

SEPTEMBER 23,1983
(Aussidisponible en français)
VOL. 5 NO. 38
FOR THE PERIOD SEPTEMBER 13-19, 1983

- Frost covers most of Canada

An influx of very cold air brought sub-freezing temperatures from British Columbia to the Maritimes. About 90 per cent of the harvest is complete and no major frost damage is expected. During the weekend another outbreak of Arctic air produced record cold on the Prairies. In Alberta, 15 record low temperatures were set; at Lacombe, overnight readings fell to -7°. Average first day of frost across Canada on page 5 .

WEEKLY TEMPERATURES EXTREMES ($\left.{ }^{\circ} \mathrm{C}\right)$

		MaxImUM
YUKON TERRITORY	15.1	Dawson
NORTHWEST TERRITORIES	19.4	Fort SImpson
BRITISH COLUMBIA	25.3	Lytton
ALBERTA	24.6	Medicine Hat
SASKATCHEWAN	22.2	SwIft Current
MANITOBA	18.1	Hecla IsIand
ONIARIO		WInnipeg
QUEBEC	31.0	WIndsor
NEW BRUNSWICK	24.4	Sherbrooke
NOVA SCOTIA	20.6	Fredericton
	28.4	Shearwater
PRINCE EDWARD ISLAND	18.4	Summerside
NEWFOUNDLAND	19.6	Gander

MINIMUM

-10.8 Burwash
-17.8 Alert
-7.1 Puntzl Mountain
-6.7 High Level
-6.0 Eastend Cypress
-2.1 Dauphin
-3.0 Moosonee
-3.6 Matagami
-0.4 St. Stephen
0.3 Truro
5.5 Char lottetown
-1.0 Goose

ACROSS THE NATION

Warmest mean temperature
Coolest mean temperature
18.0
-8.5

Windsor, ONT
Alert, NWT

HEAVIEST WEEKLY PRECIPITATION (mm)

YUKON	5.0	Whitehorse
NORTHWEST TERRITORIES	20.2	Jenny LInd
BRITISH COLUMBIA	62.3	Prince Rupert
ALBERTA	34.6	Vermilion
SASKATCHEWAN	55.2	Collins Bay
MANITOBA		
ONIARIO	60.0	Lynn Lake
QUEBEC	60.2	Brit+
NEW BRUNSWICK	38.0	Québec
NOVA SCOTIA	22.2	St. Stephen
	61.2	Eddy Point
PRINCE EDWARD ISLAND	48.6	
NEWFOUNDLAND	39.9	Summerside

EL NIÑO

Sea surface temperatures in the equatorial mid-Pacific Ocean have been returning back to normal. Surface water tempratures along the western coast of South America have dropped from 7° above normal last June to
about 3° above normal in late August. The area of warmer waters now lies west of $130^{\circ} \mathrm{W}$. The easterly trade winds and the pressure differences on the opposite sides of the Pacific Ocean are near normal.
proved beneficlal to the late summer crops such as cauliflower, it hindered the harvest of mature crops. In the Niagara Peninsula, tender fruit harvest is expected to be one of the best. Both peach and pear ylelds were good and the growth of the grapes was 7 to 10 days ahead of last year's.

The arrival of cool, rainy weather has helped control major forest fires in Northwestern Ontario - a few large fires were still burnling north of the Lakes of Woods area.

Quábec

Frost covered most of southwestern Quebec between the 13 th and the 16th of September. Mean temperatures were 2 to 3 degrees below normal. The temperatures fell near -2° at several southern locations. The prolonged dry spell came to an end in the South during the weekend. Most of the stations recelved between 20 and 30 mm of rain. Montréal had 33 mm - an amount recelved durIng last August.

The hay harvest was complete, and the yleld was considerably lower than last year's. In the Ottawa area, tobacco harvest was described as good to excellent.

Atlantic Provinces

Mean temperatures were about 2° below normal across the Provinces. Except for the weekend rain, the weather was malnly sunny. The dry weather helped the farmers catch up on their delayed harvesting in New found land.

Frost covered part of Nova Scotia on September 16. No major crop losses were reported; however, many home gardens suffered extensive damage.

Between the 14th and the 16th of September, overnight temperatures fell near -2° at numerous New Brunswick communities; for example, at st-Quentin, the temperatures dropped to -3°.

In Nova Scotia, the late July ralnfall was credited for an excellent apple crop, and in Prince Edward Island, the graln harvest was about 90 per cent complete.

SOIL MOISTURE

Soll Molsture Index

A derived index mapped as a percentage of the assumed soll water holding capacity at each station. It is a relative indicator of the mol sture status of the soll.

