Environment Canada

Environnement Canada

Climatic Perspectives **AUGUST-1988**

Monthly Review

Vol. 10

CLIMATIC HIGHLIGHTS

P.Scholefield, Monitoring and Prediction Division

Another Warm Month Across Most of Canada

s can be seen on the temperature anomaly map on page 2, mean August temperatures were above normal across most of the country with the highest anomalies over central sections. Warm temperatures over the southeastern Prairies, which when combined with the record warmth of June and above-normal temperatures in July, helped establish new record summer warmth for several locations in southern Manitoba (eg. Winnipeg mean of 21.1°C) and southeastern Saskatchewan (eg. Estevan mean of 21.5°C). Significantly above-normal August temperatures also occurred in southern Ontario which also experienced one of the warmest summers on record (Toronto City's summer mean temperature of 22.2°C tied 1973 as being the warmest summer since 1959 and the 4th warmest since records began in 1840).

Kelowna, is an isolated location in B.C. that has now experienced 21 consecutive months of above-normal temperatures. Parts of central Alberta have had 12 consecutive months of above-normal temperatures, southwestern Ontario, 10 consecutive months and the southeastern part Saskatchewan and southwestern Manitoba, 7 consecutive months.

Winnipeg has been close to the centre of dramatic temperature and precipitation anomalies over the past two years, so it is of interest to examine the accompanying graphs which display the the month to month anomalies since January, 1987.

1987 was the warmest year ever recorded and was preceded by a very warm December and a very cold November. If the current trend continues, this year could end up being one of the warmest years ever. The precipitation graph shows the predominance of drier than normal months

which lead to a major drought threat in the spring of 1987 and the spring drought conditions of this year. In both years, sufficient summer rainfall alleviated the immediate drought problem, but the dry August this year, raises concerns about the long-term soil moisture reserves.

page 2

Across the country

Yukon and Northwest Territories

Above-normal temperatures continued through August in most areas of the Yukon and Northwest Territories, though the positive anomalies were much smaller than in preceding months, and the brilliant colour of the changing leaves clearly announced the arrival of fall. In the Yukon, the first two weeks of August saw dreary, wet weather, with snow at Old Crow on the 9th. In the Arctic, the weather was windy but maximums over 15°C were recorded.

Under the combined influence of a southerly flow and a ridge of high pressure, the second half of the month began with temperatures well above normal. However, despite maximums of over 25°C in the Yukon (29°C at Old Crow on the 17th) and 20°C in the eastern Arctic, in northern areas the mercury remained below the freezing point.

British Columbia

August saw generally fine summer weather in British Columbia, with a ridge of high pressure protecting most of the province from weather systems coming in from the Pacific. Those which managed to penetrate this barrier affected the southern two-thirds of the province only briefly.

Mean monthly temperatures were near normal, with negative anomalies

restricted to the northwest and a few locations in the south. No records were set. Precipitation was above normal in the northern part of Vancouver Island and the northern interior, as well as along the northern part of the coast. Up to 200% of normal precipitation occurred. Elsewhere, precipitation was slightly below normal, except at Victoria,

August 1988 - Vol. 10

Climatic Perspectives

page 3

where the first significant rainfall in 35 days occurred on the 15th.

On the 25th, a disturbance brought severe thunderstorms to the Okanagan. Several boats capsized on Lake Okanagan. Sunshine was near normal. No records were set. Prairies

In Alberta and Saskatchewan, most of August was dreary, rainy and cool. Skies did not clear until the end of the month. Further east, the weather was more pleasant, especially in southeastern Manitoba. The northern and eastern Prairies had one more month of temperatures well above Alberta. normal. In daily temperatures were highly variable, ranging from -1°C at High Level on the 6th to 33°C at Lethbridge and Medicine Hat on the 29th.

The highest temperatures on the Prairies were in Manitoba-- where the mercury climbed to ashigh as 40°C in the middle of the month. Several stations, including Winnipeg, Gimli, Portage la Prairie and Estevan set records for the summer (June to August) mean. Precipitation was generally above normal, except in northwestern Alberta and eastern and southeastern Manitoba, where Winnipeg and Portage la Prairie received only 10% of thenormal August precipitation.

Beneficial rains helped whereever crops that were not already withering for lack of water. However heavy showers in Calgary on the 16th caused serious damage and flooding. The fall harvest has already begun.

Ontario

August in Ontario featured a sharp break between the first and second halves of the month. Hot and humid weather was followed by two weeks of cool weather with variable skies. On the whole, though, August was hot. Indeed, in southern Ontario it was one of the hottest Augusts in 20 years.

page 4

Climatic Perspectives

Vol. 10 - August 1988

CLIMATIC EXTREMES IN CANADA - AUGUST 1988

MEAN TEMPERATURE: WARMEST	WINDSOR, ONT.	24.2°C
COLDEST	MOULD BAY, NWT.	0.7°C
HIGHEST TEMPERATURE:	PORTAGE LA PRAIRIE, MAN.	39.6°C
LOWEST TEMPERATURE:	ALERT, NWT.	- 7.6°C
HEAVIEST PRECIPITATION:	ATIKOKAN, ONT.	263.8 mm
HEAVIEST SNOWFALL:	ALERT, NWT.	24.9 cm
DEEPEST SNOW ON THE GROUND ON AUGUST 31, 1988:	RESOLUTE, NWT.	11 cm
GREATEST NUMBER OF BRIGHT SUNSHINE HOURS:	MOOSE JAW, SASK.	387 hours

There was also generous precipitation throughout most of the province. Several monthly records were set in the north, with Atikokan receiving 271% of the normal precipitation, Timmins 225% and Sudbury 227% (the rainiest August at Sudbury since 1970).

