

AUGUST 8,1980

(Aussi disponible en français)
VOL. 2 NO. 31

WEATEER highlights for the weex - july 29-aucust 4, 1980
Heavy rains finally bring relief to the drought-stricken southern Prairies

Heavy rain was reported August 3 rd and 4 th over much of the Prairies. Most of the regions previously affected by drought, southeastern Saskatchewan and southwestern Manitoba, received 40 mm to 80 mm .

Wet weather is still hampering haying in the Maritimes, and some lowlying areas in southern Ontario are experiencing flooding from the excessive rains of the past two weeks.

Hail was reported over southern Ontario, including Metropolitan Toronto, on July 29th. Damage to market gardens was reported at Holland Marsh.

The highest reported temperature in Canada was 35° at Estevan, Sask., on the 29 th , while the lowest was -3° at Clinton Point, N.W.T., on the 30 th and at Cape Hooper, N.W.T. on the 4 th. The greatest weekly precipitation was 109.2 mm at Nitchequon, Que.

NOTE: The data shown in this publication are based on unverified reports from approximately 225 Canadian and 115 northern United States Synoptic stations.

YUKON

Practically all of Yukon was wet this week, with rain or showers reported on most days. The greatest weekly precipitation reported was 25.9 mm . at Shingle Point, but Mayo reported precipitation on every day of the week.

Mean temperatures for the week averaged about 2° or 3° below normal over most of the territory. The highest recorded temperature for the week was 21° at Dawson on the $2 n d$ and at Watson Lake on the 4 th , while the lowest was 0° at Komakuk Beach on the 3rd. The low temperature of 1° reported at Watson Lake on the 2nd was a new record low for the date.

The Watson Lake-Dease Lake, Terrace highway was opened on July 29th, but most roads are rough and occasionally sloppy.

Only nine forest fires are burning in the Yukon, and these are only smouldering.

NORTHWEST TERRITORIES

Below-normal precipitation was reported over most of the Northwest Territories this past week, but a few areas were wetter than normal. Coppermine recorded a weekly precipitation total of 36.0 mm , of which 22.0 mm fell on the 3rd. Much of the Mackenzie River Valley was also wet. At Norman Wells, the weekly precipitation total of 35.8 mm was spread over six days of the week.

Mean temperatures for the week averaged about 2° above normal over most of the District of Keewatin and about 2° below normal over the Mackenzie River Delta. Over the remainder of the Northwest Territories, mean temperatures generally ran within 1° of normal. The highest recorded temperature for the week was 29° at Hay River on the lst, while the lowest was -3° at Cape Hooper on the 4 th and at Clinton Point on the 30 th .

Ice conditions are still improving rapidly over most of the Arctic, with mostly open water now reported from Hudson Bay, Hudson Strait, Coronation Gulf and Cambridge Bay. Most icebreaker support is now in the high Arctic, such as Lancaster Sound. Breaks in the ice are now appearing in Viscount Melville Sound. Farther west, in the Beaufort Sea area, conditions are not as favourable as those over the remainder of the Arctic. Old pack ice continues to drift close to the drill sites.

BRITISH COLUMBIA

Dry weather continued over the South Coast and the extreme southern interior of the province this past week. Northern B.C., which has had considerable rain during the past few weeks, was also drier than normal. The remainder of the province was wet, particularly the North Coast, where Prince Rupert reported rain or showers on all seven days with weekly total precipitation of 61.1 mm .

Mean temperatures for the week averaged near or slightly below normal along the B.C. coast, but most interior localities reported departures of 1° to 3° below normal. The highest recorded temperature for the week was 33° at Castlegar and Penticton on the 31st, while the lowest was 3° at Burns Lake on the 29th and at Blue River on the 4 th.

PRAIRIE PROVINCES

The rains finally came to the most drought-affected areas of the eastern Prairies. In fact, most of the Prairies were wet. Only southwestern Saskatchewan, extreme southern Alberta and the far northern part of the Prairie Provinces reported below-normal precipitation for the week. Most of the rains came on the 3 rd and $4 t h$, and there were t wo extensive bands of heavy precipitation. One area of heavy rain was reported over southeastern Saskatchewan and southwestern Manitoba, where the lack of precipitation and low soil moisture have been so evident for so long. Brandon reported a weekly total precipitation of 80.8 mm , but 40.7 mm
fell on the 3 rd and 39.9 mm on the 4 th . Broadview recorded almost as much, 79.5 mm for the week. The other area of heavy rain stretched in an east-west band across the central Prairies. The heaviest reported weekly totals were Cold Lake, with 91.7 mm , and Fort McMurray, 80.6 mm .

