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Abstract

A mathematical one-dimensional model of unconfined ground water
flow over a sloping impermeable base is described. The model employs a
Crank-Nicholson implicit finite-difference formulation, in which the
non-lTinearity of the differential equation owing to the varying saturated

thickness is handled by iterative adjustment during each time step. Five
examples of possible applications are described, and the model results

are compared with analytical solutions.

Résumé

Un modele mathématique unidimensionnel d'un écoulement
souterrain non captif sur une base imperméable en pente est décrit. Ce

modele utilise une formule de différence finie implicite de
Crank-Nicholson dans laquelle la non-linéarité de 1'équation
différentielle due a la variation de 1'épaisseur saturée, est traitée par
des ajustements itératifs au cours de chaque étape temporelle. Cing
exemples d'applications possibles sont décrits et les résultats fournis

par le modele sont comparés avec certaines solutions analytiques.



A One-Dimensional Model of Unconfined Ground Water
Flow over a Sloping Impermeable Base

A. Vandenberg

INTRODUCTION

A study of the movement of leachate from a sanitary landfill
near Gander, Newfoundland, led to the development of a model of ground
water flow for the prediction of flow velocities on the basis of recorded
rainfall data and measured aquifer characteristics. The landfill is
situated a few miles from the Atlantic Coast in a terrain where
metamorphic bedrock with extremely poor permeability is covered by
approximately 10 m of unconsolidated sand and gravel. The bedrock
surface stopes gently and uniformly toward the coast. Contour lines of
the undisturbed water table are virtually parallel to each other and to
the coast; thus ground water motion can adequately be described by a
one-dimensional model. The model employs a Crank-Nicholson implicit
finite-difference formulation; the non-linear differential equation for
unconfined flow is first linearized by the assumption of constant
saturated thickness, whereafter the saturated thickness is adjusted each

time step by an iterative scheme.

THE MODEL

The most important simplification used in the derivation of the
conceptual model (Fig. 1) 1is the assumption that, given the small angle

of the slope of the impermeable base, the flow is essentially horizontal

and in one direction only.



Water Table

Aquifer

impermeable Base

Reference Datum

Figure 1. Model of a linear unconfined aquifer.

The strip of aquifer between two sub-parallel flow lines is
subdivided into a number, n, of small compartments which are assigned a
node wi midway between each of the compartment boundaries. The
compartments can be chosen such that the nodes coincide as much as
possible with test or observation wells so that the test results can be
taken as representative values over the compartment. However, to obtain
a reasonable degree of accuracy, there usually will be more compartments

than. there are observation points.

To each of the compartments or nodes, the following parameters
are assigned in which the subscript denotes the ith compartment (i=1,

2y0..n)2



Ly = distance between W, and W.,, (length),

A; = width between bounding flow lines, measured at wi
(Tength),

D, = height of the impermeable base above datum (length),

K, = permeability (length/time),

Si = specific storage (dimensionless),

Ri - = rate of recharge from precipitation (positive) or

evapotranspiration (negative) (length/time), and

h. = saturated thickness (length).

The simulation procedure used in the model is basically a
repeated application of the law of conservation of mass, stated as a
water balance over each of the compartments. Starting with a known water
level, and therefore a known volume stored in each compartment, the
change in storage over a small period of time is calculated for each

compartment:
Increase in storage = algebraic sum of all inflows (1)

Inflows comprise infiltration over the area of the compartment and the
ground water flow through the vertical cross sections separating the
compartments. Infiltration, which may be negative, is calculated as the
product of a given infiltration rate (length/time) and the area of the
compartment. Ground water inflow or outflow is calculated by means of

Darcy's law:



q = -KA'S! (2)

where g = inflow rate (volume/time),
A' = cross-sectional area of surface through which flow takes
place, perpendicular to the direction of flow, and
S' = the gradient of piezometric head or water table elevation

(dimensionless).

The cross-sectional area, A', is the product of the width, A, of the

compartment, and the saturated thickness, h:

Thus Equation 2 becomes
q=-Kh AS' (4)

Furthermore, K, h and A in Equation 4 refer to the values of these
variables at the boundaries between the compartments, whereas in the
model they are defined at the nodes themselves. Replacement of these
variables by their mean values in Equation 4 is therefore a logical
approximation, and the inflow, aqs from the (i-1)th compartment to the

ith compartment then becomes

a; = =(K._; +K) (h ) +h.) (A



The inflow g,, from the (i+1)th compartment to the ith compartment, is:

thy) (A *A) S8 (6)

The gradient S', for the boundary between the (i-1)th compartment and the

ith compartment, is approximated by:

Lhy # 0y = (g * Dy g VL (7)

and for the boundary between the ith and the (i+l1)th compartment by:

since the water level is the sum of the elevation of the base of the

aquifer, D, and the saturated thickness.