Curiously enough though, several places in southwestern Ontario continued to suffer under neardrought conditions. Windsor had 36% of its normal precipitation, and Toronto, with 37 mm, had its driest August since 1974.

There was little storm activity. Some small tornadoes were reported

In most of Quebec, August 1988 was quite warm, with variable precipitation - that was slightly below normal in the centre and east, and above normal in the southwest and north.

Temperatures were especially high in the south and southwest in the early part of the month, and several daily records were set when a tropical air mass invaded the province. Conditions were ideal for severe thunderstorms. On the 2nd, winds Three records for monthly total precipitation were set, at Matagami, Maniwaki, and at Sainte-Agathe, which received about 200% of their normal precipitation.

Atlantic Provinces

In Atlantic Canada, August was rather warm, with variable precipitation, above-normal sunshine in Newfoundland and Labrador, and below-normal sunshine in the Maritimes. The first half of the month was particularly cloudy, hot and humid for the Maritimes, with several daily maximum temperatures records being set, whereas at month's end, record minimum temperatures occurred.

A number of thunderstorms brought heavy precipitation, especially in Prince Edward Island, and in northern Nova Scotia (40 mm in 6 hours on the 16th), and at Chatham N.B. (50 mm in 6 hours on the 25th). On the 14th, 29 days of continuous fog came to an end at Yarmouth N.S.

The month ended pleasantly in Newfoundland and Labrador, with maximums of around 20°C and 30°C respectively.

near Petawawa on the 12th and near Stoney Creek on the 11th. On the 25th, high winds associated with thunderstorms uprooted thirty big trees northeast of Ottawa.

The mean temperature for the three summer months at Toronto was 22.2°C - there hasn't been a warmer summer since 1959, and it was the fourth warmest since 1840. gusting to 100 km/h damaged trees and homes near Maniwaki. Over the next few days, hailstones 1 cm in diameter fell at several locations. With the arrival of a cold front, and skies that were for the most part clear and sunny, the thermometer plunged to near 0°C in rural areas just after mid-month. Soon after cloudy skies and thunderstorms returned in the southwest. August 1988 - Vol. 10

12

s

50 kPa ATMOSPHERIC CIRCULATION

August 1988

Mean geopotential height anomaly - 5 decametre interval-

page 6

Climatic Perspectives

Vol. 10 - August 1988

SEASONAL TOTAL OF GROWING DEGREE-DAYS TO END OF AUGUST

	1988	1987	NORMAL
BRITISH COLIN			
Abbotsford	1412	1629	1321
Kamloops	*	2017	*
Penticton	*	1903	*
Prince George	*	1103	*
Vancouver	1441	1686	1387
Victoria	1262	1495	1271
ALBERTA			
Calgary	1213	1251	1056
Crande Proini	1292	1350	1197
Lethbridge	1/102	1/15/1	1202
Peace River	1048	1180	002
SASKATCHEWAN	1010		112
Estevan	1793	1740	1419
Prince Albert	1301	1355	1088
Regina	1676	1568	1338
Saskatoon	1573	1490	1301
Swift Current	*	1434	*
MANITOBA			
Brandon	1475	1505	1231
Churchill	366	433	289
Dauphin	1439	1505	1200
Winnipeg	1565	1729	1259
ONTARIO			
London	1724	1896	1540
Mount Forest	*	1486	*
North Bay	*	1373	*
Ottawa	1706	1749	1567
Thunder Bay	1207	1309	1042
Toronto	1692	1857	1533
Trenton	1656	1805	1536
Windsor	2018	2124	1796
QUEBEC			
Bale Comeau		891	*
Maniwaki	1390	1338	1285
Quebec	*	1745	*
Sent-Iles	832	838	831
Sherbrooke	1342	1303	1224
NEW BRUNSWICK	114		
Charlo	1157	1181	1124
Fredericton	1390	1325	1348
Moncton	1245	1273	1218
NUVA SCUTTA	1100	1000	1000
Truno	*	1166	*
Yarmouth	1000	1165	1041
PRINCE EDWARD	ISLAND	1105	
Charlottetown	1197	1212	1181
NEWFOUNDLAND			
Gander	845	997	850
St. John's		867	*
Stephenville	962	1007	942

THE CHANGING ATMOSPHERE : CONFERENCE STATEMENT

Toronto, June 23-30, 1988

First part of a three part reproduction of the conference statement issued by the conference on The Changing Atmosphere, held in Toronto - June 27/30, 1988.

SUMMARY

Humanity is conducting an unintended, uncontrolled, globally pervasive experiment whose ultimate consequences could be second only to a global nuclear war. The Earth's atmosphere is being changed at an unprecedented rate by pollutants resulting from human activities, inefficient and wasteful fossil fuel use and the effects of rapid population growth in many regions. These changes represent a major threat to international security and are already having harmful consequences over many parts of the globe.

Far-reaching impacts will be caused by global warming and sealevel rise, which are becoming increasingly evident as a result of the continued growth in atmospheric concentrations of carbon dioxide and other greenhouse gases. Other major impacts are occurring from ozone-layer depletion resulting in increased damage from ultra-violet radiation. The best predictions available indi-

cate potentially severe economic and social dislocation for present and future generations, which will worsen international tensions and increase risk of conflicts between and within nations. It is imperative to act now.