100 = completely saturated
$50=50$ per cent of assumed holding capacity
$0=$ absolutely dry

TEMPERATURE ANOMALY FORECAST

Temperature Anomaly Forecast
The temperature anomaly forecast, for each of the 70 Canadian stations, is prepared by searching historical weather maps to find cases similar to the present one. The princlple used is that a prediction for the next 15 days may be based on what is known to have actually happened during the 15 -day anomaly perlods. After the five best sets are selected, the surface temperature anomalies are calculated. Thls results in five separate forecasts, which are averaged to provide the consensus forecast depicted.
++ much above normal
$+\quad$ above normal
N normal

- below normal
- much below normal

STORM TRACKS

TEMPERATURE, PRECIPITATION AND BRIGHT SUNSHINE DATA FOR THE WEEK ENDING 0600 GMT SEPTEMBER 20, 1983

STATION	TEMP				PRECIP		SUN	STATION	TEMP				PRECIP		SUN
	Av	Dp	Mx	Mn	Tp	SOS	H		Ar	Dp	Mx	Mn	Tp	S06	H
Yuron territory Dawson								Thompson Winnlpeg	10	- 2	15 18	-2	58.7 8.7	M M	30.9
Dawson Mayo A	4	-2 -3	15 15	-8	0.0 2.0	M	M M	Winnipeg ONTARIO	10		18	1	8.2	M	25.1
Watson Lake	4	- 4	13	- 6	1.6	M	30.0	Big Trout Lake	7	- 2	12	1	22.1	M	M
Whitehorse	5	- 3	13	- 5	5.0	M	34.2	Earlton		- 2	21	-1	M	M	M
NORTHWEST TERRI	ORIE							Kapuskasing		- 2	17	0	4.5	M	M
Fort Smith	6	3	16	- 4	4.2	M	32.3	Kenora	10	- 2	16		7.7	M	M
Inuvik	9	5	17	-8	2.3	M	34.4	London	15	- 1	27	3	36.0	M	29.2
Norman Wells	5	- 2	17	- 2	0.0	M	27.1	Moosonee	7	- 3	17	- 3	17.3	M	M
Yellowknife	6	1	15	0	4.4	M	M	Muskoka	12	- 1	21	1	M	M	M
Baker Lake	6	4	13	- 1	9.3	M	32.3	North Bay	11	- 2	19	3	19.8	M	33.3
Cape Dyer	2	3	7	- 3	0.0	M	M	Ottawa	14	0	23	6	12.6	M	44.5
Clyde	2	3	13	- 3	0.0	M	57.8	Pickle Lake	8	- 3	15	- 2	11.0	M	M
Froblsher Bay	3	0	10	- 5	0.0	M	41.1	Red Lake	9	- 3	15	- 2	4.1	M	37.8
Alert	8	3	3	-18	2.8	7.0	36.0	Sudbury	11	- 2	20	3	27.3	M	32.3
Eureka	5	3	4	-12	2.9	2.0	27.7	Thunder Bay	9	- 2	18	0	11.6	M	24.1
Hall Beach	2	2	8	- 3	0.0	M	M	Timmins	8	-	18	- 2	6.4	M	,
Resolute	2	3	5	-8	13.6	M	5.7	Toronto	14	- 2	24	3	36.8	M	M
Cambridge Bay	3	3	13	- 6	5.8	1.0	37.7	Trenton	15	0	24	5	22.6	M	M
Mould Bay	7	1	- 1	-15	5.8	4.0	M	Wi arton	13	- 2	25	3	35.6	M	25.0
Sachs Harbour	2	0	8	-10	2.8	4.0	M	WI ndsor	18	0	31	10	23.8	M	M
BRITISH COLUMBIA								QUEBEC							
Cape St. James	12	1	16	7	22.2	M	M	Bagotville	9	- 2	21	- 1	11.2	M	M
Cr anbrook	9	- 2	21	- 4	0.4	M	50.1	Bl anc-Sablon	8	0	15	0	9.6	M	M
Fort Nel son	7	-2	18	- 3	4.2	M	46.7	Inukjuak	6	1	13	1	6.2	M	27.5
Fort St. John	6	- 3	16	-2	12.3	M	M	Kuuj juaq	5	0	12	- 2	1.9	M	22.9
Kamloops	12	- 3	24	1	7.8	M	39.7	Kuuj juarap Ik	6	- 1	14	0	23.1	M	31.5
Penticton	13	-1	24	2	M	M	M	ManiwakI	11	0	21	1	28.8	M	32.8
Port Hardy	11	0	17	3	19.6	M	38.8	Mont-Joli	10	- 1	21	0	7.8	M	42.2
