At last, a winter with near-normal snow

on the Prairies

It was a welcome white Christmas season across most agricultural regions $\delta 818$ Sastatche. . Manitoba as the snow cover continued to build. This season's normal to above-normal snowfall seemed to come as a bit of a surprise to many who had become accustomed to the meagre snowfalls of the previous two winters. Winnipeg's seasonal snowfall total reached 65.4 cm this week which coincidentally equalled the total snowfall for all of last winter. The snowfall amounts have been even greater in southem Saskatchewan where Swift Current has received 150% of their normal snowfall for the period from November 1st to the end of the year. After struggling through one of the worst drought years ever, which was followed by a dry fall, the snow is good news for Prairie farmers who have been hoping for a decent cover of snow to help recharge depleted soil moisture reserves during the period of spring melt. Not all of the Prairies have been blessed with heavy snowfalls, as below-normal amounts have been recorded over central Sakatchewan and the southern two thirds of Alberta.

Another warm, dry year in the west

1988 will probably be remembered as a hot, dry year when one of the worst droughts since the 1930's was experienced over the Canadian Prairies and the U.S. Plains. Despite the drought, 1988 did not rank as on of the five driest years at most locations, the main exception being at Moose Jaw where it was the driest year in the history of the station (back to 1899). For many locations though, 1988 did rank as one of the five warmest years, although not as warm as the record year of 1987. 1981 and 1986 were other years among the five warmest at some locations. This continues the pronounced warming trend for the 1980's in western Canada. Initial data indicates that the core of annual warmth was in central and northern Alberta and extended
northward into the Mackenzie Valley where annual temperature anomalies were in the $4-6^{\circ} \mathrm{C}$ range.

A look ahead...

Bitterly cold air ushered in the New Year across most of Canada east of the Rockies. By the middle of the week, the cold air pushed southward to cover the Great Lake Basin.

After a brief moderation over the weekend east of Manitoba, temperatures will, once again, drop to below normal values especially over Atlantic Canada. Over the Southwestern Prairies, cold should give away to milder Pacific air during the second week of January. Near normal temperatures are expected over B.C.

Mean January temperatures are expected to be above normal from B.C. to Manitoba and over the Great Lakes and the St. Lawrence Valley. Elsewhere, January will be colder than normal (see page 8).
A. Shabbar - 04/01/89

Weekly Temperature extremes ('C)

Maximum temperature

British Columbia Vancouver Int'l 10
Yukon Territory Komakuk Beach A 10
Northwest Territories Clinton Point 11
Alberta .Pincher Creek A 3
Saskatchewan Estevan -3
Manitoba Brandon -13
Ontario Goderich 5WindsorQuébec

\qquad
New Brunswick Saint John 5
Nova Scotia Sable Island 11
Prince Edward Island 3
Newfoundland Cape Race 6

Minimum temperature

Puntzi Mountain - 32
Beaver Creek - 35
Shepherd Bay A -47
Fort Chipewyan -42
Cree Lake - 43
Thompson -43
Lansdowne House
-43
La Grande Riviere - 37
Charlo -26
Truro -19
Charlottetown -19
Wabush Lake -39

Across The Country...

Warmest Mean Temperature
Coolest Mean Temperature

Langara (BC) 5
Pond Inlet (NWT) -36

88/12/27-89/01/02

Across the country...

Yukon and Northwest Territories

The Yukon was generally mild the first week of the period with only small amounts of precipitation. The north was unseasonably mild with temperatures ranging from 6 to $12^{\circ} \mathrm{C}$ above normal. For the week of the 26th, cold air invaded the Yukon. Many of the southern valleys were covered by low cloud as a result of trapped moisture in the low levels. Clearer conditions in the higher elevations dropped temperatures into the minus $30^{\circ} \mathrm{C}$ range. By the weekend, a series of Pacific disturbances brought milder temperatures and some light snow. It was generally clear and cold across the western part of the Northwest Territories with overnight lows in the -30 to -40 C range. Most of the ice bridges were open to traffic, although restricted to light vehicles only. The eastern part was generally clear and cold with occasional strong northwest winds. During the week of the 26th, a weak low pressure system gave some snow to the southern part of Baffin Island. The re-development of this low in the Labrador Sea produced blizzard conditions on Baffin Island on the 30th and 31st.

