Environnement Environment Canada

Monthly Review

D

Canada

JULY - 1990

Perspec

Climatic

Vol. 12

CLIMATIC HIGHLIGHTS

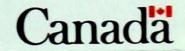
A brief spell of heavy rainfall in British Columbia, Alberta and Saskatchewan, which, in the end, alleviated the relatively low soil moisture problems across the southern agricultural areas of the Prairies; and record warm temperatures which stoked numerous forest fires across British Columbia, the Yukon and the Northwest Territories highlighted July's weather across Western Canada

Heavy rainfall and severe weather occurred during the first few days of July across British Columbia and the southern halves of Alberta and Saskatchewan - a carryover from late June. During the first week of the month, thundershowers at Kelowna, B.C. dumped 33.8 mm of rain during a 24 hour period, the greatest 24 hour total for any month. Soda Creek, B.C., received golf-ball size hail, which stripped the leaves off Aspen trees, damaged the Douglas Firs and uprooted many large trees. In the Okanagan area, there was widespread damage to the cherry crop, and hay bales were water-logged. On the 2nd, Edmonton, Alta. received 110 mm of rain in a 24 hour period, 10 mm short of the record set in 1953. In the areas surrounding Edmonton over 150 mm of rain was recorded, overloading the sewer systems, subsequently dumping 15 million litres of raw sewage and 300 million

downpours from thunderstorms yielded greater available soil moisture across the Prairies during the 1990 growing season for this time of year as compared to the last two years. Significant soil moisture improvements were observed across the southeast corner of Saskatchewan, and along the northern stretch of the border between Alberta and Saskatchewan from Cold Lake to Vegreville, Alta., and Biggar, Sask.

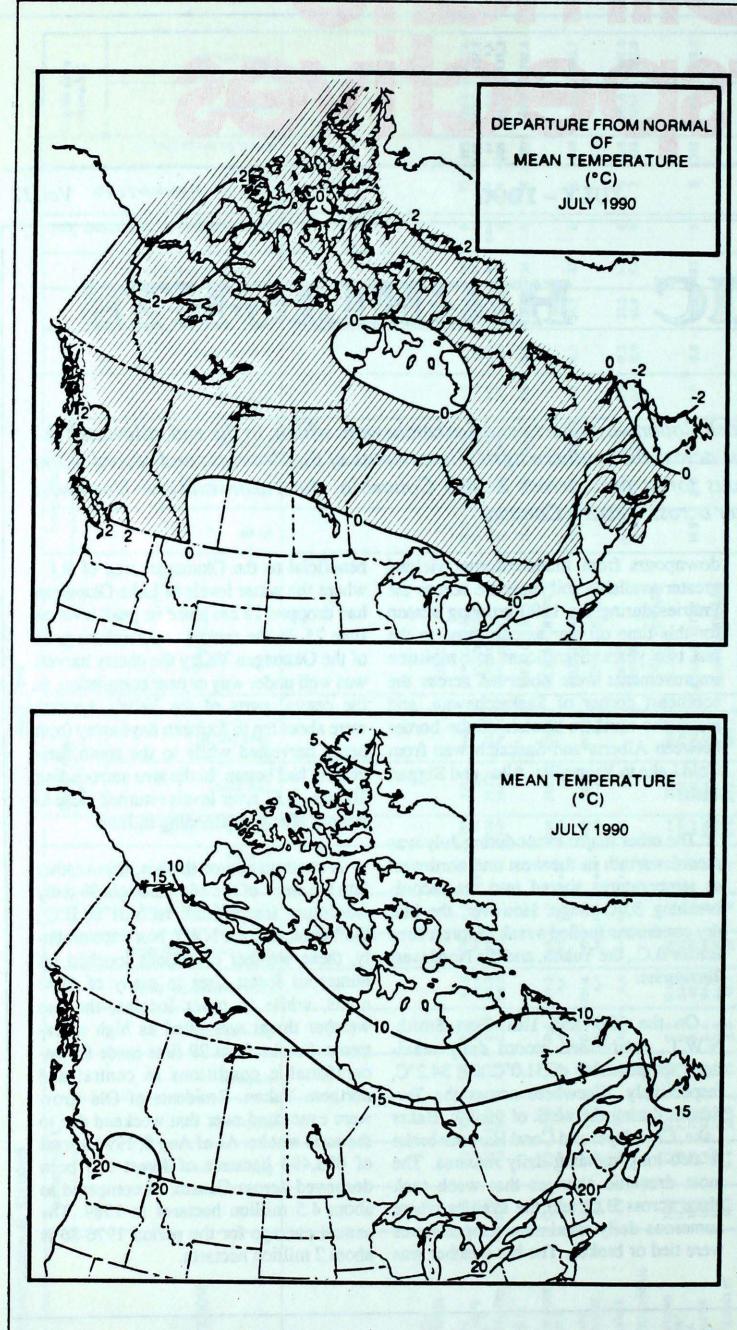
The other major event during July was record warmth in the west and northwest as temperatures soared into the recordbreaking 30°C range. However, the hot, dry conditions fuelled a rash of forest fires across B.C., the Yukon, and the Northwest Territories.

On the 10th and 11th, Fort Smith, N.W.T., established record daily maxi-


beneficial to the Okanagan area of B.C., where the water levels of Lake Okanagan had dropped 12 cm since its peak level on June 25. In the central and southern parts of the Okanagan Valley the cherry harvest was well under way or near completion. In the central parts of the Valley, apricots were about ten to fourteen days away from being harvested while to the south, harvesting had begun. In the area surrounding Terrace, B.C. river levels returned close to normal after near flooding in June.

A continuation of the hot, dry weather into the week of the 16th, brought 39 daily maximum temperature records in B.C., the Yukon, and the NWT. Not uncommonly, these weather conditions touched off numerous forest fires in many of these areas, while in other locales, the fire weather threat was rated as high to extreme. Smoke from 29 fires made for uncomfortable conditions in central and northern Yukon. Residents of Old Crow were evacuated over that weekend due to the acrid smoke. As of Aug 8, 1990, a total of 493,494 hectares of forest had been destroyed across Canada as compared to about 4.5 million hectares in 1989. The annual average for the period 1976-86 is about 2 million hectares.

litres of storm water into the North Saskatchewan River. The floodwaters also caused extensive damage to roads, bridges and farmland. Weyburn, Sask. was flooded on the 2nd when 80 mm of rain fell in 45 minutes, with a 24 hour total of 120mm.


For the remainder of the month,

mum temperatures of 31.0°C and 34.2°C, respectively. Elsewhere across the Territories during the week of the 9th, Baker Lake, Cape Dyer and Coral Harbour broke or tied long standing daily maxima. The most dramatic changes that week took place across B.C. and the Prairies where numerous daily maximum temperartures were tied or broken. The hot weather was

Climatic Perspectives

Vol. 12 - July 1990

page 2

Across the country

Yukon and Northwest Territories

Central and northern Yukon started the month warm and dry while the south was cooler and showery. Forest fires plagued the northern areas, particularly the community of Old Crow. Except for Klondike, all stations recorded mean monthly temperatures near or above normal. To the north, temperatures were 2 to 3 degrees above normal as was the Ross River area. Most stations experienced record-breaking temperatures around the 20th, but by the 25th, daily maxima had dipped well below normal. The hot spots were Mayo, on the 21st, along with Carmacks and Stewart Crossing on the 22nd, all recording 32°C. The cold spots were Beaver Creek and Drury Creek with morning temperatures of minus 3°C on the 9th and 1lth respectively. The wettest areas were the Dempster Highway with over 150% of the monthly normal and the heaviest rains fell at Ogilvie with 100.2 mm for the month, with one record-breaking downpour of 42.5 mm in a 24 hour period.

Across the Northwest Territories, temperatures were near to above normal except for the Keewatin district which was slightly below normal. The northwestern corner of the Mackenzie District recorded temperatures in excess of 2 degrees above the monthly normal. Mean daily temperatures of 18.4°C and 18.5°C were near 1 to 1.5 degrees higher than many centres in southern and central Alberta. Precipitation amounts were in excess of 100 mm at Chesterfield and Coral Harbour, with over 200% of the normal monthly amounts, while Yellowknife exceeded the 200% mark this month as well.