In the terms of the water balance Equation 1 for infi1tratjon
and change in storage, the area of the ith compartment is needed; it is
approximated as a trapezoid with height

(L *Ly_g)/2

and parailel sides of lengths

(A *+ AL )12



and
(Ay * Ay )12
respectively. Thus the area becomes

Thus the total recharge to the ith compartment per unit of time is

(A,

Recharge = R, (A,_

g (R v 2R+ Ay L

St L8 (10)

Similarly, the increase in storage inside the compartment due to a rising

or falling water table, per unit of time, is

A Storage = Sy (A;_y + 2A; + AL ) (L * Ly ) (Hy* - hy)/(8at) (11)

where Hi* = the saturated thickness at the end of a time interval at.

The complete water balance of the ith compartment can now be

written:
q; * 4, * recharge = increase in storage
or
(hiop * R Ry + ARy + Kdhg_y = hy + D5y = D5)/L4

it R (K * Koy Mgy = by + Dyag = Dy /L (12)

"R (A gt 2Rt A (Lytly g ) = (Sy/at) (g p*2R A DLyt ) (Hy*-hy )



Using the formulation of (12), Hi* could be calculated explicitly for
each of the nodes and for successive time increments. For very small
time steps such a procedure would be acceptable, but necessarily slow;
for Targer time steps the formulation of (12) must be modified, since
(12) implies that throughout the time step, at, the saturated thickness,
from which both the cross-sectional area of the flow and the potential
gradient are determined, may be assumed to be equal to the saturated
thickness at to’ the beginning of the time step. Instead of this
coarse approximation for the true but unkown value of h(t), it is more

accurately replaced by the linear expression:

h(t) = h + (H* - h)(t -t )/at (13)

The average value of h(t) over at is therefore

t +at
h(t) = (1/at) £ [h+ (H* - h)(t - t )/at]dt = (H* + h)/2 (14)
t

Substitution of (14) in (12) renders the equation implicit, i.e., unknown
values Hi*’ Hi—l* and Hi+1* appear in the equation for the ith

element. Furthermore, since H* appears as part of the hydraulic head,

hy * Di’ as well as a factor of the cross-sectional area, the -

equation is no longer linear, and direct solution becomes very awkward.

In the present model the non-linearity is handled as follows:



(a)

A distinction is made between (1) the saturated thickness appearing
in the expression for the cross-sectional area, for which the
designation h is retained, and (2) the saturated thickness appearing
in the expression for hydréu]ic head, for which the notation H will

be used.

Initially, h will be assumed constant with a value equal to the value
of h at the beginning of the time step, whereas H will be averaged

over the time step, i.e.,

= *
Have = (H + H¥)/2
where H now represents the value at the beginning of the time step
and is therefore known, whereas H* represents the value of H at the

end of the time step.

The set of linear equations resulting from (1) for all nodes is

solved for H*.

The value of h is now replaced by (H + H*)/2 and the set of linear

equations is again solved, resulting in improved values of H*.

Step (d) is continued until the new value of H* differs from the last

calculated value by less than a predetermined amount.



(f) The new values H* replace the old values of H and the process is

repeated for the next time step.

Replacement of h by (H* + H)/2 in the term for hydraulic gradient of (1)

results in:
(hy g *th ) (K #K) (A g *AG) [H; g *=Ho*+Hy =Hi+2(D; 1 -D;)] /(2L )

i-1 0=l iV -1 A

+ (hi+hi+l)(K1+K1+1)(A1+A1+1) [H1+1*_Hi*+H1+l_Hi+2(D1+1—Di)] /(ZLi) (15)

1) (Hy*-Hy )

+ R, (A, ,*2A.+A
it 1-

Ly PRARL (Lt ) = (S5t (A 2R AL ) (LyHL

Rearranging (15) with the H* on the left-hand side and the known terms on

the right-hand side gives

- U. H,

i Hioy® R (U SiPe/at Uiy ) - Uy By ™

1
= U THy g - B+ 2 (05 =D+ Uy [Hiyg - By 72 (D4 - D)3 (16)

+ +
Pi (Ri SiHilAt)

where

and

O
It
—
=

Equation 16 is valid for any of the interior elements. For the

end elements a slightly different equation is required. Depending on



which assumption is made, it may take either of two forms: either (a)
the total flux through the aquifer boundary face is known at all time or
(b) the potential at the aquifer boundary is known at all time. Either
of these conditions must be fulfilled for the problem to have a unique

solution.