British Columbia

Generally the weather was seasonable but variable as some fairly active low pressure systems passed over the province during the two-week period. Most of the precipitation fell as snow, especially in the interior. This snow was most welcome by the skiers. On the 29th, a combination of snow and strong winds created hazardous driving in the Fort St. John area while on the 30th, portions of the Rogers Pass were closed as blowing snow reduced visibility.

Prairies

In Alberta, temperatures were below normal as cold Arctic air engulfed the province by the 21 st . On the 31 st , minimum temperatures were in the minus $40^{\circ} \mathrm{C}$ range in the northem parts. For the first week of the period, Manitoba and Saskatchewan started off with very mild weather and ended on the bitterly cold side. By Christmas day, temperatures had dropped
to the minus thirties. Several areas reported 5 to 10 cm of new snow. Cold temperatures and snow continued into the second week. Temperatures in northern Saskatchewan dipped into the $-40^{\circ} \mathrm{C}$ range. Southeastern Manitoba received at least 10 cm of snow. The ample snow cover at most Prairie locations may be the harbinger of a good agricultural year as soil moisture reserves return to normal.

Ontario

Southern and central Ontario were generally seasonable to mild while the north was cold. Snowfall was light except in the snowbelt areas and the northwest. The Sioux Lookout-Kenora area received $20 t 30 \mathrm{~cm}$ of snow during the holiday period with the heaviest snowfall on December 26th to 27th when 10 to 15 cm fell in northwestem Ontario. Most of Ontario had a white Christmas except for southerm Ontario, Niagara and the north shore of Lake Ontario. Freezing rain on the 23rd and on the 29th created problems for holiday travellers.

Quebec

During the week of December 20-26, temperatures were relatively mild, particularly in the south, and precipitation amounts were generally less than 25 mm , mostly in the form of snow. Freezing rain mixed with snow fell in the Quebec city region on the 23rd which produced very slippery road conditions. These icy conditions were likely the cause of two multiplecar collisions that occurred about 40 km east of Quebec city which killed two and injured more than 20 persons. The holiday weather conditions were favourable for the ski resorts. There was an increase in the usual number of skiers in the Eastern Townships due to the fact that they were able to make artificial snow. Temperatures nose dived to below seasonal normals during the week of December 27 to January 2. Many daily low temperature records were broken during the last five days of this period, most of them being in the south.

Maritimes

During the period of the 20th to 26 th , no significant weather was reported. On

Heaviest Weekly Precipitation (mm)

British Columbia Estevan Point 89
Yukon Territory Watson Lake 11
Northwest Territories Fort Simpson 4
Alberta . Whitecourt 11
Saskatchewan 15
Manitoba 9
Ontario 32
Québec 37
New Brunswick 45
Nova Scotia 34
Prince Edward Island 25
Newfoundland St Lawrence 37

Christmas day, most areas were cloudy and mild. During the week of the 26th, cold air moved into area as maximums failed to climb above minus $10^{\circ} \mathrm{C}$ by the 1st. A major storm over Sable Island on the 2 nd dumped at least 40 cm of snow.

Newfoundland

During the week of the 20 hh , temperatures were seasonable with light snow. On Christmas Day, a major storm dumped 25 to 30 cm of snow on most areas and on
the 29th, another storm brought high winds and snow to most areas. Port aux Basques reported winds gusting to 145 km / h. A northerly flow behind the storm brought cold air into the region as daily maximums of -10 to $-15^{\circ} \mathrm{C}$ were reported. Labrador was generally cold with light amounts of snow. By the end of the month, daily maximums of minus $20^{\circ} \mathrm{C}$ were common. Wind gusts to $80 \mathrm{~km} / \mathrm{h}$ accompanied by low temperatures created extreme wind chills.