British Columbia

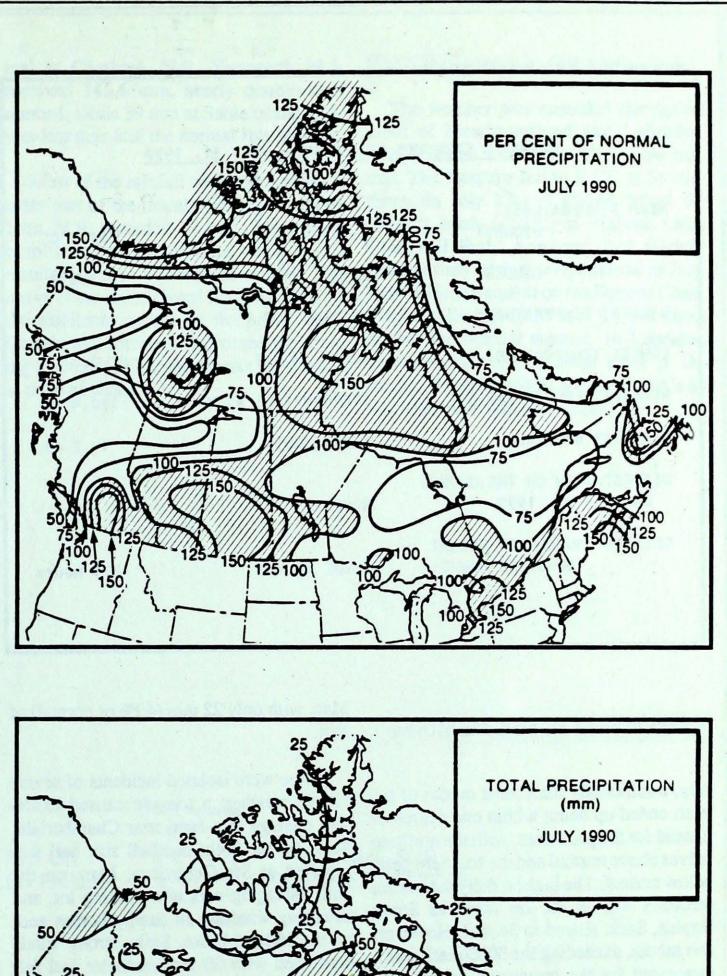
Sunny, hot, dry weather dominated the province resulting in concerns over high to extreme forest fire hazards. Temperatures July 1990 - Vol. 12

Climatic Perspectives

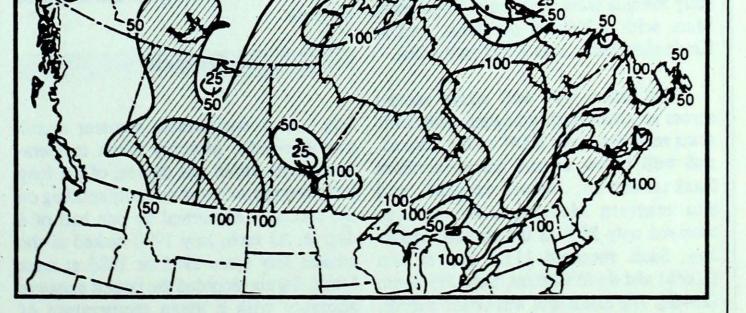
page 3

were above normal across the province with the area surrounding Terrace recording temperatures of about 1.5 to 2.5 degrees above normal. Record high mean monthly temperatures were reported at Sooke, Cape Scott, Cape St. James and Prince Rupert.

Precipitation was generally below normal except above normal in the northwestern corner while in the southern interior, local heavy thundershowers early in the month gave Kamloops 322% of the monthly normal. A number of reports of severe weather accompanied by flash flooding occurred in the Kamloops and Prince George areas. Kamloops reported a record high 72.5 mm for the month while Cape St. James reported a record low of 6.6 mm of rain, 11% of the monthly normal.


Alberta

Average daily temperatures for the month were about one degree above normal for most of the province except the southwestern parts were about one degree below normal. All localities recorded extreme maximum daily temperatures of at least 30°C. The highest daily maximum was 35.7°C at Medicine Hat on the 12th. During the month, Medicine Hat reported 10 days with temperatures of at least 30°C


Except for High Level, which experienced two heavy rainfall events, total precipitation was below normal across the northern two-thirds of the province. Of the 81.0 mm recorded at High level this

at

1

month, 28.8 mm fell on the 12th and 31.6 mm fell on the 31st. Fort McMurray was the driest across the north with only 18.8 mm of rain, about 25% of the monthly normal. The heaviest rainfalls occurred across central Alberta with amounts in excess of 100 mm. Total rainfall in the Edmonton area was in excess of 136 mm with 151.6 mm recorded at Edmonton Municipal airport. The 112.0 mm recorded at the Municipal airport during the 2nd and 3rd was the second greatest two day total since records began in 1937.

page 4

Climatic Perspectives

Vol. 12 - July 1990

CLINATIC EXTREMES	IN CANADA - JULY 31, 1990	
		了 想了 (1)
MEAN TEMPERATURE:		
HIGHEST	LYTTON, B.C.	22.6°C
COLDEST	ALERT, NWT	3.8°C
HIGHEST TEMPERATURE:	LYTTON, B.C.	39.9°C
LOWEST TEMPERATURE:	ALERT, N.W.T.	-3.0°C
HEAVIEST PRECIPITATION:	STEPHENVILLE A, NFLD.	190.4 mm
HEAVIEST SNOWFALL:	ALERT, NWT.	14.2 cm
DEEPEST SNOW ON THE GROUND		
ON JULY 31, 1990	NONE	
GREATEST NUMBER OF BRIGHT		
SUNSHINE HOURS:	CLYDE A, NWT	379 hour:

Saskatchewan and Manitoba

July, traditionally the hottest month of the year, ended up being within one degree of normal for the provinces, with the northern halves above normal and the southern parts below normal. The highest daily maximum recorded was in the far north as Stony Rapids, Sask. soared to 34.4°C. However, this month, exceeding the 30°C mark was a rare event for the provinces. Record low daily minima were reported at Thompson, Man. with 2.2°C on the 10th, and at Kindersley, Sask. with 3.7°C on the 21st. Man. with only 22 mm (40% of normal) of rain.

There were isolated incidents of severe Prairie weather: a tornado caused extensive damage to a farm near Chamberlain, Sask. on the 26th; baseball size hail was reported at Ste Genevieve, Man. on the 2nd, damaging cars in a parking lot, and smashing windows in nearby homes and; on the 16th, at Dilke, Sask., strong winds combined with 20 mm diameter hail fell for ten minutes, creating hail drifts up to 30 cm deep. 19.9°C, which was one degree below normal for their coolest July since 1979. On the other hand, Moosonee's 16.9°C mean was their warmest since 1981.

In contrast to recent July's, the number of hot days (temperatures above 30°C) was markedly less this July than the recent hot July's of 1987 and 1988. In Toronto for example, there were only 3 days this July with an afternoon temperature reading of above 30°C. In contrast, Toronto endured 14 such hot days in July 1987, and eleven in July 1988. Given that the usual number based on past records is five, July 1990 was actually a return to a more typical summer pattern.

The month was also a near normal month for rainfall across most of Ontario despite the fact that 3 of the 4 July weekends were rather soggy. Northern Ontario was near to slightly drier than normal, as total July precipitation ranged from 60 to 90 millimetres. Pickle Lake's 33 mm proved to be the driest location in the province as well as being their driest since 1940. A major exception in the north was the corridor from Wawa to Timmins where record one-day torrential rains of 90 mm pushed their July totals to as high as 174 mm at Timmins - the wettest July since 1968.

Quebec

Pleasant summer-like temperatures under abundant sunshine characterized July's weather in Quebec. Temperatures were above normal except near the south shores of Montreal, the Gaspe Peninsula, Baie-Comeau and extreme northern Quebec. The readings ranged from 1.0°C above

Precipitation was well above normal across southern Saskatchewan, with some areas receiving over 200% of the normal, and well below normal across northern Saskatchewan, west central and southeastern Manitoba. Some areas received only 50% of the normal. Moose Jaw, Sask. received 111.2 mm of rain (208%) and Swift Current, Sask 109.8 mm (234%). The driest spot was Grand Rapids, Ontario

normal at Matagami to 1.3°C below normal at Inukjuak.

July was a comfortable summer month province-wide. Monthly mean temperatures were within one degree, of the long term average, with the majority residing on the cool side of normal by one half of a degree. As such, July 1990 ranked as the coolest July since 1985 or 1986 at most locals. Sarnia recorded the largest negative anomaly with a mean temperature of G

Precipitation remained near to below normal, except in the area from Ottawa/Hull to Sherbrooke, over Quebec City, Val d'or and Schefferville regions. At Montreal, 132 mm was nearly 150% of normal. Inukjuak received nearly 99 mm of rain (182% of normal). Record amounts for July, 101.4 mm, of rain fell at La Grande Riviere erasing the old record set July 1990 - Vol. 12

Climatic Perspectives

page 5

in 1978. A few snowflakes fell over northern Quebec during the month with Injukjuak receiving the most, -3.8 cm.

