Environment Canada

Environnement Canada

Climatic Perspectives

April 12 to 18, 1988

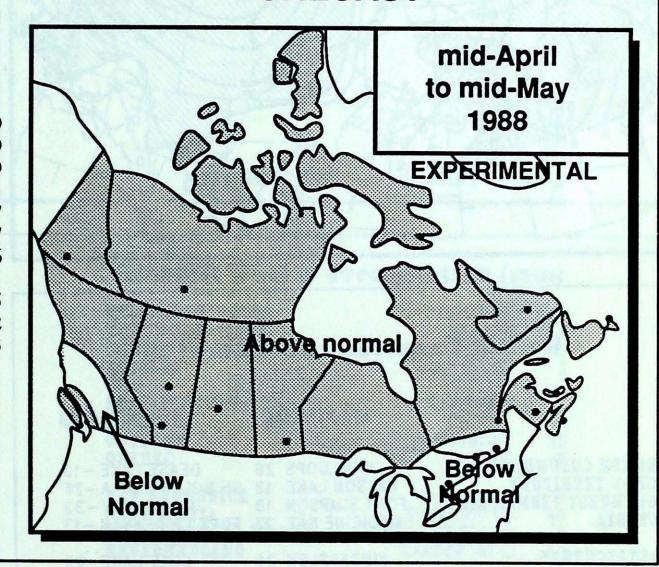
A weekly review of Canadian climate

Vol. 10 No. 16

Environment Canada

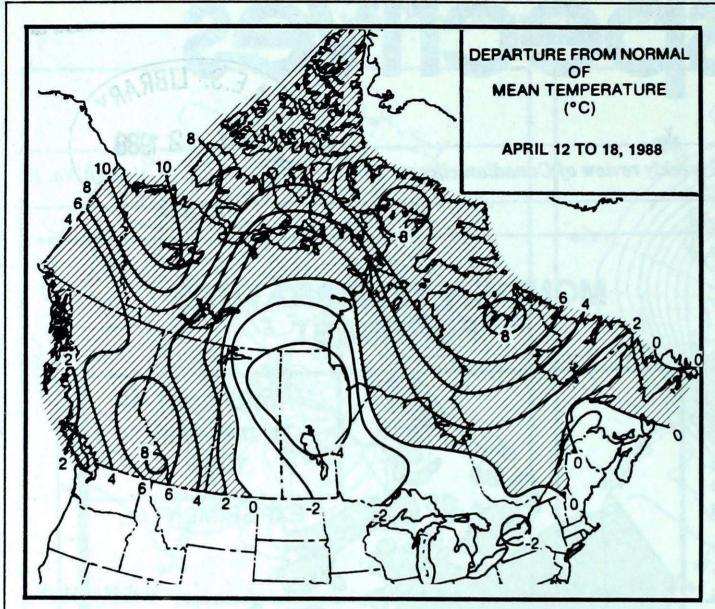
Environnement Canada

Atmospheric Environment Service


de l'environnement atmosphérique

Normal temperatures for mid-April to mid-May, °C

9
9
9
7
7
6
5
2
3


Canadä

MONTHLY TEMPERATURE FORECAST

The above new temperature forecast format is the one currently proposed for the official public product to be released effective May 15, 1988. Please forward any comments to the Canadian Climate Centre at the address listed on page 4.

- Winter returns to the East
- Freezing rain causes power blackouts in Newfoundland and Quebec

Weekly Temperature extreme ('C)