+ + much above normal
$+\quad$ above normal
N normal
- below normal
.- much below normal

Temperature Anomaly Forecast
This forecast is prepared by searching historical weather maps to find cases similar to the present. the historical outcome during the 15 days subsequent to the chosen analogues is assumed to be a forecast for the next 15 days from now.

CLIMATIC PERSPECTIVES VOLUME 10

Managing Editor
P.R.Scholefield Editors-in-charge

- weekly
A. Gergye
- monthly
A. Gergye

French version
Alain Caillet
Data Manager M. Skarpathiotakis

Art Layout M. Voss
Word Processing . . . P. Burke/U. Ellis
Translation
Cartography
.G. Young/T. Chivers

B. Taylor

Regional Correspondents
Atlantic: F.Amirault, Quebec: J.Miron; Ontario: B.Smith; Central: J.F.Bendell; Western: W.Prusak, Pacific: E.Coatta; Yukon Weather Centre: J.Steele; Frobisher Bay and Yellowknife Weather Offices; Newfoundland Weather Centre: G.MacMillan; Ice Central Ottawa

ISBN 0225 -5707 UDC 551.506.171)
Climatic Perspectives is a weekly bilingual publication of the Canadian Climate Centre, Atmospheric Environment Service, 4905 Dufferin St., Downsview, Ontario, Canada M3H 5T4

定 (416) 739-4438/4436
The purpose of the publication is to make topical information available to the public concerning the Canadian Climate and its socio-economic impact.

Unsolicited articles are welcome but should be at maximum about 1500 words in length. They will be subject to editorial change without notice due to publishing time constraints. The contents may be reprinted freely with proper credit.

The data in this publication are based on unverified reports from approximately 225 Canadian synoptic weather stations. Information concerning climatic impacts is gathered from AES contacts with the public and from the media. Articles do not necessarily reflect the views of the Atmospheric Environment Service.

Annual Subscriptions
weekly and monthly supplement: $\$ 35.00$
foreign:
$\$ 42.00$
monthly issue $\$ 10.00$
foreign: $\$ 12.00$
Orders must be prepaid by money order or cheque payable to Receiver General for Canada. Canadian Government Publishing Centre, Ottawa, Ontario, Canada

K1A 0S9 ${ }^{\circ}$
(819) 997-2560

50 kPa ATMOSPHERIC CIRCULATION

Mean geopotentiial height 50 kPa level (10 decameter intervals)

Mean geopotential height anomaly 50 kPa level (10 decameter intervals)

Storm track - Position of storm at 12 GMT each day during the period.

ACID RAIN REPORT

The reference map (left) shows the locations of sampling sites, where the acidity of precipitation is monitored. All are operated by Environment Canada except Dorset, which is a research station operated by the Ontario Ministry of the Environment. The map also shows the approximate areas (shaded), where SO_{2} and NO_{x} emissions are greatest. The table below gives the weekly report summarizing the acidity (or pH) of the acid rain or snow that fell at the collection sites, and a description of the path travelled by the moisture laden air. Environmental damage to lakes and streams is usually observed in sensitive areas regularly receiving precipitation with pH readings less than 4.7 , while pH readings less than 4.0 are serious.

For more information concerning the acid rain report, see Climatic Perspectives, Volume 5, Number 50, page 6.

