).

Four Semipalmated Plovers were observed on 5 December 1982 near the tip of Tyee Spit (station 6). This is 1 of only a few wintering reports of this species in the Strait of Georgia (Campbell et al. 1990).

A total of 4 Short-billed Dowitchers were reported: 1 bird on 28 August 1983 near the dry land log-sort (station 12) and 3 birds on 17 October 1983 from the west side of Tyee Spit (station 8).

Two Lesser Golden-Plovers were seen on 28 August 1983 near Nunns Creek.

Two Whimbrels were seen on 10 September 1983 in the centre of the estuary (station 13).

The only record for the Greater Yellowlegs during the study was of a single bird seen on 1 October 1983 from Tyee Spit near the tidal marshes and flats west of the base of the Spit (station 9).

One Wandering Tattler was seen 2 September 1983 on the deep-water side of Tyee Spit near the base (station 2).

A single Spotted Sandpiper was observed on 26 June 1983 near the centre of the estuary (station 13).

Gulls and Terns: As a group, the gulls accounted for more than half the birds seen in every season; the total was 27,362 gulls (65% of all birds). Six species of gulls were recorded on the Campbell River estuary during the study. Of the gulls identified, the Glaucous-winged was by far the most abundant; Bonaparte's Gull, Mew Gull and Herring Gull were also present in large numbers at times. Other species noted were Ring-billed Gull and California Gull. Nine per cent of all gulls were reported simply as gull species. Although weekly fluctuations in the numbers of gulls were large, a seasonal pattern was evident (Figure 47). Numbers built up to the peak of 1,267 birds counted on 28 January 1983, mainly because many Herring Gulls joined the crowds of Glaucous-winged Gulls already present. In the winter of 1983-1984 this pattern was repeated with a lesser peak; 42% of all gulls were seen in the 2 winters. The locations where gulls were seen most are described for each species; some are shown in Figures 46, 48, 50 and 51.

We identified a total of 20,851 Glaucous-winged Gulls (76% of all gulls); over the study period this one species accounted for almost half (49%) of all birds seen. Described by Campbell et al. (1990) as the "sea gull" of the coast, the Glaucous-winged Gull was seen in every season; season fluctuations in numbers are shown in Figure 47 for comparison with the total numbers of all gulls. The two highest peaks occurred one year apart: 1001 birds seen on 6 February 1983 and 986 birds seen on 5 February 1984. The areas used were diverse (Figure 46) and they changed with the seasons; this gull used the inner estuary most (stations 7 to 14). The only exception was during the summer when gull activity was centred generally around the tip and outer, eastern edge of Tyee Spit; feeding opportunities for the birds are created by recreational fishing.

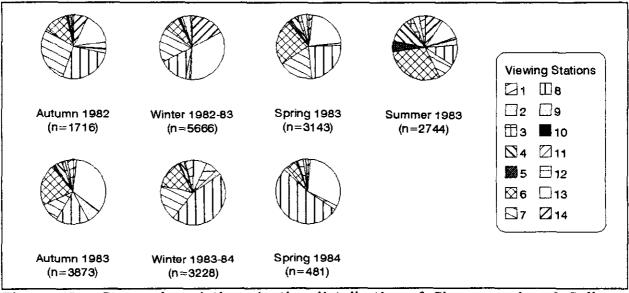
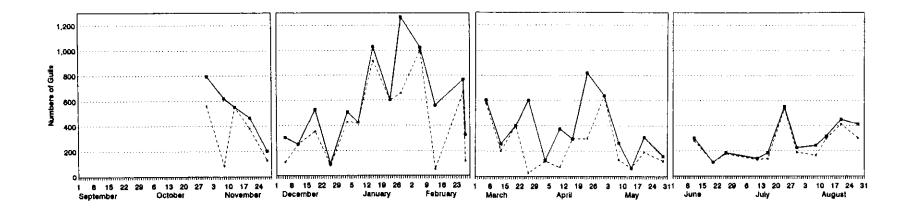



Figure 46. Seasonal variations in the distribution of Glaucous-winged Gulls on the Campbell River estuary, autumn 1982 to spring 1984.

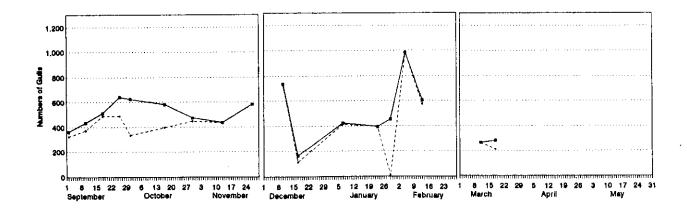


Figure 47. Seasonal fluctuations in numbers of Glaucous-winged Gulls (dashed line) and all gulls combined (solid line) on the Campbell River estuary, October 1982 to March 1984.

Of the identified gulls, the Bonaparte's Gull ranked second in abundance, with a total of 1332 birds (19% of all gulls). The earliest arrival was on 23 April 1983 when the peak of 358 birds were seen. From the middle of May, the species was present almost continuously but numbers remained low (below 80 birds) until the autumn migration when a peak of 213 birds was observed on 1 October 1983. The latest departure was 30 October 1983 (Figure 49). During the migrations, Bonaparte's Gulls were seen mostly around the centre of the estuary, at the dry land log-sort and near the main stream of the river (stations 13, 12 and 14; Figure 48) but during the summer the area used most was near the tip of Tyee Spit.

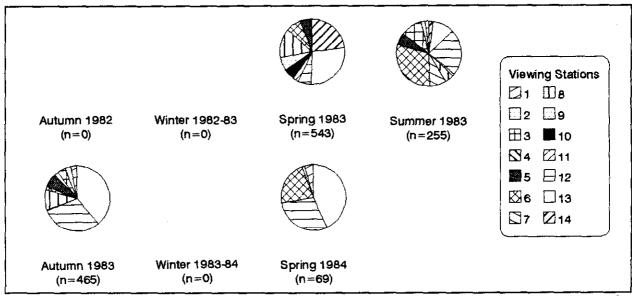
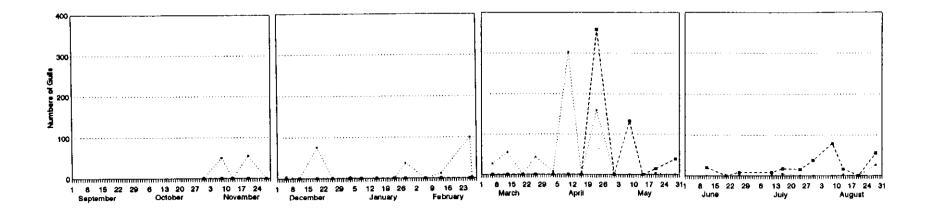



Figure 48. Seasonal variations in the distribution of Bonaparte's Gulls on the Campbell River estuary, autumn 1982 to spring 1984.

The third most abundant gull was the Mew Gull; a total of 1311 birds were tallied (5% of all gulls). The species was present in every season but in summer only 7 birds were seen. Numbers began to swell on 28 August 1983; during autumn migration the maximum number observed was 137 birds on 17 October 1983. Thereafter sightings were again sporadic until the beginning of the spring migration which was marked by the presence of 303 gulls on 10 April 1983 (Figure 49). The Mew Gull was seen most near the centre of the estuary and near the dry land log-sort (stations 13 and 12; Figure 50).

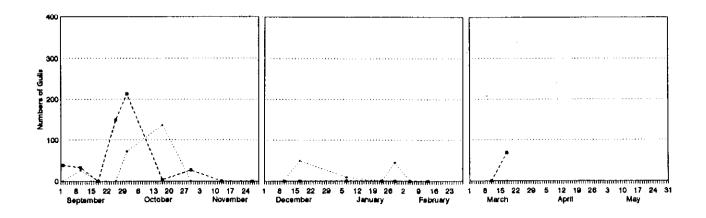


Figure 49. Seasonal fluctuations in numbers of Bonaparte's Gulls (dashed line) and Mew Gulls (dotted line) on the Campbell River estuary, October 1982 to March 1984.

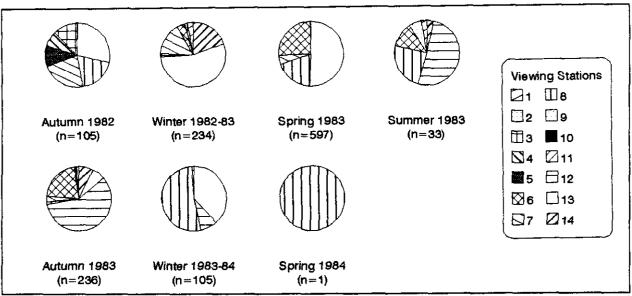


Figure 50. Seasonal variations in the distribution of Mew Gulls on the Campbell River estuary, autumn 1982 to spring 1984.

We saw a total of 979 Herring Gulls over the study period (4% of all gulls). They were present intermittently in all 4 seasons but the majority was counted in winter (84%); the peak of 421 birds was recorded on 28 January 1983. Most of the birds were seen near the centre of the estuary (station 13; Figure 51).

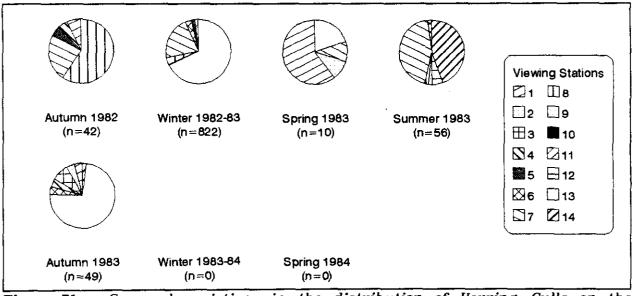


Figure 51. Seasonal variations in the distribution of Herring Gulls on the Campbell River estuary, autumn 1982 to spring 1984.

The number of Ring-billed Gulls counted was 25 in total: 2 birds on 15 January 1983 (station 7), 22 birds on 6 February 1983 near the centre of the estuary (station 13) and 1 bird 30 July 1983 (station 4).

One California Gull was reported on 10 April 1983 near the centre of the estuary (station 13).

The gull family was represented by 2 other species during the study period: the Black-legged Kittiwake and the Caspian Tern. The Black-legged Kittiwake is another species that might have been incorrectly identified at times by a surveys team (Kay Conway pers. comm.) for on the days when large numbers of Kittiwakes were reported, Mew Gulls were not mentioned. Therefore these records should be used with caution. The peak number of Black-legged Kittiwakes was 233 birds reported on 31 October 1982. This observation coincides with a report of 250 birds at the Campbell River estuary on the same date (Campbell et al. 1990). Kittiwakes were reported five more times during the surveys: 73 birds on 28 November 1982, 12 birds on 26 December 1982, 5 birds on 23 January 1983, 1 bird on 24 July 1983, 9 birds on 20 August 1983.

Two Caspian Terns were seen on 16 July 1983 near the tip of Tyee Spit (station 6).

Alcids: Three species of alcids were recorded. The areas that they preferred are shown combined in Figure 52. The most numerous alcid was the Marbled Murrelet with a total of 40 birds counted: 2 birds on 23 April 1983, 18 birds on 11 June 1983, 17 birds 2 weeks later on 26 June 1983, 1 bird on 30 July 1983, 1 bird on 30 October 1983 and 1 Bird on 8 November 1982. All of them were seen in or near deep water from the east side of Tyee Spit (stations 3, 1, 6, 2 and 5).

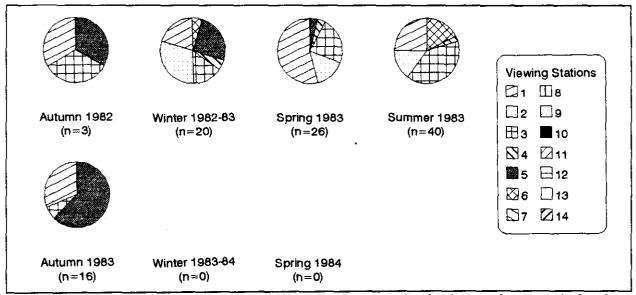


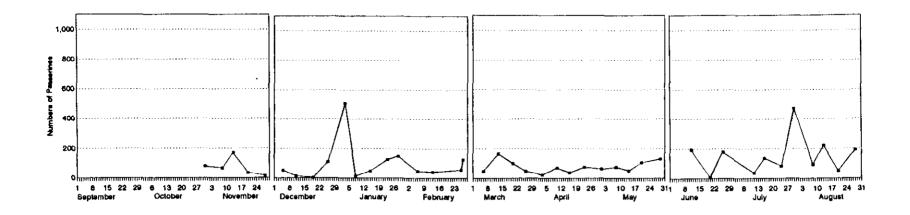
Figure 52. Seasonal variations in the distribution of alcids on the Campbell River estuary, autumn 1982 to spring 1984.

The total number of Pigeon Guillemots seen was 36; they occurred in all 4 seasons. Numbers were highest in winter and spring when a peak of 7 birds was recorded on 5 December 1982 and the same number again on 23 April 1983. Like the other alcids, the Pigeon Guillemot was only seen in or near deep water east of Tyee Spit (stations 1 to 6).

We saw a total of 29 Common Murres over 3 seasons: 1 bird on 13 February 1983, 5 birds on 26 February 1983, 8 birds on 23 April 1983, 15 birds on 17 October 1983. All were seen in or near deep water from the east side of Tyee Spit (stations 5 and 1).

Doves and Pigeons: A total of 327 Rock Doves was seen. This resident was observed in equivalent numbers in each season. The peak was 34 birds on 28 August 1983. They were seen most near stations 7 to 10, stations 1 to 4 and near station 13. The species did not appear near stations 5 and 6 near the tip of Tyee Spit, nor were they ever seen on the inner estuary near stations 11, 12 and 14 during this study.

Six Band-tailed Pigeons were seen on 26 June 1983 dispersed around Nunns Creek, the dry land log-sort, and the centre of the estuary (stations 10, 11, 12 and 13).


Hummingbirds: We recorded 2 species of hummingbirds with a combined total of 25 birds that included 2 individuals reported simply as hummingbird species.

The Rufous Hummingbird accounted for 21 of the birds. The earliest arrival was 10 April (1983) and the latest departure 16 July (1983). Most of the birds were seen in spring near Nunns Creek and the adjacent tidal channels from the base of Tyee Spit to the dry land log-sort (stations 9 to 12). However, the in summer one bird was seen at each of stations 8 and 14.

We saw 2 Annas Hummingbirds: 1 bird on 1 May 1983 and 1 bird on 26 June 1983. Both were using the area near Nunns Creek and the adjacent tidal stream (stations 10 and 11).

Kingfishers: We saw a total of 61 Belted Kingfishers. This species is a resident; it was present in low numbers through every season. The peak number was 7 birds recorded on 11 June 1983; nevertheless the chance of seeing at least one bird was always high (frequency of occurrence of 58% over the study period). Habitat use by the kingfisher appeared to be distributed almost evenly throughout the inner estuary (stations 7 to 14); the deepwater side of Tyee Spit was only used infrequently by this bird.

Woodpeckers: Four species in this group were recorded with a combined total of 25 birds.

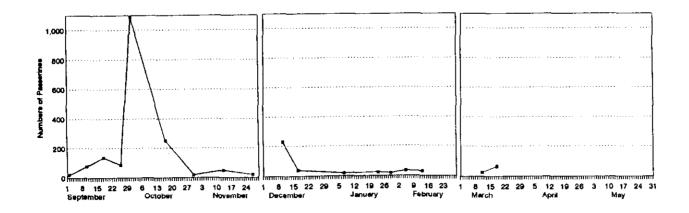


Figure 53. Seasonal fluctuations in numbers of passerines on the Campbell River estuary, October 1982 to March 1984.

The Northern Flicker, with a total of 17 birds, accounted for most of the woodpeckers seen (68%). This species was noted in all seasons but numbers were always low; the maximum number of birds seen in a day was 2. The Northern Flicker appeared at every location surveyed from the base of Tyee Spit west (stations 9 to 14) in equivalent numbers; the species was not observed on the Spit (stations 1 to 8).

Four Pileated Woodpeckers were tallied on 26 June 1983: 3 birds were seen near the dry land log-sort (station 12) and a fourth was observed near the centre of the estuary (station 13).

We saw the Downy Woodpecker twice: 1 bird on 20 November 1982 (station 11) and 1 bird on 26 June 1983 (station 13).

The Hairy Woodpecker was also seen a total of 2 times: 1 bird on 20 November 1982 (station 10) and 1 bird on 28 August 1983 (station 12).

Passerines: Although portions of the forested sections of the Campbell River estuary were surveyed, the focus of the study was primarily to determine waterbird use, so passerine information is limited. Furthermore, only one summer was surveyed whereas all other seasons were partly surveyed twice; passerine counts were affected by this, more so than some of the other groups. Therefore over the course of the study, recorded numbers of songbirds were lower than would otherwise be expected, with many of the family groups scantily represented or missing entirely from the species list (especially the flycatchers, wrens, vireos and warblers). Further studies would help to complete the picture of passerine use in this area.

Nevertheless, 14 families, 47 species and 6557 birds were tallied (16% of all the birds seen during the study) which ranks the passerines just ahead of the waterfowl and second only to gulls in abundance. The numbers of passerines fluctuated with the seasons, as shown in Figure 53. The peak of 1089 birds occurred on 1 October 1983; 82% of this peak was European Starlings but there were a large number of other passerine species logged on that day as well. If the totals seen in each season are adjusted to account for the different numbers of surveys, then the abundance in autumn was the highest with summer and spring ranking close behind. Only in winter was there significantly lower numbers of passerines present (20% of the passerine birds actually seen). The area used most by passerines was around station 13; however, there were large variations over the seasons as shown in Figure 54.

Flycatchers: Two species of flycatchers were recorded with a combined total of 5 birds. We saw 3 Pacific-slope Flycatchers near the dry land log-sort (station 12): 2 birds on 8 May 1983 (station 12) and 1 bird on 26 June 1983.

Two Willow Flycatchers were observed on 26 June 1983, one near Nunns Creek and another from the adjoining tidal stream (stations 10 and 11).

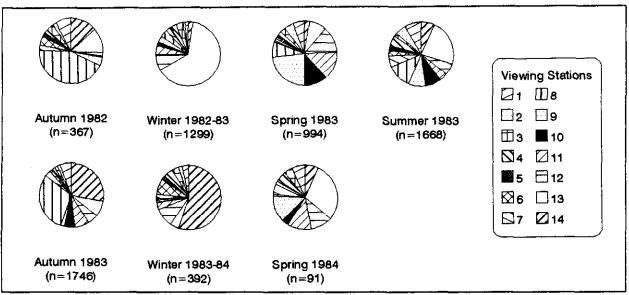


Figure 54. Seasonal variations in the distribution of passerines on the Campbell River estuary, autumn 1982 to spring 1984.

Swallows: The swallows were represented by 4 species during the survey with a combined total of 296 birds. The Barn Swallow was the most abundant followed at a distance by the Violet-green Swallow, Cliff Swallow and Tree Swallow, which were seen in numbers equivalent to one another.

The total number of Barn Swallows counted was 212 birds (72% of all swallows). The earliest arrival was 23 April 1983 and the latest departure was on 18 September 1983 when the peak of 54 birds was recorded. During their presence, the frequency of occurrence was 65%. Unlike the other 3 species of swallows, the Barn Swallow was seen mostly in the summer (55%) and autumn (25%). Its preferred location was near the base of Tyee Spit (approximately 65% of the birds occurred in an area centred on stations 9 and 1, which are only separated by the width of the Spit); stations 14, 13 and 12 also had significant numbers recorded.

The second most abundant swallow was the Violet-green; 30 birds were recorded (13% of all swallows). The earliest arrival was 16 April 1983 and the latest departure was 8 August 1983 when 8 birds were seen from station 9 during migration. The frequency of occurrence was 53% during its stay on the estuary; the abundance was highest in summer (67%). The Violet-green Swallow was seen most from the west side of Tyee Spit (stations 6 to 9).

A total of 28 Cliff Swallows was observed (9% of all swallows) near the centre of the estuary (station 13): 25 birds on 1 May 1983 and 3 birds on 28 August 1983.

Twenty six Tree Swallows were observed (9% of all swallows), all on 29 May 1983. They occurred at 3 disparate locations (stations 12, 9 and 2) throughout the estuary.

Crows and Jays: Three species of corvids with a combined total of 2438 birds accounted for 37% of the passerine total, ranking them as the second most abundant passerine family. The Northwestern Crow accounted for almost all of the corvids (2371 crows; 97% of the corvid total). Crows were present in every season with the highest numbers recorded during the winter (47%); the peak was 433 crows seen on 3 January 1983. The probability of seeing a crow on the estuary ranged from 84% to 100% during the study period. Every part of the estuary survey received regular use by this species, however, recorded numbers were highest near the centre of the estuary (station 13; 44%).

A total of 63 Common Ravens was seen. Sightings were irregular throughout the seasons; there were many periods where no ravens were recorded. Most of the ravens were observed near the base of Tyee Spit, near the dry land log-sort or near the tidal stream adjoining Nunns Creek (stations 1, 12 and 10).

Four Steller's Jays were observed in total: 1 bird on 13 August 1983, 2 birds on 28 August 1983 and 1 bird on 1 October 1983. All were observed in the area from the base of Tyee Spit to the dry land log-sort (stations 12, 11 and 9).

Chickadees: The total of Chestnut-backed Chickadees observed over the study period was 14 birds: 4 birds on 26 February 1983, 1 bird on 10 April 1983, 7 birds 26 June 1983, 2 birds on 28 August 1983. The location they favoured was near the dry land log-sort (station 12), but they were also seen from stations 9 and 11.

Bushtits: We saw 2 Bushtits on 8 May 1983 near Nunns Creek (station 11).

Creepers: One Brown Creeper was seen on 30 July 1983 near the dry land log-sort (station 12).

Wrens: Two species of wrens amounted to a total 5 birds seen. A sixth wren was counted but the species of it remained unidentified. We saw 3 Winter Wrens: 1 bird on 3 January 1983, 1 bird on 26 February 1983, and 1 bird on 13 March 1983. One bird was seen from each of stations 10, 11 and 12.

The Bewick's Wren was seen twice: 1 bird on 8 May 1983 from station 10 and 1 bird on 30 July 1983 from station 12.

Kinglets and Thrushes: In numbers, the muscicapids ranked third among the passerine families; they were represented by 6 species with a cumulative total of 491 birds (7% of all passerines).

The American Robin was the most abundant member of the group (54%). Records from throughout the study period totalled 264 robins. Highest numbers were seen in spring (55% of all robins) when the peak of 104 birds occurred on 13 March 1983 near Nunns Creek; the seasonal total for winter ranked lowest (4%). The American Robin used the areas around Nunns Creek, the adjoining tidal stream and near the dry land log-sort (stations 11, 10 and 12; Figure 55).

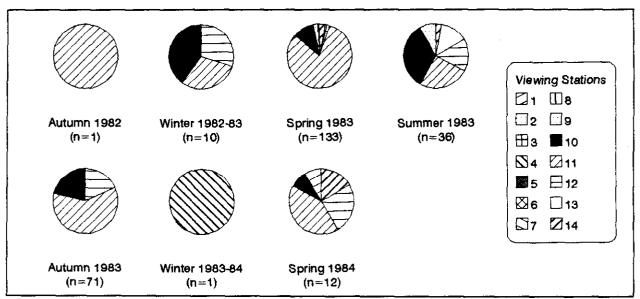


Figure 55. Seasonal variations in the distributions of American Robins on the Campbell River estuary, autumn 1982 to spring 1984.

The Golden-crowned Kinglet was the second most abundant muscicapid, with a total of 208 birds seen. Two hundred of the birds were recorded on a single day, 10 December 1983, near the main channel of the Campbell River (station 14). The other sightings (all from station 11) were: 1 bird on 5 December 1982, 3 birds on 13 February 1983 and 4 birds on 28 August 1983.

We saw 4 Ruby-crowned Kinglets: 1 bird on 15 January 1983 (station 9), 2 birds on 30 July 1983 (station 12) and 1 bird on 17 December 1983 (station 14). Although the species is known to breed on Vancouver Island (Campbell et al. In prep.), it was not reported from the study area during the breeding season.

We recorded a total of 13 Swainson's Thrushes on 26 June 1983. They occurred near every station of the estuary west of Tyee Spit except station 13.

One Hermit Thrush was recorded on 15 February 1983 near the dry land log-sort (station 12).

The Varied Thrush was also included in the study; a single bird on 17 October 1983 was recorded near Nunns Creek (station 11).

Waxwings: The Cedar Waxwing, with a total of 14 birds, was the only species reported: 4 birds on 26 June 1983, 5 birds on 30 July 1983, and 5 birds on 1 October 1983. The birds used the areas near Nunns Creek most (station 11, 9 birds): stations 10 and 13 was also used.

Shrikes: We saw 1 Northern Shrike on 1 October 1982, viewed from the south west side of Tyee Spit.

Starlings: The gregarious European Starling was the most abundant passerine species with 2679 birds tallied (41% of the passerine total). Flocks of starlings could be seen at any time of the year on the Campbell River estuary, however, the numbers recorded fluctuated with the seasons. Total counts were highest in autumn (48%) and summer (37%); lowest in winter and spring. A peak of 889 birds was recorded on 1 October 1983. Starlings were seen from every location surveyed but their distribution was not uniform; they used the base of Tyee Spit most (especially station 8, 29%). The centre of the estuary also reported heavy use; (more than 400 birds from each of stations 13 and 14 over the study period).

Wood Warblers, Sparrows and Blackbirds: The emberizids are a large and diverse group that ranked fourth in abundance among passerine families with a total of 459 birds counted (26% of all passerines). Four species of warblers, 1 species of tanager, 8 species of sparrows and 4 species of blackbirds were all recorded over the study. The sparrows were by far the most abundant of the sub-groups in this family.

Warblers: The most abundant species within this group was the Yellow Warbler with a total of 11 birds seen: 3 birds on 8 May 1983, 1 bird on 11 June 1983 and the peak of 7 birds on 26 June 1983. All were observed at stations from the base of Tyee Spit west to the dry land log-sort (stations 9, 10, 11 and 12).

Seven Yellow-rumped Warblers were recorded: 1 bird on 3 April 1983 (station 10), 1 bird on 26 June 1983 (station 12), 1 bird on 28 August 1983 (station 12) and 4 birds on 1 October 1983 (stations 13 and 14).

We recorded 6 Common Yellowthroats in total: 1 bird on 8 May 1983, 3 birds on 6 June 1983 and 2 birds on 30 July 1983. They were seen in the areas around Nunns Creek (stations 10, 11 and 9).

The only Orange-crowned Warbler observed in this study occurred on 26 June 1983 near the dry land log-sort (station 12).

Tanagers: The Western Tanager was recorded twice: 1 bird on 26 June 1983 (station 12) and 1 bird on 18 September 1983 (station 13).

Sparrows: The Dark-eyed Junco was the most abundant sparrow with a total of 116 birds seen. The earliest arrival was 13 November 1983 and the latest departure was 23 April 1983. Most juncos occurred in winter (89%) but even in that season the frequency of occurrence was often low (from 15% to 71%); a peak of 32 birds was recorded on 6 February 1983. Most of the birds were seen near the tip of Tyee Spit (station 6) or near the dry land log-sort station 12, Figure 56).

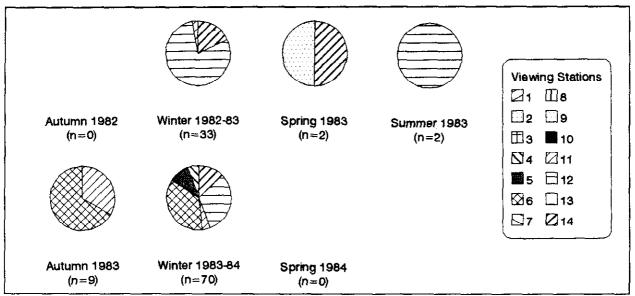


Figure 56. Seasonal variations in the distribution of Dark-eyed Juncos on the Campbell River estuary, autumn 1982 to spring 1984.

The Song Sparrow, with a total of 80 birds, was the second most abundant sparrow observed over the study period. This ubiquitous resident was seen throughout the period surveyed; seasonal totals did not fluctuate significantly. A peak number of 9 birds was seen on 1 October 1983. The Song Sparrow was seen at every station except 1, 3 and 5; use of the area from the base of Tyee Spit to the dry land log-sort was the highest (68% from stations 9 to 12 combined).

The third most abundant sparrow was the Fox Sparrow with a total of 32 birds recorded. Although this species is a resident on the estuary, the numbers seen varied; half of the birds were seen in the single summer surveyed. A peak of 8 birds was seen on 18 March 1984. The areas preferred by this species were similar to the those of the Song Sparrow (stations 9 to 12); the major difference was that the Fox Sparrow made significant use of the tip of Tyee Spit (station 6).

Eighteen Rufous-sided Towhees were tallied over the study period. They were seen in all 4 seasons; the majority (10 birds) were recorded in autumn. The areas frequented most were from the base of Tyee Spit to Nunns Creek (78% from stations 9 to 11).

We saw a total of 15 Savannah Sparrows. The spring migration was marked by 7 birds on 23 April 1983 and 1 bird on 8 May 1983; the records of the autumn migration were 1 bird on 28 August 1983 and 6 birds on 1 October 1983. While on the estuary, the birds occurred at disparate locations (stations 14, 9, 4, 3, and 7).

A total of 6 White-crowned Sparrows were recorded: 2 birds on 23 April 1983 (stations 7 and 9), 1 bird on 8 May 1983 (station 1), 1 bird on 20 May 1983 (station 7), 1 bird on 26 June 1983 (station 12) and 1 bird on 19 December 1983 (station 9).

Three Golden-crowned Sparrows were observed on 1 October 1983: 1 bird was seen from station 7 on Tyee Spit and 2 birds were noted from station 11 near Nunns Creek.

The Snow Bunting was also recorded on the estuary; 2 birds were noted on the 31 October 1982 west of the base of Tyee Spit (station 9).

Blackbirds: The most abundant bird of this group was the Red-winged Blackbird with a total of 113 individuals seen. The species was present in all 4 seasons but most of the birds occurred in spring (52%) and summer (35%). The latest departure in autumn was 10 birds seen on 1 October (1983) and the earliest arrival was 26 February (1983) when 3 blackbirds was recorded. The frequency of occurrence ranged from 8% in winter to 77% in spring. Most Red-winged Blackbirds were seen in the area from the tidal stream near Nunns Creek to Tyee Spit (75% from stations 10, 9 and 8 combined).

We saw a total of 43 Brewer's Blackbirds: 2 birds on 26 June 1983 near the outside tip of Tyee Spit (station 5), 40 birds on 28 August 1983 seen from the east side of Tyee Spit (station 2) and 1 bird on the same date near the dry land log-sort (station 12).

Two records of the Yellow-headed Blackbird were made during the study: 1 bird on 20 May 1983 (station 10) and 1 bird on 29 May 1983 (station 12). This is a rare species on Vancouver Island (Campbell et al. 1990).

A single Brown-headed Cowbird was observed on 1 October 1983 near the main stream of the Campbell River (station 14).

Finches: Six species of finches were recorded over the study period with a combined total of 139 birds.

The Pine Siskin was the most abundant of the finches with a total of 63 birds tallied in 7 records: 20 birds on 5 December 1982, 12 birds on 26 February 1983, 4 birds on 30 July 1983, 5 birds on 28 August 1983, 3 birds on 1 October 1983, 9 birds on 17 October 1983 and 10 birds on 17 December 1983. Described as nomadic in fall and winter and an irruptive species by Ehrlich (1988), the Pine Siskin can be unpredictably observed at any time of year. Although the species sometimes forms huge flocks, none were reported over the study period. Pine Siskins were only seen from stations 10 to 14; most of them occurred near Nunns Creek (56%, station 11).

The House Finch, with a total of 27 birds seen, ranked second in abundance among the finches. Like the Pine Siskin, the House Finch was seen erratically in all 4 seasons of this study: 3 birds on 1 October 1983, 5 birds on 26 December 1982, 2 birds on 18 March 1984, 16 birds on 26 June 1983 and 1 bird on 28 August 1983. The locations where they were seen were diverse: station 2; stations 10, 11 and 12; and stations 6 and 7.

We saw a total of 23 American Goldfinches. The earliest arrival was 8 May 1983; from that date until the 28 August the frequency of occurrence was 53%. The peak number of 7 birds was seen 30 July 1983. Outside of this period, there was only one report; a single goldfinch was seen on 1 October 1983 from Tyee Spit. All other records were from Tyee Spit west to the dry land log-sort (stations 9 to 12).

Six records of the Purple Finch totalled 20 birds. The earliest arrival was 10 April 1983. A group of 7 were seen on 20 May 1983 near the tip of Tyee Spit (station 2). A peak of 8 birds was seen on 26 June 1983 dispersed around the Nunns Creek area (stations 9 to 12). The latest departure was 1 October 1983.

We saw a total of 3 Red Crossbills: 1 bird on 8 November 1982 (station 12) and 2 birds on 28 August 1983 (station 14). Sightings of crossbills are variable (Ehrlich 1988) because these birds depend heavily on coniferous cone crop levels.

Three Evening Grosbeaks were recorded on 1 October 1983 near the dry land log-sort (station 12).

Weaver Finches: The House Sparrow is an introduced species that is known to be well established in the vicinity. However the total of 7 birds seen on 14 May 1983 from station 9 and station 5 indicates that it is not well established on the estuary.

Conclusions

The Campbell River estuary is important to a large number of resident and migratory birds. However, bird use of the estuary is lower than would be expected from such a large and diverse system. This is highlighted by a comparison with some other systems of equivalent size or smaller on the east coast of Vancouver Island, such as the Quatse River estuary, the Cluxewe River estuary, the Trent River estuary, the estuaries on Fanny Bay and the Englishman River estuary (Dawe et al. 1995, Dawe et al. 1994, Brooks et al. 1994, Dawe et al. in preparation, Dawe et al. 1994).

For example, the total number of Canada Geese counted on the Campbell river estuary during the 1982 to 1984 study period was less than in any of the other studies listed; the Campbell River total was about half the number of the next lowest count, a one year study on the Trent River estuary, and it was approximately 1% of the number counted in a 1 year study on the Quatse estuary.

The total number of dabbling ducks using the Campbell River estuary was also relatively low, approximately 2% of the total of birds counted in the study. On the five other estuaries, dabbling ducks account for 10% to 26% of all birds. However, the number of diving ducks using the Campbell River estuary was

average in comparison with the other estuaries. Thus some factor other than direct disturbance, such as the depth of the water or the characteristics of the substrate, might explain the relatively low numbers of dabbling ducks on the Campbell River estuary.

Although there are many shorebird species using the area, the total number of shorebirds seen on the Campbell River estuary accounted for less than 1% of all the birds counted during the study. In the five other studies sited, the proportion of shorebirds ranged from 4% to 15% of the total bird count in each case. It is likely that the amount of development on Tyee Spit and in the other habitats important to shorebirds has limited this bird group's use of these areas.

In contrast with waterfowl and shorebirds, the number of gulls as a proportion of the total number of birds counted was at least 20 percentage points higher than in any of the five other estuaries studied.

The bird surveys were started shortly after the construction of several islands in the estuary and significant bird use of these new islands was observed during this study. Unfortunately, the data do not allow any conclusion about whether bird use was increasing over time. However, the results suggest that if suitable habitat becomes available, bird use quickly follows.

Bird Use and Recreational Activities

In the past, the estuary has been altered by industrial and commercial uses. Today, high levels of commercial and recreational activity that occur on and around the estuary may also be a limiting factor in the amount of bird use that occurs. For example, float plane activity is high and small boats are a common disturbance at times. The exact effect of those activities on the birds has not been studied.

Future Studies

As this survey was primarily concerned with waterbirds, another survey specifically to document songbird use of the Campbell River estuary would round out the picture of migratory and resident bird use of the area.

Also, since the constructed islands now seem to be contributing significant primary production to the estuary (Dawe, unpublished data), another study would be useful to determine whether bird use of the estuary has increased over the years.

Literature Cited

- Bell, L. M. and J. M. Thompson. 1977. The Campbell River Estuary Status of Environmental Knowledge to 1977, Fisheries and Environment Canada, Special Estuary Series No.7
- Blood, D.A., J. Comer, and J. Polson. 1976. Migratory bird use of the Duncan-Cowichan Bay area in 1975. Unpubl. Rept., Can. Wildl. Serv., Delta, B.C.
- Brooks, B., G. Bush, and N. Morton, Eds. 1994. A study of the vegetation, marine fauna and birds of the Trent River delta and estuary 1987. Technical Report Series No. 205, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
- Brownlee, M.J., E.R. Mattice, and C.D. Levings. 1984. The Campbell River Estuary; A Report on the Design, Construction and Preliminary Follow-up Study Findings of Intertidal Marsh Islets Created for the Purposes of Estuarine Rehabilitation. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 1789.
- Butler, R.W. and R.W. Campbell. 1987. The birds of the Fraser River delta: populations, ecology and international significance. Can. Wild. Serv. Occas. Paper No. 65, Ottawa.
- Butler, R.W. and R.J. Cannings. 1989. Distribution of birds in the intertidal portion of the Fraser River delta, British Columbia. Technical Report No. 93. Canadian Wildlife Service, Pacific & Yukon Region, British Columbia
- Butler, R.W., N.K. Dawe, and D.E.C. Trethewey. 1989. The Birds of estuaries and beaches in the Strait of Georgia. *In* Vermeer, K. and R.W. Butler (editors). The ecology and status of marine and shoreline birds in the Strait of Georgia, British Columbia. Spec. Publ. Can. Wildl. Serv. Ottawa.
- Campbell, R.W., N.K. Dawe, I. McTaggart-Cowan, J.M. Cooper, G.W. Kaiser and M.C.E.McNall. 1990. The Birds of British Columbia. Volume One. Nonpasserines. Introduction, Loons through Waterfowl. Royal British Columbia Museum. Victoria, B.C.
- ——— In preparation. The Birds of British Columbia. Volume Three. Passerines. Flycatchers through Vireos. Royal British Columbia Museum. Victoria, B.C.
- Dawe, N.K. 1976. Flora and Fauna of the Marshall-Stevenson Wildlife Area. Canadian Wildlife Service Report. Qualicum Beach, B.C.

- Unpubl. Can. Wildl. Serv. Rept., Qualicum Beach, B.C.
- Dawe, N.K., R. Buechert, T. Barnard and C. Cook. 1995. Bird Use of the Fanny Bay Little Bay Wetlands, Vancouver Island, British Columbia, 1990-1991. Technical Report Series No. 228, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
- Dawe, N.K. and S.D. Lang. 1980. Ecological inventories of National Wildlife Areas in British Columbia. Flora and fauna of the Nanoose Unit, Qualicum National Wildlife Area. Canadian Wildlife Service, Qualicum Beach, B.C.
- Dawe, N.K., T. Martin, T. Barnard and D. Howard. 1995. Bird Use of the Quatse River estuary, Vancouver Island, British Columbia, 1990-1991. Technical Report Series No. 212, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
- Dawe, N.K., T. Martin, T. Barnard and A. Koch. 1995. Bird Use of the Cluxewe River estuary, Vancouver Island, British Columbia, 1990-1991. Technical Report Series No. 209, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
- Dawe, N.K., T. Martin, and D.E.C. Trethewey. 1994. Bird Use of the Englishman River estuary, Vancouver Island, British Columbia, 1979-1980 and 1988-1989. Technical Report Series No. 208, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
- Eamer, J. 1985. Winter Habitat for Dabbling Ducks on Southeastern Vancouver Island, British Columbia. MSc Thesis. Department of Zoology, University of British Columbia. Vancouver, B.C.
- Ehrlich, P.R., D.S. Dobkin and D. Wheye. 1988. The Birder's Handbook. A Field Guide to the Natural History of North American Birds. Simon & Schuster Inc., New York.
- Hagen, M. E. 1987. Log-handling Impacts on Estuarine Environments: An Analysis of the Campbell River Estuary, British Columbia. Thesis, Master of Natural Resources Management Program, Report Number 42, Simon Fraser University. Burnaby, B.C.
- Kennedy, K.A. 1982. Plant communities and their standing crops on estuaries of the east coast of Vancouver Island. MSc Thesis, Department of Plant Science, University of British Columbia. 145 pp plus appendices.
- Raymond, B.A., M.M. Wayne, and J.A. Morrison. 1985. Vegetation, Invertebrate Distribution and Fish Utilization of the Campbell River Estuary British Columbia. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 1829, Department of Fisheries and Oceans, Vancouver, B.C.

- Ricklefs, R.E. 1979. Ecology. Second Edition. Chiron Press, New York.
- Trethewey, D.E.C. 1985. Bird Use of the Squamish River estuary. Unpubl. rept., Can. Wildl. Serv., Delta, B.C.
- Trethewey, D.E.C., in preparation. Use of the Campbell River Estuary by Migratory Birds, January March 1973 and 1974, and December 1974 April 1975. Technical Report Series, Can. Wildl. Serv., Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
- Vermeer, K., R.W. Butler and K.H. Morgan. 1992. The ecology, status, and conservation of marine and shoreline birds on the west coast of Vancouver Island. Occasional paper, number 75, Canadian Wildlife Service. Ottawa.

Appendices

Appendix I. List of surveyors and their initials, survey dates, and sundry remarks for the Campbell River estuary.

Surveyors	Initials
Doreen Andrews	DA
Heather Asplin	HA
Kay Conway (coordinator)	KC
Jack Conway	JC
T. Glennie	TGI
Ted Granger	TGr
Rod Catchpole	\mathbf{RC}
Cody Larsen	CL
Frances McPherson	FM
Julie O'Sullivan	JO
Mike O'Sullivan	MO
Lyn Paterson	LP
Stan Paterson	SP
Barbara Phipps	BaP
Bill Phipps	BiP
Howard Telosky	HT
Mary Vogel	MV
Myrtle Wilkes	MW
Ralph Wilkes	\mathbf{RW}

In the raw data there are numerous remarks, asterisks and other symbols that refer to gender and maturity of birds. These have not been transcribed because their records are not consistent over the study period; surveyors differed in their interest and experience regarding this kind of data. Remarks regarding bird use of artificial islands are summarized in the results on page 9.

Remarks - Winter 1982-1983											
8 November 1982 SP, LP	missed stations 10 and 11 inadvertently										
20 November 1982 HT, DA, HA, FM, KC	1 seal at stop #12										
5 December 1982 SP, LP	9 scaup on grassy island										
19 December 1982 HT, TGl	done in conjunction with Xmas count day after 3 days of bad storms										
28 January 1983 LP, SP	station 12 could not be visited - log sorting in progress										
27 February 1983 LP, SP	Trumpeter Swan-20 :17 mature, 3 immature										

Remarks - Spring 1983	
March 6 1983 RW, MW	no land birds
May 29 1983 MW, RW	female Yellow-headed Blackbird noteworthy Station 12 The eagles are building a new nest.
Remarks - Summer 1983	
11 June 1983 LP, SP	1 female Mallard: 8 chicks
16 July 1983 SP	I am certain of this identification.(re: Caspian Tern)
30 July 1983 HT, RK	bird activity low
Remarks - Autumn 1983	
10 September 1983 LP	not certain of identification of white fronted goose
1 October 1983 RC, HT	all Bonaparte's Gulls in fall plumage
17 October 1983 LP, SP	not certain of identification (re: 9 Blue-winged Teal)
13 November 1983 MW, RW	heavy rain, much flooding
27 November 1983 BaP, BiP	tourists all gone, Westmin on strike; maybe this accounts for the increase (in bird use)
Remarks - Spring 1984	
23 January 1994 BiP	man walking on booms (station 12)
11 March 1984 MW, RW	much boat activity disturbing birds

Appendix II. Campbell River estuary bird check-list.

Species Code	Species Name	Scientific Name
RTLO	Red-throated Loon	Gavia stellata
PALO	Pacific Loon	Gavia pacifica
COLO	Common Loon	Gavia immer
YBLO	Yellow-billed Loon	Gavia adamsii
HOGR	Horned Grebe	Podiceps auritus
RNGR	Red-necked Grebe	Podiceps grisegena
EAGR	Eared Grebe	Podiceps nigricollis
WEGR	Western Grebe	Aechmophorus occidentalis
DCCO	Double-crested Cormorant	Phalacrocorax auritus
PECO	Pelagic Cormorant	Phalacrocorax pelagicus
GBHE	Great Blue Heron	Ardea herodias
TRUS	Trumpeter Swan	Cygnus buccinator
MUSW	Mute Swan	Cygnus olor
GWFG	Greater White-fronted Goose	Anser albifrons
SNGO	Snow Goose	Chen caerulescens
BRAN	Brant	Branta bernicla
CAGO	Canada Goose	Branta canadensis
WODU	Wood Duck	Aix sponsa
GWTE	Green-winged Teal	Anas crecca
MALL	Mallard	Anas platyrhyncos
NOPI	Northern Pintail	Anas acuta
BWTE	Blue-winged Teal	Anas discors
CITE	Cinnamon Teal	Anas cyanoptera
NOSL	Northern Shoveler	Anas clypeata
AMWI	American Wigeon	Anas americana
CANV	Canvasback	Aythya valisineria
GRSC	Greater Scaup	Aythya marila
LESC	Lesser Scaup	Aythya affinis
HADU	Harlequin Duck	Histrionicus histrionicus
OLDS	Oldsquaw	Clangula hyemalis
BLSC	Black Scoter	Melanitta nigra
SUSC	Surf Scoter	Melanitta perspicillata
WWSC	White-winged Scoter	Melanitta fusca
COGO	Common Goldeneye	Bucephala clangula
BAGO	Barrow's Goldeneye	Bucephala islandica
BUFF	Bufflehead	Bucephala albeola
HOME	Hooded Merganser	Lophodytes cucullatus
COME	Common Merganser	Mergus merganser
RBME	Red-breasted Merganser	Mergus serrator
TUVU	Turkey Vulture	Cathartes aura
OSPR	Osprey	Pandion haliaetus
BAEA	Bald Eagle	Haliaeetus leucocephalus
COHA	Cooper's Hawk	Accipter cooperii
NOGO	Northern Goshawk	Accipiter gentilis
RTHA	Red-tailed Hawk	Buteo jamaicensis
MERL	Merlin	Falco columbarius

Campbell River estuary bird check-list (Cont'd).

Species Code	Species Name	Scientific Name
LGPL	Lesser Golden-Plover	Pluvialis dominica
SEPL	Semipalmated Plover	Charadrius semipalmatus
KILL	Killdeer	Charadrius vociferus
GRYE	Greater Yellowlegs	Tringa melanoleuca
WATA	Wandering Tattler	Heteroscelus incanus
SPSA	Spotted Sandpiper	Actitis macularia
WHIM	Whimbrel	Numenius phaeopus
BLTU	Black Turnstone	Arenaria melanocephala
SURF	Surfbird	Aphriza virgata
WESA	Western Sandpiper	Calidris mauri
LESA	Least Sandpiper	Calidris minutilla
DUNL	Dunlin	Calidris alpina
SBDO	Short-billed Dowitcher	Limnodromus griseus
COSN	Common Snipe	Gallinago gallinago
BOG U	Bonaparte's Gull	Larus philadelphia
MEGU	Mew Gull	Larus canus
RBGU	Ring-billed Gull	Larus delawarensis
CAGU	California Gull	Larus californicus
HEGU	Herring Gull	Larus argentatus
GWGU	Glaucous-winged Gull	Larus glaucescens
BLKI	Black-legged Kittiwake	Rissa tridactyla
CATE	Caspian Tern	Sterna caspia
COMU	Common Murre	Uria aalga
PIGU	Pigeon Guillemot	Cepphus columba
MAMU	Marblet Murrelet	Brachyrampus marmoratus
RODO	Rock Dove	Columba livia
BTPI	Band-tailed Pigeon	Columba fasciata
ANHU	Anna's Hummingbird	Calypte anna
RUHU	Rufous Hummingbird	Selasphorus rufous
BEKI	Belted Kingfisher	Ceryle alcyon
DOWO	Downy Woodpecker	Picoides pubescens
HAWO	Hairy Woodpecker	Picoides villosus
NOFL	Northern Flicker	Colaptes auratus
PIWO	Pileated Woodpecker	Dryocopus pileatus
WIFL	Willow Flycatcher	Empidonax traillii
PSFL	Pacific-slope Flycatcher	Empidonax difficilis
TRSW	Tree Swallow	Tachycineta bicolor
VGSW	Violet-green Swallow	Tachycinata thalassina
CLSW	Cliff Swallow	Hirundo pyrrhonota
BASW	Barn Swallow	Hirundo rustica
STJA	Steller's Jay	Cyanocitta stelleri
NOCR	Northwestern Crow	Corvus caurinus Corvus corax
CORA	Common Raven	CUTVUS CUTAX

Campbell River estuary bird check-list (Cont'd).