These were the major conclusions of the World Conference on the Changing Atmosphere: Implications for Global Security, held in Toronto, Ontario, Canada, June 2730, 1988. More than 300 scientists and policy makers from 46 countries, United Nations organizations, other international bodies and non-governmental organizations participated in the sessions.

The Conference called upon governments, the United Nations and its specialized agencies, industry, educational institutions, non-governmental organizations and individuals to take specific actions to reduce the impending crisis caused by pollution of the atmosphere. No country can tackle this problem in isolation. International cooperation in the management and monitoring of, and research on, this shared resource is essential.

page 8

Climatic Perspectives

The Conference called upon governments to work urgently towards an Action Plan for the Protection of the Atmosphere. This should include an international convention, while framework encouraging other standard-setting agreements along the way, as well as national legislation to provide for protection of the global atmosphere. The Conference also called upon governments to establish a World Atmosphere Fund financed in part by a levy on the fossil fuel consumption of industrialized countries to mobilize a substantial part of the resources needed for these measures.

THE ISSUE

Continuing alteration of the global atmosphere threatens global security, the world economy, and the natural environment through:

- Climate warming, rising sealevel, altered precipitation patterns and changed frequencies of climatic extremes induced by the "heat trap" effects of greenhouse gases;
- Depletion of the ozone layer;
- Long-range transport of toxic chemicals and acidifying substances.

These changes will:

11月月1日月月月月月月月月月月月月日日日日日日日日日日日日

- Imperil human health and wellbeing;
- Diminish global food security, through increases in soil erosion and greater shifts and uncertainies in agricultural production, particularly for many vulnerable regions;
- Change the distribution and seasonal availability of freshwater resources;

If rapid action is not taken now by the countries of the world, these problems will become progressively more serious, more difficult to reverse, and more costly to address.

Scientific Basis for Concern

The Conference calls for urgent work on an Action Plan for the Protection of the Atmosphere. This Action Plan, complemented by national action, should address the problems of climate warming, ozone layer depletion, long-range transport of toxic chemicals and acidification.

Climate Warming

1 - There has been an observed increase of globally-averaged temperature of 0.7°C in the past century which is consistent with theoretical greenhouse gas predictions. The accelerating increase in concentrations of greenhouse gases in the atmosphere, if continued, will probably result in a rise in the mean surface temperature of the Earth of 1.5 to 4.5°C before the middle of the next century.

2 - Marked regional variations in the amount of warming are expected. For example, at high latitudes the warming may be twice the global average. Also, the warming would be accompanied by changes in the amount and distribution of rainfall and in atmospheric and ocean circulation patterns. The natural variability of the atmosphere and climate will continue and be superimposed on the long-term trend, forced by human activities.

3 - If current trends continue, the rates and magnitude of climate change in the next century may substantially exceed those experienced over the last 5000 years. Such high rates of change would be sufficiently disruptive that no country would likely benefit in toto from climate change. 4 - The climate change will continue so long as the greenhouse gases accumulate in the atmosphere.

Vol. 10 - August 1988

the emission of gases into the atmosphere and their full manifestation in atmospheric and biological consequences. Past emissions have already committed planet Earth to a significant warming.

6 - Global warming will accelerate the present sea-level rise. This will probably be of the roder of 30 cm but could possibly be as much as 1.5 m by the middle of the next century. This could inundate low-lying coastal lands and islands, and reduce coastal water supplies by increased salt water intrusion. Many densely populated deltas and adjacent agricultural lands would be threatened. The frequency of tropical cyclones may increase and storm tracks may change with consequent devastating impacts on coastal areas and islands by floods and storm surges.

7 - Deforestation and bad agricultural practices are contributing to desertification and are reducing the biological storage of carbon dioxide, thereby contributing to the increase of this most important greenhouse gas. Deforestation and poor agricultural practices are also contributing additional greenhouse gases such as nitrous oxide and methane.

Ozone Layer Depletion

1 - Increased levels of damaging ultra-violet radiation. while the stratospheric ozone shield thins, will cause a significant rise in the occurrence of skin cancer and eye damage, and will be harmful to many biological species. Each 1% decline in ozone is expected to cause a 4 to 6% increase in certain kinds of skin cancer. A particular concern is the possible combined effects on unmanaged ecosystems of both increased ultraviolet radiation and climate changes. 2 - Over the past decade, a decline of 3% in the ozone layer has occurred at mid-latitudes in the Southern Hemisphere, possible accompanying the appearance of the Antarctic ozone hole; although there is more meteorological variability, there are indications that a smaller decline has occurr-

- Increase political instability and the potential for international conflict;
- Jeopardize prospects for sustainable development and the reduction of poverty;
- Accelerate the extinction of animal and plant species upon which human survival depends; Alter yield, productivity and biological diversity of natural and managed ecosystems, particularly forests.

5 - There can be a time lage of the order of decades between

190 5 August 1988 - Vol. 10

ed in the Northern Hemisphere. Changes of the ozone layer will also change the climate and the circulation of the atmosphere.

Acidification

he

hd

st

ed

nt

e

d

Is

t

d

In improving the quality of the air in their cities, many industrialized countries unintentionally sent increasing amounts of pollution across national boundaries in Europe and North America, contributing to the acidification of distant environments. This was manifested by increasing damage to lakes, soils, plants, animals, forests and fisheries. Failure to control automobille pollution in some regions has seriously contributed to the problem. The principal damage agents are oxides of sulphur and nitrogen as well as volatile hydrocarbons. The resulting acids can also corrode buildings and metallic structures causing voerall, billions of dollars of damage annually.

