

AUGUST 26 ,1983

(Aussidispomble en trançais)

FOR THE PERIOD AUGUST 16-22, 1983

- Cost of fighting forest fires in Alberta about 50 million dollars lower than last year's

- Storms on the East Coast

- Millions of dollars spent to keep cool this summer

Cooling Degree-Days \qquad

WEEKLY TEMPERATURES EXTREMES (${ }^{\circ} \mathrm{C}$)

		MaxIMMM	MINIMUM
YUKON TERRITORY	20.2	Shingle Point	-10.0 Ogilvie
NORTHWEST TERRITORIES	22.3	Fort SImpson	-9.6 Broughton Island
BRITISH COLUMBIA	32.6	Lytton	-1.6 Puntzi Mountaln
ALbERTA	31.6	Medicine Hat	0.0 Banff
SASKATCHEWAN	35.7	Broadviow	Fort Chipewyan 2.9 Prince Albert
MANITOBA	37.2	Portage la Prairie	2.3 Thompson
ONTARIO	32.1	Atikokan Kenora	-0.6 Moosonee
QUEBEC	30.5	Bagotrillo	2.0 Kuuj Juaq
NEW BRUNSWICK	30.5	Chatham Frederlcton	7.7 Moncton
NOVA SCOTIA	30.0	Greenwood	9.1 Shelburne Western Head
PRINCE EDWARD ISLAND	28.4	Summerside	10.8 Summerside
NEWFOUNDLAND	29.4	Deer Lake	3.1 Wabush Lake
ACROSS THE NATION			
Warmest mean temperatu		21.4	Simcoe, ONT
coolest mean temperatu		-0.9	Broughton Island, NWT

ACROSS THE COUNTRY...

YukOn and Northwest Territorles

The weather turned cold; mean temperatures averaged 2 to 5 degrees below normal across the Territories. Frost occurred in many communitios, and on August 17, snow was observed on mountain tops at Whitehorse. Casslar recelved 5 cm of snow on the same day. Leaves were changing thelr colours in the Yukon. Precipitation amounts ranged from 3 mm in the far North to 25 mm in the southern Yukon. In Baffin Bay, the ice cover was more extensive than normal, and ice breakers were assisting ships travelling farther north.

British Columbia

Abundant sunshine and near normal temperatures prevalled. The forest fire index is on the rise, but no major forest fires were reported. Due to this year's relatively wet and unsettled fire season, $\$ 16$ million has been spent for fire controls compared to last year's $\$ 35$ million.

Prairies

Cooler than seasonable temperatures returned under generally sunny skies. The hot and dry weather of the previous weeks allowed graln crops to ripen too quidkly; as a result, the kernels did not flll-out sufficlently and lower ylelds can be expected. Harvesting was in full swing in all areas except the Peace River District. Seeding for next years winter wheat and rye crops in the south has been delayed until there is a significant improvement in the soll molsture content. All forest fires are under control. So far this year in Alberta less than $\$ 14 \mathrm{ml}$ Ilion has been spent on forest fire control, considerably less than last year's $\$ 63$ million.

Ontario

Southern Ontario enjoyed dry and warm weather while the northern areas experienced dull and damp conditions. A province-wide rainfall on August 21 produced $10-40 \mathrm{~mm}$ in the South and $10-20 \mathrm{~mm}$ in the North. The recent ralns have greatly benefitted apple orchards, although the

HEAVIEST WEEKLY PRECIPITATION (mm)