Mean temperatures for the week were generally 1° to 2° below normal, but northern Saskatchewan averaged slightly above normal. Temperatures were generally above normal for the first part of the week, but were decidedly below normal for the last two days of the period. A number of stations reported low maximum temperature records on the $4 t h$. The highest recorded temperature for the week was 35° at Estevan, Sask., on the 29 th , while the lowest was 3° at Banff on the 4 th and at Churchill on the 2 nd .

The heavy rain greatly aided agriculture in the areas that were previously so dry, but more rain is needed. In Alberta, showers and mild weather over the past two weeks have maintained favaourable crop prospects. Most crops are filling out and early seeded cereal crops are beginning to ripen. Some dry-land crops in southern Alberta are again beginning to show some moisture stress following a relatively dry two weeks, while crops in west-central Alberta are showing signs of lodging due to excessive moisture. Haying is in progress in central and northern Alberta, but has been hampered by frequent showers. Some loss in quality due to advanced maturity and weathering is evident.

A weekend rainstorm which dunped 70 to 90 mm of rain over central and north-central Alberta washed out a number of Alberta 75 th anniversary homecoming festivities over the long weekend.

The heavy rain over the central regions of the Prairies greatly aided in the fighting of forest fires.

ONTARIO

Precipitation was generally above normal over northwestern Ontario and below normal over the south. There were a number of exceptions, however. Wind-
sor reported the heaviest precipitation for the week, 42.6 mm , of which 33.2 mm fell on the 2 nd. Much of the rainfall came from heavy showers and thundershowers, as is common for this time of year. For instance, Kingston recorded 26.0 mm on the 29 th .

Mean temperatures generally averaged within 1° of normal over most of the province, but over northeastern Ontario, they were generally 1° to 2° above normal. The highest recorded temperature for the week was 32° at Windsor on the 1st, while the lowest was 5° at both At ikokan and Red Lake on the 3 rd .

Severe thunderstorms with strong gusty winds and hail were reported over parts of southern Ontario on July 29th. Over parts of Metropolitan Toronto, some of the hail had diameters as great as one centimetre, while at Holland Marsh to the north, even larger hail caused considerable damage to market gardens.

July 1980 was the wettest July in years over many parts of southern Ontario. Toronto International Airport received 182.3 mm , the wettest since records began in 1938, while at Wiarton, the monthly total of 200.7 mm was a new record, not only for July, but for any month of the year. Furthermore, West Guilford, in the Haliburton Region, received 214.6 mm , their wettest July in 53 years.

The heavy rains of the past month have resulted in local flooding and crop damage in some low-lying areas.

As of August 5th, only 35 forest fires were burning in Ontario, and danger conditions were rated as moderate.

QUEBEC

Precipitation was above normal across most of Querbec again this past week. The highest recorded weekly amount was 109.2 mm at Nitchequon. Schefferville received 73.4 mm , Natashquan 69.2 mm , and Bagotville 62.0 mm . At Nitchequon, Schefferville and Bagotville, it rained all seven days of the week. A few small but widely
separated areas of the province reported below-normal precipitation, however. One of these was the Eastern Townships.

Mean temperatures averaged well above normal over practically all of Québec, with departures mainly between 2° and 4°. The highest recorded temperature for the week was 30° at Bagotville and Roberval on the 1st, while the lowest was 2° at Koartak on the 3rd and 4 th .

Measurable precipitation was reported on every day at Montréal International Airport from July 19th to 30 th , inclusive. This string of 12 consecutive wet days is a new record for the Montréal area for the month of July, the previous record being ten days, reported in 1908 at the McGill University site. The July rainfall of 182.6 mm at Montréal International Airport is also a new record high for the month of July since records began in 1942.

ATLANTIC PROVINCES

Precipitation totalled above normal for the week over most of New Brunswick, Cape Breton Island, and Newfoundland-Labrador. Below normal amounts occurred over most of Nova Scotia and Prince Edward Island. Fredericton, N.B., received 80.5 mm over the week, but of this total, 66.4 mm fell over a four-hour period on the 30th. On the same day, 80.0 mm was reported during a four-hour period at a climatological station at Musquash, near Saint John. Other large weekly precipitation amounts were 66.7 mm at St. Anthony, Nfld., 65.9 mm at Saint John, N. B., and 59.4 mm at Churchill Falls, Labrador.

