Environment Canada Environnement Canada A WEEKLY REVIEW OF CANADIAN CLIMATE Atmospheric Environnement Environment atmosphérique abudwittoos ghivonta (wadai dais madta aga THE CANADIAN CLIMATE CENTRE, ATMOSPHERIC ENVIRONMENT SERVICE, 4905 DUFFERIN ST., DOWNSVIEW, ONTARIO M3H 5T4 UGUST 20 1982 (Aussi disponible en français) VOL 4 NO. 32 # WEATHER HIGHLIGHTS FOR THE PERIOD - AUGUST 10-16, 1982 Tornadoes cause extensive damage in the prairies Outbreak of severe thunderstorms spawning tornadoes, heavy rain and up to tennis ball size hail struck the prairie provinces. Substantial damage to properties and crop was reported. Hail damaged up to 100 per cent of the crop in some areas. Damage to properties and crops was assessed at \$10 million dollars in Prince Albert alone. Rain and somewhat cooler temperatures have considerably helped the forest fire situation in northern Alberta. Temperatures ranged from a high of 35.5° at Estevan, Saskatchewan to a low of -7° at Broughton Island, Northwest Territories. Prince Albert recorded 91.9 mm of rain. NOTE: The data shown in this publication are based on unverified reports from approximately 225 Canadian and 115 northern United States Synoptic stations. # YUKON AND NORTHWEST TERRITORIES A sharp contrast from recent weather pattern was evident during the week as an upper weather disturbance kept temperatures below the normal values across the Yukon. Frost was reported in some areas on August 11, as well, mercury plunged to a record low of 1° at Whitehorse on August 14 (previous record 2.4° set in 1973). Various amounts of precipitation received in the area along with cooler temperatures have considerably helped the forest fire situation in southern Yukon. The largest fire near Coal River was reported to be under control. Due to abnormally warm temperatures in the spring and early summer, the overall ice condition in the Arctic was reported to be in excellent shape for navigation. Open water route was present in all shipping areas. Areas where some pack ice remained were Baffin Bay, Davis Strait, southern Lancaster Sound and southwestern Hudson Bay. In the Beaufort Sea, main pack of ice was reported Northwest of the drilling sites and slowly moving southward. This could present some problems to the drilling activities in the near future. # BRITISH COLUMBIA Below normal temperatures, with well below the normal values in southern interior, dominated the week in British Columbia. A warming trend was evident in the southern regions towards the weekend. Abnormally cool weather during the week established several record low maximum and record low minimum temperatures across the region. Castlegar set a record low temperature of 6.9° on August 15 (previous record 8.3° set in 1970). Various amounts of precipitation fell across the province. Prince George, Fort Nelson and Fort St. John recorded over 25 mm of rain for the week. No major forest fires were reported during the week, however, with the dry weather conditions continuing in the northern coastal areas, the risk