YUKON	14.8	Watson Lake
NORTHWEST TERRITORIES	12.1	Fort Rellance
BRITISH COLUMBIA	43.4	Prince Rupert
ALBERTA	21.3	Fort McMurray
SASKATCHEWAN	58.2	Collins Bay
MANITOBA		
ONJARIO	68.4	Norway House
QUEBEC	46.8	North Bay
NEW BRUNSWICK	52.4	Natashquan
NOWA SCOTIA	11.6	Salnt John
	20.4	Eddy Polnt
PRINCE EDWARD ISLAND	23.8	
NEWFOUNDLAND	81.1	Summerside

a look at agriculture in québec

According to The Federation of fruits and vegetables growers, consumers can expect to pay higher prices for vegetables and frults this year. The Federation blames the small harvests for the inflated prices at the market place. Prices are expected to be 100 per cent more than last year's for lettuce and potatoes. Delayed planting because of the wet spring weather
and slow crop growth due to the prolonged summer dry spell are responslble for the poor harvest. The yleld of the corn crop could be 40 per cent below last year's and the radish harvest may well be only 70 per cent of last year's. Saguenay and Lac Saint-Jean agricultural areas are affected the most by the poor growing weather, and also suffer from insect infestations.
drought has signlficantly decreased the size of the fruit. The early potato harvest has also been helped by the August ralns, however, the ylelds are stlll expected to be 30 per cent below normal. In addition, blue mold, the scourge of the 1981 tobacco crop, has reappeared in Norfolk County. But the disease is not expected to be a major problem this year because of the advanced stage of crop development.

If this warm weather continues, this summer should be the warmest in at least a decade.

Quabbec

Fair and hot weather predominated throughout Québec. Southwestern areas were fairly dry until August 22, when $10-15 \mathrm{~mm}$ of rain fell. Eastern and central locations recelved 20-50 mm of rain during the week. On August 20, strong winds gusting near $75 \mathrm{~km} / \mathrm{h}$ disrupted recreational boating in the St . Lawrence Valley; many small boats were damaged and some people had to be rescued. By the week's end, 22 forest fires were burning in Québec.

Atiantic Provinces

The weather was unsettled but warm in the Provinces. A series of weather systems crossing the East Coast produced moderate to heavy rainfalls. Most New foundland localities had 50 to 80 mm , saturating the fields. On August 21, winds in excess of $100 \mathrm{~km} / \mathrm{h}$ whipped the Maritimes. In New Brunswick, several communities were without electricity as the trees knocked down power Ilnes. Toppled trees also blocked many roads, snarling traffic for hours. At Chatham, a church roof was blown off. In the Hallfax harbour, a boating regatta had to be cancelled; several small boats capsized and a few boaters had to be rescued.

SOIL MOISTURE

Soll Molsture Index

A derived index mapped as a percentage of the assumed soll water holding capacity at each station. It is a relative Indicator of the molsture status of the soll.

100 = completely saturated
$50=50$ per cent of assumed holding capacity
$0=$ absolutely dry

TEMPERATURE ANOMALY FORECAST

Temperature Anomaly Forecast

The temperature anomaly forecast, for each of the 70 Canadian stations, is prepared by searching historical weather maps to find cases similar to the present one. The principle used is that a prediction for the next 15 days may be based on what is known to have actually happened during the 15 -day anomaly perlods. After the five best sets are selected, the surface temperature anomalles are calculated. Thls results in flive separate forecasts, which are averaged to provide the consensus forecast deplcted.
++ much above normal

- above normal

N normal

- below normal
- much below normal

COOLIMG DEGREE-DAYS AND THE SUMMER OF 1983

by
D.W. Gullett

Canadian ClImate Centre

There are many Indicators of warmth and cold used in cllmatology but none is more widely used and accepted than the concept of degree days. Many types of degree days have been routinely calculated and monltored throughout Canada and the Unlted States for many years and sufficlent data are now avallable to prepare long-term averages or normals elther directly or by reverting to the original source of temperature records.

The degree day may be defined as the number of degrees that the dally mean temperature (cdally maximum temperature plus dally min imum temperature)/2) is above or below a given base temperature. The dally degree day values thus calculated are accumulated monthly and/or seasonally and are then used in many different climatic appllcations.