(a) Total Flux through the Boundary Face Is Known

Introducing the notation:

Q, = total influx through the aquifer boundary adjacent to node wl,
qn = total influx through the aquifer boundary adjacent to node wn,
L. = distance between wl and the adjacent boundary, and

L = distance between wn and the adjacent boundary.

The term Q, replaces the term ty (Equation 5) in the water balance

over the first element, giving

Hl* [U2 + 85,A (LO + L1/2)/At] - U,H,*

11 22
(19)
= 800 + U2 [H2 - H1 + 2(D2 - Dl)] + 8A1(R1 + SlHllAt)(L0 + L1/2)
The term Qm replaces the term o (Equation 6) in the water balance
over the last element, giving (
- *
Wn-l Um + Hm* [qn + (8SmAm/At)(L]n + Lm_1/2)]
(20)

= 8Qm * Um [Hm—l - Hm *2 (Dm—l - Dm):| * 8Am(Rm * SmHm/At)(Lm * Lm-1/2)

10



(b) Potential at the Boundary Is Known at All Time

Given the saturated thickness at the aquifer boundary adjacent

to node wl , H., the equation for the water balance of the first

0’

element can be stated:

Hl* [4A1K1HO/LO + U2 + 8A131(Lo + L1/2)/At] - U2H2*

(21)
= 4A1K1H0(2H0-H1)/L0+U2 [H2—H1+2(02-D1)] + 8A1(L0+L1/2)(R1+51H1/At)
and if HL is the saturated thickness at the aguifer boundary adjacent
to the last node, the equation for the last element becomes:
- UmHm—l* + Hm* [4AmeHL/Lm + Um + 8AmSm(Lm + Lm_1/2)/At]
= 4AmeHL(2HL - Hm)/Lm + Um [Hm_l - Hm + 2(Dm_1 - Dm)] (22)

+8A (Lo + L /)R +S H [at)

FORTRAN CODING

FORTRAN IV coding for a computer program used on the Control
Data Cyber 74 computer at the Computer Science Centre, Department of

Energy, Mines and Resources, Ottawa, is given in Table 1.

11
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Table 1. FORTRAN Coding

PROGRAM ONED 73/74 OpPT=1 FTN 4.8+528 03/11/81

_ PROGRAM ONED(INPUT,QUTPUT)
[ e Y Y S R i IITIIT
CHnx
C#**x PROGRAM ONED SIMULATES ONE-DIMENSIONAL UNCONFINED GROUNDWATER FLOW
C*#% OVER AN IMPERMEABLE»SLOPING BASE.THE SOLUTION TECHNIQUE IS A C-N
C**+ FINITE DIFFERENCE METHOD WITH ITERATIVE ADJUSTMENT OF THE
C*+x SATURATED THICKNESS.CONSTANT HEAD OR CONSTANT FLUX BNDRY-CONDITIONS
Ck** MAY BE SELECTED INDEPENDENTLY AT EACH BNDRY.

CHxx
CHERRBERER R AR RS R R R R R RS R R AR R R R Rk kKRR Rk Rk Rk Rk kR kR kK &
Chxx
DIMENSION AL(50)5A(50),AK(50)sH(50),HA(50),HD{50),0(501,S(50),
1U(50)5P(50),R(50),8(200),RHS(50)

TCERRERRRE LIST OF INPUY VARIABLES

C*#** DATA INPUT IS LIST-DIRECTED AND FREE FORMAT,BUT FOR CLARITY WILL

C*#% BE DESCRIBED HERE AS APPEARING ON 3 DISTINCT CARDS  ##thskassessss
CRERERRREB R RS RE R R R R AR R AR AR R R R AR R R RN AR AR SRR AR R AR R b kR A AR E R R R K
Cie CARD 1

Coxe N sNUMBER OF NODES

CHrt MAX *MAXIMUM NUMBER OF ITERATIONS IN EACH TIMESTEP

C##* TEST  =ACCURACY LIMIT OF ITERATIONS

Cxe* ALD =DISTANCE FROM FIRST NODE TD NEAREST BOUNDARY

Crex ALL *DISTANCE FROM LAST NODE TO NEAREST BOUNDARY

Ces¥ IS = IS=0,THEN ON BOTH BOUNDARIES FLUX IS GIVEN

Cex =1, THEN FLUX GIVEN ON BNDRY NEAR NODE 1,HEAD ON BNDRY NEAR NODE N
Csx =2, THEN HEAD GIVEN ON BNDRY NEAR NODE 1,FLUX ON BNDRY NEAR NODE N
C*xx =3, THEN ON BOTH BNDRIES HEAD IS PRESCRIBED