NOT AVAILABLE

STATION	temperature mean anom max min				precip. Wind max plot st\| dir			STATION		$m p e$ anom	max	ure min	$\left\|\begin{array}{ll} \text { precip. } \\ \text { ptot } \end{array}\right\|$	ind dir	
British Columbla								Ontario							
Cape StJames.			8 P	3P	13P 0	290	102	Atikokan							
Cranbrook.	.-10			-19	7P 14			Big Trout Lake	-31	-8	-16	-40	456	320	65
Fort Nelson	. 23	-2	-17	-29	459			Gore Bay.	-7P	1 P	3P	-17P	22P 26	280	52
Fort St.John	-17P	-4P	-2P	-26P	7 P 12	240	65	Kapuskasing	-22	-5	-3	-36	1358	300	46
Kamloops	-6	-1	2	-15	1413	290	65	Kenora	-21P	-5P	-12P	-31P	7P 40	320	41
Penticton	-4	-2	4	-12	71	180	57	Kingston					2		
Port Hardy	3P	OP	6 P	-1P	62P 0	110	59	London	析	2	8	-10	30P 1	270	57
Prince George	-11P	-1	-2P	-27P	5P 29	190	57	Moosonee	-26	-7	-8	-36	942	290	46
Prince Rupert	. 2P	2 P	7P	-5P	75P 0	170	65	North Bay	-12	-1	1	-22	2232	180	41
Revelstoke	-6P	OP	-1P	-12P	1 P	340	56	Ouawa Int'l	-10	0	3	-21	$\begin{array}{ll}21 & 14\end{array}$		X
Smithers	-10P	OP	-3P	-16P	5P 34			Petawawa	-14P	-2P	$1 P$	-30P	15P *		\mathbf{X}
Vancouver Int'l	3	1	10	-2	730	160	41	Pickle Lake	-27	-7	-14	-38	1067	260	35
Victoria Int'l		2	10	-2	460	200	52	Red Lake	.-24P	-6P	-13P	-34P	7P 73		
Williams Lake	-10	-1	-4	-23	18P 33		X	Sudbury	. -13	-1	2	-24	29P 39		X
								Thunder Bay	.-16P	-3P	0 P	-27P	11 P 48	290	54
Yukon Territory								Timmins	. -19	-3	-1	-32	1542	140	54
Watson Lake .	24	0	-15	-34	1152		67	Toronto Int'l	-3	3	5	-9	$14 \quad 1$	280	57
Whitehorse	-14	2	-6	-28	310	170	67	Trenton	-6P	1 P	5 P	-15P	17P 2		X
								Wiarton		2	4	-11	27P 7		X
Northwest Territories	-29P	3P	Northwest Territories					Québ							
Baker Lake	-36P			-38P	1P 54										
Cambridge Bay	. -29P		-22P	-37P	* 10	330	35	Bagotville	-19	-4	1	-31	1629	270	54
Cape Dyer . .	- -28P	-7P	-18P	-37P	2P123	260	106	Blanc Sablon	.-19P		-4P	-29P	8P 9		X
Clyde	.-32	-7	-25	-40	1P 36	320	39	Inukjuak			-13	-31	7P 27	240	67
Coppermine	-31P	-5	-17P	-41P	OP 46	170	33	Kuujuaq	-25	-5	-15	-33	227	260	61
Coral Harbour			-20P	-35P	2P 16		X	Kuujjuarapik	-29P	-10P	-13P	-37P	1 P 13	250	63
Eureka	-32P	4P	-25P	-40P	2P 12	020	56	Maniwaki	-14	-1	2	-27	2325	320	39
Fort Smith	. 31	-8	-19	-41	132		X	Mont Joli	-14	-4	2	-24	1130	280	72
Iqaluit	-27P	-4P	-14P	-34P	1 P 10	330	74	Montréal Int'l	-10	0	3	-20	276	240	46
Hall Beach	. 33	-5	-24	-42	2P 42	310	39	Natashquan	-19	-9	-1	-30	622	170	59
Inuvik	-23P	5 P	-14P	-36P	3P *		X	Québec	-14	-3	1	-27	28	300	59
Mould Bay	. -31P	2 5	-18P	-42P	1P 26		X	Schefferville	-28	-7	-15	-36	330	270	56
Norman Wells	$.-22$	5	-16	-31	3 *		X	Sept-Iles	-20	-7	-5	-33	120	290	56
Resolute ${ }_{\text {Y }}$ Yellowknife	$.31$	0	-22	-39	222	010	59	Sherbrooke	-11	0	3	-27	$26 \quad 14$	260	54