Maritimes

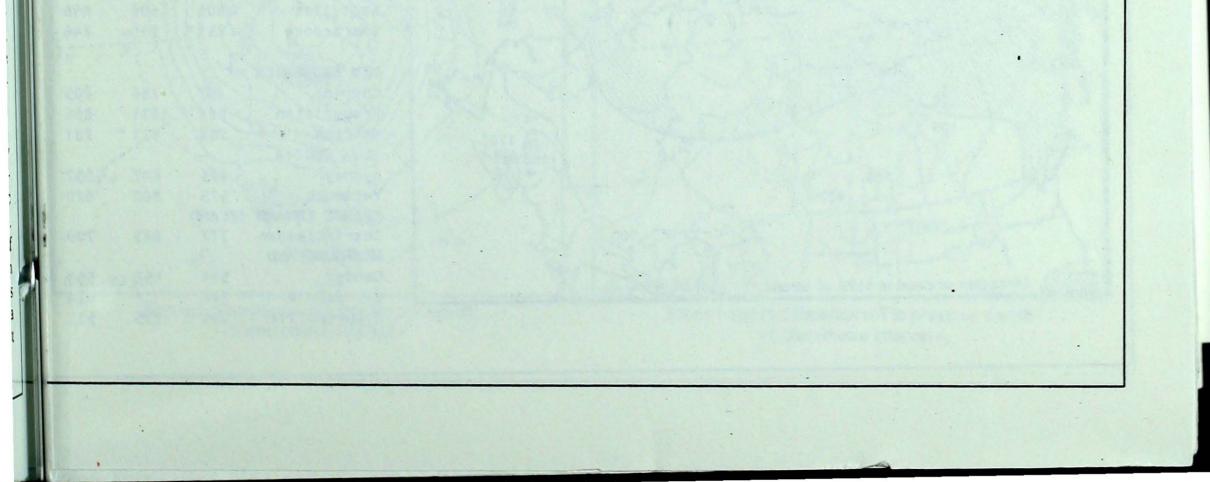
Warm temperatures and ample rainfall highlighted July's weather across the Maritimes. Temperatures were generally above normal. Shearwater's departure of 1.6°C proved to be the highest July reading in the Halifax-Dartmouth area since 1952. A wide range of precipitation totals were reported. The values ranged from 71% of normal at Moncton, N.B. to 168% of normal at Chatham, N.B. Yarmouth, N.S. received 145.6 mm, nearly double their normal, while 39 mm at Sable Island, N.S. was less than half the normal July amount.

Most of the rainfall occurred during the latter part of the month. On July 25, Saint John, N.B. recorded 79 mm, this amount combined with previous daily totals resulted in over 105 mm of rainfall. The heavy rains caused local flooding. Despite the problems caused by the heavy rains, farmers and foresters welcomed the soaking as crops, fields and forests were much in need of water.

Newfoundland and Labrador

The weather was unsettled throughout most of Newfoundland and Labrador. Temperatures were 1° to 2°C below normal. The mercury fell to 0.3°C at St. Anthony on July 13 and dipped below the freezing mark (-0.2°C) at Wabush Lake. Churchill Falls, however, had slightly warmer than normal temperatures in July. Rainfall was frequent on the Eastern Coast. Stephenville had 190.4 mm of rain, about double the normal amount. In Labrador, rainshowers were common early in the month. Goose Bay's 91 mm and Nain's 86 mm were near normal amounts.