Species Code	Species Name	Scientific Name
СВСН	Chestnut-backed Chickadee	Parus rufescens
BUSH	Bushtit	Psaltriparus minimus
BRCR	Brown Creeper	Certhia americana
BEWR	Bewick's Wren	Thryomanes bewickii
WIWR	Winter Wren	Troglodytes troglodytes
GCKI	Golden-crowned Kinglet	Regulus satrapa
RCKI	Ruby-crowned Kinglet	Regulus calendula
SWTH	Swainson's Thrush	Catharus ustulatus
HETH	Hermit Thrush	Catharus guttatus
AMRO	American Robin	Turdus migratorius
VATH	Varied Thrush	Ixoreus naevius
CEWA	Cedar Waxwing	Bombycilla cedrorum
NOSH	Northern Shrike	Lanius excubitor
EUST	European Starling	Sturnus vulgarus
OCWA	Orange-crowned Warbler	Vermivora celata
YEWA	Yellow Warbler	Dendroica petechia
YRWA	Yellow-rumped Warbler	Dendroica coronata
COYE	Common Yellowthroat	Geothlypis trichas
WETA	Western Tanager	Piranga ludoviciana
RSTO	Rufous-sided Towhee	Pipilo erythrophthalmus
SAVS	Savannah Sparrow	Passerculus sandwichensis
FOSP	Fox Sparrow	Passerella iliaca
SOSP	Song Sparrow	Melospiza melodia
GCSP	Golden-crowned Sparrow	Zonotrichia atricapilla
WCSP	White-crowned Sparrow	Zonotrichia leucophrys
DEJU	Dark-eyed Junco	Junco hyemalis
SNBU	Snow Bunting	Plectrophenax nivalis
RWBL	Red-winged Blackbird	Agelaius phoeniceus
YHBL	Yellow-headed Blackbird	Xanthocephalus xanthocephalus
BRBL	Brewer's Blackbird	Euphagus cyanocephalus
BHCO	Brown-headed Cowbird	Molothrus ater
PUFI	Purple Finch	Carpodacus purpureus
HOFI	House Finch	Carpodacus mexicanus
RECR	Red Crossbill	Loxia curvirostra
PISI	Pine Siskin	Carduelis pinus
AMGO	American Goldfinch	Carduelis tristis
EVGR	Evening Grosbeak	Coccothraustes vespertinus
HOSP	House Sparrow	Passer domesticus

Appendix III.

Campbell River estuary birds surveys: Seasonal bird numbers, 31 October 1982 through 18 March 1984.

Note: In this Appendix, the mean has been calculated as the total number of birds of species-x counted over the season, divided by the total number of counts where species-x occurred. Counts of zero have not been included in the total number of counts nor are they included as minimum values. Thus the last 5 columns in the Appendix summarize the species occurrence on the study area. For example, the probability of seeing a Great Blue Heron in summer on the Campbell River estuary is about 82%. If you see the species, you are likely to see an average of about 4 birds and more than 7 would be exceptional.

Campbell River Estuary All Habitat Report for Autumn 1982		
Date 310ct 08Nov 13Nov 20Nov 28Nov Total Max Min	Mean SI	%Freq
#L00 4 15 23 3 6 51 23 3	10.2 8.	6 100.0
LOON 0 0 0 2 0 2 2 2	2.0	20.0
PALO 0 10 0 0 0 10 10 10	10.0	20.0
COLO 4 5 23 1 6 39 23 1	7.8 8.	7 100.0
#GRE 5 10 10 15 1 41 15 1	8.2 5.	4 100.0
HOGR 0 5 0 6 0 11 6 5	5.5 0.	
RNGR 5 2 10 4 1 22 10 1	4.4 3.	5 100.0
WEGR 0 3 0 5 0 8 5 3	4.0 1.	4 40.0
#COR 31 34 24 24 23 136 34 23	27.2 5.	0 100.0
CORM 24 0 0 0 23 47 24 23	23.5 0.	7 40.0
DCCO 7 29 12 15 0 63 29 7	15.8 9.	4 80.0
PECO 0 5 12 9 0 26 12 5	8.7 3.	5 60.0
#HER 5 1 3 13 8 30 13 1	6.0 4.	7 100.0
GBHE 5 1 3 13 8 30 13 1	6.0 4.	
#SWA 0 0 10 15 23 48 23 10	16.0 6.	
TRUS 0 0 10 15 23 48 23 10	16.0 6.	
#DAB 31 0 20 35 8 94 35 8	23.5 12.	
DABL 0 0 0 3 0 3 3	3.0 -	64.4
WODU 0 0 0 0 1 1 1 1	1.0	00.0
GWTE 4 0 0 0 0 4 4 4	4.0 -	20.0
MALL 27 0 16 28 7 78 28 7	19.5 9.	
AMVI 0 0 4 4 0 8 4 4	4.0	40.0
#DIV 62 113 125 144 97 541 144 62 1	108.2 31.	
SCAU 5 0 0 0 0 5 5 5	5.0 -	20.0
GRSC 0 0 20 26 0 46 26 20	23.0 4.	
HADU 6 19 0 15 2 42 19 2	10.5 7.	
SCOT 0 7 0 0 0 7 7 7	7.0	
BLSC 0 3 0 0 0 3 3 3	3.0 -	
SUSC 5 0 0 0 0 5 5 5	5.0	20.0
WWSC 0 19 0 0 0 19 19 19	19.0	20.0
COGO 0 0 5 20 0 25 20 5	12.5 10.	
BAGO 0 0 0 1 33 34 33 1	17.0 22.	6 49.0
BUFF 46 52 83 70 60 311 83 46	62.2 14.	
COME 0 0 17 8 2 27 17 2	9.0 7.	
RBME 0 4 0 4 0 8 4 4	4.0	40.0
DUCK 0 9 0 0 0 9 9 9	9.0 -	20.0
#RAP 0 0 3 2 1 6 3 1	2.0 1.	
BAEA 0 0 3 2 1 6 3 1	2.0 1.	
#SHO 14 2 4 10 3 33 14 2	6.6 5.	
KILL 14 0 0 10 3 27 14 3	9.0 5.	
COSN 0 0 1 0 0 1 1 1	1.0	20.0
SHOR 0 2 3 0 0 5 3 2	2.5 0.	

Campbe!	l River	Estuar	y All H	abitat	Report	for I	Autumn	1982 (co	ntinued)		
Date	310ct	08Nov	13Nov	20Nov	28Nov	Tota.	l Max	Min	Mean	SD	%Freq
#GUL	796	621	555	470	203	2645	796	203	529.0	218.1	100.0
GULL	9	476	0	O	0	476	476	476	476.0	•	20.0
MEGU	0	50	9	55	0	105	55	50	52.5	3.5	40.0
HEGU	0	8	0	34	0	42	34	i 8	21.0	18.4	40.0
CWCU	563	87	555	381	130	1716	563	87	343.2	226.8	100.0
BLKI	233	0	0	0	73	306	233	3 73	153.0	113.1	40.0
#ALC	1	1	0	1	0	3		1	1.0	-	60.0
PIGU	1	0	0	1	0	2	' 1	1	1.0	-	40.0
MAMU	Ō	1	0	0	0	1		1 1	1.0	-	20.0
RODO	Ö	0	0	18	22	40	2:	2 18	20.0	2.8	40.0
BEKI	1	Ó	3	1	1	6	; ;	3 i	1.5	1.0	80.0
#W00	Ō	0	0	3	0	3	;	3 3	3.0	-	20.0
DOWO	Ō	0	0	1	0	1		1 1	1.0	-	20.0
HAWO	0	0	0	1	9	1		1 1	1.0	-	20.0
NOFL	0	0	0	1	Û	1		1 1	1.0	•	20.0
#PAS	80	67	170	35	15	367	17	0 15	73.4	59.8	100.0
NOCR	63	63	38	21	6	191	6	3 6	38.2	25.3	100.0
CORA	3	0	9	4	0	7	1	4 3	3.5	0.7	40.0
AMRO	0	0	0	0	1	1	[1 1	1.0	-	20.0
NOSH	1	0	0	0	0	1	l	1 1	1.0	-	20.0
EUST	9	2	125	3	7	146	3 12	5 2	29.2	53.6	100.0
RST0	0	1	3	1	0	5	5	3 1	1.7	1.2	60.0
FOSP	1	0	0	0	0	1	!	1 1	1.0	-	20.0
SOSP	1	0	4	6	1	12	2	6 1	3.0	2.4	80.0
SNBU	2	0	0	0	Û	1	2	2 2	2.0	-	20.0
RECR	0	1	0	Û	0		1	1 1	1.0	-	20.0
#TOT	1030	864	950	789	411	404	4 103	0 411	808.8	240.1	100.0

Cambel River Estuary All Habitat Report For Winter 1982-1983 Salar Sal
#LDO 14 0 10 0 35 2 3 0 2 1 0 0 0 67 35 1 9.6 12.2 53.8 RTLO 2 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 11 9 2 5.5 4.9 15.4 RTLO 2 0 0 4 0 17 1 0 0 0 0 0 0 0 0 0 0 24 17 1 6.0 7.4 30.8 GOLO 10 0 6 0 9 1 3 0 0 2 1 0 0 0 0 24 17 1 6.0 7.4 30.8 #GRE 2 1 6 2 9 4 11 2 13 1 3 1 7 62 13 1 4.8 4.1 100.0 HGGR 2 1 6 2 6 0 3 0 12 0 0 1 2 35 12 1 3.9 3.6 69.2 RNGR 9 0 0 0 0 2 4 7 2 1 0 3 0 12 0 0 1 2 35 12 1 3.9 3.6 69.2 RNGR 9 0 0 0 0 0 2 4 7 2 1 0 3 0 0 2 21 7 1 3.0 2.0 53.8 EAGR 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
RTIO 2 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 11 9 2 5.5 4.9 15.4 PAIO 2 0 4 0 17 1 0 0 0 0 0 0 0 0 0 0 0 24 17 1 6.0 7.4 30.8 FARE 2 1 6 2 9 4 11 2 13 1 3 1 7 62 13 1 4.8 4.1 100.0 HIGR 2 1 6 2 9 4 11 2 13 1 3 1 7 62 13 1 4.8 4.1 100.0 HIGR 2 1 6 2 6 0 3 0 12 0 0 1 2 35 12 1 3.9 3.6 69.2 RNGR 0 0 0 0 0 0 2 4 7 2 1 0 3 0 2 21 7 1 3.0 2.0 53.8 RAGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAILO 2 0 4 0 17 1 0 0 0 0 0 0 0 0 24 17 1 4.6 33.8 53.8 COLO 10 0 6 0 9 1 3 0 2 1 1 0 0 0 0 32 10 1 4.6 3.8 53.8 FORE 2 1 6 2 9 4 11 2 13 1 3 1 7 62 13 1 4.8 4.1 100.0 HORR 2 1 6 2 6 0 3 0 12 0 0 1 2 35 12 1 3.0 3.6 69.2 RNGR 0 0 0 0 2 4 7 2 1 0 3 0 0 2 21 7 1 3.0 2.0 53.8 EAGR 0 0 0 0 0 0 2 4 7 2 1 0 3 0 0 0 0 0 3 3 3 3 3 3.0 - 7.7 MEGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
COLO 10 0 6 0 9 1 3 0 0 2 1 0 0 0 32 10 1 4.6 3.8 53.8 6 #GRE 2 1 6 2 9 4 11 2 13 1 3 1 3 1 7 62 13 1 4.8 4.1 100.0 #GRE 2 1 6 2 6 0 3 0 12 0 0 1 2 35 12 1 3.9 3.6 69.2 RNGR 0 0 0 0 0 2 4 7 7 2 1 0 3 0 2 211 7 1 3.0 2.0 53.8 EAGR 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 3 3 3 3
#GRE 2 1 6 2 9 4 11 2 13 1 3 1 7 62 13 1 4.8 4.1 100.0 HOCR 2 1 6 0 3 0 12 0 0 1 2 35 12 1 3.9 3.6 69.2 RNGR 0 0 0 0 0 0 2 4 7 2 1 0 3 0 2 21 7 1 3.0 2.0 53.8 EAGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HOCR 2 1 1 6 2 6 0 3 0 12 0 0 1 2 35 12 1 3.9 3.6 69.2 RNGR 9 0 0 0 0 0 2 4 7 2 1 0 3 0 2 21 7 1 3.0 2.0 53.8 RNGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 0 - 7.7 WEGR 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 3 3 1 1 1 1
RNGR 0 0 0 0 0 2 4 7 2 1 0 3 0 2 21 7 1 3.0 2.0 53.8 RAGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3.0 - 7.7 RAGEE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WEGR 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 3 1 1 1 1
#COR 27 10 14 2 23 2 15 6 34 1 14 3 15 166 34 1 12.8 10.4 100.0 #CORM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CORM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DCCO 17 8 9 2 12 0 12 3 5 0 9 1 5 83 17 1 7.5 4.9 84.6 PECO 10 2 5 0 11 2 3 0 29 1 5 2 10 80 29 1 7.3 8.1 84.6 #HER 9 7 9 15 19 28 20 7 15 15 17 1 8 170 28 1 13.1 7.1 100.0 GBHE 9 7 9 15 19 28 20 7 15 15 17 1 8 170 28 1 13.1 7.1 100.0 #SWA 13 13 29 6 7 23 10 19 21 24 21 21 20 227 29 6 17.5 7.0 100.0 #TRUS 13 13 28 6 7 23 10 19 21 24 21 21 20 227 29 6 17.4 6.9 100.0 MUSW 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PECO 10 2 5 0 11 2 3 0 29 1 5 2 10 80 29 1 7.3 8.1 84.6 #HER 9 7 9 15 19 28 20 7 15 15 17 1 8 170 28 1 13.1 7.1 100.0 GBHE 9 7 9 15 19 28 20 7 15 15 17 1 8 170 28 1 13.1 7.1 100.0 #SWA 13 13 29 6 7 23 10 19 21 24 21 21 20 227 29 6 17.5 7.0 100.0 TRUS 13 13 28 6 7 23 10 19 21 24 21 21 20 226 28 6 17.4 6.9 100.0 MUSW 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 7.7 #GEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2.0 - 7.7 CAGO 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2.0 - 7.7 #ABB 0 16 2 41 6 40 22 12 33 20 18 16 2 228 41 2 19.0 13.3 92.3 GWTE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 7.7 MALL 0 15 2 41 6 40 22 12 33 18 18 18 16 2 225 41 2 18.8 13.3 92.3 AMWI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2
#HER 9 7 9 15 19 28 20 7 15 15 17 1 8 170 28 1 13.1 7.1 100.0 GBHE 9 7 9 15 19 28 20 7 15 15 17 1 8 170 28 1 13.1 7.1 100.0 #SWA 13 13 29 6 7 23 10 19 21 24 21 21 20 227 29 6 17.5 7.0 100.0 TRUS 13 13 28 6 7 23 10 19 21 24 21 21 20 226 28 6 17.4 6.9 100.0 MUSW 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 7.7 #GEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2.0 - 7.7 #GEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2.0 - 7.7 #DAB 0 16 2 41 6 40 22 12 33 20 18 16 2 228 41 2 19.0 13.3 92.3 GWTE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GBHE 9 7 9 15 19 28 20 7 15 15 17 1 8 170 28 1 13.1 7.1 100.0 #SWA 13 13 29 6 7 23 10 19 21 24 21 21 20 227 29 6 17.5 7.0 100.0 TRUS 13 13 28 6 7 23 10 19 21 24 21 21 20 226 28 6 17.4 6.9 100.0 MUSW 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1.0 - 7.7 #GEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2.0 - 7.7 #GEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 2 2 2
#SWA 13 13 29 6 7 23 10 19 21 24 21 21 20 227 29 6 17.5 7.0 100.0 TRUS 13 13 28 6 7 23 10 19 21 24 21 21 20 226 28 6 17.4 6.9 100.0 MUSW 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1.0 - 7.7 #GEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2.0 - 7.7 #GABB 0 16 2 41 6 40 22 12 33 20 18 16 2 228 41 2 19.0 13.3 92.3 GWTE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 7.7 MALL 0 15 2 41 6 40 22 12 33 18 18 18 16 2 225 41 2 18.8 13.3 92.3 AMWI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2.0 - 7.7 #DIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
TRUS 13 13 28 6 7 23 10 19 21 24 21 21 20 226 28 6 17.4 6.9 100.0 MUSW 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1.0 - 7.7 MGEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2.0 - 7.7 CAGO 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2.0 - 7.7 MDAB 0 16 2 41 6 40 22 12 33 20 18 16 2 228 41 2 19.0 13.3 92.3 GWTE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 7.7 MALL 0 15 2 41 6 40 22 12 33 18 18 16 2 225 41 2 18.8 13.3 92.3 AMWI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2.0 - 7.7 MDIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
MUSW 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 7.7 #GEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2.0 - 7.7 #GAGO 0 0 0 2 41 6 40 22 12 33 20 18 16 2 228 41 2 19.0 13.3 92.3 GWTE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 7.7 MALL 0 15 2 41 6 40 22 12 33 18 18 16 2 225 41 2 18.8 13.3 92.3 AMWI 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2.0 - 7.7 #DIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
#GEE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2.0 - 7.7 CAGO 0 0 0 0 2 41 6 40 22 12 33 20 18 16 2 228 41 2 19.0 13.3 92.3 GWTE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1.0 - 7.7 MALL 0 15 2 41 6 40 22 12 33 18 18 16 2 225 41 2 18.8 13.3 92.3 AMWI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2.0 - 7.7 #DIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
CAGO 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#DAB 0 16 2 41 6 40 22 12 33 20 18 16 2 228 41 2 19.0 13.3 92.3 GWTE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 7.7 MALL 0 15 2 41 6 40 22 12 33 18 18 18 16 2 225 41 2 18.8 13.3 92.3 AMWI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2.0 - 7.7 #DIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
GWTE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1.0 - 7.7 MALL 0 15 2 41 6 40 22 12 33 18 18 16 2 225 41 2 18.8 13.3 92.3 AMWI 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 2 2 2 2.0 - 7.7 #DIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
MALL 0 15 2 41 6 40 22 12 33 18 18 16 2 225 41 2 18.8 13.3 92.3 AMWI 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 2 2 2 2.0 - 7.7 #DIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
AMWI 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2.0 - 7.7 #DIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
#DIV 155 117 106 69 99 74 111 68 108 120 77 84 139 1327 155 68 102.1 27.2 100.0
#017 133 111 100 03 33 74 111 00 100 120 1
SURI 9 0 0 0 0 1 15 4
und 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1ADU 26 14 10 5 4 5 1 24 1 2 75 0
DLDL U U U U U U U U U U U U U U U U U U
5050 4 4 0 1 14 1 14 0 21 14 0 2 0 1 1 1 5 0 7 15 4
WHO U U Z U U I U I U I U I U I U I U I U I
UMU 11 24 5 0 13 0 21 2 3 10 10 10 10 1 4 4 2 0 29 5
DAMO V 1 J J J J J J J J J J J J J J J J J J
DULL 17 21 24 70 40 01 00 70 11
MERG U U U U U U U U U U U U U U U U U U U
NAME U 3 U U U U U U U U U U U U U U U U U
COME 15 9 19 3 11 16 9 7 6 43 9 15 31 193 43 3 14.8 11.1 100.0
RBME 4 6 4 17 9 3 2 0 1 4 0 2 6 58 17 1 5.3 4.5 84.6
DUCK 2 0 0 0 0 0 0 0 0 0 0 13 15 13 2 7.5 7.8 15.4
#RAP 4 0 4 1 5 0 5 0 1 3 2 4 4 33 5 1 3.3 1.5 76.9
BAEA 3 0 4 1 5 0 5 0 0 3 2 4 3 30 5 1 3.3 1.3 69.2
COHA 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 1.1
NOGO 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1.0 - 1.1
RTHA 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1.0 - 1.1
#SHO 12 5 0 0 10 0 4 2 0 2 9 1 2 47 12 1 5.2 4.1 69.2
SEPL 4 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4.0 - 7.7
KILL 8 5 0 0 10 0 4 2 0 2 9 1 2 43 10 1 4.8 3.4 69.2

Campbel	River	Estuar	v All l	Habitat	Report	for Wi	nter 19	82-1983	(cont	inued)			,			142 -	Waan	SD	%Freq
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	ubreu	13Feb	26Feb		Total	Max	Min	Mean		100.0
#GUL	306	252	529	97	508	427	1030	605	1267	1026	563	766	327	7703	1267		592.5	343.8	
GULL	120	0	0	0	0	0	0	0	151	3	500	0	166	940	500	3	188.0	185.8	38.5
MEGU	5	Õ	75	Ō	3	0	0	0	37	0	12	100	2	234	100	2	33.4	39.5	53.8
RBGU	0	Õ	0	fì	Ď	D	2	0	0	22	0	0	0	24	22	2	12.0	14.1	15.4
HEGU	72	Ô	100	Õ	75	0	112	0	421	0	0	0	42	822	42 1	42	137.0	141.2	46.2
GWGU	109	252	354	85	430	427	916	600	658	1001	51	666	117	5666	1001		435.8	316.2	100.0
BLKI	103	0	0	12	0	0	0	5	0	Û	0	0	0	17	12	5	8.5	4.9	15.4
#ALC	7	A	0	0	3	Ô	2	Ô	1	0	2	5	0	20	7	1	3.3	2.3	46.2
COMU	Ó	n.	n	0	Ô	Õ	Ō	0	Ô	0	1	5	0	6	5	1	3.0	2.8	15.4
PIGU	7	n	n	n	3	Õ	2	Ö	1	0	1	0	0	14	7	1	2.8	2.5	38.5
	31	1	9	0	1	Û	12	4	1	0	11	7	30	98	31	1	10.9	11.9	69.2
RODO	91 0	0	9	9	1	2	2	Ô	2	2	1	2	0	16	2	1	1.8	0.4	69.2
BEKI	U 1	0	0	Ō	Ô	1	õ	ň	Ō	0	Û	2	0	4	2	1	1.3	0.6	23.1
#W00	1	0	0	Û	Û	1	0	Ŏ	õ	Ō	0	2	0	4	2	1	1.3	0.6	23.1
NOFL	1	13	3	112	519	12	49	125	150	47	41	56	128	1299	510	3	99.9	132.3	100.0
#PAS	53		J 1	105	433	12	44	121	148	0	36	10	95	1032	433	ì	93.8	123.1	84.6
NOCR	27	0	u I	103	400	0	רור ה	0	0	10	Ô	0	0	10	10	10	10.0	-	7.7
CORA	0	0	0	Ų A	0	V A	n.	0	0	A	Õ	4	0	4	4	4	4.0	-	7.7
CBCH	0	U	V	U A	1	0	Û	n	n	ñ	Õ	i	Ŏ	2	1	1	1.0	-	15.4
WIWR	0	0	U	V	U	U N	n n	0	D	n	3	Ô	Õ	4	3	1	2.0	1.4	15.4
GCKI	1	0	Ü	U	υ Λ	U N	1	n	n	ñ	n	Ö	0	1	1	1	1.0	•	7.7
RCKI	0	U	U	V	V	0	U)	n	0	ñ	1	Õ	0	1	1	1	1.0	-	7.7
HETH	0	V	V	V	U A	V	n	ν	0	0	a	6	4	10	6	4	5.0	1.4	15.4
AMRO	U	0	0	Ų	0	Ų	Ų	4	2	Û	1	13	27	136	76	1	15.1	24.2	69.2
EUST	4	5	Ô	0	76	Ŋ	4	4 ^	0	0	U	0	0	1	1	1	1.0	-	7.7
RST0	. 0	1	0	U	0	0	V		U A	U N	A	0	1	3	2	1	1.5	0.7	15.4
FOSP	Û	0	0	2	Ų	U	Ų	V.	U A	1	Û	7	9	17	7	1	3.4	3.3	38.5
SOSP	1	7	1	Ü	U	Ų	Ą	ij	Ü	1	U O	0	0	1	í	1	1.0	-	7.7
WCSP	0	Û	1	0	9	9	U	U	0	20	ų.	υ 0	1	33	32	1	16.5	21.9	15.4
DEJU	0	0	0	0	0	0	0	U	0	32	U	3	0	აა 3	32	1	3.0	-	7.7
RWBL	0	0	0	Û	0	0	0	0	V	0	U	•	1	5	5	5	5.0	_	7.7
HOFI	0	0	0	5	0	0	0	0	U	0	U	10	•	32	20	12	16.0	5.7	15.4
PISI	20	0	0	0	0	0	0	0	0	U	Ų	12	0		4	14	4.0	-	7.7
PASS	0	0	0	0	9	0	0	0	0	4	9	000	(00	4 11469	1648	349		379.9	
#TOT	634	435	714	349	1236	615	1296	850	1648	1262	779	969	682	11409	1046	343	004.4	913.3	100.0

Campbe]	ll River	Estuar	y All h	labitat	Report	for Spi	ing 19	83	01Man	08May	14May	20May	29May	Total	Max	Min	Mean	SD	%Freq
Date	06Mar	13Mar	20Mar	26Mar	03Apr	luapr	10APT	ZJAPT	01May	иопа у 6	14riay ()	59	0	99	59	1	11.0	18.4	69.2
#L00	3	0	0	1	3	13	4	2	8 0	Û	0	0	0	1	1	1	1.0	-	7.7
RTLO	0	0	0	0	0	0	0	ı	8	6	0	59	Õ	87	59	1	17.4	23.6	38.5
PALO	1	0	0	0	0	13	0	0	0	n	ŭ N	0	Ô	11	4	1	2.2	1.3	38.5
COLO	2	0	0	1	3	0	4	1	0	O O	Û	0	Õ	73	22	1	10.4	8.8	53.8
#GRE	6	8	0	1	14	22	1	21	•	n N	0	0	n.	11	6	1	3.7	2.5	23.1
HOGR	0	1	Û	0	0	6	U	4	0	0	U N	0	A	59	16	1	9.8	6.4	46.2
RNCR	5	7	0	1	14	16	9	16	_	0	V N	0	ñ	1	1	1	1.0	-	7.7
EAGR	1	0	0	0	0	Û	V	0	0	V A	0	0	Û	2	1	1	1.0	-	15.4
WECR	0	9	0	0	0	0	1	ì	0	1	Ŋ	n	ß	48	16	1	5.3	4.6	69.2
#COR	6	6	7	1	3	16	5	j	0	1	U N	n.	ñ	12	7	5	6.0	1.4	15.4
CORM	0	0	7	0	0	0	5	V	U n	ų N	O O	0	ñ	3	3	3	3.0		7.7
DCC0	0	0	0	0	3	0	0	0	ľ	1	Ŋ	Ū N	A	33	16	1	5.5	5.6	46.2
PECO	6	6	Ð	1	0	16	0	3	0	1	3	U N	1	40	10	1	3.6	3.0	84.6
#HER	3	2	7	3	10	0	2	Ţ	1	1		U A	1	40	10	1	3.6	3.0	84.6
CBHE	3	2	7	3	10	0	2	ì	7	1	3	ų A	U	9	9	9	9.0	-	7.7
#SWA	9	0	0	0	0	0	0	0	ប	0	U	U	O A	9	9	9	9.0	_	7.7
TRUS	9	0	0	0	0	0	0	0	0	0	Ų	Ų A	0	J [3	2	2.5	0.7	15.4
#GEE	0	3	0	0	Û	0	0	0	0	2	V	Ų	0	ິນ 1	J 1	1	1.0	-	7.7
SNGO	0	1	0	0	0	0	0	0	Ü	0	V	U	U A	i	2	2	2.0	-	15.4
CAGO	0	2	0	0	0	0	0	0	0	2	U	0	0	106	19	1	8.8	7.0	92.3
#DAB	12	3	2	11	17	14	3	18	1	4	Z	0	19		13	3	3.5	0.7	15.4
CWTE	0	3	0	0	0	4	0	0	0	0	9	0	0	7 7	7	7	7.0	-	7.7
TEAL	0	0	0	0	0	0	Û	7	Û	0	0	0	0	•	19	i	8.4	6.5	76.9
MALL	12	0	2	11	17	10	3	7	1	0	2	Ų	19	84		2	2.0	-	15.4
BWTE	0	0	0	0	0	0	0	2	0	2	0	0	0	4	2	2	2.0		7.7
CITE	0	0	0	0	0	0	0	2	Û	0	0	0	0	2	2	1	1.0		7.7
NOSL	0	0	0	0	0	0	0	0	0	1	0	0	U	1	1	•	1.0	_	7.7
AMWI	0	0	0	0	0	0	0	0	0	1	0	0	Ú	1	195	1	67.3	41.2	92.3
#DIV	135	102	54	111	90	101	74	59	27	27	9	18	0	807	135	9		41.4	7.7
SCAU	0	0	0	0	0	0	1	Û	0	0	0	Û	0	1	1	1 2	1.0 4.0	3.5	
HADU	8	2	0	0	0	0	0	0	O	2	0	Ü	0	12	8	4		J.J	7.7
OLDS	0	5	0	Û	0	0	0	0	0	0	0	0	U	5	5	5	5.0	7.8	
SUSC	16	14	0	0	0	0	i	0	0	2	0	0	0	33	16	1	8.3	1.0	15.4
WWSC	Û	1	0	1	0	0	0	0	0	0	0	0	0	2	1.5	1	1.0	5.3	
COGO		6	1	5	12	17	3	5	0	0	0	0	0	59 6	17	1	7.4		7,7
BAGO		Û	0	Û	0	0	6	0		0	0	0	0	Ü	6	6		20. (
BUFF		39	30	75	43	55	55	38		9	0	0	0	411	75	9		20.0 6.4	
HOME		0	0	0	2	11	0	0		0	0		0	13	11	2			
COME		35	23	29	33	16	8	15		14	9		0	260	35	8		9.8	
RBME		0	0		0	2	0	1			0				2	1	1.3	0.0	3 23.1 7.7
DUCK		Û	0		0	0	0	0	0		0		0		1]		-	
#RAP		3				1	1	5	1	2	2		5		7	1		2.	
BAEA		3				1	1	5	, 1		2				7]		2.	
#SHC		1	2	1	6	3	1	() 1	68					68		8.3	19.	
KILI		0	2	1	. 6		1	{) 1		2							1.	
WESA		0					Û	ı () (-	
DUNI		0						, ,) () (5 5.0	-	7.7
COSI		1					. () [) l) 2			1 1.0	-	15.4
SHOR		0) () ()	0) () :	2 () () 2	2		2 2.0	•	7.7
ShUl	. 0		'		•	-													

Campbel	l River	Estuar	ry All !	Habitat	Report	for Sp	ring 19	83 (con	tinued)	۸۵۷۰۰۰	1 04	20May	29May	Total	Max	Min	Mean	SD '	&Freq
Date	06Mar	13Mar	20Mar	26Mar	UJApr	luapr	16АРГ	ZJAPT	Ulmay	vortay	14May	20may 308	25may 158	4924	818	65	378.8		100.0
#GUL	609	257	402	606	126	375	295	818	641	264	65 0	100	0	630	530	100	315.0	304.1	15.4
GULL	0	0	0	530	0	0	0	0	0	0 133	0	14	38	543	358	14	135.8	156.8	30.8
BOG U	0	0	0	0	0	0	0	358	Ú A	133	0	3	0	597	303	3	85.3	109.4	53.8
MEGU	27	55	0	43	7	303	0	159	ľ	Û	Û	0	Ô	1	1	1	1.0	-	7.7
CAGU	0	0	0	Û	0	1	0	0	0	0	0	0	Û	10	6	4	5.0	1.4	15.4
HEGU	0	0	0	6	0	0	0 29 5	4 297	641	131	65	191	120	3143	641	27	241.8	195.7	100.0
GWCU	582	202	402	27	119	71	290 0	17	0	2	0	0	0	26	17	2	5.2	6.6	38.5
#ALC	2	3	0	0	0	2 0	0	8	0	Õ	0	0	Û	8	8	8	8.0	-	7.7
COMU	0	0	9	0 0	0	2	n	7	Õ	2	Õ	Ö	0	16	7	2	3.2	2.2	38.5
PIGU	2	3	0	U	0	0	ů.	2	Õ	0	Ô	0	0	2	2	2	2.0	•	7.7
MAMU	Û	0	Û	1	0	13	5	17	ð	8	5	18	Û	67	18	1	9.6	6.5	53.8
RODO	0	0	0	0	0	0	ô	2	Ŏ	Ō	Ó	0	0	2	2	2	2.0	•	7.7
HUMM	0	0	0	0	0	Û	Õ	0	1	0	0	0	0	1	1	1	1.0	-	7.7
ANHU	0	V N	0	Û	n	2	Û	Ö	0	9	1	7	0	19	9	1	4.8	3.9	30.8
RUHU Beki	0	1	1	0	1	1	1	Ō	0	2	0	0	1	8	2	1	1.1	0.4	53.8
#W00	Û	0	0	0	2	Ô	Ō	1	Û	1	0	0	0	4	2	i	1.3	0.6	23.1
NOFL	0	0	Ô	Û	2	Ö	0	1	0	1	0	0	0	4	2	1	1.3	0.6	23.1
#PAS	49	165	100	48	23	79	37	75	63	75	51	106	132	994	165	23	76.5	40.0	100.0
PSFL	Õ	0	0	0	0	0	0	0	0	2	0	Û	9	2	2	2	2.0	-	7.7
TRSW	Ö	Õ	Ö	0	0	0	0	0	0	0	0	0	26	26	26	26	26.0		7.7
VGSW	Ö	0	0	0	0	0	3	5	0	3	3	6	0	20	6	3	4.0	1.4	38.5 7.7
CLSW	Ō	0	0	9	0	0	0	0	25	0	0	0	0	25	25	25	25.0	7.0	30.8
BASW	Ô	0	Û	0	0	0	Û	4	0	8	8	22	0	42	22	4	10.5	7.9 15.5	100.0
NOCR	47	26	64	47	12	29	20	26	23	15	15	28	15	367	64	12	28.2 2.5	0.7	15.4
CORA	2	0	0	0	9	0	0	9	0	3	0	0	0	5	3	2	1.0	V.1	7.7
CBCH	0	0	0	0	0	1	0	0	0	0	0	Ų	0	1 2	1 2	2		_	7.7
BUSH	0	0	0	0	Û	0	0	0	0	2	0	Ų	0	1	4	1			7.7
BEWR	0	0	0	0	0	0	0	0	0	1	0 0	0	0	1	1	i	1.0		7.7
WIWR	0	1	0	0	0	Q.	0	0	0	0 3	2	3	3	133	104	i		30.5	84.6
AMRO	0	104	0	1	2	4	1	. 8	2 12	11	8	29	83	256	83	Â		22.3	84.6
EUST	0	30	35	0	4	23	10	11	0	3	0	0	٥	3	3	3		-	7.7
YEWA	0	0	0	0	0	0	0 0	() ()	0	0	0	0	0	1	1	1		-	7.7
YRWA	0	0	0	0	1	0	0	0	0	1	Û	Ů	0	1	1	1		-	7.7
COYE	0	0	0	0	0	0	0	0	0		Ů	0	0	1	1	1	1.0	-	7.7
RST0	0	0	0	0	0	0	0	7	Ü	1	Ō	Ō	0	_	7	1	4.0	4.2	
SAVS	U	0	V 1	0	0	0	2	0	0	0	0	Ö	0	3	2	1	1.5	0.7	15.4
FOSP	Ų	0	n n	n.	2	1	o o	0	0	8	0	0	Q	13	8	1	1 3.3	3.2	
SOSP	U U	0		n	0	0	0	2	Ō	1	0	1	0	4	2		1.3	0.6	
WCSP	U n	0	0	n.	0	0	0	2	Ō	0	0	0	. (;	2 2.0		7.7
DEJU RWBL	0	9	0	. N	2	11	1	10	1	9	6	7					1 5.2		
YHBL	U N	0	(. (9	_	0	Ō	0	_	0	0			. 2			1 1.0		15.4
PUFI		n N	. (-		1	0	0	0	i	Û						1 3.0		
AMG0		n	. (_	_	0	0	0	0	2	2	2			2		2 2.0		23.1
HOSP		ſ) (_	0		0	0	0	7	' () 7	7		7 7.0		7.7
PASS		0		·		0	0							l 1	1000		1 1.0		7.7
#TOT		554					429	1039	750	472	142	526	31	7 7355	1039) 14	2 565.8	246.	100.0
il 101	001																		

Campbel	l River	Estuar	v All H	abitat	Report	for Su	mer 198	3									
Date	11Jun	20Jun	26Jun	HJul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug	Total	Max	Min	Mean	SD	Freq
#L00	0	0	0	2	0	0	0	1	0	0	0	3	2	1	1.5	0.7	18.2
PALO	0	0	0	2	0	0	0	1	9	0	0	3	2	1	1.5	0.7	18.2
#GRE	0	0	0	1	0	0	0	2	0	0	0	3	2	1	1.5	0.7	18.2
RNGR	0	0	0	1	0	0	0	2	0	0	0	3	2	1	1.5	0.7	18.2
#COR	O	4	0	3	0	0	0	24	0	Û	0	31	24	3	10.3	11.8	27.3
CORM	0	4	0	3	Û	0	0	24	0	0	0	31	24	3	10.3	11.8	27.3
#HER	2	2	0	5	0	2	5	4	3	7	3	33	7	2	3.7	1.7	81.8
CBHE	2	2	0	5	0	2	5	4	3	7	3	33	7	2	3.7	1.7	81.8
#DAB	9	3	0	14	0	0	0	42	0	10	17	95	42	3	15.8	13.7	54.5
MALL	9	3	0	14	0	0	0	42	0	0	0	68	42	3	17.0	17.3	36.4
NOPI	0	9	9	0	0	0	0	Û	0	0	17	17	17	17	17.0	-	9.1
AMWI	0	0	0	0	0	0	0	0	0	10	0	10	10	10	10.0	- 01 6	9.1
#DIV	4	2	31	59	2	0	14	99	7	6	23	247	99	2	24.7	31.6	90.9
HADU	1	0	14	3	0	0	0	12	0	0	17	47	17	1	9.4	7.0	45.5
SUSC	0	2	0	27	0	0	0	36	7	0	0	72	36	2	18.0	16.1	36.4
BUFF	0	0	0	24	0	0	0	40	0	0	0	64	40	24	32.0	11.3	18.2
HOME	0	0	17	0	0	Û	0	0	0	0	1	18	17	1	9.0	11.3	18.2
COME	3	9	0	5	9	0	11	11	0	6	5	41	11	3	6.8	3.4	54.5
RBME	0	0	0	0	2	0	3	0	0	0	0	5	3	2	2.5	0.7	18.2
#RAP	62	0	20	0	13	15	8	1	4	2	3	128	62	1	14.2	19.1	81.8
TUVU	0	0	0	0	0	0	0	0	0	0	3	3	3	3	3.0	-	9.1
OSPR	0	0	9	0	0	0	1	0	0	0	0	1	1	1	1.0	-	9.1
HAWK	Q	Û	0	O	0	i	0	0	0	0	0	1	1	1	1.0	**	9.1
BAEA	62	0	19	0	13	14	7	1	4	2	0	122	62	1	15.3	19.9	72.7
MERL	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1.0	15.0	9.1
#SHO	1	1	3	5	0	0	14	53	29	32	21	159	53	1	17.7	17.8	81.8
LGPL	0	0	0	0	9	0	0	0	Û	0	2	2	2	2	2.0		9.1
KILL	1	1	2	5	0	0	3	13	4	0	2	31	13	1	3.9	3.9	72.7
SPSA	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1.0	-	9.1
SURF	0	0	0	0	0	0	0	40	0	0	0	40	40	40	40.0	- 70	9.1
WESA	0	0	0	0	0	0	11	0	25	0	15	51	25	11	17.0	7.2	27.3
LESA	0	O	0	0	0	0	0	0	0	0	1	1	1	1	1.0	-	9.1
SBDO	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1.0	-	9.1
SHOR	0	0	0	0	0	0	0	0	0	32	0	32	32	32	32.0	140.1	9.1
#GUL	303	109	186	139	184	557	226	244	317	452	412	3129	557	109	284.5	140.3	100.0
CULL	0	0	O	0	Û	0	0	0	0	30	0	30	30	30	30.0	94.2	9.1
BOCU	20	0	8	8	17	15	37	79	16	0	55	255	79	8	28.3	24.3	81.8
MEGU	0	0	1	0	4	0	0	0	2	0	26	33	26	1	8.3	11.9	36.4
RBGU	0	0	0	0	9	0	1	0	0	0	0	1	1	1	1.0	15.4	9.1
HECU	0	0	0	0	26	Û	0	0	1	0	29	56	29	100	18.7	15.4	27.3
GWGU	283	109	177	131	137	54 1	188	165	298	413	302	2744	541	109	249.5	134.4	100.0
BLKI	0	0	0	0	0	1	0	0	0	9	0	10	9	ì	5.0	5.7	18.2
CATE	0	0	0	0	2	0	0	0	0	0	0	2	2	2	2.0	- 31 D	9.1
#ALC	22	0	17	0	0	0	i	0	0	0	0	40	22	1	13.3	11.0	27.3
PIGU	4	0	0	0	9	0	0	0	0	0	0	4	4	4	4.0	- 9.5	9.1 27.3
Mamu	18	0	17	0	0	0	l	0	0	9	0	36	18	1	12.0	9.5	41.3

Camphe)	l River	Estuary	v All H	abitat	Report	for Su≡	ner 198	3 (cont	inued)				N.	14'-	Mana	CU.	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	NOVAR	LOVIER	20Aug	-	Total	Max	Min	Mean	SD 9.6	72.7
RODO	5	0	9	8	5	Û	9	8	15	0	34	93	34	5	11.6 6.0	J.U	9.1
BTPI	Ŏ	0	6	0	0	0	0	0	0	0	0	6	6	6 1	1.0	_	9.1
ANHU	0	0	1	0	0	0	0	Û	0	0	0	1	1	1	1.0	_	18.2
RUHU	1	0	0	0	1	0	0	0	9	0	0	2	1	1		2.3	54.5
BEKI	7	0	2	Û	0	0	0	1	3	1	1	15	7	1	2.5	2.2	45.5
#W00	1	0	6	0	0	0	1	1	0	0	1	19	6	1	2.0	4.4	9.1
DOWO	0	Ó	1	0	0	0	0	0	0	0	0	1	1	1	1.0	-	9.1
HAWO	Ŏ	Ö	0	0	Û	0	0	0	0	0	1	1	1	1	1.0	•	36.4
NOFL	1	0	1	0	0	0	1	i	0	0	0	4	ì	1	1.0	-	9.1
PIWO	Ō	Ò	4	0	0	0	0	0	Û	0	0	4	4	4	4.0	128.8	100.0
#PAS	194	6	180	36	136	83	473	94	223	50	193	1668	473	6	151.6	140.0	9.1
WIFL	0	0	2	0	0	0	0	0	0	0	0	2	2	2	2.0	•	9.1
PSFL	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1.0	4.0	27.3
VCSW	1	0	0	0	1	0	0	8	0	0	0	10	8	1	3.3	4.0	9.1
CLSW	Ō	0	0	0	0	0	0	0	0	0	3	3	3	3	3.0	-	72.7
BASW	24	0	11	0	6	18	21	19	8	0	18	116	24	6	14.5	6.6	18.2
STJA	0	0	0	0	Û	0	0	0	1	0	2	3	2	1	1.5	9.7	90.9
NOCR	38	0	22	18	7	33	30	45	15	41	26	275	45	7	27.5	12.2	
CORA	0	0	2	Û	0	0	0	2	0	0	11	15	11	2	5.0	5.2	27.3
CBCH	Õ	0	7	0	Û	0	0	0	0	0	2	9	7	2	4.5	3.5	18.2
BRCR	Ō	0	0	0	0	0	1	0	0	0	9	1	1	1	1.0	-	9.1
BEWR	Ō	0	0	0	0	0	1	0	0	0	0	1	1	1	1.0	•	9.1
GCKI	Û	0	0	0	Û	0	0	0	0	Û	4	4	4	4	4.0	-	9.1
RCKI	Û	0	0	0	0	0	2	0	0	0	0	2	2	2	2.0	-	9.1
SWTH	. 0	0	13	0	0	0	0	0	0	0	0	13	13	13	13.0	- 0.0	9.1
AMRO	7	1	9	1	2	1	3	5	0	2	5	36	9	1	3.6	2.8	90.9
CEWA	0	0	4	0	9	0	5	0	0	0	0	9	5	4	4.5	0.7	18.2
EUST	109	0	50	13	115	24	393	13	192	7	69	985	393	7	98.5	119.1	90.9
OCWA	0	0	1	0	0	0	0	0	0	9	0	1	1	1	1.0	-	9.1
YEWA	i	0	7	0	9	0	0	0	0	0	0	8	7	1	4.0	4.2	
YRWA	i)	0	1	0	0	0	0	0	0	0	1	2	l	1	1.0	^ -	18.2
COYE	0	Ô	3	0	0	0	2	Û	0	Û	0	5	3	2	2.5	0.7	18.2 9.1
WETA	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1.0	-	9.1
RST0	Û	0	4	0	0	0	0	0	0	0	U	4	4	4	4.0	•	9.1
SAVS	0	0	0	0	0	0	Û	0	0	0	1	1	1	1	1.0	2.8	
FOSP	0	0	0	2	0	0	9	6	0	0	0	8	6	2	4.0		
SOSP	4	0	8	0	0	0	2	0	0	0	0		8	2		3.1	9.1
WCSP	0	0	1	0	0	0	0	0	0	0	0	_	1	1			9.1
DEJU	2	0	0	0	0	0	Û	Û	0	0			2	2		1.5	
RWBL	6	5	4	2	5	7	2	5	3	0			7	l		27.	
BRBL	0	0	2	C) (0	0	0	()	0				2			
PUFI	1	0	8	() () 0	0	0	0	0				1		4,	
HOFI	Ō	0	16) (9	0		0	0]		10.	
RECR	0	0	0) () 0	0		0	0				2			
PISI	0		0) (0	0								
AMG0						0 0				(
#TOT				27:	2 343	3 657	751	574	601	560	708	5665	751	12	7 515.0	134.	100.0

Campbel	l River	Estuary	All H	abitat	Report	for Aut	u m n 198	3							
Date	02Sep		18Sep		010ct	170ct	300ct	13Nov		Total	Max	Min	Mean	SD	%Freq
#L00	0	0	0	0	0	0	1	6	12	19	12	1	6.3	5.5	33.3
COLO	Ô	0	0	Û	0	0	1	6	12	19	12	1	6.3	5.5	33.3
#GRE	0	1	0	0	0	14	0	2	0	17	14	1	5.7	7.2	33.3
HOGR	0	1	0	0	0	2	0	0	0	3	2	1	1.5	0.7	22.2
RNGR	9	0	0	0	0	3	0	2	0	5	3	2	2.5	0.7	22.2
WEGR	0	0	0	0	9	9	0	0	0	9	9	9	9.0		11.1
#COR	0	1	2	0	7	26	13	21	27	97	27	1	13.9	11.0	77.8
CORM	0	0	0	0	0	0	13	0	27	40	27	13	20.0	9.9	22.2
DCCO	0	0	0	0	5	3	0	0	0	8	5	3	4.0	1.4	22.2
PECO	0	1	2	0	2	23	0	2 1	0	49	23	1	9.8	11.2	55.6
#HER	1	1	7	1	0	7	2	0	5	24	7	1	3.4	2.8	77.8
GBHE	1	1	7	1	0	7	2	0	5	24	7	1	3.4	2.8	77.8
#SWA	0	0	0	0	0	0	0	2	13	15	13	2	7.5	7.8	22.2
TRUS	0	0	0	Û	9	0	9	2	13	15	13	2	7.5	7.8	22.2
#GEE	0	1	0	0	i	0	0	0	0	2	1	1	1.0	-	22.2
GWF G	0	1	0	0	1	0	0	0	0	2	1	1	1.0	-	22.2
#DAB	10	14	0	21	268	92	3	9	25	442	268	3	55.3	90.5	88.9
GWTE	0	0	0	0	38	0	0	0	0	38	38	38	38.0	-	11.1
MALL	10	0	0	21	14	6	3	9	25	88	25	3	12.6	8.0	77.8
NOPI	0	14	0	0	13	7	0	Û	Û	34	14	7	11.3	3.8	33.3
BWTE	0	0	0	0	9	9	0	0	0	9	9	9	9.0	-	11.1
NOSL	0	O	0	0	3	0	0	0	0	3	3	3	3.0	-	11.1
AMW I	0	0	0	0	200	70	Û	0	0	270	200	70	135.0	91.9	22.2
#DIV	16	41	0	6	46	19	32	63	141	364	141	6	45.5	42.7	88.9
GRSC	0	9	0	0	6	0	Û	0	0	6	6	6	6.0	•	11.1
LESC	0	0	0	0	0	0	0	0	22	22	22	22	22.0	-	11.1
HADU	0	0	0	0	22	12	24	13	13	84	24	12	16.8	5.7	55.6
OLDS	0	0	0	0	0	0	0	9	7	16	9	7	8.0	1.4	22.2
SUSC	5	12	0	0	0	0	0	0	0	17	12	5	8.5	4.9	22.2
WWSC	0	0	0	0	12	0	0	0	0	12	12	12	12.0	-	11.1
COGO	0	0	0	0	2	0	0	Û	9	11	9	2	5.5	4.9	22.2
BUFF	11	0	0	0	0	9	7	29	65	112	65	7	28.0	26.5	44.4
HOME	0	0	0	0	4	1	0	0	12	17	12	1	5.7	5.7	33.3
COME	0	11	0	6	0	4	1	12	13	47	13	1	7.8	4.9	
RBME	Û	3	0	0	0	2	0	0	0	5	3	2	2.5	0.7	
DUCK	0	15	0	0	0	0	Û	0	9		15	15	15.0		11.1
#RAP	0	Û	2	0	3	2	2	0	1	10	3	1	2.0	0.7	
BAEA	0	0	2	0	3	0	2	0	1	8	3	1	2.0	0.8	
RTHA	0	0	Û	0	0	1	0	0	0		1	1	1.0	•	11.1
MERL	0	0	0	9	0	1	0	0	0		1	1	1.0	-	11.1
#SHO	3	4	2	15		3	3	0	0		15	2	4.9	4.5	
KILL	1	1	2	Û	2		0	0	0		2	1	1.5	0.6	
GRYE	0	0	0	0			0	0	0		1	1	1.0	•	11.1
WATA	1	0	0	0			0	0	0		1	1	1.0	-	11.1
WHIM	0	2	0	0			0	0	0		2	2		-	11.1
WESA	0	ł	0	0			0	0	0		1	1		-	11.1
SBDO	0	0	0	(0		0		3	3		-	11.1 22.2
COSN	1	0	0	((1	1		8.	
SHOR	0	0	0	15	i (0	3	0	() 18	15	3	9.0	0.	J 44.4