Mean temperatures generally averaged about 2° above normal over much of the At lantic Provinces, but near normal values were reported from most of the Island of Newfoundland. A number of stations in the Maritimes reported new record high temperatures for August 1st. The highest recorded temperature for the week was 32° at Fredericton, N.B., on the lst, while the lowest was 6° at Hopedale, Labrador, on the 1st and 2 nd .

In Nova Scotia, there has been enough dry weather to enable 50 to 70 per cent of the hay crop to be harvested. Because this is late in the season, the hay is overripe, and it is declining in quality. The potato, corn and
tobacco crops in the Maritimes are progressing well, and the potato blight is now under control. Crops on the Island of Newfoundland are still very late in maturing.

Climatic perspectives
Staff

Correupondents

Terry Mullane,	(Ice Porecasting Central)
H.E. Wahl,	(Whitehorse)
B111 Prusak,	(Western Region)
Fred Luciow,	(Central Region)
Bryan Sasth,	(Ontario Degion)
Jacques Miron,	(Quebec Region)
J.F. Anirault,	(Aclantic Ragion)
Staff of Prince	George, Kamloops, Castlegar, Fort Nelson, Penticton and Kelowa

GROWING DEGREE-DAY SUSMARY TO AUGUST 2,1980

CITY	MONTHLY CUMULATIVE TOTAL	MONTHLY DIFF. FROM 1941-70 NORMAL	SEASONAL TOTAL	SEASONAL DIFF. FROM NA1-70 NORMAL	SEASONAL PERCENT OF NORMAL
Whitehorse	16.5	-1.5	637.5	53.5	109
Penticton	30.0	-2.0	1364.5	105.5	108
Vancouver	23.5	-2.5	1057.0	-52.0	95
Edmonton	25.5	.5	1149.5	321.5	139
Calgary	23.0	-1.0	950.5	169.5	122
Regina	31.0	1.0	1274.5	307.5	132
Saskatoon	31.0	3.0	1258.5	295.5	131
Winnipeg	27.0	-4.0	1329.5	297.5	129
Thunder Bay	27.5	3.5	951.5	154.5	119
Windsor	38.5	5.5	1372.5	-41.5	97
Toronto	36.5	6.5	1139.0	-67.0	94
Ottawa	33.5	3.5	1180.5	-3.5	100
MontréaI	35.0	3.0	1166.0	-50.0	96
Québec	35.0	8.0	977.5	-16.5	98
Fredericton	35.0	7.0	1006.0	17.0	102
Halifax	29.0	3.0	779.0	-63.0	93
Charlottetown	33.0	5.0	775.5	-39.5	95
St John's	25.5	1.5	537.0	1.0	100

15 day temperature anomaly forecast

Forecast Method

Analogue technique based on point prediction at 70 Canadian stations.

Temperature Scale

Each temperature class is designed to contain 20% of the historically observed 15 day means pertinent to specific location and time of year:

Station

Whitehorse
Victoria
Vancouver
Edmonton
Regina
Winnipeg
Thunder Bay
Toronto
Ot tawa
Montreal
Quebec
Fredericton
Halif ax
Charlottetown
St. John's
Goose Bay
Frobisher Bay
Inuvik

Current Temperature Anomaly Forecast

Much Below Normal
Below Normal
Below Normal Near Normal Below Normal Near Normal Below Normal Above Normal Below Normal

More than 1.4° below Normal
From 0.3° to 0.9° below Norma 1
From 0.3° to 1.0° below Normal
Within 0.5° of Normal
From 0.5° to 1.6° below Normal
From 0.5° to 1.6° below Normal
From 0.4° to 1.4° below Normal
From 0.4° to 1.5° below Normal
From 0.4° to 1.4° below Normal
From 0.4° to 1.3° below Normal
From 0.4° to 1.2° below Normal
From 0.4° to 1.2° below Normal
From 0.3° to 1.0° below Normal
From 0.3° to 1.1° below Normal
Within 0.4° of Normal
From 0.4° to 1.3° below Norma 1
From 0.3° to 1.0° above Normal
From 0.6° to 2.1° below Normal

Note: Anomaly denotes departure from the 1949-73 mean.

