Stormy weather: A mixed blessing across the country . this May.

Since April, the Atlantic region has received copious amounts of precipitation. The fresh water supply is most welcome for the upcoming growing season, the recharging of bodies of water and the ground water table. In central Newfoundland, stream flows have been excessive.

On May 10, a unusual storm dumped 40 cm of snow on northeastem Ontario, while southern and central parts of the province were lashed by winds gusting to almost $100 \mathrm{~km} / \mathrm{h}$. Traffic accidents, personal injuries and property damage resulted. Wet weather this month across the agricultural areas delayed the planting of soybeans and com. Although grains and cereals were doing well, the cool weather curbed their growth.

News of the completion of a climatic study on frequency, effects and controls of dust storms presaged the arrival of a severe dust storm on May 25th, which brought $80-85 \mathrm{~km} / \mathrm{h}$ winds to central Saskatchewan. Strong winds caused soil erosion and the depletion of topsoil moiscure in the west central areas. Although generally persistent Prairie rains raised the soil moisture index above the 70% level, southwestern and south central Sascatchewan remains relatively dry with soil noisture levels below 50% of its water iolding capacity.

Heavy precipitation inundated the Alberta foothills on the 24th and 25th of the month, particularly in the areas of the headwaters of the Elbow and Highwood Rivers, dumping upwards of 100 mm of rain in these regions. Saturated soil conditions combined with snow melt produced peak flows which, in many locations, reached their highest levels since 1967. Sand bagging and diking were undertaken at many sites and in some areas evacuations were carried out.

May 5th clouted B.C. with a seasonally
rare windstorm, capsizing and sinking small craft in the coastal waters, and downing 35 kilometers of hydro wires. The 80 km / h sustained wind speeds recorded at Victoria's Gonzales Observatory should normally occur during the May-September period only about once every 35 years. By the end of the month the combination of heavy rainfalls and seasonal snowmelt swelled many rivers and caused washouts in the mountain valleys. Average to above average snowpacks could be found in the upper Fraser, Thompson, Columbia, Peace and Skeena River basins.

Across the country

Yukon and Northwest Territories

In the Yukon, for the most part, it was a dull, damp and dreary month, but surprisingly temperatures did average out above normal. There was definitely a lack of sunshine. Whitehorse established a new record for the fewest number of hours of bright sunshine, 206.7 hours as opposed to a May normal of 260 hours.

The southern Yukon received more than twice their normal rainfall and Whitehorse also set a new record for the number of days with precipitation during May, 14 days compared to the May normal of 5 days. The latter part of the month saw rainfalls of between 50 and 100 millimetres throughout the southeastern Yukon. This combined with mountain snowmelt caused flooding and washouts, and the Alaska Highway had to be closed at Muncho Lake.

By the middle of the month most of the snow had gone in the southern Mackenzie District. The ferry crossing the Mackenzie River at Fort Providence went back into service on May 10 after a rather uneventful breakup of the river ice.

In the Arctic, blizzards were still observed during the early part of the month, as weather systems tracked across Hudson Bay. Baffin Island got its fair share of snow and blowing snow. By the middle of the month, fog was common along the Beaufort Sea coastline, a sure sign of spring. The latter half of the month saw a significant warming take place in the Northwest Territories, which progressed eastward towards Baffin Island. Fort Smith, in the Great Slave Lake District, was the hot spot in Canada during the week of the 21st, with a temperature reading of $26^{\circ} \mathrm{C}$. In fact, daily maximum temperature records were also broken along the Arctic Coast and on Baffin Island. The final week of the month saw temperatures in the southern Mackenzie nudge the 30s. This contrasted sharply with the wind, freezing rain and snow which moved back into the Keewatin District of the Northwest Territories and Baffin Island.

British Columbia

After a relatively pleasant April weatherwise, the month of May did not turn out to be as nice. Although temperatures did not stray far from long-term averages, it was a very wet and dull month.