Campbel:	l River	Estuar	y All H	labitat	Report	for Aut	u n n 198	3 (cont	inued)	1	W	Wi w	Mean	SD	%Freq
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	JUUCT	13MOA	2 LIKOA		Max	Min	516.3		100.0
#GUL	363	434	512	640	623	582	475	436	582	4647	640	363		15.6	22.2
GULL	0	1	23	0	0	0	0	0	0	24	23	1	12.0	83.9	66.7
BOGU	39	33	0	150	213	3	27	0	0	465	213	3	77.5	55.3	33.3
MEGU	0	27	0	0	72	137	0	0	Û	236	137	27	78.7		33.3
HEGU	0	1	0	0	2	46	0	0	0	49	46	1	16.3	25.7	100.0
GWGU	324	372	489	490	336	3 96	448	436	582	3873	582	324	430.3	83.0	22.2
#ALC	0	0	0	0	9	15	1	0	0	16	15	1	8.0	9.9	11.1
COMU	Ö	0	0	0	0	15	0	0	0	15	15	15	15.0	-	11.1
MAMU	Õ	0	Û	0	0	0	1	0	0	1	1	1	1.0	- 11 2	22.2
RODO	Ô	0	0	0	22	6	0	0	0	28	22	6	14.0	11.3	
BEKI	i	2	3	0	3	2	0	0	1	12	3	1	2.0	0.9	66.7
#W00	Ō	0	0	0	1	0	0	0	1	2	1	1	1.0	-	22.2
NOFL	Õ	Ō	9	0	1	0	0	0	1	2	1	1	1.0	~	22.2
#PAS	20	78	137	87	1089	249	18	48	20	1746	1089	18	194.0	343.7	100.0
BASW	0	0	54	0	0	9	0	0	Û	54	54	54	54.0	-	11.1
STJA	Õ	0	0	G	1	0	0	0	0	1	1	1	1.0	-	11.1
NOCR	10	47	29	65	93	86	13	23	11	377	93	10	41.9	32.5	100.0
CORA	Õ	0	0	8	9	0	1	0	3	21	9	1	5.3	3.9	44.4
AMRO	Ğ	0	Õ	9	45	11	0	0	0	71	45	6	17.8	18.3	44.4
VATH	Ŏ	Ö	Ö	0	0	i	0	0	0	1	1	1	1.0	-	11.1
CEWA	0	Ö	Ö	Ô	5	9	0	0	0	5	5	5	5.0		11.1
EUST	3	30	52	2	889	140	4	13	0	1133	889	2	141.6	305.5	88.9
WARB	Õ	1	0	0	0	0	0	0	0	1	1	1	1.0	-	11.1
YRWA	0	0	Ŏ	0	4	0	0	0	0	4	4	4	4.0	-	11.1
WETA	0	0	1	Ö	0	0	0	0	0	1	1	1		- 	11.1
RSTO	0	Ō	Ō	Ō	2	0	0	2	1	5	2	1		0.6	33.3
SAVS	0	0	Ō	Ō	6	0	0	0	0	6	6	6		-	11.1
FOSP	1	0	Ō	3	0	0	0	0	5	9	5	1		2.0	33.3
SOSP	0	0	Ö	Õ	9	2	0	1	0	12	9	1		4.4	
GCSP	0	0	9	Õ	3	0	0	9	0	3	3	3		-	11.1
DEJU	0	0	Ö	0	Ō	Ō	0	9	0	9	9	Ś		-	11.1
RWBL	0	0	1	0	10	0	0	0	0	11	10		-	6.4	
BHCO	0	0	0	0		Û	0	Û	Û	1	1]		-	11.1
PUFI	0	0	0	Õ	-	0	0	0	0	2	2	- 2	2.0	-	11.1
	0	0	0	Û		_	0	0	0	3	3		3.0	-	11.1
HOFI	υ 0	0	0	0			0		0	12	9		3 6.0	4.2	
PISI	_	0	0	0			Õ		0		1		1 1.0	-	11.1
AMGO	0	U O	0					_	(3		3 3.0	-	11.1
EVGR	0		665		-				828		2067	41	4 830.6	496.	3 100.0
#TOT	414	577	000	111	1 4001	1017	440	Ų (I							

Campbe.	ll River	Estuar	y All H		Report	for Win							
Date	10Dec	17Dec	07Jan	23Jan	29Jan	05Feb	13Feb		Max	Min	Mean	SD	%Freq
#L00	1	5	12	2	6	3	4	33	12	1	4.7	3.6	100.0
PALO	0	3	0	0	0	0	0	3	3	3	3.0	-	14.3
COLO	1	2	12	2	6	3	4	30	12	1	4.3	3.8	100.0
#CRE	3	5	9	2	5	6	5	35	9	2	5.0	2.2	100.0
HOGR	0	4	3	0	5	0	4	16	5	3	4.0	0.8	57.1
RNGR	3	0	6	2	0	б	1	18	6	1	3.6	2.3	71.4
WECR	0	1	0	0	0	0	0	1	1	1	1.0	-	14.3
#COR	13	18	9	1	13	8	13	75	18	1	10.7	5.4	100.0
CORM	0	1	0	1	0	0	0	2	1	1	1.0	-	28.6
DCC0	5	12	0	0	3	0	2	22	12	2	5.5	4.5	57.1
PECO	8	5	9	0	10	8	11	51	11	5	8.5	2.1	85.7
#HER	0	Ð	2	7	2	25	1	37	25	1	7.4	10.1	71.4
GBHE	0	0	2	7	2	25	1	37	25	1	7.4	10.1	71.4
#SWA	13	5	23	24	23	20	20	128	24	5	18.3	6.9	100.0
TRUS	13	5	23	24	23	20	20	128	24	5	18.3	6.9	100.0
#GEE	0	0	0	25	0	0	0	25	25	25	25.0	-	14.3
CAGO	0	0	0	25	0	0	0	25	25	25	25.0	-	14.3
#DAB	16	22	10	9	4	5	5	71	22	4	10.1	6.7	100.0
GWTE	2	1	0	0	0	0	0	3	2	i	1.5	0.7	28.6
MALL	11	21	10	9	2	5	5	63	21	2	9.0	6.2	100.0
AMWI	3	0	0	0	2	0	0	5	3	2	2.5	0.7	28.6
#DIV	115	112	6 6	68	67	246	153	827	246	66	118.1	65.1	100.0
CANV	0	0	0	2	0	0	0	2	2	2	2.0	-	14.3
SCAU	0	0	0	1	0	0	0	1	1	1	1.0	-	14.3
CRSC	0 .	0	6	0	0	0	0	6	6	6	6.0	-	14.3
LESC	0	6	0	0	0	0	0	6	6	6	6.0	-	14.3
HADU	14	13	4	0	10	0	3	44	14	3	8.8	5.1	71.4
OLDS	5	4	0	0	2	1	1	13	5	1	2.6	1.8	71.4
BLSC	0	0	0	0	0	0	8	8	8	8	8.0	-	14.3
SUSC	7	0	0	4	0	59	43	113	59	4	28.3	27.1	57.1
GOLD	Đ	0	0	4	0	Û	0	4	4	4	4.0	-	14.3
C0G0	14	16	30	1	3	71	27	162	7 1	1	23.1	23.7	100.0
BAGO	0	0	0	5	0	16	0	21	16	5	10.5	7.8	28.6
BUFF	43	39	9	36	21	37	31	2 16	43	9	30.9	11.9	100.0
COME	27	20	17	15	19	58	36	192	58	15	27.4	15.3	100.0
RBME	5	14	0	8	12	4	4	39	14	4	7.8	4.8	71.4
#RAP	1	3	3	2	3	5	2	19	5	1	2.7	1.3	100.0
HAWK	0	0	0	0	0	1	0	1	1	1	1.0	•	14.3
BAEA	1	3	3	2	3	4	2	18	4	1	2.6	1.0	100.0
#SHO	0	5	0	0	0	0	2	7	5	2	3.5	2.1	28.6
KILL	0	4	0	0	0	0	2	6	4	2	3.0	1.4	28.6
COSN	0	1	0	0	0	0	0	1	1	1	1.0	-	14.3

Camphe	ll River	Estnar	v All H	labitat	Report	for Win	ter 19	83-1984	(conti	nued)			
Date	18Dec	17Dec	07Jan	23Jan	29Jan	05Feb	13Feb	Total	Max	Min	Mean	SD	%Freq
#GUL	736	163	425	395	454	986	604	3763	986	163	537.6	266.2	100.0
GULL	Û	0	0	0	400	0	30	430	400	30	215.0	261.6	28.6
MEGU	1	50	9	Ō	45	0	0	105	50	. 1	26.3	24.8	57.1
GWGU	735	113	416	395	9	986	574	3228	986	9	461.1	340.4	100.0
RODO	0	1	0	0	0	0	0	1	1	1	1.0	-	14.3
BEKI	Õ	Ō	2	0	0	Û	i	3	2	1	1.5	0.7	28.6
IPAS	228	39	18	24	18	35	30	392	228	18	56.0	76.3	100.0
NOCR	12	7	11	8	16	10	17	81	17	7	11.6	3.8	100.0
WREN	Ô	Ö	Ô	Õ	0	1	0	1	1	1	1.0	-	14.3
CCKI	200	Õ	Ō	Ö	Ô	0	0	200	200	200	200.0	-	14.3
RCKI	0	1	õ	0	Ō	0	0	1	1	1	1.0	•	14.3
AMRO	0	Ö	Õ	Ō	Ò	0	1	1	1	1	1.0	-	14.3
EUST	3	1	6	Ō	Ô	2	3	15	6	1	3.0	1.9	71.4
RST0	0	2	Ö	0	Ô	0	Û	2	2	2	2.0	•	14.3
SOSP	Û	5	1	1	2	0	2	11	5	1	2.2	1.6	71.4
DEJU	13	13	Ō	15	Ô	22	7	70	22	7	14.0	5.4	71.4
PISI	0	10	Ŏ	Ō	0	Û	0	10	10	10	10.0	-	14.3
#TOT	1126	378	579	559	595	1339	840	5416	1339	378	773.7	346.6	100.0

Campbel]	River	Estuar	y All	Habitat	Report	for Spi	ing 198	4
Date	11Mar	18Mar	Total	Max	Min	Mean	SD	Freq
#L00	1	3	4	3	ì	2.0		100.0
COLO	1	3	4	3	1	2.0		100.0
#GRE	4	1	5	4	i	2.5		100.0
RNGR	4	1	5	4	1	2.5		100.0
#COR	8	11	19	11	8	9.5	2.1	100.0
CORM	0	11	11	11	11	11.0	-	50.0
DCC0	2	0	2	2	2	2.0	-	50.0
PECO	6	0	6	6	6	6.0	-	50.0
#HER	1	6	7	6	1	3.5	3.5	100.0
CBHE	1	6	7	6	1	3.5	3.5	100.0
#SWA	0	13	13	13	13	13.0	-	50.0
TRUS	0	13	13	13	13	13.0	-	50.0
#GEE	0	7	7	7	7	7.0	-	50.0
BRAN	0	7	7	7	7	7.0	-	50.0
#DAB	0	9	9	9	9	9.0	-	50.0
MALL	0	9	9	9	9	9.0	-	50.0
#DIV	85	58	143	85	58	71.5	19.1	100.0
GRSC	0	2	2	2	2	2.0	-	50.0
SUSC	12	25	37	25	12	18.5	9.2	100.0
WWSC	16	0	16	16	16	16.0	-	50.0
COGO	9	10	19	10	9	9.5	0.7	100.0
BUFF	30	14	44	30	14	22.0	11.3	100.0
COME	17	7	24	17	7	12.0	7.1	100.0
RBME	1	Û	1	1	1	1.0	-	50.0
#RAP	0	3	3	3	3	3.0	-	50.0
BAEA	0	3	3	3	3	3.0	-	50.0
#GUL	268	283	551	283	268	275.5	10.6	100.0
BOGU	0	69	69	69	69	69.0	-	50.0
MEGU	1	0	1	1	1	1.0	-	50.0
GWGU	267	214	481	267	214	240.5	37.5	100.0
BEKI	1	0	1	1	1	1.0	-	50.0
#W00	1	1	2	i	1	1.0	-	100.0
NOFL	1	1	2	: 1	1	1.0	•	100.0
#PAS	26	65	91	65	26	45.5	27.6	100.0
NOCR	13	35	48	35	13	24.0	15.6	100.0
CORA	1	4	ŗ	5 4	1	2.5	2.1	100.0
AMRO	3	9	12	2 9	3	6.0	4.2	100.0
EUST	8	0	{	8	8	8.0	-	50.0
FOSP	0	8		8	8	8.9	-	50.0
SOSP	1	0		1 1	1	1.0	-	50.0
RWBL	0	7		7 7	7	7.0	•	50.0
HOFI	0	2	;	2 2	2	2.0	•	50.0
#TOT	395	460	85	5 460	395	427.5	46.0	100.0

Appendix IV

Campbell River estuary birds surveys: Seasonal bird use by habitat, 31 October 1982 through 18 March 1984.

Note: In this Appendix, the mean has been calculated as the total number of birds of species-x counted over the season, divided by the total number of counts where species-x occurred. Counts of zero have not been included in the total number of counts nor are they included as minimum values. Thus the last 5 columns in the Appendix summarize the species occurrence on the study area. For example, the probability of seeing a Glaucous-winged Gull in summer from viewing station 1 on the Campbell River estuary is about 82%. If you see the species, you are likely to see an average of about 9 birds and more than 32 would be exceptional.

Campbe]	l River	Estuary	Bird	Surveys	of Sta	ation	1	for	Autumo	1982		
Date	310ct		13Nov	20Nov	28Nov	Total		Max	Min	Mean	SD	%Freq
#L00	0	1	1	0	0	2		1	1	1.0	-	40.0
COLO	0	1	1	0	0	2		1	1	1.0	-	40.0
#CRE	Ö	1	O	10	0	11		10	1	5.5	6.4	40.0
HOGR	Ö	0	0	4	0	4		4	4	4.0	-	20.0
RNCR	Ö	0	Ô	1	0	1		1	1	1.0	-	20.0
WECR	Ô	i	Ō	5	0	6		5	1	3.0	2.8	40.0
#COR	3	4	4	1	3	15		4	1	3.0	1.2	100.0
CORM	3	Ō	0	0	3	6		3	3	3.0	-	40.0
DCCO	Ŏ	4	Ö	1	0	5		4	1	2.5	2.1	40.0
PECO	Ô	Ō	4	Ð	0	4		4	4	4.0	-	20.0
#DIV	6	19	6	17	3	51		19	3	10.2	7.3	100.0
HADU	6	17	0	5	O	28		17	5	9.3	6.7	60.0
BUFF	0	2	5	8	3	18		8	2	4.5	2.6	80.0
COME	0	0	1	2	Ð	3		2	1	1.5	0.7	40.0
RBME	0	0	0	2	0	2		2	2	2.0	-	20.0
#GUL	10	5	2	1	4	22		10	1	4.4	3.5	100.0
HECU	0	3	0	0	0	3		3	3	3.0	•	20.0
GWGU	10	2	2	1	1	16		10	1	3.2	3.8	100.0
BLKI	0	0	0	0	3	3		3	3	3.0	-	20.0
#ALC	0	0	0	1	0	1		1	1	1.0	-	20.0
PIGU	0	0	9	1	0	1		1	1	1.0	-	20.0
#PAS	19	6	0	4	0	29		19	4	9.7	8.1	60.0
NOCR	19	6	0	0	0	25		19	6	12.5	9.2	40.0
CORA	0	0	0	4	0	4		4	4	4.0	-	20.0
#TOT	38	36	13	34	10	131		38	10	26.2	13.5	100.0

Camphe	ll River	· Estna	rv Bird	Survey	s of St	ation	1 for	Winter							.,		W	CD.	97₽±00
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb	27Feb		Max	Min	Mean		%Freq
#L00	3	0	1	0	15	0	0	0	2	0	0	0	0	21	15	1	5.3	6.6	30.8
RTLO	0	Û	Ō	Õ	3	0	0	0	0	0	0	0	0	3	3	3	3.0	-	7.7
PALO	2	Õ	n	Õ	9	0	0	0	0	0	0	0	0	11	9	2	5.5	4.9	15.4
COFO	1	n	1	0	3	Û	0	0	2	Û	0	0	0	7	3	1	1.8	1.0	30.8
#GRE	9	9	1	ñ	Õ	1	8	0	3	0	0	0	0	15	8	1	3.0	2.9	38.5
HOGR	2	n	1	ñ	Û	Ō	2	0	3	Û	9	0	0	8	3	1	2.0	0.8	30.8
RNGR	0	n	ń	ñ	0	1	5	0	0	0	0	0	0	6	5	1	3.0	2.8	15.4
WEGR	0	n	n	ñ	Ñ	Ō	1	0	0	0	0	0	0	1	ì	1	1.0		7.7
#COR	Û	1	Ô	n	6	Ñ	3	2	4	0	2	0	3	21	6	1	3.0	1.6	53.8
CORM	0	0	N	A	ñ	Õ	Õ	2	0	0	0	0	0	2	2	2	2.0	-	7.7
DCCO	0	Û	ñ	0	5	n	0	0	4	0	0	0	0	9	5	4	4.5	0.7	15.4
PECO	0	1	0	n	1	ñ	3	Ö	Ō	0	2	0	3	10	3	1	2.0	1.0	38.5
#DIV	29	24	12	18	22	ĥ	15	5	15	18	4	10	3	181	29	3	13.9	8.2	100.0
HADU	29 11	14	6	0	2	Å	0	4	2	0	ß	2	0	45	14	2	5.6	4.5	61.5
	3	2	0	n	1	Ò	ĭ	Ö	2	0	0	9	0	9	3	1	1.8	0.8	38.5
OLDS		0	0	n.	9	n	â	ñ	0	Ō	Ö	1	0	1	1	1	1.0	-	7.7
BLSC SUSC	0	2	0	7	8	n.	7	n	Ř	14	3	5	2	60	14	2	6.0	3.7	76.9
	4	0	U A	U	Ŋ	1	'n	Ñ	0	0	Ö	0	O	1	1	1	1.0	-	7.7
WWSC	0	v	1	0	5	0	Å	ň	2	Õ	1	i	0	18	5	1	2.3	1.5	61.5
COGO	<u>4</u>	4	7	7	4	1	3	1	0	4	Ō	1	1	39	8	1	3.5	2.5	84.6
BUFF	8	4	ນ ຄ	2	9	Ð	ñ	Ô	Ö	ŝ	Ď	Ō	0	2	2	2	2.0	-	7.7
COME	0	U A	o A	2	9	n.	n	ñ	1	ñ	Õ	Ö	Ó	6	2	1	1.5	0.6	30.8
ROME	1	0	U	0	2 19	r N	1	n	Ô	ñ	Û	2	0	4	2	1	1.3	0.6	23.1
#RAP	1	V	U	V.	0	î	1	٥	Û	Ñ	ñ	2	Ö	4	2	1	1.3	0.6	23.1
BAEA	i	0	0	U	12	1	1	3	1	3	2	25	3	70	25	1	5.8	7.0	92.3
#GUL	. 5	10	0	4	0	U-	í G	0	1	ů.	ñ	î	2	3	2	1	1.5	0.7	15.4
GULL	0	0	0	V	0	9	v n	n.	n	A	2	õ	Ō	7	5	2	3.5	2.1	15.4
MEGU	5	U	0	U	12	0	U N	n n	Λ	Õ	B	õ	Ō	12	12	12	12.0	-	7.7
HEGU	0	0	•	0		1	1	3	n	3	õ	25	1	48	25	1	6.0	8.2	61.5
GWGU	0	10	0	4	0	0	7	U.	ñ	0	1	0	0	4	2	1	1.3	0.6	23.1
#ALC	1	0	U	0	O A	n N	ů n	0	n	n.	1	ñ	0	1	1	1	1.0	-	7.7
COMU	0	U	U	•	v N	Û	2	N.	n	n	9	a	n	3	2	1	1.5	0.7	15.4
PIGU	1	Ų	0	0	•	U A	0	V A	O.	Λ	1	7	Õ	8	7	1	4.0	4.2	15.4
RODO	0	U	0	0	0	1	•	U	2	Ŋ	0	7	6	19	7	1	3.8	2.6	38.5
#PAS	0	0	0	0	2	1	0	V	J n	0	n D	, ,	3	14	5	1	2.8	1.5	38.5
NOCR	0	0	Ü	0	2	l	0	0	J	0	0	2	3	5	3	2		0.7	15.4
EUST	0	0	0	0	0	0	0	٠	28	21	10	51	15	343	57	9		15.9	
#TOT	41	35	14	22	57	9	30	10	48	41	10	91	10	UTU	uí	,	2011	1010	

Campbe	ll River	Estuar	y Bird	Surveys	of St	ation	1 for	Spring	1983									CD.	WT
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	01May	08May	14May	20May	29May		Max	Min	Mean	SD	%Freq
#L00	1	0	0	Û	2	1	1	i	0	0	0	28	0	34	28	1	5.7	10.9	46.2
RTLO	Ō	Ô	Ó	0	9	0	0	1	0	O	0	0	0	1	1	1	1.0	-	7.7
PALO	Õ	Ö	Ö	0	0	1	O	0	0	0	0	28	0	29	28	i	14.5	19.1	15.4
COLO	1	Ō	Ô	0	2	0	1	0	0	0	0	0	0	4	2	1	1.3	0.6	23.1
#GRE	í	1	Ö	0	6	0	0	4	0	0	0	0	0	12	6	1	3.0	2.4	30.8
HOGR	Ô	1	Ö	Ō	0	0	0	2	0	0	0	0	0	3	2	1	1.5	0.7	15.4
RNGR	Õ	Ô	Ö	Ö	6	0	0	1	0	0	0	0	0	7	6	1	3.5	3.5	15.4
EAGR	1	Õ	Ŏ	Ō	Ô	0	0	0	0	0	0	0	0	1	1	1	1.0	•	7.7
WECR	Ô	0	Õ	Õ	Ô	0	0	1	0	0	0	0	0	i	1	1	1.0	-	7.7
#COR	4	2	7	1	Ó	4	2	2	0	0	0	0	0	22	7	1	3.1	2.0	53.8
CORM	0	ō	7	Ō	Ö	0	2	0	9	0	0	0	0	9	7	2	4.5	3.5	15.4
PECO	4	2	Ò	1	Ô	4	0	2	0	0	0	0	0	13	4	Ì	2.6	1.3	38.5
#DIV	10	ĥ	Ŏ	Ô	1	1	Ò	1	0	0	0	0	0	19	10	1	3.8	4.1	38.5
HADU	1	2	n	0	Ô	0	0	Ô	0	0	0	0	0	3	2	1	1.5	0.7	15.4
SUSC	8	Ä	ń	Ň	Õ	Û	í	ñ	Ō	0	Û	0	0	12	8	4	6.0	2.8	15.4
BUFF	1	Λ	0	ñ	1	0	Õ	Ô	Ô	0	Ō	0	0	2	1	1	1.0	-	15.4
RBME	0	ñ	n	A	Ô	1	ň	1	Ö	Ô	0	0	0	2	1	1	1.0	-	15.4
RAP	O	ก	0	n	0	Ô	Û	ī	0	0	Ö	Ö	Ô	1	1	1	1.0	•	7.7
BAEA	0	n	0	0	n	Û	ñ	í	0	ĥ	9	Ô	Ö	1	1	1	1.0	•	7.7
#GUL	1	2	Ð	7	2	1	Ā	5	7	4	1	6	Ó	40	7	1	3.6	2.4	84.6
#GOL HEGU	0	<u>د</u> 0	0	Ŕ	ñ	0	6	ñ	'n	n	Ō	Ō	9	6	6	6	6.0	-	7.7
GWGU	1	9	0	1	2	1	Ā	5	7	4	i	6	0	34	7	1	3.1	2.2	84.6
#ALC	0	3	Û	U	0	ô	Û	11	Ö	0	Ô	Ň	Ô	14	11	3	7.0	5.7	15.4
COMU	n n	a A	0	V A	n	Ñ	o O	8	0	n	Õ	Õ	0	8	8	8	8.0	-	7.7
	0	Ų D	Û	ถ	0	0	n	2	0	0	Ŋ	Ô	Õ	5	3	2	2.5	0.7	15.4
PIGU	•	J G	0	0	U N	V N	n	1	Û	Ď	Ô	ñ	õ	1	1	1	1.0	•	7.7
MAMU	0	U	0	U n	V A	ı d	U.	N	0	Ô	ñ	3	ñ	7	4	3	3.5	0.7	15.4
RODO	0	V n	U A	0	U N	4 1	2	3	4	13	A	13	18	58	18	1	7.3	6.4	61.5
#PAS	1	U	V	Ų A	0	U A	n) D	0	8	9	2	0	10	8	2	5.0	4.2	15.4
BASW	0	0	U	0	-	0	2	2	4	0	3	7	1	19	7	1	3.2	2.1	46.2
NOCR	9	0	0	0	0	•	0	0	44 ()	3	O.	r N	Ô	4	3	1	2.0	1.4	15.4
CORA	1	0	0	0	Ų	0	U N	V n	0	ე 0	Ū N	O A	t	1	i	1	1.0	•	7.7
AMRO	0	0	0	0	0	0	•	1	0	V 1	1	ŭ A	16	23	16	1	4.6	6.5	38.5
EUST	0	0	0	0	0	0	0	υ 1	•	1	0	0	0	1	1	1	1.0	-	7.7
WCSP	0	0	Đ	0	0	0	Û O) no	0	17	5	50	18	207	50	5	15.9	11.9	100.0
#TOT#	18	14	7	8	11	11	9	28	11	11	J	JU	10	401	ψU	ı	10.0	11.5	10010

Campbel.	River	Estuary	v Bird	Surveys	of Sta	tion 1	for S	ummer 1				\	M	w.	Moon	SD	%Freq
	ilJun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug	Total	Max	Min	Mean		•
Date		0 0	A COURT	1	0	0	0	0	0	0	0	1	1	1	1.0	-	9.1
#L00	0	U	V	1	0	n	n	Ù	0	0	0	1	1	1	1.0	-	9.1
PALO	0	ŋ	U	1	V	U A	O N	7	n	n	Ò	11	7	4	5.5	2.1	18.2
#DIV	0	0	0	4	y	U	U	1	ν.	0	. 0	11	7	4	5.5	2.1	18.2
SUSC	0	0	O	4	0	()	V	!	יט	0	0	9	1	1	1.0	-	18.2
#RAP	1	0	0	9	1	0	0	U	V	U	U	2	1	1	1.0		18.2
BAEA	1	Û	Û	0	1	0	0	0	0	0	U	4	1	1			81.8
#GUL	À	3	7	O.	3	35	1	0	20	12	6	91	35	1	10.1	11.0	
	-13 A	n n	'n	n	0	3	0	0	1	Û	1	5	3	1	1.7	1.2	27.3
BOCU	U	v	ν.	۸	n	0	ñ	ñ	1	0	0	1	1	1	1.0	-	9.1
MEGU	Ü	U	U	v	9	20	1	n	18	12	5	85	32	1	9.4	10.0	81.8
GWGU	4	3	7	Ų	J	32	1	0	10	10	ñ	10	10	10	10.0	-	9.1
#ALC	0	0	10	Ü	IJ	U	U	U	Ū	o o	0	10	10	10	10.0		9.1
MAMU	0	0	10	9	0	0	Ü	U	U	υ	10			2	7.3	6.7	36.4
RODO	0	0	9	0	2	0	9	0	2	0	16	29	16	1		19.2	81.8
#PAS	55	Ð	1	8	2	0	32	30	3	3	3	137	55	i	15.2	19.2	
VCSW	0	n	n	ñ	1	0	0	0	0	Û	0	1	1	1	1.0	-	9.1
	٥ .	ν.	0	a	a	ก	21	ſì	Û	0	9	21	21	21	21.0	-	9.1
BASW	U	U	v		1	٨	3	23	1	3	0	42	23	1	5.3	7.4	72.7
NOCR	5	0	1	ð	1	Ü	-	£J	ŋ	n	3	73	50	2	12.2	18.7	54.5
EUST	50	0	0	3	U	U	8	1	05	10	25	281	60	3	25.5	16.8	100.0
#TOT	60	3	18	13	8	35	42	37	25	15	20	401	00	J	20,0	20,0	

Campbel!	l River	Estuary	Bird	Surveys	of Sta	tion 1		utumo 1			14	30°	Mann	SD	%Freq
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov		Total	Max	Min	Mean	ЭV	ll.l
#L00	0	0	0	0	0	0	0	0	2	2	2	2	2.0	-	11.1
COLO	0	0	0	0	0	0	9	0	2	2	2	2	2.0	- # 1	22.2
#CRE	Ō	1	0	0	0	11	0	0	0	12	11	1	6.0	7.1	
HOGR	Ô	1	0	0	0	1	0	0	Û	2	1	1	1.0	-	22.2
RNGR	0	0	0	0	0	1	û	0	0	1	1	I	1.0	-	11.1
WECR	Ò	0	0	0	O	9	0	O	Û	9	9	9	9.0	-	11.1
#COR	Ò	Ô	0	0	2	3	3	0	8	16	8	2	4.0	2.7	44.4
CORM	Ô	Ō	0	0	0	9	3	0	8	11	8	3	5.5	3.5	22.2
DCCO	Ô	0	0	0	0	1	0	0	Û	1	1	1	1.0	-	11.1
PECO	Ô	0	0	0	2	2	0	0	0	4	2	2	2.0		22.2
#DIV	Ō	0	0	0	15	2	10	17	12	56	17	2	11.2	5.8	55.6
HADU	Ô	Ò	0	0	15	2	9	10	7	43	15	2	8.6	4.7	55.6
BUFF	0	Ď	0	0	0	0	0	4	4	8	4	4	4.0	-	22.2
COME	0	Ö	Ô	Û	0	0	1	3	1	5	3	1	1.7	1.2	33.3
#GUL	2	7	7	2	15	53	16	6	25	133	53	2	14.8	16.2	100.0
BOGU	0	Ó	0	0	12	1	1	0	0	14	12	1	4.7	6.4	33.3
HEGU	Õ	Ō	Ō	Û	0	2	0	0	0	2	2	2	2.0		11.1
GWGU	2	7	7	2	3	50	15	6	25	117	50	2	13.0	15.7	100.0
#ALC	Ō	n	0	0	0	5	0	0	0	5	5	5	5.0	-	11.1
COMU	Ö	Ô	0	0	0	5	0	0	0	5	5	5	5.0	-	11.1
RODO	Ň	0	Ô	Ô	13	0	0	0	0	13	13	13	13.0	-	11.1
#PAS	3	3	29	1	23	24	3	12	3	101	29	1	11.2	11.1	100.0
BASW	Õ	Õ	12	0	Û	Û	0	0	0	12	12	12	12.0	-	11.1
NOCR	Ô	3	5	1	6	18	3	6	3	45	18	1	5.6	5.3	
CORA	Ü	ñ	Ð	0	6	0	0	0	0	6	6	6	6.0	-	11.1
EUST	3	0	12	0	11	6	Û	6	0	38	12	3	7.6	3.8	
#TOT	5	11	36	3	68	98	32	35	50	338	98	3	37.6	31.1	100.0
1171	v	4.4		•											

Campbel.	River	Fetnari	v Rird	Surveys	of Sta	tion 1	for V	vinter	1983-198	4			
Date	10Dec	17Dec	07Jan	23Jan	29Jan	05Feb	13Feb	Total	Max	Min	Mean	SD	Freq
	0	0	6	1	0	0	2	9	6	1	3.0	2.6	42.9
#L00	-	9	6	1	Û	0	2	9	6	1	3.0	2.6	42.9
COLO	0	0	-	1	n	2	ñ	9	4	1	2.3	1.3	57.1
#GRE	2	U	4	1	n.	2	n	9	4	1	2.3	1.3	57.1
RNGR	2	0	4	i	Ų	0	5	23	8	î	4.6	2.5	71.4
#COR	4	5	l	U	8	•	Ĭ.	43	1	1	1.0	-	14.3
DCC0	0	0	0	0	1	0	0	an I	ı,	1		2.2	71.4
PECO	4	5	1	0	7	0	5	22		1	4.4		100.0
#DIV	19	8	3	18	13	42	6	109	42	3	15.6	13.1	
CANV	0	0	0	2	0	0	0	2	2	2	2.0	-	14.3
HADU	9	3	0	0	7	0	3	22	9	3	5.5	3.0	57.1
SUSC	0	0	0	4	0	5	3	12	5	3	4.0	1.0	42.9
BUFF	2	2	3	2	1	2	0	12	3	1	2.0	0.6	85.7
COME	8	0	n	10	Ō	35	0	53	35	8	17.7	15.0	42.9
	Û	2	0	0	5	0	Û	8	5	3	4.0	1.4	28.6
RBME	•	.) 1	u a	0	o o	A	Ň	2	1	1	1.0	-	28.6
#RAP	1	1	U	-	0	٨	0	2	1	1	1.0	-	28.6
BAEA	1	I	0	0	0			130	74	3	21.7	27.3	85.7
#GUL	10	3	10	29	0	74	4			•		27.3	85.7
GWG U	10	3	10	29	0	74	4	130	74	3	21.7		71.4
#PAS	2	1	3	0	4	0	3	13	4	1	2.6	1.1	
NOCR	2	1	3	0	4	0	3	13	4	1	2.6	1.1	71.4
#TOT	38	18	27	49	25	118	20	295	118	18	42.1	35.2	100.0

0 1 1	D!	F-4	n: "á	Cumrente	~t C+	ation 1	for S	pring 1984
-				Surveys	OF DE	Moon I		AFreq
Date	11Mar	18Mar T		Max	Min	Mean	SD	
#L00	0	2	2	2	2	2.0	•	50.0
COLO	0	2	2	2	2	2.0	-	50.0
#GRE	0	1	1	1	1	1.0	-	50.0
RNGR	0	1	1	1	1	1.0	-	50.0
#COR	2	2	4	2	2	2.0	-	100.0
CORM	0	2	2	2	2	2.0	-	50.0
PECO	2	0	2	2	2	2.0	-	50.0
#DIV	2	22	24	22	2	12.0	14.1	100.0
GRSC	0	2	2	2	2	2.0	-	50.0
SUSC	Ô	12	12	12	12	12.0	-	50.0
WWSC	2	0	2	2	2	2.0	-	50.0
C0G0	0	3	3	3	3	3.0	-	50.0
BUFF	Ö	5	5	5	5	5.0	-	50.0
FRAP	0	1	1	1	1	1.0	-	50.0
BAEA	Ö	1	1	1	ì	1.0	-	50.0
#GUL	Õ	10	10	10	10	10.0	-	50.0
BOGU	0	3	3	3	3	3.0	-	50.0
GWGU	Ô	7	7	7	7	7.0	-	50.0
#PAS	2	4	6	4	2	3.9	1.4	100.0
NOCR	2	2	4	2	2	2.0	-	100.0
CORA	0	1	1	1	1	1.0	-	50.0
		1	1	1	1	1.0	-	50.0
AMRO ##FOF	0	10	40	42	6	24.0	25.5	100.0
#TOT	6	42	48	44	U	41.0	40.0	100.0

Cambel	River	Estuary	v Bird	Surveys	of Sta	ition	2	for	Autumn	1982		
Date	310ct	08Nov	13Nov	20Nov	28Nov	Total		Max	Min	Mean	SD	%Freq
#L00	1	1	5	0	0	7		5	1	2.3	2.3	60.0
COLO	1	1	5	Ō	0	7		5	1	2.3	2.3	60.0
#CRE	1	3	3	1	1	9		3	i	1.8	1.1	100.0
HOCER	Ô	1	0	1	0	2		1	1	1.0	-	40.0
RNGR	1	2	3	Û	1	7		3	i	1.8	1.0	80.0
#COR	Å	9	7	4	3	27		9	3	5.4	2.5	100.0
CORM	4	0	0	0	3	7		4	3	3.5	0.7	40.0
DCCO	Ō	6	0	Ŏ	Ď	6		6	6	6.0	-	20.0
PECO	0	3	7	4	Ò	14		7	3	4.7	2.1	60.0
#DIV	Ô	n	0	1	9	10		9	1	5.0	5.7	40.0
BAGO	Õ	Õ	ß	0	4	4		4	4	4.0	-	20.0
BUFF	Ď	Õ	Õ	Ô	3	3		3	3	3.0	-	20.0
COME	Õ	Ň	Ð	Ô	2	2		2	2	2.0	-	20.0
RBME	Ď	Õ	Ö	1	0	1		1	1	1.0	-	20.0
RAP	0	O.	}	Ō	Ô	1		1	1	1.0	-	20.0
BAEA	0	Ô	1	Ō	Ó	1		1	1	1.0	•	20.0
#GUL	6	14	1	2	2	25		14	1	5.0	5.4	100.0
GULL	Õ	10	Ō	Ō	0	10		10	10	10.0	-	20.0
GWGU	6	4	1	2	2	15		6	1	3.0	2.0	100.0
RODO	Õ	Ö	Ō	0	1	1		1	1	1.0	•	20.0
#PAS	ß	4	í	Ô	Ī	6		4	1	2.0	1.7	60.0
NOCR	Û	ż	0	0	0	2		2	2	2.0	•	20.0
EUST	Ñ	2	0	Ō	1	3		2	1	1.5	0.7	40.0
SOSP	9	Ō	i	Ō	Õ	1		1	1	1.0	-	20.0
#TOT	12	31	18	8	17	86		31	8	17.2	8.7	100.0

Campbel	1 Diver	Refusi	rv Rird	Surveys	s of St	ation	2 for	Winter	1982-19	983							14	ČD.	W The s
-		11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb	27Feb		Max	Min	Mean	SD	%Freq
Date #LOO	3	0	1	0	5	0	2	0	Û	0	0	0	Û	11	5	1	2.8	1.7	30.8
RTLO	0	n	Ų	Û	2	0	0	0	0	0	0	0	0	2	2	2	2.0	-	7.7
PALO	0	n	1	Ŋ	2	Õ	Ò	0	Û	0	Û	0	Q	3	2	1	1.5	0.7	15.4
	3	ů A	9	ß	1	n	2	0	0	0	0	0	0	6	3	1	2.0	1.0	23.1
COLO	U	1	1	n	1	3	1	1	3	0	0	0	2	15	3	1	1.9	1.0	61.5
#GRE	0	1	2	ñ	1	ñ	Ô	Ð	3	0	0	0	2	10	3	1	2.0	1.0	38.5
HOGR	0	0	Λ	n	ñ	3	1	1	0	0	0	0	0	5	3	1	1.7	1.2	23.1
RNGR	12	2	1	1	ţ	2	n	Ô	6	1	1	1	2	34	12	1	3.1	3.4	84.6
#COR		1	7	1	Á	n.	ñ	Ô	0	0	0	0	0	17	11	1	4.3	4.7	30.8
DCCO	11	1	1	U	1	9	ñ	Õ	6	1	1	1	2	17	6	1	1.7	1.6	76.9
PECO	1	1	1	1	7	'n	7	3	Ā	3	5	0	0	40	7	1	4.0	2.1	76.9
#DIV	1	o o	0	U	0	A	'n	Õ	Ô	Û	Ô	0	0	1	1	1	1.0	-	7.7
OLDS	1	ľ	0	0	O O	ń	n	n	ñ	Ð	3	Ó	0	3	3	3	3.0	-	7.7
SUSC	0	Ų	U A	Ų A	U A	O O	6	0	n	2	ß	Ō	0	9	6	1	3.0	2.6	23.1
COGO	U	ì	0	V A	ų n	ν	n.	1	å	A	Ô	0	Ô	5	4	1	2.5	2.1	15.4
BAG0	U	U	IJ	U	U C	V N	1	9	7 A	1	2	Ô	Ō	15	6	1	2.5	1.9	46.2
BUFF	U	U	3	0	0	V A	U .	ñ	A	ñ	Ō	Õ	0	1	i	1	1.0	-	7.7
COME	9	1	0	U	V	ų n	U N	O O	0	0	N	Ď	Õ	6	3	1	1.5	1.0	30.8
RBME	0	3	1	1	1	3	0	7	9	3	10	2	i	224	80	1	18.7	27.1	92.3
#GUL	56	80	U	50	4	J	0	'n	ñ	3	70	ñ	Ō	3	3	3	3.0	-	7.7
CULL	0	U	0	0	V	U	V	0	1	U	í)	O O	Õ	4	2	1	1.3	0.6	23.1
HEGU	2	0	0		1	U	V	7	1	0	10	2	1	217	80	1	19.7	27.9	84.6
GWGU	54	80	IJ	50	1	J	0	1	7	0	10	'n	Ô	6	5	1	3.0	2.8	15.4
#ALC	5	Ü	0	0	U	Ų	Ų	U A	V A	ľ	1	n.	n	6	5	1	3.0	2.8	15.4
PICU	5	0	U	0	U	V	U	Ú	V N	n.	10	N	Ä	23	10	1	5.8	4.0	30.8
RODO	0	0	Ü	V	1	Ŋ	V	4	U	U A	Û	Λ	n.	1	1	1	1.0	•	7.7
BEKI	Đ	Û	1	0	Ų	U	V	Ų	1	U	0	4	1	16	4	î	2.7	1.4	46.2
#PAS	0	3	0	0	Ü	V	4	V	1	l n	U N	4	3	8	1	1	2.0	1.2	30.8
NOCR	0	O	0	0	0	0	I	U	1	Ų		J	O N	1	1	1	1.0	-	7.7
CORA	0	0	0	0	0	Û	0	0	V	1	0	1	U A	7	3	1	2.3	1.2	23.1
EUST	0	3	0	0	0	0	3	0	10	Ų	0 27	7	16	370	9i	7	28.5	27.5	100.0
#TOT	77	91	10	52	21	8	22	15	16	8	41	,	10	310	31	,	60.0	21.0	10410

Campbel	l River	Estua	ry Bird	Survey	s of St	ation		Spring		0014	1.4146.0	20May	29May	Total	Max	Min	Mean	SD	%Freg
Date	06Mar	13Mar	20Mar	26Mar	03Apr	luapr	16Apr	23Apr	01May	08May	1 4May 0	aunay 0	23riaj ()	2	2	2	2.0	-	7.7
#L00	2	0	0	0	9	0	0	0	0	0	Û	0	0	1	1	1	1.0	•	7.7
PALO	1	0	0	0	0	0	0	0	0	ľ	υ Λ	n.	fì	1	î	1	1.0	-	7.7
COLO	1	0	0	0	0	0	0	9	Ų.	U.	0	n	n	9	Ĝ.	ī	2.3	2.5	30.8
#CRE	1	1	0	0	ì	6	0	0	U	U A	0	0	n	6	6	6	6.0	-	7.7
HOGR	0	Û	0	Û	0	6	0	0	Ŋ	V	U B	0	A	3	1	1	1.0	-	23.1
RNGR	1	1	0	0	1	0	V	0	U	U n	٨	n.	9	8	2	1	1.6	0.5	38.5
#COR	2	2	0	0	0	Z	i	ŀ	V	U A	U N	n	0	1	1	1	1.0	-	7.7
CORM	0	0	0	0	0	U	1	0	U O	Đ A	N	n	N	7	2	1	1.8	0.5	30.8
PECO	2	2	0	0	0	2	U)	0	V N	Λ	ñ	0	12	7	1	4.0	3.0	23.1
#DIV	7	0	0	4	U	l	U	0	U U	0	0	n	õ	4	4	4	4.0	-	7.7
SUSC	4	0	0	O	0	0	U	0	0	ų.	n	0	n	7	4	3	3.5	0.7	15.4
COG0	3	0	0	4	0	ų,	U	U A	0	O O	a	ñ	ñ	1	1	1	1.0	-	7.7
RBME	0	0	0	0	U	1	Ų	0	0	U N	n	1	Ô	1	1	1	1.0	-	7.7
#SHO	0	0	0	U	0	0	0	Ŋ	0	O A	N N	1	Ü	1	1	1	1.0	-	7.7
KILL	0	0	0	Ü	0	V	0	34	2	6	£	7	17	99	34	2	9.0	9.3	84.6
#GUL	6	10	0	4	2	5	U		0	3	O O	Ö	0	3	3	3	3.0		7.7
BOGU	0	Û	0	0	0	0	V	0	0	J A	r.	1	0	1	1	1	1.0	-	7.7
MEGU	0	0	0	0	0	0	0	0	o D	0	n	ĥ	Ü	1	1	1	1.0	-	7.7
HEGU	0	0	0	V	U	0	U	33	2	3	ĥ	6	17	94	33	2	8.5	9.2	84.6
GWGU	6	10	0	4	2	5	0	JJ	'n	2	n	n	0	4	2	2	2.0	-	15.4
#ALC	0	0	0	0	U	0	υ Λ	4	0	2	n	n	Ö	3	2	1	1.5	0.7	15.4
PICU	0	Û	0	Û	U	Ŋ	V	1	U A	0	0	ñ	Û	1	1	i	1.0	-	7.7
MAMU	Û	0	0	0	Ü	Ų	3	1 7	U N	8	0	0	Õ	23	8	1	4.6	2.9	38.5
RODO	0	0	U	1	0	4	s N	3	O A	7	2	17	4	45	17	2	5.6	5.0	61.5
#PAS	3	7	0	Ü	Û	2	•	ა ()	O O	0	0	0	2	2	2	2	2.0	-	7.7
TRSW	0	0	Ü	0	U	Ų	0	U n	U A	n.	Û	2	o	2	2	2	2.0	-	7.7
BASW	0	0	0	0	0	0	0	U 1	0	4	0	3	Õ	18	7	1	3.6	2.2	38.5
NOCR	3	7	U.	0	0	U	0	2	0	1 1	2	3	2	14	3	2		0.5	
EUST	0	0	U	0	0	2	0		V N	G	0	7	ñ	7	7	7		-	7.7
PUFI	0	0	0	0	0	0	() n	0 0	0	n	0	2	0	2	2	2		-	7.7
AMGO	0	0	0	0	0	0 20	0 4	47	2	23	8	25	21	203	47	2		12.7	92.3
#TOT	21	20	0	9	3	20	4	41	4	40	U	20							

Campbe !	l River	Estuar	y Bird	Surveys	of Sta	tion 2		umer 1					u	w!_	Maan	SD	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug	Total	Max	Min	Mean	עכ	-
#L00	0	0	0	0	0	0	0	1	0	0	0	1	1	i	1.0	-	9.1
PALO	n	ñ	0	0	0	0	0	1	0	0	0	1	1	1	1.0	_	9.1
#CRE	0	n	ñ	1	0	0	0	2	0	Û	0	3	2	1	1.5	0.7	18.2
RNGR	ů.	N	n	1	ñ	Ō	0	2	0	0	0	3	2	1	1.5	0.7	18.2
	n	1	n	3	Ň	n	Ď	12	0	0	0	16	12	1	5.3	5.9	27.3
#COR	0	1	n	3	ñ	Ď	9	12	0	0	0	16	12	1	5.3	5.9	27.3
CORM	0	7	2	0	n	Û	ß	0	Û	0	0	4	2	2	2.0	-	18.2
#RAP	4	ŭ n	9	a	0	o o	ñ	Ñ	Ô	0	0	4	2	2	2.0	-	18.2
BAEA	4	U	4	13	7	1	Å	ñ	6	6	25	96	25	1	9.6	7.4	90.9
#GUL	19	6	9	13	0	1	1	n	n	Ĥ	3	5	3	1	1.7	1.2	27.3
BOGU	1	U	Ų		ů n	O O	1	ñ	n	Û	2	2	2	2	2.0	-	9.1
MEGU	9	V	U	0	V	1	υ 3	n.	6	e E	20	89	20	1	8.9	6.2	90.9
CWCU	18	6	9	13	í	i	J	U A	0	0	10	6	4	2	3.0	1.4	18.2
#ALC	4	0	2	0	V	V	U	0	0	ľ	n	6		2	3.0	1.4	18.2
MAMU	4	0	2	Ü	Ü	U	V	U	U 1	U A	ν	18	2	1	3.6	1.9	45.5
RODO	3	9	6	5	0	0	U	J	i	2	U **C	91	56	2	15.2	20.5	54.5
#PAS	7	0	15	0	0	5	U	U	b	4	56		30	2	4.0	1.7	27.3
BASW	0	0	0	0	0	5	0	0	5	V	Z	12	0	4		3.2	27.3
NOCR	7	0	0	0	0	0	0	0	0	2	1	10	1	Ţ	3.3		
EUST	0	0	1	9	0	0	0	0	1	0	12	14	12	1	4.7	6.4	27.3
RST0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1.0	-	9.1
RWBL	0	Û	0	0	0	0	0	0	0	0	1	1	l	1	1.0	•	9.1
BRBL	0	0	0	Û	0	0	0	0	0	0	40	40	40	40	49.0	•	9.1
HOFI	0	0	12	0	0	0	0	0	0	0	0	12	12	12	12.0	-	9.1
AMGO	0	Õ	1	0	0	0	0	0	0	Û	0	1	1	i	1.0	- 	9.1
#TOT	35	7	34	22	7	6	4	18	13	8	81	235	81	4	21.4	22.6	100.0