MAXIMUM

MINIMUM

BRITISH COLUMBIA YUKON TERRITORY NORTHWEST TERRITORIES ALBERTA	KAMLOOPS WATSON LAKE FORT SIMPSON MEDICINE HAT	4417 (200 - 200)	DEASE LAKE -10 SHINGLE POINT A -26 MOULD BAY -33 FORT CHIPEWYAN -13
SASKATCHEWAN MANITOBA ONTARIO QUEBEC	KINDERSLEY GRETNA THUNDER BAY MANIWAKI		CREE LAKE -20 CHURCHILL -20 BIG TROUT LAKE -17 SCHEFFERVILLE -21
NEW BRUNSWICK NOVA SCOTIA PRINCE EDWARD ISLAND NEWFOUNDLAND	FREDERICTON GREENWOOD CHARLOTTETOWN STEPHENVILLE WABUSH LAKE	12 11 12 8	MONCTON -8 GREENWOOD -7 SUMMERSIDE -5 WABUSH LAKE -17

ACROSS THE NATION

WARMEST MEAN TEMPERATURE	16	KAMLOOPS	BC
COOLEST MEAN TEMPERATURE	-21	EUREKA	NWT

ACROSS THE COUNTRY ...

Yukon and the Northwest Territories

A ridge of high pressure extended northwards into the western Arctic, resulting in mainly sunny skies. Spring weather conditions covered the Yukon and Mackenzie District, rapidly depleting the snow cover, as temperatures soared to the double digits. Snow and freezing rain affected the Great Slave Lake area on the 15th. Daily temperature records were broken in the Mackenzie Valley and the western Arctic. Wind and blizzard warnings were issued for northern Hudson Bay. In the eastern Arctic, a southerly circulation nudged temperatures up close to the freezing mark on Baffin Island, where snowfalls ranged between 5 and 15 centimetres. In contrast, readings in the high Arctic registered in the minus thirties.

British Columbia

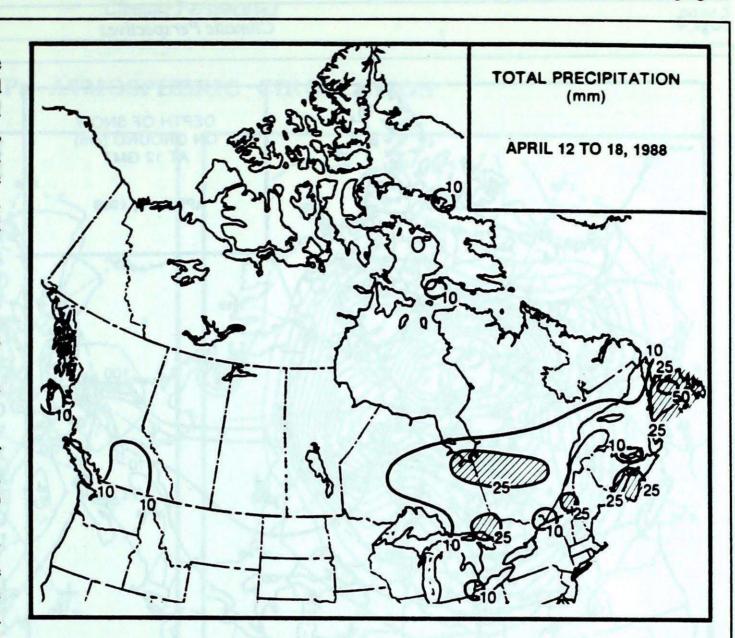
It started out as a gorgeous spring week, with lots of sunshine. Weather conditions deteriorated towards the end of the period, as the ridge of high pressure moved eastwards. New daily record high temperatures were established in the southern interior, with readings climbing to the mid-to high twenties. Heaviest precipitation, in the form of scattered thundershowers during the weekend, fell in the drought stricken areas of the southern interior. Fruit trees are blooming in the southern valleys about ten days ahead of normal. In the south, the snowpack remains 10 to 20 percent below the long term average, but is closer to normal further north.

Prairie Provinces

In Alberta, a ridge of high pressure dominated the weather picture, giving mostly sunny skies and above normal temperatures. In the south, daytime readings climbed to the mid-twenties. The continuing dry weather is blamed for an out break of forest and brush fires in the province. The largest blaze was a 95 hectare fire west of Slave Lake, northwest of Edmonton. Fire fighters have responded to a number of grass fires, which have been burning near populated areas. In the Edmonton area alone there have been more than 20 fires during the weekend.