The various issues arising from the pollution of Earth's atmosphere by a number of substances are often closely interrelated, both through chemistry and through potential control strategies. For example, chlorofluorocarbons (CFCs) both destroy ozone and are greenhouse gases; conservation of fossil fuels would contribute to addressing both acid rain and climate change problems.

Security: Economic and Social Concerns

As the UN Report On The Relationship Between Disarmament And Development states: "The world can either continue to pursue the arms race with characteristic vigour or move consciously and with deliberate speed toward a more stable and balanced social and economic development within a more sustainable international economic and political order. It cannot do both. It must be knowledged that the arms race and development are in a competitive relationship, particularly in terms of resources, but also in the vital dimension of attitudes and perceptions." The same con-

Climatic Perspectives

sideration applies to the vital issue of protecting the global atmospheric changes. Unanticipated and unplanned change may well become the major non-military threat to international security and the future of the global economy.

There is no concern more fundamental than access to food and water. Currently, levels of global food security are inadequate but even those will be most difficult to maintain into the future, given projected agricultural production levels and population and income growth rates. The climate changes envisaged will aggravate the problem of uncertainty in food security. Climate change is being induced by the prosperous, but its effects are suffered most acutely by the poor. It is imperative for governments and the international community to sustain the agricultural and marine resource base and provide development opportunities for the poor in light of this growing environmental threat to global food security.

The countries of the industrially developed world are the main source of greenhouse gases and therefore bear the main responsibility to the world community for ensuring that measures are implemented to address the issues posed by climate change. At the same time, they must see that the developing nations of the world, whose problems are greatly aggravated by population growth, are assisted in and not inhibited from improving their economies and the living conditions of their citizens. This will necessitate a wide range of measures, including significant additional energy use in those countries and compensating reductions in the industrialized countries. The transition to a sustainable future will require investments in energy efficiency and non-fossil energy sources. In order to ensure that these investments occur, the global community must not only halt the current net transfer of resources from developing countries, but actually reverse it. This reversal should embrace the technologies involved, taking into account the implications for industry.

A coalition of reason is required, in particular, a rapid reduction of both North-South inequalities and East-West tensions, if we are to achieve the understanding and agreements needed to secure a sustainable future for planet Earth and its inhabitants.

It takes a long time to develop an international consensus on complex issues such as these, to negotiate, sign, and ratify international environmental instruments and to begin to implement them. It is therefore imperative that serious negotiations start now. (to be continued)