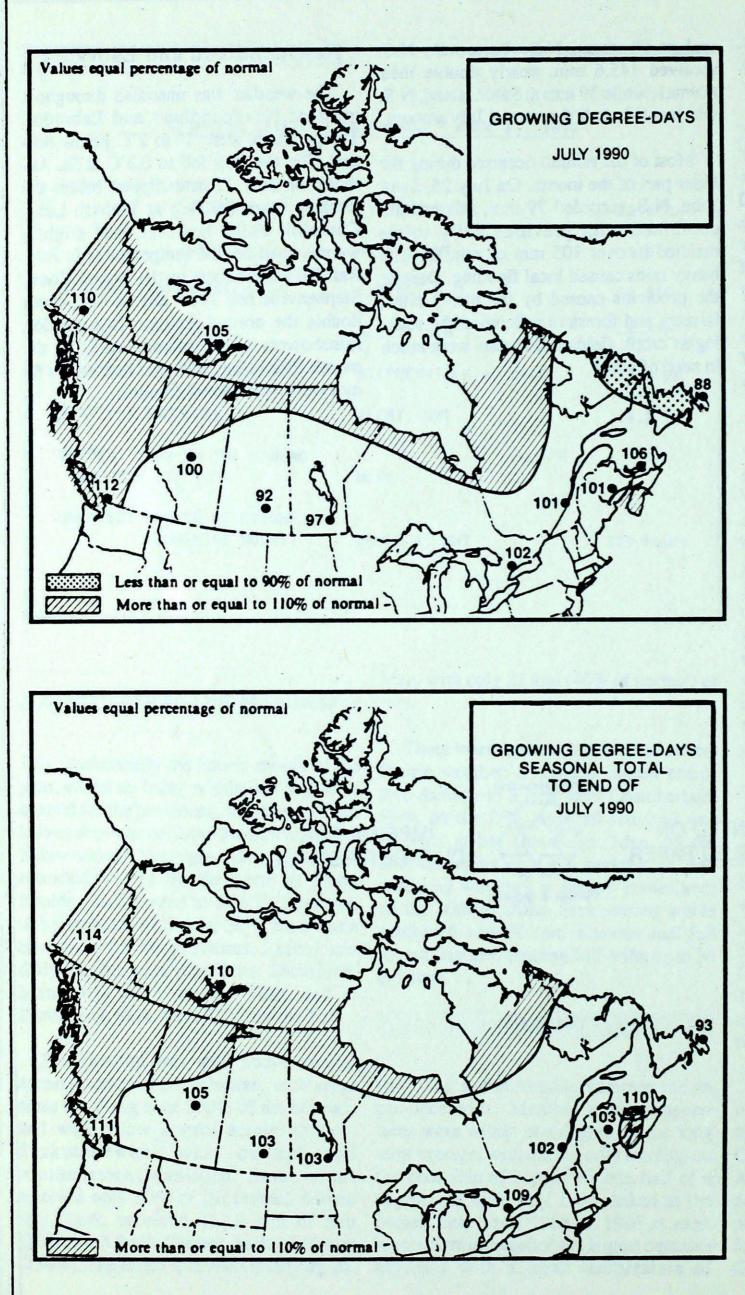
Think recycling



PRINTED ON

RECYCLED PAPER

IMPRIMÉ SUR DU PAPIER RECYCLÉ


Pensez à recycler

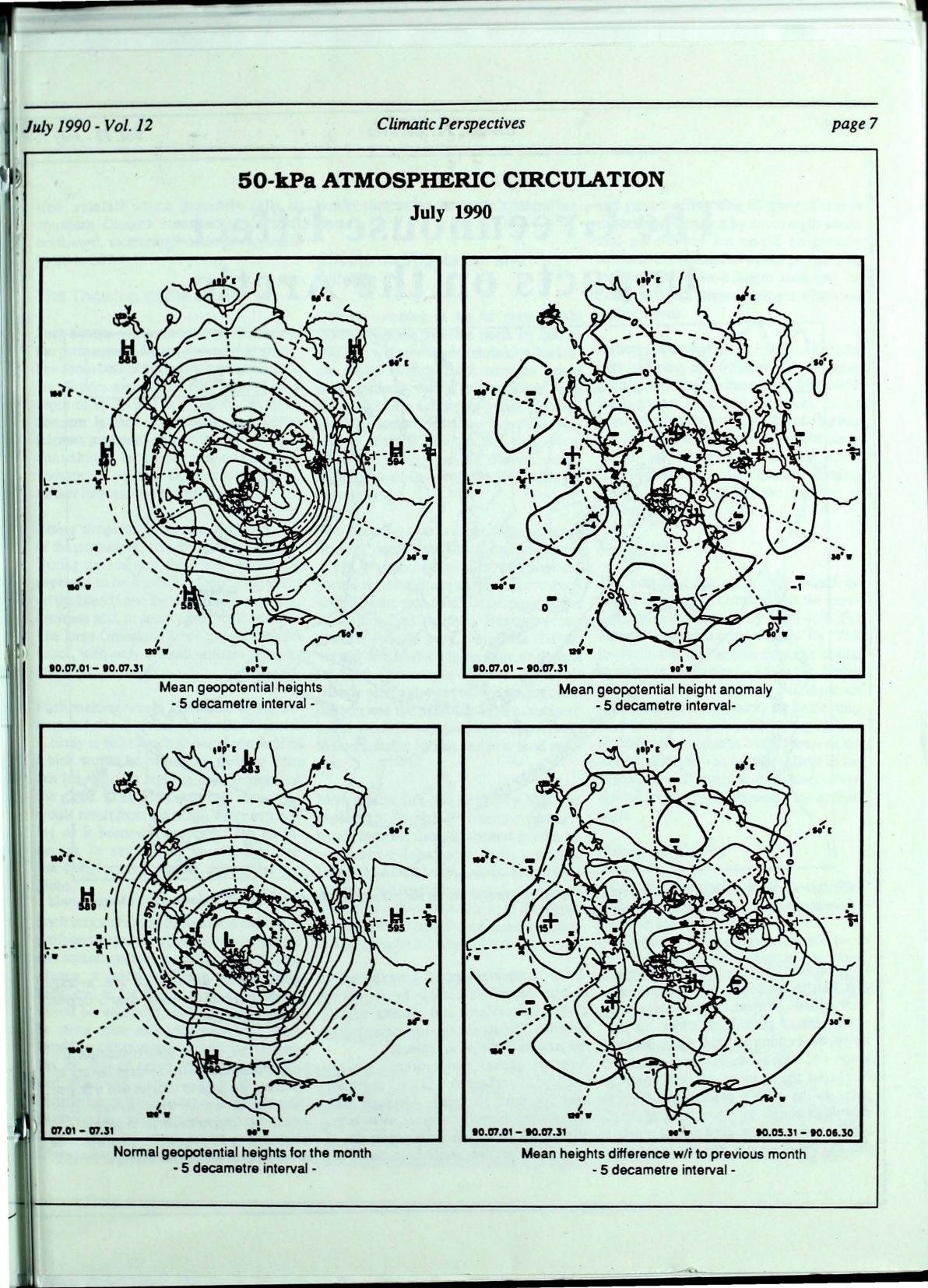
page 6

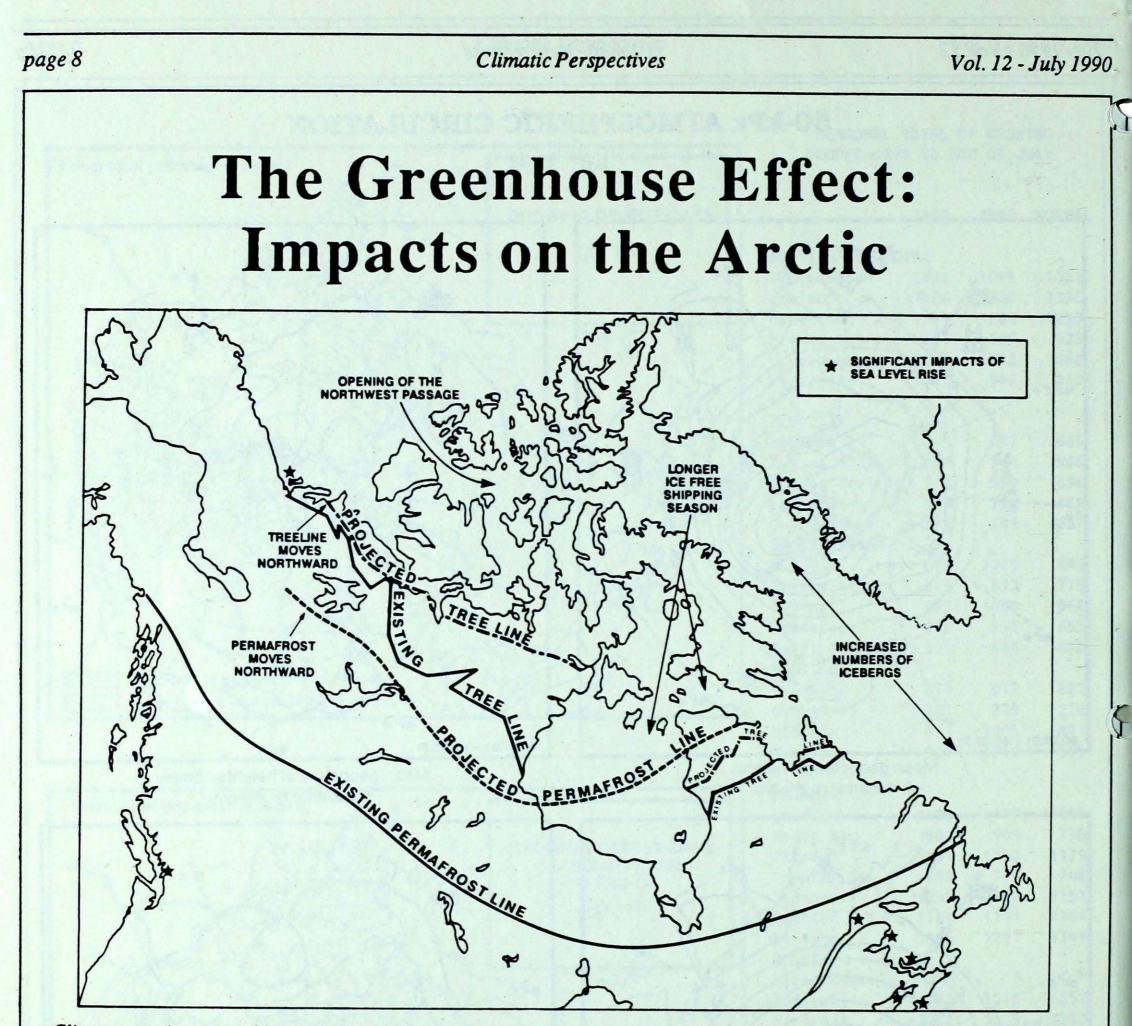
Climatic Perspectives

Vol. 12 - July 1990

DEGREE-DATS	5 10 EF		The search
	1990	1989	NORMAL
	.,,,,,		INDICALE
BRITISH COLUMB	IA		
Abbotsford	1258	1065	1051
Kamloops	1406	1330	1336
Penticton	1339	1263	1257
Prince George	701	660	623
Vancouver	1183	1052	1068
Victoria	1061	947	982
ALBERTA			
Calgary	695	647	689
Edmonton Mun.	842	744	806
Grande Prairie	767	679	696
Lethbridge	807	732	862
Peace River	774	849	687
SASKATCHEWAN			
Estevan	897	1061	943
Prince Albert	849	892	775
Regina	893	1028	868
Saskatoon	885	951	855
Swift Current	808	884	818
MANITOBA			
Brandon	874	977	882
Churchill	261	323	216
Dauphin	831	1005	811
Winnipeg	911	1066	885
ONTADIO			
ONTARIO London	1181	1107	1155
North Bay	802	969	795
Ottawa	1251	1160	1179
Thunder Bay	738	775	748
Toronto	1251	1117	1151
Trenton	1169	1141	1164
Windsor	1405	1291	1349
QUEBEC			
Baie Comeau		*	*
Maniwaki	860	1013	852
Montréal	1222	1235	1210
Quebec	1012	1023	995
Sept-Iles	506	606	496

SEASONAL TOTAL OF GROWING DEGREE-DAYS TO END OF JULY


NEW BRUNSWICK			
Charlo	747	766	705
Fredericton	828	1011	806
Moncton	788	921	731
NOVA SCOTIA			
Sydney	696	647	652
Yarmouth	675	800	620
PRINCE EDWARD	ISLAND		
Charlottetown	777	883	709
NEWFOUNDLAND			
Gander	544	457	559
St. John's	394	*	424
Stephenville	549	735	522


751

Sherbrooke

995

746

Climate warming, caused by the greenhouse effect, is expected to be the greatest in the earth's polar regions. Such change would have profound impacts on the northern way of life.

Over the next 50 years, scientists anticipate that human activities will substantially alter global climate, by enhancing the earth's natural greenhouse effect. Air pollution, the burning of fossil fuels, deforestation, and even agricultural practices have increased the amount of heat-trapping gases in the earth's atmosphere. Carbon dioxide produced by the burning of fossil fuels, is the greatest concern, as world's demand for energy is steadily increasing.

These "greenhouse gases" are expected to change the earth's climate by increasing global temperatures and altering rainfall patterns. Climate change is expected to be the greatest in the polar regions.

Average global temperatures are anticipated to increase by 1.5 to 4.5 degrees C over the next 50 years. Although such temperature increases may not seem large, on a global scale even a one degree rise in average temperature could have major impacts. During the last ice age, average global temperatures were only 5 degrees cooler than today.

In the Arctic, the warming is anticipated to be less than the global average during the summer - perhaps as little as half a degree. However, during the winter a dramatic in crease in temperature is expected - as much as 8 to 10 degrees C. This would be at least twice the global average. In addiJuly 1990 - Vol. 12

Climatic Perspectives

page 9

tion, rainfall which presently falls in southern Canada is expected to shift northward, increasing Arctic precipitation by 20 to 30%.