In Saskatchewan and Manitoba, the passage of two Arctic cold fronts insured that temperatures remained on the cool side. The south was predominantly sunny, dry and breezy. A few new daily high temperature records were set early in the week. Fields in the south are very dry. Light snow fell in the north. Churchill picked up an additional 20 cm.

Ontario


As is typical for this time of year it was a changeable week. Record warm temperatures gave way to near record cold by Friday, as a sharp cold front accompanied by thunderstorms swept the province. Hail was reported in a number of areas of southern and central Ontario late on the 14th. Brief downpours produced 10 to 20 millimetres of rain. Daytime temperatures in the teens at the beginning of the week, barely climbed above the freezing mark on Friday. In Toronto, the Blue Jays baseball game was cancelled Friday evening as a result of the cold and windy weather. On Sunday, daytime readings rebounded upwards once again, only to be suppressed by the passage of another sharp cold front the following day.

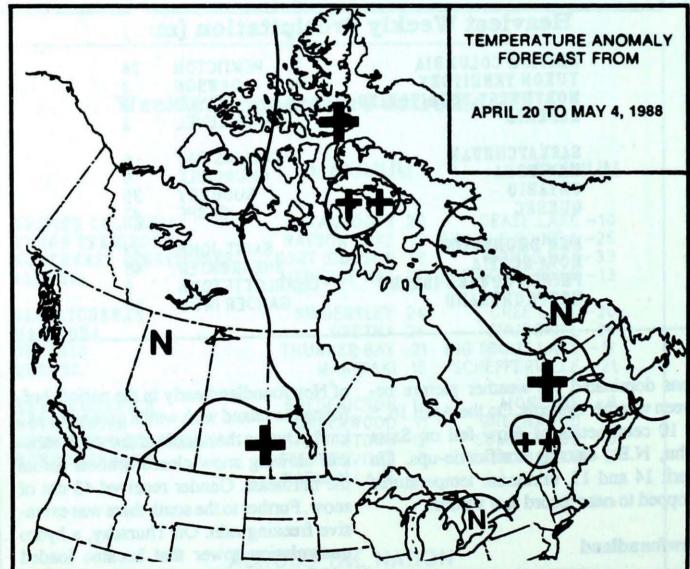
Quebec

A spring snow storm hit southern Quebec during the weekend, dumping 15 to 20 centimetres of fresh snow in the Eastern Townships on April 16. The mountainous areas along the north shore and the north coast received 10 to 15 centimetres of snow, respectively. Traffic accidents and several fatalities are attributed to the storm. A ridge of high pressure affected the province earlier in the week, giving sunny skies and warm temperatures. Record warm, above freezing temperatures were recorded in northern Quebec. There is speculation that the weather may have been a contributing factor for the widespread power blackout across the province late on the 18th.

Maritime Provinces

Weather conditions were variable, with disturbances producing mixed precipitation during the early and latter parts of the period. Fair, but cool condi-

Heaviest Weekly P	recipitation (in	
BRITISH COLUMBIA	PENTICTON	24
YUKON TERRITORY	DAWSON	3
NORTHWEST TERRITORIES	CLYDE	12
ALBERTA	HIGH LEVEL	2
SASKATCHEWAN	COLLINS BAY	4
MANITOBA	CHURCHILL	6
ONTARIO	SUDBURY	35
QUEBEC	GASPE	47
NEW BRUNSWICK	SAINT JOHN	32
NOVA SCOTIA	SHEARWATER	46
PRINCE EDWARD ISLAND	CHARLOTTETOWN	9
NEWFOUNDLAND	GANDER INT'L	50


tions dominated the weather picture between weather systems. On the April 16, 5 to 10 centimetres of snow fell on Saint John, N.B., causing traffic tie-ups. On April 14 and 15, minimum temperatures dropped to near record low values.