Campbe]	il River	Estuar	y Bird	Surveys	of Sta	tion 2		utumn 1		m 1.1	M	Min.	Mean	SD	%Freq
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov		Total	Max	Min	меан 2.0	3.4	22.2
#L00	0	0	Û	0	0	0	0	1	3	4	3	1	2.0	1.4	22.2
COLO	0	0	0	0	0	Û	Û	1	3	4	3	1		1.4	11.1
#CRE	0	9	0	0	0	1	0	0	U	l	i	1	1.0		11.1
RNGR	0	0	0	0	0	1	0	0	0	1	1	Į,	1.0	4.6	55.6
#COR	0	0	2	0	0	12	1	1	4	20	12	1	4.0		22.2
CORM	0	0	0	0	0	0	1	0	4	5	4	i	2.5	2.1	11.1
DCCO	Û	0	0	0	0	2	0	0	0	2	2	2	2.0	-	33.3
PECO	0	0	2	0	0	10	0	1	0	13	10	1	4.3	4.9	33.3 11.1
#DIV	0	0	0	0	0	0	0	0	2	2	2	2	2.0	-	
COME	0	0	0	0	0	0	0	0	2	2	2	2	2.0	•	11.1
#SHO	1	0	Û	0	0	0	0	Û	9	1	l	1	1.0	-	11.1
WATA	1	0	0	0	0	0	0	0	0	1	1	1	1.0		11.1
#GUL	22	9	0	5	1	5	23	1	3	69	23	1	8.6	8.9	88.9
BOGU	13	1	0	0	0	0	0	0	0	14	13	1	7.0	8.5	22.2
MEGU	0	1	0	0	0	2	0	0	0	3	2	1	1.5	0.7	22.2
HEGU	Ō	0	0	0	Û	2	0	0	0	2	2	2	2.0		11.1
GWGU	9	7	0	5	1	1	23	1	3	50	23	1	6.3	7.4	88.9
RODO	Õ	Ò	0	0	Û	3	0	0	0	3	3	3	3.0	•	11.1
BEKI	Ď	0	0	0	1	0	0	0	0	1	1	1	1.0	-	11.1
#PAS	Ö	2	7	0	5	1	Û	2	6	23	7	1	3.8	2.5	66.7
BASW	Ô	0	7	0	Û	0	0	0	Û	7	7	7	7.0	-	11.1
NOCR	0	2	0	0	3	0	0	2	6	13	6	2	3.3	1.9	
CORA	Ö	0	Ö	0	2	0	0	0	0	2	2	2	2.0	•	11.1
EUST	0	0	0	ů.	0	1	0	0	0	1	1	1	1.0	-	11.1
#TOT	23	11	9	5	7	22	24	5	18	124	24	5	13.8	7.9	100.0

Campbel	l Diver	Fetnar	v Rird	Surveys	of Sta	tion 2	for W	inter	1983-198	4			
	10Dec	17Dec	07Jan	23Jan	29Jan	05Feb	13Feb	Total	Max	Min	Mean	SD	%Freq
Date	10000	11900	1	9	0	1	0	4	1	1	1.0	-	57.1
#L00	1	1	1	0	Ô	1	Ō	4	1	1	1.0	-	57.1
COFO	1	3	3	1	A	2	2	11	3	1	2.2	0.8	71.4
#GRE	0	ა 2	3	U	ñ	Ō	2	7	3	2	2.3	0.6	42.9
HOGR	Ų	_	0	1	n	2	0	3	2	1	1.5	0.7	28.6
RNCR	V	0	-	0	Û	Õ	0	1	1	1	1.0	-	14.3
WEGR	U	i	0		O O	8	0	14	8	2	4.7	3.1	42.9
#COR	2	9	4	i)	n.	8	0	14	8	2	4.7	3.1	42.9
PECO	2	0	4	0	U O	22	4	65	22	4	10.8	7.1	85.7
#DIV	4	16	10	9	0	0	0	5	5	5	5.0	_	14.3
GRSC	0	0	5	0	0		Λ	2	2	2	2.0	_	14.3
HADU	0	0	2	0	0	0	U A	2	2	2	2.0		14.3
OLDS	2	0	0	0	0	0	U	_	6	5	5.5	0.7	28.6
COCO	0	5	0	0	0	6	0	11	0	1	1.0	-	14.3
BAGO	0	0	0	1	Ū	0	0	i	l n	1	3.2	2.9	71.4
BUFF	1	4	1	8	0	2	0	16	8	1		6.7	42.9
COME	1	0	2	0	0	13	0	16	13	1	5.3		42.9
RBME	0	7	0	0	0	1	4	12	7	1	4.0	3.0	
#GUL	2	0	0	0	0	10	2	14	10	2	4.7	4.6	42.9
GWG U	2	0	0	0	0	10	2	14	10	2	4.7	4.6	42.9
RODO	0	i	0	0	0	0	0	1	ì	1	1.0	-	14.3
BEKI	0	0	1	0	0	9	0	1	1	1	1.0	-	14.3
#PAS	Û	5	1	0	0	1	0	7	5	1	2.3	2.3	
NOCR	0	5	Û	Ð	0	1	0	6	5	1	3.0	2.8	28.6
SOSP	Ò	0	1	0	0	0	0	1	1	1	1.0	-	14.3
#TOT	9	26	20	10	0	44	8	117	44	8	19.5	14.0	85.7

Campbel! Date	l River 11Mar	Estuary 18Mar T		Surveys Max	of St Min	ation Mean	2	for S	Spring 1984 %Freq
#GRE	ì	0	1	1	1	1.0		-	50.0
RNGR	1	0	1	1	1	1.0		-	50.0
#COR	0	3	3	3	3	3.0		-	50.0
CORM	Ô	3	3	3	3	3.0		-	50.0
#DIV	3	2	5	3	2	2.5		0.7	100.0
COGO	3	9	3	3	3	3.0		-	50.0
BUFF	n	2	2	2	2	2.0		-	50.0
#GUL	1	6	7	6	1	3.5		3.5	100.0
BOCU	Ô	1	1	1	1	1.0		-	50.0
	1	5	6	5	î	3.0		2.8	100.0
GWGU #TOT	5	11	16	11	5	8.0		4.2	100.0

Camphal	l River	Estnary	z Rird	Surveys	of Sta	tion	3	for	Autumn	1982		
Date	310ct	08Nov	13Nov	20Nov	28Nov	Total		Max	Min	Mean	SD	%Freq
#L00	0	1	1	1	1	4		1	1	1.0	-	80.0
	0	1	1	1	1	4		1	ì	1.0	-	80.0
COLO	O O	1	U T	ĵ	n	3		2	1	1.5	0.7	40.0
#GRE	U A	U	6	1	n	1		1	1	1.0	-	20.0
HOGR	0	n N	V A	1	ñ	i		1	1	1.0	_	20.0
RNGR	0	1	Ð	U	n	1		1	1	1.0	•	20.0
WEGR	0	1	U N	0	0	1		1	1	1.0	_	20.0
#COR	0	1	V	0	0	1		1	1	1.0	_	20.0
DCCO	0	Ţ	V	0	0	5		3	2	2.5	0.7	40.0
#DIV	0	2	V	3		3		3	3	3.0	-	20.0
HADU	0	0	U	3	0	2		ŋ	2	2.0	_	20.0
RBME	0	2	0	0	0	4		4	4		_	20.0
#RAP	0	0	0	1	0	1		1	1	1.0	-	20.0
BAEA	0	0	0	ì	0	1		1	1	1.0		
#GUL	12	14	1	0	2	29		14	1	7.3	6.7	80.0
MEGU	0	13	0	0	Û	13		13	13	13.0		20.0
GWGU	12	1	1	0	2	16		12	i	4.0	5.4	80.0
#ALC	1	Û	0	0	0	1		1	1	1.0	-	20.0
PIGU	1	0	0	0	0	1		1	1	1.0	-	20.0
#PAS	7	2	0	1	3	13		7	1	3.3	2.6	80.0
NOCR	5	2	0	1	3	11		5	1	2.8	1.7	80.0
EUST	2	0	0	0	Û	2		2	2	2.0	•	20.0
#TOT	20	21	2	8	6	57		21	2	11.4	8.6	100.0

(lamaha)	ll River	- Fatua	er Died	Curvous	e of St	ation	3 for	Winter	1982-1	983									
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan		28Jan		13Feb	26Feb	27Feb	Total	Max	Min	Mean	SD	%Freq
#L00	1	0	2	0	4	0	1	0	0	i	Û	0	0	9	4	1	1.8	1.3	38.5
PALO	0	0	Õ	Õ	2	ů.	0	0	0	0	0	0	0	2	2	2	2.0	-	7.7
COLO	1	n.	2	G	2	0	i	0	0	1	0	0	0	7	2	1	1.4	0.5	38.5
#GRE	0	0	ñ	2	3	ň	1	1	1	0	3	0	2	13	3	1	1.9	0.9	53.8
#OCR	0	Û	0	2	3	ñ	O.	Ô	1	0	0	0	0	6	3	1	2.0	1.0	23.1
RNGR	0	0	0	ñ	Õ	õ	1	1	0	0	3	0	9	5	3	1	1.7	1.2	23.1
EACR	0	0	n	ñ	ĥ	Õ	Ô	Õ	Ö	0	0	0	2	2	2	2	2.0	-	7.7
#COR	0	3	ñ	ſ	1	Õ	Õ	Ö	4	0	0	0	0	8	4	1	2.7	1.5	23.1
DCCO	0	3	0	Ď	1	Û	Ö	Ô	1	0	0	0	Û	5	3	1	1.7	1.2	23.1
PECO	0	Ô	Ð	Õ	Ō	Ö	Ô	Ō	3	Û	0	0	0	3	3	3	3.0	-	7.7
#DIV	5	2	11	3	12	0	8	2	5	16	5	10	13	92	16	2	7.7	4.7	92.3
HADU	n	Ō	2	õ	1	Ö	Ō	Ō	3	0	0	0	0	6	3	1	2.0	1.0	23.1
OLDS	ñ	Õ	Ō	Õ	Õ	0	Ō	0	0	2	0	1	0	3	2	1	1.5	0.7	15.4
SUSC	N.	n	Ď	Ô	2	Ò	Ō	Ô	2	4	2	3	8	21	8	2	3.5	2.3	46.2
COGO	Ô	2	6	Ď	4	Ö	5	0	0	8	1	3	1	30	8	1	3.8	2.5	61.5
BAGO	Ñ	0	Õ	1	Û	Ō	0	9	0	0	0	0	0	i	1	1	1.0	-	7.7
BUFF	3	Õ	3	2	5	0	3	2	0	0	1	2	3	24	5	1	2.7	1.1	69.2
COME	ß	Õ	Õ	Ö	0	0	0	0	0	0	1	0	0	1	1	1	1.0	-	7.7
RBME	Õ	0	Ō	Ō	0	0	0	0	0	2	0	1	1	4	2	1	1.3	0.6	23.1
DUCK	2	Ŏ	0	0	0	0	0	0	Û	0	0	0	0	2	2	2	2.0	-	7.7
#GUL	7	13	Ō	Û	1	0	2	10	4	1	0	30	4	72	30	1	8.0	9.2	69.2
MEGU	Ō	0	Ō	0	0	0	0	O	3	0	0	0	0	3	3	3	3.0	-	7.7
HEGU	4	Ò	Ô	0	1	0	0	0	O	0	0	0	1	6	4	1	2.0	1.7	23.1
GWGU	3	13	Ò	Ô	0	0	2	10	1	1	0	30	3	63	30	1	7.9	10.0	61.5
#ALC	. 0	0	O	0	3	0	0	0	0	0	0	0	0	3	3	3	3.0	-	7.7
PIGU	Ö	0	0	0	3	0	0	0	0	9	0	0	0	3	3	3	3.0	-	7.7
RODO	Ō	0	Ō	0	9	0	0	0	1	0	0	0	0	1	1	1	1.0	•	7.7
#PAS	4	2	0	0	0	0	1	4	0	0	26	0	8	45	26	1	7.5	9.4	46.2
NOCR	4	0	0	0	0	0	0	4	0	0	26	0	5	39	26	4	9.8	10.8	30.8
EUST	Ô	2	Ô	9	0	0	1	. 0	0	0	0	0	3	6	3	ì	2.0	1.0	23.1
#TOT	17	20	13	5	24	0	13	17	15	18	34	40	27	243	40	5	20.3	9.7	92.3

Cample	ll River	Refus	rv Rird	Survey	s of St	ation	3 for	Spring	1983										**
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	01May	08May	14May	20May	29May	Total	Max	Min	Mean	SD	%Freq
#L00	00/101	101161	U	0	1	4	0	1	0	1	0	0	O	7	4	1	1.8	1.5	30.8
	0	n.	ñ	A	n	i	Ô	0	0	1	0	0	0	5	4	1	2.5	2.1	15.4
PALO	0	n n	n	n	1	n	ñ	1	Ô	0	0	0	0	2	1	1	1.0	-	15.4
COLO	U	ľ	Λ	1	3	15	Ô	10	ñ	Ô	0	0	0	38	15	1	6.3	5.2	46.2
#CRE	4	3	0	1	3		n	10	Û	Û	ñ	Ò	0	38	15	1	6.3	5.2	46.2
RNGR	4	5	U	1	J	15	U n	10	N	a	ñ	ñ	Ô	6	4	2	3.0	1.4	15.4
#COR	9	2	V	U	V	4	V	U	U N	r n	0	n	0	6	Å	2	3.0	1.4	15.4
PECO	0	2	Ü	U	Ų	4	Ü	Ŋ	V	U A	0	٥	n.	17	10	1	4.3	4.0	30.8
#DIV	1	19	0	0	2	4	V	Ü	Ŋ	ų C	U A	U N	0	1	10	1	1.0	-	7.7
OLDS	0	1	0	0	0	Û	U	U	Ü	U	U	U A	0	7	Ę	1	3.5	3.5	15.4
SUSC	1	6	0	0	0	0	0	0	U	U	U	Ü	U	1	Ū n	1	1.5	0.7	15.4
COG0	0	1	0	0	2	0	0	0	0	Ũ	V	V	V	J	4	1			15.4
BUFF	0	2	0	0	0	4	0	0	0	0	0	U	Ü	b	4	4	3.0	1.4	
#RAP	0	0	Û	0	0	0	0	1	0	Û	0	0	Ü	1	Ţ	1	1.0	-	7.7
BAEA	0	Ð	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1.0	-	7.7
#GUL	8	0	0	0	5	12	0	9	5	5	8	Û	5	57	12	5	7.1	2.6	61.5
GWGU	Ř	Ô	n	0	5	12	0	9	5	5	8	0	5	57	12	5	7.1	2.6	61.5
#ALC	2	Ñ	Ď	Ō	Ď	2	0	2	0	0	0	0	0	6	2	2	2.0	•	23.1
PIGU	2	Û	ñ	ñ	ň	2	0	2	0	0	0	0	0	6	2	2	2.0	-	23.1
RODO	ñ	٨	n	n	ñ	3	n	2	Ô	0	Ô	0	0	5	3	2	2.5	0.7	15.4
#PAS	ę.	o.	'n	n.	n	Ĭ	1	7	1	4	1	1	1	26	7	1	2.9	2.4	69.2
	ů	n U	a	O O	Λ	1	1	Å	1	2	1	A	1	20	6	1	2.5	1.9	61.5
NOCR	0	0	0	V 1	o a	0	U	0	ñ	2	Ô	1	ō	3	2	1	1.5	0.7	15.4
EUST	V	Ų	Ų	Ų	U	υ n	V	υ 3	n.	n.	9	ń	ñ	3	3	3	3.0	_	7.7
SAVS	Ų	V	V	V	V	U 40	V	J	V	υ 10	v n	υ 1	c C	163	48	1	13.6	14.2	92.3
#TOT	21	17	Ü	I	11	48	1	32	Ð	10	J	1	b	100	40	7	10.0	11.0	V

Campbe)	l River	Estuar	y Bird	Surveys	of Sta	tion 3			983	•••		m-1-1	Man.	м:-	Mean	SD	%Preq
Date	liJun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	ZHAUG	Total	Max	Min		ענ	9,1
#COR	0	0	0	0	0	0	0	2	0	Û	0	2	2	2	2.0	-	9.1
CORM	Ö	Ô	0	0	0	0	0	2	0	0	9	2	2	2	2.0	-	
#DIV	ñ	Ô	Ò	16	0	0	Û	17	0	6	0	39	17	6	13.0	6.1	27.3
SUSC	Õ	n	Ď	16	0	0	0	0	0	0	0	16	16	16	16.0	-	9.1
BUFF	n	ñ	Õ	0	Ò	0	0	17	0	0	0	17	17	17	17.0	-	9.1
COME	0	n	n	ñ	9	Ô	0	0	0	6	0	6	6	6	6.0	-	9.1
#RAP	2	O N	3	ñ	ñ	Õ	0	0	O	Û	0	5	3	2	2.5	0.7	18.2
	9	A	3	a	ñ	ñ	ñ	Ô	9	0	0	5	3	2	2.5	0.7	18.2
BAEA	D	n.	1	n	Ů	ñ	Ď	15	0	0	0	16	15	1	8.0	9.9	18.2
#SHO	Ü	V	1	n	n	A	ñ	Ô	Đ	0	0	1	1	1	1.0	-	9.1
KILL	Ð.	Ŋ	7	U N	۸	n.	ñ	15	Õ	Ô	0	15	15	15	15.0	-	9.1
SURF	U	U	0	10	4	4	14	40	17	11	Ò	118	40	2	13.1	11.8	81.8
#GUL	1	V	4	19	4	4	0	17	0	î	0	27	17	3	9.0	7.2	27.3
BOCU	U	U	U	10	1	V A	14	23	17	11	n	91	23	1	10.1	7.3	81.8
GWGU	7	V	Z	12	i	4	14	4J 0	0	11	ñ	16	13	1	5.3	6.7	27.3
#ALC	13	Ü	Z	U	Ų	IJ C	1	0	V	V A	ų A	3	3	3	3.0	_	9.1
PIGU	3	0	0	U	V	U	V	V	U N	U A	٥	13	10	1	4.3	4.9	27.3
MAMU	10	Û	2	0	0	0	Ţ	V	V	V	10		16	1	5.6	6.3	45.5
#PAS	2	0	0	0	2	0	l	U	Ų	1	16	28	10	1	2.8	2.9	36.4
NOCR	2	0	0	0	0	0	1	Ü	Ü	7	1	11	15	1		9.2	18.2
EUST	0	0	0	0	2	0	0	0	0	0	15	17	15	2	8.5		90.9
#TOT	24	0	8	35	6	4	16	74	17	24	16	224	74	4	22.4	20.4	30.3

Campbel	l River	Estuary	Bird	Surveys	of Sta	tion 3		lutu m n 1				W1 -	Maran	CD	C Frog
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov	27Nov	Total	Max	Min	Mean	SD	%Freq
#L00	0	0.	0	0	O	0	0	1	4	5	4	1	2.5	2.1	22.2
COTO	Û	0	0	0	Û	0	0	1	4	5	4	1	2.5	2.1	22.2
#GRE	9	Ō	0	0	0	2	0	2	0	4	2	2	2.0	-	22.2
HOCR	Õ	Õ	Ô	0	0	1	0	0	O	1	1	1	1.0	•	11.1
RNGR	õ	Ň	0	Ô	0	1	0	2	0	3	2	1	1.5	0.7	22.2
#COR	0	ñ	Û	Ô	Ō	1	1	1	0	3	1	1	1.0	-	33.3
CORM	ñ	ñ	Ō	Ō.	0	0	ì	0	0	1	1	1	1.0	-	11.1
PECO	0	Ô	ñ	Ō	Ō	1	0	1	0	2	1	1	1.0	-	22.2
#DIV	Û	1	õ	Ō	Ð	3	9	14	24	51	24	1	10.2	9.3	55.6
HADU	n o	Ô	Û	n	Ô	3	9	0	0	12	9	3	6.0	4.2	22.2
OLDS	0	ñ	Õ	Û	0	0	Ô	9	O	9	9	9	9.0	-	11.1
BUFF	n	n	Û	ñ	Õ	Õ	Ō	0	24	24	24	24	24.0	-	11.1
COME	0	n	0	ñ	N	Ô	Ö	5	0	5	5	5	5.0	•	11.1
RBME	0	1	0	Û	Û	Ô	Õ	Õ	Ô	1	1	1	1.0	-	11.1
	5	3	15	36	1	5	27	Ŏ	Ô	92	36	1	13.1	13.5	77.8
#GUL	3	0	0	0	Û	ũ	15	Ň	Ď	18	15	3	9.0	8.5	22.2
BOGU	ა ე	0	0	0	A	Å	0	0	0	4	4	4	4.0	•	11.1
HEGU	2	3	15	36	1	1	12	ñ	Ñ	70	36	1	10.0	12.8	77.8
GWGU				0	0	U I	1	ñ	Õ	1	1	1	1.0	_	11.1
#ALC	0	0	0	U n	0	N	1	0	n	Î	1	1	1.0	_	11.1
MAMU	U	U	0	U 3	6	7	3	8	1	28	8	1	4.7	2.7	
PAS	0	0	Ų	3	•	6	J J	1	U T	18	6	1	3.6	2.3	
NOCR	0	0	Ų	3	6	0	4	7	U A	9	7	1	3.0	3.5	
EUST	0	0	Ü	U	0	Ţ	1	1	V 1	7	1	1	1.0	-	11.1
FOSP	0	0	0	0	U	Ü	0	O.C.	1 00	1 D A	21	4	20.4	14.1	
#TOT	5	4	15	39	7	18	41	26	29	184	41	4	40.4	14.7	100.0

Campbel.	l River	Estuar	v Bird	Survevs	of Sta	tion 3	for W	inter	1983-198	4			
Date	10Dec	17Dec	07Jan	23Jan	29Jan	05Feb	13Feb		Max	Min	Mean	SD	%Freq
#L00)	4	1	0	1	0	0	6	4	1	2.0	1.7	42.9
	0	3	Û	Õ	ĥ	Ö	0	3	3	3	3.0	•	14.3
PALO COLO	N N	1	1	0	1	Õ	Ö	3	1	1	1.0	-	42.9
COLO	V	7	0	n.	1	1	Õ	2	1	1	1.0	•	28.6
#GRE	V	U A	O O	n	1	'n	Ñ	1	1	1	1.0	-	14.3
HOCR	0	0	•	0	n.	1	0	1	1	1	1.0	-	14.3
RNGR	V	0	0	U O	n U	0	9	2	2	2	2.0	_	14.3
#COR	0	U	0	U	Ų A		2	2	2	2	2.0	_	14.3
DCCO	0	Ü	0	V	10	0	43	96	43	1	13.7	14.0	100.0
#DIV	10	4	12	i	18	8		1	40 1	1	1.0	-	14.3
SCAU	0	9	0	1	9	0	0	1	1	1	1.0	_	14.3
GRSC	0	0	1	0	0	0	0	1	1	1			14.3
HADU	0	O	0	0	2	Ü	0	2	2	2	2.0	2 5	28.6
SUSC	0	0	0	0	0	3	8	11	8	3	5.5	3.5	
COGO	3	0	10	0	0	1	5	19	10	l	4.8	3.9	57.1
BAGO	0	0	0	0	Û	4	0	4	4	4	4.0		14.3
BUFF	2	4	1	0	0	0	0	7	4	1	2.3	1.5	42.9
COME	1	0	0	0	11	0	30	42	30	1	14.0	14.7	42.9
RBME	4	0	0	0	5	9	0	9	5	4	4.5	0.7	28.6
#GUL	2	1	2	0	0	0	0	5	2	1	1.7	0.6	42.9
GWGU	2	i	2	0	9	0	0	5	2	1	1.7	0.6	42.9
#PAS	0	n	6	Ō	3	1	4	14	6	1	3.5	2.1	57.1
NOCR	Ô	ñ	õ	0	3	1	4	8	4	1	2.7	1.5	42.9
EUST	Û	ů.	6	0	0	0	0	6	6	6	6.0	-	14.3
TOT#	12	9	21	ì	23	10	49	125	49	1	17.9	15.6	100.0

Campbel	l River	Estuary	Bird	Surveys	of S	tation	3		Spring	1984
Date	11Mar	18Mar T	otal	Max	Min	Mean		SD	%Freq	
#DIV	3	7	19	7	3	5.0		2.8	100.0	
COGO	2	0	2	2	2	2.0		-	50.0	
BUFF	Ō	7	7	7	7	7.0		-	50.0	
COME	1	Û	1	1	1	1.0		-	50.0	
#GUL	3	10	13	10	3	6.5		4.9	100.0	
GWGU	3	10	13	10	3	6.5		4.9	100.0	
#PAS	i	3	4	3	1	2.0		1.4	100.0	
NOCR	0	3	3	3	3	3.0		-	50.0	
EUST	1	0	1	1	1	1.0		•	50.0	
#TOT	7	20	27	20	7	13.5		9.2	100.0	

On-shall	l Dinos	Ectuar	v Ried	Surveys	nf Sta	ation	4	for	Autuma	1982		
	310ct	OSNOV	13Nov	20Nov	28Nov	Total	i	Max	Min	Mean	SD	%Freq
Date	31000	12	131101	0	2	22		12	2	7.3	5.0	60.0
#L00	Û	10	0	Ö	Ō	10		10	10	10.0	-	20.0
PALO	0	2	8	Û	2	12		8	2	4.0	3.5	60.0
COLO	4	3	7	2	0	16		7	2	4.0	2.2	80.0
#CRE	0	3	Ó	9	0	3		3	3	3.0	•	20.0
HOGR		0	7	2	0	13		7	2	4.3	2.5	60.0
RNGR	4 0	23	5	7	9	44		23	5	11.0	8.2	80.0
#DIV	-	2	0	ó	2	4		2	2	2.0	-	40.0
HADU	0	19	0	Û	0	19		19	19	19.0	-	20.0
WWSC	0	0	0	2	Õ	2		2	2	2.0	-	20.0
COGO	0	0	0	Ō	2	2		2	2	2.0	-	20.0
BAGO	0	0	0	3	5	8		5	3	4.0	1.4	40.0
BUFF	0	0	5	2	Õ	7		5	2	3.5	2.1	40.0
COME	0	2	0	Ď	0	2		2	2	2.0	•	20.0
RBME	0	Ó	0	1	0	1		ī	ī	1.0	•	20.0
RAP	0	0	0	1	Û	1		1	1	1.0	-	20.0
BAEA #GUL	2	12	2	3	1	20		12	1	4.0	4.5	100.0
GULL	0	2	0	Û	Ô	2		2	2	2.0	-	20.0
	0	8	0	0	0	8		8	8	8.0	-	20.0
MEGU	0	2	0	0	Ô	2		2		2.0	-	20.0
HEGU	2	0	. 2	3	1	8		3			0.8	80.0
GWGU		3	0	1	2	7		3			1.0	
#PAS	1	3	0	1	1	6		3			1.0	
NOCR COCR	1	ა 0	0	0	1	1		1		1.0	-	20.0
SOSP	0	_	22	14	14	110		53			18.1	100.0
#TOT	7	5 3	44	19	14	110	•	Ju	, ,	## . V	1011	100.0

Camphe	ll River	Estna	rv Rird	Surveys	s of St	ation	4 for	Winter	1982-19	983								CD	WT
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb	27Feb	Total	Max	Min	Mean	SD	%Freq
#L00	3	0	2	0	10	0	0	0	0	0	0	0	0	15	10	2	5.0	4.4	23.1
RTLO	0	n	Ô	ñ	4	0	0	0	0	0	0	0	0	4	4	4	4.0	-	7.7
PALO	n	0	1	Õ	4	Ô	0	0	0	0	0	0	0	5	4	1	2.5	2.1	15.4
COLO	3	ß	1	n	2	Ö	Ō	0	0	0	0	0	0	6	3	1	2.0	1.0	23.1
#CRE	n	A	ñ	A	4	Ô	1	0	4	0	0	1	3	13	4	1	2.6	1.5	38.5
HOGR	0	n.	n	n	2	Õ	1	0	3	0	0	1	0	7	3	1	1.8	1.0	30.8
RNGR	0	0	n	A	2	ñ	Ô	Ō	1	0	0	0	2	5	2	1	1.7	0.6	23.1
EAGR	0	n.	n	n	ñ	Õ	Õ	Ô	0	Û	0	0	1	1	1	1	1.0	-	7.7
#COR	n	0	n	n	n	ñ	1	Ō	1	0	2	0	5	9	5	1	2.3	1.9	30.8
DCCO	0	O.	n	n	a	ñ	1	Õ	Û	0	0	0	4	5	4	1	2.5	2.1	15.4
PECO	0	n	v N	0	n	n	ñ	0	1	0	2	0	1	4	2	1	1.3	0.6	23.1
	υ p	11	6	7	2	3	q	10	13	4	12	1	20	106	20	1	8.2	5.2	100.0
#DIV	0	11	0	'n	Û	n	0	0	0	0	3	0	2	5	3	2	2.5	0.7	15.4
HADU	U	O A	1	n.	n	A	ñ	3	i	Ö	Ō	1	0	7	3	i	1.4	0.9	38.5
OLDS	1	U N	U T	u A	9	n.	7	ĥ	9	Ô	i	0	6	31	9	1	5.2	3.1	46.2
SUSC	0	ν .	U n	v N	0	Ð	'n	ñ	n	0	0	Ò	Ó	2	2	2	2.0	-	7.7
WWSC	0	U D	1	0	ŭ N	n	1	ñ	2	ñ	5	Ď	3	13	5	1	2.2	1.6	46.2
0000	i c	10	J.	7	ű	1	Ų	. 1	1	å	3	0	7	44	10	1	4.4	3.0	76.9
BUFF	6	10	0	U.	9	n	A	Ô	Ô	Ô	Ñ	0	0	1	1	1	1.0	-	7.7
COME	U	U T	9	n n	N	Û	1	ĥ	ñ	Ñ	0	Ō	2	3	2	1	1.5	0.7	15.4
RBME	U 1	U A	O O	1	n.	G	1	10	3	4	2	6	4	36	10	1	3.6	2.8	76.9
#GUL	1	4	0	n n	V N	n.	U	U	n	'n	Ô	õ	4	4	4	4	4.0	-	7.7
HECU	V	ij	U	υ 1	U N	V N	1	10	1	4	2	ĥ	ð	32	10	1	3.6	3.0	69.2
GWGU	1	4	U n	U T	U A	O O	U .	70	1	n n	ō	Õ	Ŏ	1	1	1	1.0	+	7.7
#ALC	0	U	U	U A	ν	n N	r N	O N	1	ñ	ß	ñ	Õ	1	ī	1	1.0	-	7.7
PIGU	0	U	Ų	Ų	Ŋ	0	٨	0	U I	ñ	ñ	Ů	ñ	15	15	15	15.0	-	7.7
RODO	15	U	V	V	U	V A	V E	0	5	n	Ŋ	n	2	38	10	2	6.3	2.9	46.2
#PAS	10	ŀ	U	U	1	V	J	7	ป ว	n n	n	ត	1	25	7	1	4.2	2.0	46.2
NOCR	7	0	Ņ	U	4	Ŋ	0 0	3	J J	U U	0	n	1	13	4	1	2.6	1.1	38.5
EUST	3	0	V	Ų	J	Ų	U 17	4 10	27	8	16	g g	34	233	37	3	17.9	11.1	100.0
#TOT	37	15	8	8	23	3	17	29	21	0	10	Ų	JH	400	0.1	U	4110		

Compha	ll River	Vetna	ev Ried	Survey	s of St	ation	4 for	Spring	1983								.,	CD	O'D-oc
		1 Olion	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	01May	08May	14May	20) tay	29May	Total	Max	Min	Mean	SD	%Freq
Date	06Mar	13Mar	_	407101 1	ויףחטט	l)	3	0	7	2	0	11	0	24	11	1	4.8	4.1	38.5
#L00	0	0	0	U.	n.	A	ñ	Ñ	7	2	0	11	0	20	11	2	6.7	4.5	23.1
PALO	Ü	Ŋ	V	1	V N	0	ર	ñ	Ô	Õ	0	0	0	4	3	1	2.0	1.4	15.4
COLO	V	Ų	Ų	1	4	1	1	7	Ñ	0	Ô	0	0	14	7	1	2.8	2.7	38.5
#CRE	Ü	1	V	Ü	4 A	U	ñ	'n	n	ñ	Ō	0	0	2	2	2	2.0	-	7.7
HOGR	0	U	U	V	y 4	1	n	5	ñ	Õ	Ō	0	0	11	5	1	2.8	2.1	30.8
RNGR	V	l	U	U A	4	U	1	A	n	ĥ	Ö	0	0	1	1	1	1.0	-	7.7
WECR	0	U	U	V	U	1	0	2	0	2	n.	0	0	35	9	1	4.4	3.2	61.5
#DIV	3	3	V	9	0	i N	Ð	ő	n	Ô	Õ	0	Ô	1	1	1	1.0	-	7.7
OLDS	U	l	U	Ų	U A	U N	1	n	ß	2	Õ	Ö	0	3	2	1	1.5	0.7	15.4
SUSC	Ü	Ü	Ü	U	U n	U	V T	n.	0	ā	ñ	Ô	Ō	1	1	i	1.0	-	7.7
WWSC	IJ	Ð	V	1	l) n	Ų.	V N	O O	0	ñ	ñ	0	Ō	3	3	3	3.0	-	7.7
C0G0	Ü	0	U	V	J	0	U A	Λ	A	n n	ß	Õ	Õ	4	4	4	4.0	-	7.7
BAGO	0	V	U	V	Ų	U A	4	v n	n	Λ	Û	ñ	Ô	19	7	2	3.2	1.9	46.2
BUFF	3	2	Ų	7	2	Ų 1) 1	6	U N	n.	A	ñ	n	3	1	1	1.0	-	23.1
COME	0	0	Ü	V	1	1	1	υ Λ	U N	n.	n	n	Ñ	1	1	i	1.0	-	7.7
RBME	0	0	0	1	U	V	Û	ų o		11	17	A	3	109	24	2	8.4	6.9	100.0
#GUL	5	10	2	16	4	24	b	4	J A	11	Ų Ti	S S	0	4	4	4	4.0	_	7.7
BOGU	0	0	0	0	U	0	U	U	U	41 N	Û	n	0	1	1	1	1.0	-	7.7
MEGU	0	0	0	1	0	U	V	Ü	V .	7	17	A	3	104	24	2	8.0	6.7	100.0
GWGU	5	10	2	15	4	24	0) A	, 0	U 11	9	0	1	1	1	1.0	-	7.7
#ALC	0	0	0	Ü	0	U	Ü	1	0	V n	0	n.	n	1	1	1	1.0	-	7.7
PI G U	0	Û	0	0	0	U	Ŋ	1	U	U A	U O	7	a	11	7	4	5.5	2.1	15.4
RODO	9	9	0	0	0	V	V	4	Ų	U A	U n	3	O A	18	7	2	3.6	1.9	
#PAS	0	3	0	2	0	0	3	7	U	V	U A	ŋ	Ð	10	1	1	2.0	0.7	38.5
NOCR	0	3	0	2	0	Q	2	1	U	U	Ü	4	υ Λ	5	า	1	1.7	1.2	
EUST	0	0	0	0	0	0	1	3	Û	Ų	Ų	v T	Ŋ	3	3	J.	3.0	-	7.7
SAVS	Û	0	0	0	Û	0	0	3	U	. U	17	Or Or	3	212	28	2		8.5	
#TOT	8	17	2	28	14	26	22	23	12	15	17	25	J	412	40	4	10.0	0.0	10010

Campbel	ll River	Estuar	y Bird	Surveys	of Sta	tion 4		umer 1			004	m (.)	Man	Wi w	Mean	SD	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24 Jul	30Jul	08Aug	13Aug	20Aug	ZUAUG	Total	Max	Min) <u>u</u>	9.1
#L00	0	0	0	i	0	0	0	0	0	0	9	1	1	1	1.0		9.1
PALO	0	0	Û	1	9	Û	0	0	0	0	0	1	1	1	1.0	-	
#HER	Õ	0	0	0	0	0	0	0	0	4	0	4	4	4	4.0	-	9.1
GBHE	Ô	0	0	0	0	0	0	0	0	4	0	4	4	4	4.0	•	9.1
#DAB	0	Û	Û	0	0	0	0	0	0	10	0	10	10	10	10.0	-	9.1
AMWI	Ô	0	0	0	0	0	0	0	0	10	0	10	10	10	10.0	-	9.1
#DIV	0	0	0	0	0	0	0	3	0	0	0	3	3	3	3.0	-	9.1
SUSC	ñ	Ò	Ó	0	0	0	0	3	0	0	0	3	3	3	3.0	-	9.1
#RAP	5	Ô	Ô	0	1	0	0	Û	Û	2	0	8	5	1	2.7	2.1	27.3
BAEA	5	Ô	0	0	1	0	0	0	0	2	0	8	5	1	2.7	2.1	27.3
#GUL	50	0	29	3	8	56	51	10	21	108	2 1	357	108	3	35.7	31.7	90.9
GULL	n	Õ	0	Õ	Ô	0	0	0	0	30	Û	30	30	30	30.0	-	9.1
RBGU	Û	n	ñ	Õ	Ď	0	1	0	0	0	0	1	1	1	1.0	-	9.1
GWGU	50	õ	29	3	8	56	50	10	21	78	21	326	78	3	32.6	24.7	90.9
#ALC	1	Û	0	Û	Ô	0	0	0	0	0	0	1	1	1	1.0	•	9.1
PIGU	1	a	ñ	Ñ	Ñ	8	0	0	Û	0	0	1	1	1	1.0	-	9.1
RODO	0	ń	ય	Ô	1	Õ	0	0	0	0	0	4	3	1	2.0	1.4	18.2
#PAS	1	Ω	i	3	30	2	Ď	3	30	7	6	86	30	1	9.6	11.7	81.8
	1 N	n.	η.	n	0	2	õ	0	9	0	0	2	2	2	2.0	-	9.1
BASW	U 1	U A	4	1	0	ñ	ñ	2	Ô	Ô	6	14	6	1	2.8	2.2	45.5
NOCR	1	0	4 n	2	30	n	A	1	30	7	0	70	30	1	14.0	14.8	45.5
EUST	U - 7	0) Je	7	40	58	51	16	51	131	27	474	131	7	47.4	34.1	90.9
#TOT	57	0	36	1	40	90	ŢŢ	10	91	101	• 1	•••					

Campbel]	l River	Estuary	y Bird	Surveys	of Sta	tion 4			983	_		101		ĊD	MThon
Date	02Sep	10Sep	18Sep		010ct	170ct	300ct	13Nov	27Nov	Total	Max	Min	Mean	SD	%Freq
#COR	0	0	Û	0	1	1	0	0	0	2	1	1	1.0	-	22.2
DCCO	ñ	ñ	Ò	0	1	0	0	0	Û	1	1	1	1.0	-	11.1
PECO	n	ñ	A	0	0	1	0	0	0	1	ì	1	1.0	-	11.1
#DIV	Λ	n	ñ	n.	ñ	2	Ô	3	12	17	12	2	5.7	5.5	33.3
	0	0	n.	0	N	0	ñ	3	5	8	5	3	4.0	1.4	22.2
HADU	Ü	U A	ŭ A	ŭ n	Λ	n	n	n	7	7	7	7	7.0	-	11.1
OLDS	Ų	U	0	0	ů n	2	0	ñ	'n	2	2	2	2.0	-	11.1
RBME	0	U	U	U 20	U 71	6	U C	1	1	151	53	1	18.9	18.6	88.9
# G UL	24	30	V	30	53	0	D	1	7	10	10	10	10.0	-	11.1
BOGU	0	0	0	Ū	10	U	U	V	U	10	10	10			11.1
MEGU	0	0	0	0	0	1	0	U	U	ł	1	1	1.0	-	
HEGU	0	0	0	O.	0	2	9	0	0	2	2	2	2.0	40.	11.1
GWGU	24	30	0	30	43	3	6	1	1	138	43	1	17.3	16.4	88.9
RODO		ß	Ð	0	7	3	0	0	0	10	7	3	5.0	2.8	22.2
#PAS	ñ	1	Ŏ	4	9	2	6	0	0	22	9	1	4.4	3.2	55.6
NOCR	n	1	۸	i	q	ſì	3	9	0	17	9	1	4.3	3.4	44.4
	V A	u I	n	1	ñ	2	3	Õ	Ō	5	3	2	2.5	0.7	22.2
EUST	V) 21	U A	7.4 U	₩ TO	14	12	4	13	202	70	4	25.3	20.8	88.9
#TOT#	24	31	V	34	70	14	17	*	10	202	10	•	_5.0	2010	

Campbel.	River	Estuar	y Bird	Surveys	of Sta	tion 4						CD	MT
Date	10Dec	17Dec	07Jan	23Jan	29Jan	05Feb	13Feb	Total	Max	Min	Mean	SD	%Freq
#L00	0	0	2	1	1	2	2	8	2	1	1.6	0.5	71.4
COLO	0	ñ	2	1	1	2	2	8	2	1	1.6	0.5	71.4
	0	9	2	ñ	3	n	3	10	3	2	2.5	0.6	57.1
#GRE	Ų A	2	ñ	0	3	0	2	7	3	2	2.3	0.6	42.9
HOGR	U	4	0	υ Λ	n.	0	1	3	2	1	1.5	0.7	28.6
RNGR	Ü	0	4	U	7	53	36	113	53	4	18.8	20.7	85.7
#DIV	4	9	0	4	1	_	o O	110	2	1	1.5	0.7	28.6
HADU	Û	2	Ū	9	ļ	0		J A	2	9	2.0	-	14.3
OLDS	0	2	0	Ü	U	0	0	43	32	9	20.5	16.3	28.6
SUSC	0	0	0	0	0	9	32	41		•	15.0	23.4	42.9
COGO	0	Û	0	1	2	42	0	45	42	1			71.4
BUFF	4	5	0	3	3	1	0	16	5	1	3.2	1.5	
COME	0	0	0	0	0	1	4	5	4	ì	2.5	2.1	28.6
RBME	Ô	Û	0	0	1	0	0	1	1	1	1.0		14.3
#GUL	2	1	60	4	5	3	5	80	60	1	11.4	21.5	100.0
GWGU	2	1	60	4	5	3	5	80	60	1	11.4	21.5	100.0
#PAS	1	1	n	Ô	ñ	2	11	18	11	1	4.5	4.5	57.1
	9	0	n	ň	A	Ō	7	7	7	7	7.0	-	14.3
NOCR	Ü	Ū	ď	n	n.	ň	i	1	1	i	1.0	-	14.3
AMRO	U	U	U	Ü	V 0	9	3	,	3	1	2.0	1.0	42.9
EUST	Ü	1	Ü	U O	Ŋ	<u>د</u> ۵	ů A	4	A	4	4.0	-	14.3
DEJU	4	9	Ü	V	0	U	U = 0	9		9	32.7	26.0	
#TOT	10	13	64	9	16	60	57	229	64	y	J4.1	40.0	100.0

					. 0 01		1 Fam	Coming 1	1001
Campbel!	l River	Estuar	y Bird	Surveys				Spring 1	1304
Date	11Mar	18Mar	Total	Max	Min	Mean	SD	%Freq	
#L00	0	1	1	1	1	1.0	-	50.0	
COLO	0	i	1	1	1	1.0	-	50.0	
#DIV	18	13	31	18	13	15.5	3.5	100.0	
SUSC	0	6	6	6	6	6.0	-	50.0	
WWSC	14	0	14	14	14	14.0	-	50.0	
COGO	0	7	7	7	7	7.0	-	50.0	
BUFF	2	0	2	2	2	2.0	-	50.0	
COME	2	0	2	2	2	2.0	-	50.0	
#GUL	0	3	3	3	3	3.0	-	50.0	
GWGU	Ď	3	3	3	3	3.0	-	50.0	
#PAS	4	Ð	4	4	4	4.0	•	50.0	
NOCR	2	Õ	2	2	2	2.0	-	50.0	
EUST	2	Ň	2	2	2	2.0	-	50.0	
#TOT	22	17	39	22	17	19.5	3.5	100.0	

a 1-1) Dissau	Fotuer	n Died	Surveys	of Sta	ation	5	foτ	Autu n n	1982		
		OSNOV	13Nov	20Nov	29Nov	Total		ах	Min	Mean	SD	%Freq
Date	310ct	uonuv ()	13004	0	1	1	••	1	1	1.0	_	20.0
#I.00	0	0	0	0	i	1		i	1	1.0	-	20.0
COLO	0	2	Û	0	Ô	2		2	2	2.0	-	20.0
#GRE	0	_	0	O	0	1		1	1	1.0	-	20.0
HOGR	9	1	0	0	0	1		1	1	1.0	-	20.0
WECR	0	1	0	1	0	5		3	1	1.7	1.2	60.0
#COR	1		0	0	0	1		1	1	1.0	-	20.0
CORM	7	0	0	1	0	4		3	1	2.0	1.4	40.0
DCCO	0	3 0	0	10	0	10		10	10	10.0	-	20.0
#DIV	0	•	0	7	0	7		7	7	7.0	-	20.0
HADU	0	0	0	2	0	2		2	2	2.0		20.0
COGO	0	0	0	1	0	1		1	1	1.0	•	20.0
RBME	0	0	0	1	3	4		3	1	2.0	1.4	40.0
#SHO	0	0	0	1	3	4		3	1	2.0	1.4	40.0
KILL	0	14	0	6	0	21		14	1	7.0	6.6	60.0
#GUL	1		0	0	0	11		11	11	11.0	-	20.0
MEGU	0	11 2	0	Û	0	2		2		2.0		20.0
HEGU	0		0	6	0	8		6		2.7	2.9	60.0
CWCU	1	1	0	0	0	1		i		1.0	-	20.0
#ALC	0	1	0	0	0	1		1	1			20.0
MAMU	0	1	0	1	0	1		1	1			20.0
BEKI	0	0		6	0	8		6	_		2.8	40.0
#PAS	2	0	0	6	0	6		6			-	20.0
NOCR	0	0	0	-	-	2		2				20.0
EUST	2	0	0	0	0	53		25		13.3	10.9	
#TOT	4	2 0	0	25	4	J	J	40	, •	10.0	1010	20.0

Camphal	l River	Estna	rv Bird	Survey	s of St	ation	5 for	Winter	1982-19	983								CD	ØT
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb		Total	Max	Min	Mean	SD	%Freq
#L00	00000	0	2	0	1	1	0	0	0	0	0	0	0	4	2	1	1.3	0.6	23.1
PALO	0	ñ	2	0	Û	1	0	0	0	0	0	0	0	3	2	1	1.5	0.7	15.4
COLO	n	ñ	Ō	0	1	0	0	0	0	0	Û	Û	0	1	l	1	1.0	-	7.7
#GRE	0	ñ	2	Ô	1	0	0	0	0	0	0	0	0	3	2	1	1.5	0.7	15.4
HOGR	Û	A	2	Ô	Ō	0	0	0	0	0	0	0	Û	2	2	2	2.0	•	7.7
WEGR	n	Õ	ñ	Ô	ì	Ō	0	0	0	0	0	0	0	1	1	1	1.0	-	7.7
#COR	1	ñ	Õ	Õ	1	Ō	0	0	0	0	Û	0	0	2	1	1	1.0	-	15.4
PECO	1	ñ	ñ	Ô	1	Û	0	0	0	0	0	0	0	2	1	1	1.0	•	15.4
#DIV	18	11	7	11	10	17	20	15	20	2	8	4	0	143	20	2	11.9	6.1	92.3
HADU	7	0	2	3	1	1	8	13	10	0	3	2	0	50	13	1	5.0	4.2	76.9
OLDS	'n	Û	Ō	Û	1	0	0	0	0	0	0	0	0	1	1	1	1.0	-	7.7
BLSC	n	n	a	Õ	Ō	Ö	0	0	0	Û	0	1	0	1	1	1	1.0	-	7.7
SUSC	0	0	ñ	Ô	Ñ	1	Ô	0	2	0	3	0	0	6	3	1	2.0	1.0	23.1
00G0	9	e E	A	A	2	1	i	0	2	2	0	0	0	16	6	1	2.3	1.7	53.8
BAGO	í í	ด	n	5	n	Ô	Ô	Ó	0	0	0	0	0	5	5	5	5.0	-	7.7
BUFF	Q.	3	5	3	6	13	11	2	6	0	2	1	0	61	13	1	5.5	4.0	84.6
COME	9	A	ñ	A	Ñ	1	0	0	9	0	0	0	0	1	1	1	1.0	-	7.7
RBME	n.	2	n	n	ñ	ñ	Õ	Ö	Ō	0	0	0	0	2	2	2	2.0	-	7.7
#RAP	n.	ñ	n	ñ	n	Õ	Õ	Ō	0	0	1	0	0	1	1	1	1.0	•	7.7
BAEA	ß	0	0	ñ	Ô	Õ	Ô	Ō	Ó	O	1	0	0	1	1	1	1.0	-	7.7
#SHO	5	1	n	ß	10	Û	2	Ď	0	9	0	0	2	20	10	1	4.0	3.7	38.5
KILL	J E	1	A	n	10	ß	2	9	Ō	0	0	0	2	20	10	1	4.0	3.7	38.5
#GUL	j j	Ų	2	ń	Ô	í	0	19	3	0	10	0	0	36	19	2	7.2	7.4	38.5
GWGU	9	n	9	ñ	ก	Õ	Ñ	19	3	0	10	0	0	36	19	2	7.2	7.4	38.5
#ALC	A	n.	ñ	n	ñ	A	Ŏ	0	Ō	O	0	5	0	5	5	5	5.0	-	7.7
COMU	. U	V A	O.	Ô	ñ	ñ	Ñ	Ň	Ö	0	0	5	0	5	5	5	5.0	-	7.7
BEKI	ų U	v n	Û	n	A	í í	1	Õ	Ŏ	Ò	0	0	0	1	1	1	1.0	-	7.7
	U O	V n	n	A	n	ñ	5	1	õ	9	O	0	Û	6	5	1	3.0	2.8	15.4
#PAS	Ū O	U U	U A	0	r D	n n	5	1	Ŏ	Õ	0	0	0	6	5	1	3.0	2.8	15.4
NOCR	U 90	12	13	11	23	18	28	35	23	2	19	9	2	221	35	2	17.0	10.0	100.0
#TOT	26	14	13	11	40	10	40	•••	20	_		•	-						