The Okanagan, Kootenay, Fraser canyon and Kamloops areas reported precipitation amounts two to nearly four times above the average, with record high May values reported at Castlegar, Cranbrook, Kamloops, Kelowna, Penticton and Princeton. This has caused a lot of concern about the state of the orchards and hay crop in the southern interior, especially since June has also started out wet. Northern sections of the province were also unusually wet, and the heavy precipitation combined with mountain snowmelt caused some flooding and washouts along the lower valleys towards the end of the month. Surprisingly, areas along the north coast were drier than normal.

It was a dull month in almost all areas of the province. Only Terrace reported above average amounts of sunshine, while other lareas of the province received 75 to 90 percent of their average sunshine. Once again the Okanagan and Kootenays had the greatest negative departures, in some cases half their normal sunshine. New recordlow May values were established at Cranbrook, Penticton, Lytton and Williams Lake.

Strong winds associated with a frontal system wreaked havoc in the interior and southern coastal areas on May 5. Winds gusting up to $100 \mathrm{~km} / \mathrm{h}$ caused extensive damage in the Prince George area. The winds knocked down trees and hydro towers, which in turn resulted in extensive power outages and damage in the millions. On the coast, in what started out as a oleasant, sunny day turned out to be a nightmare for many sailors, who did not reed the advanced weather warnings.

Alberta

Above-normal temperatures were evident It the beginning of the month, and daily emperature records were set in the westlentral and Peace regions. The middle of he month saw an unseuled, cool weather

CLIMATIC EXTREMES IN CAMADA - MAY 1990

MEAN TEMPERATURE:
HIGHEST

COLDEST

HIGHEST TEMPERATURE:
LOWEST TEMPERATURE:
HEAVIEST PRECIPITATION:

HEAVIEST SNOWFALL:
KAPUSKASING A, ONT.
40.5 cm

DEEPEST SNOW ON THE GROUND
ON MAY 31, 1990

GREATEST NUMBER OF BRIGHT SUNSHINE HOURS:

INUWIK A, NWT.
428 hours
regime dominate the weather picture. During the final week of May, Fort McMurray and High Level, in northern Alberta, recorded the highest maximum temperatures in the province, 29.2 and 29.4 degrees, respectively.

Total precipitation over the northeast and east-central regions of the province was less than normal. In contrast, precipitation over the west-central and southwest mountain foothills was wellabove normal. Total amounts were well in excess of 100 mm . Heaviest precipitation was in the southwest part of the province, with monthly totals exceeding 170 mm in the Crowsnest Forest District. Banff received 130.2 mm , well above the average of 51.2 mm . For the record, Banff received 149.7 mm during May 1981, while the all-time May record stands at 193.8 mm set in 1902. Heavy rain combined with snowmelt in the mountain regions of the province resulted in high run-off and considerable downstream flooding along streams and rivers from west-central to southwestern Alberta. Serious flooding began during the weekend of May 25 following heavy rainfalls of 50 t 75 millimetres in the foothills.

While the excessive moisture created flooding problems, strong easterly winds on May 25 raised soil from dry fields in southwestern Saskatchewan and eastcentral Alberta, causing huge clouds of airborne dust to push into central Alberta, partially obscuring the sky.

Saskatchewan and Manitoba

May was a very quiet month with litule in the way of extreme weather events. The beginning of the month was cold, and snow fell in many areas. On the 8th, unofficial reports showed a 30 cm accumulation at Mafeking, Man. By the 3rd week of the month, the scale tipped the other way and temperatures reached near-record high values, particularly in northern areas. The net result was near-normal average temperatures in the region. Perhaps a litule unusual was the fact that nowhere in the region did temperatures get to thirty degrees this month.

Precipitation was variable, as is usually the case with showers. Several locations were extremely dry, such as Thompson, Man., with only 2.8 mm . In the south,
precipitation was more variable, although in general, amounts were near or below normal. Brandon received 83.2 mm , nearly double the normal for the month, while Winnipeg received approximately half their normal 65.7 mm . This was the 5th consecutive year with well-below normal precipitation at Winnipeg.

Northern Saskatchewan and all of Manitoba were much sunnier than usual. Some locations reported as much as 60 hours of bright sunshine above their normal allotment. More cloud cover in southern Saskatchewan kept sunshine totals there to as much as 50 hours below normal.