Atmospheric Circulation

7-day Mean 50 kPa Height Map July 28 to Aug 3, 1980

7- day Mean 50 kPa Height Anomaly (in 5 dam intervals)
July 28 to August 3, 1980

The broad atmospheric ridge centred in the United States exerted a weak influence on southern areas of the western provinces. The strong Arctic vortex previously over the Arctic Islands has reformed further to the north, resulting in positive height anomalies in the vicinity of Hudson Bay and northern Quebec. Negative height a nomalies are now in evidence over much of western Canada due to consecutive troughs and vorticies drifting slowly eastward in the upper circulation.

At the Surface, numerous weather disturbances developed. Significant precipitation amounts fell over much of British Columbia and the Canadian Prairies, except over extreme southern areas and along the southern portion of the Pacific coast. This heavy rain was especially welcome in the droughtstricken areas of Saskatchewan and Manitoba, while some Alberta communities
are now in need for dry, sunny conditions.

Temperatures remained below normal over the western half of the country. Over the Northwest Territories, however, posittve 50 KPA height anomolies resulted in above-normal mean temperatures.

On the other hand, weak atmospheric mean ridging, together with a southerly flow of warm, humid air, brought above-normal mean temperatures to much of the eastern half of the country. Weather conditions continued to be unsettled and changeable, though, as weather systems and their associated frontal zones continued tracking eastwards across Québec and through the At lantic Provinces.

SEA SURFACE TEMPERATURE

Mean Sea Surface Temperature July, 1980

Sea Surface Temperature Anomalies July, 1980
temperature and precipitation data for the heek ending 0600 G.M.t. august 5, 1980