Newfoundland

The unsettled weather pattern of last week continued, with periods of snow, rain, drizzle and freezing precipitation. The fierce slow moving storm, which affected the Maritimes last week, moved east

of Newfoundland early in the period, buffeting the Island with winds gusting to 141 km/h. During the middle of the week, snow and blowing snow closed schools across the northeast. Gander received 43 cm of snow. Further to the south there was extensive freezing rain. On Thursday, a hydro transmission tower that became loaded with ice collapsed, cutting off power to St. John's and most of the Avalon Peninsula. Hydro was off for nearly 8 hours, forcing many businesses to close. In Labrador, it was generally fair until the weekend, when 5 cm of fresh snow covered the ground.

- + + much above normal
- + above normal
- N normal
- below normal
- -- much below normal

Temperature Anomaly Forecast

This forecast is prepared by searching historical weather maps to find cases similar to the present. The historical outcome during the 15 days subsequent to the chosen analogues is assumed to be a forecast for the next 15 days from now.

CLIMATIC PERSPECTIVES VOLUME 10

Managing Editor ... P.R. Scholefield
Editors-in-charge

weekly ... A.K. Radomski
monthly ... A.A. Caillet
Data Manager ... M. Skarpathiotakis
Art Layout ... K. Czaja
Word Processing ... P. Burke/U. Ellis
Translation ... D. Pokorn
Cartography ... G. Young/T. Chivers

Regional Correspondents

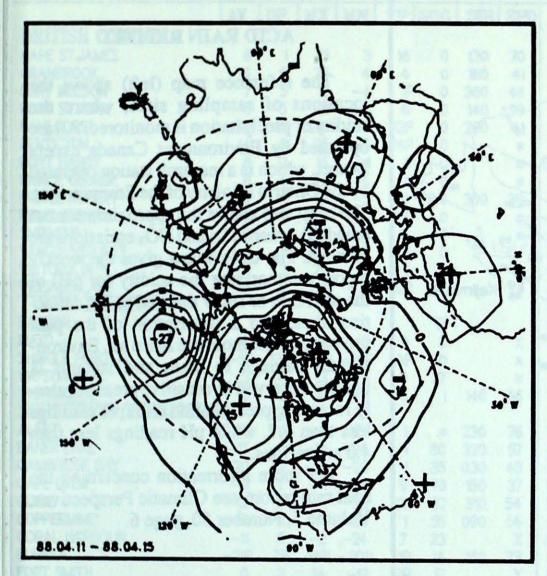
Atlantic: F.Amirault; Quebec: J.Miron; Ontario: B.Smith; Central: J.F.Bendell; Western: W.Prusak; Pacific: E.Coatta; Yukon Weather Centre: J.Steele; Frobisher Bay and Yellowknife Weather Offices; Newfoundland Weather Centre: G.MacMillan; Ice Central Ottawa ISBN 0225-5707 UDC 551.506.1(71)

Climatic Perspectives is a weekly bilingual publication of the Canadian Climate Centre, Atmospheric Environment Service, 4905 Dufferin St., Downsview, Ontario, Canada M3H 5T4.

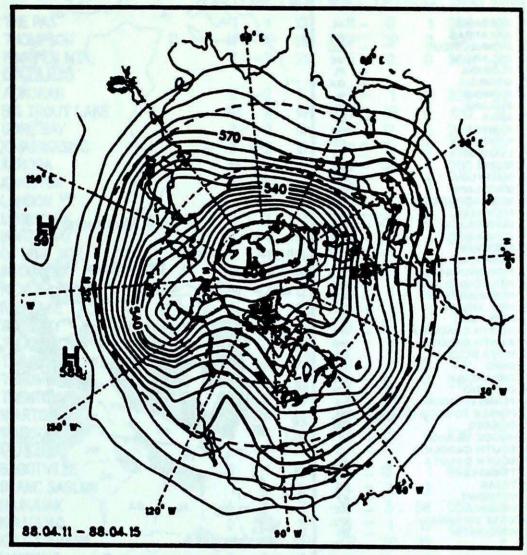
7 (416) 739-4438/4436

The purpose of the publication is to make topical information available to the public concerning the Canadian Climate and its socio-economic impact.