The heating degree-days, using a base temperature of $18.0^{\circ} \mathrm{C}$, is the most famillar and is often informally referred to as the number of degrees of "cold". The larger the value, the colder the average temperature for the period in question. It is well established that heating degreedays are directly related to heatIng fuel consumption, however, discussion of this type of degree day wlll be left to a later occasion.

Of particular concern at thls time of year is the reciprocal of heating degree days; the coolling degree-days. Coolling degree-days are simply the accumulation of the number of degrees that the dally mean temperature is above some base value, usually $18^{\circ} \mathrm{C}$. Just as the energy required for heating is roughly proportional to the number of heating degree-days for a given period, so the energy required for coolling is roughly proportional to the number of cooling degree-days.

This relationship is not a perfect one however, as it ignores any Influence of wind, internal heat sources, and more Importantly, the humidity of the outside alr. The need for coolling, and its dependence upon humidity makes cooling degree-days somewhat less rellable than some other types of degree days, nevertheless the relationship is strong enough for many appllcations. The arbitrary cholce of base $18^{\circ} \mathrm{C}$ is also subject to debate as it does not allow for any "energy-free" perlod when nelther heating nor alr conditioning is required. Sometimes a different threshold, such as $24^{\circ} \mathrm{C}$, is selected to take this factor into consideration.

Coolling degree-days are not usually significant through most of Canada. Calculation of C.D.D. normals from climate records reveals a few comparatively small geographlc areas where monitoring of coolling degree-days to assess summer energy requirements is practicable. These areas comprise a fairly narrow band through extreme southern Québec and Ontarlo, extreme southern Pralrie provinces, and the central southern Interior of British Columbla, including Kamloops and the Okanagan Valley. When one considers that nearly one-third of Canada's population lives there, the area's significance as a major energy consumer becomes readlly apparent. Coolling degree-days are thus used by energy planners and engineers to estimate probable energy requirements for alr conditioning much as heating degree-days are used to monitor energy requirements for heating purpose. The higher the number of coolling degree-days for a given period, the greater the requirement to artificlally cool our Industrial, commerical and residential bulld-

Ings. Of course, as mentioned previously, the calculation of coolling degree-days ignores the Important humidity factor. The comblined effects of high temeprature and humidity are known to create very uncomfortable conditions for most human belngs. Thls phenomenon is quantified into Indices of relative human discomfort known as humidex values. Humidex calculation and uses were discussed at some length in a previous issue of Climatic Perspectives (see Humidex; $O P$, Vol. 5, No. 30).

July 1983 with its "Heat Wave In Ontario" (CP, Vol. 5, No. 29) has contributed to a long hot summer in Ontarlo. Coolling degreedays tabulations have been prepared for major centres across Canada for the months of June and July and are shown in the accompanying table along with normal values and per cent departures from these normals. The densely populated and Industrial areas have experienced significant positive cooling degree-days anomalles this summer resulting in higher than usual summer energy consumption. Toronto Hydro has observed a significant increase in the energy requirement this summer, primarily due to the hot weather. A new all-time record peak load for the Toronto area was set in June and was subsequently broken in mid-July. The Utility Company expects this "summer peak", alded by the mild winter earller this year, to be the high for 1983. They also polnt out that although summer peak loads are not rare they are much less common than the "traditional" winter occurrences when heating demands are heavy. Of course, many additional factors such as demographic changes and other non-climatic factors must be considered when examining energy consumption
statistics. Ontario Hydro spokesmen belleve that a 'less energy consclous' public, this year as opposed to recent past years, have also contributed to an Increased province-wide load. June figures show a 10 per cent Increase over the same month last year while the July results have not yet been released. Manitoba Hydro, in a recent press release, indicated similar findings with electrical energy consumption for July up about 13 per cent over the same month last year. They also estimated that additional alr conditioning requirements accounted for about 48 per cent of their total increase this summer.

During the month of June,
coolling degree-days were significantly above normal across the southern portions of the country from the Maritimes to Winnipeg. From southern Saskatchewan westward through the Okanagan Valley, rather cool conditions prevalled with below normal cooling degreedays accumulations. These ranged from near normal at Regina to only 40 per cent of normal in the Kelowna-Penticton area.