The Thawing of the North

Such a major warming would melt much of the permanently frozen ground that underlies about half of Canada's land surface. In the Arctic, permafrost may extend to a depth of up to 300 m (1000 ft). A major concern is that as it melts, permafrost releases methane - one of the gases which contributes to global warming. Thus widespread melting of permafrost could further increase the greenhouse effect.

Rising temperatures would also melt part of the permanently frozen northern oceans. During the summer, the Arctic Islands are expected to be ice-free. Mountain glaciers on the islands and the mainland would also decrease and, in some cases, melt entirely. The large Greenland Icecap would remain intact, with only a small amount of melting.

Such melting would contribute to the anticipated rise in global sea levels. This rise is likely to be as much as one metre, half of which would be caused by melting from sea ice, glaciers and ice caps throughout the globe. (The additional half metre rise would result from the ocean water expanding as it becomes warmer.) Such an increase in sea levels would threaten low-lying coastal regions throughout the globe.

Such major changes in climate would have

tion by eliminating the Arctic's natural barriers.

Effects on Vegetation and Wildlife

Climate warming in the far north would slowly shift the tree-line north by 200 to 300 km, with the tundra shrinking back to the Arctic Islands. Such changes would occur gradually over a long period of time, but would have a major effect on northern wildlife. Some species are expected to be able to adapt to changes in their habitat. Others, however, would decline - particularly those dependent on the tundra for survival.

The Arctic tundra is essentially a frozen desert - one of the driest regions in the world. Warmer, wet winters, which are expected as the climate changes, have been shown in the past to decimate populations of caribou and muskox. Heavier winter snowfall would bury the sparse Tundra vegetation on which these animals depend for food. Open water between the Arctic Islands would also cut off the migration of caribou and the movements of other landbased wildlife, reducing their opportunity to find suitable habitat and new food sources.

Most marine life and migratory birds are expected to flourish. Warmer temperatures would increase fish populations in both inland lakes and the ocean. Seals, walruses, beluga bowhead whales would increase in numbers and spread northward. Polar bears are also expected to survive as they have already demonstrated considerable ability to adapt to a broad range of habitats. and greater safety. The shipping season is expected to lengthen by six to eight weeks and permanent ice could be greatly reduced. Such benefits would probably be tempered by other changes including increase in ocean storms, stronger winds and higher waves.

Icebergs, a hazard in the eastern Arctic for both shipping and offshore oil platforms, are also expected to increase in frequency. Icebergs are produced as pieces of ice break off glaciers which are advancing into the sea. Increasing snowfall would cause the glaciers on Greenland and the Arctic Islands to advance more quickly, creating significant increase in the number of icebergs.

Agriculture

The potential for agriculture would increase in a warmer climate, with the growing season lengthening by 30 to 40%. For example, growing conditions for Yellowknife and Whitehorse would be similar to those in Edmonton - 1,000 km further south. Yet most of the north would remain unsuitable for agriculture, as Arctic soils tend to be poor and infertile. Agriculture could become viable in limited areas on the Arctic mainland - in certain valleys of the Mackenzie District and Yukon. Even limited local agriculture would lower food costs.

Fishing and Hunting

Although most marine life and migratory birds should increase in numbers, their distribution and migratory patterns may alter in response to changed environmental conditions. Settlements chosen for their proximity to hunting or fishing grounds may no longer be well located for these activities.

profound impacts on both human activities and natural systems in the far north. At first glance, a warmer climate might seem beneficial to the Arctic - living conditions would be improved, and the north would be more open and accessible. Yet there would be negative effects as well, including the loss of those very characteristics that make the Arctic unique. The harsh climate has helped to isolate the far north, preserving its wildlife and allowing its native peoples and their culture to endure. Climate warming is likely to end this isola-

Impacts on Society and the Economy

Shipping and Offshore Oil Drilling

Sea ice and extreme winter cold have been traditional obstacles to northern shipping and the development of offshore oil resources. Reduced sea ice would mean less damage to ships and oil rigs, resulting in decreased design and construction costs

Building on melting permafrost

The anticipated widespread melting of permafrost would damage roads, buildings, power lines and pipelines which are now resting on permanently frozen ground. Over much of the Arctic, existing struc-

Climatic Perspectives

page 10

tures would have to be reinforced to withstand the anticipated seasonal freezing and thawing, much like structures further south. Construction costs for new developments will increase accordingly.

Opening of the Northwest Passage

The melting of permanent sea ice between the Arctic Islands would open the Northwest Passage. This long-sought passage - the quickest route from Europe to Japan - would become a viable shipping route during the summer months. This would have implications for Canada's sovereignty over the Arctic as the north would draw increased interest from foreign nations for scientific, military and commercial purposes.

Increased Accessibility and Development

Warming in the Arctic would reduce the harsh living conditions and open new shipping lanes, leading to increased development in the north. The Arctic's natural resources, including its minerals, forests and sea ports, would be more easily utilized. Large reserves of oil natural gas, lead, zinc and iron ore have already been discovered in the Arctic. Shipping and tourism would increase. Commercial fishing could become viable. Settlement would expand and spread northward among the Arctic Islands.

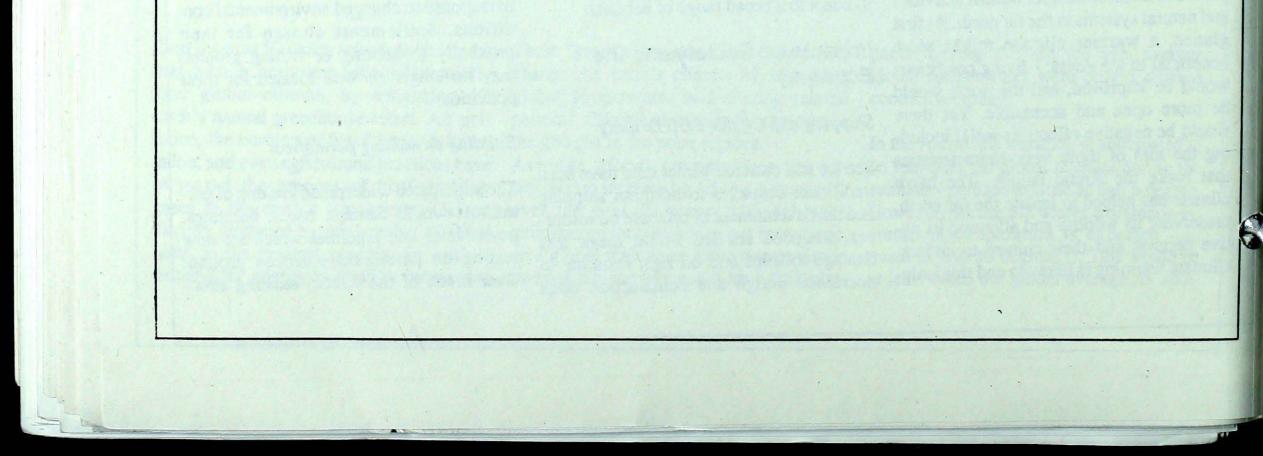
Impacts on the native people would be mixed as increased economic activity would bring increased and more diverse employment opportunity, but also greater pressure on traditional cultures and environmental values.

How certain is climate warming?

Scientists from around the world agree that significant climate warming now appears "inevitable". However, many uncertainties still remain about the timing and magnitude of this warming, and the specific regional impacts. Nevertheless, scientists strongly recommend that the probability of major change in climate be considered in the planning of future development, especially for large projects with anticipated life-spans of several decades. This is particularly important in the Arctic, as climate is a significant factor in virtually every northern activity.

Environment Canada's Role

We have only begun to understand the complexities of the earth's atmosphere and how it is being changed by human activities. Environment Canada is striving to learn more about global warming and its impact on the Arctic. Our Canadian Climate Program combines the efforts of governments and universities to further our understanding of this complex issue.


Many scientists feel the first evidence of global warming will be found in the Arctic, as climate change is expected to be greatest in the earth's polar regions. Environment Canada is well prepared to detect such a change. For decades, we have maintained a network of weather monitoring stations in the Arctic to keep tabs on current weather conditions. We also monitor sea ice conditions and the state of ocean waves. Such information is necessary for accurate weather forecasts and to ensure the safety of shipping lanes and offshore oil rigs. These records have already contributed to our understanding of Arctic climate, and will continue to be important in the future detection of global change.

Environment Canada also monitors the gradual increase of gases contributing to the greenhouse effect. We operate the world's most northerly research station an air pollution measuring lab at Alert, in the northern tip of Ellesmere Island.

Canada is also working to reduce climate warming. Steps have already been taken to reduce CFCs (chlorofluorocarbons), industrial chemicals which threaten the ozone layer and are a major contributor to climate warming. Our nation played a key role in the development of the Montreal Protocol, an international agreement to reduce CFCs by 50% by 1999. The use of the most damaging CFCs has already decreased, and international action is underway to strengthen the Montreal Protocol and encourage further reductions.