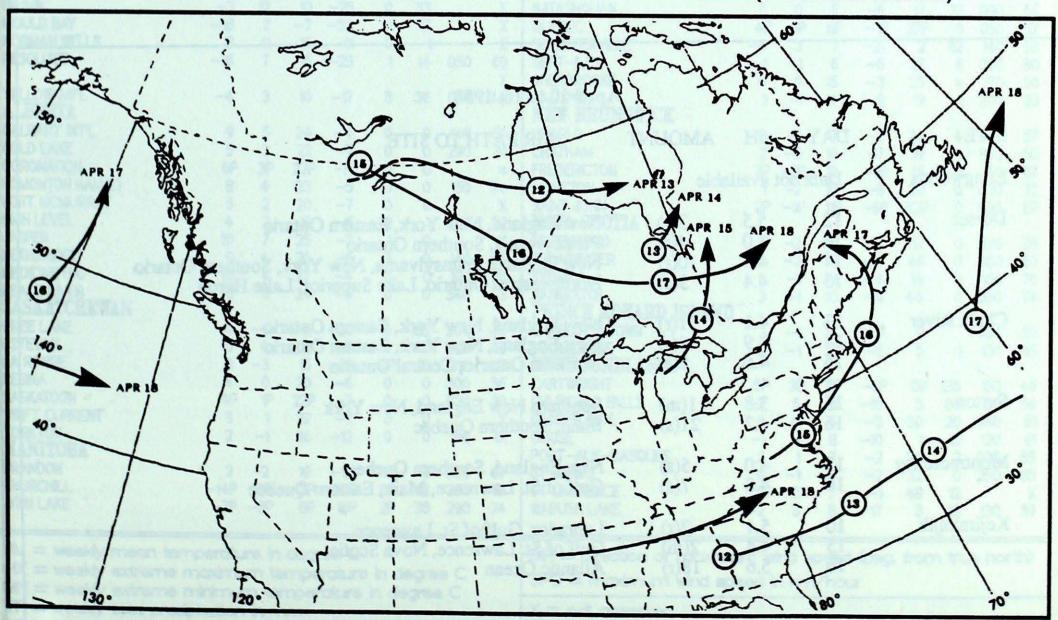
Unsolicited articles are welcome but should be at maximum about 1500 words in length. They will be subject to editorial change without notice due to publishing time constraints. The contents may be reprinted freely with proper credit.

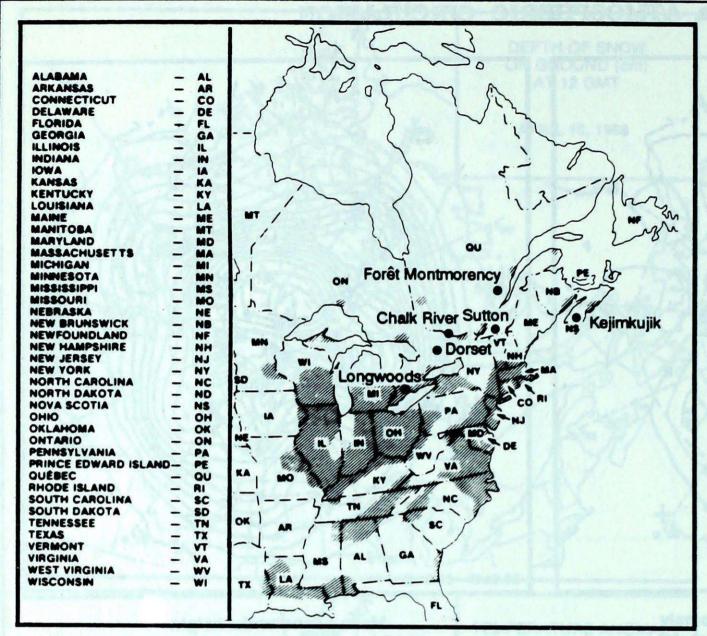

The data in this publication are based on unverified reports from approximately 225 Canadian synoptic weather stations. Information concerning climatic impacts is gathered from AES contacts with the public and from the media. Articles do not necessarily reflect the views of the Atmospheric Environment Service.