Ontario

May was less than a pleasant spring month this year. It was too wet for farmers and gardeners and too cloudy and cool for just about everyone else. Temperatures were as much as $2^{\circ} \mathrm{C}$ below normal across the southern half of the province, and unlike March and April there were no late-month heat waves. In fact, from May 10 to 12, winter made a brief reappearance, with snow flurries as far south as Windsor, and near record heavy snowfalls of 20 to 40 centimetres in northeastern Ontario. The cool weather slowed crop growth considerably.

In addition to the cool weather, May was the wettest since 1984 in much of northeastern, southern and central Ontario. The heaviest precipitation fell in the Sudbury - North Bay areas of central Ontario. Sudbury's 143 mm May total was the most in 37 years of weather records, and North Bay's 161 mm was not only the most in the province, but also their greatest amount since 1970. Hamilton also set a May record of 125 mm of rain. All this rain delayed farming and field work and attempts by farmers to plant corn and soybeans. The lack of sunshine did not help either, as total hours of bright sunshine lagged from 5 to 40 hours short of the expected average in the southem regions of the province.

Thunderstorms were relatively scarce this month, but storm-force winds on May 10 and 17 caused widespread damage in southern Ontario. In addition, serious flooding occurred in the Lake Nipissing
area of central Ontario as a result of the torrential rains on May 16 and 18.

In contrast, northwestern Ontario was significantly drier and sunnier than normal, but not nearly as dry as in previous years, when forest fires became a serious problem.

Quebec

It was a cooler than normal May everywhere except in northern Quebec, with temperatures averaging as much as $1.6^{\circ} \mathrm{C}$ below normal. Precipitation amounts varied widely from 3.2 mm or 10% of normal at Kuujjuaq, to as much as 151.6 mm or $21 / 2$ times the normal on the Magdalen Islands. Except along the Ottawa and St. Lawrence Valleys, total precipitation averaged below normal. A new record for the least amount of precipitation was set at La Grande Rivière with 26.4 mm . The old record of 27.6 mm was established in 1982. The very dry conditions in some areas of the province prompted officials to order a fire ban in the Laurentians and Lac St-Jean region.

Thunderstorms produced hail during the early and latter parts of the month. Severe thunderstorms crossed the Lac St Jean and Saguenay areas on May 28, causing significant wind damage to the downtown area of Jonquiere in the late afternoon and evening. Some 150 trees were uprooted. The total price tag was estimated at $1 / 4$ million dollars. Strong winds, gusting as high as $104 \mathrm{~km} / \mathrm{h}$, were also reported the week of the 7th at Cap-de-la-Madeleine and Cap Chat.

Total snowfalls were less than 25 cm this month everywhere except at Scheffer-
ville and Sept-Iles, where amounts totalled 29.6 cm and 27.6 cm , respectively. At Sept-Iles, this was the 3rd highest May snowfall ever recorded. Gaspé received 12.6 cm of snow this month, also setting a new record.

Total hours of bright sunshine were generally less than normal over southern Quebec. Anomalies ranged from 75% of normal at Saint-Agathe-des-Monts in the Laurentians to 182% of normal at Kuujjuaq in northem Quebec.

Maritimes

May was generally a cloudy, cool and wet month, with above-normal precipitation in all areas. It turned out to be the wettest May on record at Moncton, N.B., Greenwood, N.S., and Summerside and Charlottetown, P.E.I., with precipitation totals about 200 mm . The total precipitation at Charlottetown Airport was also the highest in the area since records began in 1872. On May 30, a heavy rainfall event set new records for the greatest precipitation in 24 hours during May at both Charlottetown, P.E.I., and Greenwood, N.S., with totals of 70.4 and 60.6 millimetres, respectively.

May snowfall ranged either side of normal. Charlottetown received the most snow, 22.6 cm . Although this amount was not a record in itself, the fact that 17.4 cm of snow fell on the 6th set a new record for the greatest 24 -hour May snowfall. The previous record was 15.2 cm set on June 2, 1914. Surprisingly, even with all the heavy precipitation, stream flows in Atlantic Canada were quite variable. Stream flows in P.E.I. were significantly above normal,
while stream flows on Cape Breton Island were below normal.