of forest fires remained high there. Due to the cool and wet weather conditions in the agricultural areas this summer, crops were reported to be of poor quality. In the Okanagan, growth in the grapes and apples orchards was well behind schedule. ## PRAIRIE PROVINCES Severe summer weather occurences dominated the week across the prairies. There were several reports of funnel clouds and Tornado sightings. A tornado was reported to have ripped through a farmyard southeast of Lloydminster on August 11, lifting a 3,000 bushel grain bin, destroying several other granaries and severely damaging crops. On the same day, severe thunderstorms with up to tennis ball size hail passed through southcentral Alberta, 60 to 100 per cent of the crops were destroyed. Again on August 11, severe storms with up to Golf ball size hail passed through Saskatoon; heavy damage to cars, buildings and agricultural crops was reported. On August 14, severe thunderstorms struck Prince Albert, there were reports of flooded basements, as well, properties and crops were destroyed. Damages were assessed at 10 million dollars. Two additional tornadoes were reported on August 14; one at Docker Manitoba and the other at Shamattawa, Manitoba. Damages were not fully assessed. Cool and showery weather in northern Alberta during the week had considerably improved the forest fire situation in northwestern prairies. ## ONTARIO A cool and dry weather pattern prevailed across the province during the week. Abnormally cool temperatures on August 10, resulted in low maximums for some of the southern localities and across most of the northern locations. In the south, mercury dipped into the 5 to 10 degrees range on the morning of August 11. Rainfall was sparse, with many areas receiving no precipitation at all. # QUÉBEC With the exception of heavy rains in the extreme eastern region, below normal amounts of precipitation was recorded by most of the stations. Temperatures remained near the seasonal values with some southern localities recording day time temperatures near the thirty degree mark. On August 16, thunderstorms producing some hail and strong winds passed through Val'Dor. Nineteen forest fires were reported in the province during the week bringing the total number of fires to over 1030 this year. Forest fires in the province this year have consumed 10% more timber than the five year normal of near 7100 hectares. ## ATLANTIC PROVINCES Cool and showery weather pattern prevailed across the region. The heaviest rainfall occurred in Nova Scotia, where some southern communities reported over 60 mm of rain. With the recent rainfall across the region, adequate moisture supply was present. Crops in the area were reported to be progressing on schedule. Three quarter of the hay crop had been harvested in the St. John area. Nova Scotia reported two small forest fires, both under control. CLIMATIC PERSPECTIVES Staff Editor: Assistant Editor: Technical Staff: Graphics and Layout: Word Processing: Yves Durocher Amfr Shabbar Fred Richardson, Andy Radomski Bruce Bradshaw, B. Johnson, J. Rautenberg Nascem Khaja #### Correspondents Terry Mullane, (Ice Forecasting Central) H.E. Wahl, (Whitehorse) Bill Prusak, (Western Region) (Central Region) Fred Luciou, Bryan Smith, (Ontarlo Region) Guy Borne (Quebec Region) Frank Anirault (Atlantic Region) Earl Coatta (Pactite Region) Telephone Inquiries (416) 667-4711/4906 GROWING DEGREE-DAY SUMMARY TO AUGUST 14, 1982 | STATION | MONTHLY