Annual Subscriptions


weekly and monthly supplement	\$35.00
foreign:	\$42.00
Monthly issue:	
foreign:	

Orders must be prepaid by money orders or cheque payable to Receiver General for Canada. Canadian Government Publishing Centre, Ottawa, Ontario, Canada K1A 0S9 (819) 997-2560


50 kPa ATMOSPHERIC CIRCULATION


Mean geopotential height anomaly 50 kPa level (5 decameter intervals)

Mean geopotential height 50 kPa level (5 decameter intervals)

Storm track - Position of storm at 12 GMT during the period: April 12 to 18,1988

ACID RAIN REPORT

The reference map (left) shows the locations of sampling sites, where the acidity of precipitation is monitored. All are operated by Environment Canada except Dorset, which is a research station operated by the Ontario Ministry of the Environment. The map also shows the approximate areas (shaded), where SO₂ and NO_x emissions are greatest. The table below gives the weekly report summarizing the acidity (or pH) of the acid rain or snow that fell at the collection sites, and a description of the path travelled by the moisture laden air. Environmental damage to lakes and streams is usually observed in sensitive areas regularly receiving precipitation with pH readings less than 4.7, while pH readings less than 4.0 are serious.

For more information concerning the acid rain report, see Climatic Perspectives, Volume 5, Number 50, page 6.

April	10	to	16,	1988	
The second secon			Day of the Control of		

SITE	DAY	pH	AMOUNT	AIR PATH TO SITE
Longwoods	Data n	ot avail	able	
Dorset	12 13 14 15	5.5 4.0 4.1 4.4	3(r) 4(r) 10(r) 3(s)	New England, New York, Eastern Ontario Pennsylvania, Southern Ontario New England, Pennsylvania, New York, Southern Ontario Northwestern Ontario, Lake Superior, Lake Huron
Chalk River	13 14 15	4.1 3.9 4.6	1(r) 4(r) 5(s)	New England, New York, Eastern Ontario New England, New York, Eastern Ontario Northern Ontario, Central Ontario
Sutton	15 16	3.8 4.2	11(m) 21(s)	Southern New England, New York Main, Southern Quebec
Montmorency	15 16	4.0 4.8	5(s) 7(s)	New England, Southern Quebec Gulf of St. Lawrence, Main, Eastern Quebec
Kejimkujik	10 15 16	5.1 4.4 5.6	2(r) 2(m) 18(r)	Labrador, Gulf of St. Lawrence Gulf of St. Lawrence, Nova Scotia Atlantic Ocean

r = rain (mm), s = snow (cm), m = mixed rain and snow (mm)