In addition, Canada is studying ways reduce carbon dioxide, the most serious of the greenhouse gases. As the global increase in CO₂ had been produced primarily by the burning of fossil fuels, Canada is considering ways to reduce our energy use, through conservation and improved efficiency.

Vol. 12 - July 1990

	Tem	peratur	e C		1		1			2		Ī	JUL	Y 1990	Tem	peratur	e C			-				ore			-	July 1990
STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or mor	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or mo	Bright Sunshine (hours)	Z of Normal Bright Sunshine	Degree Days below 18 C	- Vol. 12
ITISH LUMBIA BOTSFORD A ERT BAY IPHITRITE POINT UE RIVER A PE ST JAMES PE SCOTT STLEGAR A MOX A ANBROOK A ASE LAKE RT NELSON A RT ST JOHN A PE A MLOOPS A LOWNA A TON CKENZIE A NTICTON A RT ALBERNI A RT ALBERNI A RT ALBERNI A INCE GEORGE A INCE RUPERT A INCE GEORGE A INCE RUPERT A INCE SORGE A NDSPIT A ITHERS A RRACE A NCOUVER INT'L A TORIA INT'L A TORIA INT'L A	19.5 15.1 15.1 15.1 17.6 14.5 14.6 20.9 18.9 19.3 14.0 18.1 16.7 20.5 22.6 16.2 21.7 19.1 15.0 16.5 14.2 19.2 19.6 15.7 16.2 18.7 18.7 18.7 16.5 15.8 16.5	$\begin{array}{c} 2.5\\ 1.1\\ 1.2\\ 1.1\\ 1.8\\ 1.6\\ 0.8\\ 1.5\\ 1.0\\ 1.5\\ 1.0\\ 1.5\\ 1.0\\ 1.5\\ 1.1\\ 1.9\\ 1.0\\ 1.5\\ 1.4\\ 1.4\\ 1.5\\ 1.4\\ 1.5\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.8\\ 1.1\\ 1.5\\ 1.8\\ 1.1\\ 1.5\\ 1.8\\ 1.1\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.5\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6$	33.4 25.2 22.6 32.2 20.7 19.7 35.8 30.8 33.6 28.8 32.9 30.4 35.0 37.8 34.7 39.9 32.1 37.5 35.7 25.2 31.3 26.0 37.5 31.9 24.2 23.6 32.9 29.7 32.4 28.6 33.9	7.4 8.0 10.1 2.5 10.4 10.3 8.6 9.0 7.2 0.7 6.3 7.2 8.6 10.0 7.6 10.7 1.3 6.6 7.3 7.7 3.2 7.2 3.7 6.4 8.8 8.7 7.3 11.9 8.3 7.2 5.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	**** ***** 0 *** ** *** **** ****	15.8 31.7 61.9 23.1 38.6 38.5 72.5 42.4 13.7 28.2 25.4 10.9 15.2 31.0 49.2 40.7 36.8 16.4 29.0 16.8 10.8 10.8	57 119 112 27 50 104 322 155 151 46 120 39 52 44 181 67 38 63 30	0000 00000 0 000 00 000 0000 000 000	3 1 9 2 4 7 3 7 10 5 6 3 9 4 3 7 6 2 3 9 8 8 7 4 6 2 3 2 2 2 2 2 2 2 2 2 2 4 7 3 7 10 5 6 3 9 4 3 7 6 2 9 4 7 3 7 2 2 2 2 9 2 2 2 2 9 2 2 2 2 9 4 7 3 7 7 9 2 2 2 9 4 7 2 9 4 7 2 9 4 7 2 9 4 7 2 9 4 7 2 9 4 7 2 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 4 7 7 9 7 9	318 * 266 272 * 310 364 302 274 362 355 290 345 317 261 330 304 338 256 336 232 328 276 272 304 319 340 349 * 323	109 * 109 * 98 * 91 138 * 112 109 102 88 122 98 * 129 115 163 * 103 145 125 182 111 106 * 104	12.7 90.7 91.7 *.* 108.6 104.4 7.2 14.3 27.3 124.8 32.0 64.3 11.9 7.9 7.2 5.4 68.5 5.4 15.3 91.7 63.8 115.8 *.* 15.7 74.9 73.9 28.2 12.6 29.9 79.2 65.8	YUKON TERRITORY DAWSON A MAYO A WATSON LAKE A WHITEHORSE A NORTHWEST TERRITORIES ALERT BAKER LAKE A CAMBRIDGE BAY A CAPE PARRY A COPPERMINE A COPPERMINE A CORAL HARBOUR A EUREKA FORT SMITH A IOALUIT HALL BEACH A HAY RIVER A INUVIK A MOULD BAY A NORMAN WELLS A POND INLE T A RESOLUTE A YELLOWKNIFE A ALBERTA BANFF CALGARY INT'L A COLD LAKE A CORONATION A	16.4 16.8 16.3 15.0 3.8 10.4 8.5 7.9 6.4 11.4 8.3 5.6 14.3 18.5 17.1 8.2 6.9 16.7 15.5 7.2 18.4 6.7 4.0 16.8 15.7 16.8 15.7 16.4 17.2 17.1 16.4 17.3	$ \begin{array}{c} * 1.6 \\ 1.4 \\ 0.9 \\ 0.2 \\ -0.6 \\ 0.2 \\ 0.3 \\ 1.7 \\ -0.4 \\ 0.2 \\ 0.4 \\ 1.9 \\ 1.1 \\ 0.6 \\ 1.5 \\ 0.9 \\ 1.9 \\ 3.3 \\ 2.1 \\ * -0.1 \\ 0.5 \\ 0.9 \\ -0.2 \\ 0.3 \\ -0.2 \\ 0.6 \\ -0.1 \\ 0.6 \\ -0.1 \\ $	31.3 31.9 30.7 29.8 15.6 29.8 22.4 19.7 30.1 24.4 13.2 29.2 31.7 34.2 29.2 31.7 34.2 29.2 31.7 34.2 29.2 31.7 34.2 29.4 16.3 31.6 18.8 11.1 30.3 31.5 31.2 31.0 32.3 30.7 30.8	$\begin{array}{c} 3.1\\ 3.6\\ 3.6\\ 2.7\\ -3.0\\ 1.2\\ 1.3\\ 0.0\\ -0.2\\ 1.0\\ 0.9\\ 0.0\\ 4.5\\ 5.9\\ 4.6\\ 0.1\\ -0.5\\ 4.6\\ 2.3\\ -0.5\\ 8.7\\ -0.2\\ -1.1\\ 8.2\\ 5.0\\ 4.1\\ 6.1\\ 4.6\\ 5.8\\ 6.3\\ \end{array}$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	*****************	63.8 31.9 46.0 15.7 29.9 77.7 12.6 32.6 30.2 22.6 101.0 7.6 27.0 62.0 31.8 21.8 63.2 23.5 70.2 80.6 83.7 130.6 88.8 149.3 151.6	79 46 153 204 64 192 132 88 247 63 79 132 56 34 121 109 173 153 39 * 104 208 190 128 153 141 163		B 67 13 25 59 57 6 66 59 6 5 13 13 9	201 254 351 379 353 196 288 * 354 351 297 * * 288 288 * 364 321 297 * * 288 230 320 372 254 304 * * 304 * * *	* * 129 110 67 84 115 * 146 111 69 85 * 126 * 147 * * 85 83 111 * 93 80 * 80 88 90 103 104	* * * 61.6 98.8 440.7 237.6 294.2 311.1 359.8 209.3 301.4 385.4 122.1 30.1 67.3 301.2 344.7 41.4 105.8 421.6 27.4 350.0 433.9 59.5 * 69.5 60.5 71.3 69.3 52.7	Climatic Perspectives