CUMULATIVE
TOTAL | MONTHLY DIFF.
FROM 1941-70
NORMAL | SEASONAL
TOTAL | SEASONAL
DIFF. FROM
1941-70 NORMAL | SEASONAL
PERCENT
OF NORMAL | |---------------|--------------------------------|---|-------------------|--|----------------------------------| | | ALL PROPERTY OF | | 600.0 | | 100 | | Whitehorse | 92.0 | -23.0 | 680.0 | -1.0 | | | Penticton | 194.0 | -17.0 | 1377.0 | -61.0 | 96 | | Vancouver | 157.0 | -19.0 | 1198.5 | -60.5 | 95 | | Edmonton | 159.5 | -1.5 | 1098.0 | 134.0 | 114 | | Calgary | 156.5 | -1.5 | 926.5 | 11.5 | 101 | | Regina | 202.5 | 10.5 | 1160.5 | 31.5 | 103 | | Saskatoon | 188.5 | 0.5 | 1062.0 | -61.0 | 95 | | Winnipeg | 196.0 | -12.0 | 1243.5 | 34.5 | 103 | | Thunder Bay | 135.0 | -34.0 | 924.0 | -18.0 | 98 | | Windsor | 225.5 | -6.5 | 1661.0 | 48.0 | 103 | | Toronto | 188.0 | -28.0 | 1336.0 | -56.0 | 96 | | Ottawa | 188.0 | -20.0 | 1417.0 | 55.0 | 104 | | Montréal | 191.5 | -26.5 | 1412.0 | 16.0 | 101 | | Quebéc | 166.5 | -18.5 | 1139.5 | -12.5 | 99 | | Fredericton | 164.0 | -32.0 | 1138.0 | -19.0 | 98 | | Halifax | 168.5 | -16.5 | 986.5 | -94.5 | 91 | | Charlottetown | 167.0 | -23.0 | 637.5 | -126.5 | 83 | | St. John's | 148.0 | -9.0 | 567.5 | -101.5 | 85 | # TEMPERATURE ANOMALY FORECAST ### TEPPERATURE ANUMALY FORECAST FOR AUG 17 1982 TO AUG 31 1982 CCCC MUCH BELOW NORMAL BELOW NORMAL ANNN NEAR NORMAL >>>> MUCH AEOVE NORMAL # Atmospheric Circulation 7-day Mean 50 kPa Height (dam) AUGUST 9 TO 15, 1982 7-day Mean 50 kPa Height Anomaly (5 dam intervals) AUGUST 9 TO 15, 1982 The atmospheric circulation had a strong north-south component over the continent. A major upper trough and associated cold low approached the Pacific coast line early in the period and became nearly stationary over the Canadian Prairies. This intrusion of considerably colder air aloft along with intense heating in the low levels resulted in extremely unstable atmos- pheric condition. As a result even the passage of weak weather systems such as weak frontal waves and troughs triggered severe thunderstorm activity, including tornadoes and hail. In the vicinity of the Great Lakes Basin a persistent upper closed vortex controlled the circulation pattern. At the surface a large high pressure cell of modified Arctic air slowly drifted eastward. | | MAXIMUM
TEMPERATURE LOCATION | HINI HUN
