
of dollars worth of property damage both along the mid-coast and th central interior. Fishing boat capsized, houses were damaged an power and telephone lines were down ed. Several fires fanned by stron winds threatened populated areas i the central interior.

Prairie Provinces

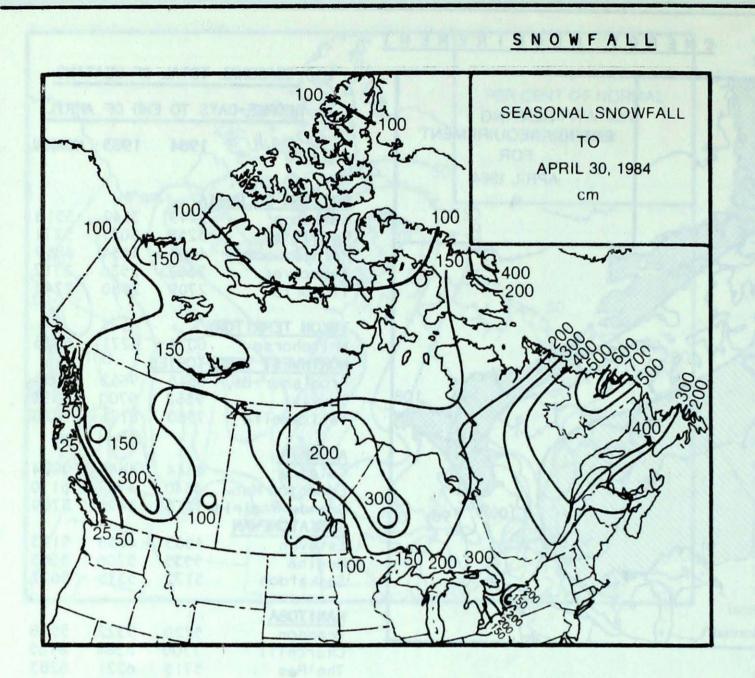
April was a warm month overal and the fourth consecutive mont with above normal temperatures i Alberta. During the first 3 weeks o the month many new temperature re cords were broken across th Prairies. The mercury climbed to 30 both at Edmonton and Lethbridge of April 16. It was very dry in south ern Manitoba until the middle of th month, depleting agricultural wate supplies and resulting in one of th worst spring fire seasons on record Two major storms brought much neede precipitation to eastern Saskat chewan and southern Manitoba durin the latter part of the month. Th first disturbance on April 11 gav 20 to 40 millimetres of rain. Th second storm system on April 27 an 28 dumped 30 to 70 millimetres of precipitation, including up to 40 of of snow in southwestern Manitoba an wind gusts to 115 km/h. This was th worst blizzard in recent memor closing highways with 2-metre drifand causing more than \$6 - millic damage to power and telephone line: Several new snowfall records we established in Manitoba.

Ontario

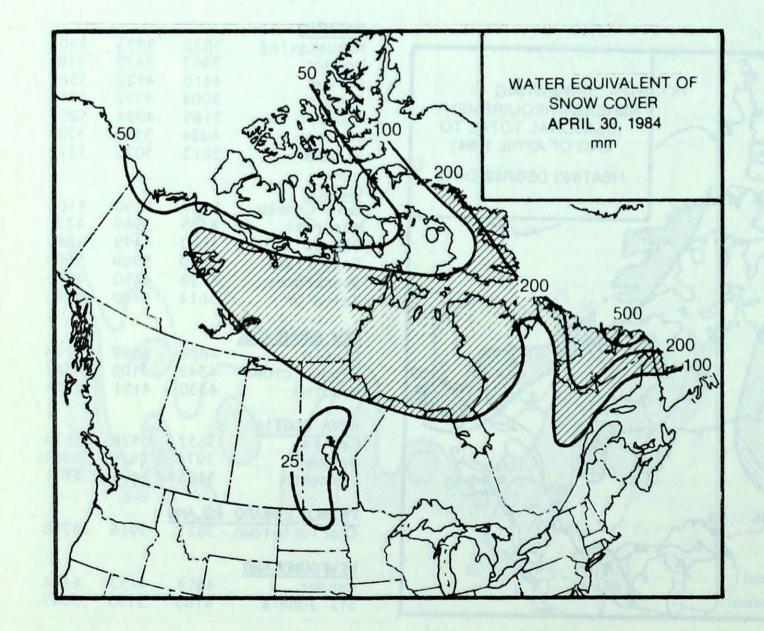
Record-warmth and plenty sunshine dominated Northern O tario's weather, mean temperatur were 4 to 6 degrees above normal a many stations established the warmest April on record. In t central regions, the values were to 4 degrees above average - ni enough to break 30 year old reco at several locations. In Southe Ontario, the readings were slight above normal. Precipitation was extremely in the North; many locales receiv only 50 to 75 per cent of the normal amount. No precipitation f at Trout Lake for a stretch of weeks. Central and Southern ar had their normal share, howev southeastern sites recorded ...Cont'd on page

80

nty


rati

of tion tch arn


SEASONAL DEGREE-DA			THE PARTY
Sala and	1984	1983	NORMAL
BRITISH COLUMB Kamloops Penticton Prince George Vancouver Victoria	IA 3449 3258 4604 2667 2709	3142 3077 4434 2536 2580	3518 3271 4859 2712 2747
YUKON TERRITOR Whitehorse NORTHWEST TERR Frobisher Bay Inuvik Yellowknife	Y 6074	6271	6326 8934 9394 7870
ALBERTA Calgary Edmonton Mun. Grande Prairie SASKATCHEWAN Estevan Regina	4863 5535	4448 4749 4495 4838 5206	4884 5170 5709 5133 5965
Saskatoon MANITOBA Brandon Churchill The Pas Winnipeg	5172 5220 7700 5715 5267	5375 5322 8384 6221 5096	5672 5578 8185 6283 5485
ONTARIO Kapuskasing London Ottawa Sudbury Thunder Bay Toronto Windsor	5822 3967 4410 5004 5165 4034 3613	5853 3475 4122 4752 4994 3565 3076	5903 3785 3385 5060 5253 3783 3372
QUEBEC Bale Comeau Montreal Quebec Sept-lles Sherbrooke Val-d'Or	5157 4335 4170 5690 4738 5614	5250 3969 4499 5569 4450 5480	5106 4224 4242 5605 4840 5718
NEW BRUNSWICK Charlo Fredericton Moncton	4888 4342 4330	4839 4105 4151	4793 4342 4332

	90 WARM
and	A The A State Toosed
-	103/ 103/ 103/ 103/
	A The second and the
-	Less than or equal to 95% of normal
10	More than or equal to 105% of normal

	ALL CONTIN				
1000	OVA SCOTIA		-		
H	alifax	3632	3528	3673	
S	ydney	3974	3829	3961	
Y	armouth	3486	3608	3771	
P	RINCE EDWARD	ISLAND			
C	harlottetown	3821	3946	3710	
N	EWFOUNDLAND				
	ander	4614	4453	4494	
S	t. John's	4188	3703	3847	

SEASONAL SN	OWFALL	TOTALS	(CM)
TO E	ND OF A	PRIL	
	1984	1983	NORMAL
Whitehorse	96.4	124.4	132.8
Yellowknife	154.7	143.6	131.5
Prince George	129.0	109.2	239.5
Vancouver	11.7	3.8	60.4
Edmonton Nam.	69.8	89.5	128.6
Calgary	81.1	98.3	142.2
Regina	66.7	109.2	112.5
Winnipeg	66.3	77.4	123.0
Thundor Bay	144.9	176.5	200 0
Thunder Bay Muskoka	327.6	252.7	208.8
Toronto	132.1	71.5	131.1
Windsor	125.6	39.6	117.4
Ottawa	12J.0	131.3	226.1
Montreal	239.3	120.4	233.4
Quebec	340.8	251.4	342.5
Anonor	540.0	251.4	542.05
Fredericton	309.0	179.2	289.3
Shearwater	196.4	123.7	196.8
Charlottetown	265.2	257.5	328.5
Goose Bay	671.0	558.3	423.1
St. John's	244.4	185.5	346.3

Snow Cover Water Equivalent

The amount of water which wour result when snow is melted, measure in millimetres.