Temperatures during the month averaged out below normal. A cool spell during the latter half of the month produced some extremely low maximum temperature readings, with a number of locations setting new low daily temperature records of just a few degrees above the freezing mark. Total hours of bright sunshine were also on the low side, with the exception of a few areas in New Brunswick and on Sable Island.

Newfoundland

Below-normal temperatures and recordbreaking precipitation highlighted the weather across the Island. Sunshine was below normal in the east, but a little above normal at western locations. A persistent, northerly flow was the main reason for the cool, unsettled weather conditions, which delayed farming operations. Rainfalls were abundant, especially over eastern Newfoundland. Gander recorded 144.0 mm of rain, beating the previous monthly record of 140.9 mm set in 1980 . St John's received 183.3 mm of precipitation, nearly twice the normal, while Gander received 182.8 mm of precipitation, a new monthly record.

In Labrador, although it was cool, sunshine was above normal and precipitation was light. Bright sunshine during May at Goose Bay and Churchill totalled 235.5 and 272.4 hours, compared to normals of 176.3 and 196.0 hours, respectively. Temperatures fluctuated widely, and as a result, precipitation fell as both snow and rain.

CLIMATIC EXTREMES IN CANADA - MAY 1990

MEAN TEMPERATURE:
HIGHEST
KAMLOOPS A, B.C.
$13.9^{\circ} \mathrm{C}$

COLDEST
HIGHEST TEMPERATURE:
LOWEST TEMPERATURE:

HEAVIEST PRECIPITATION:

HEAVIEST SNOWFALL:
DEEPEST SNOW ON THE GROUND ON MAY 31, 1990

RESOLUTE, NWT.
$-10.2^{\circ} \mathrm{C}$
KAMLOOPS A, B.C.
$33.0^{\circ} \mathrm{C}$
RESOLUTE A, NWT.
$-24.4^{\circ} \mathrm{C}$

SAINT JOHN A, N.B.
231.8 ต

KAPUSKASING A, ONT.
40.5 cm

GREATEST NUMBER OF BRIGHT
SUNSHINE HOURS:
INUWIK A, NWT.
428 hours
regime dominate the weather picture. During the final week of May, Fort McMurray and High Level, in northern Alberta, recorded the highest maximum temperatures in the province, 29.2 and 29.4 degrees, respectively.

Total precipitation over the northeast and east-central regions of the province was less than normal. In contrast, precipitation over the west-central and southwest mountain foothills was wellabove normal. Total amounts were well in excess of 100 mm . Heaviest precipitation was in the southwest part of the province, with monthly totals exceeding 170 mm in the Crowsnest Forest District. Banff received 130.2 mm , well above the average of 51.2 mm . For the record, Banff received 149.7 mm during May 1981, while the all-time May record stands at 193.8 mm set in 1902. Heavy rain combined with snowmelt in the mountain regions of the province resulted in high run-off and considerable downstream flooding along streams and rivers from west-central to southwestern Alberta. Serious flooding began during the weekend of May 25 following heavy rainfalls of 50 to 75 millimetres in the foothills.

While the excessive moisture created flooding problems, strong easterly winds on May 25 raised soil from dry fields in southwestern Saskatchewan and eastcentral Alberta, causing huge clouds of airbome dust to push into central Alberta, partially obscuring the sky.

Saskatchewan and Manitoba

May was a very quiet month with litule in the way of extreme weather events. The beginning of the month was cold, and snow fell in many areas. On the 8 th, unofficial reports showed a 30 cm accumulation at Mafeking, Man. By the 3rd week of the month, the scale tipped the other way and temperatures reached near-record high values, particularly in northern areas. The net result was near-normal average temperatures in the region. Perhaps a litule. unusual was the fact that nowhere in the region did temperatures get to thirty degrees this month.

Precipitation was variable, as is usually the case with showers. Several locations were extremely dry, such as Thompson, Man., with only 2.8 mm . In the south,
precipitation was more variable, although in general, amounts were near or below normal. Brandon received 83.2 mm , nearly double the normal for the month, while Winnipeg received approximately half their normal 65.7 mm . This was the 5th consecutive year with well-below normal precipitation at Winnipeg.