TEMPERATURE LOCATION | GREATEST LOCATION | |-----------------------|---------------------------------|----------------------------------|---------------------------| | YUKON TERRITORY | 28.6 DAWSON | 6 KOMAKUK BEACH | 22.3 HATSON LAKE | | NORTHWEST TERRITORIES | 29.1 FORT SHITH | -7.0 BROUGHTON ISLAND | 73.3 COPPERMINE | | BRITISH COLUMBIA | 26.9 PENTICTON | 1.9 SHITHERS | 52.6 PRINCE RUPERT | | ALBERTA | 31.7 HEDICINE HAT | 1.1 CORONATION | 40.0 ROCKY HOUNTAIN HOUSE | | SASKATCHENAN | 35.5 ESTEVAN | 3.0 HUDSON BAY | 91.9 PRINCE ALBERT | | HANITOBA | 32.4 DAUPHIN | 1.5 THOMPSON | 37.0 GIHLI | | ONTARIO | 30.4 PETAHAHA | -1.0 HUSKOKA | 13.2 KENORA | | QUEBEC | 30.0 BAGOTVILLE | 2.0 KOARTAK | 74.9 SEPT-ILES | | NEW BRUNSWICK | 31.2 CHATHAM | 8.7 CHARLO | 41.8 CHATHAM | | NOVA SCOTIA | 28.6 GREENHOOD | 9.7 GREENHOOD | 75.0 EDGY POINT | | PRINCE EDWARD ISLAND | 27.1 SUMMERSIDE | 12.8 CHARLOTTETOWN | 33.1 CHARLOTTETOWN | | NE HE OUNDLAND | 29.4 GOOSE | 5.7 HOPEDALE | 70.4 BURGEO | EXTREMES FOR THE WEEK # TEMPERATURE AND PRECIPITATION DATA FOR THE WEEK ENDING 06Q0 G.M.T. AUGUST 17, 1982 | | Temperature (°C) Precip. (mm) | | | | | | | | | | |---------------------------------|-------------------------------|-----------------------|--|--------------|----------------------|--|--|--|--|--| | | lei | | 1 | Precip. (mm) | | | | | | | | | | OE | | | | Normal | | | | | | Station | a G | No Z | num
num | e E | | 207 | | | | | | | Average | Departure
from Nor | Extreme | Extreme | Total | Departure
from Norn | | | | | | | A | Pro | X X | m Z | To | Fro - | | | | | | YUKON | 1 | | | | | | | | | | | Burwash
Dawson | 11 | | | - 1 | 15.8 | | | | | | | Furo | M | × | M | М | M | x | | | | | | Komakuk Beach
Mayo A | 14 | | | - 1 | 0.2 | D W NEW | | | | | | Shingle Point | 12 | 3 | 23 | 2 | 7.4 | | | | | | | Teslin
Watson Lake | 12 | - X | | 6P | 22.3 | A COLUMN TO SERVICE AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF | | | | | | Whitehorse | 13 | 0 | The same of sa | o | 9.4 | | | | | | | NORTHWEST TERRITORIE | S
8 | 2 | 15 | 4 | | | | | | | | Cape Young | 8 | 1 | 21 | 2 | M
M | M
M | | | | | | Clinton Point
Contwoyto Lake | - N | l
M | 19
M | 3 | М | М | | | | | | Coppermine | 9 | - 1 | 21 | M
1 | 73.3 | 64.7 | | | | | | Fort Reliance
Fort Simpson | 15 | - 2
- 2 | 28 | 7 | 11.8 | 5.6 | | | | | | Fort Smith | 15 | 0 | 29 | 1 3 | 6.9 | 11.0 | | | | | | Hay River
Inuvik | 15 | 0 | 28 | 6 | 17.7 | 13.7 | | | | | | Lady Franklin Point | 7 | 2
0 | 22
15 | 5 2 | 0.2 | -12.7,
9.1 | | | | | | Nicholson Peninsula | 9 | 2 | 19 | 4 | 9.1 | 2.3 | | | | | | Norman Wells
Port Radium | 14
M | 0
X | 25
M | 5
M | 30.2
M | 10.9
X | | | | | | Robertson Lake | M | X | М | М | М | X | | | | | | Tuktoyaktuk
Yellowknife | 11 | 2 | 19 26 | 5 7 | 12.2 | 5.8 | | | | | | Baker Lake | 14 | 3 | 26 | 4 | 2.6 | - 5.1 | | | | | | Coral Harbour
Ennadat Lake | 8
M | 1
M | 23
M | 1
M | 7.3
M | - 1.9 | | | | | | Jenny Lind Island | 2 | - 2 | 10 | - 2 | 16.2 | 7.6 | | | | | | Pelly Bay
Rankin Inlet | 10 | - 2
X | 14 24 | - 3 | 17.7 | -15.4 | | | | | | Shepherd Bay | 5 | - 2 | 15 | - 1 | 0.0 | - 9.4 | | | | | | Alert
Broughton Island | 2 | 5 | 9 7 | - 3 | 25.6 | THE RESERVE OF THE PERSON T | | | | | | Cape Dorset | 5 | X | 13 | 1 | 16.4 | X | | | | | | Cape Dyer Cape Hooper | 3 | - 3
- 2 | 10 | - 4