巡 貒

page 9

	Ten	nperatur	e C			Τ			3	ore	Τ	T			Tem	nperatur	e C			T	1	1	2	18	T		
STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfadi (cm)	X of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at and of month (a	No. of days with Precip 1.0 mm or m	Bright Sunshine (hours)	Z of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Madmum	Minimum	Snowfall (cm)	X of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at and of month (car	No. of days with Precip 1.0 mm or me	Bright Sunshine (hours)	X of Normal Bright Sunshine	Degree Days below 18 C
SHIJA												2		YUKON TERRITORY								1					
DTSPORD IT BAY HITRITE POINT RIVER HARBOUR	17.6 14.2 15.3 13.3	0.7 -0.1 -0.1 -0.3 -0.2	31.0 24.9 23.5 30.9 19.6	5.7 8.6 9.9 2.9 8.0	0.0 0.0 0.0 0.0 0.0		32.2 67.3 30.0 95.9 94.3	57 131 26 128 114	00000	8 11 5 13 11	278 X X 201 X	113 89	33.8 117.1 117.3 8 146.3	DAWSON MAYO WATSON LAKE WHITEHORSE	12.5 12.7 13.1 12.2	0.7 0.1 0.0 -0.3	28.8 28.2 25.2 23.6	-1.8 1.0 0.5 1.9	0.0 0.0 0.0 0.0		65.3 23.8 30.3 53.0	118 57 72 139	0000	8 8 72	X X 234 216	102 93	165.5 152.5 181.6
E SCOTT ST.JAMES ILEGAR OX IBROOK	13.2 13.5 20.1 17.8 17.9	-0.7 -0.3 0.4 0.8 0.5	17.9 22.8 33.7 28.9 32.8	9.3 9.9 6.1 9.2 3.7	0.0 0.0 0.0 0.0 0.0		98.1 76.4 6.3 17.1 25.1	92 97 13 36 77	00000	15 10 2 6 3	X 146 286 X 304	104	149.7 137.4 9.0 23.4	NORTHWEST TERRITORIES	1.2	0.3	14.9	-7.6	24.9	119	17.7	63		•	385	185	572.2
E LAKE NELSON	10.9	-0.7	25.1	-1.4	0.0		64.6	123	0	13	150 X	74	219.2	CAMBRIDGE BAY CAPE DYER CAPE PARRY	7.3 4.4 7.4	0.8 -0.2 2.0	18.9 14.7 20.1	-1.2 -1.1 0.7	18.6	175	43.3 23.4 85.8 28.3	83 167 102	0000	e 10 5	140 X X	100 79	229.9 330.0 419.6 330.2
ST.JOHN	15.2 18.4 19.7	0.8	27.9 34.1 34.5	4.4 9.4 8.0	0.0		51.9 35.9 34.7	86 71 126	00 0	767	¥ 240 235	108 83	90.5 23.0 7.8	CLYDE COPPERMINE CORAL HARBOUR EUREKA	3.2 11.0 8.3 3.8	-0.8 2.3 0.9 0.5	13.7 27.7 19.3 15.6	-1.8 2.8 -1.0 -4.4	13.6 0.0 0.0 5.5	172	74.0 71.4 31.5 5.9	283 184 70 50	0001	14 13 4 2	87 199 245 310	45 104 108 129	457.3 220.5 301.9 440.3
ARA IN ENZIE	13.0 21.0 14.0	-0.2 0.1 0.2	20.0 38.2 27.3	4.5 10.0 8.8 1.2	0.0 0.0 0.0	and the second	43.0 121.2 33.0 56.0	141 117 194 95	0000	5 16 4 10	289 X 237 241	111 98 100	26.7 161.2 4.2 225.7	FORT RELIANCE PORT SIMPSON PORT SMITH	14.0 15.8 15.2	1.1 1.4 1.0	28.1 26.7 27.8	5.6 0.9 0.9	0.0		43.7	108 86 152	0 00	5	X 270	109	128.3 69.2
NES ISLAND ICTON ALBERNI	19.4 17.9	-0.1	34.4 32.2	6.4 4.2	0.0		29.7	112	00	5	¥ 292 275	107	11.4	IQALUIT HALL BEACH HAY RIVER	7.8 5.5 15.5	0.9 0.9 1.1	19.9 18.2 29.5	2.0 -1.0 5.7	0.0 0.0 0.0		55.0 34.6 57.4	93 84 152	000	10 9 3	137××	81	315.1 387.9 90.9
HARDY TE GEORGE	14.2	0.4	22.6 29.2	7.0	0.0		70.4	102 85	00	9 11	186 245	101 97	117.3	INUVIK MOULD BAY NORMAN WELLS	10.7 0.7 14.7	0.0 -0.7 1.3	29.2 8.5 27.7	-0.1 -7.6 3.1	3.0 11.6 0.0	90 128	51.1 20.6 21.8	117 95 37	030	15 9 8	172 93 226	79 70 95	227.1 537.6 108.8
ETON NEL LSTOKE	17.0 16.4 17.5	-0.1 0.8 -0.1	35.6 31.3 29.6	2.7	0.0 0.0 0.0		30.4 58.3 61.6	119 90 145	0000	13 8 12	294 X 236	93 • 97	62.7 37.1	RESOLUTE	7.6	2.9	12.2	-2.7 -6.2	0.0	289	22.6	58 138	011	8	X 215	134	409.7 482.4
IERS ACE	14.2	0.1	28.9 29.0	2.0 7.5	0.0		46.9 41.8 46.0	94 95 72	0	8	150 220 173	85 94 85	98.7 119.4 78.0	YELLOWKNIPE	15.2	1.1	25.6	6.1	0.0	1000	15.4	35	0	5	282	98	88.1
OUVER INT'L	17.7	0.6	27.3	10.9	0.0		27.2	66	0	2	X 299	116	22.4	BANFF	13.7	-0.1	29.0	2.0	0.0		70.0	143	0	15	x		
RIA INT'L RIA MARINE MS LAKE	16.2 14.3	0.1	23.5	6.6 6.0	0.0		27.8	104 63	0	34	319 X	116	68.1 115.0	CALGARY INT'L COLD LAKE CORONATION	15.0 15.1 14.8	-0.2 -0.4 -1.3	30.1 27.0 29.6	3.6 3.5 2.0	0.0 0.0 0.0		163.9 114.7 147.2	295 150 285	000	11 8 13	270 262 277	95 102 96	98.6 100.7 103.8
			50.5				00.0	191			252	90	101.8	EDMONTON INT'L EDMONTON MUNIL EDMONTON NAMAO EDSON FORT CHIPEWYAN	15.1 16.2 15.5 13.6 15.7	0.3 0.0 -0.1 0.4 1.2	29.4 28.3 28.7 28.8 28.5	3.9 7.4 6.7 1.0 2.5	0.0 0.0 0.0 0.0 0.0		103.3 97.4 109.4 84.5 35.4	132 125 149 90 73	00000	10 7 7 11	266 270 X 234 X	93 97 95	93.0 64.4 82.0 136.8

下出"月前日日日有有日期下生河有有有

WINIE TO

.....