ICE FORECAST FOR THE GULF OF ST. LAWRENCE AND NEWFOUNDLAND WATERS MAY 1984

5 B

GULF OF ST. LAWRENCE

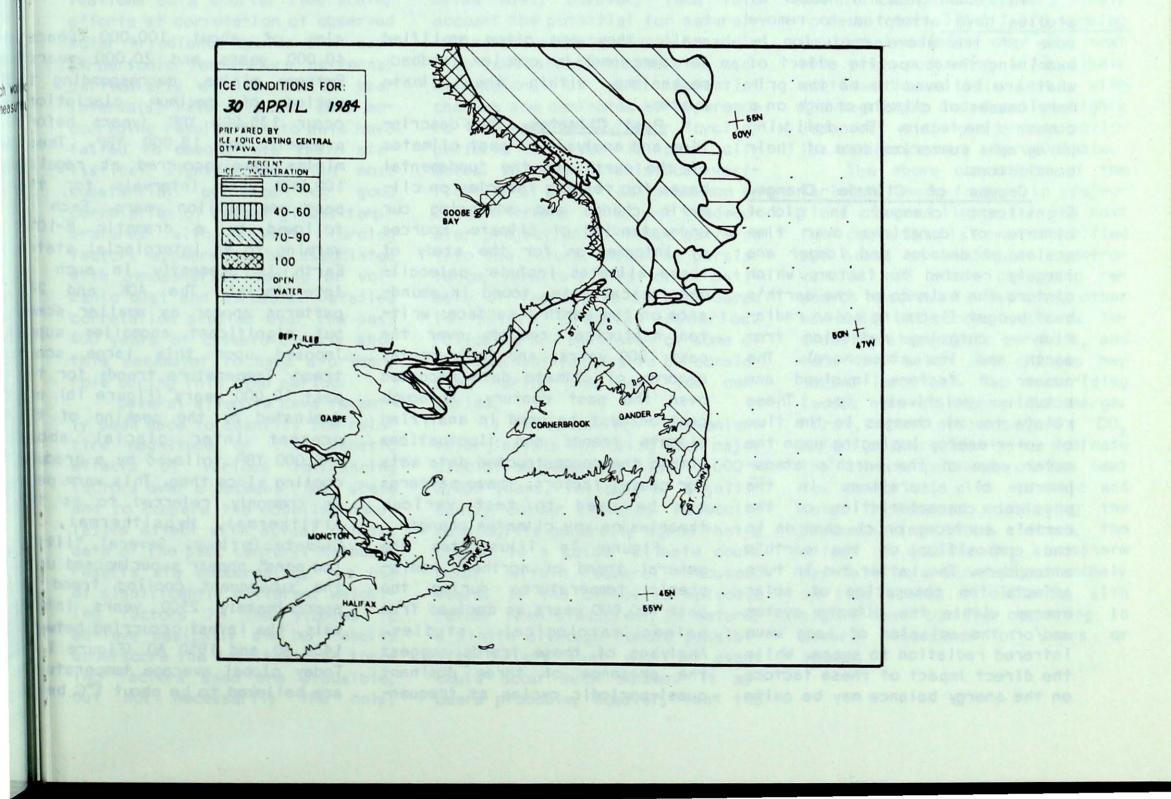
During the last half of April, temperatures in the Gulf of St. Lawrence averaged just above normal except for the southwestern portion where slightly below normal values prevailed.

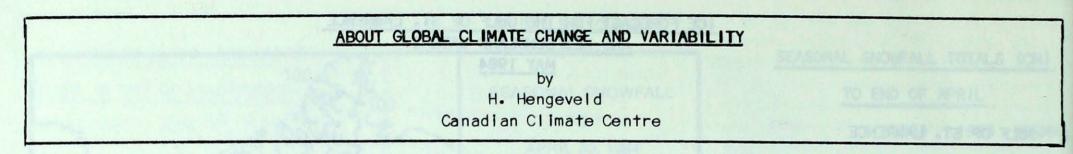
With seasonal warming, improvement has progressed in the southwestern Gulf but some large amounts of ice are still evident along the north shore between Anticosti Island and the Strait of Belle Isle. At month's end, ice remained along the south shore of Northumberland Strait, the northern coasts of Prince Edward Island and Anticosti Island, and Chaleur Bay.

Temperatures during the next 30-day period are forecast to average normal or slightly above normal values. Coupled with prevalling westerlies in the early part of May, this will accelerate melting and disintegration in the southwestern Gulf which is expected to become mainly open water just before mid-month.

Although improvement is expected to progress rapidly in northeastern Gulf during the early part of May, periods of easterly winds will drift additional ice into Northeast Arm from the Strait of Belle Isle and will delay clearing of ice in that area until the end of the third week in May or soon thereafter.

NEWFOUNDLAND WATERS

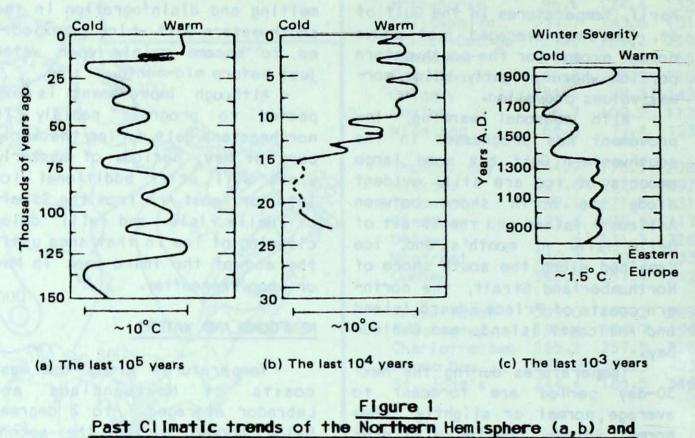

Temperatures along the east coasts of Newfoundland and Labrador averaged 1 to 2 degrees below normal during the second half of April. Due to prevailing northeasterly winds, the ice, at the end of April, was packed against the coast to as far south as Conception Bay.


Further northward retreat is anticipated during the second half of May, moving the ice edge just south of the Strait of Belle Isle at the beginning of June. It is also expected that periods of easterly winds after the first week in May will result in onshore ice congestions particularly for the coastal areas from Notre Dame Bay northward.

Icebergs will continue to move southward from the pack throughout the period.

Issued by:

Ice Forecasting Central



6 B

Background. The past decade has witnessed an increasing interest, both within the scientific community and the media in the issue of climate change. Reports on results of research related to this issue, however, often imply major disagreements within the scientific community as to why and how climates change and how such changes affect society. Some postulate the imminent arrival of another ice age, others suggest future global cooling due to increased volcanic activity, while many believe a major warming will soon occur due to increasing global "greenhouse" effects. To the public, presented with these conflicting reports through the media. the result is confusion and skepticism.

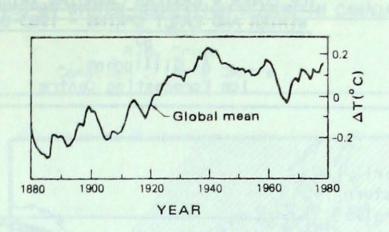
In recent years a number of studies have attempted to remove some of the above confusion by examining the composite effect of what are believed to be the primary causes of climate change on a common time scale. The following paragraphs summarize some of their conclusions.

Causes of Climate Change. Significant changes in global climate of durations over time scales of decades and longer are largely related to factors which disturb the balance of the earth's heat budget (incoming solar radiation - outgoing radiation from earth and its atmosphere). The number of factors involved are actually relatively few. These relate to: a) changes in the flux of solar energy impinging upon the outer edge of the earth's atmosphere; b) alterations in the physical characteristics of the earth's surface; or c) changes in the composition of the earth's atmosphere. The latter two in turn affects the absorption of solar energy within the climate system and/or the emission of long wave infrared radiation to space. While the direct impact of these factors on the energy balance may be guite

Eastern Europe (c) based on paleoclimatic data and historical records

small, they are often amplified (or dampened) by complex feedback mechanisms within the climate system.

Past Climates. The description and analysis of past climates of the earth are the fundamental bases for testing theories on climatic change and advancing our understanding of climate. Sources of information for the study of these climates include: paleoclimatological data, found in abundance on the earth's surface; written historical records over the past 1000 years; and instrumental records of climate data recorded over the past century. Although caution must be used in analyzing climate trends and fluctuations within the reconstructed data sets for causal factors, these patterns can be used to test various theories on why climates change. Figure 1a illustrates the general trend of northern hemispheric temperatures during the past 150,000 years as derived from paleoclimatological studies. Analyses of these trends suggest the presence of three dominant quasi-periodic cycles at frequen-


of about 100,000 years, cies 40,000 years and 20,000 years. Extreme minima, corresponding to period of maximum glaciation, occur 135,000 YBP (years before present) and 18,000 YBP. These minima have occurred at regular 100,000 year intervals for the past one million years. Each is followed by a dramatic 8-10°C warming to an interglacial state. Earth is presently in such an interglacial. The 40K and 20K patterns appear as smaller scale but significant anomalies super imposed upon this large scale trend. Temperature trends for the past 10,000 years (Figure 1b) are dominated by the peaking of the present inter glacial about 6-8,000 YBP followed by a gradual cooling since then. This warm peak is commonly referred to as the Altithermal, Hypsithermal, of Climate Optimum. Several "little ice ages" appear superimposed upor the subsequent cooling trend a approximately 2500 years inter vals, the latest occurring between 1430 AD and 1850 AD (Figure 1c) Today global average temperature are believed to be about 1°C belo

that of 1,000 years ago, 1.5°C below that of the Altithermal and 2.5°C cooler than the last interglacial of 125K YBP.

Figure 2 provides a detailed and comparatively accurate reconstruction of global temperatures for the past century. Following several decades of cold temperatures early in the period, a pronounced warming is evident between 1920 and 1945. More recently, the 1950's and 1960's exhibit a cooling trend, followed by the recurrence of the warming trend during the 1970's. Total range of temperature variation over the 100 years period have not exceeded 0.6°C.

Many efforts have been made to explain the temperature variations discussed above on the basis of postulated theories on causes of climate change. Attribution of the 100K, 40K and 20K quasi-periodic cycles in the records to well defined variations in the earth's orbital pattern of the same periodicities, generally referred to as the Milankovitch mechanism, has gained wide acceptance. For fluctuations on a shorter time scale, efforts at correlation of observed solar irradiance cycles with quasi-periodic temperature patterns, particularly at 180 and 80 year intervals, have provided some encouraging results but to date have failed to demonstrate their statistical significance. The most substantial evidence for good correlation of recent global temperatures with climate forcing factors appears to be associated with atmospheric loading of volcanic dust and aerosols. Detailed correlation studies over the past 400 years of climate clearly show this parameter to have a primary role during this time period.