Northern Saskatchewan and all of Manitoba were much sunnier than usual. Some locations reported as much as 60 hours of bright sunshine above their normal allotment. More cloud cover in southern Saskatchewan kept sunshine totals there to as much as 50 hours below normal.

Ontario

May was less than a pleasant spring month this year. It was $t 00$ wet for farmers and gardeners and too cloudy and cool for just about everyone else. Temperatures were as much as $2^{\circ} \mathrm{C}$ below normal across the southern half of the province, and unlike March and April there were no late-month heat waves. In fact, from May 10 to 12, winter made a brief reappearance, with snow flurries as far south as Windsor, and near record heavy snowfalls of 20 to 40 centimetres in northeastern Ontario. The cool weather slowed crop growth considerably.

In addition to the cool weather, May was the wettest since 1984 in much of northeastern, southern and central Ontario. The heaviest precipitation fell in the Sudbury - North Bay areas of central Ontario. Sudbury's 143 mm May total was the most in 37 years of weather records, and North Bay's 161 mm was not only the most in the province, but also their greatest amount since 1970. Hamilton also set a May record of 125 mm of rain. All this rain delayed farming and field work and attempts by farmers to plant com and soybeans. The lack of sunshine did not help either, as total hours of bright sunshine lagged from 5 to 40 hours short of the expected average in the southem regions of the province.

Thunderstorms were relatively scarce this month, but storm-force winds on May 10 and 17 caused widespread damage in southern Ontario. In addition, serious flooding occurred in the Lake Nipissing
area of central Ontario as a result of the torrential rains on May 16 and 18.

In contrast, northwestern Ontario was significantly drier and sumnier than normal, but not nearly as dry as in previous years, when forest fires became a serious problem.

Quebec

It was a cooler than normal May everywhere except in northern Quebec, with temperatures averaging as much as $1.6^{\circ} \mathrm{C}$ below normal. Precipitation amounts varied widely from 3.2 mm or 10% of normal at Kuujjuaq, to as much as 151.6 mm or $21 / 2$ times the normal on the Magdalen Islands. Except along the Ottawa and St. Lawrence Valleys, total precipitation averaged below normal. A new record for the least amount of precipitation was set at La Grande Rivière with 26.4 mm . The old record of 27.6 mm was established in 1982. The very dry conditions in some areas of the province prompted officials to order a fire ban in the Laurentians and Lac St-Jean region.

Thunderstorms produced hail during the early and latter parts of the month. Severe thunderstorms crossed the Lac StJean and Saguenay areas on May 28, causing significant wind damage to the downtown area of Jonquiere in the late afternoon and evening. Some 150 trees were uprooted. The total price tag was estimated at $1 / 4$ million dollars. Strong winds, gusting as high as $104 \mathrm{~km} / \mathrm{h}$, were also reported the week of the 7th at Cap-de-la-Madeleine and Cap Chat.

Total snowfalls were less than 25 cm this month everywhere except at Scheffer-
ville and Sept-Iles, where amounts totalled 29.6 cm and 27.6 cm , respectively. At Sept-Iles, this was the 3rd highest May snowfall ever recorded. Gaspé received 12.6 cm of snow this month, also setting a new record.

Total hours of bright sunshine were generally less than normal over southern Quebec. Anomalies ranged from 75% of normal at Saint-Agathe-des-Monts in the Laurentians to 182% of normal at Kuujjuaq in northern Quebec.

Maritimes

May was generally a cloudy, cool and wet month, with above-normal precipitation in all areas. It turned out to be the wettest May on record at Moncton, N.B., Greenwood, N.S., and Summerside and Charlottetown, P.E.I., with precipitation totals about 200 mm . The total precipitation at Charlottetown Airport was also the highest in the area since records began in 1872. On May 30, a heavy rainfall event set new records for the greatest precipitation in 24hours during May at both Charloutetown, P.E.I., and Greenwood, N.S., with totals of 70.4 and 60.6 millimetres, respectively.