Station	Temperature $\left({ }^{\circ} \mathrm{C}\right.$)			Precip. (mm)	
			E	$\stackrel{\square}{\circ}$	
BRITISH COLUMBIA					
Abbotaford A Alert Bay	17 -1 14 -1	27	8	$\begin{aligned} & 2.5 \\ & 5.7 \end{aligned}$	-5.2 -0.8
Blue River	M X	20P	38	M	x
Bull harbour	14.0	17	10	3.9	- 3.
Burns Lake	M X	19P	3 P	M	
Cape Scutt	14.0	18	11	9.7	- 5.7
Cape St. James	14.0	18	11	20.8	11.6
Castlegar A	M M	33	6 P	4.1	-2.3
Comox A	17-1	23	11	1.2	4.5
Cranbrooke	18-2	29	6	7.7	0.8
Dease Lake	11-2	17	5	24.4	14.8
Estevan Point	$M \quad M$	16P	11 P	M	
Fort Nelson A	16-1	24	7	3.8	- 7.3
Fort St. John A	15-2	22	6	0.5	-12.6
Kamloops A	M	32	10 P	14.1	9.3
Langara	M M	17	11 P	M	M
Lycton	21-4	31	11	11.4	10.2
Mackenzie A	M	218	4 P	M	x
Mcinnes Island	15	18	12	44.5	28.5
Penticton A	20	33	9	2.0	-2.2
Port Hardy A	14	19	8	3.2	- 4.5
Prince George A	13-2	22	5	21.8	8.2
Prince Rupert A	130	16	9	61.1	49.2
Quesnel A	15-2	25	5	14.2	- 0.3
Revelstoke A	17-3	29	7	19.6	13.9
Sandspit	$M \quad M$	178	12	18.2	8.9
Smithers A	13-2	20	5	6.2	-2.9
Spring Island	M M	15P	11 P	M	M
St ewart A	$M \quad \mathrm{X}$	15P	10 P	${ }^{M}$	${ }^{\mathrm{x}}$
Terrace A	14-3	20	11	10.9	2.0
Tofino A	M M	M	M	M	
Vancouver Int'l A	17-1	25	11	0.4	- 5.5
Victoria Int'l A	16-1	24		0.0	- 4.0
Whllams Lake A	14-3	23	7	29.4	20.3
yuxon					
Burwash A	11-2	18	2	19.2	8.7
Dawson A	12-3	21	4	22.4	8.2
Komakuk Beach A	- 3	13	0	20.5	8.6
Mayo A	12-2	20	3	18.9	9.2
Shingle Point A	- 2	17	2	25.9	15.8
Watson Lake A	12-3	21	1	13.8	4.7
Whitehorse A	13-1	20	4	6.4	-0.3
Alurt	5	13		2.2	-0.9
Baker Lake	14	21	8	5.1	- 3.1
Broughton Leland	\square	14	- 2	0.3	- 4.6
byron Bay	10	19	2	1.4	- 5.0
Cambridge Bay A	,	20		1.1	-6.9
Cape Dorset	x	14	0	3.2	x
Cape Dyer A	0	14	3	1.2	-13.6 -5.3
Cape Hooper	0	12	- 3	0.0	- 5.3
Cape Parry A	- 2	19	-2	2.5	- 2.5
Cape Young A	$5-1$	19	-2	11.2	2.2
Chesturfield Inlet	$8-2$	12	4	0.0	-11.9 -5.3
Clinton Polnt	4-2	11	- 3	0.9	- 5.3
Clyde	4-1	14	- 2	0.2	-6.7
Contwoyto Lake	M M	19P	4 P	H	25.8
Copperinine	10.0	20	1	36.0	25.8
coral harbour	$M \quad \mathrm{M}$	19P	3	0.0	-11.1
Dewar Lakes	60	14	A	13.5	- 4.4
Ennadal	$M \quad \mathrm{M}$	15P	8 P	M	M
Eureka	$5{ }^{5}$	12	0	0.0	- 1.4
Fort kellance	$M \quad \mathrm{M}$	25	9 P	0.8	- 3.9
furt Simpson	10-1	28	3	3.4	0.1
Fort salth A	M M	288	6	M	M
Froblsher Bay A	- 1	15	2	5.1	-9.2
Cladman Point A	8.2	19	1	0.2	-12.1
Hall buach A	3)	10	0	1.2	-10.0
thy rivar A	$18 \quad 2$	29	9	1.3	$\begin{array}{r}-3.9 \\ -8.6 \\ \hline\end{array}$
Inuvik A	- 3	19	2	4.1	- 8.6
Jenny Lind Isiand	6.1	13	-1	1.4	- 3.5
Lady Franklin Point	-	16	0	14.6	-8.1
Longstaff Bluff	88	15	0	0.0	-8.6
Mackar Inlet	7 1 M	17	0 18	8.4 3.6	
Mould Bay	M M 5 -2	10	${ }_{-}^{18}$	3.6 8.4	
Nicholson Peninsula	- 2	12	- 2	8.4	1.3
Norrmen Wells A	16.1	28	6	35.8	24.7
Pelly may	M	14 P	1	5.9 12.4	-4.8
Pond Inlet	5 ¢	10	1	12.4	X \times
Port Burwell	9 x	19	1	3.4	x