Prince George	7	- 3	16	- 6	19.5	M	35.6	Montréal	14	- 1	24	3	32.5	M	35.1
Prince Rupert	10	- 1	15	2	62.3	M	M	Natashquan	9	0	15	1	12.8	M	46.2
Revelstoke	10	- 2	18	- 1	7.1	M	32.0	Nitchequon	6	- 1	11	0	17.4	M	32.5
Smithers	6	- 4	15	- 3	16.1	M	M	Québec	11	- 1	24	1	38.0	M	37.0
Vancouver	13	- 1	21	,	4.2	M	52.6	Schefferville	5	0	11	- 2	23.8	M	32.9
Victorla	13	- 1	19	4	17.0	M	,	Sept-11es	9	- 1	17		23.0	M	39.2
Willlams Lake	7	- 3	20	-4	10.1	M	M	Sherbrooke	10	- 1	24	- 2	17.1	M	38.2
ALBERTA								Val-d'Or	8	- 2	19	- 3	16.0	M	32.7
Calgary	8	- 2	21	- 4	1.6	M	53.5	NEW BRUNSWICK							
Cold Lake	6	- 4	15	- 3	25.0	M	14.7	Charlo	10	- 1	17	2	8.3	M	41.1
Coronation	7	-4	17	- 3	10.0	M	30.9	Fredericton	11	- 1	21	1	10.8	M	M
Edmonton Namao	7	- 4	18	- 5	10.0	M	M	Saint John	12	0	20	4	15.8	M	35.7
Fort McMurray	6	- 3	16	0	8.8	M	17.1	NOVA SCOTIA							
Jasper	6	- 4	16	- 5	10.6	M	29.4	Greenwood	13	0	24	3	27.0	M	M
Lethbridge	10	-2	23	-2	8.6	M	M	Shearwater	16	1	28	7	18.2	M	
Medicine Hat	10	-3	25	- 3	0.6	M	M	Sydney	12	-	21	4	46.4	M	34.8
Peace River SASKATCHEWAN	6	- 3	17	-5	6.2	M	M	Yarmouth	14	0	22	6	11.4	M	32.3
SASKATCHEWAN Cree Lake								PRINCE EDWARD ISL							
Cree Lake	7	x	15	- 1	22.8	M	M	Charlottetown	13	0	18	6	36.0	M	
Estevan	9	- 3	18	0	10.0	M	M	Summerside	13	- 1	18	6	48.6	M	34.8
La Ronge	8	- 1	17	- 1	37.4	M	M	NEWFOUNDLAND							
Regina	8	- 3	18	- 1	M	M	M	Gander	10	- 1	20	3	4.2	M	39.9
Saskatoon	8	- 3	17	- 1	16.4	M	M	Port aux Basques	12	,	18	7	11.6	M	M
Swlit Current	8	- 3	22	-2	M	M	23.2	St. John's	10	- 1	18	2	39.9	M	M
Yorkton	8	- 3	16	1	M	M	M	St. Lawrence	11	0	19	3	26.0	M	M
MANITOBA								Cartwright	7	- 2	13	1	16.8	M	M
Brandon	9	- 2	16	1	18.4	M		Goose	8	- 2	16		7.6	M	32.7
Churchlll	6	0	14	0	31.2	M	37.3	Hopedale	5	- 3	11	0	10.9	M	M
The Pas	9	- 2	16	1	26.1	M	24.7								
$A v=$ weekly mean temperature (${ }^{\circ} \mathrm{C}$) $M x=$ weekly extreme maximum temperature $\left({ }^{\circ} \mathrm{C}\right)$ $M n=$ weekly extreme minimum temperature (${ }^{\circ} \mathrm{C}$) $T p=$ weekly total precipitation (mm) $\mathrm{Dp}=$ Departure of mean temperature from normal (${ }^{\circ} \mathrm{C}$)								SOG = snow depth on ground (cm), last day of the perlod $\mathrm{H}=$ weekly total bright sunshine (hrs)							
								X $=$ not observed							
								$P=$ extreme value based on less than 7 days							
								$M=$ not avallable at press time							

Canadian Climate Centre Atmospheric Environment Service 4905 bufferln Street Downsulew, Ontario CANADA MBH 5 T4 (416) 667-4711/4906	Annual subscription rate for weekly Issues--$\$ 35.00$ Annual subscription rate for one issue per month including monthly supplement--- $\$ 10.00$

EDITOR: A. Shabbar ASSISTANT EDITOR: R. Sarrazin WRITER: A. RadomskI