Campbel	1 River	Estua	rv Bird	Survey	s of St	ation	5 for	Spring					0011	m 4.1	M	Min.	Mean	SD	%Freq
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	01May	08May	14May	20May	29May		Max	Min		5.5	23.1
#L00	0	0	0	0	9	2	0	0	0	3	0	12	0	17	12	2	5.7		
PALO	8	n	ñ	ñ	Ô	2	0	0	0	3	0	12	0	17	12	2	5.7	5.5	23.1
	n.	۸	n	ñ	ñ	2	1	0	0	0	0	0	Û	3	2	1	1.5	0.7	15.4
#COR	V n	U A	0	ů.	A	Ō	1	0	0	0	Û	0	0	1	1	1	1.0	-	7.7
CORM	Ü	0	ν	U N	n n	9	â	Õ	n	0	0	0	0	2	2	2	2.0	-	7.7
PECO	V	10	2	0		g Q	2	1	Ô	2	0	0	0	44	12	1	4.9	3.9	69.2
#DIV	y	12	j	4) A	O.	6	9	U	2	ñ	Ô	0	4	2	2	2.0	-	15.4
HADU	2	U	V	Ų	IJ	0	ν	n.	A	ñ	ñ	Ô	Û	1	1	1	1.0	-	7.7
OLDS	0	1	U	V	V	Ü	0	fi	N.	0	n	ñ	0	4	4	4	4.0	-	7.7
SUSC	0	4	0	U	U	V	U A	ν.	n	Λ	n	n	ñ	1	1	1	1.0	-	7.7
WWSC	0	1	0	0	V	V	V	U	V	ų n	۸	0	n	17	6	1	2.4	1.9	53.8
COG0	0	2	1	1	4	5	Z	1	U	U A	0	U N	0	8	å	1	2.0	1.4	30.8
BUFF	0	4	2	1	1	0	U	Ü	V	V	Ü	V	٨	9	7	2	4.5	3.5	15.4
COME	7	Û	9	0	0	2	0	0	Ų	U	U	U	U	-	52	1	13.4	19.9	53.8
#GUL	0	0	0	2	52	2	2	30	0	1	V	ð	U	94	25	25	25.0	13.3	7.7
BOGU	0	0	0	0	0	0	Û	25	0	0	U	U	U	25		23		18.6	53.8
GWGU	0	0	0	2	52	2	2	5	0	1	0	5	Ü	69	52	1	9.9	10.0	
#ALC	Ô	0	Û	0	0	0	0	ì	0	ij	0	0	ij	1	1	1	1.0	-	7.7
PIGU	ñ	ñ	Ô	0	0	0	Û	1	0	0	0	Û	0	1	ì	1	1.0		7.7
#PAS	3	ñ	Õ	1	Ď	0	0	1	0	3	4	1	0	13	4	1	2.2	1.3	
BASW	A	9	Õ	Ō	Ŏ	0	0	0	0	Û	0	1	0	1	1	1	1.0	-	7.7
NOCR	۷ 1	Û	n	1	ñ	Ñ	ñ	0	0	3	O	0	0	7	3	1	2.3	1.2	
	J U	0	n	'n	ñ	ñ	Õ	1	0	0	1	0	0	2	1	1	1.0	-	15.4
EUST	U A	V a	V A	0	n	Ų	Ŋ	n	Ô	0	3	0	0	3	3	3	3.0	-	7.7
HOSP	9	10	υ 2	U E	57	14	5	33	Õ	9	4	18	0	172	57	3	15.6	16.2	84.6
#TOT	12	12	3	5	11	14	J	Ų0	v	·	•	••	-						

Campbel	l River	Estuar	y Bird	Surveys	of Sta	tion 5		-	983			m : 1	Man	Win.	Mean	SD	%Freq
Date	11Jun	20Jun	26Jun	liJul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug		Max	Min			9.1
#COR	0	n n	N	9	9	0	0	3	0	0	0	3	3	3	3.9	-	
-	n	0	0	ň	n	0	0	3	0	0	9	3	3	3	3.0	-	9.1
CORM	U	0	r v	28	ñ	ก	Ñ	n	7	O	0	35	28	7	17.5	14.8	18.2
#DIV	v	v	n n	40 1	n	n	ń	ů	ñ	fi	D	3	3	3	3.0	-	9.1
HADU	U	U	V	3	v	0	V N	n	7	Ů	ñ	14	7	7	7.0	-	18.2
SUSC	0	0	Ü	7	Ü	υ	V	U	n n	0	0	18	18	18	18.0	-	9.1
BUFF	0	0	0	18	0	0	0	υ	U	U	n n	10	10	4	4.5	0.7	18.2
FRAP	5	0	4	0	0	0	0	Ü	U	V	U	9	Ü	- 1		0.7	18.2
BAEA	5	0	4	0	9	0	0	0	0	0	U	9	5	4	4.5		
#GUL	20	ñ	4	0	12	6	2	19	17	78	10	168	78	2	18.7	23.2	81.8
BOGU	0	Û	1	n	A	n	2	12	0	0	0	15	12	1	5.0	6.1	27.3
	•	ο ο	1	۸	12	6	۵	7	17	78	10	153	78	3	19.1	24.5	72.7
GWGU	20	υ	'n	0	14	3	ń	'n	0	12	21	44	21	1	7.3	7.9	54.5
#PAS	1	V	0	U	1	3	0	n	'n	12	12	29	12	1	5.8	5.7	45.5
NOCR	1	0	Ü	U	ł	J	U	0	0	14	14	20	7	,	2.0	-	9.1
CORA	0	0	2	0	0	0	Ų	U	U	U	Ü	11	0	2	5.5	4.9	18.2
EUST	0	0	2	0	0	0	0	0	U	Ū	9	11	ä	2		4.3	
BRBL	0	0	2	0	0	0	0	0	0	0	0	2	2	4	2.0	-	9.1
#TOT	26	Ö	14	28	13	9	2	22	24	90	31	259	90	2	25.9	24.3	90.9

Campbell	River	Estuary	Bird	Surveys	of Sta	tion 5	for A	utuma 1		_				CD	NT
	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov	27Nov	Total	Max	Min	Mean	SD	Freq
#L00	0	Ð	0	0	0	0	i	3	2	6	3	1	2.0	1.0	33.3
COLO	a	ñ	ñ	ň	ñ	9	1	3	2	6	3	1	2.0	1.0	33.3
		Å	n	ß	5	7	n	0	4	25	7	4	5.0	1.2	55.6
#DIV	J	9	۸	Λ	5	7	Õ	Ď	1	13	7	1	4.3	3.1	33.3
HADU	Ų	U	v	O.	V.	'n	n	n	ń	q	5	4	4.5	0.7	22.2
SUSC	b	4	U	U	0	n.	٥	0	า	ว	3	3	3.0	-	11.1
COME	U	Ü	V	U	U	U	U	,	0	17	28	2	11.0	10.3	77.8
#GUL	23	7	9	3	28	Ų	Z	ð	U			4			44.4
BOCU .	23	4	0	0	3	0	1	0	Ü	31	23	1	7.8	10.2	
MEGU	0	1	0	0	0	0	0	0	0	1	1	1	1.0	•	11.1
GWGU	Ô	2	9	3	25	0	1	5	0	45	25	1	7.5	9.0	66.7
#ALC	Å	ō	0	Ō	0	10	0	9	0	10	10	10	10.0	-	11.1
COMU	n	n	ñ	Ô	Ď	10	0	0	0	10	10	10	10.0	-	11.1
	٨	n	Λ	1	ξ.	a	ñ	2	ñ	8	5	1	2.7	2.1	33.3
PAS	U	U	V	1	J	0	0	้	n	3	2	1	1.5	0.7	22.2
NOCR	Û	9	U	1	U	U	U	4			-	<u> </u>		-	11.1
RWBL	0	0	0	0	5	Ü	0	0	V	5	5	9	5.0		
#TOT	28	11	9	4	38	17	3	10	6	126	38	3	14.0	11.8	100.0

Campbel!	Divor	Fetnar	v Rird	Surveys	of Sta	tion 5	for W	inter	1983-198	4			
_		17Dec	07Jan	23Jan	29Jan	05Feb	13Feb		Max	Min	Mean	SD	%Freq
Date	10Dec		() 010an	()	4	00100	0	4	4	4	4.0	-	14.3
#L00	Û	0	0	0	4	Ô	ñ	4	4	4	4.9	-	14.3
COLO	0	V		0	1	1	n.	2	1	1	1.0	-	28.6
#CRE	0	V	0	•	1	7	ñ	1	1	1	1.0	_	14.3
HOGR	0	V	0	0	1	1	N.	1	1	1	1.0	_	14.3
RNGR	0	0	0	0	Ų	ı	O N	ı t	1	1	1.0	_	14.3
#COR	0	l	0	0	V	0	•	1	1	1	1.0	_	14.3
CORM	O	1	0	0	U	0	0	1 2 2	- C 2	1	24.7	24.3	100.0
#DIV	35	28	2	4	1	67	36	173	67	ų Į		3.0	42.9
HADU	5	8	2	0	0	0	0	15	8	2	5.0		14.3
OLDS	3	0	0	0	0	0	0	3	3	3	3.0	00.0	
SUSC	7	0	0	0	0	40	0	47	40	7	23.5	23.3	28.6
GOLD	0	9	9	4	0	0	0	4	4	4	4.0	-	14.3
COGO	8	8	0	0	0	20	22	58	22	8	14.5	7.5	57.1
BUFF	3	2	9	0	0	5	12	22	12	2	5.5	4.5	57.1
COME	9	7	0	0	0	2	2	20	9	2	5.0	3.6	57.1
RBME	Õ	3	0	0	1	0	0	4	3	1	2.0	1.4	28.6
#RAP	Ŏ	Õ	Û	0	1	1	0	2	1	1	1.0	-	28.6
BAEA	Õ	ĥ	Ñ	Ñ	Ī	1	0	2	1	1	1.0	-	28.6
#GUL	Ö	Õ	Ô	12	ก	1	0	13	12	1	6.5	7.8	28.6
GWGU	0	n	ñ	12	Õ	1	0	13	12	1	6.5	7.8	28.6
	1	Λ	0	0	Ŋ	ñ	7	8	7	1	4.0	4.2	28.6
#PAS	1	r n	0	0	n	0	Ö	1	1	1	1.0	-	14.3
NOCR	1	0	U O	0	Û	ñ	7	7	7	7	7.0	-	14.3
DEJU	0	0	U	•	•	70	43	203	70	2	29.0	23.5	100.0
#TOT	36	29	2	16	7	10	43	403	10	4	23.0	40.0	14414

Campbel	l River	Estuar	y Bird	Surveys	of St	tation	5	for	Spring	1984
Date	11Mar	18Mar		Max	Min	Mean		SD	%Freq	
#L00	1	0	1	1	1	1.0		-	50.0	
COLO	1	0	1	1	1	1.0		-	50.0	
#COR	2	0	2	2	2	2.0		-	50.0	
PECO	2	ΰ	2	2	2	2.0		+	50.0	
#GEE	Q	7	7	7	7	7.0		-	50.0	
BRAN	0	7	7	7	7	7.0		-	50.0	
#DIV	0	7	7	7	7	7.0		-	50.0	
SUSC	0	7	7	7	7	7.0		•	50.0	
#GUL	1	0	1	1	1	1.0		-	50.0	
GWGU	1	0	1	1	1	1.0		-	50.0	
#TOT	4	14	18	14	4	9.0		7.1	100.0	

Camphe	River	Estuary	Bird	Surveys	of Sta	ation	6	for	Autumn	1982		
Date	310ct	08Nov	13Nov	20Nov	28Nov	Total		Max	Min	Mean	SD	%Freq
#L00	2	0	8	0	0	10		8	2	5.0	4.2	40.0
COTO	2	O	8	Ŏ	0	10		8	2	5.0	4.2	40.0
#00R	Õ	2	2	Õ	1	5		2	1	1.7	0.6	60.0
CORM	0	Õ	0	Õ	1	1		1	1	1.0	-	20.0
DCCO	0	2	2	0	0	4		2	2	2.0	-	40.0
#SWA	0	Õ	10	Ō	Ô	10		10	10	10.0	-	20.0
TRUS	0	0	10	Ö	Ô	10		10	10	10.0	-	20.0
#DAB	Û	Ð	7	Ō	0	7		7	7	7.0	-	20.0
MALL	0	0	3	Ō	0	3		3	3	3.0	-	20.0
AMVI	0	Ō	4	0	Ó	4		4	4	4.0	-	20.0
#DIV	0	2	35	40	50	127		50	2	31.8	20.8	80.0
COGO	0	0	5	16	Õ	21		16	5	10.5	7.8	40.0
BAGO	0	0	Û	0	27	27		27	27	27.0	•	20.0
BUFF	0	2	22	24	23	71		24	2	17.8	10.5	80.0
COME	0	Õ	8	0	Õ	8		8	8	8.0	-	20.0
#RAP	0	Û	1	Û	Ô	1		1	1	1.0	-	20.0
BAEA	0	0	1	Õ	0	1		1	1	1.0		20.0
#SHO	0	0	Ô	9	Ů	9		9	9	9.0	-	20.0
KILL	0	0	Ð	9	Õ	9		9		9.0	-	20.0
#GUL	4	3	200	6	2	215		200		43.0	87.8	100.0
GWGU	1	3	200	6	2	212		200		42.4	88.1	100.0
BLKI	3	0	0	ñ	9	3		3		3.0	-	20.0
BEKI	0	Õ	1	Ö	Ŏ	1		1	1	1.0	-	20.0
	3	0	13	Û	Õ	16		13		8.0	7.1	40.0
#PAS	. 2	0	13	0	Û	15		13			7.8	
NOCR	1	0	13	n	Ñ]]			-	20.0
FOSP	9	7	277	55	53	401		27			112.4	
#TOT	J	ſ	411	00	Ų0	101	•	-				

Campbel) River	Estua	ry Bird	Survey	s of St	ation	6 for	Winter	1982-1	983			aen I	m - 4 - 3	Man.	Win	Mean	SD	%Freq
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb		Total	Max	Min	1.0	עט	7.7
#L00	1	0	0	0	0	0	0	0	0	Û	0	0	0	1	1	1	1.0	·	7.7
COLO	1	Ď	Ô	0	0	0	0	0	0	0	0	0	0	1	1	1			7.7
#GRE	n	Õ	Ō	Ô	0	0	0	0	I	0	0	0	0	1	ŀ	1	1.0	-	7.7
HOGR	0	Ô	n	0	0	0	0	0	1	Û	0	0	9	1	i	1	1.0	- 1	
#COR	9	ñ	3	0	Û	0	9	1	10	0	3	1	1	30	10	1	3.8	3.7	61.5
CORM	Û	0	ñ	Ň	Ō	0	0	1	0	O	0	0	0	1	1	1	1.0	-	7.7
DCC0	2	Û	1	n	Û	Ō	9	0	0	0	3	0	1	16	9	1	3.2	3.3	38.5
PECO	Û	Ô	2	Õ	Ö	0	0	0	10	0	0	1	0	13	10	1	4.3	4.9	23.1
#HER	0	0	1	2	Õ	0	0	Û	Û	0	0	0	0	3	2	1	1.5	0.7	15.4
GBHE	0	0	1	2	9	Ď	0	0	0	0	0	0	0	3	2	ì	1.5	0.7	15.4
#SWA	0	13	Ô	Ā	Ď	4	0	0	0	0	0	0	0	2 1	13	4	7.0	5.2	23.1
TRUS	0	13	Ŏ	i	Û	i	0	0	0	0	0	0	0	21	13	4	7.0	5.2	23.1
#DAB	0	0	0	20	Û	6	Ö	0	0	0	6	Û	0	26	20	6	13.0	9.9	15.4
MALL	0	Û	0	20	Ô	ñ	Ô	0	Ò	0	6	Û	0	26	20	6	13.0	9.9	15.4
	30	18	17	4	5	6	15	Ô	16	1	6	14	12	144	30	1	12.0	8.1	92.3
#DIV	30 10	10	0	0	Ŋ	0	0	Ö	4	O	1	Û	0	15	10	1	5.0	4.6	23.1
HADU		0	0	n n	ſì	Û	ĥ	ñ	0	0	1	1	0	2	1	1	1.0	-	15.4
OLDS	0	13	1	0	1	Å	7	0	3	0	3	3	4	50	13	1	5.0	4.1	76.9
COGO	11		5	0	U	Ô	'n	n	Õ	Ŏ	0	0	0	6	5	1	3.0	2.8	15.4
BAGO	0	1	3 11	V N	A	N	8	n	9	1	1	10	7	64	11	1	6.4	3.7	76.9
BUFF	9	9 A	0	4	<u> </u>	9	n	ñ	Ö	Ô	Û	0	0	4	4	4	4.0	-	7.7
MERG	0	0	0	41 ()	n	9	N	ñ	Ô	ũ	0	0	0	2	2	2	2.0	-	7.7
COME	0	V	•	O.	0	ĥ	ß	ñ	Ω	Õ	Õ	Õ	1	1	1	1	1.0	-	7.7
RBME	0	U	0 2	o O	0	9	9	Λ	ñ	ñ	n	0	0	4	2	2	2.0	•	15.4
#RAP	0	ų.	2	0	U N	O A	2	n	A	Õ	0	Ō	Ō	4	2	2	2.0	-	15.4
BAEA	. 0	Ų	_	•	n n	V N	ñ	6	Ň	2	q	1	Ō	20	9	1	4.0	3.1	38.5
#SHO	4	4	0	0	υ Λ	វ	0	0	n	Õ	Õ	ā	Ō	4	4	4	4.0	-	7.7
SEPL	4	U	0	•	υ Λ	0	0	0	0	2	ğ	1	Õ	16	9	1	4.0	3.6	30.8
KILL	0	4	0	0	0	163	96	60	57	ñ	3	11	1	488	163	1	40.7	48.0	92.3
#GUL	32	þ	25	25	10		90	Û	7	0	n	1	Ô	9	7	1	3.0	3.5	23.1
MEGU	0	0	0	0	1	0	2	0	Ó	n	Đ	Ô	0	26	23	1	8.7	12.4	23.1
HEGU	23	0	0	0	1	103	94	60	50	0	3	10	1	453	163	1	37.8	48.6	92.3
GWCU	9	5	25	25	8	163			0	n A	0	0	Û	1	1	1		-	7.7
#ALC	1	0	0	0	0	0	0	0	0	0	0	Û	0	1	1	1			7.7
PIGU	1	0	9	0	0	0	0	0	1	U N	1	0	n	3	3	1	_	-	23.1
BEKI	0	0	l	0	0	V	9	9	n I	0	0	v N	0	1	1	1		_	7.7
#PAS	0	0	0	9	Û	1	0	0	Ŋ	0	0	0	0	1	1	1			7.7
NOCR	0	0	0	0	0	1	100	0	0	3	28	27	14	743	174	3		47.9	
#TOT	70	40	49	55	15	174	122	61	85	J	40	41	14	140	114				

Campbe	ll River	Estua	ry Bird	Survey	s of St	ation		Spring			4 434	001	001	T-1-1	Max	Min	Mean	SD	%Freq
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr		01May	08May	14May	20May	29May	Total	max 8	9 1111	7.0	1.4	15.4
#L00	0	0	0	9	0	6	0	0	0	0	0	8	0	14	8	0 6	7.0	1.4	15.4
PALO	0	O	0	0	0	6	0	0	0	U	U	8	0	14 5	6 2	9	2.5	0.7	15.4
#COR	0	9	0	0	2	3	0	0	Ü	0	Ų	Ų	U	ð	J	9	2.0	-	7.7
DCC0	0	O	0	0	2	0	0	0	0	U	0	U	0	4	3	2	3.0	_	7.7
PECO	0	0	0	0	Û	3	0	0	0	0	U	U	0	ل 10	3 19	19	19.0	_	7.7
#DAB	0	0	0	0	0	0	0	0	0	U	0	0	19	19	19 19	19	19.0		7.7
MALL	0	9	0	9	0	0	0	0	0	Û	U	0	19	19	19 24	13	9.3	7.1	61.5
#DIV	12	8	8	1	12	24	4	5	Ü	0	0	0	0	74	4	1	1.0	-	7.7
SCAU	0	0	0	0	0	0	1	0	0	()	Û	U	0	Ţ	5		5.0	_	7.7
HADU	5	0	0	0	0	0	0	0	0	0	U	V	V	D O		2	2.0	_	7.7
OLDS	0	2	0	9	0	O	9	0	0	Ü	Ü	Ü	U	2	2 3	3	3.0		7.7
SUSC	3	0	0	0	0	0	0	0	0	0	Û	V	U	J	-	J 1	4.0	4.1	38.5
COCO	2	2	0	0	0	11	1	4	0	0	Ú	y	V	20	11	2	2.0	4.1	7.7
BAGO	Û	0	0	0	0	0	2	0	0	0	0	Ü	0	2	2	1	4.5	4.1	46.2
BUFF	2	4	8	1	0	11	0	1	0	0	0	0	0	27	11	2	7.0	7.1	15.4
COME	0	0	0	0	12	2	0	0	0	0	Ų	V	0	14	12			1.1	23.1
#RAP	0	1	0	0	0	0	0	0	1	Ü	Ü	1	U	3	Ţ	1	1.0		23.1
BAEA	0	1	0	0	0	0	0	0	1	0	Û	1	Ü	3	1	i	1.0	-	7.7
#SHO	0	0	0	0	0	0	0	0	0	1	0	0	Ű	ŀ	Ţ	1	1.0	•	7.7
WESA	0	0	0	0	0	9	0	0	0	l	0	0	0	1	1	1	1.0	100.2	
#GUL	62	0	200	0	7	2	200	247	0	2 1	0	215	64	1018	247	2	113.1	100.3	69.2 7.7
GULL	0	Û	0	Û	0	0	0	0	0	0	0	100	0	100	100	100	100.0	12.0	23.1
BOGU	0	0	0	Û	0	0	O	27	0	1	0	14	0	42	27	1	14.0	13.0	
MEGU	0	0	0	0	0	0	0	150	0	0	0	l	0	151	150	l	75.5	105.4	15.4
GWGU	62	0	200	Û	7	2	200	70	0	20	0	100	64	725	200	2	80.6	74.9	69.2
RUHU	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1.0	-	7.7
BEKI	0	0	0	0	0	0	0	0	0	0	0	0	l	1	1	1	1.0	- 1 1	7.7
#PAS	0	0	0	1	0	0	4	0	0	0	0	2	2	9	4	1	2.3	1.3	30.8
VGSW	0	0	0	0	0	0	3	0	0	0	0	0	0	3	3	3	3.0	- ^ ^	7.7
NOCR	0	Û	0	1	0	0	1	0	0	Û	0	2	2	6	2	1	1.5	0.6	
#TOT	74	9	208	2	21	35	208	252	1	23	0	226	86	1145	252	1	95.4	98.6	92.3

Campbel	l River	Estuary	y Bird	Surveys	of Sta	tion 6		iumer 1						W! =	Maan	SD	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug		Max	Min	Mean	ο.5	36.4
#HER	2	0	Û	0	O	1	1	0	0	1	0	5	2	1	1.3		36.4
GBHE	2	Û	9	0	Û	1	1	0	0	1	Û	5	2	1	1.3	0.5	
#DAB	Ō	Ō	0	0	0	0	0	15	0	Û	0	15	15	15	15.0	-	9.1
MALL	Ō	Û	0	9	0	0	0	15	0	0	0	15	15	15	15.0	-	9.1
#DIV	1	Ö	14	0	0	0	0	60	0	0	14	89	60	1	22.3	25.9	36.4
HADU	i	Ö	14	0	0	0	0	12	0	0	14	41	14	1	10.3	6.2	36.4
SUSC	0	0	0	0	0	0	0	25	0	0	0	25	25	25	25.0	-	9.1
BUFF	Õ	0	0	0	0	0	0	23	0	0	0	23	23	23	23.0	-	9.1
#RAP	5	Ô	0	0	1	1	1	0	0	0	0	8	5	1	2.0	2.0	36.4
BAEA	5	Ó	0	0	1	1	1	0	0	0	0	8	5	1	2.0	2.0	36.4
#SHO	Ō	Ö	0	2	0	0	8	30	10	32	16	98	32	2	16.3	12.2	54.5
KILL	Ö	Ö	0	2	0	Û	0	10	0	0	0	12	10	2	6.0	5.7	18.2
SURF	Õ	Ō	Ō	0	0	0	0	20	0	0	0	20	20	20	20.0	•	9.1
WESA	Ö	9	0	0	0	0	8	0	10	0	15	33	15	8	11.0	3.6	27.3
LESA	Ö	0	Ō	0	0	0	0	0	0	0	1	1	1	ì	1.0	-	9.1
SHOR	Ō	0	0	0	0	()	0	0	0	32	Û	32	32	32	32.0	-	9.1
#GUL	99	30	133	16	54	387	81	70	28	16	6	920	387	6	83.6	108.1	100.0
BOCU	19	0	7	1	2	6	10	30	2	0	0	77	30	1	9.6	10.1	72.7
MEGU	0	Ō	1	0	2	0	Û	0	1	0	0	4	2	1	1.3	0.6	27.3
HEGU	Ō	Ö	9	0	Û	0	0	0	1	0	0	1	1	1	1.0	-	9.1
GWGU	80	30	125	15	50	380	71	40	24	16	6	837	380	6	76.1	106.7	100.0
BLKI	Ô	0	0	0	0	1	0	0	9	0	Û	1	1	1	1.0	-	9.1
CATE	Ō	Ô	0	0	2	Ð	Û	0	0	0	0	2	2	2	2.0	-	9.1
#ALC	4	0	3	0	0	0	0	0	0	9	Û	7	4	3	3.5	0.7	18.2
MAMU	4	Ō	3	0	0	Ð	0	0	0	0	0	7	4	3	3.5	0.7	18.2
#PAS	5	0	5	0	1	15	9	2	0	5	1	43	15	ì	5.4	4.7	72.7
BASW	2	Ō	0	9	0	2	0	0	0	0	0	4	2	2	2.0	-	18.2
NOCR	3	Ò	3	0	1	13	4	0	0	5	1	30	13	1	4.3	4.1	63.6
EUST	Õ	0	1	0	0	0	5	0	0	0	0	6	5	1	3.0	2.8	18.2
FOSP	0	D	Ó	0	0	Û	0	2	0	0	0	2	2	2	2.0	-	9.1
HOFI	Ö	Ò	1	0	0	0	0	0	θ	0	0	1	1	1	1.0	•	9.1
#TOT	116	30	155	18	58	404	100	177	38	54	37	1187	404	18	107.9	111.5	100.0

Campbell River Estuary Bird Surveys of Station 6 for Autumn 1983 Date 02Sep 10Sep 18Sep 26Sep 01Oct 17Oct 30Oct 13Nov 27Nov Total Max Min Mean SD #LOO 0 0 0 0 0 0 1 1 2 1 1 1.0 -	%Freq 22.2 22.2
#100 0 0 0 0 0 0 1 1 2 1 1 1 1 0 -	22.2
COLO 0 0 0 0 0 0 1 1 2 1 1 1.0 -	
#MOR 0 0 0 2 0 1 0 0 3 2 1 1.5 0.7	22.2
CORM 0 0 0 0 0 1 1 1 1 1.U -	11.1
	11.1
HFR 0 1 2 0 0 0 0 0 0 3 2 1 1.5 0.7	22.2
CRHF 0 1 2 0 0 0 0 0 3 2 1 1.5 0.7	22.2
MCF 0 1 0 0 0 0 0 0 1 1 1 1.0 -	11.1
CNFG 0 1 0 0 0 0 0 0 0 1 1 1 1.0 -	11.1
#DAR 0 0 0 0 235 73 0 0 0 308 235 73 154.U 114.b	22.2
CMTF 0 0 0 35 0 0 0 0 35 35 35.0 -	11.1
MAIT	11.1
AMMUT 0 0 0 0 200 70 0 0 0 270 200 70 135.0 91.9	22.2
#NTV N 15 N 0 14 N 5 N 21 55 21 5 13.8 6.6	44.4
HADU 0 0 0 0 2 0 5 0 0 7 5 2 3.5 2.1	22.2
SUSC 0 3 0 0 0 0 0 0 0 3 3 3 3.0 -	11.1
WWSC 0 0 0 0 12 0 0 0 12 12 12 12.0 -	11.1
COCO 0 0 0 0 0 0 0 0 8 8 8 8 8.0 -	11.1
BUFF 0 0 0 0 0 0 0 0 10 10 10 10 10 -	11.1
COME 0 0 0 0 0 0 0 3 3 3 3 3.0 -	11.1
RBME 0 2 0 0 0 0 0 0 2 2 2 2.0 -	11.1
DUCK 0 10 0 0 0 0 0 0 10 10 10 10.0 -	11.1
#RAP 0 0 0 0 2 0 0 0 2 2 2 2.0 -	11.1
BAEA 0 0 0 0 2 0 0 0 2 2 2 2.0 -	11.1
#GUL 68 77 223 6 19 330 165 0 6 894 330 6 111.8 117.7	88.9
GULL 0 0 23 0 0 0 0 0 23 23 23 23.0 -	11.1
BOGU 0 6 9 0 2 0 0 0 0 8 6 2 4.0 2.8	22.2
MEGU 0 20 0 0 0 30 0 0 50 30 20 25.0 7.1	22.2
HEGU 0 1 0 0 1 0 0 0 0 2 1 1 1.0 -	22.2
GWGU 68 50 200 6 16 300 165 0 6 811 300 6 101.4 108.5	88.9
BEKI 0 0 0 0 1 0 0 0 1 2 1 1 1.0 -	22.2
#PAS 0 10 0 1 1 0 1 6 1 20 10 1 3.3 3.8	66.7
NOCR 0 10 0 0 0 0 1 0 0 11 10 1 5.5 6.4	22.2
FOSP 0 0 0 1 0 0 0 0 1 2 1 1 1.0 -	22.2
SOSP 0 0 0 0 1 0 0 0 1 1 1 1.0 -	11.1
DEJU 0 0 0 0 0 0 0 6 6 6 6 6.0 -	11.1
#TOT 68 104 225 7 274 403 172 7 30 1290 403 7 143.3 136.6	100.0

Camball	Diver	Retnari	, Rird	Surveys	of Sta	tion 6	for i	vinter	1983-198	4			
Date	10Dec	17Dec	07Jan	23Jan	29Jan	05Feb		Total	Max	Min	Mean	SD	%Freq
#L00	0	0	2	0	0	0	0	2	2	2	2.0	-	14.3
COLO	Û	0	2	0	0	Ō	Û	2	2	2	2.0	-	14.3
#GRE	1	0	Õ	Ö	Ô	0	0	1	i	1	1.0	-	14.3
RNGR	1	0	Õ	Õ	0	Ô	Ô	1	1	1	1.0	•	14.3
#COR	Ô	6	Ö	0	3	0	6	15	6	3	5.0	1.7	42.9
DCCO	0	6	Õ	Õ	2	õ	0	8	6	2	4.0	2.8	28.6
PECO	Û	Ô	0	Ö	1	Ō	6	7	6	1	3.5	3.5	28.6
#SWA	0	0	4	Ö	11	Ō	0	15	11	4	7.5	4.9	28.6
TRUS	Û	Û	4	Ď	11	Ö	Ō	15	11	4	7.5	4.9	28.6
#DIV	0	14	2	4	8	2	8	38	14	2	6.3	4.6	85.7
OLDS	0	2	0	i	0	Ō	0	2	2	2	2.0	-	14.3
BLSC	0	Ō	Ô	Ŏ	Ŏ	9	8	8	8	8	8.0	-	14.3
SUSC	0	0	0	Û	Ď	2	Ō	2	2	2	2.0	-	14.3
COGO	0 O	3	2	Õ	Ŏ	0	0	5	3	2	2.5	0.7	28.6
BAGO	0	0	Õ	4	Õ	Ō	Ö	4	4	4	4.0	-	14.3
BUFF	0	8	Ñ	ń	2	Ö	Ō	10	8	2	5.0	4.2	28.6
COME	0	0	Ď	Ô	6	Ō	Ō	6	6	6	6.0	-	14.3
RBME	0	1	9	Õ	Õ	Ŏ	Õ	1	1	1	1.0	44	14.3
#RAP	0	Ô	Û	Ŏ	Õ	1	Û	1	1	i	1.0	-	14.3
BAEA	Û	0	Õ	Õ	Ŏ	1	0	1	1	1	1.0	-	14.3
#GUL	Ů	Å	Õ	150	2	300	0	456	300	2	114.0	142.1	57.1
GWGU	Û	4	Õ	150	2	300	0	456	300	2	114.0	142.1	57.1
BEKI	Õ	0	Ō	0	0	0	1	1	1	1	1.0	-	14.3
#PAS	0	12	0	15	4	Ŏ	0	31	15	4	10.3	5.7	42.9
NOCR	Ö	0	Õ	0	2	Ō	Ō	2	2	2	2.0	-	14.3
SOSP	0	2	0	0	2	Õ	Ŏ	4	2	2	2.0	-	28.6
DEJU	Û	10	Ô	15	0	Û	Ō	25	15	10	12.5	3.5	28.6
#TOT	1	36	8	169	28	303	15	560		1	80.0	114.0	100.0

Campbel:	l River			Surveys					1984
Date	11Mar	18Mar 7	'otal	Max	Min	Mean	SD	%Freq	
#DIV	15	9	15	15	15	15.0	-	50.0	
SUSC	12	0	12	12	12	12.0	-	50.0	
COGO	3	0	3	3	3	3.0	-	50.0	
#GUL	1	40	41	40	1	20.5	27.6	100.0	
BOGU	0	15	15	15	15	15.0		50.0	
GWGU	1	25	26	25	1	13.0	17.0	100.0	
#PAS	0	1	1	1	1	1.0	-	50.0	
POSP	0	1	1	1	1	1.0	-	50.0	
#TOT	16	41	57	41	16	28.5	17.7	100.0	

Camphell	River	Estuary	Bird	Surveys	of Sta	ition	7	for	Autumn	1982		
Date	310ct	08Nov	13Nov	20Nov	28Nov	Total		Max	Min	Mean	SD	%Freq
#L00	1	0	0	1	0	2		ì	1	1.0	-	40.0
LOON	0	Û	Ö	1	Ō	1		1	1	1.0	-	20.9
	1	0	0	Ô	Õ	1		1	1	1.0	-	20.0
COLO	1	13	0	5	Ô	19		13	1	6.3	6.1	60.0
#COR	1	0	0	0	0	1		1	1	1.0	•	20.0
CORM	0	12	0	1	ő	13		12	1	6.5	7.8	40.0
DCCO	•	ì	0	4	Õ	5		4	1	2.5	2.1	40.0
PECO	0	0	0	0	3	3		3	3	3.0	-	20.0
#SWA	0	0	Ð	0	3	3		3	3	3.0	•	20.0
TRUS	20	0	0	Û	Ď	20		20	20	20.0	•	20.0
#DAB		0	0	Û	0	4		4	4	4.0		20.0
GWTE	4	0	Û	0	0	16		16	16	16.0	-	20.0
MALL	16	7	1	12	2	27		12	1	5.4	4.4	100.0
#DIV	5	•	0	0	0	7		7	7	7.0	-	20.0
SCOT	0	7	•	0	0	5		5	5	5.0		20.0
SUSC	5	0	0	•	Û	J 1		1	1	1.0	_	20.0
BAGO	0	0	0	1	•	12		11	2	6.5	6.4	40.0
BUFF	0	0	0	11	2	13			1	1.0	-	20.0
COME	0	0	1	0	0	1		1 2	-	2.0	_	20.0
#SHO	0	2	0	0	0	2		2		2.0	_	20.0
SHOR	0	2	0	0	0	2		_	_		129.1	80.0
#GUL	306	38	150	29	0	523		306			2.1	40.0
MEGU	0	13	0	10	0	23		13				
HEGU	0	1	0	9	0	10		9			5.7	
GWGU	306	24	150	10	0	490		306			137.6	
BEKI	0	Û	2	0	0	2		2			-	20.0
#PAS	6	0	1	3	0	10		(2.5	
NOCR	6	0	1	3	0	10		(3.3	2.5	
#TOT	339	60	154	50	5	608	3	339	9 5	121.6	133.1	100.0

Camphe	l River	Fefna	rv Rird	Survey.	s of St	ation	7 for	Winter	1982-19	983							¥	CD	&Duog
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb	27Feb		Max	Min	Mean	SD	%Freq
#COR	5	0	6	0	2	0	2	0	Û	0	2	1	4	22	6	1	3.1	1.9	53.8
DCCO	1	n	4	9	1	0	2	0	0	0	2	1	0	11	4	1	1.8	1.2	46.2
PECO	1	Ŋ	2	Ô	1	0	Û	0	0	0	0	0	4	11	4	1	2.8	1.5	30.8
#HER	7	A	n	ñ	6	0	12	0	15	0	0	0	2	35	15	2	8.8	5.9	30.8
GBHE	0	n.	n	Õ	6	0	12	0	15	0	Q	0	2	35	15	2	8.8	5.9	30.8
#DIV	13	9	2	2	7	7	5	3	6	3	5	6	4	72	13	2	5.5	3.1	100.0
OLDS	10	0	ñ	ñ	0	Ô	Ō	0	0	0	1	0	0	1	1	ì	1.0	-	7.7
SUSC	V N	n n	A	ñ	n	Ô	Ŏ	Ō	0	2	0	0	0	2	2	2	2.0	•	7.7
00G0	1	0	n	n	ñ	Ñ	Õ	0	0	9	2	0	2	5	2	1	1.7	0.6	23.1
BAG0	Ų T	0	n	2	n	Ô	Õ	Ŏ	0	0	0	0	0	2	2	2	2.0	-	7.7
BUFF	ū	0	9	ñ	5	5	Ā	3	6	1	1	5	2	50	8	1	4.2	2.4	92.3
COME	0	N	ñ	A	n	Ô	Ô	Ó	Ô	0	1	0	0	3	2	1	1.5	0.7	15.4
RBME	2	1	n	n.	2	2	1	Ò	Ò	O	0	1	0	9	2	1	1.5	0.5	46.2
	<u>.</u> 1	U T	O A	۸	ñ	S	Ô	Õ	0	Û	0	0	0	1	1	1	1.0	-	7.7
#RAP	1	U A	n	n.	A	ñ	Ň	Õ	Ô	Ō	0	0	0	1	1	1	1.0	-	7.7
BAEA	1	0	O O	n n	Λ	ñ	A	Ñ	Ω	ĵ	Ö	0	0	3	3	3	3.0	-	7.7
#SHO	J	U A	U A	n N	n o	0	N	ñ	ñ	Õ	0	0	0	3	3	3	3.0	-	7.7
KILL	3	100	O E	V n	202	200	192	ß	425	ñ	534	2	25	1825	534	2	182.5	175.1	76.9
#GUL	120	100	25	U A	202 0	0	130	ń	0	Õ	500	Ō	7	627	500	7	209.0	258.3	23.1
CULL	120	0	0	0	7	A	N	n	25	Ô	10	0	1	38	25	1	9.5	11.1	30.8
MEGU	0	U	V A	0	4	e G	9	ſ	9	fì	0	9	0	2	2	2	2.0	-	7.7
RBGU	U	U	บ ก	U N	n	Û	60	n	100	ñ	Û	ñ	17	177	100	17	59.0	41.5	23.1
HEGU	0	100	0	N.	200	200	130	Û	300	ñ	24	2	0	981	300	2	122.6	105.4	61.5
GWGU	0	100	25	V	_	200	100	O O	0	ñ	n	O	2	2	2	2	2.0	•	7.7
RODO	0	U	0	V	0	0	U N	U N	U N	1	0	ñ	0	1	1	1	1.0	-	7.7
BEKI	· Ü	U	V	U	U	V	U	U g	9	U	n	1	16	28	16	1	4.0	5.4	53.8
#PAS	0	Ű	0	V	j	Ţ	ა ე	0	2	U A	n	9	16	27	16	1	4.5	5.7	46.2
NOCR	0	0	0	U	3	1	J	6	0	n n	Λ	1	0	1	1	1	1.0		7.7
SOSP	0	0	0	Û	J OOC	000	014	U	440	4	541	10	53	1989	5 4 1	2	153.0	173.8	100.0
#TOT	142	109	33	2	220	208	214	ð	448	4	74 1	19	JJ	1003	0.11	•	100.0		

Campbel	l River	Estua	ry Bird	Survey	s of St	ation		Spring		08May	14May	20May	29Mav	Total	Max	Min	Mean	SD	%Freq
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	01May	noriay	0	0	0	1	1	1	1.0	-	7.7
#L00	0	0	0	0	Ü	Ų	U	U	1	U A	n	ñ	ň	1	1	1	1.0	-	7.7
PALO	0	0	0	0	0	U	V	U	1	ų.	V n	1	Ω	58	18	1	7.3	5.0	61.5
#DIV	7	7	3	0	18	7	7	g	V	V	υ Δ	0	n	6	5	1	3.0	2.8	15.4
COG0	5	1	0	0	0	0	0	0	V	U	U	U A	٨	34	11	2	5.7	3.5	46.2
BUFF	2	6	0	Û	11	2	5	8	U	U	V	Ų	ų a	18	7	1	3.6	2.4	38.5
COME	Û	0	3	0	7	5	2	0	0	0	Ü	Ţ	V	10 2	; 1	1	1.0		15.4
#RAP	0	0	9	0	0	0	0	0	0	1	U	1	Ų	4	1	1	1.0	_	15.4
BAEA	ß	0	0	0	0	Û	0	0	0	1	Ü	1	V	607	977	1	51.4	92.1	84.6
#GUL	277	3	0	2	35	0	8	1	185	7	3	40	4	565	277	1	27.0	J4.1 -	7.7
MEGU	27	õ	Ō	0	0	0	0	0	0	0	0	0	Ü	27	27	27		-	7.7
HEGU	0	ñ	ň	Û	0	0	0	1	0	0	O	O	0	1	1	ì	1.0	00.7	
GWGU	250	3	n	2	35	0	8	0	185	7	3	40	4	537	250	Z	53.7	88.7	76.9
	230	ñ	Ô	Õ	n	9	0	2	0	0	0	0	0	2	2	2	2.0	-	7.7
RODO	1	a	0	Λ	1	ñ	1	2	7	i	9	6	0	19	7	ì	2.7	2.6	53.8
#PAS	1	v	0	n n	Ų	Û	ĥ	n	0	0	0	4	Û	4	4	4	4.0	-	7.7
VGSW	U	Ų	N.	V A	V N	n	ñ	ñ	Ď	Ô	0	1	0	1	1	1	1.0	-	7.7
BASW	0	V	U	V 0	O O	O O	n.	n n	7	ñ	î	0	0	7	7	7	7.0	-	7.7
NOCR	U	U	V	U A	U A	O A	n	O N	'n	ñ	Ö	0	Û	1	1	1	1.0	-	7.7
CORA	1	Ü	0	Ų	U	V	1	1	n	0	n.	Ñ	Ñ	3	1	1	1.0	-	23.1
EUST	0	0	U	0	1	U	1	1	U N	1	n.	n	ñ	1	1	1	1.0	•	7.7
SAVS	0	0	0	0	Ü	V	Ą	U	0	1	o O	1	n	'n	1	i	1.0	-	15.4
WCSP	0	0	0	0	0	0	U	1	U	U	υ •	48	4	647	285	2	49.8	87.6	
#TOT	285	10	3	2	54	7	16	13	193	9	J	40	4	041	404	4	30.0	0	

Camphel	l River	Estuar	y Bird	Surveys	of Sta	tion 7		ummer 1	983	•••	001 -	ml	Vov	Min	Mean	SD	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	ZUAUG	Total	Max	M.I.II	1.0	-	9.1
#HER	0	0	0	0	0	0	0	0	0	1	V	1	1	1	1.0	_	9.1
GBHE	fì	9	0	0	0	0	0	0	0	1	U	i	1	1	1.6	0.9	45.5
#DIV	1	2	Ò	1	0	0	3	1	0	0 .	0	8	j	1		0.3	18.2
SUSC	Ų	2	Ô	0	0	0	0	1	0	0	0	3	Z	Ţ	1.5		9.1
BUFF	n	n	õ	1	0	0	0	0	0	Û	0	l	1	1	1.0	-	9.1
COME	1	0	Õ	Ō	0	0	0	0	9	0	0	1	1	1	1.0	-	9.1
RBME	Ô	ń	Û	Õ	Ô	0	3	0	0	0	0	3	3	3	3.0	-	
RAP	14	Ŋ	Ñ	Ď	2	6	1	0	0	0	0	23	14	1	5.8	5.9	36.4
BAEA	14	Ô	ñ	Õ	2	6	1	0	Ð	0	0	23	14	1	5.8	5.9	36.4
	0	Û	r.	n	Ā	Ô	1	0	0	Û	Û	i	1	1	1.0	-	9.1
#SHO	0	i i	U.	ñ	n	ñ	1	0	0	0	0	1	ì	1	1.0	-	9.1
KILL	100	0	n	0	75	15	22	Ô	62	2	1	277	100	1	39.6	39.2	63.6
#GUL	100	V A	O N	n.	0	5	16	Ô	0	Û	0	21	16	5	10.5	7.8	18.2
BOGU	0	V	U O	n n	25	ů.	0	0	9	0	Û	25	25	25	25.0	-	9.1
HEGU	0	ľ	ų.	n	50	10	6	Õ	62	2	1	231	100	1	33.0	38.4	63.6
GWGU	100	U	U	0) ()	U 10	n	n	0	0	1	1	1	1	1.0	-	9.1
RODO	0	V	Ų	0	-	1.4	4	n	31	1	ì	94	31	1	11.8	10.3	72.7
#PAS	14	U	21	V	5	14	4	n	Ų	'n	n	9	8	1	4.5	4.9	18.2
BASW	8	0	l	U	U	0	V n	Λ	1	Å	1	11	4	1	2.2	1.3	45.5
NOCR	2	0	0	Ü	J	0	U	V 1	30	7 N	'n	70	30	2	11.7	10.9	54.5
EUST	3	0	17	Ü	2	14	4	U A	0	v A	n	1	1	1	1.0	-	9.1
PUFI	1	0	0	0	0	0	Ü	U	U A	ų a	v A	3	1	3	3.0	-	9.1
HOFI	0	0	3	0	0	0	U	V	U no	7	3	405	129	1	36.8	44.5	
#TOT	129	2	2 1	1	82	35	31	1	93	1	J	400	140	1	00.0	,0	