Several attempts have recent-

<u>Figure 2</u> <u>Mean Global Temperature Trends</u> <u>for the Past 100 Years</u>

explanation for recent climatic events.

Future Climate. Anthropogenic influence on the global heat balance, particularly through the greenhouse effects of radiatively active gases such as carbon dioxide, is likely to have an unprecedented and dominent effect on climate over the next few centuries. Scenarios for future climates must, however, take into account the potential for naturally induced climate change in addition to that attributable to man. Discussions of such potential changes are dominated by reference to the quasi-periodic or "cyclic" patterns observed in past climates. Although statistical verification of their real presence in climate trends is as yet inadequate, projection of these patterns into the future, assuming persistence, permits a first order estimate of factors to be considered in future climate scenarios. Following are estimates of some of the dominant factors to be considered during the next few centuries:

1) Milankovitch mechanism: Interglacials following each major glaciation generally last 10,000 + 2,000 years, followed by significantly colder climates. Paleoclimatologists generally agree that a change to a colder climate could occur within several thousand years. If the change is episodic rather than sinusoidal in nature, a finite although remote possibility exists that such an event could occur much sooner. It appears probable, however, that the present long term cooling trend will continue for at least the next few centuries at the rate of less than 0.1 °C/century.

2) Solar variations. 11 and 22 year cycles in sunspot behaviour appear unlikely to have substantial long term effects on global trends, both due to their short duration and small amplitudes. Apparent periodicities of 80 years and possibly 180 years may be more pronounced, as suggested in the isotopic data analysis of glacial ice cores. The amplitude of these effects appear not to exceed 0.3 °C.

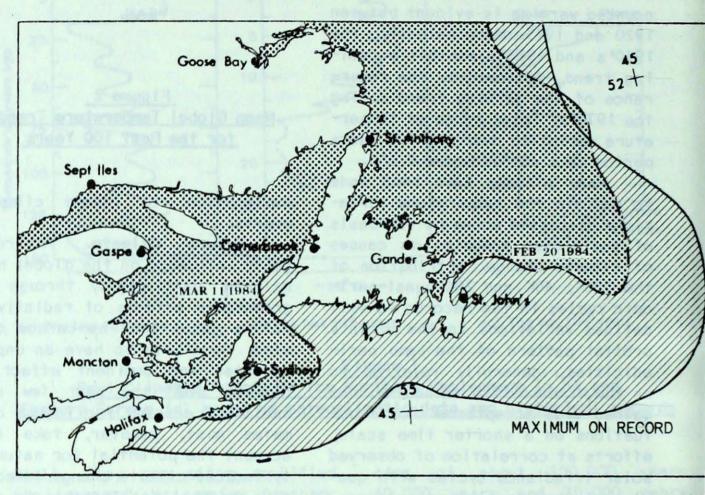
3) Volcanic Aerosols. Volcanic activity and its influence on climate are generally assumed to be episodic in nature and largely unpredictable. The cooling effects of volcanic activity in past centuries is estimated to have been up to 0.4 °C.

4) Anthropogenic Influence. The increasing greenhouse effect due to accumulating concentrations of atmospheric CO_2 and other similar gases such as freon, methane and nitrous oxide, appears likely to result in a $3^{\circ}C \pm 1.5^{\circ}C$ warming in global climate over the next 100 years. Warming will likely continue beyond this level, with the magnitude and duration highly dependent on future energy policies and hence very unpredictable.

The above comparison of the various primary factors in projections of the climate for the next few centuries is over-simplified and based on inadequate, controversial and often confusing research results. Furthermore, other man-made influences such as increasing atmospheric aerosols, and land and water use changes may become important. Two over-riding issues however, appear to emerge. First, the anthropogenic CO, effect appears likely to dominate the climate patterns of the next few centuries, with volcanic and solar influences modulating the predominating trend. Second, the effect of doubled CO2 atmosphere may well be a short lived anomaly on time scales of millenia, with significant cooling occurring in several thousands of years or sooner.

ly been made to quantify the relative magnitude of the climatic effects of various influencing factors over a decadal time, scale and to compare the modelled cumulative effect with actual climate data of the past century. Although results are encouraging, the use of significantly different weighting factors in the studies to achieve basically similar results underscore the fact that the forcing factors used are plausible, but not necessarily the only,

erd .


ICE COVER - EASTERN CANADIAN WATERS WINTER AND EARLY SPRING - 1983-84 by A. Gillingham Ice Forecasting Centre

EAST NEWFOUNDLAND WATERS

At the beginning of April, 1984, the ice cover off eastern Newfoundland was more extensive than normal but somewhat less than the worst conditions on record.

Ice thickness and distribution off east Newfoundland during the winter and spring are determined not only by local weather conditions but, to a great extent, also by air temperatures along the coast from Hudson Strait southward during the late summer, fall and winter. Mean temperatures along the Labrador coast between August, 1983, and March, 1984, were below normal every month and reached the unusually low value of more than 7 degrees (C) below normal during February. Ice drift off Labrador during the fall and winter was southward. Even though temperatures off eastern Newfoundland were close to normal values during the fall and winter and the mean ice drift was eastward, the colder-than-normal conditions along the Labrador coast since last summer contributed significantly to an ice cover that was thicker and more extensive than normal off eastern Newfoundland by mid-winter.

As a result of the cold summer and early fall, ice began to form along the northern Labrador coast about 2 weeks earlier than normal and spread rapidly southward. By mid-December, new ice had appeared as far south as the Strait of Belle Isle which normally does not occur until the beginning of January. During the first week in January Ice had spread southward into Notre Dame Bay which is close to a month earlier than normal. Primarily because of the very cold temperatures and southward drift along the Labrador coast during February, the pack reached its most southerly limit during the season off eastern Newfoundland on February 20.

Maximum ice cover off East Coast of Canada during winter of 1983-84 compared with maximum on record.

The prevailing eastward drift off Newfoundand pushed the pack much farther east than normal during the winter. That was good news for shipping interests since there were no extended periods of congestion along the route to and from Botwood as had occurred during the winter of 1982-83. Abovenormal temperatures off east Newfoundland in February and March, coupled with a slow northward ice drift component during March, two months this year. A change in the mean windflow during March, however, has resulted in an increase in the number of icebergs in the drilling area and in the shipping lanes off eastern and southeastern Newfoundland since March.

GULF OF ST. LAWRENCE

Temperatures during the fal and winter were near normal over

halted the steady southward movement of the pack.

Icebergs moving southward with pack ice along the Labrador coast in January and February were pushed eastward by the prevailing eastward drift. As a result, few icebergs were spotted in east Newfoundland waters or in the oil-drilling area during the first all of the Gulf except along the north shore where values were between 1 and 2 degrees below the mean.

New ice began to form in th Estuary and along the north shor of the Gulf during the second week of December which is about 2 week earlier than the mean date. By th continued on page 10

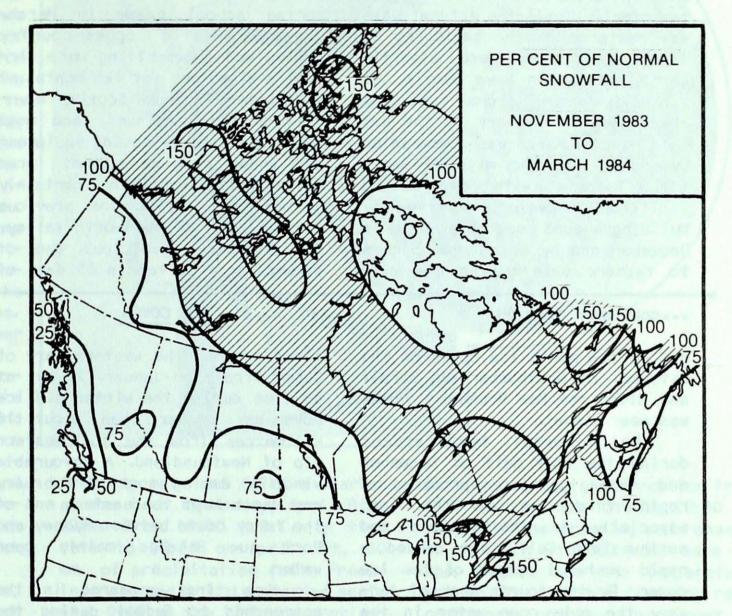
THE 1983-84 WINTER RECREATION SEASON IN CANADA

by R.B. Crowe Camadian Climate Centre

Last winter was a good outdoor recreation season in most of Canada, and one of the best in years in some areas. Conditions for skiing and snowmobiling were particularly good in British Columbia, Ontario, Québec and New Brunswick.

British Columbia had the best skiing season in years, with high elevations enjoying less rain and more sunshine than usual. Along the coast ample snowcover on the coast ranges combined with sunny weather to give nearly perfect conditions through both the important Christmas-New Year's and the March spring-break periods. It was also a long season with the snow on the coastal mountains coming late in November or early in December and lasting through April. Normally, skiing ends by mid-April, but it continued at Whistler until Easter. Interior skiing was equally good all winter.