Cexx ID sSKIPFACTOR FOR PRINTOUT OF WATERLEVELS AND SAT.THICKNESS

Cess CARD 2

Cr¥* A(I)sI=lsN =COMPARTMENT WIDTH
C**% AK(I),IsU,N =sPERMEABILITY
Cr*% H{(I)sI=1yN sSATURATED THICKNESS AT TIME ZERQO
Cxx* D(I)yI=1,N =ELEVATION OF IMPERMEABLE BASE
C*** S(I)sI=1sN =STORATIVITY
Cx*x AL(I),Is1,N=1 =DISTANCE BETWEEN NODES
Cr*x¥ CARD 3
Cx*% DT =INITIAL LENGTH OF TIMESTEP )
C*x* TINC =MULTIPLICATION FACTOR APPLIED TO DT AT EACH TIMESTEP
Ck*x TMAX =MAXIMUM TIME OF SIMULATION WITH THIS SET OF DATA
Ce*%x Q1 sFLUX OR HEAD AT BNDRY NEAR NODE 1 , DEPENDING ON VALUE OF IS
Crex Q2 =FLUX OR HEAD AT BNDRY NEAR NODE N , DEPENDING ON VALUE OF IS
C*x*x R(I),I=1,Ne INFILTRATION RATE
Cekx
C**x REPEAT CARD 3 AS OFTEN AS YOU WISH,WITH INCREASING TMAX
C**% LAST CARD MUST CONTAIN (N+5) VALUES OF WHICH THE FIRST MUST BE ZERQ.
Ce¥x
READ*,NyMAX, TEST»ALO»ALL, IS, ID
PRINT 130
130 FORMAT(*1SO0LUTION OF ONE=DIMENSIONAL GROUNDWATER FLONW*//)
PRINT 131,NoMAXsTEST,ALO»ALLSIS,ID

131 FORMAT(* NUMBER OF NODES ak,13/
1 * MAXIMUM NUMBER OF ITERATIONS =%,13/
2 * ACCURACY =%,E12.5/
3 * DISTANCE TO LHS BOUNDARY =¥,E12.5/
4 * DISTANCE TO RHS BOUNDARY =¥,£812.5/
5 * BOUNDARY CONDITIONS,SET =¥,12 /
-] SKIP FACTOR =%,12//)

*
N1=N=1 $ NN=N1%*3 § TM=0
READ*s (ACL)sI=1oN) s (AKCI)»I=1pN)»(H(I)sImdyN)os(OD(I)sI=1,N)y
1(S(I)»Im1,N)s (AL{I),I=1,N1) $DD 22 I=2,N1
22 PUINa(A{TI=1)42.,%¥A{I)+A(I+1))*(AL(I=1)4AL(I))
PRINT 300 $ DO 369 I=i,N
369 PRINT 400, I,A(I)sAK(I), HUI)»D(I)pSCI)yAL(I)
400 FORMAT(1X,15,6E12.4)
300 FORMAT(4X, *I%,5X s *AnWIDTH®,5X, *AK=PERM, HzSAT.THICK D=BASE ELEV S=
1STOR., COEF ALSLENGTH*)
3 READ*,DT,TINC, TMAX»Q1502,(R(I)»I=1,N)SIF(DT.EQ.0.)STQOP
PRINT 173,DTsTINC,s TMAX »Q1,0Q2
173 FORMAT(//* INITIAL T-STEP, TIMESTEP-INCREMENT,MAXIMUM TIME,Ql AND 0O

12



70

75

80

85

90

95

100

120

PROGRAM ONED

174
Cres
Cess
Cre#
9
1
10

2

15

13
4
Ch¥dx

Cx*x
CHes

-~

500
600

100
200
11

12

14

73/74 OPTs»] FTN 4.8+528

12#%/7/ »5EL5.4/)
PRINT 174, (R{I),I=1sN)
FORMAT(1Xy10E12.4)

CALCULATE COEFFICIENTS OF MATRIX-EQUATION

ICNT=0 ¢ DO 1 I=1,N $ HD(I)=H(I)

HA{(I)=H(]I)

DO 2 I=2,N $ UCIVs(HA{I-1)+HA(I))*(AK(I=1)+AK(I})*
LOACI=1)¢A(I) ) /{2.%AL(I=1))

CONTINUE ¢ IF(IS.6T.1)60T70 12
B{(1)=U(2)+8.*S(1)*A(1)*(ALO+AL(1)/2.)/DT $ B(2)=s=U(2)
RHS(1)=8.%Ql+U(2)*(H(2)-H(1)=2.%(D(1)=D(2)))+
1 B.*%(R(1)+S(LI*H{L)/DT)I*A(L)I*(ALO+AL(1)/2.)
[F(IS.EQ.1)GOTO 14

B(NN) ==U(N)
BINN+L)=UIN)+8.*#S(N)/DT#A(N)*(ALL+AL(N1)/2.)