- 3 | 7.2 | 0.3 | | | | | | Clyde | 3 | - 2 | 9 | - 2 | 0.4 | - 7.2 | | | | | | Dewar Lakes
Eureka | 2 2 | - 2
- 3 | 7 6 | - 2
- 2 | 0.6 | - 3.8
- 2.0 | | | | | | Frobisher Bay | 7 | - 1 | 14 | 1 | | -10.1 | | | | | | Gladman Point
Hall Beach | | - 1
- 2 | 11 | - 1
0 | 3.2 | 0.0 | | | | | | Longstaff Bluff | 5 | - 2 | 12 | 1 | 1 | - 5.9 | | | | | | Mackar Inlet Pond Inlet | 3 | - 2
X | 16 | - 5
- 1 | 0.0 | - 6.7 X | | | | | | Resolute | - 1 | - 4 | 4 | - 5 | 2.2 | - 4.8 | | | | | | Byron Bay
Cambridge Bay | 7 | - 2 | 20 | 1 | 4.0 | 10.5 | | | | | | Mould Bay | 1 | - 1 | 6 | - 3 | 1.7 | - 2.7 | | | | | | Sachs Harbour BRITISH COLUMBIA | 7 | 2 | 12 | 2 | 1.6 | - 3.7 | | | | | | Abbotsford | | - 2 | 23 | 7 | 26.4 | 17.4 | | | | | | Alert Bay
Amphitrite Point | 13 - | - 2
X | 19 | 7 10 | 17.6 | 7.5
X | | | | | | Blue River | М | X | M | М | M | X | | | | | | Bull Harbour
Burns Lake | 13 | - 1
X | 17
20P | 7
3P | 18.8
M | - 2.2
X | | | | | | Cape Scott | 13 | - 1 | 18 | 9 | 16.9 | -14.9 | | | | | | Cape St James | 13
M | O
X | 20
M | 10
M | 9.7 · | -10.5 | | | | | | Comox | 15 - | - 2 | 21 | 9 | 8.1 - | - 3.5 | | | | | | Cranbrook
Dease Lake | 15 - | - 3 | 26 23 | 5 | | 10.2 | | | | | | Estevan Point | М | M | M | M | M | М | | | | | | Ethelda Bay
Fort Nelson | 12 - | X 3 | 17 21 | 5 | M
34.6 | 24.9 | | | | | | Fort St John | 11 - | - 4 | 20 | 4 | 11.8 - | 1.2 | | | | | | Hope
Kamloops | M
17 - | X 3 | 22 26 | 9P
8 | 5.0 | 1.5 | | | | | | Langara | 12 - | - 1 | 15 | 10 | 10.4 - | -13.2 | | | | | | Lytton
Mackenzie | 18 - | 4 X | 26
17P | 8 5 | 0.0 - | 8.5
X | | | | | | Mc Innes Island | 14 | 0 | 18 | 10 | Commercial (N. 2716) | 23.6 | | | | | | Nanaimo A
Penticton | 15 | X 2 | 22 27 | 7 | M
10.4 | X 6. 1 | | | | | | Port Alberni | М | X | M | M | 10.4
M | 6. 1
X | | | | | | Port Hardy | 13 - | 1 | 18 | 8 | 12.0 - | 2.2 | | | | | | Prince George
Prince Rupert | 12 - | 2 | 19 | 3 5 | 41.8
52.6 - | 22.0 | | | | | | Puntzi Mountain | M | X | M | M | М | X | | | | | | Quesnel
Revelstoke | 13 - | | 21 25 | 7 8 | 39.8 | 22.8 | | | | | | Sandspit | 13]= | 1 | 19 | 11 | 18.4 | 7.1 | | | | | | P = extre | me v | alue | base | d on | less t | han 7 d | | | | | | ILUN DATA FOR THE | MECI | CI | אוועו | 3 000 | 10 0.1 | 1. 1 . AU | 16021 | |----------------------------------|------------------|-------------------------------|-------------------|---------|-----------------|------------------------|--------------| | | Temperature (°C) | | | | Precip | | | | | | OE | | | | 0 | | | Station | Q. | | E | a E | | Normal | | | | Average | Departure
from No. | Extreme | Extreme | 0 | Departure
from Norr | | | | Ave | Depar | X W | W Z | Total | Depar | | | Smithers | 13 | | 22 | 2 | 6.0 | (CGC 100) | Pet | | Stewart
Terrace | 13 | | | 8 7 | 4.3 | | P1c
Red | | Vancouver | 16 | - 2 | 22 | 9 | 18.4 | 11.3 | Sin | | Victoria
Williams Lake | 15
12 | | | 8 5 | 9.2 | 3.8
12.3 | Sid | | ALBERTA
Banft | 12 | - 2 | 24 | 2 | м | | The | | Calgary | 15 | 0 | 29 | 5 | 2.4 | - 9.1 | l'or | | Cold Lake
Coronation | 15 | - 1
- 1 | | 6 | 9.0 | - 5.1