Campbel	l River	Estuar	y Bird	Surveys	of Sta	tion 7		utu n n 1					14	CD	NP
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov		Total	Max	Min	Mean	SD	%Freq
#COR	0	i	0	0	0	8	1	18	3	31	18	1	6.2	7.2	55.6
CORM	Ō	0	0	0	0	0	1	0	3	4	3	i	2.0	1.4	22.2
PECO	Ô	1	Ō	0	0	8	0	18	0	27	18	. 1	9.0	8.5	33.3
#HER	ñ	Ô	Ô	ß	0	1	0	0	5	6	5	1	3.0	2.8	22.2
GBHE	Ô	ñ	Ö	Ō	0	1	0	0	5	6	5	1	3.0	2.8	22.2
#GEE	n	ň	Õ	0	1	0	0	0	0	1	1	1	1.0	-	11.1
GWFG	n	n	Õ	Õ	1	0	0	0	0	1	1	1	1.0	-	11.1
#DAB	0	ñ	Û	0	7	0	0	0	0	7	7	7	7.0	-	11.1
MALL	0	ñ	Õ	Ô	4	Ô	0	0	0	4	4	4	4.0	-	11.1
NOPI	0	n	n	ñ	2	Ô	Ō	0	0	2	2	2	2.0	-	11.1
NOSL	0	Ô	Ô	ĥ	1	ß	0	0	0	1	1	1	1.0	-	11.1
#DIV	0	9	9	Õ	4	Ō	Õ	Û	0	13	9	4	6.5	3.5	22.2
SUSC	0	5	Ô	ð	Ó	Õ	Ö	Ô	0	5	5	5	5.0	-	11.1
HOME	0	Õ	Ô	ñ	4	ñ	Ô	Ô	0	4	4	4	4.0	-	11.1
DUCK	0	4	n	0	Ö	ñ	Õ	Ö	ð	4	4	4	4.0	-	11.1
#GUL	40	5	100	150	12	Å	1	68	Ō	380	150	1	47.5	54.6	88.9
#GUL MEGU	4v 0	3	0	0	0	1	Ô	0	0	7	4	3	3.5	0.7	22.2
GWGU	40	2	100	150	12	, O	1	68	Ō	373	150	1	53.3	56.3	77.8
BEKI	40	0	2	130	0	0	Â	0	Õ	2	2	2	2.0	-	11.1
	0	U N	40	1	8	6	Ŋ	O O	Õ	55	40	1	13.8	17.7	44.4
#PAS		U U	90	7	6	5	٥	0	Ŏ	11	6	5	5.5	0.7	22.2
NOCR	0	0	•	v n	1	Ŋ	n.	Û	ñ	41	40	1	20.5	27.6	22.2
EUST	Ų	0	40	V 1	1	N	1	9	0	1	1	1	1.0	-	11.1
FOSP	Ü	0	0	i	0	1		0	Û	1	1	1	1.0	_	11.1
SOSP	0	0	0	U	0	1	0		0	1	1	1	1.0	_	11.1
GCSP	0	0	0	Ü	1	U	Ų	0	•	1 405	101	2	55.0	57.5	100.0
#TOT	40	15	142	151	32	19	2	86	8	495	151	4	99.0	11.0	100.0

Campbel	l River	Estuar	y Bird	Surveys	of Sta	tion 7		inter				CD	WD
Date	10Dec	17Dec	07Jan	23Jan	29Jan	05Feb	13Feb	Total	Max	Min	Mean	SD	%Freq
#COR	0	1	3	0	0	0	0	4	3	1	2.0	1.4	28.6
DCCO	0	1	0	0	0	0	0	1	i	1	1.0	-	14.3
PECO	0	0	3	Û	0	0	0	3	3	3	3.0		14.3
#HER	0	0	1	0	0	23	0	24	23	1	12.0	15.6	28.6
CBHE	Ò	Û	1	0	0	23	0	24	23	1	12.0	15.6	28.6
#GEE	Ô	0	0	25	0	0	0	25	25	25	25.0	-	14.3
CAGO	Õ	Ō	0	2 5	0	0	0	25	25	25	25.0	-	14.3
#DAB	Õ	Ô	Ô	0	0	0	5	5	5	5	5.0	•	14.3
MALL	ñ	Ō	Ô	0	0	0	5	5	5	5	5.0	-	14.3
#DIV	3	Û	5	6	6	17	9	46	17	3	7.7	5.0	85.7
OLDS	Ô	Ô	9	Ô	2	1	1	4	2	1	1.3	0.6	42.9
COGO	Û	Û	5	Ô	0	0	0	5	5	5	5.0	-	14.3
BUFF	3	Ô	õ	ĥ	4	13	8	34	13	3	6.8	4.0	71.4
RBME	n	Û	Ď	Õ	Ô	3	0	3	3	3	3.0	-	14.3
#RAP	Õ	A	2	ñ	Ö	0	Û	2	2	2	2.0	-	14.3
BAEA	n	n.	2	Õ	Ñ	Ō	Ô	2	2	2	2.0	•	14.3
#GUL	10	100	9	ถ	1	200	280	599	280	1	99.8	117.3	85.7
GULL	9	0	n	Õ	Ô	0	30	30	30	30	30.0	•	14.3
MEGU	1	0	ñ	n	Õ	Ô	0	1	1	1	1.0	-	14.3
GWCU	9	100	8	n	1	200	250	568	250	1	94.7	108.5	85.7
	5	0	A	1	ĥ	0	2	8	5	1	2.7	2.1	42.9
#PAS		U N	N N	0	n	n	ō	5	5	5	5.0	-	14.3
NOCR	5	U		1	n N	0	2	3	9	1	1.5	0.7	28.6
SOSP	0	101	0	1	7	240	296	713	296	7	101.9	118.7	100.0
#TOT	18	101	19	32	1	440	450	119	430	r	10110	110.1	10010

Campbel	l River	Estuar	y Bird	Surveys	of S	tation	7	for	Spring	1984
Date	11Mar	18Mar	Total	Max	Min	Mean		SD	%Freq	
#COR	2	0	2	2	2	2.0		-	50.0	
PECO	2	0	2	2	2	2.0		-	50.0	
#DIV	5	0	5	5	5	5.0		-	50.0	
BUFF	4	0	4	4	4	4.0		-	50.0	
RBME	1	0	1	1	1	1.0		-	50.0	
#GUL	6	2	8	6	2	4.0		2.8	100.0	
GWGU	6	2	8	6	2	4.0		2.8	100.0	
BEKI	1	0	1	1	1	1.0		-	50.0	
#PAS	6	0	6	6	6	6.0		-	50.0	
NOCR	5	0	5	5	5	5.0		-	50.0	
SOSP	ì	0	1	1	1	1.0		-	50.0	
#TOT	20	2	22	20	2	11.0		12.7	100.0	

Campbel	River	Estuary	Bird	Surveys	of Sta	ation	8	for	Autumn	1982		
Date	310ct	08Nov	13Nov	20Nov	28Nov	Total		Max	Min	Mean	SD	Freq
#L00	0	0	0	1	0	1		1	1	1.0	-	20.0
LOON	Û	Ď	Õ	1	0	1		1	ł	1.0	-	20.0
#COR	0	1	Û	2	1	4		2	1	1.3	0.6	60.0
CORM	Ð	0	0	0	1	1		1	1	1.0	-	20.0
	0	ì	0	1	Ô	2		1	1	1.0	-	40.0
DCCO	-	0	0	1	0	1		1	1	1.0	-	20.0
PECO	0	0	1	0	Õ	1		1	1	1.0	-	20.0
#HER	0	0	1	0	0	1		1	1	1.0	•	20.0
CBHE	0	-	9	12	0	21		12	9	10.5	2.1	40.0
#DAB	0	0	9	12	0	21		12	9	10.5	2.1	40.0
MALL	0	0		6	0	67		47	6	22.3	21.7	60.0
#DIV	0	47	14		_			1	1	1.0		20.0
GRSC	0	0	0	1	0	1		3	3	3.0	_	20.0
BLSC	0	3	0	0	0				5	18.0	15.4	60.0
BUFF	0	35	14	5	0	54		35	9		10.4	20.0
DUCK	0	9	0	0	0	9		9	-	9.0	137 5	
#GUL	12	200	150	345	0	707		345	12	176.8	137.5	80.0
GULL	0	200	Û	Û	9	200		200	_	200.0	-	20.0
MEGU	0	0	0	20	0	20		20		20.0	-	20.0
HEGU	0	0	Û	2 5	0	25		25			-	20.0
GWGU	12	0	150	300	0	462		300			144.0	
RODO	0	0	0	18	0	18		18			-	20.0
#PAS	4	40	92	16	7	159		92	4	31.8	36.5	
NOCR	Ô	40	17	10	2	69		40	2	17.3	16.4	
EUST	4	0	75	3	5	87		75	i 3	21.8	35.5	
SOSP	0	Ö	0	3	0	3	}	3	3	3.0	-	20.0
#T0T	16	288	266	400	8	978		400) 8	195.6	175.2	100.0
M 101	10	200	=00		·							

(Jamaha)	ll River	· Fetna	ev Ried	Survey	s of St	ation	8 for	Winter	1982-19	983							u	CD.	ØT-no o
	05Dec	liDec	19Dec	26Dec	03jan	08Jan	15Jan		28Jan	06Feb	13Feb	26Feb	27Feb		Max	Min	Mean	SD	%Freq
Date	UODEC 1	11066	13000	0	0	0	0	0	0	0	0	0	0	2	1	1	1.0	-	15.4
#L00	1	0	1	Ĥ	ñ	Ō	Ô	Û	0	Û	0	0	0	2	1	1	1.0		15.4
COLO	2	1	ų.	ß	2	Ô	Ô	3	3	0	0	0	0	11	3	1	2.2	0.8	38.5
#COR	4	1	0	n	ñ	ñ	ñ	3	0	0	0	0	0	4	3	1	2.0	1.4	15.4
DCCO	V	1	O.	Λ	9	n	ñ	Ď	3	0	0	0	0	7	3	2	2.3	0.6	23.1
PECO	0	0	U N	n.	0	Õ	Õ	0	0	0	0	0	2	2	2	2	2.0	-	7.7
#HER	0	Û	n n	V A	n	ñ	Û	Õ	0	0	0	0	2	2	2	2	2.9	•	7.7
GBHE	V	0	U A	ų V	n	n	2	Ñ	0	0	0	0	0	2	2	2	2.0	-	7.7
#SWA	U	U	0	O O	ñ	۸	,	õ	9	0	0	0	0	2	2	2	2.0	-	7.7
TRUS	V	0	V	1 4	U N	n N	Ä	Û	ñ	2	0	0	0	34	14	2	8.5	6.4	30.8
#DAB	V	14	Ŋ		U U	V.	4	ß	Û	- 0	0	0	0	32	14	4	10.7	5.8	23.1
MALL	0	14	9	14	V A	V n	4	n	n	2	Ô	0	0	2	2	2	2.0	-	7.7
AMWI	0	0	U	0	1	3	7	5	ξ	6	2	4	5	77	22	1	5.9	5.9	100.0
#DIV	15	22	4	4	l I	o O	n O	n.	0	ß	n	O.	0	9	9	9	9.0	-	7.7
SCAU	9	0	V	V	U	U	V A	O N	0	N	Õ	Ŏ	Ö	6	5	1	3.0	2.8	15.4
CRSC	0	5	1	U	V	ų.	U N	0	n	9	1	1	Ō	4	2	1	1.3	0.6	23.1
COCO	0)	0	V	U	V	0	9	V N	'n	Ā	ñ	ñ	2	2	2	2.0	-	7.7
BAGO	0	0	0	V	U	0	U ກ	2	U E	Á	1	3	4	39	10	1	3.5	2.5	84.6
BUFF	0	10	3	U	1	2	J	J A	0	4	Ų	Ň	'n	12	7	5	6.0	1.4	15.4
COME	5	7	0	U	U	U	Ŋ	U	Ų A	n.	n.	n	1	5	2	1	1.3	0.5	30.8
RBME	1	0	0	2	U	1	V	V	V A	V	V 1	n	ń	1	1	1	1.0	-	7.7
#RAP	0	0	0	0	Ü	Ų	U	U	Ų	U A	1	n	0	1	1	1	1.0	-	7.7
BAEA	0	Û	Û	0	0	U	0	, , , , , , , , , , , , , , , , , , ,	9		1	10	100	846	300	î	94.0	115.6	69.2
#GUL	30	2	2	0	0	0	0	251	300	150	U T	2	0	2	2	2	2.0	_	7.7
MEGU	0	0	0	0	0	0	0	0	0	() ()	U A	9	0	30	30	30	30.0	-	7.7
HEGU	30	0	0	0	0	0	0	0	0	•	υ 1	U a	100	814	300	1	101.8	121.2	61.5
GWGU	Û	2	2	0	0	Û	0	25 1	300	150	1	υ 0	20	48	20	12	16.0	4.0	23.1
RODO	16	0	0	0	0	0	12	0	0	0	0	U	26	49	26	1	7.0	8.5	53.8
#PAS	0	0	0	0	6	0	1	0	4	j	5	4	40 6	21	6	1	3.5	1.9	46.2
NOCR	0	0	0	0	3	0	1	0	4	0	ð	4		3	•	3	3.0	-	7.7
CORA	0	0	0	0	0	0	9	0	0	3	0	ŋ	0	_	3 20	2	8.3	10.1	
EUST	0	G	Û	0	3	0	0	0	0	0	0	2	20	25	312	3	82.5	105.0	
#TOT	64	39	7	16	9	3	22	259	312	161	9	18	153	1072	314	J	04.0	100.0	100.0

Campbe.	ll River	Estua	ry Bird	Survey	s of St	ation	8 for	Spring							V.			CD	¥Vman
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	01May	08May	14May	20May	29May	Total	Max	Min	Mean	SD	Freq
#COR	0	0	0	0	1	Ð	0	0	0	0	0	0	0	l	l	1	1.0	•	7.7
DCCO	0	0	0	0	1	0	0	0	0	0	0	0	0	l	1	i	1.0	-	7.7
#HER	1	0	0	Û	0	9	1	0	0	0	0	0	0	2	1	l	1.0	-	15.4
CBHE	1	0	0	0	0	0	1	0	0	0	0	0	0	2	1	1	1.0	-	15.4
#GEE	Û	0	O	0	0	0	0	0	0	2	0	0	0	2	2	2	2.0	•	7.7
CAGO	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2	2	2.0	-	7.7
#DAB	2	0	0	0	0	0	0	0	0	0	0	9	0	2	2	2	2.0	-	7.7
MALL	2	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2.0	•	7.7
#DIV	40	0	0	5	11	9	5	2	0	2	0	11	0	85	40	2	10.6	12.4	61.5
BUFF	30	Û	0	4	11	5	5	2	0	0	0	0	0	57	30	Z	9.5	10.5	46.2
COME	10	0	0	1	0	4	0	0	0	2	0	11	0	28	11	1	5.6	4.6	38.5
#RAP	1	1	0	0	0	0	0	0	0	1	1	0	0	4	1	1	1.0	-	30.8
BAEA	1	1	0	0	0	0	Û	0	0	1	1	0	0	4	1	1	1.0	*	30.8
#SHO	0	Û	0	0	6	0	0	0	ì	66	0	0	0	73	66	1	24.3	36.2	23.1
KILL	0	0	0	0	6	0	0	0	1	1	0	Û	0	8	6	1	2.7	2.9	23.1
WESA	0	0	0	0	0	9	0	0	0	60	0	0	0	60	60	60	60.0	-	7.7
DUNL	0	0	0	0	0	0	9	0	0	5	0	0	0	5	5	5	5.0	•	7.7
#GUL	250	27	40	300	18	106	O	142	287	2	0	7	65	1244	300	2	113.1	115.1	84.6
GULL	0	0	0	300	0	0	0	0	0	0	0	0	0	300	300	300	300.0	-	7.7
BOGU	0	0	θ	0	0	0	0	40	0	0	0	0	38	78	40	38	39.0	1.4	15.4
MEGU	0	0	0	0	7	103	0	2	0	0	0	1	0	113	103	1	28.3	49.9	30.8
CWCU	250	27	40	0	11	3	0	100	287	2	0	6	27	753	287	2	75.3	106.1	76.9
RODO	0	0	0	0	0	2	0	0	0	9	4	8	0	14	8	2	4.7	3.1	23.1
#PAS	16	7	0	12	4	3	1	3	5	2	5	7	11	76	16	1	6.3	4.5	92.3
VGSW	0	0	0	0	0	0	0	0	0	1	0	2	0	3	2	1	1.5	0.7	15.4
BASW	0	9	0	0	0	0	0	2	O	0	1	1	0	4	2	1	1.3	0.6	23.1
NOCR	16	7	0	12	3	3	0	0	2	0	0	0	9	52	16	2	7.4	5.3	53.8
EUST	0	0	0	0	0	0	1	1	3	1	4	4	0	14	4	1	2.3	1.5	46.2
SOSP	0	0	0	0	1	0	0	0	0	0	Û	0	0	1	1	1	1.0	-	7.7
RWBL	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2.0		7.7
#TOT	310	35	40	317	40	120	7	147	293	75	10	33	76	1503	317	7	115.6	116.1	100.0

Campbel	l River	Estuar	y Bird	Surveys	of Sta	tion 8		ummer 1				.	M	M/	Moon	SD	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug	Total	Max	Min 1	Mean 1.0	<i>ر</i> رن -	36.4
#HER	0	0	0	0	0	0	1	1	i	1	0	4	Ţ	1		_	36.4
CBHE	Û	0	Û	0	0	0	1	1	1	1	0	4	1	Ţ	1.0	6.9	27.3
#DAB	Õ	0	0	5	0	0	0	5	0	0	17	27	17	5	9.0		18.2
MALL	Ñ	ß	0	5	0	0	0	5	0	0	0	10	5	5	5.0	-	
NOPI	Õ	Ô	Ō	0	0	0	0	0	9	0	17	17	17	17	17.0	-	9.1
#DIV	Û	Ď	0	1	2	Ð	0	0	0	0	0	3	2	1	1.5	0.7	18.2
COME	Ω	Ô	0	1	0	0	0	0	Û	0	0	1	1	1	1.0	-	9.1
RBME	ñ	0	Ò	0	2	0	0	0	0	0	Û	2	2	2	2.0	-	9.1
#RAP	9	Ô	Ò	0	3	4	0	0	1	0	0	17	9	1	4.3	3.4	36.4
BAEA	ğ	ñ	0	0	3	4	0	0	1	Û	0	17	9	1	4.3	3.4	36.4
#SHO	Ō	Ò	Ō	0	0	9	1	0	0	0	0	1	1	1	1.0	•	9.1
KILL	Û	Ð	Ò	0	0	0	1	0	0	0	0	1	1	1	1.0		9.1
#GUL	1	ñ	9	2	11	3	19	0	60	206	13	315	206	1	39.4	70.0	72.7
BOGU	Ô	Ô	0	Ō	9	1	0	0	0	0	1	11	9	1	3.7	4.6	27.3
MEGU	Õ	n	Ď	Ö	2	0	0	0	0	0	6	8	6	2	4.0	2.8	18.2
HEGU	Õ	Õ	9	0	0	0	0	0	0	0	1	1	1	1	1.0	-	9.1
GWGU	1	ñ	Ñ	2	Ô	2	19	0	60	200	5	289	200	1	41.3	73.1	63.6
BLKI	Ô	õ	Ñ	- D	Ô	0	0	0	0	6	0	6	6	6	6.0	•	9.1
RODO	2	n	Õ	Õ	9	Ò	0	5	8	0	16	31	16	2	7.8	6.0	36.4
RUHU	Õ	n	Ď	Ô	1	0	0	0	0	0	0	1	1	1	1.0	-	9.1
BEKI	Ā	ñ	Ñ	0	Ō	0	0	0	2	1	0	7	4	1	2.3	1.5	
#PAS	9	ñ	2	8	16	2 0	102	0	45	1	0	203	102	1	25.4	34.0	
BASW	Å	0	2	ů.	1	0	9	0	0	0	0	7	4	1	2.3	1.5	
NOCR	9	n.	ñ	2	0	4	Ō	0	1	1	0	8	4	1	2.0	1.4	
EUST	5	n	Ŋ	6	15	10	100	Ó	42	0	0	178	100	5	29.7	37.1	
RWBL	i î	n	O.	0	0	6	2	Ö	2	0	0	10	6	2	3.3	2.3	
	25	0	2	16	33	27	123	11	117	209	46	609	209	2	60.9	67.0	90.9
#TOT	40	U	4	10	00	-				•							

Campbel	l River	Estuary	Bird	Surveys	of Sta	tion 8		ut ua n 1		.	и.	w!_	Maan	SD	%Freq
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov		Total	Max	Min	Mean 1.0	מפ	il.i
COR	0	0	0	0	0	0	1	0	0	1	1	1		-	11.1
CORM	0	0	0	0	0	0	1	0	0	1	1	1	1.0	-	11.1
#HER	0	0	3	0	0	0	0	0	0	3	3	3	3.0	-	11.1
GBHE	Û	0	3	9	0	0	0	0	0	3	3	3	3.0	0.1	
#SWA	0	0	0	0	0	Û	Û	2	5	7	5	2	3.5	2.1	22.2
TRUS	0	0	0	0	0	0	0	2	5	7	5	2	3.5	2.1	22.2
#DAB	Ó	11	0	5	0	9	0	9	0	34	11	5	8.5	2.5	44.4
MALL	Ó	0	0	5	0	0	0	9	0	14	9	5	7.0	2.8	22.2
NOPI	Ò	11	0	0	0	0	0	0	0	11	11	11	11.0	-	11.1
BWTE	0	0	0	0	0	9	0	0	0	9	9	9	9.0	-	11.1
#DIV	Ô	3	0	0	0	0	0	13	11	27	13	3	9.0	5.3	33.3
BUFF	0	0	0	0	0	0	0	13	11	24	13	11	12.0	1.4	22.2
COME	0	3	0	0	0	0	0	0	0	3	3	3	3.0	-	11.1
#SHO	Ó	0	2	0	Û	3	0	0	0	5	3	2	2.5	0.7	22.2
KILL	9	0	2	0	0	0	0	0	0	2	2	2	2.0	-	11.1
SBDO	Ö	O	0	0	0	3	0	0	0	3	3	3	3.0	•	11.1
#GUL	1	84	0	50	222	1	19	300	5	682	300	1	85.3	114.1	88.9
GULL	Đ	1	0	0	0	Û	0	0	0	1	1	1	1.0	-	11.1
BOGU	Õ	1	0	0	46	0	0	0	0	47	46	1	23.5	31.8	22.2
MEGU	Ô	2	0	0	i	0	0	O	0	3	2	1	1.5	0.7	22.2
CWCU	1	80	0	50	175	1	19	300	5	631	300	1	78.9	107.0	88.9
RODO	()	0	Ō	0	2	0	0	0	0	2	2	2	2.0	-	11.1
BEKI	Õ	Ō	0	0	0	1	0	0	0	1	i	1	1.0	•	11.1
#PAS	Ď	50	11	0	492	53	1	3	1	521	492	1	74.4	146.2	77.8
BASW	0 -	Û	10	Ō	0	0	0	0	0	10	10	19	10.0	-	11.1
NOCR	Õ	20	0	0	1	3	1	3	1	29	20	1	4.8	7.5	66.7
CORA	Ũ	0	Ö	Ò	1	0	0	0	0	1	1	1	1.0	-	11.1
EUST	9	30	D	Ō	400	50	0	0	0	480	400	30	160.0	208.1	33.3
RWBL	0	0	1	0	0	0	9	8	9	1	i	1	1.0	-	11.1
#TOT	1	148	16	55	626	67	21	327	22	1283	626	1	142.6	208.1	100.0

River	Estuary	y Bird	Surveys	of Sta	tion 8			1983-1984			an.	A/TS
		07Jan	23Jan	29Jan	05Feb	13Feb	Total	Max	Min		SD	%Freq
	_	1	0	0	0	Û	1	1	1	1.0	-	14.3
n	ñ	1	0	0	0	0	1	1	1	1.0	-	14.3
ñ	ñ	ñ	Ö	0	9	1	i	1	1	1.0	-	14.3
N.	A	ñ	ñ	Ď	0	1	1	1	1	1.0	-	14.3
ů.		٠	ň	Õ	9	11	41	16	5	10.3	4.6	57.1
- 1	5		n	n	ğ		41	16	5	10.3	4.6	57.1
	J E		n	2	2				2	4.8	3.8	57.1
	3 F		0	ñ	2	ñ			2		4.0	42.9
•	J	_	- 1	9	0	n			_		_	14.3
0	V	•	-	9	6	Á	_		_		1.5	85.7
þ	U	5	_	4	9	4 N	7	ţ				28.6
0	0	3	_	Ü	4	Ų.	1 C		_			71.4
5	0	0	3	Z	2	4	10	j n				14.3
0	0	0	0	0	2	U	2	4	4			14.3
0	Û	1	0	0	0	Ü	}	1	1		-	
0	0	1	9	0	0	0	1	1	1		001 C	14.3
5 50	54	250	0	6	363	300						85.7
0	50	0	0	5	0	0			5			28.6
550	4	250	0	1	363	300	1468	550	1			85.7
0	0	0	0	2	1	0	3	2	1			28.6
0	0	0	0	2	1	Û	3	2	i			28.6
555	64	283	3	12	381	316	1614	555	3	230.6	210.3	100.0
	10Dec 0 0 0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 0 0	10Dec 17Dec 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 0 0 0 0	10Dec 17Dec 07Jan 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 16 0 5 10 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0 1 550 0 0 550 0 0 550 4 250 0 0 0 0 0 0	10Dec 17Dec 07Jan 23Jan 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 16 0 0 5 10 0 0 0 0 0 5 0 0 0 5 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 550 4 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10Dec 17Dec 07Jan 23Jan 29Jan 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 16 0 0 0 5 10 0 2 0 0 0 0 2 5 0 5 3 2 0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 16 0 0 9 0 5 16 0 0 9 0 5 10 0 2 2 0 0 0 0 2 0 5 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 5 16 0 0 9 11 41 0 5 16 0 0 9 11 41 0 5 10 0 2 2 0 19 0 5 10 0 2 2 0 17 0 0 0 0 2 0 2 0 17 5 0 0 3 2 <td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 5 16 0 0 9 11 41 16 0 5 16 0 0 9 11 41 16 0 5 16 0 0 9 11 41 16 0 5 10 0 2 0 17 10 0 0 0 0 2 <t< td=""><td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 5 16 0 0 9 11 41 16 5 0 5 16 0 0 9 11 41 16 5 0 5 10 0 2 2 0 19 10 2 0 0 0 0 2 0 17 10 <t< td=""><td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min Mean 0 0 1 0 0 0 1 1 1 1.0 0 0 1 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 5 16 0 0 9 11 41 16 5 10.3 0 5 16 0 0 9 11 41 16 5 10.3 0 5 10 0 2 2 0 19 10 2 4.8 0 5 10 <</td><td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min Mean SD 0 0 1 0 0 0 0 1 1 1 1.0 - 0 0 1 0 0 0 0 1 1 1 1.0 - 0 0 0 0 0 1 1 1 1.0 - 0 0 0 0 0 1 1 1 1.0 - 0 5 16 0 0 9 11 41 16 5 10.3 4.6 0 5 16 0 0 9 11 41 16 5 10.3 4.6 0 5 10 0 2 2 0 19 10 2 4.8 3.8 0 5 10</td></t<></td></t<></td>	10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 5 16 0 0 9 11 41 16 0 5 16 0 0 9 11 41 16 0 5 16 0 0 9 11 41 16 0 5 10 0 2 0 17 10 0 0 0 0 2 <t< td=""><td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 5 16 0 0 9 11 41 16 5 0 5 16 0 0 9 11 41 16 5 0 5 10 0 2 2 0 19 10 2 0 0 0 0 2 0 17 10 <t< td=""><td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min Mean 0 0 1 0 0 0 1 1 1 1.0 0 0 1 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 5 16 0 0 9 11 41 16 5 10.3 0 5 16 0 0 9 11 41 16 5 10.3 0 5 10 0 2 2 0 19 10 2 4.8 0 5 10 <</td><td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min Mean SD 0 0 1 0 0 0 0 1 1 1 1.0 - 0 0 1 0 0 0 0 1 1 1 1.0 - 0 0 0 0 0 1 1 1 1.0 - 0 0 0 0 0 1 1 1 1.0 - 0 5 16 0 0 9 11 41 16 5 10.3 4.6 0 5 16 0 0 9 11 41 16 5 10.3 4.6 0 5 10 0 2 2 0 19 10 2 4.8 3.8 0 5 10</td></t<></td></t<>	10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 5 16 0 0 9 11 41 16 5 0 5 16 0 0 9 11 41 16 5 0 5 10 0 2 2 0 19 10 2 0 0 0 0 2 0 17 10 <t< td=""><td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min Mean 0 0 1 0 0 0 1 1 1 1.0 0 0 1 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 5 16 0 0 9 11 41 16 5 10.3 0 5 16 0 0 9 11 41 16 5 10.3 0 5 10 0 2 2 0 19 10 2 4.8 0 5 10 <</td><td>10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min Mean SD 0 0 1 0 0 0 0 1 1 1 1.0 - 0 0 1 0 0 0 0 1 1 1 1.0 - 0 0 0 0 0 1 1 1 1.0 - 0 0 0 0 0 1 1 1 1.0 - 0 5 16 0 0 9 11 41 16 5 10.3 4.6 0 5 16 0 0 9 11 41 16 5 10.3 4.6 0 5 10 0 2 2 0 19 10 2 4.8 3.8 0 5 10</td></t<>	10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min Mean 0 0 1 0 0 0 1 1 1 1.0 0 0 1 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 0 0 0 0 1 1 1 1.0 0 5 16 0 0 9 11 41 16 5 10.3 0 5 16 0 0 9 11 41 16 5 10.3 0 5 10 0 2 2 0 19 10 2 4.8 0 5 10 <	10Dec 17Dec 07Jan 23Jan 29Jan 05Feb 13Feb Total Max Min Mean SD 0 0 1 0 0 0 0 1 1 1 1.0 - 0 0 1 0 0 0 0 1 1 1 1.0 - 0 0 0 0 0 1 1 1 1.0 - 0 0 0 0 0 1 1 1 1.0 - 0 5 16 0 0 9 11 41 16 5 10.3 4.6 0 5 16 0 0 9 11 41 16 5 10.3 4.6 0 5 10 0 2 2 0 19 10 2 4.8 3.8 0 5 10

Campbel	l River	Estuar	ry Bird	Surveys	of St	tation		Spring 1984
Date	11Mar		Total	Max	Min	Mean	SD	%Freq
#GRE	3	Û	3	3	3	3.0	-	50.0
RNCR	3	0	3	3	3	3.0	-	50.0
#DAB	0	3	3	3	3	3.0	-	50.0
MALL	0	3	3	3	3	3.0	•	50.0
#DIV	5	0	5	5	5	5.0	-	50.0
BUFF	5	0	5	5	5	5.0	-	50.0
#GUL	251	2	253	251	2	126.5	176.1	100.0
MEGU	1	0	1	1	1	1.0	-	50.0
GWGU	250	2	252	250	2	126.0	175.4	100.0
#PAS	1	Ō	1	1	1	1.0	-	50.0
CORA	ī	Ô	1	1	1	1.0	-	50.0
#TOT	260	5	265	260	5	132.5	180.3	100.0

Campbel 1	l River	Estuary	Bird	Surveys	of Sta	ation	9	for	Autumn	1982		
Date	310ct		13Nov	20Nov	28Nov	Total		Max	Min	Mean	SD	%Freq
#COR	7	0	11	11	11	40		11	7	10.0	2.0	80.0
CORM	Ó	O	0	0	11	11		11	11	11.0	-	20.0
DCCO	7	Ö	10	11	0	28		11	7	9.3	2.1	60.0
PECO	Ò	O	1	0	0	1		1	1	1.0	•	20.0
#HER	Ö	0	0	1	0	1		i	1	1.0	-	20.0
GBHE	Ö	Ô	0	1	0	1		1	1	1.0	-	20.0
#SWA	Ò	0	0	13	20	33		20	13	16.5	4.9	40.0
TRUS	0	0	0	13	20	33		20	13	16.5	4.9	40.0
#DAB	1	0	0	11	3	15		11	1	5.0	5.3	60.0
MALL	1	0	O	11	3	15		11	1	5.0	5.3	60.0
#DIV	6	0	47	29	8	90		47	6	22.5	19.4	80.0
GRSC	0	0	20	25	0	45		25	20	22.5	3.5	40.0
BUFF	6	0	27	4	8	45		27	4	11.3	10.6	80.0
#GUL	Û	2	39	0	0	32		30	2	16.0	19.8	40.0
GWGU	0	2	30	0	0	32		30	2	16.0	19.8	40.0
RODO	0	0	0	0	21	21		21	21	21.0	-	20.0
#PAS	5	0	6	4	1	16		6	1	4.0	2.2	8 0.0
NOCR	1	0	0	0	0	i		1	1	1.0	-	20.0
CORA	1	0	0	0	0	1		1	1	1.0	-	20.0
NOSH	1	0	0	0	0	1		1	1	1.0	-	20.0
EUST	O	0	0	0	ì	i		1	1	1.0	-	20.0
RST0	0	0	3	1	0	4		3	1	2.0	1.4	40.0
SOSP	0	0	3	3	0	6		3	3	3.0	-	40.0
SNBU	2	0	9	0	0	2		2	2	2.0	-	20.0
#TOT	19	2	94	69	64	248		94	2	49.6	37.9	100.0

Campha'	ll River	Estuar	v Bird	Surveys	s of St	ation :	9 for	Winter	1982-19	83								an.	NTI -
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb	27Feb	Total	Max	Min	Mean		%Freq
#COR	1	3	1	1	2	0	0	0	0	0	0	0	0	8	3	1	1.6	0.9	38.5
DCCO	0	3	1	i	1	Ō	0	0	0	0	0	0	0	6	3	1	1.5	1.0	30.8
PECO	1	Û	Ô	0	1	Û	0	0	0	Û	0	0	0	2	1	1	1.0		15.4
#HER	0	n	0	Õ	Ô	0	Ō	0	0	0	14	0	1	15	14	1	7.5	9.2	15.4
GBHE	Û	۵	Û	Õ	n	Û	Ö	0	0	Q	14	0	1	15	14	1	7.5	9.2	15.4
#SWA	13	n	8	Ô	6	19	8	12	10	15	21	16	20	148	2 1	6	13.5	5.2	84.6
TRUS	13	n	8	ſ	6	19	8	12	10	15	21	16	20	148	21	б	13.5	5.2	84.6
#DAB	0	1	n	1	ũ	0	Ō	0	0	12	4	4	0	2 2	12	1	4.4	4.5	38.5
MALL	0	1	n	1	fì	Ñ	Ď	Ō	Ó	12	4	4	0	22	12	1	4.4	4.5	38.5
#DIV	6	2	A	Ô	Å	5	12	8	8	21	11	21	47	153	47	2	12.8	12.4	92.3
SCAU	n	Õ	n	ń	'n	Û	0	0	1	0	0	0	0	1	1	i	1.0	-	7.7
GRSC	0	0	1	ñ	Ô	0	Ô	Ô	0	0	0	0	Û	1	1	1	1.0	-	7.7
00G0	D.	Û	Ų	N	ß	Û	D.	Ö	0	4	0	0	0	4	4	4	4.0	-	7.7
BUFF	6	2	6	Ď	1	5	12	8	7	11	9	14	23	104	23	1	8.7	5.9	92.3
COME	n	ñ	ñ	ñ	ñ	Ď	0	0	0	4	2	7	10	23	10	2	5.8	3.5	30.8
RBME	n	Ô	1	Õ	3	Õ	0	0	Û	2	0	0	1	7	3	1	1.8	1.0	30.8
DUCK	o A	n	ĥ	Ñ	ĵ	Ō	Ō	0	0	0	0	O	13	13	13	13	13.0	•	7.7
#RAP	n n	Û	2	Ö	Õ	0	Ö	Ô	Û	0	0	0	9	2	2	2	2.0	•	7.7
BAEA	n	n	2	ñ	Ñ	Û	Ō	Ö	0	0	0	0	0	2	2	2	2.0	-	7.7
#SHO	Û	n	Õ	Õ	Õ	Ó	0	1	0	0	0	0	0	1	i	1	1.0	•	7.7
KILL	Ô	ñ	n	ñ	Ď	Ô	Ō	1	0	0	0	0	0	1	1	1	1.0	•	7.7
#GUL	11	3	Õ	Õ	Ŏ	60	10	0	150	0	0	12	2	248	150	2	35.4	54.3	53.8
GULL	0	0	Ď	Ō	Ö	0	0	0	150	0	0	0	0	150	150	150	150.0	-	7.7
MEGU	Õ	Õ	õ	0	0	Û	0	Û	0	0	9	2	0	2	2	2	2.0	-	7.7
HEGU	1	ñ	Û	Ŏ	Ô	0	0	0	0	0	0	0	Û	1	1	1	1.0	•	7.7
GWGU	10	3	Ô	0	0	60	10	Û	0	0	0	10	2	95	60	2	15.8	21.9	46.2
RODO	0	1	Ò	Ō	0	0	Û	0	0	0	0	Û	0	1	1	1	1.0	-	7.7
#PAS	Õ	4	1	0	Û	0	11	8	4	0	0	2	9	39	11	1	5.6	3.8	53.8
NOCR	0	0	0	Ô	0	0	10	8	4	0	0	0	9	31	10	4	7.8	2.6	30.8
RCKI	Ō	Õ	Ō	Ō	0	0	1	0	0	9	0	0	0	1	1	1	1.0	-	7.7
RSTO	Ô	1	0	0	0	0	0	0	0	0	0	Û	0	1	1	1	1.0	-	7.7
SOSP	Û	3	Õ	0	0	0	0	0	0	0	0	2	0	5	3	2	2.5	0.7	15.4
WCSP	Ď	Õ	1	0	0	0	0	0	0	Û	0	0	0	1	1	1	1.0	-	7.7
#TOT	31	14	20	2	12	84	41	29	172	48	50	55	79	637	172	2	49.0	44.5	100.0

Campbel	l River	Estuar	y Bird	Survey	s of Sta	ation		Spring		000	Lillian	20May	29May	Total	Max	Min	Mean	SD	%Freq
Date	06Mar	13Mar	20Mar	26Mar	03Apr	luapr	16Apr	23Apr	01May	08May	1 4May 0	20may Û	0	2	1	1	1.0	-	15.4
#COR	0	0	0	0	0	1	0	0	0	1	0	0	0	2	ĺ	1	1.0	-	15.4
PECO	Û	0	0	0	0	1	0	0	0	1	1	0	ì	12	5	1	2.4	1.9	38.5
#HER	0	O	5	0	4	0	1	0	0	0	1	n	1	12	5	1	2.4	1.9	38.5
GBHE	0	0	5	0	4	0	l	9	U	0	U T	A	0	9	9	9	9.0	-	7.7
#SWA	9	0	0	0	0	0	0	0	0	0	U N	0	n N	9	9	9	9.0	-	7.7
TRUS	9	0	0	0	0	0	0	V	U	0	0	0	n	2	2	2	2.0	-	7.7
#GEE	0	2	0	0	0	0	0	0	0	O O	r D	Û	Ô	2	2	2	2.0	-	7.7
CAGO	0	2	0	0	0	0	0	V	1	4	2	0	Ö	54	15	1	6.8	5.8	61.5
#DAB	6	0	0	11	15	14	1	Ų	U Į	0	Ó	û	n.	4	4	4	4.0	-	7.7
GWTE	0	0	0	0	0	4	0	0	0	0	2	ß	0	46	15	1	6.6	5.6	53.8
MALL	6	0	0	11	15	10	ļ	0	1	0	0	0	ñ	2	2	2	2.0		7.7
BWTE	0	0	0	0	0	0	0	0	0	1	0	0	n	1	ī	1	1.0	-	7.7
NOSL	0	0	0	0	0	0	0	0	Ŋ	1 1	0	n N	0	1	1	1	1.0	-	7.7
AMWI	0	0	0	0	0	0	0	0	U 1	1	7	0	0	158	43	1	15.8	15.1	76.9
#DIV	25	43	1	37	1	18	11	14	7	O O	, D	0	0	114	36	1	16.3	11.0	53.8
BUFF	20	20	0	36	1	17	9	11	0	U A	7	0	0	44	23	1	4.9	7.1	69.2
COME	5	23	1	1	0	1	2	3	1	0	i A	2	1	4	2	1	1.3	0.6	23.1
#RAP	0	0	0	0	0	1	0	0	0	Đ N	υ Λ	2	1	4	2	1	1.3	0.6	23.1
BAEA	0	0	0	0	0	1	0	0	0	U N	n	2	1	7	2	1	1.4	0.5	38.5
#SHO	0	0	0	l	0	2	1	0	0	0	0	2	1	7	2	1	1.4	0.5	38.5
KILL	0	0	0	l	U	2	l n	95	•	30	0	1	Ô	68	35	1	17.0	18.0	30.8
#GUL	0	0	0	0	Ų	2	0	35 25	0	30 0	n	0	0	35	35	35	35.0	-	7.7
BOGU	0	0	0	0	Ų	0	9	35	0	30	0	1	Û	33	30	1	11.0	16.5	23.1
GWGU	0	O	0	0	U	2	0	0	0		0	Λ 1	0	4	2	2	2.0	-	15.4
RODO	0	0 -	0	0	U	0	2	4	0	0 2	U N	1	0	3	2	1	1.5	0.7	15.4
RUHU	0	0	0	0	Ü	0	0	0	0 0	0	0	n	Õ	1	1	1	1.0	-	7.7
BEKI	Û	0	0	0	1	9	0	10	20	9	21	17	9	231	86	5	19.3	21.6	92.3
#PAS	0	5	86	10	9	13	16	16		0	0	0	9	9	9	9	9.0	-	7.7
TRSW	0	0	0	0	0	0	0		0	2	3	0	0	5	3	2		0.7	15.4
VGSW	0	0	0	0	U	0	0	V 1	9	0	7	12	Ö	21	12	2	7.0	5.0	23.1
BASW	0	0	0	0	Ų	0	9	8	9	2	2	3	Ö	111	50	2	10.1	13.5	84.6
NOCR	0	5	50	10	1	0	n	. 0 9	J 1	0	0	0	0	3	2	1	1.5	0.7	15.4
AMRO	0	0	0	0	0	U n	4	. 1	9	2	0	1	Ō	54	35	1	7.7	12.4	53.8
EUST	0	U	35	0	0	2		1 0	-	1	0	0	0		1	1	1.0	-	7.7
YEWA	0	0	0	0			•		0	_	0				1	1	1.0	-	7.7
SAVS	0	0	0	0		0		2 0	_	_	Õ				2	1		0.	
POSP	0	0	i	Ų	0	0		_			Õ				1		1.0	-	15.4
SOSP	0	0	0	_				յ Մ Դ 1	. 0		_			1	1		1.0	-	7.7
WCSP	0	0	0	_	0	(י. 1 1	. 0		_) 1	1		1.0	-	
DEJU	0	0	0		0	(;	נ ע 1) 1	1	3			13	5	ı	1 1.9	1.	
RWBL	0	0	(•) () (_) 2			2 2.0	-	7.7
AMG0		0						•) () 4			4 4.0	-	
HOSP		0						•	•						92	1	2 42.7	21.	6 100.0
#TOT	40	50	92	59	, 30	. 3	ı J	_ 0		- `	-								

Campbe)	l River	Estuar	v Bird	Surveys	of Sta	tion 9		umer 1				m ()	W	Min	Mean	SD	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug		Max	MTH.	5.0	2.8	18.2
#COR	0	3	0	0	0	0	0	7	0	0	0	10	7 7	3 3	5.0	2.8	18.2
CORM	Û	3	0	0	0	0	Û	7	0	0	0	10	3	3 1	1.5	1.0	36.4
#HER	Ô	0	0	1	0	1	0	3	i	0	0	6	3 3	1	1.5	1.0	36.4
GBHE	Ö	0	0	1	0	1	0	3	1	0	0	6	22	7	14.5	10.6	18.2
#DAB	0	0	0	7	0	0	0	22	0	0	0	29	22 22	7	14.5	10.6	18.2
MALL	0	0	0	7	0	Û	0	22	0	0	0	29	5	2	3.5	2.1	18.2
#DIV	0	0	0	2	0	0	0	0	0	0	5	7 7	5 5	2	3.5	2.1	18.2
COME	0	0	0	2	0	0	0	0	0	0	5	7	3	1	1.8	1.0	36.4
#RAP	2	0	1	0	0	0	1	0	3	0	0	7	3	1	1.8	1.0	36.4
BAEA	2	0	1	0	0	0	1	0	3	0	0	2	1	1	1.0	-	18.2
#SHO	Û	1	1	0	0	0	0	0	0	0	0	2	i	1	1.0		18.2
KILL	0	1	1	0	0	0	0	0	0	0 10	9	98	44	2	14.0	14.1	63.6
#GUL	2	0	0	0	6	44	18	0	9		9	30	3	3	3.0	•	9.1
BOGU	0	0	0	0	3	0	0	9	0	0	0	1	1	1	1.0	-	9,1
HEGU	0	0	0	0	1	0	0	0	0	7	9	91	44	2	13.0	14.7	63.6
GWCU	2	0	0	0	2	44	18	0	9	3	0	3	3	3	3.0	-	9.1
BLKI	0	Û	0	0	0	0	0	0	0	ა მ	1	6	3	i	2.0	1.0	27.3
RODO	0	0	9	3	2	0	0	9	0	υ 9	0	1	i	i	1.0	-	9.1
BEKI	1	0	0	0	9	0	0	0	0 8	7	4	141	34	3	12.8	11.2	100.0
#PAS	30	3	18	4	34	9	3	21	0	Ó	0	8	8	8	8.0	-	9.1
VGSW	0	0	0	0	0	0	0	8	3	0	9	35	10	2	5.8	3.2	54.5
BASW	9	0	6	0	2	5	0	10	3 2	7	3	25	7	1	3.1	1.8	72.7
NOCR	4	0	2	0	1	3	3	0	0	0	0	2	2	2	2.0	_	9.1
CBCH	0	0	2	Û	0	0	0	υ 0	0	9	0	1	1	1	1.0	-	9.1
SWTH	0	0	1	0	0	0	0	-	0	0	0	3	2	1	1.5	0.7	18.2
AMRO	2	0	1	0	0	0	0	0	. 3	N	0	46	30	1	11.5	13.2	36.4
EUST	12	0	1	0	30	0	0	0	0	O O	0	1	1	1	1.0		9.1
YEWA	0	0	1	0	Û	Û	0	9	0	0	0	1	1	1	1.0	-	9.1
COYE	0	0	1	0	0	0	9	0	0	0	1	1	1	1	1.0	-	9.1
SAVS	0	0	0	0	0	0	0	. 0	Û	n	Ď	2	2	2		-	9.1
FOSP	0	0	0	2	0	u O	0	0	n	o o	0	4	2	2		-	18.2
SOSP	2	0	2		0	U 1	0	3	0	0	0		3	1		1.0	45.5
RWBL	0	3	0		l n	0	0	0	0	0	0		i	1		-	9.1
PUFI	0	0	1		0 0	0	0	•	0	0	0		1	1		-	9.1
AMG0	1	0	0		42	54	22	-	21	17	19		54	7		15.7	7 100.0
#TOT	35	7	20	17	42	04	44	13	41	11	10	Ų U					

Campbel	l River	Estuary	y Bird	Surveys	of Sta	tion 9	for A	utu n n 1	983	m-4-1	Man	Mia	Mean	SD	%Freq
Date	02Sep	10Sep	18Sep	26Sep	010ct	17 0ct	JUUCT	TONOV	2 INOV	Total	Max	м1и 1	4.8	4.5	44.4
#COR	0	0	Û	0	2	1	5	0	11	19	11	5	8.0	4.2	22.2
CORM	0	0	0	0	Û	9	5	0	11	16	11 2	2	2.0	1.6	11.1
DCCO	Û	0	0	Û	2	0	0	0	0	2		1	1.0	_	11.1
PECO	Û	0	0	0	0	1	0	0	0	i	ì	1	1.0	-	11.1
#HER	0	0	0	0	Û	0	1	0	0	1	1		1.0	_	11.1
CBHE	0	0	0	0	0	0	1	0	0	1	1	1 2	2.0	_	11.1
#SWA	0	0	O	0	0	0	0	0	2	2	2	2	2.0	_	11.1
TRUS	0	0	0	0	Û	0	0	0	2	2	2		2.5	1.3	44.4
#DAB	1	0	0	2	4	3	0	0	0	10	4	1	1.0	1.0	11.1
CWTE	0	0	0	0	1	0	0	0	0	1	1	1	1.5	0.7	22.2
MALL	1	0	0	2	0	0	0	0	0	3	2	1	2.0	1.4	22.2
NOPI	0	0	0	0	1	3	0	0	0	4	3	1	2.0	1.4	11.1
NOSL	0	0	0	0	2	0	0	0	0	2	2	2		4.0	33.3
#DIV	0	3	Û	0	6	0	0	0	11	20	11	3	6.7		11.1
CRSC	0	0	0	0	6	0	0	0	0	6	6	6	6.0	-	11.1
LESC	0	0	O	0	0	0	0	0	10	10	10	10	10.0	-	
HOME	0	0	0	0	0	0	0	0	1	1	1	1	1.0	•	11.1
COME	0	3	0	0	0	0	0	0	0	3	3	3	3.0	-	11.1 22.2
#SHO	0	0	0	15	2	0	Û	0	0	17	15	2	8.5	9.2	
KILL	0	0	0	0	1	0	0	0	0	1	1	1	1.0	•	11.1
GRYE	0	0	Û	0	1	Q	0	0	0	1	1	1	1.0	-	11.1
SHOR	0	0	0	15	0	0	Û	0	0	15	15	15	15.0	-	11.1
#GUL	128	8	0	55	6	0	56	7	2	262	128	2	37.4	46.4	
BOCU	0	1	0	0	0	0	0	0	0	1	1	1	1.0	-	11.1
GWGU	128	. 7	0	55	6	Û	56	7	2	261	128	2	37.3	46.5	
BEKI	0	0	0	0	9	1	0	0	0	1	1	1	1.0	•	11.1
#W00	0	0	0	8	0	0	0	0	1	1	1	1	1.0	-	11.1
NOFL	0	9	0	0	0	0	0	0	1	1	1	1	1.0		11.1
#PAS	0	1	0	3	11	2	1	12	5	35	12	1	5.0	4.7	
STJA	Ò	0	0	0	1	0	0	0	0	1	1	1	1.0	-	11.1
NOCR	0	1	0	0	2	2	1	9	0	15	9	1	3.0	3.4	
CORA	Ö	0	Ô	0	Û	Û	0	Û	1	1	1	1		•	11.1
EUST	Õ	0	0	2	0	0	0	0	0	2	2	2		-	
RSTO	Ũ	0	Û		1	0	0	2	i	4	2	1		0.	
SAVS	0	0	0		1	0	0	0	0	1	1	1		-	
FOSP	0	Û	Õ		0	0	0	0	3	4	3	1		1.	
SOSP	0	9	0		3	Ō	0	1	0		3	1		1.	
RWBL	0	0	0		3	0	0	0	0	3	3	3		-	
#TOT	129	12	0	_	31	7	63	19	32	368	129	7	46.0	41.	1 88.9
#101	143	14	U		91										