Over the western Prairies, conditions were not as good as in many areas of Canada. High level Rockies resorts, such as Sunshine, Marmot, Fortress Mountain and Lake Louise reported only a normal winter, but low level resorts suffered because of excessively cold weather in December when the snow cover was ample and later from repeated and prolonged thaws. The only good low-level skiing occurred during the first half of January. From mid-month to the end of the winter snow-making could not keep up with the continual thaws. Urban ski areas suffered most, as virtually all enthusiasts headed for the high-level Rockies resorts. Banff and Jasper reported snowfall at only 60 per cent of normal for the winter. Although the thaws were less severe and not so prolonged over the eastern Prairies, there was not enough natural snow this past winter for much cross-country skiing and snowmobling. Only those resorts with snowmaking facilities did


OVE

ng the

ON TH

in 1

BY

reasonably well.

Over Ontario and Quebec this last winter was excellent. In many areas it was the best season in the last six years, and certainly, conditions this winter made up for the past three poor to marginal seasons. Ski resorts opened early. and cross-country skiing and snowmobiling got off to a good start in late November and early December. Winter sports were still enjoyed at the end of March and early April in some areas, so that it was one of the longest seasons in recent years. There were fewer disruptive storms than normal, so that access to and from resorts was excellent. A generally persistant snow cover in urban centres also gave a psychological boost to the industry. The weather was excellent during the high period from Christmas to New Year's. The

only factor that prevented the season from being one of best-ever was a prolonged two or three-week February thaw. Attendance at resorts was building up gradually through January at both week-ends and the mid-week period, but this momentum was broken by the February thaw. The thaw also ruined the base for cross-country skiing and snowmobling, but down-hill skiing continued uninterrupted due

to snow-making until the natural base was restored in early March.

Conditions across the Atlantic Provinces this past winter varied from excellent in Northern New Brunswick to marginal and poor over the Island of Newfoundland. In the Campbellton-Edmundston area of New Brunswick, snow was abundant and with virtually no rain conditions were the best that winter sports enthusiasts can ever

remember. Prince Edward Island and southern New Brunswick fared almost as well, but a ten to fifteen-day thaw around mid-February caused resorts without snow-making facilities to close temporarily until the natural base was restored by the beginning of March. Conditions were significantly poorer in Nova Scotia, as virtually every storm from the third week of January to the second week of March was accompanied by rain, fog and mild Atlantic Resorts with snow-making air. facilities, however, survived by building a good snow base early in December and by using cool nights to restore base during the mild

regime. A Christmas Day storm added natural base, so that the Christmas-New Year's boom period was excellent for winter sports. Conditions were also excellent during the first half of the spring school break in March. Overall, while cross-country skiing and snowmobiling were virtually wiped out for two months at mid-winter in Nova Scotia, downhill skiing continued, and most resorts with snow-making equipment and under good management fared fairly well financially, certainly better than during the previous winter. In the Wentworth Valley, for instance, judicious use of snowmaking resulted in 85 days of

reasonable to good skiing during the 100-day period from mid-December to the end of March. In western Newfoundland, skiing started late in the Corner Brook area, as the natural snow cover did not come until early January. In spite of the lack of snowmaking equipment, it was a fair to good winter for snowmobiling and skiing across western and central Newfoundland. However, continual thaws and rain storms resulted in poor winter sports conditions over the eastern part of the Island, and particularly over the Avalor Peninsula.

... continued from 8B

end of the month ice cover on the Estuary, on Northumberland Strait and along the New Brunswick coast was near normal.

Below-normal temperatures during the last half of December and during January produced a rapid thickening of the ice, especially in the western and northwestern Gulf, and caused a rapid eastward spread of the ice cover. By the fourth week of January the only open water in the Gulf was along the southern half of the west coast of Newfoundland.

Heavier ice from the Gulf

ICE COVER

first reached the western part of Cabot Strait on January 22 but at no time during the winter did ice move any closer than about 16 kilometres from the southwestern tip of Newfoundland. A favourable windflow during most of February and March kept the eastern end of the ferry route between Sydney and Port aux Basques mainly open water.

Ice first appeared in the approaches to Sydney during the second week of February but did not reach its maximum extent off eastern Cape Breton until March 11 (Figure 1). Although congestion developed near the entrance to Sydney harbour on several occasions during late February and March, the ice was loose enough at most times to pose no serious problems.

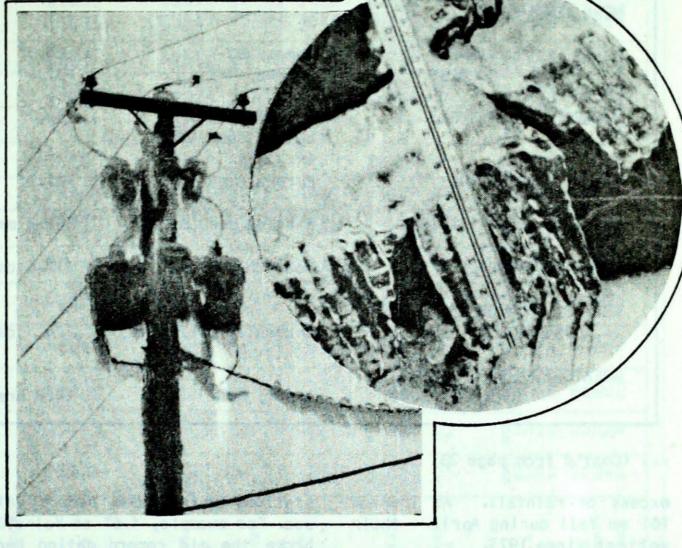
In general, heaviest ice conditions persisted during the late winter and early spring in the southwestern Gulf and east of the Gaspé Peninsula, creating difficulties for shipping in those areas. At the beginning of April, ice coverge in the Gulf was less than normal for that time of year.

Freezing degree-days from 01 Oct. to 02 Apr.

	This Season	Ma	ximum	Mini	imum
Mont Joli	1202	1408	(1973-74)	1016	(1982-83)
Charlo	1170	1405	(1975-76)	1024	(1980-81)
Summerside	655	775	(1976-77)	531	(1982-83)
Stephenville	534	767	(1974-75)	345	(1980-81)
St. John's	362	642	(1974-75)	285	(1980-81)
Goose Bay	2124	2213	(1975-76)	1409	(1980-81)

10 B

Freezing degree-day is defined as the departure of the mean daily temperature from the base temperature of 0° (one degree-day for each degree of departure below 0°C. For example -10°C yields 10 freezing degree-days).


Sleet Storm Paralyzes Newfoundland

On April 13, Newfoundland experienced the worst sleet storm in 25 years as heavy ice loads knocked down transmission lines leaving hundreds of thousands of residents in the cold and dark for days. The Avalon Peninsula was the hardes hit as people lined up to purchase essential food supplies and such items as kerosene oil and fuel for camp stoves and heaters. Parts of Belle Isle remained without electricity for nearly a weak.

The storm of 1958 has some similarity to the one we experienced recently. Both caused extensive damage and almost brought the City of St. John's to its knees. Climatologically both began near the end of the week.

Our records show that freezing rain and freezing drizzle started on February 27th, 1958 and continued sporatically to March 2nd, 1958. The bulk of precipitation occurred on February 27th and 28th - 17.5 mm. and 14.0 mm. respectively. 3.3. mm. fell on March 1st, with only a trace on March 2nd.

During our recent storm, which became most apparent on Friday evening, April 13th, 1984,

freezing rain and drizzle started as far back as Monday, April 8th, 1984. From 18:50 N.S.T. on that date to 20:30 on April 9th, 30 mm. of precipitation fell. Freezing rain and drizzle started again near 0100 on the 12th and continued intermittently throughout the 12th and without interruption from 2100 hour on the 13th to 10:30 on the 15th. The freezing rain changed to rain at 2000 hour here at the airport but the temperature was so low that the freezing rain could have continued over most of the Avalon Peninsula.

	TEMPER	ATURE	PRE	CIPITATION
Date	High	Low	mm. 17.5	Туре
Feb. 27, 1958	0.6	-2.2	14.0	
Feb. 28, 1958	-0.6	-1.7	3.3	
March 1, 1958	-1.1	-2.8	Trace	126 Keyl
March 2, 1958	-0.6	-2.8	5.4	5.0" Freezing
April 8, 1984	8.0	-0.6	30.8	75% Freezing
April 9, 1984	1.4	-0.7	17.8	All liquid
April 10, 1984	2.8	0.8	1.6	50% liquid
April 11, 1984	6.5	-0.6	7.8	All Freezing
April 12, 1984	0.0	-1.0	7.0	80% Freezing

April 13, 1984	0.5	-0.6	61.0	Almost all lig-
April 14, 1984	1.0	0.0		uid at Airport
			10.7	Almost all liq-
April 15, 1984	1.0	-1.6		uid at Airport

-

By:

M.J. Willis St. John's weather office

CLIMATIC EXTREME	S - APRIL, 1984	e 10438 ste
MEAN TEMPERATURE:		
WARMEST	Comox, BC Eureka, NWT	10.5° -31.6°
HIGHEST TEMPERATURE:	Edmonton, ALTA Lethbridge, ALTA	29.7°
LOWEST TEMPERATURE:	Eureka, NWT	-41.2°
HEAVIEST PRECIPITATION:	Ethelda Bay, BC	339.8 mm
HEAVIEST SNOWFALL:	Moncton, NB	112.6 cm
DEEPEST SNOW ON THE GROUND ON APRIL 30, 1984:	Churchill Falls, NFLD	74 cm
GREATEST NUMBER OF BRIGHT SUNSHINE HOURS:	Alert, NWT	469 hrs

185 per cent of normal.