RHS(N) =8, *Q2+U(N)*{H(N1)=HI(N)+2.*{D(N1)=-D(N)))
1 +8.%A(N)I*(AL(NL)/2.+ALL)*(R(N)+S{N)*H(N)/DT)

DO 4 I=2,N1 8 II={I-1)%3 $ B(II)==U(I) $ B{II+2)==U(I+1)
BCIT+1)=U(I)+U(I+1)+S(LI)*P(1)/DT
RHS{I)sU(I)*(H(I=1)=H(I)+2.,*%(D(I~-1)-D(I)))
L4UCI+1)#(H{I+1)=H(I)+2.%(D{I+1)=-D(I)))
24P (I)*(S(I)*H(I)/DOT+R(I))

SOLVE MATRIX-EQUATION

CALL MASOOB(RHSsBsN»slslslsleE=4,IER)
IF{ICNTSGT«MAX)GOTO 7 $ DO & I=1,N1
IF(RHS{I)sLT+04)RHS(I)=,0001

IF{ABS(RHS(I)-HD(I)) GT.TEST)IGOTO 11

CONTINUE

DO 8 I=l1,N

B(I)eRHS(I)+D(I)

H{I)=RHS(I) $ TM=TM+DT $DT=DT*TINC

IF((TM4DT) «GT.TMAX)DT=TMAX=-TM

PRINT 100s TM» ICNT, IER

PRINT 600

PRINT 200, {(H(I)sI=1,N51D)

PRINT 500

PRINT 2005 (B(I)sI=1sNyID)

FORMAT(/%* WATERLEVELS*/)

FORMAT(/% SATURATED THICKNESS*/)
IF(TMJ.GE.TMAX)GOTO3 $ GOTO 9

FORMAT(/* TIME®* sEl2.45215/)
FORMAT(1X»10Ell.4)

DO5 I=1,N ¢ HA(I)=(H(I)+RHS(I))/2,

HD(I)®RHS(I) 8 ICNT«ICNT+1 8 GOTO 10

FA=4 ., %A(1)*AK(1)*Ql/ALO % FB=B8.*A(1)*(ALO+AL(L1)/2,)
B(l)=FA +U(2)+FB*S(1)/0T $B(2)==U{(2)
RHS(1)mFA%(2.%Q1=H(1))+U{2)*(H{2)-H(1)+2,*(D(2)=-D(1)}))
1+FB*(R(1)+S(1)*H{1)/DT)

IF{IS.EQ.,2)G0OTO 15

BINN)=#=U(N) $ FAs4.®A(N)*AK(N)*Q2/ALL

FBeB8, ®A(N)*(ALL+AL(N=1)/2.) $ BINN+1)=FA+U(N)+FB*S(N)/DT

RHS{N)=FA% (2,%Q2-H(N))+U(N)*# (H{N=1)=H(N)+2.¥(D(N-1)=D(N)))

1+FB#(RIN)+SIN)*H(N)/DT) $ GOTO 13 $ END

13

03/11/81

14437.39



Subroutines

The main program ONED - for one-dimensional - calls the
subroutine MASO08 for the solution of a system of linear equations with
band structure; MASO08 is identical with subroutine GELB of the IBM

Scientific Subroutine Package (IBM, 1966).

Core Requirements

The program requires 40 K words of memory.

INPUT DATA

Input data are in free format, and data are given in the
following order. Even though card boundaries are disregarded in free
format, for convenience in the description each READ - statement is

represented as one card.

Card 1
Iteml: N = the number of compartments (integer)
Item 2: MAX = maximum number of iterations at each time step
(integer)
Item 3: TEST= accuracy criterion for the iterations: If the

difference between the values of H calculated

during the last and second last iterations is

14



Item 4:

Item 5:

Item 6:

Item 7:

ALO

ALL

IS

ID

less than TEST for all nodes, the iteration is

terminated, results for the time step are

~printed, and calculation for the next time step

starts.

distance between the first node and the adjacent

aquifer boundary.(length)

distance between the last node and the adjacent

aquifer boundary (length)

code number indicating the boundary conditions:

IS = 0: On both boundaries the flux is known.