Camphe)	l River	Estuar	v Bird	Surveys	of Sta	tion 9	for W	inter	1983-198	14			
Date	10Dec	17Dec	07Jan	23Jan	29Jan	05Feb	13Feb	Total	Max	Min	Mean	SD	%Freq
#COR	4	5	0	1	2	0	0	12	5	1	3.0	1.8	57.1
CORM	0	0	Õ	ī	0	9	0	i	1	1	1.0	-	14.3
DCCO	4	5	Û	ñ	ň	0	0	9	5	. 4	4.5	0.7	28.6
PECO	0	0	9	Ô	2	0	0	2	2	2	2.0	-	14.3
	0	0	1	6	1	Ö	Ö	8	6	1	2.7	2.9	42.9
#HER	Û	ß	1	6	1	0	Ŏ	8	6	1	2.7	2.9	42.9
GBHE	13	0	0	20	4	Õ	Õ	37	20	4	12.3	8.0	42.9
#SWA	13	0	Ð	20	1	Û	Ď	37	20	4	12.3	8.0	42.9
TRUS		1	0	0	Õ	1	Õ	2	1	1	1.0	-	28.6
#DAB	0	1	Û	1	Û	1	0	2	1	1	1.0	-	28.6
MALL	0	1	•	0	6	6	5	33	6	5	5.5	0.5	85.7
#DIV	5	5	6	•	1	0	0	8	6	1	2.7	2.9	42.9
COGO	1	0	6	0	1		5	22	5	2	4.4	1.3	71.4
BUFF	2	5	0	0	Ð O	์ 1	0	2	1	1	1.0		28.6
COME	1	U	U	V	V	1	Ú A	1	1	1	1.0	_ `	14.3
RBME	1	Ü	Ü	0	Ų	0	0	1	1	1	1.0		14.3
#SHO	0	1	0	0	9	0	U	1	1	1	1.0	_	14.3
COSN	0	1	0	0	0	0	0	100	100	1	121.5	186.8	57.1
#GUL	1	0	0	50	400	35	0	486	400	1			14.3
GULL	0	0	0	0	400	0	0	400	400	400	400.0	4F 1	42.9
GWGU	1	0	0	50	0	35	0	86	50	1	28.7	25.1	
#PAS	3	1	0	0	0	0	0	4	3	1	2.0	1.4	28.6
NOCR	0	1	0	0	0	0	0	1	1	1	1.0	-	14.3
EUST	3	0	0	0	0	Û	0	3	3	3	3.0	-	14.3
#TOT	26	13	7	77	413	42	5	583	413	5	83.3	147.5	100.0

Camphel	l River	Estuar	v Bird	Surveys	of St	ation	9	for	Spring 1	984
Date	11Mar	18Mar		Max	Min	Mean		SD	%Freq	
#COR	2	6	8	6	2	4.0		2.8	100.0	
CORM	Ū.	6	6	6	6	6.0		-	50.0	
DCCO	2	Ō	2	2	2	2.0		-	50.0	
#HER	0	2	2	2	2	2.0		-	50.0	
GBHE	Û	2	2	2	2	2.0		-	50.0	
	O O	13	13	13	13	13.0		-	50.0	
#SWA	•		13	13	13	13.0		_	50.0	
TRUS	0	13			4	4.0		_	50.0	
#DAB	0	4	4	4						
MALL	0	4	4	4	4	4.0		-	50.0	
#DIV	22	0	22	22	22	22.0		-	50.0	
BUFF	17	0	17	17	17	17.0		•	50.0	
COME	5	0	5	5	5	5.0		-	50.0	
#W00	1	0	1	1	1	1.0		-	50.0	
NOFL	1	0	1	1	1	1.0		-	50.0	
#PAS	5	7	12	7	5	6.0		1.4	100.0	
EUST	5	0	5	5	5	5.0		-	50.0	
RWBL	Ô	7	7	7	7	7.0		-	50.0	
#TOT	30	32	62	32	30	31.0		1.4	100.0	

Campbel	River	Estuary	Rird	Surveys	s of Si	tation	10 for	Autumn	1982	
-	310ct	OBNOV	13Nov	20Nov	Total	Max	Min	Mean	SD	%Freq
Date		U I	8	0	8	8	8	8.0	-	25.0
HER	0	0	o o	٨	R	Ř	8	8.0	-	25.0
CBHE	0	U	0	0	n	9	2	2.0	-	25.0
#SWA	0	Ü	2	U	4	4	4	2.0	_	25.0
TRUS	0	0	2	U	2	2	4		_	25.0
#DAB	0	0	12	0	12	12	12	12.0	-	
DABL	0	0	3	0	3	3	3	3.0	-	25.0
MALL	Ď	n	5	0	5	5	5	5.0	-	25.0
AMNI	n	ñ	Å	0	4	4	4	4.0	-	25.0
	۸	0	a .	ū	8	8	8	8.0	-	25.0
#DIV	V	v	o o	٥	٥	8	8	8.0	-	25.0
BUFF	0	U	0	U	0	2	2	2.0	_	25.0
#W00	0	Ð	2	U	4	4	4		_	25.0
HAWO	0	0	1	0	ì	i	1	1.0	_	
NOFL	0	0	1	0	1	1	1	1.0	-	25.0
#PAS	2	0	0	0	2	2	2	2.0	-	25.0
CORA	2	ñ	0	0	2	2	2	2.0	-	25.0
#TOT	2	Õ	32	0	34	32	2	17.0	21.2	50.0

Campbel	1 Di	Pakus	ar Diad	Curvey	e of St	ation	10 for	Winter	1982-	1983							.,	CD.	₩T-ne
		11Dec	19Dec	26Dec	03Jan	08Jan		23Jan	28Jan	06Feb	13Feb	26Feb		Total	Max	Min	Mean	SD	%Freq 46.2
Date	05Dec	TIDEC	3	0	1	8	0	0	0	2	0	0	0	16	8	1	2.7	2.7	46.2
#HER	1	1	3	n	1	8	9	0	0	2	9	Û	0	16	8	1	2.7	2.7	38.5
GBHE	U I	0	20	n	Ô	Õ	Ō	7	9	9	0	5	0	50	20	5	10.0	5.8	
#SWA	0	O O	20	ñ	0	Ō	Ô	7	9	9	0	5	0	50	20	5	10.0	5.8	38.5
TRUS	Đ A	U	2	n	Õ	31	16	12	33	0	8	12	2	117	33	1	13.0	12.0	69.2
#DAB	ų.	1	Õ	0	Õ	0	0	0	0	0	0	0	0	1	1	1	1.0		7.7
GWTE MALL	O O	0	2	a	Ô	31	16	12	33	0	8	12	2	116	33	2	14.5	11.9	61.5
MALL #DIV	0	3	1	ñ	n	3	2	5	2	0	6	0	3	25	6	1	3.1	1.6	61.5
BUFF	0	U.	1	n	0	Õ	2	3	2	0	2	0	3	13	3	I	2.2	0.8	46.2
HOME	0	J.	U	n	Ô	3	Ō	2	0	0	0	0	0	8	3	2	2.7	0.6	23.1
COME	N N	Ŋ	n	0	Õ	0	0	0	0	0	4	0	0	4	4	4	4.0	-	7.7
#RAP	1	U N	Ω	Ω	ñ	0	Ò	Ô	i	0	0	Û	0	2	1	1	1.0	•	15.4
	1	O A	0	0	ñ	Ď	Ô	0	0	0	0	0	0	1	1	ì	1.0	-	7.7
BAEA RTHA	U	n	n	n	Ô	ñ	Ö	0	1	0	0	0	0	1	1	1	1.0	-	1.7
	0	r N	0	ñ	n	Ö	Ō	1	0	0	0	Û	0	1	1	1	1.0	-	7.7
#SHO	U A	n	Û	Û	Ñ	Û	Ô	1	0	0	0	0	0	1	1	1	1.0	-	7.7
KILL B e ki	U N	n N	N	n	ñ	1	9	9	1	0	0	0	0	2	1	1	1.0	-	15.4
#w00	Û Û	n	ñ	0	ñ	Ô	Õ	0	0	0	Û	1	Û	1	1	ì	1.0	-	7.7
	0	O A	۸	Ő	ñ	Õ	Ō	Ö	0	0	0	1	0	1	1	1	1.0	•	7.7
NOFL	U N	ı ı	V N	2	1	ñ	ĵ	1	Û	0	0	15	1	24	15	1	4.0	5.5	46.2
#PAS	U A	H. N	o n	ñ	ó	ñ	Õ	1	0	0	0	0	1	2	1	1	1.0	-	15.4
NOCR	0	0	n n	9	1	ñ	Ô	0	0	0	0	Q	Û	1	1	1	1.0	•	7.7
WIWR	•	0	O.	0	Ų	ñ	Û	Ò	Ō	0	0	4	0	4	4	4	4.0	-	7.7
AMRO	0	ν	O.	n	n	n	Õ	Õ	0	Û	0	6	0	6	6	6	6.0	-	7.7
EUST	U O	O O	U N	9	n	n	O	ĵ	0	0	0	0	0	2	2	2	2.0	-	7.7
FOSP	. 0	Ų	U O	n	0	n	Ô	o O	Ō	0	0	2	0	6	4	2		1.4	
SOSP	0	4 ^	0	Ŋ	0	n	0	0	Õ	Ō	0	3	0	3	3	3		-	7.7
RWBL	0	0	26	2	2	43	18	26	46	11	14	33	6	238	46	2	18.3	15.3	100.0
#TOT	2	9	40	2	L	30	10	20	.0										

Camphe	ll River	Estua	rv Bird	Survey	s of St	ation	10 for	Spring	1983							142.	Mana	CD	Freq
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	01May	08May	14May	20May	29May		Max	Min	Mean	SD	30.8
#HER	1	0	0	0	1	0	0	1	0	1	0	0	0	4	1	1	1.0	-	
GBHE	1	Õ	Ō	Ō	1	Û	0	1	0	1	Û	0	0	4	1	1	1.0	-	30.8
#DAB	2	3	Ō	0	2	0	0	16	0	Û	0	0	0	23	16	2	5.8	6.8	30.8
GWTE	9	3	Ō	0	0	0	0	0	0	0	0	0	0	3	3	3	3.0	-	7.7
TEAL	Õ	Õ	Ô	0	0	0	0	7	0	0	0	0	0	7	7	7	7.0		7.7
MALL	2	Ō	0	0	2	0	0	5	0	0	Û	0	0	9	5	2	3.0	1.7	23.1
BWTE	0	Ō	0	0	0	0	0	2	0	0	0	0	0	2	2	2	2.0	-	7.7
CITE	Ď	0	Ō	0	0	Û	0	2	0	0	0	0	0	2	2	2	2.0	-	7.7
#DIV	Õ	Ô	0	0	4	1	0	0	0	0	0	0	0	5	4	1	2.5	2.1	15.4
BUFF	Ō	Ò	0	0	2	1	0	0	0	0	0	0	0	3	2	1	1.5	0.7	15.4
HOME	Ò	0	Ô	0	2	0	0	0	0	Û	0	0	0	2	2	2	2.0	-	7.7
#RAP	2	1	Ō	0	0	0	0	1	0	0	0	0	0	4	2	1	1.3	0.6	23.1
BAEA	2	1	Ò	0	0	0	0	1	0	Û	0	0	0	4	2	1	1.3	0.6	23.1
#SHO	Ō	1	0	0	O	0	0	0	0	0	0	Û	0	1	1	1	1.0	-	7.7
COSN	0	1	Û	0	0	0	0	0	Û	0	9	0	0	1	1	1	1.0	-	7.7
#GUL	0	Ô	9	30	0	0	0	30	0	2	0	0	0	62	30	2	20.7	16.2	23.1
GULL	õ	Õ	Ŏ	30	0	0	0	0	0	0	Û	0	0	30	30	30	30.0	-	7.7
BOCU	õ	Õ	Ō	0	0	0	9	30	0	. 0	0	0	0	30	30	30	30.0	-	7.7
GWGU	Ů	Ô	0	0	0	0	0	0	0	2	0	0	0	2	2	2	2.0	-	7.7
RODO	Ŏ	Õ	Ô	Ô	0	0	0	0	0	0	1	0	0	1	1	1	1.0	-	7.7
HUMM	Õ	ø	0	0	0	0	0	1	0	O	0	0	0	1	1	ì	1.0	•	7.7
ANHU	0	0	Ò	O	0	0	Û	0	1	0	0	0	0	1	1	1	1.0	-	7.7
RUHU	Û	Ô	0	0	0	0	0	0	0	1	1	2	0	4	2	1	1.3	0.6	23.1
#W00	Ō	0	Ô	0	1	0	0	Û	0	Û	0	0	0	1	1	1	1.0	-	7.7
NOFL	Ö	Õ	Ŏ	Ò	i	0	0	0	0	0	0	Û	0	1	1	1	1.0		7.7
#PAS	õ	37	Õ	1	2	24	1	15	1	14	3	13	5	116	37	1	10.5	11.6	84.6
NOCR	Õ	0	Õ	0	0	8	0	2	0	2	0	1	0	13	8	1	3.3	3.2	30.8
BEWR	Õ	Õ	0	Ò	Ô	0	0	0	0	1	0	0	Û	1	1	i	1.0	-	7.7
AMRO	6	4	Ö	1	0	1	1	3	1	9	1	1	1	14	4	1	1.6	1.1	69.2
EUST	0	30	Ô	0	0	9	9	0	0	0	0	4	2	45	30	2	11.3	12.8	30.8
YEWA	0	0	0	0	0	0	0	0	0	1	0	Û	0	1	1	1	1.0	-	7.7
YRWA	0	Ō	Ô	0	1	0	9	0	0	0	0	0	0	1	1	1	1.0	-	7.7
COYE	Õ	0	Ō	0	0	0	0	Û	Û	1	0	0	0	1	1	1	1.0	-	7.7
SOSP	Õ	1	0	Û	0	0	0	0	0	2	0	0	0	3	2	1		0.7	
RWBL	0	2	Õ	0	1	6	0	10	0	5	2	6	1	33	10	1	4.1	3.2	
YHBL	Û	0	0	0	Ō	0	0	0	0	0	0	1	0	1	1	1		-	7.7
AMCO	0	ñ	0	0	Ö	Ô	0	0	0	2	0	0	0	2	2	2		-	7.7
PASS	0	0	Õ	0	0	0	0	0	0	0	O	0	1	1	1	1		-	7.7
TOT#	5	42	0	31	10	25	1	64	2	18	5	15	5	223	64	1	18.6	19.1	92.3
HIOI	J	70	v																

Cambel	River	Estuary	Bird	Surveys	of Sta	tion 1	0 for	Summer				,		W!=	Monn	SD	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug		Max	Mip	Mean 2.0	תני	9.1
#HER	0	2	0	0	0	0	Û	0	0	0	0	2	2	2		-	9.1
CBHE	0	2	Ō	0	0	0	0	Û	0	0	0	2	2	2	2.0	-	9.1
#DAB	Õ	3	0	0	0	0	0	0	0	0	0	3	3	3	3.0	•	9.1
MALL	Û	3	Ō	0	Û	Û	0	0	0	0	0	3	3	3	3.0	1.5	27.3
#RAP	Å	n	2	0	1	0	Û	()	0	0	0	7	4	1	2.3		27.3
BAEA	4	0	1	0	1	0	0	0	0	0	0	6	4	i	2.0	1.7	9.1
MERL	Ö	Ô	i	0	0	0	0	0	0	0	0	l	1	1	1.0	- 1.0	27.3
#GUL	ñ	0	0	0	1	0	0	0	2	3	0	6	3	1	2.0		27.3
GWGU	Õ	Õ	Ö	0	1	0	0	0	2	3	0	6	3	1	2.0	1.0	9.1
BTPI	Ô	Ô	2	0	0	0	0	0	0	0	0	2	2	2	2.0	13.0	90.9
#PAS	31	3	27	1	36	0	ii	5	7	2	11	134	36	1	13.4	13.0	9.1
WIFL	0	Ō	1	0	0	9	0	0	0	0	0	1	1	1	1.0	1.4	18.2
BASW	0	Ô	0	0	3	0	0	0	Û	0	1	4	3	1	2.0		9.1
NOCR	2	Ō	Û	Û	0	0	0	0	0	0	0	2	Z	2	2.0	-	9.1
CORA	Ō	Ō	0	0	0	0	O	0	0	0	9	9	y	9	9.0	-	9.1
SWTH	Ô	Û	3	0	0	0	0	0	0	O	0	3	3	3	3.0	0.5	63.6
AMRO	2	1	2	1	0	0	2	2	0	2	0	12	2	1	1.7	0.5	9.i
CEWA	Ō	0	0	9	Û	0	2	0	0	8	Û	2	2	2	2.0		36.4
EUST	22	Ô	8	0	30	0	0	0	4	0	0	64	30	4	16.0	12.1 0.7	18.2
YEWA	1	Ô	2	0	0	0	Û	0	Ç	0	0	3	2	1	1.5		18.2
COYE	Ō	Ô	2	0	0	0	1	0	0	0	0	3	2	1	1.5	0.7	9.1
RST0	Ô	Ò	3	9	0	0	0	0	Û	0	0	3	3	3	3.0	-	9.1
FOSP	0	Ò	Û	0	0	Û	0	1	0	0	0	1	1	1	1.0	0.7	18.2
SOSP	Ô	0	1	0	0	0	2	0	0	0	0	3	Z	1	1.5		
RWBL	4	2	3	0	3	0	0	2	0	0	Û	14	4	2	2.8	0.8	
PUFI	Ö	Ō	2	9	0	0	0	0	0	0	0	2	2	2		-	9.1
HOFI	Õ	Ō	0	0	0	0	0	0	0	0	ì	1	1	1	1.9	n 7	9.1
AMGO	õ	Ō	0	0	0	0	4	0	3	0	0	7	4	3		0.7	
#TOT	35	8	31	1	38	9	11	5	9	5	11	154	38	1	15.4	13.7	90.9

Camphe)	l River	Estuary	y Bird	Surveys	of Sta	tion 1	0 for	Autumn						CD.	er.
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov	27Nov	Total	Max	Min	Mean	SD	%Freq
#COR	02006	n	U	0	0	0	0	0	1	1	1	1	1.0	-	11.1
	υ n	0	ñ	n	ß	ñ	Ð	0	1	1	1	1	1.0	-	11.1
MROO	0	O.	A	10	Ř	Ă	ě	0	21	43	21	4	10.8	7.3	44.4
#DAB	U	0	0	10	Û.	n	ñ	ñ	21	31	2 1	10	15.5	7.8	22.2
MALL	0	U	0		a	Á	ñ	ñ	0	12	8	4	6.0	2.8	22.2
Iqon	0	U	V	0	0	41 n	0	0	10	11	10	1	5.5	6.4	22.2
#DIV	0	1	U	U	V	V	U A	U A	10	10	10	10	10.0	_	11.1
HOME	0	0	0	U	Ü	U	V	U		10	10	10	1.0	_	11.1
DUCK	0	1	0	9	0	Ü	V	U	0	1	1	1		_	11.1
#RAP	0	0	0	0	0	1	0	U	U	1	1	1	1.0		11.1
RTHA	0	0	0	0	0	1	0	0	0	l	1	1	1.0	-	
#GUL	0	2	0	0	0	0	0	0	0	2	2	7	2.0	-	11.1
GWGU	0	2	0	0	0	0	0	0	0	2	2	2	2.0		11.1
#PAS	ñ	0	0	0	52	37	0	0	0	89	52	37	44.5	10.6	22.2
NOCR	ñ	Ď	Ò	Ó	0	15	0	0	0	15	15	15	15.0	-	11.1
AMRO	0	ñ	Õ	Ō	12	3	0	0	0	15	12	3	7.5	6.4	22.2
EUST	N N	0	ñ	ñ	36	10	O	0	O	46	36	10	23.0	18.4	22.2
	٥	0	0	n	1	0	Õ	0	0	1	1	1	1.0	-	11.1
SOSP	0	n N	n	v n	1	n.	n	ň	Ď	1	1	1	1.0	-	11.1
RWBL	U	U	Ų	V A	1	٨	A	n	ñ	ĵ	2	2	2.0	-	11.1
PUFI	U	U	V	V	4	V	ų V	V n	'n	ū	ā	9	9.0		11.1
PISI	0	Ü	Ü	U	Ų 40	9	Ų	U	70	147	60	2	29.4	23.3	55.6
∦T∩T	n	3	0	10	60	42	Ű	U	32	147	OU	J	43.4	40.0	30.0

Comphel	l River	Estuary	Rird	Surveys	of Sta	tion 1	0 for	Winter	1983-19	984			
-					29Jan	05Feb		Total	Max	Min	Mean	SD	#Freq
Date	10Dec	17Dec	07Jan	700 an	200 an	001.00	10100	7	1	1	1 0	_	28.6
#HER	0	0	0	0	1	ì	Ų	4	7		1.0		28.6
CBHE	O	0	0	0	1	1	Ð	2	1	1	1.0	-	
	n	n	2	1	Λ	n.	0	6	3	3	3.0	-	28.6
#SWA	Ų	U	J	0	۸	٥	ñ	ĥ	ર	3	3.0		28.6
TRUS	0	Ü	3	J	Đ	U	U	0	-	ſ	2.7	2.1	42.9
#DIV	1	Û	2	0	0	5	9	ğ	J	1		4.1	_
COGO	6	ñ	2	n	0	0	0	2	2	2	2.0	-	14.3
	U	0	٨	٥	ń	5	ń	ĥ	5	1	3.0	2.8	28.6
BUFF	1	U	U	U	U	J.	٥	1	1	1	1.0	_	14.3
#PAS	0	0	0	0	0	1	Ü	1	1	1			
WREN	n	Ĥ	8	0	0	1	0	1	1	1	1.0	*	14.3
	1	ň	ζ	1	1	7	Λ	17	7	1	3.4	2.6	71.4
#TOT	Ţ	Ų	J	J	1	P	٧	-,					

Campbel	l River	Estuar	y Bird	Surveys	of S	tation	10 for	Spring	198
Date	11Mar	18Mar		Max	Min	Mean	SD	Freq	
#HER	0	1	1	1	1	1.0	-	50.0	
GBHE	Ô	i	1	1	1	1.0	-	50.0	
#DAB	0	2	2	2	2	2.0	-	50.0	
MALL	0	2	2	2	2	2.0	-	50.0	
#DIV	1	9	1	ì	1	1.0	-	50.0	
COGO	1	0	1	1	1	1.0	-	50.0	
#PAS	1	2	3	2	1	1.5	0.7	100.0	
AMRO	1	0	1	1	1	1.0	-	50.0	
FOSP	Ñ	2	2	2	2	2.0	-	50.0	
#TOT	2	5	7	5	2	3.5	2.1	100.0	

Campbell	River	Estuar	v Bird	Surveys	s of St	ation	11 for	Autum	1982	
Date	310ct	08Nov	13Nov	20Nov	Total	Max	Min	Mean	SD	%Freq
#HER	0	0	1	0	1	1	1	1.0	-	25.0
CBHE	Ō	0	1	Û	1	1	1	1.0	•	25.0
#DAB	Ô	0	0	5	5	5	5	5.0	-	25.0
WODU	Ô	Ö	Ò	1	1	1	1	1.0	-	25.0
MALL	Ð	0	0	4	4	4	4	4.0	-	25.0
#DIV	Û	0	Ō	11	11	11	11	11.0	•	25.0
BUFF	Ô	Ö	Ô	11	11	11	11	11.0	-	25.0
#SHO	Õ	4	Ō	0	4	4	4	4.0	-	25.0
COSN	Õ	i	Õ	0	1	1	1	1.0	-	25.0
SHOR	Õ	3	Õ	Ô	3	3	3	3.0	-	25.0
#GUL	ñ	Ð	3	6	9	6	3	4.5	2.1	50.0
GWGU	ñ	Ô	3	6	9	6	3	4.5	2.1	50.0
#W00	Õ	Ō	1	Ö	1	1	ì	1.0	•	25.0
DOWO	Û	Õ	1	Ô	1	1	1	1.0	-	25.0
#PAS	Õ	Õ	Ō	1	1	1	1	1.0	-	25.0
AMRO	Ô	Õ	0	1	ī	1	ī	1.0	-	25.0
#TOT	Ď	4	5	23	32	23	4	10.7	10.7	75.0

Campbel	l River	Estua	ry Bird	Survey	s of St	ation	11 for	Winter				007 1	OPD-L	Takal	Vov	Min	Mean	SD	%Freq
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb	Zireb	Total	Max	71111 1	1.8	1.0	30.8
#HER	0	0	9	2	3	0	0	0	0	0	0	1	1	1)	1		1.0	30.8
GBHE	n	Ď	Ō	2	3	Û	0	Û	0	0	0	1	1	7	J	1	1.8	1.0	7.7
#SWA	ñ	õ	0	0	0	0	0	0	2	0	0	0	0	Z	2	2	2.0	-	7.7
TRUS	ñ	Û	Ô	0	0	0	0	0	2	0	0	0	O.	2	Z	7	2.0	2.4	
#DIV	a	g	6	ñ	1	0	1	0	3	0	0	1	1	30	9	1	3.8	3.4	61.5
BUFF	a	R	6	Ď	1	0	1	0	3	0	0	i	1	30	9	1	3.8	3.4	61.5
#RAP	J A	Λ	n.	n	Ô	Ð	Ö	0	0	Û	0	0	1	ì	1	1	1.0	-	7.7
	U.	n	n	n	Ď	Ô	Ō	0	0	0	0	0	1	1	1	1	1.0	-	7.7
COHA	0	Û	n	A	fì	Õ	Ō	Ò	0	0	0	2	0	2	2	2	2.0	-	7.7
#GUL	U	U A	0	n	A	ก	ñ	ň	0	0	0	2	0	2	2	2	2.0	-	7.7
GWGU	U	U	U A	0	n n	n	ñ	Ô	Ŏ	Ô	0	0	0	1	1	1	1.0	-	7.7
#W00	1	V	Ü	v	O A	n.	ก	n	ñ	Ō	0	Û	0	1	1	1	1.0	-	7.7
NOFL	1	Ü	1	υ Λ	U 17	0	n	0	1	a	3	3	8	60	27	1	8.6	9.9	53.8
#PAS	27	V	i A	ų A	17	U N	O.	n.	1	ñ	Ñ	Ô	3	25	17	1	6.3	7.3	30.8
NOCR	4	U	U	V	17	V	U N	N.	U T	Û	3	ñ	0	4	3	1	2.0	1.4	15.4
GCKI	1	0	U	V	Ü	U A	0	O A	٨	۵	n	Ď	3	3	3	3	3.0	-	7.7
AMRO	0	Q	V	U	V	Ŋ	0	U A	ľ	n.	n	2	ñ	3	2	1	1.5	0.7	15.4
EUST	1	0	0	U	V	V	U	V	U A	O A	n	Λ	1	1	1	1	1.0	-	7.7
POSP	0	0	0	U	V	U	บ	U	0	U A	V n	1	n	วิ	1	1	1.0	-	23.1
SOSP	1	0	1	0	0	U	U	Ų	V	V	0	υ Τ	1	1	1	1	1.0	_	7.7
DEJU	0	0	0	0	0	0	Ü	Ų.	U	ľ	U A	Ų A	Ų	20	20	20	20.0	_	7.7
PISI	20	0	0	9	0	0	0	9	V	V	V	7	U 11	103	37	1	10.3	11.9	
#TOT	37	8	7	2	21	0	ì	U	b	Ų	Í	1	11	103	41	1	10.0	11.0	1010

Campbe	ll River	Estua	rv Bird	Survey	s of St	ation	11 for	Spring	1983										
Date	06Mar	13Mar	20Mar	26Nar	03Apr	10Apr	16Apr	23Apr	01May	08May	14May	20May	29May	Total	Max	Min	Mean	SD	%Freq
#DAB	0	0	0	0	0	O.	0	2	0	0	0	0	0	2	2	2	2.0	-	7.7
MALL	0	Ō	Ō	0	0	0	0	2	0	0	0	0	0	2	2	2	2.0	-	7.7
#DIV	n	1	Ď	0	Ō	3	0	0	0	9	0	0	0	4	3	1	2.0	1.4	15.4
BUFF	Û	1	0	Ō	Ō	2	0	0	0	Û	9	0	0	3	2	1	1.5	0.7	15.4
COME	Ð	Ō	Ô	Ô	0	1	0	0	0	0	0	. 0	0	1	1	1	1.0	-	7.7
#RAP	0	Õ	Õ	Ō	Ò	0	0	1	0	0	0	0	0	1	1	1	1.0	-	7.7
BAEA	Ď	Õ	Ö	Ō	Ö	0	0	1	O	0	0	0	0	1	1	1	1.0	•	7.7
#SHO	Õ	Õ	0	Ō	0	1	0	0	0	0	0	0	0	1	1	1	1.0	•	7.7
COSN	Ò	0	Ö	Ö	0	1	Û	0	0	0	0	0	0	1	1	1	1.0	-	7.7
#GUL	Ò	0	0	0	0	1	0	16	0	0	0	6	Û	23	16	1	7.7	7.6	23.1
BOCU	0	Ò	0	0	0	0	0	16	0	0	0	0	0	16	16	16	16.0	-	7.7
C₩GU	Ō	Ō	0	0	0	1	0	0	0	0	0	6	0	7	6	1	3.5	3.5	15.4
RUHU	Ō	0	ß	0	0	1	0	0	0	3	0	4	0	8	4	1	2.7	1.5	23. 1
BEKI	0	Ó	0	0	Û	0	0	0	0	1	0	0	0	1	1	1	1.0	-	7.7
#PAS	Ò	102	Ó	2	0	7	0	5	0	11	1	10	1	139	102	1	17.4	34.4	61.5
NOCR	O	0	0	2	0	0	0	3	0	0	i	0	1	7	3	1	1.8	1.0	30.8
BUSH	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2	2	2.0	-	7.7
WIWR	Ó	1	0	0	0	0	0	0	0	0	Û	0	0	1	1	1	1.0	-	7.7
AMRO	0	100	0	0	0	3	0	2	0	3	0	0	0	108	100	2	27.0	48.7	30.8
EUST	0	0	0	0	0	2	0	0	0	1	0	10	0	13	10	1	4.3	4.9	23.1
YEWA	Û	0	0	Û	Û	0	0	0	0	1	0	9	0	1	1	1	1.0	-	7.7
RST0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1.0	-	7.7
SOSP	0	1	0	9	0	1	0	0	0	2	0	0	0	4	2	1	1.3	0.6	23.1
RWBL	0	0	0	0	0	9	0	0	0	1	0	0	0	1	1	1	1.0	-	7.7
PUFI	0	0 -	0	0	0	1	0	9	0	0	0	0	0	i	1	1	1.0	-	7.7
#TOT	0	103	0	2	0	13	0	24	0	15	ì	20	1	179	103	1	22.4	33.8	61.5

Camphel	l River	Estuar	v Bird	Surveys	of Sta	tion 1	for	Summer							W	CD	V Ence
Date	11Jun	20Jun	26Jun	iljul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug		Max	Min	Mean	SD	%Freq
#DAB	9	0	0	0	0	0	0	0	0	0	0	9	9	9	9.0	-	9.1
MALL	9	Õ	Ö	Ö	0	0	0	0	0	0	0	9	9	9	9.0	-	9.1
#SHO	Õ	ñ	Õ	Ö	0	0	0	0	9	0	2	2	2	2	2.0	•	9.1
LGPL	ß	ñ	ð	Ô	0	0	8	0	0	0	2	2	2	2	2.0	-	9.1
#GUL	ñ	Õ	Ō	Ō	0	O	0	0	1	0	0	1	1	1	1.0	-	9.1
GWGU	õ	Õ	Ð	0	0	0	0	0	1	0	0	1	1	1	1.0	-	9.1
BTPI	Û	Ñ	1	Ō	0	0	0	0	0	0	0	1	1	1	1.0	-	9.1
ANHU	0	Ŏ	1	Û	0	Û	0	0	0	0	0	1	1	1	1.0	-	9.1
#W00	N	ñ	Ō	0	0	0	9	1	0	0	0	1	1	1	1.0	-	9.1
NOFL	Õ	0	Ō	Ō	0	0	0	1	0	0	0	1	1	1	1.0	-	9.1
#PAS	13	0	23	0	8	0	14	3	3	0	6	70	23	3	10.0	7.2	63.6
WIFL	0	Õ	1	Ô	Ō	0	0	0	Û	0	0	1	1	1	1.0	-	9.1
STJA	ñ	Ď	0	Ô	0	0	0	0	1	0	0	1	1	1	1.0	•	9.1
NOCR	3	Õ	4	Ó	0	0	Û	Û	0	0	0	7	4	3	3.5	0.7	18.2
CBCH	Ď	ĵ	Ō	0	0	0	0	0	0	0	2	2	2	2	2.0	-	9.1
GCKI	Ô	Ô	0	0	0	0	0	O	0	0	4	4	4	4	4.0	-	9.1
SWTH	0	0	4	Ō	0	0	0	0	Û	Û	Û	4	4	4	4.0	-	9.1
AMRO	2	0	1	0	2	0	1	3	0	0	0	9	3	1	1.8	0.8	45.5
CEWA	0	Ď	4	0	0	0	0	0	Q	0	0	4	4	4	4.0	-	9.1
EUST	6	Õ	0	0	б	0	8	0	0	0	0	20	8	6	6.7	1.2	
YEWA	n	Ñ	3	Ö	0	0	0	0	0	0	0	3	3	3	3.0	-	9.1
COYE	ů	Õ	ð	Ô	0	0	1	0	0	0	0	1	1	1	1.0	•	9.1
SOSP	ñ	Ô	2	0	Û	0	0	0	0	0	0	2	2	2	2.0	-	9.1
RWBL	2	ñ	1	0	0	0	0	Û	1	Û	0	4	2	1	1.3	0.6	
PUFI	9	ñ	3	Ō	0	0	0	0	0	0	0	3	3	3	3.0	-	9.1
PISI	n	A	0	Ô	Ö	0	2	0	0	0	0	2	2	2	2.0	•	9.1
AMGO	0	0	0	Ö	0	0	2	0	1	Û	0	3	2	1	1.5	0.7	
#TOT	22	0	25	Ō	8	0	14	4	4	0	8	85	25	4	12.1	8.5	63.6

Campbel	l River	Estuary	Bird	Surveys	of Sta	tion 1	1 for	Autumn					М	CD.	¥E=oo
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov	27Nov	Total	Max	Min	Mean	SD	Treq
#HER	OPDCD.	1050	10007	1	ß	Û	0	0	0	1	1	1	1.0	•	11.1
	0	n	n	1	0	Ô	0	0	0	1	1	1	1.0	-	11.1
GBHE	v	0	n	0	Λ	ŭ	Ď	0	1	1	1	1	1.0	-	11.1
#DIV	U	U	U A	٥	O.	n	ñ	n	1	1	1	i	1.0	-	11.1
HOME	V	U	U	V	V	٥	0	6	ภ	1	1	1	1.0	-	11.1
BEKI	0	U	1	U	U C1	0 62	ν	3	2	132	62	2	26.4	32.1	55.6
#PAS	0	0	0	4	61		0	υ 1	0	14	12	2	7.0	7.1	22.2
NOCR	0	0	0	0	12	2	U	U A	0	2	9	2	2.0	-	11.1
CORA	0	0	0	0	0	0	V	U	4	43	31	4	14.3	14.6	33.3
AMRO	0	0	0	4	31	8	U	U	V	43	J I	1	1.0	-	11.1
VATH	0	0	0	G	0	1	9	υ	Ų	1	ì	1			11.1
CEWA	0	0	0	0	5	0	0	0	0	5	5	5	5.0		11.1
EUST	0	0	0	0	0	50	0	0	0	50	50	50	50.0	-	
RST0	0	0	0	0	1	0	0	0	0	1	1	ł	1.0	-	11.1
SOSP	ñ	ñ	0	0	2	1	0	0	0	3	2	1	1.5	0.7	22.2
GCSP	n	Ď	Ô	9	2	0	0	0	0	2	2	2	2.0	-	11.1
DEJU	n.	n	n.	n	fì	n	0	3	0	3	3	3	3.0	-	11.1
	O N	0	n	0	1	ñ	9	0	0	1	1	1	1.0	-	11.1
RWBL	U N	ν .	0	n	1	Ň	Õ	Ö	Ó	3	3	3	3.0	-	11.1
HOFI	U	U	U A	0	ე ე	0	A	n	ñ	3	3	3	3.0	-	11.1
PISI	V	U	U	0	J	ν	Λ	0	ň	1	1	1	1.0	-	11.1
AMG0	0	U	V	U	1	U	0	ປ າ	3	135	62	1	22.5	30.2	
#TOT#	0	0	1	5	6 i	62	U	3	ა	199	02	1	22.0	30.2	3011

Cambel	l River	Estuar	v Bird	Surveys	of Sta	tion 1	1 for	Winter	1983-19	984				
Date	10Dec	17Dec	07.jan	23Jan	29Jan	05Feb	13Feb	Total	Max	Min	Mean	SD	%Freq	
#DAB	16	5	0	0	0	0	0	21	16	5	10.5	7.8	28.6	
•	10	1	Λ	Õ	n	Ô	0	3	2	1	1.5	0.7	28.6	
GWTE	4	1	V n		n	٥	Û	15	11	4	7.5	4.9	28.6	
MALL	11	4	U	0	v	0		3	3	3	3.0	_	14.3	
AMVI	3	0	0	0	0	U	0	•	•		6.5	6.4	28.6	
#DIV	11	2	0	0	0	Ü	O	13	11	2				
C0G0	2	0	0	0	0	0	0	2	2	2	2.0	-	14.3	
BUFF	9	2	0	0	0	0	0	11	9	2	5.5	4.9	28.6	
#RAP	ñ	Ō	Ô	0	0	0	1	1	i	1	1.0	-	14.3	
	Û	Õ	ñ	n	n	0	1	1	1	1	1.0	•	14.3	
BAEA	-	-	Û	Û	9	Ō	Ō	14	14	14	14.0	-	14.3	
#PAS	0	14	V A	υ Λ	_	٥	0	1	1	1	1.0	_	14.3	
SOSP	0	1	V	U	0	0	0		2	ŝ	3.0		14.3	
DEJU	0	3	0	0	0	U	U	3	J	-			14.3	
PISI	0	10	0	0	0	0	0	10	10	10	10.0	••		
#TOT	27	2 1	0	0	0	0	1	49	27	1	16.3	13.6	42.9	

Campbell Date #DIV BUFF #WOO NOFL #PAS NOCR	1 River 11Mar 2 2 0 0		Total 2 2 1 1 1 1 3	Surveys Max 2 2 1 1 1 3	Min 2 2 1 1 11 3	Mean 2.0 2.0 1.0 1.0 11.0 3.0	11 for SD	Spring 19 %Freq 50.0 50.0 50.0 50.0 50.0	84
NOCR AMRO	0	3 5	3 5	3 5	3 5	3.0 5.0	-	50.0 50.0	
FOSP #TOT	0 2	3 12	3 14	3 12	3 2	3.0 7.0	- 7.1	50.0 100.0	
# IVI	-				_				

Campbel	l River	Estuary	/ Bird	Surveys	of Sta	ation	12 for	Autumn	1982		
Date	310ct	08Nov	13Nov	20Nov		Total	Max	Min	Mean	SD	AFreq
#COR	8	0	0	0	0	8	8	8	8.0	-	20.0
CORM	8	0	0	0	0	8	8	8	8.0	-	20.0
#HER	5	1	0	3	5	14	5	1	3.5	1.9	80.0
GBHE	5	1	0	3	5	14	5	1	3.5	1.9	80.0
#DIV	0	1	0	3	0	4	3	1	2.0	1.4	40.0
BUFF	0	1	0	3	0	4	3	1	2.0	1.4	40.0
#RAP	0	9	0	0	1	1	1	1	1.0	-	20.0
BAEA	0	0	0	0	1	i	1	1	1.0	-	20.0
#GUL	60	14	0	0	1	75	60	1	25.0	31.0	60.0
GULL	0	14	0	0	0	14	14	14	14.0	-	20.0
GWGU	60	0	0	9	1	61	60	1	30.5	41.7	40.0
#PAS	3	2	0	0	0	5	3	2	2.5	0.7	40.0
NOCR	2	0	0	0	0	2	2	2	2.0	-	20.0
RST0	0	1	0	0	0	1	1	1	1.9	-	20.0
SOSP	1	0	0	0	Û	1	1	1	1.0	-	20.0
RECR	0	1	0	0	0	1	1	1	1.0	-	20.0
#TOT	76	18	0	6	7	107	76	6	26.8	33.3	80.0

Campbe.	ll River	r Estua	ry Bird	Survey	s of St	ation		Winter		1983	190-l	actick	27Feb	Total	Max	Min	Mean	SD	%Freq
Date	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	28Jan	06Feb	13Feb	26Feb	0	3	2	1	1.5	0.7	15.4
#L00	2	0	0	0	9	1	0	0	0	0	0	0	Û	2	2	2	2.0	-	7.7
RTLO	2	0	0	0	0	0	0	0	0	0	0	0	U A	1	1	1	1.0	_	7.7
COLO	0	0	0	0	0	1	0	0	0	0	V	0	V N	8	Å	1	2.7	1.5	23.1
#COR	3	0	1	O	0	0	0	0	Ü	Ų	4	U A	U A	8	4	1	2.7	1.5	23.1
DCC0	3	0	1	Û	0	0	0	U	U	Û	4	O O	U.	38	10	1	5.4	3.1	53.8
#HER	8	4	5	10	0.	1	0	7	0	9	3	U 0	N	38	10	1	5.4	3.1	53.8
GBHE	8	4	5	10	0	1	0	7	Û	U	3	U A	0	1	10	1	1.0	-	7.7
#SWA	0	0	1	0	0	O	0	0	V	Ŋ	0	ų n	V N	1 1	1	1	1.0	-	7.7
MUSW	0	0	1	0	0	0	0	0	V	U	U A	V n	O A	2	2	2	2.0	_	7.7
#DAB	0	0	0	0	0	0	0	0	IJ	2	0	U A	0	2	2	2	2.0		7.7
MALL	0	0	0	0	9	0	0	0	U	2	0	4	0	38	18	1	4.8	5.5	61.5
#DIV	4	0	2	1	4	0	l	V	U	18	0	4	4	9	4	1	1.8	1.3	38.5
BUFF	1	0	0	0	1	0	1	0	U	0	V	2	4 n	28	18	1	4.7	6.6	46.2
COME	3	0	2	1	2	0	0	0	0	18	0	Δ	V A	1	1	1	1.0	-	7.7
RBME	0	0	0	0	1	0	0	U	Û	0	0	0 2	1	8	2	1	1.3	0.5	46.2
#RAP	0	0	0	1	1	0	2	Ü	0	1	Ų		1	8	2	1	1.3	0.5	46.2
BAEA	0	Û	0	1	1	0	2	0	U	l •	U	2 6	14	55	16	1	7.9	5.9	53.8
#GUL	0	1	0	0	16	0	0	10	0	ĵ	1	•	14	J J 7	7	7	7.0	-	7.7
CULL	Û	0	0	0	9	0	0	0	0	0	U	0	1	48	16	1	6.9	5.2	53.8
GWGU	0	1	0	0	16	0	0	10	0	7	1	0	! 0	₹ 0 1	10	1	1.0	-	7.7
BEKI	0	0	0	0	Û	1	0	0	0	Ŋ	Ų	0	0	1	1	1	1.0		7.7
#W00	0	9	0	0	0	9	0	0	0	Ų	Ų	1	-	1	1	1	1.0	_	7.7
NOFL	Û	0	0	0	0	0	0	0	0	Ų.	0	1 2 0	0 7	105	26	4	13.1	8.3	61.5
#PAS	0	0	0	5	19	0	4	17	0	26	j		6	51	19	4	10.2	7.2	38.5
NOCR	0	0	0	0	19	0	4	17	0	0	5	0	o N	4	4	4	4.0	,,,,	7.7
CBCH	0	0	0	0	0	0	0	0	ŋ	0	U	4	0	1	1	1	1.0	_	7.7
WIWR	0	0	0	0	0	0	0	9	V	0	0	1		1	1	1	1.0		7.7
HETH	0	0	0	Û	0	9	0	0	U	U	1	V	0	3	2	1	1.5	0.7	15.4
AMRO	0	0	0	0	0	0	0	0	9	9	Ų	Z ^	U T	J 1	1	1	1.0	V.1	7.7
EUST	0	0	0	0	Û	0	0	0	0	0	1	V	•	1	1	ì	1.0	_	7.7
SOSP	0	0	0	0	0	0	0	Ü	V	0	0	1	0	26	26	26		_	7.7
DEJU	0	0	Û	0	0	0	0	0	Û	26	Ų	U	0	20 5	40 5	5		_	7.7
HOFI	O	0	0	5	0	Û	0	0	0	0	0	9	0	12	12	12		-	7.7
PISI	0	0	0	0	0	0	0	0	0	0	0	12	0		54	3		15.9	
#TOT	17	5	9	17	40	3	7	34	0	54	15	33	26	260	54	J	41.1	10.3	35.0

Campbe.	ll River	Estua	ry Bird	Survey	s of St	ation	12 for	· Spring	1983										4.7
Date	06Mar	13Mar	20Mar	26Mar		10Арг	16Apr	23Apr	01May	08May	14May	20May	29May	Total	Max	Min	Mean	SD	XF req
#GEE	9	1	0	0	O	0	0	0	0	0	0	0	0	1	1	1	1.0	-	7.7
SNGO	0	1	0	0	0	0	0	0	0	0	0	0	0	i	1	1	1.0	-	7.7
#DAB	2	0	0	0	0	0	0	0	()	0	0	0	0	2	2	2	2.0	-	7.7
MALL	2	0	Ô	0	0	0	0	0	0	0	0	0	0	2	2	2	2.0	-	7.7
#DIV	11	6	2	14	6	0	0	1	4	10	0	6	0	60	14	1	6.7	4.3	69.2
COGO	0	Õ	Ō	0	3	Ô	0	0	0	0	0	0	Û	3	3	3	3.0	-	7.7
COME	11	6	2	14	3	0	0	1	4	10	0	5	0	56	14	1	6.2	4.5	69.2
DUCK	0	Ö	Ō	0	0	0	0	0	0	0	0	1	0	1	1	1	1.0	-	7.7
#RAP	0	Ô	Ō	1	0	0	0	0	0	0	1	1	4	7	4	1	1.8	1.5	30.8
BAEA	Û	Ō	0	1	0	0	0	0	0	0	1	1	4	7	4	1	1.8	1.5	30.8
#GUL	Ō	0	Ô	3	O	0	0	35	0	0	0	0	0	38	35	3	19.0	22.6	15.4
BOGU	Ö	0	Û	0	0	0	0	35	0	0	Û	Û	0	35	35	35	35.0	-	7.7
GWGU	0	0	0	3	0	0	0	0	0	0	0	0	0	3	3	3	3.0	-	7.7
HUMM	Ò	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1.0	•	7.7
RUHU	0	0	0	0	Û	1	0	0	Û	2	0	0	0	3	2	1	1.5	0.7	15.4
BEKI	0	1	1	0	0	0	9	0	O	1	0	0	0	3	1	1	1.0	-	23.1
#PAS	19	0	0	0	0	3	3	3	0	8	7	9	79	131	79	3	16.4	25.9	61.5
PSFL	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2	2	2.0	•	7.7
TRSW	0	0	0	0	0	0	0	O	0	0	0	0	15	15	15	15	15.0	-	7.7
BASW	0	0	0	0	Ð	0	0	0	0	0	0	3	0	3	3	3	3.0	-	7.7
NOCR	19	0	0	0	0	2	0	3	0	2	7	5	1	39	19	1	5.6	6.3	53.8
CBCH	0	0	0	Û	0	1	0	0	0	0	0	0	0	1	1	1	1.0	-	7.7
AMRO	0	0	0	0	0	Đ	0	0	0	Û	0	1	1	2	1	1	1.0	-	15.4
EUST	0	0	0	0	0	0	3	0	0	Û	0	0	61	64	61	3	32.0	41.0	15.4
SOSP	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1.0	-	7.7
RWBL	0	0	0	0	0	0	0	0	0	2	0	0	O	2	2	2	2.0	-	7.7
YHBL	0	0	0	0	Û	0	0	0	Û	0	0	0	1	1	1	1	1.0	-	7.7
PUFI	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1.0	•	7.7
#TOT	32	8	3	18	6	4	3	40	4	21	8	16	83	246	83	3	18.9	22.5	100.0