Atlantic Provinces

April was winter-like across Atlantic Canada. Fierce ice storm, heavy rain and snow and cool temperatures dominated the weather. Monthly temperatures were up to 7° degrees below normal in Labrador. and averaged slightly below normal in the Maritime Provinces. Precipitation was excessive throughout most of the Provinces. Several stations reported the second largest value for April. At Sydney, 204.1 mm was more than double the normal and the wettest April since record began in 1939. Storms crossing the East Coast deposited 30 to 45 cm of snow, southeastern New Brunswick received the most 112.6 cm - nearly four times the normal amount. April was rather dull, hours of bright sunshine were only 50 per cent of normal in parts of Nova Scotia. Sable Island experienced only 71 hours of sunshine, 64 hours below normal and the lowest April value since 1961. Storms battered the East Coast on numerous occasions. The worst ice storm in decades virtually paralyzed the Avalon Peninsula on April 13. Heavy ice accretion on utility line left some communities were without electricity and heat for over a week. An early April snow storm produced a mixture of snow, freezing rain, high winds and cold temperatures across the Maritimes. Schools and busineses were closed and there were widespread power outages. Moncton received nearly 92 cm of snow during this storm. Another fierce storm hit eastern Canada in mid-month. Heavy rains in the 40 to 70 mm range caused minor flooding. The Saint John River rose to flood stages near Frederictor submerging roads and fields under

... (Cont'd from page 2B)

excess of rainfall. At Trenton 161 mm fell during April - their wettest since 1973.

Although a late April storm dropped up to 20 cm of snow in the North, snowfall was below normal across the entire Province. Hours of bright sunshine were excessive North of Lake Superior. The totals exceeded the normal by 100 hours at some locations; for example at Moosonee, 268 hours of sunshine surpassed the normal by 95 hours. A flerce wind storm struck Ontario on April 30. Hurricane-force winds caused extensive property damage, Wiarton recorded a peak gust of 126 km/h - the highest wind speed ever in the Bruce Peninsula in 26 years of records.

Québec

Northern Québec enjoyed pleasantly mild and dry weather. Mean temperatures were 3 to 6 degrees above normal and some stations established record values. For example, 4.6° at Val-d'Or broke the old record dating back to 1955. Over Southern Quebec, the temperatures were near normal; however, near the end of the month daily values climbed into the record mid-twenties. A long string of warm days and cool nights provided ideal weather for maple sap production in the South. Precipitation was light across the North, three locations received the least amount on record for April. Along the St. Lawrence Valley, precipitation was about normal. Due to ample snow on the ground, spring skilng continued late into the month especially at southeastern resorts. Light precipitation fell during the last two weeks of April in the agricultural areas and farmers took advantage of the dry weather to start ploughing on well drained fields. Hours of bright sunshine were above normal almost everywhere; in the eastern regions, the values reached nearly

deep waters.

Canadian Climate Centre Atmospheric Environment Service 4905 Dufferin Street Downsview, Ontario CANADA M3H 5T4 (416) 667-4711/4906	Annual subscription rate for weekly issues \$35.00 Annual subscription rate for one issue per month including monthly supplement \$10.00
EDITOR: A. Shabbar ASSISTANT EDI	TOR: A. Caillet STAFF WRITER: A. Radomski
Correspondents: T. Mullane, Ottawa; H. Wahl, Whitehow F. Luciow, Winnipeg; B. Smith, Toronto; J. Miron	rse; N. Penny, Vancouver; W. Prusak, Edmonton; n, Montréal; F. Amirault, Halifax.
Subscription enquiries: Supply and Services Canada, F	Publishing Centre, Ottawa, Ontario, Canada, K1A 059

en const	-			-		-	-			-			APRIL	1984	-			-	-								
STATION	Ten	ence from Normal	re C	E	ll (cm)	rn.al Snowfall	recipitation (mm)	ormal Precipitation	n ground at end of month (cm)	days with Precip 1.0 mm or more	Sunshine (hours)	irmal Bright Sunshine	Days below 18 C	STATION	Ten	ence from Normal	E	E	all (cm)	Normal Snowfall	recipitation (mm)	rmal Precipitation	n ground at end of month (cm)	days with Precip 1.0 mm or more	Sunshine (hours)	rmal Bright Sunshine	ee Days below 18 C
AND CONSTRACT (Mean	Differe	Maximu	Minimum	Snowfall	7 of Nor	Total Pr	7 of No	Snow o	No. of o	Bright S	7. of No	Degree	The second of	Mean	Differe	Maximu	Minimum	Snowfa	7. of No	Fotal Pr	% of No	Snow o	No. of a	Bright 3	7 of No	Degree
														YUKON TERRITORY	10.00					A Martin							
ABBOTSFORD A ALERT BAY BLUE RIVER A BULL HARBOUR	8.4 7.4 4.3 6.9 MSG	3 0.0 .4	23.8 15.7 24.2 15.2 MSG	-1.0 1.3 -8.7 .4 MSG	0.0 1.0 7.0 TR MSG	0 91 78 MSG MSG	127.0 117.6 66.0 183.6 MSG	141 145 146	0 0 0 0 0 0 0 0 0 0 0	17 20 15 20 MSG	140 MSG 114 MSG MSG	86 MSG 68 MSG MSG	287.3 313.2 MSG 333.8 MSG	BURWASH A DAWSON A MAYO A WATSON LAKE A WHITEHORSE A	.9 2.4 3.4 2.5 2.6	3.2 4.3 3.8 3.1 2.3	11.2 16.8 16.8 14.4 15.5	-15.7 -9.1 -7.8 -12.2 -8.1	1.0 11.4 8.6 3.6 1.4	8 123 115 26 13	1.0 13.3 7.8 13.8 1.4	6 141 91 91 15	0 0 TR 0	0 5 3 3 0	MSG MSG MSG MSG 256	MSG MSG MSG MSG 112	53 47 43 46 46
BURNS LAKE CAPE ST. JAMES CAPE SCOTT CASTLEGAR A COMOX A CRANBROOK A	6.8 6.8 7.9 10.5 5.8	.3 4 2 2.5 0.0	13.6 12.1 27.5 18.2 25.0	1.0 1.1 -4.0 .2 -5.1	1.0 .5 4.0 0.0 3.8	40 14 48 0 38	112.7 26.1 62.8 78.2 35.3	106 14 143 137	0000000	20 22 12 13 4	14.2 MSG 165 MSG 200	MSG MSG 96 MSG MSG	337.0 337.7 303.9 285.9 365.7	ALERT BAKER LAKE	-27.1 MSG	-2.2 MSG	- 14.0 21.0	-40.9	3.4 28.2	44 207	3.4 MSG	45	16 MSG	1 MSG	469	120 85	32
DEASE LAKE ETHELDA BAY FORT NELSON A FORT ST. JOHN A HOPE A	2.2 6.4 4.9 5.7 8.6	1.9 0.0 3.3 2.8 7	13.8 16.1 17.1 24.8 26.5	-9.5 -2.7 -5.0 -3.0 .5	7.8 0.0 9.0 10.9 .3	65 0 56 66 21	6.8 339.8 25.5 13.4 118.7	55 141 153 62 113	00000	2 20 6 3 3	203 MSG 194 MSG MSG	107 MSG MSG MSG MSG	475.6 347.4 392.7 369.0 282.8	CAMBRIDGE BAY CAPE DYER A CAPE PARRY A CLYDE COPPERMINE	-18.8 -20.2 -14.0 MSG -13.1	3.1 -4.8 4.7 MSG 4.4	-2.3 -7.7 1.0 MSG 3.6	-36.0 -38.7 -28.9 MSG -34.5	2.4 32.6 17.9 MSG 21.6	30 64 137 MSG 212	2.4 20.7 9.9 MSG 15.7	MSG 143	37 61 17 MSG 20	1 6 9 MSG 4	256 MSG MSG 174	102 MSG MSG MSG 81	110 114 9 18
AMLOOPS A CELOWNA A ANGARA YTTON MACKENZIE A	9.2 7.4 6.6 9.4 3.9	.1 1 .8 .1 1.5	29.2 27.2 13.8 25.4 22.6	-1.7 -5.9 1.1 0.0 -7.9	TR 1.2 1.4 0.0 3.8	MSG 120 30 0 36	20.4 21.8 124.4 3.7 16.0	123 103 20	00000	5 8 18 1 6	169 151 MSG 162 197	85 74 MSG 79 96	266.6 318.7 342.2 259.7 423.7	CORAL HARBOUR A EUREKA FORT RELIANCE FORT SIMPSON A FORT SMITH A	-15.3 -31.6 -3.4 2.7 4.6	1.0 -4.0 6.2 5.2 6.8	.6 -14.7 15.0 19.0 21.4	-37.1 -41.2 -21.2 -11.1 -10.0	21.0 1.2 13.2 4.6 4.4	146 41 100 39 33	19.6 .4 11.1 4.6 4.6	32 28	32 12 1 0 0	7 0 3 3 1	226 432 MSG 248 249	81 122 MSG 112 102	14
ICINNES ISLAND IERRY ISLAND VENTICTON A PORT ALBERNI A ORT HARDY A	7.5 9.1 8.1 MSG 7.0	.3 .2 5 MSG	15.8 15.8 23.5 MSG 15.3	1.8 3.5 -3.3 MSG 2	1.6 0.0 .2 MSG 2.8	33 0 100 NSG 215	298.7 78.6 24.2 MSG 135.8	113 MSG	0 0 MSG 0	23 12 5 MSG 18	MSG 176 171 MSG 162	MSG MSG B1 MSG 113	313.9 267.8 295.9 MSG 330.9	FROBISHER BAY A HALL BEACH A HAY RIVER A INUVIK A MOULD BAY A	MSG -22.0 1.4 MSG -22.2	MSG -1.1 5.6 MSG 1.9	MSG 9 20.2 MSG 9.6	MSG -40.5 -14.5 MSG -37.2	MSG 24.3 TR MSG 6.2	MSG 211 MSG MSG 107	23.9	219 13 MSG	MSG 41 0 MSG 28	MSG 5 1 MSG	MSG MSG MSG 326	MSG MSG MSG 114	
RINCE GEORGE A RINCE RUPERT A RINCETON A UESNEL A	5.0 6.0 5.4 6.3	.7 .6 8 .9	24.8 17.1 24.9 26.0	-6.0 -2.4 -5.9 -6.0	1.9 4.6 .2 TR	19 63 6 MSG	19.8 179.3 12.4 10.9	72 94 84 47	0000	8 18 6 4	181 14.5 155 MSG	89 108 MSG MSG	388.5 360.0 MSG 355.3	NORMAN WELLS A POND INLET A RESOLUTE A SACHS HARBOUR A	-2.6 MSG -25.2 -14.4	4.6 MSG -2.1 5.6	15.8 MSG -11.9	-15.2 MSG -40.5	6.0 MSG 2.6 3.2 7.0	39 MSG 40 65	6.9 MSG 1.8 2.1	45 MSG 31 47	0 MSG 37 15	MSG 0	213 MSG 334 166 259	90 MSG 121 63	61 129 97
EVELSTOKE A ANDSPIT A MITHERS A TEWART A ERRACE A ANCOUVER HAPPOUR	7.3 6.6 4.7 MSG 6.2	.9 .5 MSG .5	21.1 12.0 15.1 MSG 16.9	-2.6 -1.0 -5.1 MSG -2.3	.9 1.4 MSG 2.2	MSG 43 20 MSG 18	84.8	252 77 MSG 138	0	14 20 4 MSG 9	149 163 177 NSG 164	83 105 100 MSG 111	319.1 334.4 399.7 MSG 353.3 266.3	ALBERTA BANFF BROOKS	MSG	6.5 MSG	13.8 MSG 29.5	-14.7 MSG	MSG	MSG 9	6.0 MSG 25.3	MSG	0 MSG 0	MSG	MSG	97 MSG MSG	
ANCOUVER HARBOUR ANCOUVER INT'L A ICTORIA GONZ. HTS ICTORIA INT'L A ICTORIA MARINE	9.1 8.6 9.4 8.3 8.1	2 0.0 .3 1	16.9 17.9 18.3 19.3 16.6	2.2 .9 3.1 .2 .6	0.0 0.0 0.0 0.0 TR	0 0 0 MSG	163.0 124.3 20.9 47.8 75.8	209 69 122 107	000000	19 13 8 11 14	MSG 166 215 202 MSG	MSG 92 106 112 MSG	266.3 282.3 258.1 291.9 299.6	BROOKS CALGARY INT'L A COLD LAKE A CORONA TION A EDMONTON INT'L A	6.0 5.4 7.4 5.9 5.9	1.4 2.1 4.5 2.9 2.7	27.1 26.4 27.9 29.7	-9.0 -8.1 -5.2 -6.2 -8.4	1.2 1.0 TR 1.2 .4	4 MSG B 3	15.5 28.7 23.8 6.6	48 133 100 33	0 0 0	MSG 275	MSG 212 242 249 251	104 106 108	3.3
ILLIAMS LAKE A	4.5	.1	23.0	-6.1	12.7	131	14.7	68	. 0	3	162	78	392.0	EDMONTON MUN. A EDMONTON NAMAO A EDSON A FORT CHIPEWY AN A	7.4 6.8 4.1 3.8	3.2 2.9 2.2 5.1	28.1 27.5 11.3 22.0	-4.0 -5.0 -3.1 -11.0	0.0 TR 8.6 5.6	0 MSG 58 24	10.9 11.8 13.7 18.6	52	00000	2 3 6 MSG	264 MSG 188 MSG	116 MSG 92 MSG	4