后上市之中是中三萬三部三

	Service S						-		-	-	-	-	AUCUS	1988	Tre	na coluce				-				-	-		
STATION	Tem	Difference from Normal	C and a mutual and a mutua	Minimum	Snowfall (cm)	Z of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	X of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Madmum	Mhimum	Snowfall (cm)	Z of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipilation	Snow on ground at and of month (an)	No. of days with Precip LO mm or more	Bright Sunshine (hours)	X of Normal Bright Sunshine	Degree Days below 18 C
IT MCMURRAY INDE PRAIRIE H LEVEL IPER THBRIDGE	15.7 15.2 14.3 14.3 17.3	0.9 0.4 0.3 0.1 -0.3	29.7 30.0 26.3 29.0 33.0	0.5 0.3 -0.8 3.5 3.2	0.0 0.0 0.0 0.0 0.0		98.8 29.2 50.0 84.0 51.0	128 48 86 173 108	00000	9 6 10 12 7	229 260 268 213 316	92 105 105	79.3 91.6 115.7 117.0 46.2	THE PAS THOMPSON WINNIPEG INT'L	17.2 15.5 20.1	1.1 1.6 1.8	31.9 29.0 38.7	5.1 2.5 7.5	0.0 0.0 0.0		74.3 66.6 8.5	129 92 11	000	9 1 3	276 253 257	106 110 90	48.3 89.8 17.4
DICINE HAT ACE RIVER D DEER CKY MTN HOUSE AVE LAKE	18.3 14.9 14.6 13.3 14.9	-0.6 0.7 -0.3 -1.0 0.5	33.3 28.7 30.3 28.4 27.7	3.6 2.7 2.5 0.6 3.9	0.0 0.0 0.0 0.0 0.0		60.0 33.2 124.8 89.2 28.6	164 66 189 115 40	000000	8712107	340 X X 253	113 103	29.9 102.5 106.7 144.0 96.3	ATIKOKAN BIG TROUT LAKE EARLTON GERALDTON	17.0 16.3 17.6 16.1	1.2 2.0 1.4 1.5	31.0 28.5 31.7 28.1	3.1 5.8 3.3 2.8	0.0 0.0 0.0		263.8 21.2 155.5 158.6	269 25 186 237	0000	1471112	196 X	80	70.3 78.4 64.8 80.4
FFIELD ITECOURT SKATCHEWAN	18.0	0.7	33.6 26.9	5.9 4.6	0.0		48.6	124	0	13	309 X		28.7	GORE BAY HAMILTON RBG HAMILTON KAPUSKASING KENORA	19.9 22.5 21.2 15.7 19.5	1.7 1.7 1.2 0.4 1.9	31.0 35.3 32.9 30.1 33.5	9.7 8.9 0.6 8.4	0.0 0.0 0.0 0.0		86.8 98.7 179.2 25.7	115 107 131 193 29	00000	13 10121271	292 X X X	•	13.1 89.7 29.5
OADVIEW LLINS BAY EE LAKE TEVAN	17.2 14.3 14.8 19.6	0.8 1.7 0.4 1.0	38.0 26.5 26.5 39.2	1.4 2.8 3.7 2.7	0.0 0.0 0.0		42.6 75.8 82.2 44.6	70 113 135 84	0000	995	281 277 252 313	94 101 100	58.3 117.1 103.9 25.6	LANSDOWNE HOUSE LONDON MOOSONEE	21.4 16.9 21.2 14.4	2.0 1.7 1.7 0.1	33.9 32.1 34.5 30.0	8.0 7.4 -0.6	0.0		97.2 114.7 75.3	92 111 142 95	000	10 9 9	X 253 186	102 86	65.0 15.3 118.3
IDERSLEY Ronge Adow Lake Iose Jaw Pawin	16.2 15.7 15.0 20.7 16.7	-1.2 0.5 -0.7 2.1	31.8 29.8 29.6 38.4 31.8	5.2 0.0 2.4 7.7 3.6	0.0 0.0 0.0 0.0 0.0		92.2 89.3 197.6 23.8 80.4	247 143 267 59	0000	10 10 10 5 9	X 247 387 275	130 *	71.9 81.2 92.7 7.3 56.2	NORTH BAY OTTAWA INT'L PETAWAWA PETERBOROUGH	18.0 18.1 20.3 18.9 19.4	1.1 1.1 1.3 1.3	32.8 34.3 37.1 35.2	5.1 6.9 2.9 1.8	0.0 0.0 0.0 0.0		97.0 205.6 121.2 161.9 43.4	208 137 202 58	00000	17 13 13 0	272 236 X X	94	61.4 32.7 80.8 46.2
RTH BATTLEFORD INCE ALBERT GINA SKATOON IFT CURRENT	15.5 15.8 18.2 16.5 17.3	-1.3 -0.1 0.4 -0.7 -0.2	30.2 28.8 37.0 30.4 31.8	3.9 1.1 3.0 3.2 3.6	0.0 0.0 0.0 0.0 0.0		123.4 132.7 72.8 89.5 49.6	270 254 162 234 115	00000	10 11 7 11 5	256 298 X 320	95 101 107	76.7 75.0 39.8 62.3 53.2	PICKLE LAKE RED LAKE ST. CATHARINES SARNIA SAULT STE. MARIE	17.2 17.8 22.2 22.2 18.2	2.1 0.9 1.2 1.9 1.3	32.3 34.3 34.2 35.6 33.7	4.9 9.8 7.3 5.3	0.0 0.0 0.0 0.0		94.2 66.0 51.4 137.8	120 81 100 166	0000	799	251 X 290 252	• 116 101	53.6 8.8 11.4 53.2
INYARD IRKTON	16.6 16.7	-0.2 -0.2	30.5 34.4	2.0 3.0	0.0		91.0 96.7	166 158	00	97	274 264	97 92	65.8 62.3	SIOUX LOOKOUT SUDBURY THUNDER BAY TIMMINS	17.9 19.0 17.6 16.5	1.3 1.7 1.2 1.0	32.1 35.3 32.2 31.5	8.0 6.7 6.2 2.3	0.0 0.0 0.0 0.0		77.2 188.1 170.4 202.0	87 226 205 225	00000	10 15 14 14	X 241 214 X	96 83	50.2 47.9 48.7 81.5 2.0
RANDON HURCHILL AUPHIN	18.0 12.9 17.7	0.5	28.5 27.5 36.5	2.5 3.1 3.0	0.0		32.0 83.5 68.7	49 143 110 77	0000	687	¥ 253 244	109 88	44.1 160.2 45.2 96.6	TORONTO INT'L TORONTO ISLAND TRENTON WATERLOO-WELL	21.4 22.2 21.6 19.8	1.7 2.1 1.9 0.9	35.0 35.7 33.5 33.6 29.5	6.2 12.5 5.5 5.5 4.2	0.0 0.0 0.0 0.0		37.2 55.2 59.1 92.5 178.5	48 77 82 104	00000	7 8 7 10 11	* **		20.6 1.5 21.8 36.7 73.1
INLI SLAND LAKE YNN LAKE ORWAY HOUSE	17.9 15.2 16.7	1.5 1.6 1.6 1.1	34.0 20.1 28.7 28.3	5.9 6.5 4.0 5.2	0.0 0.0 0.0 0.0	•"	23.0 39.0 121.4 46.0	41 63 208	000	10 12 7	252 X 200 X	95 123	31.6 39.8 90.4 58.0	WIARTON WINDSOR	20.3 24.2	2.2 2.9	33.5 37.7	6.1 10.7	0.0		157.4 35.0	180	00	12	279 X	109	43.4 0.4