- 2.4 | Tre | | Edmonton Intl | 13 | - 2 | 27 | 4 | 16.0 | 1.3 | Waw | | Edmonton Nameo | 14 | - 3
- 2 | 26
26 | 5 4 | 13.9 | - 0.3 | Wia | | Fort Chipewyan
Fort McMurray | 15 | 0 | The second second | 4 5 | M
12.5 | М | QUE | | Grande Prairie | 11 | - 4 | 24 | 4 | 13.3 | - 0.5 | Bag
Bai | | High Level
Jusper | 13 | - 1
- 3 | 27 22 | 5 | 19.5 | 14.8 | Bla | | Lac La Biche | М | X | М | M | M | X | Che | | Lethbridge
Medicine Hat | 18 | 0 | 31 32 | 6 5 | 8.6 | 1.9 | Ch i | | Peace River | 12 | - 3 | 24 | 5 | 3.5 | - 3.0 | Gri | | Red Deer
Rocky Mountain House | 13 | - 3
- 2 | 28
28 | 3 | 17.0 | 3.5 | Inu | | Slave Lake
Vermilion | 12 | - 2 | 22 | 3 | 22.4 | 6.5 | Lac | | Whitecourt | 15
11 | - 3 | 26
23 | 2 | 8.2 | 13.6 | Gra | | SASKATCHEWAN
Broadview | 18 | 18 | 32 | 5 | 8.4 | 8.4 | Mat | | Buffalo Narrows | 16 | 1 | 25 | 9 | 9.0 | -11.0 | Mon | | Collins Bay
Cree Lake | 15 | X | 24 25 | 8 | 9.4 | X | Na t
Ni t | | Eastend Cypress | М | X
O | М | м | м | x | Par | | Hudson Bay | 20
16 | 1 | 36
26 | 6 | 16.6
M | 4.2
M | Por | | Kindersley
La Ronge | 18 | - 1
1 | 30
28 | 7 | 8.2 | 5.8
9.3 | Qué
Ri v | | Meadow Lake | 16 | X. | 30 | 6 | 3.4 | X | Rob | | Moose Jaw
Nipawin | 17 | O! | 32
28 | 7 5 | 8.6 | 3.3
X | Sch | | North Battleford | 17 | 0 | 30 | 7 | 15.3 | 6.8 | She | | Prince Albert
Regina | 17 | 1 | 30
31 | 7 | 91.9 | 82. 2 | Ste
Val | | Rockglen
Saskatoon | M
18 | X | M
31 | M
8 | 15.0 | 7.6 | NEW | | Swift Current | 19 | 0 | 32 | 4 | М | M | Char | | Uranium City
Wynyard | 16 | 1 X | 28
29 | 7 8 | 3.0 | -10.4
X | Free | | Yorkton | 17 | 0 | 30 | 4 | TALBERT THE ST. | - 4.5 | Sali | | MANITOBA
Bissett | 16 | x | 25 | 2 | 28.0 | x | St S | | Brandon
Churchill | 17 | - 1
5 | 31 29 | 7 | 16.8
M | 1.4 | Amhie | | Dauphin | 18 | o | 32 | 2 | 28.5 | 15.0 | Gree | | Gillam
Gimli | 17 | X O | 28
27 | 5 | 21.4
37.0 | 14.8 | Sabl | | Grand Rapids | M | X | M | М | M | X | Shel | | Island Lake
Lynn Lake | 18 | 3 | 28 | 8 8 | 31.0 | 12.2 | Sydi | | Norway House
Pilot Mound | 17 | X O | 26 | 4 5 | 3.2 | 5.5 | Yaru | | Portage | 19 | 0 | 31 | 6 | 20.0 | 4.5 | Char | | The Pas Thompson | 18 | 3 | 27 | 7 2 | 47.500 S0000 I | - 4.9
-18.2 | Sum | | Winnipeg
ONTARIO | 18 | 0 | 30 | 4 | | - 6.6 | NEWF | | Armstrong | 15 | 0 | 27 | 0 | M | М | Arge | | Atikokan
Barrie | 15 - | - 2
X | 28
M | l
M | 0.0 -
M | -20.9 | Bona | | Big Trout Lake | 17 | 3 | 28 | 4 | 7.9 - | -14.9 | Burg | | Britt
Caribou Island | M | X | M
M | M | M | X | Comf | | Earlton
Geraldton | 16 | - 1 | 29 26 | 8 | 0.0 - | M
-26.4 | Deer | | Core Bay | 17 - | - 2 | 21 | 9 | 0.2 - | 10.2 | Gand
Port | | Kapuskasing
Kenora | 15 | 0 | 28 27 | 6 7 | 8.4 - | 15.5 | St A | | Kingston | 18 - | - 2 | 27 | 10 | М | M | St J | | Lansdowne
London | 17 - | 2 3 | 29 29 | 5 8 | THE STREET | 16.4 | St L
Step | | Moosonee
Mount Forest | 15 - | 0 2 | 30 27 | 8 7 | М | M
10.4 | Batt | | Muskoka | 16 - | 2 | 28 - | - 1 | м | 10.4
M | Churc | | Nagagami
North Bay | M
16 - | X
1 | M