Yellowknife	-33P	-8P	-20P	-42P	1P 27	130	33	Val D'or		-3	-1	-32	1330	150	43
Alberta								New Brunswick							
Calgary Int'l	-10	-1	P	-23	1 P 2	260	78	Charlo	-15	-5	-1	-26	2148	280	65
Cold Lake	-23P	-8P	-8P	-33P	3P			Chatham	-15P	-7P	1 P	-25P	4 P 10	310	59
Coronation . . .	-18	-5	-3	-31	0		*	Fredericton	-11	-3	3	-23	258	310	65
Edmonton Namao	-14P	-2P	-2P	-25P	4 P 13	270	50	Moncton	-10	-4	4	-20	185	280	76
Fort Mcmurray	-25P	-7P	-13P	-36P	2 P 31		X	Saint John	-9	-2	5	-20	$45 \quad 15$	210	56
High Level .	. 27	-9	-17	-41	4P 48										
Jasper . .	-11P	OP	-3P	-24P	5P 20		X	Nova Scotia							
Lethbridge	-10P	-3P	3P	-26P	OP *	260	98	Greenwood	-6P	-2P	7P	-15P	28P 7	290	76
Medicine Hat	-13	-3		-28	410	220	43	Shearwater	-6P	-3P	8P	-15P	25P 5	330	72
Peace River	-18	-3	-4	-31	1013	280	43	Sydney	$-7 \mathrm{P}$	-4P	3P	-16P	34 P 14	290	87
Cree Lake	. 32	-14	-17	-43	242		*	Prince Edward Island							
Estevan	. 20	-6	-3	-29	312	310	69	Charlottetown	-11	-5	3	-19		300	65
La Ronge	. 28	-10	-17	-36	4 P *	160	33	Summerside	-12P	-6P	OP	-19P	12P 12	300	81
Regina.	-21P	-6P	-7P	-34P	6P ${ }_{\text {6P }} 13$	130	44								
Saskatoon .	-23P	-6P	-11P	-35P	5P 16	040	35	Newfoundland							
Swift Current	-17P	-5P	-3P	-30P	3P 20		X	Cartwright .	. 20	-10	-10	-28	1143	300	59
Yorkton	25P	-9P	-19P	-34P	15P 22	140	50	Churchill Falls	-27	-10	-15	-36	660	300	59
Manitoba								Gander Int'l-12P		-8P	OP	-19P	15P 48	270	93
Brandon	.-22	-5	-13	-32	914	060	48	Port-Aux-Basques	-6P	-4P	-13	-13P	19P 37	310	106
Churchill	.-34	-10	-21	-42	2P 32	300	65	St John's . . .	-9P	-7P	1 P	-15P	29P 23	280	98
Lymn Lake		-14P	-21P	-43P	1 P 53			St Lawrence		-5	2	-13	3714		X
The Pas .	$\begin{aligned} & -28 \\ & .-33 \end{aligned}$	-11	-20	-36 -43	$\begin{array}{ll}1 & 16 \\ 0 & 38\end{array}$	140	43	Wabush Lake	-27	-8	-13	-39	538	290	43
Winnipeg Int'l	-22P	-6P	-14P	-30P	$3 P 11$		33 44	88/12/27-89/01/02							
```mean = mean weekly temperature, "C max = maximum weekly temperature, 'C min = minimum weekly temperature, "}\mp@subsup{}{}{\circ}\textrm{C anom = mean temperature anomaly, 'C```					$\begin{aligned} & \text { ptot }=\text { weekly precipitation total in } \mathrm{mm} \\ & \text { st }=\text { snow thickness on the ground in } \mathrm{cm} \\ & \text { dir }=\text { direction of max wind, deg. from north. } \\ & \text { vit }=\text { wind speed in } \mathrm{km} h \end{aligned}$				- Annotations .   $X=$ no observation   $\mathbf{P}=$ less than 7 days of data.   - = missing data when going to printing.						

50 kPa ATMOSPHERIC CIRCULATION


Mean geopotentiial height 50 kPa level ( 10 decameter intervals)


Mean geopotential height anomaly 50 kPa level ( 10 decameter intervals)