13/

and an in the state of the

1

	The	Decalu			100	T	T	-	-	1	-	1	AUGUST	1988	Terr	Deratur	• C		-	-					-	-	
STATION	Tem	Dirference from Normal	e c	Minimum	Snowfail (cm)	Z of Normal Snowfall	Total Precipitation (mm)	Z of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	X of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Dirference from Normal	Morimum	Minimum	Snowfall (cm)	X of Normal Snowfail	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	X of Normal Bright Sunshine	Degree Days below 18 C
EBEC			15	248 81			and and	1.1.1						NOVA SCOTIA													
BOTVILLE E COMEAU INC SABLON BOUGAMAU SPE	16.5	0.3 0.2 1.0 0.3 0.5	30.5 28.0 29.8 30.8	3.5 2.2 2.4 1.0 2.5	0.0 0.0 0.0 0.0 0.0		99.9 122.0 135.6 112.8 98.9	100 128 125 95 113	00000	13 10 11 16 11	X 205 194 175 236		76.1 111.1 130.2 77.2	HALIFAX INT'L SABLE ISLAND SHEARWATER SYDNEY	19.3 17.7 18.5 18.1	1.2 0.1 0.7 0.5	32.4 23.5 30.2 30.6	8.3 6.0 8.9 5.3	0.0 0.0 0.0 0.0		68.1 75.6 36.9 119.7	61 65 37 118	0000	9 6 10 10	* 143 184 210	80 81 93	32.4 27.8 25.5 52.7
KJUAK JJUAQ JJUARAPIK GRANDE RIVIERE NIVAKI	9.8 11.6 12.9 12.9 18.3	0.9 1.2 2.5 8 1.3	22.3 25.0 30.0 28.7 32.3	3.8 1.9 4.8 0.9 5.1	0.0 0.0 0.0 0.0 0.0		81.8 85.6 81.4 57.6 206.5	125 134 86 9 226	00000	13 15 13 11	174 160 198 198	119 96 118 83	252.5 197.4 159.8 160.2 58.9	YARMOUTH PRINCE EDWARD	17.4	1.0	27.2	5.7	0.0		60.4	62	0	9	153	73	39.1
TAGAMI NT JOLI NTREAL INT'L NTREAL M INT'L ASHQUAN	14.3 16.3 20.5 18.8 13.3	0.3 0.3 0.9	29.5 29.4 33.3 31.7 24.0	1.8 2.1 7.1 4.7	0.0 0.0 0.0 0.0		186.5 109.6 159.0 146.0	174 138 173 58	00000	18 14 15 10	178 206 202 201 256	87 84 84 *	126.6 82.2 27.9 45.5	CHARLOTTETOWN SUMMERSIDE NEWFOUNDLAND	18.5	0.7 0.6	28.5 31.1	5.0 8.3	0.0 0.0	2 8	115.6	131 151	0	11 14	X 186	Π	47.7 35.1
BEC ERVAL EFFERVILLE T-ILES RBROOKE	18.7 16.9 11.6 14.4 18.4	1.2 0.5 0.8 0.3	32.5 30.8 26.2 27.8	5.7 4.5 2.2 3.6 2.1	0.0 0.0 0.0 0.0		134.4 152.8 53.2 71.3	114 154 54 68	00000	14 15 13 10	181 179 203 223	82	41.3 72.1 199.1 116.6	BATTLE HARBOUR BONAVISTA BURGEO CARTURIGHT	13.1 15.7 14.8	1.9 0.7 -0.1 25	27.9 27.3 23.8	2.5 6.3 6.6 27	0.0		90.6 26.6 90.1	107 31 60 71	0000	10 8 13	X X 208	110	154.2 79.0 99.9
AGATHE DES MONTS HUBERT D'OR I BRUNSWICK	17.1 20.3 16.5	1.3 1.1 1.0	30.9 34.5 30.0	3.0 5.0 3.3	0.0 0.0 0.0		228.8 106.6 169.2	201 110 167	000	14 13 13	187 163	79 69	77.5 32.3 85.2	CHURCHILL FALLS COMFORT COVE DANIEL'S HARBOUR DEER LAKE GANDER INT	12.8 15.8 14.0 16.2	0.4 0.2 -0.5 1.2	28.0 31.6 24.5 31.3	4.0	0.0		70.0 53.5 27.4 80.3	73 49 23 78	00000	159690	241 X 137 X 236	140 76	162.6 89.9 60.7 81.7 82.7
ARLO NTHAM IDERICTON NCTON	16.9 19.0 19.3 18.5	0.8 1.0 1.1 0.9	29.5 32.8 33.7 31.9	3.6 4.0 2.9 4.8	0.0 0.0 0.0 0.0		106.0 166.3 128.2 117.7	98 199 147 149	0000	12 14 11 15	207 197 200 187	85 82 81	69.9 46.2 44.5 46.6	GOOSE PORT-AUX-BASQUES ST ANTHONY ST JOHN'S ST LAWRENCE	15.7 15.3 12.6 15.7 15.5	1.4 0.6 0.5 0.4 1.6	29.0 24.7 23.2 27.2 26.4	4.3 7.1 2.7 6.4 4.9	0.0 0.0 0.0 0.0 0.0		30.6 78.8 111.6 75.9 66.1	29 69 81 62 46	00000	941277	214 206 229	121 = = 123 =	82.6 82.2 169.7 85.3 76.6
AL TOHM	17.3	0.7	29.4	4.3	0.0		150.4	147	0	14	173	81	49.2	STEPHENVILLE WABUSH LAKE	16.5 12.2	0.4	27.2 26.5	5.8 9.8	0.0		82.1 54.9	79 58	00	11 13	228 217		58.0 184.1