27 | M 9 | M 3.2 - | 18.7 | Hope | | Ottawa | 18 - | | 30 | 10 | | 19.9 | Wabus | | ys X = no norma | l due | e to | shor | t per | lod | н - | not | | | | ASSESSMENT OF THE OWNER, WHEN | | | | | | | | | mpe | Drac' | Precip. | | | |--|----------|------------|--|-----------|--------------|-----------| | | 16 | 1 - | _ | 1 | 7. | | | Station' | | Norma | - | | | | | | Average | | ene | e He | - | | | | Ave | Depo | Extreme | Extreme | Total | | | Petawawa | 17 | X | 30 | 9 | 1.2 | | | Pickle Lake
Red Lake | 17 | - 1 | 25 | 4 | 11.8 | | | Simcoe
Sioux Lookout | 17 | 0.00 | 400 | P 8P | 5.2 | 1000 | | Sudbury | 17 | 0 | 30 | 9 | 4.4 | - | | Thunder Bay
Timmins | 15 | - 1 | 28 | 5 7 | 7.4 | - | | l'oronto
Trenton | 17 | 170 | | 9 | 1.0 | - | | Upsala
Wawa | 13 | | Day - Chillian | M
4 | 1.0 | | | Wiarton
Windsor | 16 | - 2 | 26 | 9 | 1.1 | -1 | | QUEBEC | | | | | 0.0 | - | | Bagotville
Baie Comeau | 17 | | | 10 | 20.2 | 1 | | Blanc Sablon
Border | 14
M | 1 | The state of s | 10
M | M | 3 1 | | Chevery | М | X | M | М | M | | | Chibougamau
Gaspé | 15
16 | X | 27 | 8 7 | 22.2 | | | Grindstone Island
Inukjuak | 18 | 0 2 | 1 | 14 | 10.7 | - | | Kuujjuaq
Ac Eon | 16
M | 4 | 25 | 4
M | 3.4
M | - | | Grande Riviere | 15 | X | 27 | 5 | 18.6 | 100 | | laniwaki
latagami | 16 | X | | 8 7 | 10.6
M | | | font-Joli
fontréal | 16
19 | - 1 | | 11 12 | 27.4 | -1 | | latashquan
II tchequon | 15
16 | 1 | 21 | 11 | 34.0 | | | arent | M | X | М | M | М | | | Port Menier
Poste-de-la-Baleine | 13 | 3 | 24 | M 7 | 17.2 | - | | uébec
ivière du Loup | 18
M | 0
M | | 10
M | 3.6
M | -2 | | loberval
schefferville | 17
15 | 1 4 | 29
25 | 10 | 26.4 | 4 | | Sept-Iles | 15 | 0 | 23 | 8 | 74.9 | 5 | | herbrooke
te Agathe des Monts | 17
15 | - 1 | 27
27 | 9 | 23.8 | -1 | | al D'Or
EW BRUNSWICK | 15 | - 1 | 28 | 8 | 14.8 | - | | harlo
hatham | 18
18 | 0 - 1 | 30 | 9 | 16.5 | - 2 | | redericton | 18 | 0 | 30 | 10 | 35.9 | 1 | | oncton
aint John | 17
16 | - 1 | 29 | 11 | 5.2 23.8 | -1 | | t Stephen
OVA SCOTIA | М | X | М | M - | М | | | mherst
ddy Point | M
19 | X | M
26 | M
13 | 75.0 | | | reenwood | 19 | 0 | 29 | 10 | 22.6 | 1 | | able Island
hearwater | 19 | - 1
- 1 | 22 24 | 16 | 37.8 | 38 | | helburne
ydney | 17 | X | 26
27 | 11 | 60.2
34.2 | 10 | | ruro
armouth | M
16 | M | 25P
25 | 10P
12 | M
38.4 | 13 | | RINCE EDWARD ISLAND | | | | | | | | harlottetown
ast Point | 19
M | 0
X | 26
M | 13
M | 33.1
M | 1 | | EWFOUNDLAND | 19 | 0 | 27 | 13 | 19.7 | - : | | rgentla
udger | 16
M | X | 22
M | 13
M | 9.5
M | | | onavista | 19 | 3 | 25 | 13 | 23.6 | 35 | | irgeo | М | X | M | M | M | | | omfort Cove | 17 | 1 | 26
21 | 10 | 42.2 | 12 | | er lake | 18 | 2 2 | 26
26 | 12 | 24.6 | 0 | | ort aux Basques
Albans | 15 | 0 | 20 | 11 | 30.6
M | 7 | | Anthony | 15 | x | 22 27 | 9 | 26.8 | -17 | | John's
Lawrence | 17 | 2 | 23 | 12 | 28.6 | 0 | | ephenville
ttle Harbour | 17 | 0 | 23 | 12 | 32.6
12.6 | 12 | | rtwright
urchill Falls | 14 | 1 3 | 25
25 | 6 | 53.0 | - 5
29 | | ose | 18 | 3 2 | 29 24 | 11 | 25.4 | 12 | | pedale
bush Lake | 16 | 4 | 24 | 10 | 47.7 | 24 | | ot available at pres | 8 t l | me | 811.11 | | | | | And the second s | | | | | | |