Cambal	l Diver	Fetnar	v Bird	Surveys	of Sta	tion 1	2 for	Summer	1983							••	N.T.
Date	liJun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug	Total	Max	Min	Mean	SD	%Freq
#HER	0	0	0	4	0	9	1	0	0	0	0	5	4	1	2.5	2.1	18.2
GBHE	0	0	Ô	4	Ō	0	1	0	0	0	0	5	4	1	2.5	2.1	18.2
#DIV	0	Ô	0	0	Û	Û	11	0	0	0	0	11	11	11	11.0	•	9.1
COME	0	0	0	Ō	0	0	11	0	Û	0	0	11	11	11	11.0	-	9.1
#RAP	1	ß	4	Ō	2	0	3	1	0	0	3	14	4	1	2.3	1.2	54.5
TUVU	0	0	Ö	Ō	0	0	0	9	0	0	3	3	3	3	3.0	-	9.1
BAEA	1	Õ	4	Ô	2	0	3	1	0	0	0	11	4	1	2.2	1.3	45.5
#SHO	Ô	Ö	Ó	0	0	0	0	0	0	0	2	2	2	2	2.0	•	9.1
KILL	Û	Û	Ō	0	Û	0	0	0	9	O	1	1	1	1	1.0	-	9.1
SBDO	Ō	Ò	0	0	0	0	0	0	0	0	1	1	1	1	1.0	-	9.1
#GUL	Ō	Û	Û	0	2	0	0	15	14	0	66	97	66	2	24.3	28.5	36.4
BOCTU	0	Ö	Ö	0	0	0	Û	0	13	0	45	58	45	13	29.0	22.6	18.2
MEGU	Õ	0	Ô	0	0	0	0	0	Û	0	17	17	17	17	17.0	•	9.1
HEGU	0	Ō	0	0	0	0	0	0	0	0	3	3	3	3	3.0	-	9.1
GWGU	Ö	0	0	0	2	0	0	15	1	0	1	19	15	1	4.8	6.8	36.4
BTPI	Ō	0	1	0	0	0	0	0	0	Û	Û	1	1	1	1.0	-	9.1
BEKI	Ō	Ô	0	0	0	0	0	0	0	0	1	1	1	1	1.0		9.1
∦₩00	0	0	4	0	Û	0	1	0	Û	Û	1	6	4	1	2.0	1.7	27.3
HAWO	Ō	0	0	0	0	9	0	0	0	0	1	1	1	1	1.0	-	9.1
NOFL	0	0	1	0	0	0	1	0	0	0	0	2	1	1	1.0	-	18.2
PIWO	0	0	3	0	0	0	0	0	0	0	9	3	3	3	3.0	- 10.0	9.1
#PAS	10	0	34	0	1	2	19	5	0	0	26	97	34	1	13.9	12.8	63.6
PSFL	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1.0	-	9.1
BASW	Ò	0	0	0	0	0	0	Û	0	0	15	15	15	15	15.0	•	9.1
STJA	. ()	0	0	0	Û	0	0	0	0	0	2	2	2	2	2.0	-	9.1
NOCR	4	0	7	0	0	2	0	0	O	0	0	13	7	2	4.3	2.5	27.3
CORA	0	0	0	0	0	0	θ	2	Û	Û	2	4	2	2	2.0	-	18.2
CBCH	0	Û	5	Û	0	0	0	0	0	0	0	5	5	5	5.0	-	9.1
BRCR	0	0	0	Û	Û	O	1	Û	0	0	0	1	1	1	1.0	-	9.1
BEWR	0	0	0	0	0	0	1	0	0	0	0	1	1	1	1.0	-	9.1
RCKI	0	0	0	0	0	0	2	0	0	0	0	2	2	2	2.0	-	9.1
SWTH	0	0	4	0	0	0	0	0	0	0	0	4	4	4	4.0	- 1 7	9.1
AMRO	1	0	1	0	Û	0	0	0	0	0	4	6	4	1	2.0	1.7	
EUST	1	0	6	0	0	0	14	Û	0	0	0	21	14	1	7.0	6.6	9.1
OCWA	ij	0	1	0	0	0	0	0	0	0	0	1	1	1	1.0	*	9.1
YEWA	0	0	1	0	0	Û	0	0	0	0	0	1	1	1	1.0 1.0	-	18.2
YRWA	0	0	1	0	0	0	0	0	0	0	1	2	1	1	1.0	_	9.1
WETA	0	0	1	0	0	0	0	0	0	0	0	1	1	1		_	9.1
FOSP	0	0	Û	0	0	0	0	3		0	0	3	3 2	1		0.	
SOSP	2	0	1	Û	0	0	0		0	0	0	3		1		-	9.1
WCSP	Û	0	1	0	9	0	0			0	0	1	1	2		_	9.1
DEJU	2	0	0		0	0	9			9	0	2 1	2	1		_	9.1
RWBL	O	0	0		1	0	0			0	0	i 1	1	1		-	9.1
BRBL	0	0	Û		0	0	0			0	1	2		2		_	9.1
PUFI	Û	0	2		0	0	(0	0	4		1		0.	
AMG0	0	0	2		0	0]			0	1 9 9	_		2		30.	
#TOT	11	0	43	4	5	2	35	i 21	14	9	33	434	33	4	20.0	υ.,	0110

Campbel	l River	Estuary	i Bird	Surveys	of Sta	tion	12 for	Autumn							ND.
Date	02Sep		18Sep		010ct	170ct	300ct	13Nov	27Nov	Total	Max	Min	Mean	SD	%Freq
#HER	0	0	1	0	0	0	0	0	0	1	1	1	1.0	-	11.1
GBHE	0	0	1	0	0	0	0	0	0	1	1	1	1.0	-	11.1
#DAB	0	0	0	0	1	0	0	0	0	1	1	1	1.0	-	11.1
CWTE	0	0	0	0	1	0	9	0	0	1	1	1	1.0	•	11.1
#DIV	0	0	0	0	0	0	0	0	1	1	1	1	1.0	-	11.1
COG 0	0	0	0	0	0	0	0	0	1	1	1	1	1.0	-	11.1
#RAP	0	0	2	0	1	1	2	0	1	7	2	1	1.4	0.5	55.6
BAEA	0	0	2	0	1	0	2	0	1	6	2	1	1.5	0.6	44.4
MERL	0	0	Û	0	0	1	0	0	0	1	1	1	1.0	-	11.1
#GUL	0	1	Û	3	178	100	0	0	0	282	178	1	70.5	85.3	44.4
BOG U	0	0	0	0	140	0	0	0	0	140	140	140	140.0	•	11.1
MEGU	0	0	0	0	38	100	0	0	0	138	100	38	69.0	43.8	22.2
GWGU	0	1	9	3	0	0	0	0	0	4	3	1	2.0	1.4	22.2
BEKI	0	0	Û	0	1	Û	0	0	0	1	1	1	1.0	-	11.1
#PAS	7	0	7	13	8	55	1	0	0	91	55	1	15.2	19.9	66.7
NOCR	0	0	7	0	1	35	0	0	0	43	35	1	14.3	18.1	33.3
CORA	0	0	0	8	0	0	1	0	0	9	8	1	4.5	4.9	22.2
AMRO	6	0	0	5	2	0	0	0	0	13	6	2	4.3	2.1	33.3
EUST	0	0	0	0	1	20	0	0	0	2 1	20	1	10.5	13.4	22.2
FOSP	1	0	0	Đ	0	0	0	0	0	1	1	1	1.0	-	11.1
SOSP	0	Û	0	0	1	0	0	0	0	1	1	1	1.0	-	11.1
EVCR	0	0	0	0	3	0	0	0	0	3	3	3	3.0	-	11.1
#TOT	7	1	10	16	189	156	3	0	2	384	189	1	48.0	77.5	88.9

Campbell	River	Estuary	y Bird	Surveys	of Sta	tion 12		Winter	1983-1			CD	WT
Date	10Dec	17Dec	07Jan		29Jan	05Feb	13Feb	Total	Max	Min	Mean	SD	%Freq
#COR	1	Û	0	0	Û	0	0	1	1	1	1.0	-	14.3
DCCO	1	0	0	0	0	0	0	1	1	i	1.0		14.3
#HER	Ô	Ô	0	0	Û	1	0	1	1	1	1.0	-	14.3
GBHE	Õ	Ō	O	0	0	1	0	1	1	1	1.0	-	14.3
#SWA	Ď	0	9	0	0	0	9	9	9	9	9.0	-	14.3
TRUS	ñ	Ô	0	0	0	0	9	9	9	9	9.0	-	14.3
#DAB	Ù	Ô	0	0	0	2	0	2	2	2	2.0	-	14.3
MALL	Õ	Ô	Ō	0	0	2	0	2	2	2	2.0	-	14.3
#DIV	5	Õ	3	0	2	18	0	28	18	2	7.0	7.4	57.1
BAGO	Õ	Ö	Ô	0	0	12	0	12	12	12	12.0	-	14.3
BUFF	2	ñ	Ď	Ô	2	2	0	6	2	2	2.0	-	42.9
COME	3	Õ	3	Ō	0	4	0	10	4	3	3.3	0.6	42.9
#RAP	Ô	2	ñ	Ō	2	2	0	6	2	2	2.0	-	42.9
HAWK	Ô	ō	Õ	Ō	Ō	1	0	i	ì	1	1.0	-	14.3
BAEA	Û	2	ñ	Õ	2	1	0	5	2	1	1.7	0.6	42.9
#GUL	150	Õ	46	Ŏ	0	Õ	2	198	150	2	66.0	76.0	42.9
MEGU	0	n	9	ñ	Ò	0	0	9	9	9	9.0	-	14.3
GWGU	150	ñ	37	Õ	Ô	Û	2	189	150	2	63.0	77.3	42.9
#PAS	0	ñ	5	ñ	Õ	29	3	37	29	3	12.3	14.5	42.9
NOCR	0	ñ	5	ñ	Ð	7	3	15	7	3	5.0	2.0	42.9
DEJU	Ð	n	n	n	Õ	22	8	22	22	22	22.0	-	14.3
#TOT	156	9	54	a	4	52	14	282	156	2	47.0	58.2	85.7
WIVI	TAO		Ų T	v	•	v-							

Campbel	l River	Estuar	y Bird	Surveys	of S	tation	12	for	Spring	1984
Date	11Mar	18Mar	Total	Max	Min	Mean		SD	%Freq	
HER	0	3	3	3	3	3.0		-	50.0	
CBHE	0	3	3	3	3	3.0		-	50.0	
#RAP	0	2	2	2	2	2.0		-	50.0	
BAEA	0	2	2	2	2	2.0		-	50.0	
#GUL	Û	30	30	30	30	30.0		-	50.0	
BOGU	0	20	20	20	20	20.0		-	50.0	
GWGU	Ô	10	10	10	10	10.0		-	50.0	
#PAS	0	10	10	10	10	10.0		-	50.0	
CORA	ñ	3	3	3	3	3.0		-	50.0	
AMRO	0	3	3	3	3	3.0		-	50.0	
POSP	0	2	2	2	2	2.0		-	50.0	
HOFI	Û	2	2	2	2	2.0		•	50.0	
#TOT	0	45	45	45	45	45.0		-	50.0	

Campbe.	ll River	Estuary	y Bird	Surveys	of Sta	ation	13 for	Autumn	1982		
Date	310ct	08Nov	13Nov	20Nov		Total	Max	Min	Mean	SD	%Freq
#COR	7	1	0	0	4	12	7	1	4.0	3.0	60.0
CORM	7	0	0	0	4	11	7	4	5.5	2.1	40.0
PECO	0	1	0	0	0	1	1	1	1.0	-	20.0
#HER	0	0	2	0	3	5	3	2	2.5	0.7	40.0
GBHE	0	0	2	0	3	5	3	2	2.5	0.7	40.0
#DAB	10	0	0	0	0	10	10	10	10.0	-	20.0
MALL	19	0	0	0	0	10	10	10	10.0	-	20.0
#DIV	45	12	0	8	5	70	45	5	17.5	18.6	80.0
SCAU	5	0	0	O	0	5	5	5	5.0	-	20.0
BUFF	40	12	0	4	5	61	40	4	15.3	16.9	80.0
COME	0	0	0	4	0	4	4	4	4.0	-	20.0
#SHO	14	0	0	0	Û	14	14	14	14.0	-	20.0
KILL	14	0	0	0	0	14	14	14	14.0	-	20.0
#GUL	230	305	5	75	45	660	30 5	5	132.0	128.9	100.0
GULL	0	250	0	0	0	250	250	250	250.0	-	20.0
MEGU	0	5	0	25	0	30	25	5	15.0	14.1	40.0
CWCU	150	50	5	50	15	270	150	5	54.0	57.4	100.0
BLKI	80	0	0	0	30	110	80	30	55.0	35.4	40.0
BEKI	1	0	0	0	1	2	1	1	1.0	-	40.0
#PAS	28	10	7	0 .	0	45	28	7	15.0	11.4	60.0
NOCR	27	10	7	0	0	44	27	7	14.7	10.8	60.0
EUST	1	0	0	9	0	1	1	1	1.0	•	20.0
#TOT	335	328	14	83	58	818	335	14	163.6	155.3	100.0

Campbel Date	l River O5Dec O	Estuar 11Dec 0	y Bird 19Dec 1	Survey: 26Dec 0	s of St 03Jan 0	ation 08Jan 0	13 for 15Jan 0	Winter 23Jan 0	1982-1 28Jan 0	983 06Feb 0	13Feb 0	26Feb 0	27Feb 0	Total	Max 1	Min 1	Mean 1.0	SD 5	%Freq 7.7 7.7
#L00		0	1	0	Ô	0	0	0	0	0	0	Û	0	1	1	1	1.0		7.7
COLO	0	0	0	0	0	Ŏ	Ō	0	ì	0	0	0	0	1	I	1	1.0	-	7.7
#CRE	0	0	9	0	Û	Û	Ö	0	1	0	0	0	0	1	1	1	1.0		23.1
HOGR	O.	0	2	0	4	Ô	Ò	0	5	Û	0	Û	0	11	5	2	3.7	1.5	7.7
#COR	0	0	2	n	Ò	õ	Ò	0	0	0	0	0	0	2	2	2	2.0	- 0.7	15.4
DCCO PECO		0	Õ	n	4	Õ	Ö	0	5	0	0	0	0	9	5	4	4.5	0.7	15.4 39.8
#HER	0	2	0	1	Ō	Ō	8	0	0	0	Û	0	2	13	8	1	3.3	3.2	
#HEA GBHE	0	2	0	1	0	Ō	8	0	0	Û	0	Û	2	13	8	1	3.3	3.2	30.8
#SWA	0	0	0	2	Õ	Ð	Ö	9	0	0	0	0	0	2	2	2	2.0	-	7.7 7.7
TRUS	0	0	0	2	Ö	0	0	0	0	0	0	0	0	2	2	2	2.0	-	7.7
#GEE	0	0	0	2	Ö	Ö	0	0	0	0	0	0	0	2	2	2	2.0	-	7.7
CAGO	0	Ô	0	2	Ô	0	0	0	0	0	0	0	0	2	2	2	2.0	2.8	15.4
#DAB	0	Ô	0	6	Ô	0	2	0	0	0	Û	0	0	8	6	2	4.0	2.8	15.4
MALL	Û	0	Õ	6	0	0	2	Û	0	0	0	0	0	8	6	2	4.0	8.7	100.0
#DIV	13	2	26	20	18	10	13	12	10	1	5	2	27	159	27	1	12.2	0.1	7.7
COGO	0	Õ	0	Ō	0	0	0	2	0	0	0	Û	0	2	2	2	2.0		7.7
BAGO	0	Ö	Ŏ	ī	Ü	0	0	0	0	0	9	0	0	1	1	1	1.0	2.7	84.6
BUFF	9	2	7	7	10	0	4	3	5	Û	5	2	6	60	10	2	5.5	6.3	69.2
COME	4	0	17	0	8	10	9	7	5	1	0	0	21	82	21	1	9.1	7.1	15.4
RBME	0	Ō	2	12	0	0	0	0	0	0	0	0	0	14	12	2	7.0	-	7.7
#SHO	Û	Ŏ	Ō	0	0	0	2	0	0	0	Ð	0	0	2	2	2	2.0	-	7.7
KILL	Õ	Õ	Ö	0	0	0	2	0	0	0	0	9	0	2	2	2	2.0	232.7	84.6
#GUL	42	34	475	17	260	0	720	235	321	22	0	500	173	2799	720	17	254.5	232.1	7.7
CULL	. 0	0	Û	0	0	0	Û	0	0	0	Û	0	150	150	150	150	150.0	36.9	30.8
MEGU	0	Ů	75	Ō	0	0	0	0	1	0	0	50	1	127	75	1	31.8	30.9	7.7
RBGU	Û	Õ	0	Ô	9	0	0	0	0	22	9	0	0	22	22	22	22.0 93.7	115.2	46.2
HEGU	12	Ò	100	0	60	0	50	Û	320	0	0	0	20	562	320	12	213.4	230.9	69.2
GWGU	30	34	300	5	200	0	670	230	Û	0	0	450	2	1921	670	2	8.5	4.9	15.4
BLKI	0	0	0	12	0	0	Û	5	0	0	0	0	Û	17	12	5 1	1.3	0.6	23.1
BEKI	Ŏ	ò	0	2	0	0	1	0	0	I	0	0	0	4	2	•	93.0	142.0	
#PAS	11	0	1	105	450	0	15	83	130	2	0	0	40	837	450	1	95.6	124.2	
NOCR	11	0	1	105	380	0	15	83	130	Ð	0	0	40	765	380	_	_	144.6	7.7
CORA	0	Ö	0	0	0	0	0	0	0	1	0	0	0	1	1	1 70		-	7.7
EUST	Û	Ō	Ō	0	70	0	0	0	0	0	0	0	0	70	70	10	1.0	-	7.7
SOSP	•	Ō	0	0		0		0	9	1	0	0	0.40		1 761	5		274.5	
#TOT		38	505	155	732	10	761	3 30	467	26	5	502	242	3839	101	J	434.0	4/7.4	, 100.0
,,	**	_																	

Campbe	ll River	Estua	ry Bird	Survey	s of St	ation	13 for	Spring						m . 1	u	W2	Maan	CD.	%Freq
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	OlMay	08May	14May	20May	29May		Max	Min	Mean	SD	7.7
#COR	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	1.0	-	7.7
CORM	Ō	0	0	0	Û	0	1	0	0	0	0	0	0	1	1	1	1.0	0.5	38.5
#HER	1	Û	2	0	1	0	0	0	1	0	2	0	9	7	2	1	1.4 1.4	0.5	38.5
GBHE	ì	0	2	0	1	0	0	0	1	0	2	0	Ų	7	2	1	2.0	0.5	30.3 15.4
#DAB	0	0	2	0	0	0	2	0	0	0	0	0	9	4	2	2		•	15.4
MALL	0	0	2	0	Û	0	2	0	0	0	0	0	U	4	2	2 2	2.0 18.4	12.6	76.9
#DIV	10	6	37	28	14	20	36	24	7	0	2	U	9	184	37	-	16.7	8.7	53.8
BUFF	9	0	20	2 1	12	9	33	13	0	0	0	0	0	117	33	9	11.0		7.7
HOME	0	0	0	0	0	11	0	0	0	0	0	U	0	11	11	11	6.2	5.2	69.2
COME	1	6	17	7	2	0	3	11	7	0	2	U	0	56	17	1	1.3	0.6	23.1
#RAP	0	0	0	1	0	0	1	9	0	0)	2	IJ	4	2	1		0.6	23.1
BAEA	0	0	0	1	0	0	1	0	0	0	0	Z	U	4	2	1	1.3 3.0	1.4	15.4
#SHO	0	0	2	0	0	0	0	0	0	0	4	U	IJ	b	4 2	6	3.0 2.0	1.4	15.4
KILL	Û	0	2	0	0	0	0	0	0	0	2	0	U	4	2	4	2.0	-	7.7
SHOR	0	0	0	0	0	0	Û	Û	0	0	2	U	U	1200	-	4	132.6	94.5	76.9
#GUL	0	205	160	242	1	220	75	229	150	0	30	14	0	1326	242	290	200.0	J4.J	7.7
GULL	0	0	0	20 0	0	0	0	0	0	0	0	U	0	200	200	150	150.0	_	7.7
BOG U	0	0	0	0	0	0	0	150	0	0	Ü	V	0	150	150	130	76.0	85.1	30.8
MEGU	0	55	0	42	0	200	0	7	0	0	0	0	9	304	200	1	1.0	03.1	7.7
CACU	0	0	0	0	0	1	0	0	0	Û	9	0	0	1	1 2	2	2.0	_	7.7
HEGU	0	0	0	0	0	0	0	2	0	0	U	0	0	2	_	4	74.3	64.1	69.2
GWCU	0	150	160	0	1	19	75	70	150	Ų	30	14	0	669	160	1 1	1.0	04.1	7.7
BEKI	0	0	0	0	0	0	ì	0	0	V	0	0	Ŋ	1	1	1	1.0	_	7.7
#W00	0	0	0	0	0	0	0	0	0	1	Ü	V	l)	1	1	1	1.0	_	7.7
NOFL	0	0	0	0	0	0	0	0	0	ŀ	U	U	Ü	89	25	1	9.9	8.4	69.2
#PAS	0	0	14	19	0	14	5	5	25	l	3	j	U		45 2	2	2.0	0.1	7.7
VGSW	0	Û	0	Û	0	0	0	2	0	0	V	U	0	2 25	25	25	25.0	_	7.7
CLSW	0	0	0	0	0	0	0	0	25	0	U	V	0		25 19	23 1	7.1	6.8	
NOCR	Û	0	14	19	0	6	5	2	0	Ų	1	3	0	50	19	1	1.0	0.0	7.7
AMRO	0	0	0	0	0	0	U	U	0	U	1	Ü	U A	1	8	1	4.5	4.9	
EUST	0	0	0	0	0	8	9	l	U	U	U	Ų	8 N	1	0 1	1	1.0	4.3	7.7
SOSP	Û	0	0	0	0	0	Ú	,	U	1	U 1	U	0	1	1	1	1.0	_	7.7
RWBL	0	0	0	0	0	0	0	0	100	Ų	1	10	•	1623	290	. 2	135.3	111.9	
#TOT#	11	211	217	290	16	254	121	258	183	2	41	19	0	1043	230	. 4	140.0	111.3	32.0

Campbel	l River	Estuary	, Bird	Surveys	of Sta	tion 1		Summer					N	Win	Mean	SD	%Freq
Date	11Jun	20Jun	26Jun	11Jul	16Jul	24Jul	30Jul	08Aug	13Aug	20Aug	28Aug		Max	Min	2.0	1.4	18.2
#HER	0	0	0	0	9	0	0	0	1	0	3	4	3	1	2.0	1.4	18.2
GBHE	0	9	0	0	0	0	0	0	1	0	3	4	3	1 2	2.0	1.9	9.1
#DAB	0	0	0	2	Û	0	0	0	0	0	0	2	2	2	2.0	-	9.1
MALL	Û	0	0	2	0	0	0	0	Û	0	0	2	2	7		5.0	27.3
#DIV	0	0	17	7	0	0	0	11	0	0	0	35	17	-	11.7 5.0	J.U	9.1
BUFF	0	0	0	5	0	0	0	0	0	0	0	5	5	5 17	3.0 17.0	-	9.1
HOME	Ð	0	17	0	Û	0	0	0	0	0	0	17	17	2	6.5	6.4	18.2
COME	0	0	0	2	0	Û	Ð	11	0	0	0	13	11	1	3.3	2.6	36.4
#RAP	7	0	2	0	0	3	1	9	0	0	0	13	?	1	3.3 1.0	4.0	9.1
OSPR	0	0	0	0	0	0	1	0	0	0	0	1	1 7	2	4.0	2.6	27.3
BAEA	7	0	2	0	0	3	0	0	Û	0	0	12	•		5.1	6.6	63.6
#SHO	1	0	1	3	0	Û	3	8	19	0	1	36	19	1	2.4	1.3	45.5
KILL	1	0	0	3	0	0	0	3	4	0	1	12	4	1	1.0	1.0	9.1
SPSA	0	0	1	0	0	0	0	0	0	0	0	1	1	1	5.0	_	9.1
SURF	0	0	0	0	0	0	0	5	Û	0	0	5	5	5	9.0	8.5	18.2
WESA	0	0	0	0	0	0	3	0	15	0	0	18	15	3	44.7	39.6	63.6
#CUL	0	70	0	86	1	4	8	90	54	0	0	313	90	1	14.0	8.5	18.2
BOGU	0	0	0	0	0	0	8	20	0	0	0	28	20	8	47.5	36.3	54.5
GWGU	0	70	0	86	1	4	0	70	54	0	0	285	86	1	47.3	30.3	9.1
RODO	0	Û	Û	0	0	0	0	0	4	0	0	4	4	4 2	2.0	_	9.1
BTPI	0	0	2	9	ΰ	0	0	0	0	0	0	2	2	1	1.3	0.6	27.3
BEKI	Û	0	2	0	0	0	0	1	l	0	0	4	2	2	2.0	-	9.1
#W00	0	0	2	Û	0	0	0	0	0	0	0	2	2	1	1.0	_	9.1
DOW0	0	0	1	0	9	0	0	0	0	0	0	1	1 1	1	1.0	_	9.1
PIWO	. ()	0	1	0	0	0	0	0	0	0	0	1 387	238	6	48.4	78.9	72.7
#PAS	14	0	18	12	Û	6	238	25	65	0	9		430 1	1	1.0	10.3	9.1
VGSW	1	0	0	0	0	0	0	0	0	0	0	1	3	3	3.0		9.1
CLSW	0	0	0	0	0	0	0	0	0	0	3	3 7	ა 4	ა 1	2.3	1.5	27.3
BASW	1	0	2	0	0	4	0	0	0 -	0	0	•	20	1	7.3	6.9	
NOCR	3	0	0	10	0	1	5	20	5	0	0	44	3	1	1.7	1.2	27.3
AMRO	0	0	3	Û	0	1	0	0	0	0	1	5	ა 3	3		1.4	9.1
CEWA	0	0	0	0	0	9	3	0	0	0	0	3	230	ა 2		89.3	
EUST	9	0	12	2	0	0	230	5	60	0		318		. 1		03.0	9.1
SOSP	0	0	1	0	0	0	0	0	Û	0	0	1 5	1 5	5		_	9.1
PISI	0	0	0	0	0	0	0	0	0	0	5	802	250	อ 1		79.5	
#TOT	22	70	44	110	1	13	250	135	144	0	13	802	400	1	00.4	13.0	, ,0.3

Campbel	l River	Estuar	y Bird	Surveys	of Sta	tion 1		Autumn					Maria	CD.	MTmaa
Date	02Sep	10Sep	18Sep	26Sep	010ct	170ct	300ct	13Nov		Total	Max	Min	Mean	SD	%Freq 11.1
#COR	0	0	0	0	0	0	0	1	0	1	1	1	1.0	-	
PECO	Ö	0	0	0	0	0	0	1	0	1	1	1	1.0		11.1
#HER	1	Ō	1	0	0	3	1	0	0	6	3	1	1.5	1.0	44.4
CBHE	1	Ō	1	0	0	3	1	0	0	6	3	1	1.5	1.0	44.4
#SWA	Ô	Ö	Ō	0	0	Û	0	0	6	6	6	6	6.0	•	11.1
TRUS	Ŏ	Ö	Ō	0	0	0	0	0	6	6	6	6	6.0	-	11.1
#DAB	Š	3	Ō	4	2	0	3	0	4	25	9	2	4.2	2.5	66.7
MALL	9	Õ	Ö	4	0	0	3	0	4	20	9	3	5.0	2.7	44.4
NOPI	Õ	ž	Ö	Ó	2	0	Û	0	0	5	3	2	2.5	0.7	22.2
#DIV	11	5	Õ	6	2	3	8	16	32	83	32	2	10.4	9.8	88.9
LESC	0	Û	0	Ö	Ō	Û	Ô	Ð	12	12	12	12	12.0	•	11.1
HADU	0	0	Ô	Ů	Õ	Ō	1	0	0	1	1	1	1.0	-	11.1
COGO	0	0	0	0	2	Õ	0	Ö	0	2	2	2	2.0	-	11.1
BUFF	11	0	0	Ô	Ū	Õ	7	12	16	46	16	7	11.5	3.7	44.4
HOME	0	0	0	Õ	Ů	1	Ö	0	0	i	i	1	1.0	-	11.1
COME	0	5	Û	6	0	2	Õ	4	4	2 1	6	2	4.2	1.5	55.6
#SHO	2	4	0	0	0	Ü	3	Ò	Ō	9	4	2	3.0	1.0	33.3
	1	1	0	0	0	Û	0	0	0	2	1	1	1.0	•	22.2
KILL	_	2	0	0	0	Ô	Û	Õ	õ	2	2	2	2.0	•	11.1
WHIM	0	1	0	0	0	Ô	Û	Ô	Ď	1	1	1	1.0	-	11.1
WESA	0		0	0	9	0	0	Ô	Ô	i	1	Ī	1.0		11.1
COSN	1	0		0	0	0	3	O	Ñ	3	3	3	3.0	-	11.1
SHOR	0	0	150			77	169	47	540	1542	540	18	171.3	164.5	100.0
#GUL	50	200	150	300	18	2	100	0	040	182	150	2	45.5	70.1	44.4
BOGU	0	20	0	150	0	0	10	Û	Û	16	16	16	16.0	-	11.1
MEGU	0	0	0	0	16	•	0	0	0	36	35	1	18.0	24.0	22.2
HEGU	0	0	0	0	1	35	150	47	5 4 0	1308	540	1	145.3	161.1	100.0
GWGU	50	180	150	150	1	40		41	J40 ()	1300	1	1	1.0	-	11.1
BEKI	1	0	0	0	0	0	0	0	0	1	1	1	1.0	_	11.1
# W 00	0	0	0	0	1	0	0		0	1	1	1	1.0	-	11.1
NOFL	0	0	0	0	1	0	Û	0		137	57	1	19.6	25.5	77.8
#PAS	10	10	1	56	57	0	2	0	1		56	1	15.7	20.5	66.7
NOCR	10	10	0	56	15	0	2	0	1	94		40	40.0	20.5	11.1
EUST	0	0	0	0	40	0	0	0	()	40	40		2.0	_	11.1
YRWA	0	0	0	0	2	0	0	0	0	2	2	2		-	11.1
WETA	0	0	1	0	0	0	9	0	0	1	1	1	1.0	172 2	
#TOT	84	222	152	366	80	83	177	64	583	1811	583	64	201.2	172.3	100.0

0k-1	l Dieses	Entuen	. Died	Curvove	of Sta	tion 1	3 for	Winter	1983-19	984			
			07Jan	Surveys 23Jan	29Jan	05Feb	13Feb		Max	Min	Mean	SD	%Freq
Date	10Dec	17Dec					Û	2	2	2	2.0	_	14.3
#COR	2	0	0	0	0	0		4	2	2	2.0		14.3
PECO	2	0	0	0	U	0	0	4	4	<u>.</u>			14.3
#HER	0	Û	0	1	0	0	9	1	i	1	1.0	-	
CBHE	0	0	0	1	0	O	0	1	1	1	1.0	-	14.3
#SWA	0	0	0	1	8	0	0	9	8	1	4.5	4.9	28.6
TRUS	Ō	9	0	1	8	0	0	9	8	1	4.5	4.9	28.6
#DAB	0	3	0	9	2	0	0	14	9	2	4.7	3.8	42.9
MALL	0	3	0	9	2	Ö	Ô	14	9	2	4.7	3.8	42.9
	•	•	3	19	4	n	Õ	58	21	3	11.6	8.3	71.4
#DIV	11	21			4	٥	0	6	6	6	6.0	•	14.3
LESC	0	6	0	0	0	0	0	•	•	•		5.7	57.1
BUFF	7	2	0	14	2	0	Ų	25	14	2	6.3		
COME	4	13	3	5	2	0	0	27	13	2	5.4	4.4	71.4
#RAP	0	0	0	2	0	0	1	3	2	1	1.5	0.7	28.6
BAEA	Û	O	0	2	0	0	1	3	2	1	1.5	0.7	28.6
#GUL	9	Ö	49	150	40	0	3	251	150	3	50.2	59.1	71.4
MEGU	Õ	Õ	ß	0	40	Ô	0	40	40	40	40.0	-	14.3
	9	0	49	150	0	Ô	3	211	150	3	52.8	68.0	57.1
GWGU		•				Ô	0	17	8	4	5.7	2.1	42.9
#PAS	4	0	0	8	5	v	•		•	_	5.7	2.1	42.9
NOCR	4	0	0	8	5	V	0	17	8	4			
#TOT	26	24	52	190	59	0	4	355	190	4	59.2	67.2	85.7

Campbel								Spring 1984
Date	11Mar	18Mar	Total	Max	Min	Mean	SD	%Freq
#DIV	0	7	7	7	7	7.0	-	50.0
COME	0	7	7	7	7	7.0	-	50.0 -
#GUL	0	180	180	180	180	180.0	-	50.0
BOCU	0	30	30	30	30	30.0		50.0
GWGU	0	150	150	150	150	150.0	-	50.0
#PAS	0	27	27	27	27	27.0	-	50.0
NOCR	0	27	27	27	27	27.0	-	50.0
#TOT	0	214	214	214	214	214.0	-	50.0

Campbel	l River	Estuar	y Bird	Surveys	s of S	tation	14 for	Autumn	1982	
Date	310ct	08Nov	13Nov		Total	Max	Min	Mean	SD	%Freq
#L00	0	0	0	2	2	2	2	2.0	-	25.0
COLO	Ò	0	0	2	2	2	2	2.0	-	25.0
#DAB	0	Ö	4	0	4	4	4	4.0	-	25.0
MALL	Û	Ô	4	O	4	4	4	4.0	-	25.0
#DIV	ñ	0	17	0	17	17	17	17.0	-	25.0
BUFF	Õ	Ô	15	0	15	15	15	15.0	-	25.0
COME	ñ	Ô	2	0	2	2	2	2.0	-	25.0
#RAP	Ô	Ď	1	0	1	1	1	1.0	-	25.0
BAEA	õ	Ô	1	0	1	1	1	1.0	-	25.0
#GUL	153	Ö	14	140	307	153	14	102.3	76.8	75.0
GWCU	3	Ö	14	100	117	100	3	39.0	53.1	75.0
BLKI	150	Õ	0	40	190	150	40	95.0	77.8	50.0
#PAS	0	Õ	50	0	50	50	50	50.0	-	25.0
EUST	Ŋ	Ô	50	Ô	50	50	50	50.0	-	25.0
#T0T	153	Õ	86	142	381	153	86	127.0	35.9	75.0

Campbell	River	Estuary	Bird	Surveys	of Sta	tion 1	4 for	Winter	1982-1	983				
	05Dec	11Dec	19Dec	26Dec	03Jan	08Jan	15Jan	23Jan	Total	Max	Min	Mean	SD	%Freq
#CRE	00000	0	0	0	1	0	0	0	1	ì	1	1.0	-	12.5
WECR	0	Û	0	Ō	1	0	0	0	1	1	1	1.0	-	12.5
#COR	1	Û	Ō	1	0	0	0	0	2	1	1	1.0	-	25.0
PECO	1	0	Õ	1	0	0	Û	0	2]	1	1.0	-	25.0
#HER	Ô	9	19	Ō	13	O	0	0	41	19	9	13.7	5.0	37.5
GBHE	0	9	19	0	13	0	Û	0	41	19	9	13.7	5.0	37.5
#SWA	0	1	0	ů.	0	Ô	0	0	1	1	1	1.0	-	12.5
TRUS	Ö	1	Õ	0	Ô	0	Û	0	1	1	1	1.0	-	12.5
#DAB	Û	6	9	Ŏ	4	Ō	0	0	19	9	4	6.3	2.5	37.5
MALL	0	6	9	Õ	4	Ó	0	Û	19	9	4	6.3	2.5	37.5
#DIV	4	6	14	1	27	8	7	0	67	27	1	9.6	8.7	87.5
00G0	Ô	1	3	Ō	0	0	0	0	4	3	1	2.0	1.4	25.0
BUFF	3	4	8	Ô	7	7	1	0	30	8	1	5.0	2.8	75.0
COME	1	1	3	1	20	1	6	0	33	20	1	4.7	7.0	87.5
#RAP	i	4	Ö	Ō	2	0	0	2	9	4	1	2.3	1.3	50.0
BAEA	0	4	0	0	2	0	0	2	8	4	2	2.7	1.2	37.5
NOGO	1	0	Ô	Đ	0	0	0	0	1	1	1	1.0	-	12.5
#GUL	Ô	5	Ō	1	836	0	160	0	1002	836	1	250.5	397.3	50.0
MEGU	Ö	0	0	1	0	0	45	0	46	45	1	23.0	31.1	25.0
GWGU	Õ	5	Ö	0	836	0	115	0	956	836	5	318.7	451.4	37.5
BEKI	Ö	1	Ö	0	0	0	2	0	3	2	ì	1.5	0.7	25.0
#w00	Ô	0	1	0	0	0	0	0	1	1	1	1.0	•	12.5
NOFL	0	0	1	Û	0	0	0	0	1	1	i	1.0	-	12.5
PAS	1	5	9	Ō	15	0	0	2	32	15	1	6.4	5.7	62.5
NOCR	1	5	9	Ô	0	0	0	2	17	9	1	4.3	3.6	50.0
CORA	Ô	Ö	Ō	Ö	5	0	0	0	5	5	5	5.0	-	12.5
DEJU	0	Ö	Õ	Ō	6	Û	0	Û	6	6	6	6.0	-	12.5
PASS	Õ	Ô	Ŏ	Õ	4	0	0	0	4	4	4	4.0	-	12.5
#TOT	7	37	52	3	898	8	169	4	1178	898	3	147.3	308.4	100.0

Campbel	l River	Estuar	y Bird	Surveys	of Sta	tion		Spring							CD.	0/T)
Date	06Mar	13Mar	20Mar	26Mar	03Apr	10Apr	16Apr	23Apr	01May	08May	Total	Max	Min	Mean	SD	%Freq
#HER	0	2	3	4	0	0	6	0	9	0	15	6	2	3.8	1.7	40.0
GBHE	0	2	3	4	0	0	6	0	O	0	15	6	2	3.8	1.7	40.0
#DIV	Ô	0	11	10	4	1	15	11	0	0	52	15	1	8.7	5.2	60.0
BUFF	0	0	5	2	4	1	0	9	0	Û	2 1	9	1	4.2	3.1	50.0
COME	0	0	6	8	0	0	15	2	0	O	31	15	2	7.8	5.4	40.0
TRAP	0	0	0	0	0	1	0	0	0	0	1	1	1	1.0	-	10.0
BAEA	Ō	Ō	0	0	0	1	0	0	0	0	1	1	1	1.0	•	10.0
#SHO	0	Ô	0	0	Û	0	0	1	0	0	1	1	1	1.0	-	10.0
WESA	Ô	0	0	0	0	0	0	1	0	0	1	1	1	1.0	-	10.0
#GUL	0	0	O	0	0	3	0	175	3	0	181	175	3	60.3	99.3	30.0
BOGU	Ò	0	0	0	0	0	0	125	0	0	125	125	125	125.0	•	10.0
GWGU	Ō	0	0	0	0	3	0	50	3	0	56	50	3	18.7	27.1	30.0
BEKI	0	Ō	Ō	0	1	0	0	0	0	0	1	1	1	1.0	•	10.0
#W00	Ď	Ó	0	1	0	1	0	0	0	0	2	1	1	1.0	-	20.0
NOFL	Ö	0	0	1	0	1	0	0	0	0	2	1	1	1.0	-	20.0
PAS	Ō	4	0	7	0	5	0	2	4	2	24	7	2	4.0	1.9	60.0
VCSW	Ö	0	Ó	0	0	3	0	0	0	0	3	3	3	3.0	-	10.0
NOCR	Ď	4	0	2	0	0	0	0	2	0	8	4	2	2.7	1.2	30.0
AMRO	Ô	0	0	2	0	1	0	0	1	0	4	2	1	1.3	0.6	30.0
EUST	Ō	Û	0	3	O	0	0	1	1	2	7	3	i	1.8	1.0	40.0
SOSP	Ō	Ō	Ö	0	0	0	Q	1	0	0	1	1	1	1.0	-	10.0
DEJU	0	0	0	0	0	1	0	0	0	0	1	1	1	1.0	-	10.0
#TOT	Ö	6	14	22	5	1i	21	189	7	2	277	189	2	30.8	59.7	90.0

0h-11	Dinon	Fetuari	. Died	Curuoue	of Sta	tion 1	4 for	Summer	1983					
		estuar; 20Jun	26Jun	Surveys 11Jul	16Jul	24Jul	30Jul	08Aug		Max	Min	Mean	SD	%Freq
Date	11Jun	2000U	200uii	0	2	0	0	0	2	2	2	2.0	-	12.5
#HER CBHE	0	0	0	0	2	0	Ð	Û	2	2	2	2.0	-	12.5
	2	0	0	0	0	N	Õ	4	6	4	2	3.0	1.4	25.0
#DIV		0	0	0	0	Û	0	3	3	3	3	3.0	-	12.5
HADU	0 0	0	0	0	i)	0	Û	1	1	i	ì	1.0	-	12.5
HOME	2	0	0	Û	0	0	0	Ô	2	2	2	2.0	-	12.5
COME		2	2	1	1	0	0	0	11	5	1	2.2	1.6	62.5
#RAP	5	0	0	1	Ŋ	0	Û	0	1	ì	1	1.0	-	12.5
HAWK	0	2	2	Û	1	0	8	Ð	10	5	1	2.5	1.7	50.0
BAEA	5	0	0	0	1	0	0	Ô	1	1	1	1.0	-	12.5
#SHO	0	0	0	0	1	0	0	0	1	1	1	1.0	-	12.5
KILL	0	2	0	2	6	6	0	255	272	255	1	45.3	102.7	75.0
#GUL	1	0	0	9	0	0	0	5	5	5	5	5.0	-	12.5
BOGU	0	0	Û	0	0	0	0	1	1	1	1	1.0	-	12.5
MEGU	0	0	0	0	0	0	0	25	25	25	25	25.0		12.5
HEGU	0	-	•	2	6	6	0	224	241	224	1	40.2	90.1	75.0
CWGU	1	2	9	0	0	0	0	0	1	1	1	1.0	-	12.5
RUHU	1	0	0		•	0	0	0	2	2	2	2.0	_	12.5
BEKI	2	0	0	9	0	-	0	0	1	1	1	1.0		12.5
#W00	1	0	0	0	0	0	0	0	1	i	1	1.0	_	12.5
NOFL	l	0	0	0		25	0	33	113	40	2	18.8	16.0	75.0
#PAS	2	6	0	7	40		0	33 1	29	14	1	4.8	5.2	75.0
NOCR	1	1	0	7	14	5	-		1	1	1	1.0	-	12.5
SWTH	0	1	0	0	0	0	0	0		1	1	1.0	_	12.5
AMRO	0	1	0	0	0	0	0	90	1	30	1	15.4	13.2	62.5
EUST	1	2	0	0	24	20	0	30	77		-	1.0	13.4	12.5
SOSP	0	1	0	0	0	0	0	0	1	1	1			12.5
RECR	0	0	0	0	0	0	0	2	2	2	2	2.0	•	12.5 12.5
PISI	0	0	9	0	2	0	0	0	2	2	2	2.0	104.3	
#TOT	14	10	2	10	50	31	0	292	409	292	2	58.4	104.3	87.5

Cambel	l River	Estuar	v Bird	Surveys	of Sta	ation	14 for	Autu m n	1983		
Date	02Sep	10Sep	18Sep		010ct	Total	Max	Min	Mean	SD	%Freq
#HER	0	0	0	3	0	3	3	3	3.0	-	20.0
GBHE	0	Õ	0	3	0	3	3	3	3.0	-	20.0
#DAB	IJ	Õ	11	3	0	14	11	3	7.0	5.7	40.0
GWTE	Õ	0	1	Ō	0	1	1	1	1.0	•	20.0
MALL	Ô	0	10	3	0	13	10	3	6.5	4.9	40.0
#DIV	0	Ō	Ô	2	0	2	2	2	2.0	•	20.0
COME	0	0	Õ	2	Û	2	2	2	2.0	-	20.0
#SHO	Õ	Ö	2	0	0	2	2	2	2.0	-	20.0
KILL	0	Ô	1	Ō	0	1	1	1	1.0	-	20.0
COSN	û	0	1	Ò	0	1	1	1	1.0	-	20.0
#GUL	1	8	70	1	1	81	70	1	16.2	30.2	100.0
MEGU	Ô	0	17	0	0	17	17	17	17.0	•	20.0
HEGU	0	Ö	0	1	0	1	1	1	1.0	-	20.0
GWGU	1	8	53	0	1	63	53	1	15.8	25.1	80.0
BEKI	2	0	0	Ö	0	2	2	2	2.0	-	20.0
#PAS	1	42	441	Õ	Ò	484	441	1	161.3	243.1	60.0
BASW	Ô	25	0	Ö	Ó	25	25	25	25.0	-	20.0
NOCR	Õ	17	32	0	Ó	49	32	17	24.5	10.6	40.0
EUST	Ů	0	400	0	0	400	400	400	400.0	-	20.0
WARB	1	0	0	Ō	0	1	1	1	1.0	-	20.0
YRWA	Ô	0	2	0	0	2	2	2	2.0	-	20.0
SAVS	0	Ô	5	Û	Ô	5	5	5	5.0	-	20.0
SOSP	õ	Õ	1	Û	0	1	1	1	1.0	-	20.0
BHCO	0	Û	1	Õ	Õ	1	1	1	1.0	-	20.0
#TOT	4	50	524	9	1	588	524	1	117.6	228.0	100.0

Campbel	l River	Estuar	y Bird	Surveys	of Sta	tion	14 for	Winter				
Date	10Dec	17Dec	07Jan		29Jan	05Feb	Total	Max	Min	Mean	SD	%Freq
#SWA	0	0	0	0	11	0	11	11	11	11.0	•	16.7
TRUS	Ō	0	0	0	11	0	11	11	11	11.0	-	16.7
#DAB	0	8	0	0	0	0	8	8	8	8.0	-	16.7
MALL	0	8	0	0	0	0	8	8	8	8.0	-	16.7
#DIV	2	5	13	0	0	2	22	13	2	5.5	5.2	66.7
BUFF	2	5	4	0	0	2	13	5	2	3.3	1.5	66.7
COME	0	0	9	0	0	0	9	9	9	9.0	-	16.7
RAP	0	0	0	0	1	0	1	1	1	1.0	-	16.7
BAEA	0	0	0	0	1	0	1	1	1	1.0	-	16.7
#SHO	0	4	0	0	0	2	6	4	2	3.0	1.4	33.3
KILL	0	4	0	0	0	2	6	4	2	3.0	1.4	33.3
#GUL	0	0	0	0	0	8	8	8	8	8.0	-	16.7
GWGU	0	0	0	0	0	8	8	8	8	8.0	-	16.7
BEKI	0	0	1	0	0	0	1	1	1	1.0	-	16.7
#PAS	209	5	3	0	0	0	217	209	3	72.3	118.4	50.0
NOCR	0	0	3	0	0	0	3	3	3	3.0	•	16.7
GCKI	200	0	0	0	0	0	200	200	200	200.0	-	16.7
RCKI	0	1	0	0	0	0	1	1	1	1.0	-	16.7
RST0	0	2	0	0	0	0	2	2	2	2.0	•	16.7
SOSP	0	2	0	0	0	0	2	2	2	2.0	•	16.7
DEJU	9	0	0	0	0	0	9	9	9	9.0	-	16.7
#TOT	211	22	17	0	12	12	274	2 11	12	54.8	87.4	83.3

Campbel	l River	Estuar	y Bird	Surveys	of S	Station	14 for	Spring 1984
Date	11Mar		Max	Min	Mean		%Freq	
#HER	1	1	1	1	1.0	-	100.0	
GBHE	1	1	1	1	1.0	-	100.0	
#DIV	9	9	9	9	9.0	-	100.0	
COME	9	9	9	9	9.0	-	100.0	
#GUL	5	5	5	5	5.0	-	100.0	
CWCU	5	5	5	5	5.0	-	100.0	
#PAS	6	6	6	6	6.0	-	100.0	
NOCR	4	4	4	4	4.0	-	100.0	
AMRO	2	2	2	2	2.0	-	100.0	
#TOT	21	21	21	21	21.0	-	100.0	