The warm weather of June in eastern Canada continued into July. In the Maritimes coolling degree-days accumulations ranged from near normal to 36 per cent above normal at St. John's. Southern Québec experienced only silghtly above normal values while In southern Ontario (from the

Ottawa Valley to Windsor) accumulations ranged from 35 to 55 per cent above the norm. Thunder Bay had a whopping 138 per cent above normal, while on the southern Pralries, the coolling degree-days ranged from 97 per cent above normal at Winnlpeg to 30 per cent above at Regina. The Okanagan Valley, however, continued to be on the cool side with only 25 to 50 per cent of the July normals.

It appears that the trend, has for the most part, continued through to the middle of August. At any rate, the summer of 1983 will be remembered not only for Its superb vacation weather but also for its increased demands on Canada's energy resources.

COOLING DEGREE DAYS

($18^{\circ} \mathrm{C}$)

Station	June 1983			July 1983		
	Actual	Normal	\% of Normal	Actual	Normal	\% of Normal
St. John's A	2.4	1.8	133	19.9	14.6	136
Shearwater A	20.3	4.4	461	26.4	19.8	133
Frederlcton A	28.5	24.2	118	54.1	61.9	87
Sherbrooke A	35.5	18.9	188	35.6	37.8	94
St. Hubert A	67.9	47.2	144	105.9	92.1	114
Montréal Int A	70.2	49.8	141	111.1	98.7	113
Ottawa Int A	86.5	45.2	191	122.0	90.6	135
Toronto (Clty)	94.7	62.1	152	169.2	126.5	134
Toronto Int A	59.5	43.7	136	142.4	91.5	156
Hamilton A	71.7	46.1	156	135.8	89.3	152
St. Catherine A	85.1	61.7	138	167.6	121.0	139
Simcoes	67.5	50.6	133	127.6	92.5	138
London A	64.7	46.9	138	131.6	85.0	155
Windsor A	102.9	79.4	130	185.3	133.2	139
Sudbury A	55.2	23.7	232	87.9	51.9	169
Thunder Bay A	13.5	6.8	199	77.5	32.5	238
Winnipeg Int A	38.1	34.2	111	141.9	71.9	197
Regina A	20.5	20.5	100	75.0	57.6	130
Calgary Int A	1.2	5.1	24	7.7	18.2	42
Edmonton Mun A	12.5	12.2	102	28.0	31.5	89
Kamloops A	24.3	39.9	61	57.2	98.5	58
Kelowna A	6.2	14.8	42	M	50.0	M
Penticton A	14.8	29.3	51	24.4	84.6	29
Vancouver Int A	0.6	3.8	16	3.6	17.9	20
Victoria Int A	0.0	2.5	0	3.3	10.5	31

HISTORICALLY, THIS WEEK ...

August 15-16, 1971

Extensive property damage resulted from Hurricane Beth which had lost punlshing winds but retained exceptional molsture content as it moved over Nova Scotia. Flooding from ralnfall, which reached 291.7 mm at the Hallfax International Alrport, washed out highways and bridges, temporarily isolating communities in eastern malnland Nova Scotla, wrought havoc with bulldings of all kinds In the Hallfax/Dartmouth twin clty complex and caused considerable farm crop destruction.

August 16, 1956
A severe hallstorm, assoclated with tornado moved over a 192 km path from Elkhorn to Crystal

City, Man. causing $\$ 15,000,000$ damage.

August 19, 1968

A severe hallstorm was reported in the Lambeth, Ont. area causing extensive damage to crops and property. Four hours after the storm, ice was still plled 100 to 175 mlillmetres deep on the streets.

August 20, 1970

Winds of tornado-like intensity struck the Sudbury, Ont. area at about 8:30 a.m. A long path of destruction resulted, and in the Immedlate Sudbury area four persons were killed, 750 were left homeless and damages exceeded $\$ 6,000,000$.