	Tem	peratur	e C						F	ore			2.9	1 4 8 4 3	Tem	perotur	e C						F	ore			
STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	Z of Normal Snowfall	Total Precipitation (mm)	Z of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or m	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or m	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C
DMONTON NAMAD A DSON A DRT CHIPEWYAN A DRT MCMURRAY A	16.7 15.3 17.2 17.7	-0.2 0.8 1.1 1.3	29.9 31.6 33.5 35.6	5.8 1.9 4.5 4.9	0.0 0.0 0.0 0.0		136.2 118.4 35.2 18.6	179 110 55 25	000 00	7 9 * 5	304 * 309	* 108 * 108	64.0 93.5 * 57.4	PORTAGE LA PRAIRIE THE PAS A THOMPSON A WINNIPEG INT'L A	19.2 17.7 15.8 19.2	-0.5 0.0 0.5 -0.4	32.2 30.5 31.6 30.8	8.1 7.0 2.2 7.4	0 0 0 0 0.0 0.0	* *	53.6 24.6 61.0 33.2	70 35 63 44	00000	6 9 11 7	* 300 269 333	* 99 106 105	20.7 46.8 90.9 17.9
RANDE PRAIRIE A GH LEVEL A SPER THBRIDGE A EDICINE HAT A ACE RIVER A ED DEER A	16.9 17.3 15.9 17.7 19.6 16.8	1.0 1.3 0.8 -0.9 -0.3 1.1	31.8 30.2 31.3 33.6 35.7 30.7	5.1 3.1 4.0 5.0 6.0 5.9	0.0 0.0 0.0 0.0 0.0		39.5 81.0 70.6 41.3 46.4 23.9	115 40	0000 000	9 16 9 8 6 4	360 350 275 320 352	* 119 * * 101	55.3 54.7 73.7 41.4 26.8 58.3	ONTARIO BIG TROUT LAKE EARLTON A GERALDTON A GORE BAY A	17.0 17.9 17.1 19.0	1.0 0.2 * 0.2	29.9 32.6 30.1 28.9	5.6 5.8 4.2 9.9	0.0 0.0 0.0 0.0		74.4 58.4 64.0 47.4	79 72 * 78	00000	10 10 9, 6	229		67.6 83.0 54.0 12.9
AVE LAKE A HITECOURT A	16.1 14.9 16.8 16.1	0.0 -0.4 1.5 1.0	30.7 29.9 31.9 31.6	4.0 1.9 7.3 4.3	0.0 0.0 0.0 0.0		107.3 125.0 83.8 106.3		000	12 8 9 7	30B	* 105 *	72.0 99.7 56.8 73.7	HAMILTON RBG HAMILTON A KAPUSKASING A KENORA A KINGSTON A	21.7 20.5 17.4 19.1 20.5	0.0 0.6 -0.1 0.4	35.8 33.9 31.2 31.5 29.3	13.4 9.7 3.9 10.9 9.1	0.0 0.0 0.0 0.0 0.0		76.6 77.4 80.3 64.4 47.2	# 110 83 70 79	00000.0	8 7 10 10 7	305 * * 276	* * * 98	* 4.8 57.3 15.5 5.1
ROADVIEW DLLINS BAY REE LAKE STEVAN A JJDSON BAY A	17.0 * 16.2 18.1 *	-0.7 * 0.6 -1.8	31.8 * 30.7 32.4 *	6.8 * 4.6 4.2 *	0.0 * 0.0 0.0	*	100.2 * 60.8 78.0	64	0 * 0 0	13 * 9 8 *	292 * 250 291	87 * 90 82 *	52.6 * 94.4 36.2	LONDON A MOOSONEE MUSKOKA A NORTH BAY A OTTAWA INT'L A PETAWAWA A	20.0 16.9 18.4 18.5 21.4 19.2	-0.3 1.6 0.1 0.2 0.8 0.3	34.6 32.1 30.2 31.3 32.0 31.5	8.8 1.0 5.1 7.0 10.6 5.1	0.0 0.0 0.0 0.0 0.0		144.0 66.5 102.4 127.2 114.3 87.1	199 69 132 124 133 111	000000000000000000000000000000000000000	10 7 8 6 10	264 274 280 297	97 116 * 102 108 *	8.0 81.9 23.9 30.2 2.3 22.9
NDERSLEY A RONGE A EADOW LAKE A OOSE JAW A PAWIN A	17.9 17.2 15.9 18.1 17.1	-0.4 0.6 # -1.6	32.6 31.0 30.7 32.8 29.8	3.7 3.5 4.4 5.5 6.5	0.0 0.0 0.0 0.0 0.0	*	47.2 92.1 107.2 111.2 89.2		00000	10 9 8 9 9	312 * 286 304 297	* * 88	56.8 64.4 77.0 33.9 48.0	PETERBOROUGH A PICKLE LAKE RED LAKE A ST CATHARINES A SARNIA A SAULT STE MARIE A	19.3 17.9 17.5 21.4 19.9 17.0	-0.1 0.8 -0.7 -0.3 -0.8 -0.5	33.1 30.6 29.4 35.0 36.3 29.7	6.6 6.6 5.4 10.7 8.6 5.6	0.0 0.0 0.0 0.0 0.0 0.0		61.2	123 30 144 94 118 66	000000	8 10 9 6 11 6	* 298 290 281 257	* * * 96 89	14.8 45.6 51.5 3.3 11.7 51.0
ORTH BATTLEFORD A RINCE ALBERT A GINA A SSKATOON A WIFT CURRENT A	17.0 17.3 17.8 17.7 17.1	-1.1 -0.1 -1.1 -0.8 -1.2	31.2 31.0 32.6 30.9 31.2	6.0 6.8 6.6 4.8 2.5	0.0 0.0 0.0 0.0 0.0		100.6 104.8 95.8 75.9 109.8	160 180 140	0 0 0 0	10 13 8 8 11	284 298 323	* 96 87 * 94	62.4 53.4 40.3 49.6 54.7	SIOUX LOOKOUT A SUDBURY A THUNDER BAY A TIMMINS A	18.4 18.8 17.3 17.4	0.1 0.1 -0.3 0.2	31.6 30.6 30.6 31.0	7.0 7.0 6.1 4.8	0.0 0.0 0.0 0.0	*	89.5 38.2 91.0 174.2	96 46 121 193	00000	8 5 8 9	260 283	* 90 93 *	34.1 25.8 36.3 52.7
	17.0	-1.3	31.0	6.4	0.0		86.4		0	11	293	89	53.4	TORONTO TORONTO INT'L A TORONTO ISLAND A TRENTON A WATERLOO WELLINGTON WAWA A	22.1 20.9 20.5 20.3 19.4 14.5	0.3 * -0.3 -0.2	35.9 35.4 34.7 31.2 36.0 29.4	14.1 10.7 11.7 8.8 7.7 4.0	0.0 0.0 0.0 0.0 0.0 0.0		69.6 68.4 59.5 68.6 107.3 160.6	* 96 * 113 150 *	0 0 0 0 0 0 0	9 10 7 7 10 7			0.3 3.8 1.8 4.2 12.2 122.5
RANDON A HURCHILL A AUPHIN A ILLAM A IMLI LAND LAKE	17.5 13.2 17.8 16.0 18.4 17.5	-1.3 1.4 -0.7 1.1 *		6.1 3.1 7.3 4.0 8.1	0.0 0.0 0.0 0.0 0.0		67.8 59.0 71.7 84.4 101.3	129 112 93 *	00000	11 12 9 7 11	320 250 303 * 321	* 88 94 * 98	37.2 162.4 43.0 87.5 28.4	WIARTON A WINDSOR A	18.6 21.9	0.1 -0.3	29.7 36.7	8.6 13.1	0.0		-	133 72	0	79	309	105	22.5 1.1
ORWAY HOUSE A	17.5 16.2 17.6	0.3	30.0 33.4 30.1	6.8 4.7 5.5	0.0 0.0 0.0	*	97.3 78.1 31.8	102	000	12 13 6	283	* 101 *	53.5 84.9 48.8		1. 1				r								

40

pa 2

.

066.