	SI	TAT.	ISTI	CS F	OR 7	THE	WE	EK E	ENDING 0600 GMT APRIL 19,1988									
STATION	TEMPERATURE		PRE	CIP.	WIN	D MX	STATION	TE	MPE	RATU	RE	PRE	CIP.	WIN	D MX			
	AV	DP	MX	MN	TP	SOG	DIR	SPD		AV	DP	MX	MN	TP	SOG	-		
BRITISH COLUMBIA									THE PAS	-1	*	13	-11	0	1	300	69	
CAPE STJAMES	8	1	13	3	16	0	130	70	THOMPSON	-4P	-4P	11P	-16P	29	2	290	59	
CRANBROOK	14	9	26	4	4	0	160	41	WINNIPEG INT'L	2	-3	21	-11	0	0	360	59	
FORT NELSON	7	5	17	-4	10	0	360	46	ONTARIO					20.00				
FORT ST.JOHN KAMLOOPS	8 16P	8P	21 28P	-3 6P	6	0	140	39	ATIKOKAN	2	-2	17	-7	1	0	330	56	
PENTICTON	14	6	25	5	12P 24P	0	280	41	BIG TROUT LAKE GORE BAY	-3P	172	9P	-17P	99	6	010	74	
PORT HARDY	8	2	16	-1	1	0			KAPUSKASING	3	-1	14	-6 -11	13	0	280	67	
PRINCE GEORGE	8	*	20	-6	7	Ö			KENORA	20	-10	17P	-99	OP.	13	290 200	56 56	
PRINCE RUPERT	6	1	13	-3	ó	Ŏ	300	33	KINGSTON	40		13P	-19	0	0	200	30 Y	
REVELSTOKE	11	5	23	1	23	0		*	LONDON	5	-1	17	-2	16	Ö	250	78	
SMITHERS	8	4	20	-6	0	0		*	MOOSONEE	1	2	14	-8	26	4	320	39	
VANCOUVER INT'L	11	3	16	7	3	0		*	NORTH BAY	3	-1	15	-6	23	1	280	39	
VICTORIA INT'L	11	3	20	3	1	0			OTTAWA INT'L	5	-1	14	-2	12	0		X	
WILLIAMS LAKE	9P	*	20P	-3P	17P	0		X	PETAWAWA	5P	OP	19P	-49	18P	0		X	
YUKON TERRITORY						-			PICKLE LAKE	-1	-2	12	-13	1	13	340	63	
DAWSON MAYO		5	•	-6	0	17		v	RED LAKE	0	-3	17	-10	1	1	350	56	
SHINGLE POINT A	-5P	12P	5P	-26P	0 0P	21		X	SUDBURY THUNDER BAY	2	-2	16	-8	35	1	220	X	
WATSON LAKE	3	4	13	-11	0	27		*	TIMMINS	4	-2	21	-6 -10	100	0	330	54	
WHITEHORSE	3	3	10	-8	0	1	140	46	TORONTO INT'L	5	-1	18	-3	129	22	310 240	43	
NORTHWEST TERRITO	RIES								TRENTON	5P	-3P	13P	-29	119	0	240	Y	
ALERT	-16	9	-4	-25	1		230	76	WIARTON	5P	OP	16P	-2P	20P	o		Ŷ	
BAKER LAKE	-17	-1	-10	-24	1	80	320	57	WINDSOR	8	-1	20	-1	5	Ö	230	72	
CAMBRIDGE BAY	-20	2	-10	-28	1	35	030	43	QUEBEC								57.0	
CAPE DYER	-9	7	-1	-18	9	70	150	37	BAGOTVILLE	3	1	11	-5	18	1	080	44	
CLYDE	-12	7	-1	-23	12	32	310	54	BLANC SABLON	1	*	5	-4	7	2		X	
COPPERMINE	-11	*	1	-20	_1	55	090	56	INUKJUAK	+	6	3	-16	5	56	050	56	
CORAL HARBOUR	-11	5	-2	-24	7	23		X	KUUUUAQ	0	10	11	-15	1	15	200	50	
EUREKA FORT SMITH	-21P	7P		-30P	19	14	160	78	KUUUUARAPIK	12	6P	9P	-6P	3P	10		*	
IQALUIT	-8	7	14	-12	2P	17 52	120	7	MANTMAN	5	0	15	-3	14	0	190	41	
HALL BEACH	-11P	10P	-3P	-22P	3P	36	130	72 65	MONT JOLI MONTREAL INT'L	19	-1P	9P	-8P	14P	0	150	78	
INUVIK	-3	12	10	-25	0	33	030	w I	NATASHQUAN	6	0	14	-2 -6	9	13	240	48 56	