August 22, 1968

At St. Paul, Alta. a hallstorm caused extensive damage. The roads were plled 15 centimetres high with 12-mililimetres pellets.

STORM TRACKS

TEMPERATURE, PRECIPITATION AND BRIGHT SUNSHINE DATA FOR THE WEEK ENDING 0600 GNT AUGUST 23, 1983

STATIOM	TEMP				PRECIP		SUN	STATION	TEMP				PRECIP		SUN
	Av	Dp	Mx	Mn	Tp	506	H		Av	Dp	Mx	Mn	Tp	SOG	H
YUKON TERRITORY								Thompson	13	0	23	2	37.8	M	36.3
Dawson	10	- 3	17	- 1	6.6	M	M	Winnlpeg	19	1.	36	9	M	M	58.4
Mayo A	10	-1	17	- 1	8.4	M	M	ONTARIO							
Watson Lake	11	- 2	18	2	14.8	M	40.5	Big Trout Lake	14	0	25	7	M	M	M
Whitehorse	11	-1	18	3	3.4	M	M	Earlton	19	4	29	9	M	M	M
MORTNWEST TERRIT	ORIES							Kapuskasing	17	3	30	5	11.8	M	M
Fort Smith	12	- 2	21	- 1	14.7	M	M	Kenora	19	2	32	12	29.2	M	M
Inuvik	10	-1	22	1	0.8	M	53.2	London	21	1	28	12	6.8	M	M
Norman Wells	12	- 1	22	4	1.8	M	M	Moosonee	14	0	26	-1	17.7	M	45.2
Yellowknife	12	- 2	18	6	3.2	M	M	Muskoka	20	3	29	6	M	M	M
Baker Lake	7	- 2	12	1	8.7	M	M	North Bay	19	2	27	9	46.8	M	44.2
Cape Dyer	2	-2	6	-1	1.0	M	M	Ottawa	21	2	31	13	7.9	M	43.5
Clyde	2	- 1	6	0	3.8	M	5.4	Plckle Lake	17	3	29	9	9.8	M	M
Frobisher Bay	5	- 2	9	2	4.6	M	21.3	Red Lake	18	1	30	10	16.8	M	56.4
Alert	0	0	4	-4	M	7.0	7.5	Sudbury	19	3	28	11	30.9	M	M
Eureka	3	0	8	-1	6.2	M	37.9	Thunder Bay	20	4	30	12	24.9	M	M
Hall Beach	5	0	10	0	8.6	M	M	Timmins	17	2	30	6	40.6	M	M
Resolute	2	-1	9	- 3	0.0	M	M	Toronto	21	2	30	12	30.0	M	M
Cambridge Bay	5	- 2	9	0	2.8	M	27.2	Trenton	21	1	30	10	0.0	M	M
Mould Bay	3	1	10	-2	0.0	M	M	Wl arton	21	3	31	11	8.9	M	43.2
Sachs Harbour	4	- 1	12	- 3	0.2	M	M	WIndsor	24	3	32	17	0.4	M	M
ERITISH COLUMBI								Quebec							
Cape St. James	15	2	21	12	4.8	M	M	Bagotville	19	4	31	10	7.2	M	M
Cranbrook	18	2	28	7	0.0	M	83.1	Blanc-Sablon	12	0	17	6	16.0	M	12.8
Fort Nelson	12	- 2	24	2	10.3	M	33.5	I nuk Juak	9	1	16	4	4.2	M	49.2
Fort St. John	13	-1	23	4	3.6	M	M	KuujJuaq	9	0	19	2	7.8	M	19.5
Kamloops	20	0	30	8	1.4	M	M	KuuJ Juarapik	11	1	21	5	35.4	M	16.9
Penticton	19	0	30	8	0.0	M	M	Man IwakI	18	2	28	8	8.8	M	44.3
Port Hardy	14	1	21	8	8.0	M	59.6	Mont-Joll	18	2	29	9	23.6	M	M
Prince George	13	-1	24	2	13.0	M	M	Montréal	21	2	30	11	9.9	M	50.0