IS = 1: Flux specified on boundary near node 1,
head is known on boundary near node N.

IS

1]
N

Head specified on boundary near node 1,
flux specified on boundary near node N.
IS = 3: Head specified on both boundaries.

skip factor for printout of water table
elevations at selected nodes. If ID =1, values
for all nodes will be printed; if ID > 1, values
will be printed only for nodes 1, 1+ID, 1+2ID,

etc.

compartment widths (Length)
permeabilities (Length/time)
saturated thickness (Length)

elevation of the impermeable base (Length)

15



Card 3
0T =

TINC

TMAX

O
[y
1]

O
N
1]

storativities (Dimensionless)

distances between nodes, only N-1 values (Length)

initial length of time step (Time)
multiplication factor applied to DT at each time
step in order to increase the length of the time
step gradually (Dimensionless)

maximum time of simulation with this set of data
(Time)

if IS =0 or IS = 1, the constant flux through
the aquifer boundary into the first element
(Length3/Time)

if IS = 2 or IS = 3, the constant saturated
thickness at the aquifer boundary near the first
element (Length)

if IS =0 or IS = 2, the constant flux into the
last element (Length3/Time)

if IS =1 or IS = 3, the constant saturated
thickness at the boundary near the last element
(Length)

the infiltration into each element from the top

(Length/Time)

16



Card 3 can be repeated a number of times, each time with different values
of Rj, Q3> Qy, as well as the time step parameters. Note that each

TMAX must be greater than on the previous card.

Last Card: To stop the program, the value of DT on the last card
must be zero. Note that even if DT = 0, the program
still expects values for the other variables on this
card. This can be achieved simply by using the repeated
input facility available under free format input; thus

the last card can contain simply: 100 * O.
EXAMPLES AND COMPARISON WITH ANALYTICAL SOLUTIONS

(a) The Linearized Differential Equation of Ground Water Flow

If the change in saturated thickness with time and place is
small in comparison with the total saturated thickness, H, the latter may
be assumed to be a constant. The differential equation for horizontal
unconfined ground water flow then becomes 1dentica1 with the equation for

confined flow. In the one-dimensional case we have:
(1) Th? non-linear formulation

(afax)(Khah/ax) = S ah/at (23)
(2) The linear formulation

HKazh/axz 'S ah/at (24)
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Example 1: Linear Flow with Constant Recharge through the Central

Compartment

The first example is a simulation of a horizontal aquifer (D =
constant) with constant permeability. The initial head in the aquifer is
constant, and the boundaries are assumed to remain at a constant head
equal to the initial head in the aquifer. The ground water is thus in
static equilibrium at the beginning of the simulation, when a constant

recharge q is applied to the central compartment. Furthermore, the

parameters L, A, K and S are uniform throughout the aquifer.
This simulation is equivalent to the differential Equation 24 -
provided the change in saturated thickness remains small compared with

the total saturated thickness - with the boundary conditions:

h(x, 0) = h(s, t) = h

o (25)
AHK (8h/ax) = —-gAL/2 at xv= 0
or
3h/ax = QL/(ZHK) at x =0 (26)

and x = s is the Tocation of either boundary of the aquifer. On account
of the symmetry of the problem the recharge, q, is divided evenly between
the left- and the right-hand section of the aquifer. For points near the
central compartment, far away from either boundary, and for a short

period after the recharge commences, the boundary may furthermore be
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assumed to be at infinity. Under these assumptions, the solution to the

boundary value problem has been found to be (for example, Glover, 1978).

h =hg + [aLx/(20Kv )] G(u)

where u = (x25/akht)l/?
X = distance to the recharge point, and
6u) = S exp(-y2)/y2dy \ (27)
u

For the simulation of flow with recharge through the central node the

following parameters were used:

N = number of nodes = 49
MAX = maximum number of iterations = 100
TEST = accuracy of iterative adjustment
of saturated thickness = 0.0001 m
ALO = distance to 1.h.s. boundary = 10m’
ALL = distance to r.h.s. boundary = 10 m
IS = code for boundary conditions = 3
(i.e. head specified on both boundaries)
ID = skip factor for printing of results = 1

(i.e. results at all nodes are to be printed)
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jo1=1,49 = 100 m

jo 1= 1, 49 = 1 m/day
hi’ i=1,49= 10m

Di’ i=1,49= O

Si’ i=1,49= 0.15
Li’ i=1,48= 10m
DT = tnitial time step = 1 day
TINC = time step increment = 1.03
TMAX = simulated period = 500 days
Ql = constant head, 1.h.s. boundary = 10m
Q2 = constant head, r.h.s. boundary = 10m