MOULD BAY	-18	7	-7	-33	1	17		Ŷ	QUEBEC	49	OP	11P	-10	37P	0	050	37	
NORMAN WELLS	3	11	16	-11	0	1		Ŷ	SCHEFFERVILLE	-4	3	7	-21	2	62	140	59	
RESOLUTE	-16	7	-6	-25	1	14	050	69	SEPT-ILES	-1	-1	6	-6	38	6	090	80	
								X	SHERBROOKE	4	0	15	-3	25	*	270	50	
YELLOWKNIFE	-4	3	10	-17	8	36	020	44	VAL D'OR	1	-1	14	-9	19	1	200	39	
ALBERTA									NEW BRUNSWICK									
CALGARY INT'L	9	5	24	-4	0	0	140	59	CHARLO	0	-1	7	-7	24	4	080	57	
COLD LAKE CORONATION	5	20	22	-7	0	0	290	41	CHATHAM	2	-2	10	-7	19	1	060	50	
EDMONTON NAMAO	6P	3P	22P 23	-7P -5	0	0	450	*	FREDERICTON	3P	-2P	12	-7P	16	0	150	67	
FORT MCMURRAY	5	7	20	-7	0	0	150	54 Y	MONCTON SAINT JOHN	1	-2	10	-8	20	0	030	72	
HIGH LEVEL	ĭ	2	15	-6	2	1	320	37	NOVA SCOTIA	29	-10	11P	-6P	32P	0	090	87	
JASPER	10	7	25	-7	1	0	320	X	GREENWOOD	3	-2	11	-7	17	0	130	78	
LETHBRIDGE	9	4	26	-6	o	Ö	140	54	SHEARWATER	2	-2	8	4	46	0	360	69	
MEDICINE HAT	10	4	27	-4	0	Ö	160	50	SYDNEY	1	-1	7	4	14	0	150	70	
PEACE RIVER	8	6	24	-4	0	0	340	43	YARMOUTH	3	-1	10	4	44	Ö	080	74	
SASKATCHEWAN									PRINCE EDWARD ISLAND									
CREE LAKE	-4	-4	11	-20	0	32	300	72	CHARLOTTETOWN	1	-1	12	-4	9		020	59	
ESTEVAN	5	0	21	-9	0	0	320	59	SUMMERSIDE	2	-1	11	-5	5	1	130	65	
LA RONGE REGINA	0	-3	15	-13	OP	15	310	67	NEWFOUNDLAND									
SASKATOON	40	0	20	-6	0	0	300	56	CARTWRIGHT	OP	3P	5P	-6P	OP	136	150	46	
SWIFT CURRENT	4P 5	P	22P 22	-7 -7	0	0	320	59	CHURCHILL FALLS	-2	5	8	-16	5	80	120	56	
YORKTON	2		16	-12	0	0	160	61	GANDER INT'L	0	0	6	-3	50	20	340	81	
MANTTOBA			.0	-2	U	U	IOU	01	GOOSE PORT-AUX-BASQUES	7	1	8	-10	24	15	120	41 85	
BRANDON	2	-2	19	-12	0	0	300	67	ST JOHN'S	0	_	4	-2 -2	24 32	0	030 350	85	
CHURCHILL	-14P	-5P		-20P	6P	62	350	65	ST LAWRENCE	2	2	7	-1	48	12	330	X	
LYNN LAKE		-8P		-18P	29	38	290	74	WABUSH LAKE	-2	3	8	-17	3	18	130	59	
															,,		-	
AV = weekly mean ter	mamt	no in	doc	70 C					DID - dimetion of marine		. ,		7.			A THE PARTY OF THE PARTY.	-	

AV = weekly mean temperature in degree C

MX = weekly extreme maximum temperature in degree C

MN = weekly extreme minimum temperature in degree C

TP = weekly total precipitation in mm

DP = departure of mean temperature from normal in degree C P = value based on less than 7 days SOG = snow depth on ground in cm, last day of the period

DIR = direction of maximum wind speed (deg. from true north)

SPD = maximum wind speed in km/hour

X = not observed

* = missing

ment is resideles in the form = 191