under under under under under

13B

AND DESCRIPTION OF THE OWNER

- (* - (* -

HE THIN ENDERTH

		TY	2.2			1			E				APRIL	1984			1							-			
STATION	Tem	Difference from Normal	E C E E	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	Z of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C	STATION	Ten	Ditterence from Normal	штшіхом	Minimum	Snowfall (cm)	Z of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (am)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	Z of Normal Bright Sunshine	Degree Days below 18 C
FORT MCMURRAY A GRANDE PRAIRIE HIGH LEVEL A JASPER LETHBRIDGE A	7.1 5.5 5.3 3.9 6.5	5.0 2.8 4.5 6 1.6	27.2 28.3 27.2 23.5 29.7	-5.5 -6.5 -6.2 -7.1 -7.6	2.4 12.6 1.8 15.0 15.1	18 106 12 138 55	24.7 16.6 4.3 27.4 34.7	120 85 25 121 81	0000000	4 71710 6	216 2*5 234 176 NSG	93 MSG 95 MSG MSG	333.6 374.3 375.5 423.1 346.4	PORTAGE LA PRAIRIE A THE PAS A THOMPSON A WINNIPEG INT'L A	6.9 5.3 2.1 7.2	3.7 5.3 5.8 3.8	23.6 23.8 24.3 23.5	-6.8 -7.7 -13.0 -5.7	34.1 27.2 44.4 4.8	302 140 147 42	56.5 36.0 50.2 46.9	133 131 150 122	14 14 12 12	7 4 6	MSG 220 195 233	MSG 97 84 106	332.2 387.2 431.2 323.9
MEDICINE HAT A PEACE RIVER A RED DEER A ROCKY MTN HOUSE SLA VE LAKE A	7.9 MSG 5.1 4.5 5.2	2.3 MSC 2.0 1.5 2.7	29.6 MSG 28.7 27.7 27.6	-7.7 NSG -8.5 -7.5 -6.4	5.2 MSG 2.5 2.4 TR	28 MSG 15 NSG	17.8 MSC 15.3 6.9 7.7	59 MSG 52 20 44	MSG D D O	8 MSG 6 1 3	246 MSG MSG NSG 239	122 MSG MSG MSG 103	305.0 MSG 367.5 405.7 384.6	ONTARIO ATIKOKAN EARLTONA GERALDTON	5.5 7.0 3.8	3.4 5.1 4.3	21.5 24.7 21.8	-9.6 -9.3 -15.9	16.0 7.4 20.0	76 38 129	31.4 46.0 38.0	88	1 0	4 7 4	250 MSG MSG	121 MSG MSG	376.3 357.9 426.4
SASKATCHEWAN	7.8	2.6 2.8	29.1 27.6	-7.6 -5.6	4.6	29 15	19.9 12.7	69 47	0	3	240 MSG	MSG	311.6 376.1	GORE BAY A HAMILTON HAMILTON A KAPUSKASING A KENORA A	6.3 7.0 6.7 5.5 7.7	2.6 0.0 .6 5.0 5.0	22.2 25.8 24.5 26.2 21.6	-5.2 -1.8 -2.9 -13.3 -3.7	.4 TR .4 1,4	MSG 6 9	42.9 82.0 73.6 23.8 30.2	93	0 0 0 TR	12	MSG 174 MSG MSG	MSG MSG MSG MSG MSG	351.3 327.1 340.5 384.6 287.3
BROADVIEW COLLINS BAY CREE LAKE ESTEV AN A HUDSON BAY	5.9 .2 3.6 6.6 6.2	3.4 4.1 5.4 2.5 4.7	21.6 20.8 19.8 21.1 23.4	-7.6 -17.9 -10.6 -6.3 -5.7	12.0 12.0 5.0 17.5 16.8	85 37 27 108 93	24.0 25.8 14.5 28.3 65.0	87 88 67 76 241	TR O C O	000009	220 241 382 237 228	106 MSG 159 113 MSG	363.7 535.1 432.8 341.4 353.1	KINGSTON A LANSDOWNE HOUSE LONDON A MOOSONEE MOUNT FOREST	7.1 3.5 7.5 1.4 6.0	1.6 5.8 1.1 3.7 1.6	23.7 22.2 23.7 24.6 23.8	-3.4 -11.8 -4.9 -23.3 -4.9	0.0 3.4 3.0	0 11 33 MSG 52	155.2 50.6 69.9 17.4 55.9	222 125 86 41	0 ЯТ 0 0	12 4 13 1 12	151 MSG 155 268 179	75 MSG 93 155 96	375.6 436.5 317.0 497.7 358.3
KINDERSLEY KY LA RONGE A MEADOW LAKE MOOSE JAW A NIPAWIN A	7.6 5.8 8.1 7.2 5.9	3.8 5.4 4.5 2.0 M3G	28.3 23.6 25.7 23.2 11.7	-7.6 -3.1 -9.8 -6.8 0.0	4.6 0.0 0.0 TR 3.2	42 0 MSG NSG	14.6 14.2 17.4 3.0 11.0		00000	4 37 1 4	MSG NSG 254 264 219	MSG MSG 121 89	311.5 367.5 332.7 324.3 364.0	MUSKOKA A NORTH BA'Y A OTTAWA INT'L A PETAWAWA A	6.6 6.6 MSG 6.5	2.1 3.4 MSG 2.3	26.1 24.8 MSG 24.5	-6.1 -6.4 MSG -6.6	2.4 11.4 MSG 3.2	20 69 MSG 53 6	58.8 60.1 MSG 99.2	90 96 MSG 166	0	MSG 9	MSG 194 MSG MSG	MSG 99 MSG MSG	336.6 342.7 MSG 345.1 332.5
NORTH BATTLEFORD A PRINCE ALBERT A REGINA A SASKATOON A SWIFT CURRENT A	7.5 6.8 7.0 7.6 6.7	4.5 4.9 3.7 4.3 3.2	25.8 23.8 23.8 25.3 25.6	-6.8 -7.6 -8.2 -6.4 -9.1	3.6 1,0 TR 6.8 1.3	33 9 MSG 72 8	27.1 22.4 4.3 18.2 11.5	128 102 18 86 41	00000	6 4 2 4 4	MSG 245 249 NSG 288	MSG 110 119 MSG 138	314.1 336.7 326.4 313.5 341.0	PETERBOROUGH A PICKLE LAKE RED LAKE A ST. CA THARINES A SARNIA A	6.9 4.9 MSG 7.5 7.0	.9 5.4 MSG .3 1	22.7 21.6 MSG 25.2 26.1	-5.6 -7.4 MSG -3.0 -3.5	.4 1.8 MSG 1.4 TR	42 MSG	65.9 72.0	52 MSG 88 79	₩5G 0	11 2 MSG 8 12	MSG 175	MSG MSG MSG 91	392.3 MSG 315.7 330.6
URANIUM CITY A WYNY ARD YORKTON MANITOBA	2.5 6.6 6.3	5.6 4.1 4.1	8.8 22.7 23.5	-3.9 -5.1 -5.3	8.0 .2 7.8	47 1 60	7.7 16.8 32.4	43 69 146	000	246	MSG 221 232	MSG 96 104	464.8 341.0 351.0	SAULT STE, MARIE A SIMCOE SIOUX LOOKOUT A SUDBURY A THUNDER BAY A	MSG 7.6 6.4 6.3 5.3	MSG .8 5.0 3.6 2.8	MSG 25.0 21.3 25.5 21.2	MSG -3.0 -6.8 -7.8 -6.8	MSG 1.6 .6 16.2 3.8	MSG 34 2 103 23	MSG 87.2 26.7 49.4 26.5	MSG 98 59 81 52	MSG D O Q	MSG 13 2 6 3	MSG MSG MSG 199 249	MSG MSG MSG 96 116	MSG 312.3 347.6 349.8 381.3
BISSETT BRANDON A CHURCHILL A DAUPHIN A	7.0 6.3 -4.6 6.4	5.2 3.5 5.5 4.1	23.2 22.3 18.7 24.2	-7.3 -9.8 -23.3 -6.5	1.5 37.0 62.9 32.4	8 327 282 199	42.0 95.0 60.2 76 8	282	TR 13 37 14	8668	224 MSG 140 198	98 MSG 69 89	330.7 352.1 667.7 348.1	TIMMINS A TORONTO TORONTO INT'L A TORONTO ISLAND A TRENTON A	5.5 8.2 7.2 7.0 7.5	4.5 .6 1.0 .8	26.1 23.1 25.3 19.7 21.3	-12.4 2 -3.6 2 -3.2	16.0 TR 1.6 TR	70 MSG 22 MSG MSG	33.8 66.0 58.7 61.3 161.0	69 91 84 92 212	000 00	5 8 11 11 12	MSG MSG MSG	MSG MSG MSG MSG MSG	376.1 294.2 323.7 330.8 315.0