	MANIWAKI MATAGAMI A MONT JOLI A MONTREAL INT'L A MONTREAL MIRABEL I/ QUEBEC A ROBERVAL A SCHEFFERVILLE A SEPT-ILES A SHERBROOKE A STE AGATHE DES MONT ST HUBERT A VAL D'OR A NEW BRUNSWICK CHARLD A CHATHAM A FREDERICTON A MONCTON A	STATION
	18.5 15.1 *.* 16.2 17.2 8.6 11.8 10.8 13.4 13.8 18.8 17.5 21.1 19.6 19.2 18.7 13.2 15.5 18.2 17.9 20.6 17.2 18.1 19.3 19.7 19.5 18.2	
	* * * -0.7 0.4 0.3 * 0.5 * 0.2 0.2 * 0.1 0.8 0.6 0.3 0.4 0.3 -0.1 0.1 : 0.3 0.1 0.1 : 0.3 0.4	Difference from Normal
	33.8 28.5 23.0 30.6 30.4 * 31.3 31.0 30.3 32.3 31.3 30.8 29.4 31.0 30.4 31.7 31.4 29.6 32.0 30.2 28.8 31.1 30.4 32.9 33.2 32.0 31.7 29.3	
	6.1 7.6 8.1 1.1 6.1 3.9 4.7 8.0 4.0 4.0 6.5 5.6 4.6 6.4	Minimum
	0.0 0.0 * 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Snowfall (cm)
	*	Z of Normal Snowfall
	108.2 108.1 101.4 66.0 77.4 51.2 132.4 100.8 118.2 91.0 102.4 50.9 117.0 103.8 126.1 123.6 81.0 153.2	Total Precipitation (mm)
	* 68 147 * 101 76 106 52 97 97 94 130 122 82 168 100 71	Z of Normal Precipitation
	0	Snow on ground at end of month (cm)
	10 7 7 11 8 13 12 17 5 11 14 10 11 10 10 9	No. of days with Precip 1.0 mm or more
	* 157 196 178 193 239 272 290 304 278 277 260 260 179 246 263 261 280 279 274 235 265 254	Bright Sunshine (hours)
	* 123 * 103 * 103 * 100 105 * 101 116 120 101 * 105 * 96 101 * 95 * 107 108 93 * 104 107	% of Normal Bright Sunshine
	32.6 91.2 * 82.7 * 310.4 192.0 238.4 156.1 171.2 31.3 86.2 48.1 8.7 19.9 21.7 32.1 160.2 75.5 36.6 40.4 11.9 56.6 40.4 11.9 56.6 42.8 27.1 25.0 29.4 31.2	Degree Days below 18 C
	NOVA SCOTIA GREENWOOD A HALIFAX INT'L A SABLE ISLAND SHEARWATER A SYDNEY A YARMOUTH A PRINCE EDWARD ISLAND CHARLOTTE TOWN A SUMMERSIDE A NEWFOUNDLAND BONAVISTA BURGEO CARTWRIGHT CHURCHILL FALLS A COMFORT COVE DANIELS HARBOUR DEER LAKE A GANDER INT'L A GOOSE A MARY'S HARBOUR PORT AUX BASQUES ST ANTHONY ST JOHN'S A ST LAWRENCE STEPHENVILLE A WABUSH LAKE A	STATION
	20.5 19.7 14.9 19.6 18.0 17.4 19.1 20.0 13.6 12.8 11.1 14.0 14.4 13.3 15.6 14.6 15.9 12.5 13.2 11.6 14.2 13.8 15.8 14.0	Mean
	$ \begin{array}{c} 1.4\\ 1.5\\ -0.6\\ 2.2\\ 0.3\\ 1.1\\ 0.8\\ 1.1\\ -1.1\\ -0.7\\ -1.6\\ 0.1\\ -2.1\\ -1.1\\ -0.8\\ -1.9\\ 0.1\\ 2.3\\ 0.0\\ -1.3\\ -1.3\\ 1.7\\ -0.2\\ 0.5\\ \end{array} $	Difference from Normal
	32.1 31.5 23.2 31.2 31.9 25.9 29.6 30.4 24.4 25.9 29.5 29.7 27.7 21.0 29.2 29.6 31.8 31.0 22.0 23.5 27.3 25.5 25.2 29.6	e C
	7.7 8.5 8.2 9.5 7.1 8.9 6.8 10.3 4.8 5.8 1.3 1.8 3.0 3.1 2.0 3.4 3.9 2.8 4.5 0.3 5.2 5.2 6.4 -0.2	Minimum
	0.0	Snowfall (cm)
:	-	Z of Normal Snowfall
	42.0 124.9 80.1 102.4 114.6 101.0 91.0	Total Precipitation (mm)
	64 59 187 77 103 140 83 50 114 98 115 145 145 145 146 87 105 83 67 55 81	% of Normal Precipitation
		Snow on ground at end of month (cm)
	B 10 9 15 13 10 11 13 12 7 15 11 11 14 11 7 8	No. of days with Precip 1.0 mm or more
	**************************************	Bright Sunshine (hours)
	* * 127 108 97 114 * 98 * * 83 109 * 88 * 111 96 * * * * 114 * 93 114	% of Normal Bright Sunshine
	17.8 21.8 102.4 20.8 50.8 38.8 32.5 19.0 141.3 159.6 216.7 133.5 121.7 144.8 83.9 113.5 131.1 173.4 148.7 163.0 124.7 130.1 79.1 123.8	Degree Days below 18 C
ge 13	Climatic Perspectives page	July 1990 - Vol. 12

J

	Tem	perature	C				and the second s	month (cm)	E		Degree a above	days 5 C		Tem	peratur	e C					month (cm)	E		Degree above	days 5 C	
STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of mo	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	This month	Since jan. 1st	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of mo	No. of days with Precip 1.0 m or more	Bright Sunshine (hours)	This month	Since jan. 1st	
																	-									
BRITISH COLUMBIA MGASSIZ AMPLOOPS	20.2	2.3	33.5	8.5 *,*	0.0	30.3	65	0	3	291	471.3	1373.8		19.0 20.5	0.3	32.0 31.0	7.0	0.0	41.6	44 95	0	10	280 291	433.7	936.1	Clima
UMMERLAND	*.* 18.5 21.4	*.* 2.0 0.5	*.* 31.0 33.5	*.* 10.0 7.0	*.* 0.0 0.0	*.* 5.0 36.4	** 28 164	*** 0 0	*** 3 7	** 325 318	*.* 390.0 504.4	*.* 1107.8 1297.5	L'ASSOMPTION LENNOXVILLE NORMANDIN	*.* 17.2	*.* 0.3	30.5	7.0 7.5 *.* 4.5	*,* 0.0	41.6 88.2 *.* 70.8	** 62	0	9 *** 12	258	*.* 381.2	1157.2 *.* 820.5	Climatic Per
ALBERTA REAVERLODGE ILLERSLIE	16.3	1.1 *.*	31.5	4.5	0.0	58.7 *.*	92	0	6	358	348.7	787.0	STE.CLOTILDE NEW BRUNSWICK	20.7	0.5	31.0	9.0	0.0	101.8	113	0	12	267	486.8	1189.4	
ACOMBE	15.5 *,*	-0.6	30.0 *,*	2.5	0.0 *,*	82.9	115	0	10	314	323.2	776.2 *.*	FREDERICTON NOVA SCOTIA	20.2	1.1	32.0	7.0	0.0	71.2	79	0	7	131	480.7	1063.4	spectives
EGREVILLE	*.*	*.*		8,8	*.*			***		**	•.•	•.•	KENTVILLE NAPPAN	20.6 18.8	1.4 0.8	32.5 29.0	8.0 5.0	0.0 0.0	79.2 112.4	113 133	00	8	237 231	475.4 428.0	1063.3 801.5	
NDIAN HEAD AELFORT REGINA	17.6 17.1 17.5	-1.0 -0.3 -1.1	31.0 30.5 32.5	8.0 7.0 5.0	0.0	105.1 72.7 90.7	198 113 172	000	10 10	** 251 **	408.5 379.0 388.5	1017.0 1098.2 986.8	PRINCE EDWARD	19.7	0.8	29.5	7.0	0.0	63.9	79	0	9	264	456.4	935.4	
ASKATOON COTT WIFT CURRENT	17.5 16.4 16.8	-0.9 -0.8 -1.7	32.5 31.5 31.0 31.5	8.0 7.0 5.0 6.5 4.5 4.5	0.0 0.0 0.0 0.0 0.0 0.0	78.0 113.3 82.6	113 172 139 189 215	000	7 11 8	293 309 287	379.5 353.1 381.8	985.0 926.9 967.9	NEWFOUNDLAND													
MANITOBA RANDON	18.4	-0.8 0.0	31.9	6.0	0.0	51.0	73 57	0	6		416.5	1066.6	ST.JOHN'S WEST	14.8	-0.8	27.0	5.0	0.0	46.6	63	0	12	237	304.6	618.4	
GLENLEA	19.6 19.0	0.0 -1.2	31.9 31.0 30.5	6.0 8.5 6.5	0.0 0.0 0.0	51.0 42.4 45.8	57 63	00	55	298 311	457.5	1157.5 1074.8						0			X					
	20.4	-0.3	33.0	7.0	0.0	83.7	118	0	7	**	478.6	1259.6	- in Series													
LORA GUELPH HARROW KAPUSKASING	18.8 19.5 21.5 17.2	-0.3 -0.3 -0.2 -0.5 0.3	33.0 32.4 34.5 34.0 30.5 31.5 31.9	7.0 8.4 5.6 10.0 3.0	0.0 0.0 0.0 0.0 0.0	60.8 120.9 48.8 74.0	83 147 62 80	0000	9 8 7 7	** 284 265 244	426.2 448.6 516.2	1110.9 1175.1 1901.7 799.1									The second					V
OT TAWA SMITHFIELD VINELAND VOODSLIE	21.5 21.3 *.* *.*	0.9 1.1 *.*	31.5 31.9 *.*	9.1 11.3 *.*	0.0	135.0 63.4 *.*	158 94 **	0	7 8 ***	297 ** **	511.3 515.1 *,*	1270.7 1294.1 *.*														Vol. 12