	Temperature $\left({ }^{\circ} \mathrm{C}\right)$				Precip. (mm)		Station	Temperature $\left({ }^{\circ} \mathrm{C}\right)$				Precip. (mm)	
Station		$\begin{array}{\|r\|} \hline 0 \\ \text { E } \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$			$\stackrel{\overline{0}}{0}$	$\begin{aligned} & \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \\ & \hline \end{aligned}$			$\begin{array}{ll} & \overline{0} \\ & \hat{E} \\ 0 & 0 \\ 0 & 0 \\ 2 & Z \\ 0 & \varepsilon \\ 0 & \varepsilon \\ 0 & 0 \\ 0 & 0 \end{array}$		$\underbrace{\substack{E \\ E}}_{\underset{X}{v}}$	$\stackrel{\square}{0}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
							Pickle Lake	17	0	27	11	25.2	0.8
Resolut	5	1	12	-		- 2.6	Red Lake A	18	- 1	28	5	29.7	11.9
Sachs Harbour	6	2	14	- 2	1.6	- 3.1	S1mcoe	M	M	27P	15p	M	M
Shepherd Bay 1	8	2	20	1	2.2 13.0	. 2	Sloux Lookout A	18	0	27	10	25.9	7.0
Tuktoyaktuk		1	14	2	13.0	3.9 10.7	Sudbury A	20	1	28	12	10.8	0.4
Yellowknife A	18	2	26	11	16.2	10.	Thunder Bay A	19	1	29	11	6.6	-11.2
							Timmins A	19	2	29	9	22.3	1.2
albirrta							Toronto Int'1 A	21	1	29	12	0.8	-17.7
Banff	14	- 1	26	3	18.4	7.6	Trenton ${ }^{\text {a }}$	21	1	28	13	11.3	0.7
Brooks	M	M	M	M	21.0		Trout lake	16	1	25	7	28.6	7.2
Calgary Int'l A	15	1	26	7	21.0	6.0	Wawa A	16	x	24	9	1.1	X
Cold Lake A	16	0	27	9	91.7	71.5	Wharton A	19	1	27	11	0.9	-15.5
Coronation A	16	- 2	28	7	29.8	17.6	Windsor A	24	1	32	17	42.6	27.2
Edmonton Int'1. A	15	- 2	25	7	53.0	39.7	Windsor A						
Edmonton Mun. A	16	- 2	28	8	44.7	16.0	QuEbBC						
Edmonton Namao A	16	-2	27	4	47.2	23.0	Bagotville A	19	2	30	13	62.0	35.9
Edson A	14	- 1	24	4	21.9	-0.9	Baie Comeau	17	1	25	13	19.9	3.3
Port Chipewyan Port McMurray A	$\begin{array}{r} M \\ 17 \end{array}$	M	${ }_{27}^{\text {M }}$	$\begin{aligned} & 8 P \\ & 7 \end{aligned}$	M 80.6	M 61.	Blanc Sablon	M	M	19	9p	M M	M M
Port MeMurray A	17	M	${ }_{24}^{27}$	7	80.6 M	61.2 M	Border	19	M \mathbf{x}	M 25	$\begin{gathered} 6 \mathrm{P} \\ 11 \end{gathered}$	M 38.0	M
High Leval A	16	0	26	6	9.3	- 7.3	Chibougamau	19	¢	26	5	5	.
Jasper	14	- 1	27	5	18.7	8.5	Fort Chimo A	M	X	28	12 P	54.8	- x
Lethbridge A	18	- 2	30	8	5.6	- 3.7	Gaspe A	20	2	24	16	15.9	5.2
Medicine Hat a	19	- 2	31	9	15.9	- 9.7	Grindstone Island Inoucd Jouac	M	M	24 P	${ }_{7}$	1.4	-12.0
Peace River A	16	- 1	26	7	1.8	-10.8	Koartak	6	x	14	2	9.2	X
Red Doer A	15	- 1	27	8	19.7 38.8	2.8 15.1	La Grande Rivière A	18	x	28	9	15.7	X
Rocky Mountaln House	15	-1	25	7	38.8 26.8	15.1	Maniwaki	20	3	28	12	0.2	-11.7
Slave Lake A	14	-2	25	8	26.8 39.1	14.2 20.9	Matagami A	18	x	29	11	56.7	X
Vermilion A	16	-1	28	8	39.1	20.9	Mont-Joll A	18	1	28	9	40.0	25.4
Whitecour	15	- 1	25	5	28.3	. 3	Montréal (A int.)	22	1	28	15	30.0	13.6
							Natashquan A	16	2	22	10	69.2	45.4
SASKATCHE							Nitchequon	17	4	23	13	109.2	78.9
Broadview	17	- 1	32	10	79.5	72.5	Port Menier	17	1	25	12	40.1	24.1
Buffalo Narrowe	M	M	25 P	10	M	x	Poste-de-la-Baleine	15	4	28	7	23.4	2.1
Cree Lake	17	X	24	8	1.6	X 13.9	Québec A	21	2	29	15	40.9	17.5