GILLAM A GINLI ISLAND LAKE LYNN LAKE A NORWAY HOUSE A	.4 5.4 4.4 1.9 4.1	7.0 4.0 7.6 5.4 MSG	23.7 19.8 22.5 22.2 22.4	-16.0 -5.2 -7.9 -12.2 -7.6	41.0 20.0 51.4 17.9 27.0	107 132 186 76 MSG	33.2 64.2 37.1 16.9	89 171 90 73	35 3 21 0 20	5 6558	NSG 228 NSG 239 NSG	MSG 92 MSG 103 MSG	379.2 408.2 484.0 417.0	TROUT LAKE WATERLOO-WELL A WAWA A WIARTON A WINDSOR A	7.5 2.7 6.6 MSG 6.2 8.3	6.5 .6 MSG 1.5	24.9 24.8	-3.2 -10.7 -3.7 MSG -4.6 -1.1	.6 2.2	MSG 31 MSG 106 MSG	23.0 48.5	82 63	MSG 0	3 11 MSG 9	M5G M5G N5G 211	MSG MSG MSG 109 MSG	458.5 341.4 MSG 355.4 290.6

14B

1.11.2.2				11-							-	-	APRIL	1984	1	_				_							
STATION	Ten	Difference from Normal	maximum Maximum	Minimum	Snowfall (cm)	R of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C	STATION	Ven	Difference from Normal	mumixoM	Minimum	Snowfall (cm)	Z of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow an ground at end of month (cm)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	7 of Normal Bright Sunshine	Degree Days below 18 C
QUEBEC																											
BAGOTVILLE A BAIE COMEAU A BLANC SABLON CHIBOUGAMAU A KUUJJUAQ A	4.6 .3 -3.2 2.7 -6.7	2.4 1 -2.3 3.8 2.5	24.5 13.1 9.2 19.6 14.7	-9.7 -10.6 -16.8 -16.8 -34.1	9.6 6.8 30.0 27.4 4.2	48 23 75 124 19	32.5 67.5 33.2 39.4 2.8	68 105 46 76 12	0 14 3 0 35	5 5 10 6 1	MSG 218 208 244 172	MSG MSG MSG 129 87	403.3 531.9 612.1 459.2 740.6	NOVA SCOTIA EDDY POINT GREENWOOD A	2.7	.2 1 .7	15.3 21.7	-6.2	24.2 31.8	127 183	149.0 80.7	107	000	14 12	111 MSG	71 MSG	459.
GASPE A INUKJUAK A LA GRANDE RIVIERE MANIWAKI MATAGAMI A	.6 -7.0 .2 6.5 4.5	3 3.9 MSG 2.9 6.2	16.5 7.0 19.1 22.5 24.2	-15.0 -31.2 -24.5 -7.0 -15.0	32.6 2.4 TR .6 8.2	85 18 MSG 5 35	96.5 5.0 4.2 93.8 25.3	117 34 MSG 156 63	18000	8 2 2 9 5	190 188 0 201 261	MSG 106 MSG 105 142	486.7 751.2 555.4 345.8 411.1	HALIFAX INT'L A SABLE ISLAND SHEARWA TER A SYDNEY A TRURO	4.0 4.3 3.7 1.8 3.5	1.0 3 2 .6	20.1 11.0 22.3 18.8 19.6	-5.0 9 -4.7 -11.4 -9.2	24.3 8.8 15.5 28.8 30.0	101 144 119 113 160	165.4 116.4 168.9 204.1 105.4	200	000 000	11 13 13 14 11	MSG 71 122 93 129	MSG 53 74 59 86	421 409 409 487 435
MONT JOLI A MONTREAL INT'L A MONTREAL M INT'L A NATASHQUAN NITCHEQUON	2.6 7.1 6.1 -1.3 -2.6	1.0 1.4 MSG 8 3.2	16.4 23.4 22.7 12.5 13.9	-8.3 -5.1 -5.9 -15.4 -30.9	12.0 1.0 2.4 20.4 17.0	43 10 MSG 68 58	39.0 76.2 84.2 56.2 18.8	70 103 MSG 74 51	0 0 0 TR 5	7 10 9 9 4	195 198 205 210 257	127 105 MSG 129 138	501.1 320.7 356.8 579.5 616.5	PRINCE EDWARD	5.0	.3	19.2	-5.0	12.6	194	148.3		Ũ	10	156	87	397
KUUJJUARAPIK A QUEBEC A ROBERVAL A STE AGATHE DES MONTS ST HUBERT A	-1.8 4.1 4.4 5.1 6.7	5.0 .8 2.7 2.9 1.0	21.9 24.4 23.5 20.5 23.9	-28.4 -7.6 -10.3 -7.1 -5.3	2.0 5.8 8.2 5.6 1.2	9 36 37 28 12	9.0 42.6 48.5 90.2 85.8	33 59 103 108 115	TR O O O O	1 8 5 7 10	275 193 231 188 NSG	14.9 112 MSG 98 MSG	593.3 418.1 405.8 386.7 340.1	CHARLOTTETOWN A SUMMERSIDE A NEWFOUND LAND	2.2	1 9	16.8 17.5	-6.6	45.2	147 188	146.5 108.3	144	TR 0	13 11	159	MSG 98	486
SCHEFFERVILLE A SEPT-ILES A SHERBROOKE A VAL D'OR A	-5.5 .3 5.3 4.6	1.7 .3 1.7 3.7	13.1 11.7 26.8 23.4	-31.5 -12.7 -8.9 -10.3	7.5 28.4 3.8 25.6	18 86 16 119	7.0 96.5 74.1 66.2	15 123 100 130	36 1 0 0	3 5 10 7	254 226 184 229	MSG 121 MSG 124	703.9 532.7 381.5 402.3	ARGENTIA A BATTLE HARBOUR BONAVISTA BURGEO CARTWRIGHT	1.5 -5.0 6 2.1 -5.4	8 -2.7 -1.2 .5 -2.8	10.9 12.0 9.0 13.8 15.3	-8.6 -7.6 -10.6 -9.1 -23.1	10.2 9.9 9.2 2.4 60.1	111 22 41 10 105	99.7 16.1 105.4 84.2 61.0	30 163 67	0 23 TR 0 54	12 4 11 6 4	MSG MSG 126 248	MSG MSG 90 193	505 688 558 477 702
								174						CHURCHILL FALLS A COMFORT COVE DANIEL'S HARBOUR DEER LAKE A GANDER INT'L A	-4.2 -1.2 2 .3 6	.8 -2.1 5 5 -1.5	15.6 12.6 12.0 18.8 13.6	-30.0 -14.0 -14.2 -17.0 -12.3	30.2 42.6 10.6 13.8 37.3	58 92 37 46 79	27.8 97.8 34.8 38.2 97.8	109 67 65	MSG 8 0 7	5 9 6 4 12	269 MSG 225 MSG 145	174 MSG 169 MSG 125	654 575 545 530 556
CHARLO A CHA THAM A FREDERICTON A MONCTON A SAINT JOHN A	2.0 2.1 4.0 1.9 3.6	.7 9 1 -1.1 .4	15.9 23.2 23.6 21.1 19.1	-8.0 -7.6 -6.3 -11.0 -6.8	23.2 31.3 14.3 112.6 25.4	68 95 67 396 123	102.0 125.8 115.5 195.6 147.7	149 145 218	7 TR 0 0 0	11 12 9 14 12	196 161 151 150 152	121 94 MSG 94 96	481.7 479.3 417.7 484.1 431.1	GOOSE A HOPEDALE PORT-AUX-BASQUES ST ANTHONY ST JOHN'S A	-3.6 -6.9 2.7 -5.2 2	-1.9 -2.0 1.9 -3.3 -1.4	19.7 11.6 15.6 MSG 9.9	-29.7 -28.2 -8.1 -22.4 -12.0	52.4 25.0 3.8 47.6 17.7	108 54 16 127 51	50.8 25.0 69.8 65.0 MSG	46 75	57 72 0 70 TR	3 4 8 9 20	MSG MSG 158 MSG 83	MSG MSG MSG MSG 72	645 746 457 692 547
														ST LAWRENCE STEPHENVILLE A WABUSH LAKE A	MSG 5.0 -3.4	MSG 3.2 2.2	MSG 18.2 16.7	MSG -10.1 -26.8	1.2 12.5 30.1	6 57 61	134.2 53.2 26.2	89	0 0 30	15 5 4	MSG 191 263	MSG 146 184	476 449 640