May snowfall ranged either side of normal. Charlottetown received the most snow, 22.6 cm . Although this amount was not a record in itself, the fact that 17.4 cm of snow fell on the 6th set a new record for the greatest 24 -hour May snowfall. The previous record was 15.2 cm set on June 2, 1914. Surprisingly, even with all the heavy precipitation, stream flows in Atlantic Canada were quite variable. Stream flows in P.E.I. were significantly above normal,
while stream flows on Cape Breton Island were below normal.
Temperatures during the month averaged out below normal. A cool spell during the latter half of the month produced some extremely low maximum temperature readings, with a number of locations setting new low daily temperature records of just a few degrees above the freezing mark. Total hours of bright sunshine were also on the low side, with the exception of a few areas in New Brunswick and on Sable Island.

Newfoundland

Below-normal temperatures and recordbreaking precipitation highlighted the weather across the Island. Sunshine was below normal in the east, but a little above normal at western locations. A persistent, northerly flow was the main reason for the cool, unsettled weather conditions, which delayed farming operations. Rainfalls were abundant, especially over eastern Newfoundland. Gander recorded 144.0 mm of rain, beating the previous monthly record of 140.9 mm set in 1980. St John's received 183.3 mm of precipitation, nearly twice the normal, while Gander received 182.8 mm of precipitation, a new monthly record.

In Labrador, although it was cool, sunshine was above normal and precipitation was light. Bright sunshine during May at Goose Bay and Churchill totalled 235.5 and 272.4 hours, compared to normals of 176.3 and 196.0 hours, respectively. Temperatures fluctuated widely, and as a result, precipitation fell as both snow and rain.

Pensez à recycler

SEASOMAL TOTAL OF HEATIMG DEGREE-DAYS TO END OF MAY

	1990	1989	NOPGAL
BRITISH COLUBIA			
Kamloops	3356	3547	3663
Penticton	3173	3419	3412
Prince George	4656	5124	5203
Vancouver	2734	2835	2912
Victoria	2877	3028	2987

VUKON TERRITORY

Whitehorse	6341	6755	6793
NORTHWEST	TERRITORIES		
Iqaluit	9927	\star	9632
Inuvik	9551	9367	9856
Yellowknife	8381	8372	8334

ALBERTA

Calgary	4613	5104	5186
Edmonton Mun	4815	5174	5323
Grande Prairie 5316 5805 5976 SASKATCHEMAN	5042	5319	5350
Estevan 5282 5735 5710 Regina 5583 5803 5895 Saskatoon 5806 5978 5960 MNITOBA 8899 8985 8806 Brandon 6741 6475 6646 Churchill 5750 5826 5764 The Pas Winnipeg			

ONTARIO

Kapuskasing	6295	6278	6232
London	3966	3912	4009
Ottawa	4633	4650	4574
Sudbury	5380	5291	5282
Thunder Bay	5707	5722	5580
Toronto	3975	4002	4022
Windsor	3457	3503	3530

quÉBEC

Baie Comeau	6071	5918	5819
Montréal	4505	4534	4432
Québec	5225	5198	5027
Sept-lles	6417	6073	5953
Sherbrooke	4991	5021	5081
Val-d'Or	6140	6138	5975

NEW BRUNSWICX

Charlo	5558	5446	5387
Fredericton Moncton	4901	4709	4595
MOVA SCOTIA	4885	4616	4602
Sydney Yarmouth	4748	4514	4325
	4067	3846	3911
PRINCE EDWARD ISLAND			
Charlottetown NEWFOUNDLAND	4923	4589	4513
Gander	5333	4971	4842
St. John's	4882	4664	4579