Prince Rupert	14	1	18	9	43.4	M	40.7	Natashquan	15	2	23	9	52.4	M	36.9
Revel stoke	18	1	27	8	0.4	M	73.8	Nitchequon	12	1	24	5	42.2	M	36.2
Smithers	13	-1	24	2	10.9	M	M	Québec	20	3	29	9	2.0	M	54.1
Vancouver	17	0	22	11.	0.0	M	81.1	Schefferville	11	1	25	4	32.1	M	41.9
Victorla	17	1	25	9	0.0	M	89.6	Sept-1 les	15	2	27	9	30.8	M	46.8
Willlams Lake	13	-2	24	2	2.2	M	M	Sherbrooke	18	2	27	7	11.6	M	49.0
ALBERTA								Val-d'Or	18	3	28	7	25.4	M	45.2
Calgary	15	0	28	5	33.0	M	77.4	NEW BRUNSWICX							
Cold Lake	14	- 2	26	3	0.6	M	M	Charlo	18	2	30	9	M	M	47.4
Coronation	15	-1	26	2	8.8	M	M	Fredericton	20	2	31	9	5.0	M	M
Edmonton Namao	14	- 2	25	4	4.5	M	M	Saint John	18	2	26	12	11.6	M	50.4
Fort McMurray	13	-2	25	2	21.3	M	62.2	MOVA SCOTIA							
Jasper	13	-1	25	1	0.8	M	70.0	Greenwood	20	1	30	11	8.4	M	M
Lethbridge	18	1	30	4	1.8	M	M	Shearwater	19	1	27	12	2.8	M	52.6
Medicine Hat	20	1	32	6	2.0	M	79.9	Sydney	19	1	29	13	15.0	M	42.3
Peace River SASKATCHEWAN	12	- 2	22	3	9.3	M	M	Yarmouth PRINCE EDWARD 1	16	0	24	11	2.8	M	M
Cree Lake	13	X	21	6	19.8	M	54.7	Charlottetown	19	1	27	11	19.3	M	M
Estevan	21	2	35	8	20.5	M	56.9	Summerside	20	1	28	11	23.8	M	44.1
La Ronge	15	1	25	4	19.5	M	M	NEWFOUNOLAND							
Regina	19	1	33	6	0.4	M	69.0	Gander	15	- 1	26	8	50.8	M	19.2
Saskatoon	17	0	27	6	16.6	M	M	Port aux Basques	16	1	20	10	42.8	M	M
Swift Current	18	0	29	5	3.8	M	76.4	St. John's	16	0	26	10	53.0	M	23.4
Yorkton	18	1	33	6	0.0	M	75.5	St. Lawrence	16	2	21	11	53.4	M	M
MANP TOBA								Cartwright	12	0	25	5	18.8	M	M
Brandon	18	1	34	7	37.4	M	M	Goose	14	0	26	5	18.0	M	36.8
Churchill	9	- 2	21	5	37.8	M	13.0	Hopedale	10	- 1	21	5	27.0	M	M
The Pas	15	-1	25	7	24.9	M	M								

[^0]SOG $=$ snow depth on ground (cm), last day of the perlod $\mathrm{H}=$ weekly total bright sunshine (hrs)
$X=$ not observed
$P=$ extreme value based on less than 7 days
$M=$ not avallable at press time

[^0]: $A v=$ weekly mean temperature (${ }^{\circ} \mathrm{C}$)
 $M x$ = weekly extreme maximum temperature (${ }^{\circ} \mathrm{C}$)
 $M n=$ weekly extreme minimum temperature (${ }^{\circ} \mathrm{C}$)
 $T p=$ weekly total precipitation (mm)
 $D_{p}=$ Departure of mean temperature from normal (${ }^{\circ} \mathrm{C}$)