Estovan 1	20	- 1	35	7 P	24.7	13.9	Rivière du Loup		M	15 P	11 P		M
Hudson Bay		M	32 P	7 P	12.0	- 3.9	Roberval A	21	3	30	15	. 8	9.8
Kindersiey	17	2	29	9	2.4	-4.3	Schefferville A	12	0	17	6	73.4	50.1
Le Ronge A	16	0	23	8	36.9	21.7	Sept-lles	17	2	29	13	55.4	29.9
Meadow Lake A	18	¢	27	9	19.4		Sherbrooke A	20	2	29	11	10.6	-14.2
Moose Jaw A	20	0	33	10	15.4	5.0	Ste.Agathe des Monts	20	2	26	13	27.6	1.3
Nipawin A	17	- ${ }^{1}$	28	8	11.2 33.8		Ste.agathe des monts Val d'or A	19	2	27	10	39.1	11.3
North Batcleford A		- 1	28	9	33.8	22.6							
Prince Albert	17	,	26	8	15.9	1.7	NEW BRUNSWICX						
Regina A	19	1	34	8	21.6	8.8	Charlo A	21	3	30	14	45.9	24.2
Saskation A	18	M	29	8	6	9.6	Chatham A	22	3	31	16	36.0	18.3
Swift Current A	M	1	29 P	${ }^{88}$,		Fredericton	22	3	32	14	80.5	59.7
Uranium Clity	18		26	10	1.7	-0.3	Moncton A	21	2	30	14	5.0	-12.3
Wynyard	18	18	32	8 P	29.3	16.3 40.4	Saint John A	18	1	27	13	65.9	39.7
Yorkton A	M	4 M	32	8 P	50.6	40.4							
MANITOBA							NOVA SCOTIA			29		5.7	x
Blssett	M	$1{ }^{M}$	29P	9	28.0	9.3	Eddy Point	22	2	30	13	2.3	-16.5
Brandon A	18	-1	32	8	80.8	67.1	Sable Island	M	M	22 P	15	M	M
Churchill ${ }^{\text {a }}$	9	- 3	26	3	2.1	-11.7	Shearwater A	18	,	27	14	5.6	-13.9
Dauphin A	18	- 1	30	8	53.0	41.8	Sydney A	21	2	29	14	32.7	12.7
gillam A	14	4	25	6	17.3		Truro	M	M	26P	16P		M
Gim11	18	- 1	28	1	26.0	14.6	Yarmouth A	19		26	14	6.4	-9.4
Island Lake	M	$1 \times$	27P	11	46.7		Yarmouth A						
Lynn Lake	15	0	22	8	50.4	41.5	PRINCE EDWARD ISLAND						
Norway House	17	7 x	27	8	31.4		Charlottetown	22	3	29	16	3.2	-12.7
Pilot Mound	18	- 1	31	9	29.7 38.8	14.7 24.2	Summerside	22	2	30	16	2.2	-9.8
Portage la Prairie	19	9	33	10	38.8	24.2							
The Pas A	18	8	28	10	11.2	-1.1	NEWPOUNDLAND						
Thompeon A	14	4	26	10	26.1	9.7	Argentia VTMS	15	X	20	11	22.4	x
Winnipeg Inc'l A	20	0	32	10	29.7	15.2	Battle Harbour	M	M	20P	7	30.2	10.0
							Bonavista	17	0	27	11	5.0	5.7
Ontario							Burgeo	16	0	21	12	42.7	12.9
Armetrung A	M	4	278	5	19.4	-0.6	Cartwright	13	0	27	8	20.3	1.8
Atikokan	17	7	29	5	7.8	-12.7	Churchill Falls A	14	0	22	8	59.4	33.8
Earlton A	M	4	288	108			Comfort Cove	18	0	28	10	6.2	-12.1
Ceraldton	16		27	6	13.6	- 4.0	Daniel's Harbour	M	M	25P	12	M	M
Gore Bay 4	21	1	28	12	1.2	-17.4	Deer Lake	M	M	29P	118	M	M
Kapuskaming	19	9	28	12	28.6	11.3	Gander Int'l A	M	M	28P	10	5.5	-13.9
Kenora A	20		28	12	36.4	14.7	Goose A	M	M	30P	9	47.7	24.9
Kingat on A	18	M	26 P	15			Hopedale	M	M	24P	${ }^{6}$	M	M
Lansdowne House	18	8	27	11	15.8	-2.8	Port aux Basques	15	0	22	13	24.2	6.4
London A	21	1	29	14	16.0	- 4.3	St. Albans	M	M	22P	13P	M	M
Moosonee	17	7	29	8	36.7	17.2	St. Anthony	M	$1{ }^{1}$	24	8P	66.7	x
Mount Porest	M		25P	118			St. John's A	17	1	27	11	27.0	7.3
Muskoka A	M	M	278	12 P			St. Lawrence	M	M	18P	11		
North bay A		4	26	13 P	0.6 24.9	-15.8 9.3	Stephenville A	19	2	26	14	40.2	22.8
Otawa Int'1 \uparrow	22	2	29	15	24.9	9.3 \times	Wabush Lake	16	2	21	9	15.6	- 6.3
Petawawa A	20	O	29	11									