SEASONAL TOTAL OF GROWING
 DEGREE-DAYS TO END OF SEPTEBER
 DEGREE-DAYS TO END OF SEPTEBER

BRITISH COLUBIA			
Abbotsford	503	352	391
Kamloops	516	414	459
Penticton	478	362	418
Prince George	97	52	76
Vancouver	448	345	386
Victoria	386	301	355
ALBERTA	82	\star	84
Calgary	141	26	118
Edmonton Mun.	112	32	98
Grande Prairie	112	\star	130
Lethbridge	110	\star	97
Peace River	135		
SASMATCHEwAN		139	187
Estevan	138		
Prince Albert	131	119	102
Regina	135	172	112
Saskatoon	131	127	119
Swift Current	105	109	103
MWITOBA			
Brandon	133	173	126
Churchill	\star	\star	\star
Dauphin	87	208	70
Winnipeg	104	197	79

ONTARIO

London	332	204	296
Mount Forest	102	\star	\star
North Bay	64	183	64
Ottawa	336	216	307
Thunder Bay	83	129	87
Toronto	349	206	288
Trenton	316	244	300
Windsor	433	295	375
QuEBEC			
Baie Comeau	6	80	15
Maniwaki	88	222	116
Montréal	328	304	319
Quebec	235	221	219
Sept-Iles	\star	52	\star
Sherbrooke	19	238	33

NEW BRUNSMICK			
Charlo	8	83	20
Fredericton	16	249	27
Moncton	4	217	15
MOVA SCOTIA			
Sydney	4	40	11
Truro	\star	194	\star
Yarmouth	20	203	19
PRINCE EDNARD ISLAD			
Charlottetown	5	204	13
NEMFOUNDLAND			
Gander	\star	46	\star
St. John's	\star	34	\star
Stephenville	\star	116	\star

50-kPa ATMOSPHERIC CIRCULATION

May 1990

Mean geopotential heights

- 5 decametre interval -

Normal geopotential heights for the month - 5 decametre interval -

Mean geopotential height anomaly - 5 decametre interval-

Mean heights difference w/r to previous month - 5 decametre interval -

Severe Local Storms in the 1980s

Abstract

Ever since the time of earliest settlement in Canada, the weather and the climate have played an important role in shaping the course of human activities. Droughts, blizzards, cold waves, and windstorms arouse concerns and aggravate anxieties among a large cross section of society. Severe local thunderstorms, which produce tornadoes, hailstorms, flooding downpours and damaging winds have also caused their fair share of worries, and the past decade was no exception.

The collection of complete statistics concerning severe local thunderstorms began on a national scale about 1984. Since that time at least 60 Canadians have lost their lives due to atmospheric tantrums of this type, and more than 400 have been injured. On average, this amounts to 10 fatalities and 70 injuries per year across Canada. A complete accounting of the damage caused by severe summer storms is unavailable, but it is estimated that on average, about a billion dollars in crop and property losses is suffered each year.

Tornadoes

From Alberta to the Maritime Provinces, approximately 670 tornadoes are known to have occurred since 1980. Of this number, two events caused disasters, namely the tornado outbreak which swept through southern Ontario on May 31, 1985, which took 12 lives (8 of them in Barrie), and the Edmonton tomado of July 31, 1987, which was Canada's second worst tornado, killing 27 people.

Hall

The 1980s decade also witnessed the most damaging hailstorm on record which occurred during 1981 in Calgary, Alberta, causing losses of $\$ 100$ million. Hailstones as large as grapefnuit were observed almost every year somewhere in the region stretching from the Rocky Mountains to Quebec. In 1989, a severe thunderstorm complex, which formed in the northern interior of Quebec produced damaging golfball sized hail as it swept over the remote community of Nain on the northern

Labrador Coast, a community that normaly experiences only a couple of thunderstorms per year.

Torrential Raln

Two extreme rainfall events occurred during the decade which vie for the record of the most rain from thunderstorms in Canada. Near Parkman, Saskatchewan, an estimated rainfall of 380 mm fell in less than 24 hours from August 3 to 4, 1985. However, on July 20th, 1989 the Parkman storm was eclipsed by a torrential rainfall in Essex County near Harrow, Ontario, during which an estimated maximum of 450 mm of rain caused widespread floods, and property and crop losses which are still being counted. For the sake of comparison, the greatest 24 -hour rainfall ever observed in Canada is 480 mm at Ucluelet on the west coast of Vancouver Island.