STATICIN Indexes <	AGROCLIMATOLOGICA	L STA	TIONS	c					F			Degree d	AUGU	ST 1988	Tem	perature	C					(The second			Degree d		gust 1988
BENUSTIAN AAASST 18.1 0.4 31.0 0.5 0.0 77 23 494.6 194.0 ULEPH 177.1 23.0 1.3 33.5 3.5 0.0 84.6 102 0 19.2 29.0 19.0 29.0 29.0	STATION	Mean	Difference from Normal	Madmum	Maimum	Showfadi (cm)	Total Precipitation (mm)	X of Normal Precipitation	Show on ground at end of month (No. of days with Pracip 1.0 mm or more	Bright Sunshine (hours)	This month apone	Since jan. tet	STATION	Mean	Difference from Normal	Madmum	Minimum	Snowfall (cm)	Total Precipitation (mm)	Z of Normal Precipitation	Snow on ground at end of month	No. of days with Precip 1.0 mm or more	Bright Sunahine (hours)	This month day	Since jan tet	- Vol. 10
	BBITTISH COLLIMBIA AGASSIZ SIDNEY SUMMERLAND ALBERTA BEAVERLODGE ELLERSLIE LACOMBE LETHBRIDGE VEGREVILLE SASKATCHEWAN INDIAN HEAD MELFORT REGINA SASKATOON SCOTT SWIFT CURRENT SOUTH MANITOBA BRANDON GLENLEA MORDEN ONTARIO DELHI ELORA	18.1 17.1 19.5 15.0 14.8 15.3 17.5 16.6 17.7 15.0 17.9 19.0 20.5 21.1 21.7 19.6	0.4 * 0.5 0.8 0.1 0.2 0.1 0.5 0.3 -1.0 0.2 1.1 2.2 2.1 1.9 1.5	31.0 27.5 33.5 31.0 29.5 29.5 37.0 28.5 37.0 30.0 42.0 40.0 38.5 39.5 39.5 36.0 33.8	8.5 9.5 9.0 1.0 3.0 1.5 2.0 2.0 0.5 4.0 4.5 11.0 5.0 6.5 5.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	37.7 35.6 36.2 46.0 87.3 114.2 70.8 79.7 69.6 96.1 30.4 22.0 15.0 20.8 40.4 47.9	61 * 132 72 153 126 146 157 206 79 32 25 29 43 66	0 00 0 0 000 000 000	7 36 8 10 9 8 10 7 11 6 4 4 3 8 10	234 288 293 250 291 N/A 252 N/A 255 301 N/A 238 276 283	404.8 378.7 * 307.0 301.3 317.8 394.2 368.0 392.5 305.9 399.7 435.3 479.1 503.0 452.4	1644.0 1432.9 1787.5 1110.3 1203.8 1331.4 1691.5 1564.5 1694.0 1447.2 1730.0 1809.1 1804.6 2012.5 1857.6 1608.1	GUELPH HARROW KAPUSKASING OTTAWA SMITHFIELD VINELAND STATION QUEBEC LA POCATIERE L'ASSUMPTION LENNOXVILLE NORMANDIN ST. AUGUSTIN STE CLOTHILDE NEW BRUNSWICK FREDERICTON NOVA SCOTIA KENTVILLE NAPPAN PRINCE EDWARD ISLAND CHARLOTTETOWN NEWFOUNDLAND ST. JOHN'S WEST	20.1 23.0 15.9 20.5 22.0 21.7 77.9 20.0 15.4 20.4 19.8 19.9 18.4 19.2 18.4	1.3 0.8 0.4 1.4 2.7 0.9 0.6 0.2 1.5 1.5 1.5 1.5 1.7 1.5 1.0 0.8 1.2	33.5 36.0 29.0 32.6 39.1 33.1 33.1 31.5 33.0 29.5 34.5 33.5 31.5 29.0 29.0 29.0 29.0	3.5 9.5 0.0 7.2 3.8 10.0 4.5 2.0 4.5 8.5 8.5 8.5 6.0 4.0 7.0 5.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	88.4 96.1 208.4 171.4 63.6 75.4 79.2 147.2 147.2 147.2 147.2 147.2 147.2 147.3 147.3 111.6 78.4 120.3 81.2 105.5 111.6 78.3	108 121 233 202 84 86 80 158 124 82 139 83 116 126 68	000 000 00 0 0 0 0 0 0	10712 13 6 11 13 15 14 12 11 10 12 11 11	268 2711 170 223 W/A 268 207 202 185 226 200 190 163 173 224	469.0 556.8 334.8 479.9 538.3 518.0 399.6 464.3 318.4 456.4 451.4 477.2 439.3 371.0	1676.9 2077.1 1177.1 1776.6 1890.2 1837.7 1363.4 1683.3 1168.4 1502.6 1460.8 1396.0 1326.4 1067.0	Climatic Perspectives

5.6.1