Recharge: Ri’ j 1,2...24 = 0

Rog

Ri’i

0.015 m/day
26,27...49 = Q

The input for this simulation is as follows:

card 1 = 49 100 0.0001 10 10 3 1

card 2 = 49%100 49*1 49*10 49%0 49*%.15 48*10
card 3= 1 1.03 500 10 10 24*0 0.015 24*0
card 4 = 100*0

In Table 2 the results for node No. 21, 40 m from the

recharged compartment, are compared with the analytical solution:
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_, (0.015) (10) (40)

h -h 1/2
° T (o) F 82450
or
h - h, = 0.1693 6(2.45/t"/%) (28)
Table 2. Comparison of Analytical and Finite-Difference Solutions,
Examples 1 and 2
h-h, (m) h-hy (m) (m)
t Analytic  Finjte diff. Finjte diff.
(days) u G(u)* solution example 1 example 2
1 2.45 7 x 1079 0 0 0
2.03 1.72 0.0036 0.0006 0 0
3.09 1.39 0.0165 0.003 0 0
4.18 1.20 0.0388 0.007 0.01 0.01
5.31 1.06 0.0686 0.012 0.01 0.01
6.47 0.963 0.104 0.017 0.02 0.02
8.89 0.822 0.185 0.031 0.03 0.03
11.5 0.724 0.276 0.047 0.05 0.05
15.6 0.620 0.424 0.072 0.07 0.07
20.2 0.546 0.580 0.098 0.10 0.10
28.7 0.458 0.856 0.145 0.14 0.14
34.4 0.418 1.03 0.174 0.17 0.17
50 0.347 1.46 0.247 0.25 0.25
69.2 0.295 1.93 0.327 0.32 0.32
100 0.245 2.56 0.433 0.43 0.43
152 0.199 3.45 0.584 0.58 0.58
201 0.173 4.18 0.708 -0.70 0.70
301 0.141 5.46 0.924 0.89 0.91
403 0.122 6.54 1.107 1.04 1.08
500 0.110 7.42 1.256 1.14 1.24

*From Glover (1978)
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Note that toward the end of the simulation, the finite-difference resU]ts

are less than the corresponding analytical results due to the effect of

the finite distance to the boundary.
Example 2

To test the numerical solution when flux rather than constant

head is specified on the boundaries, Equation 24 and condition (25) can

be used, but condition (26) has to be slightly modified. Since Ql

represents the total influx through the vertical face at x = 0, we have

Q1 = AHK ah/ax
or

dhfax = QllAHK
Then the analytic solution becomes

h - hy = Qux/ (AHK /%) 6(u)

By assigning the value of 7.5 m3/day to Ql’ the numerical values for
identical values of t will be identical with those given for the
analytical solution in example 1 (Equation 28). The results for the 4th
node, 40 m from the recharge boundary, are given in the last column of
Table 2. Note that since the constant head boundary on the right-hand
side is now approximately twice as far away from the recharge point, the

deviation, for t > 200 min, of the finite-difference solution from the

analytic solution is far less severe than in the first example.
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(b) The Steady State Differential Equation

In ground water systems in which the flow is at equilibrium - no

change in head with time - Equation 24 simplifies to
(3fax)(Kh ah/ax) = O (29)

and the non-linearity presents no problem. Equation 29 can be solved:

h™ = ax + b (30)
where a and b are constants depending on the boundary conditions; if
hix = 0) = h0 and h(x = L) = h_, then (30) becomes

-h 2+ (n

. 2o B (31)

Example 3

This example simulates how the head in a horizontal aquifer,
originally in static equilibrium with a constant head of 5 m everywhere
in the aquifer, will reach a new dynamic equilibrium when the head at one
end of the aquifer is suddenly raised to 10 m and kept constant at 10 m
thereafter; the necessary input cards are shown below:

19 100 0.0001 10 10 3 1

19*100 19*1 19*5 19*0 19*1 18+*10

1 1.1 20000 5 10 19%0

100*0
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A steady state is reached after 442 days; the head at each of the nodes
calculated from (31) and those calculated with the finite-difference

model are given in Table 3.