Storm Frequency

Based on all available historic data, there is no evidence to suggest that severe summer storms were more numerous during the 1980s than previously. Nor were tomado disasters more prevalent. In fact, since the last century, there has been a major killing tomado about once every five years. However, during the 1980s, public interest in such events greatly increased, knowledge of them also increased, and they were more frequently and more widely reported in the media. A larger population and more industrial areas present a bigger and more expensive target for tomado hits. Taking these factors together, the threat represented by tomadoes is perceived to have
grown during the decade, while the actual frequency of storms has not really changed.

Monitoring Storms

In parallel with the increasing threat from severe local storms, Canada's mechanism to monitor them and provide public warnings has also enlarged. Twelve new weather radar stations were inaugurated during the decade, including a state of the ar Doppler radar near King City, Ontario. The volunteer weather watcher network (which was established in Ontario and Manitoba during the late 1970s) was expanded to cover Quebec, the Maritimes, Saskatchewan and Alberta, and now totals approximately five thousand individuals across the country who watch for, and report on, severe thunderstorms. Forty new Weatheradio stations were installed to help broadcast Environment Canada's wamings as quickly as possible.

As we move into the 1990s, plans are underway to install new Doppler weather radars across Canada to further improve the ability to quickly spot developing tornadoes, and also thunderstorm downbursts of the type which have been implicated in causing aircraft crashes. But technology is not the complete answer. It is still up to individual citizens to make sure that they are well informed about the probability of severe storms and their effects; to listen for weather warnings; and to know what actions to take when faced with nature's warning signals of impending severe thunderstorms.

Definitions of various meteorological terms that are sometimes mistakenly used synonymously: The windspeeds given are simple estimations of the maximum possible. Only a very small percentage of all storms actually approach these values.

Cyclone

A storm which rotates counterclockwise in the Northern Hemisphere. In modern usage, this term applies to the large-scale storms (diameters ranging from hundreds to thousands of kilometres) which produce rain, freezing rain or snow, and sometimes gale force or storm force winds with extensive property damage across large regions. Typical maximum windspeed $200 \mathrm{~km} / \mathrm{h}$.

Gale

A strong wind in the Beaufort wind scale, it is defined as a wind whose speed ranges from 51 to $101 \mathrm{~km} / \mathrm{h}$.

Dust Devil

A dry atmosphere vortex of small diameter (metres or a few tens of metres) which is not associated with clouds. Characteristically, it forms over land on very dry days with hot sunshine. The most vigorous types are capable of causing minor proper-
ty damage. Typical maximum windspeed $120 \mathrm{~km} / \mathrm{h}$.

Funnel Cloud

A rotation cloudbase appendage in the shape of a funnel (or rope) which does not reach the ground. If it reaches the ground it is called a tornado (or in some circumstances, a waterspout). By definition, a funnel cloud does not cause any damage.

Waterspout

An intensely whirling funnel - shaped vortex which extends from cumulus-type cloud to a water surface. Its behaviour is characterized by a tendency to dissipate upon reaching shore. It looks like, but is not, a tornado and can be easily confused with a real tornado which happens to be crossing a body of water. Waterspouts form in different meteorological circumstances than tomadoes and usually
cause little damage. Typical maximum windspeed $150 \mathrm{~km} / \mathrm{h}$.

Tornado

(Sometimes called a twister) - An intense rotary storm of small diameter (tens or hundreds of metres) characterized by at least one vortex reaching the earth's surface from a thunderstorm. The vortex may be either visible as a funnel cloud, or invisible, but in either case damage results at the earth's surface in a long narrow track. Typical maximum windspeed $500 \mathrm{~km} / \mathrm{h}$.

Hurricane

A rotating tropical storm with a diameter of hundreds of kilometres that originates over warm oceans near the equator. Typically, the winds spiral inwards towards the hurricane "eye" and can cause wide spread property damage at more southerly latitudes. Typical maximum windspeed $320 \mathrm{~km} / \mathrm{h}$.

The hatched shaded areas, show where one tomado can be expected on average every two years per 10,000 square kilometres (100 km by 100 km), while in the dotted shaded areas at least one tomado on average can be expected to touch down every year.