Table 3. Comparison of Analytical and Finite-Difference Steady State,

Example 3
h (steady state)
computed from h (steady state,
Node X Eq. 31 computed by model)
No. (m) (m) (m)
1 10 5.362 5.374
2 20 5.701 5.712
3 30 6.021 6.031
4 40 6.325 6.334
5 50 6.614 6.623
6 60 6.892 6.900
7 . 70 7.159 7.166
8 80 7.416 7.422
9 90 7.665 7.671
10 100 7.906 7.911
11 110 8.139 8.144
12 120 8.367 8.371
13 130 8.588 8.592
14 140 8.803 8.807
15 150 9.014 9.017
16 160 9.220 9.222
17 170 9.421 9.423
18 180 9.618 9.620
19 190 9.811 9.813
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Example 4: Steady State Water Table above a Uniformly Sloping Base

Given an aquifer underlain by a uniformly sloping base such that:

D = 8x

where g<<1

the quasi-horizontal flow can be characterized by the differential

equation

a/ax [h a(h + gx)/ax] = (S/K)(ah/at)
and for the steady state

a/?x [h (sh/fax +8)] =0

Then

h (ah/ax + g) = C, = -g'/K (32)

where q' = the constant flux per unit width at any given cross section

(length?/time).
Equation 32 can be rewritten as

dx = h/(Cl - gh) dh
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from which

2
B°X = gh + C1 In (C1 - gh) + C2

If, for example, the saturated thickness at x = L is kept constant

h (x=L) = hL
then
2
C,=8"L-8h ~C, In (C, - gh)
and 2 L~ " 178N
x = L+(h-h ) /8 + (C;/8%) Tn [(¢; - 8h)/(C; -sh )] (33)

For L=0, i.e., the saturated thickness specified at x=0

h(X=0) = hO

x = (h-n )/6 + (Cllsz) In [ (c;-8h)/(C;~gh_) (34)

Thus, with the aid of (33) or (34), the steady state saturated thickness
at points in the aquifer can be calculated by inversion, i.e., arbitrary
values of h are assumed and the corresponding value of x is calculated.
Values of h at arbitrary values of x can then be found by interpolation.
These calculations were carried out for the simulated aquifer, with the

following characteristics and inputs:

K =1 m/day
S =0.1
A=1m

g = 0.1

L =100 m
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Ql =1 m3/day, corresponding to €, = -1m

hL=5m

The model was run three times, with 9, 19 and 49 uniformly
spaced nodes. The initial saturated thickness was 25 m at all nodes.
Table 4 gives the steady state solutions obtained from (33) and from the
three model runs, showing how the accuracy improves when the number of

nodes is increased.

Table 4. Steady State Flow over a Sloping Base, Analytic and Model

Solutions
Saturated thickness, h (m)
X Model solutions
(m) Analytic solution 9 nodes 19 nodes 49 nodes
0 22.834 - - -
10 21.37 21.01 21.18 21.29
20 19.88 19.51 19.67 19.80
30 18.36 17.98 18.15 18.28
40 16.78 16.40 16.57 16.70
50 15.15 14.76 14,94 15.07
60 13.47 13.04 13.23 13.37
70 11.66 11.21 11.41 11.57
80 9.74 9.23 9.45 . 9.62
90 7.60 7.00 7.26 _ 7.45
100 5.00 - - -

Example 5: A Time Dependent Solution

Although in general Equation 23 cannot be solved analytically, a
particular solution can be found on inspection; supposing h(x, t) to be

of the form
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h = ax + bt (35)

substitution in (23) gives

1/2

o
I
+

+ (Sb/K)
The constant b is determined by the boundary condition at x = O:
h(x =0, t) = bt

that is, the head at x = 0 rises linearly with time from h = 0 at t = 0.
Assuming the solution with negative a, we note further that positive
values of the head are only possible for

x < t(Kb/s)l/2

and for x > t(Kb/S)ll2 the solution (35) must be replaced by the

trivial solution

Thus :
For x < t(kb/$)1/ 2 n = bt - x(sb/K)1/2

For x > t(Kb/S)l/2 : h =
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is the complete solution of the differential equation and the initial and

boundary conditions:

h(X = 0, t) = bt
h(X = ®, t) =0
hix, t =0) =0

This problem was simulated by making a slight adjustment to the present

program, permitting the value of Ql’ representing the head at x = 0

under condition IS = 3, to be set equal to the time at the end of each

time step multiplied by a constant factor, b. Figure 2 shows the

simulated heads at t = 500, which fall midway between the analytic

solution for t = 456, the beginning of the time step, and for t = 500.

Thus, reducing the time step obviously will result in convergence to the

true solution.

Simulation

h = bt-x VbS/K =0.001t — 0.01x

Analytic,t = 500 (end of time step)

Analytic, t =456
(beginning of time step)

Figure 2.

T T T T Y
10 20 30 40 50

Time dependent solution with uniformly rising head at x = 0.
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