15B

<" <

APRIL 1984 AVRIL

	1		-		-	1	-	-	1.	1	_		RIL	198	4 AVRIL	T	-				-	1		2 2		Deeree	Dave	
	Temperature °C Température °C							(Lu)	iore (mm) plus (mm)		Degree Days above 5° C Degrés-jours					Temperature Température							(cm)	nore (mm) plus (mm)		Degree Days above 5° C Degrés-jours		
STATION								s (cm)	0 or moi	[30	80-0	tessus 5°C								Minimum Minimale Snowfall (cm) Chute de neige (cm)			month bis (cm)	.0 or mo	res	au-de de s	5°C	
	Mean Moyenne	Difference from Normal Ecart à la normale	Maximum Maximale	Minimum	Snowfall (cm) Chute de neige (cm)	Chute de neige (cm) Total Precipitation (mm) Précipitation totale (mm)	% of Normal Precipitation % de précipitation normale	Snow on ground at end of r Neige au sol à la fin du moi	' days with Precip. 1 re de jours de préc.	Bright sunshine (haurs) Durée de l'insolation (heure	This Month Présent mois	Since Jan. 1st Depuis la 1ºr janv.	, C	de rosée m	STATION	Mean Moyenne	Difference from Normal Ecart à la normale	Maximum Maximale	Minimum Minimale		Total Precipitation (mm) Precipitation totale (mm)	% of Normal Precipitation % de précipitation normale	Snow on ground at end of Neige au sol à la fin du mo	No. of days with Precip. 1 Nombre de jours de préc.	Bright sunshine (hours) Durée de l'insolation (heu	This Month Présent mois	Since Jan. 1st Depuis le 1ª' janv.	Mean Dew Point °C Point de rosée moyen °C
AG BRITISH COLUMBIA	ROCLIMA	TOLOGIC	AL STA	TIONS	AGROCL	IMATOL	OGIQUE	S					19 9 m		Guelph Harrow Kapuskasing	6.6 7.9	0.8 0.0	23.8 23.0	-5.1 -2.0	0.0	56.8 83.5	70 103	0	13 13	165 175	71.5 92.3	74.0 99.7	
COLOMBIE-BRITANNIQUE Agassiz Kamloops	9.0	-0.5	24.0	-0.5	0.0	120.1	109	0	21	131	120.0	308.	1		Merivale Ottawa Smithfield Vineland Station	7.4	1.6	22.3 21.5 24.3	-3.7 -3.0 -2.0	0.0	113.0 149.8 67.6	175 184 93	0	11	188 174	84.5 85.5 55.8	84.5 87.7 63.6	
Sidney Summerland ALBERTA	7.9	-0.8	25.0	-1.0	0.0	21.2	108	0	6	175	92.0	138.0	0		Woodslee QUEBEC													
Beaverlodge Ellerslie Fort Vermilion	5.4 6.0	2.8	27.5 28.5	-5.5	8.6 T	8.0 5.6	35	0	22	215 249	39.4 55.4	40. 56.			La Pocatiere L'Assomption Lavaltrie	1.9 6.2	-0.9 1.2	21.0 23.0	-9.5 -6.0	3.0 1.2	39.4 79.8	62 111	T O	4 8	187 190	18.6 69.5	18.6 69.5	
Lacombe Lethbridge	5.3 6.7	2.2 1.9	29.0 30.0	-9.5 -6.5	0.0 9.0	7.1 27.3	30 66	0	3		55.9	57.0	6		Lennoxville Normandin	2.9	2.4	23.0	-13.0	10.2	54.3	111	0	5	217	30.0	30.0	
Vauxhall Vegreville	6.4	3.3	29.0	-8.5	0.0	15.2	109	0	4		70.5	70.	5		St. Augustin Ste. Clothilde NEW BRUNSWICK	7.2	1.5	22.5	-4.5	0.0	73.0	95	0	9	184	86.6	89.1	
SASKATCHEWAN			00.0				01				00.5				NOUVEAU-BRUNSWICK													
Indian Head Melfort Regina Saskatoon Scott	6.8 6.7 8.2 7.4 6.5	5.4	23.0	-6.5	1.9 0.0 6.2	21.3	21 113 24 60	0	3 4 2 3 5	214 247 244	89.5 83.5 64.5 98.0 73.9	89. 83. 64. 98. 73.	5 5 0		Fredericton NOVA SCOTIA NOUVELLE-ECOSSE													
Swift Current South	7.0		25.5		1 1 1 1	10.6	41				92.5	94.			Kentville Nappan	3.1	-0.2	19.5	-9.5	85.9	144.1	191	0	13	159	23.0	35.8	
MANITOBA Brandon Glenlea	6.7 7.5	4.1	23.0	-7.0	4.7	72.1 40.7	196 109 209	12 0	66	213 220 202	74.5 99.0 92.3	77.99,	0		PRINCE EDWARD ISLAND ILE-DU-PRINCE-EDOUARD Charlottetown			16.5			153.8	197	0	14		12.9	17.7	
Morden ONTARIO	7.2	3.2	22.5	-5.5	8.8	84.0	209	T	6	202	92.3	92.	8		NEWFOUNDLAND TERRE-NEUVE													
Delhi Flora	7.7	1.0	24.0 23.4	-4.5 -3.1	0.0	87.0 42.5	93	00	15 13	171 173	92.5 68.5	98. 69.			St. John's West	0.3	-1.3	9.0	-11.5	7.8	213.8	169	0	19	67	0.0	22.7	
arabbe		a la			1					and and								Li cas						ALL ALL				
		- Aller													Theorem and a life				1.0									
						1									and and the													
	T								1	1.0					total							- Series				-		
								1	-						are the second sec												1	

ACID RAIN REPORT ISSUED BY ENVIRONMENT CANADA FOR MAY 6-MAY 12 1984

LONGWOODS NEAR LONDON ONTARIO Air which passed over southwestern Ontario, Michigan and Illinois brought slightly acidic rain with a pH of 4.7 to Longwoods on May 8. On the next day May 9 the region received moderately acidic rain with a pH reading of 4.3. The air associated with this rainfall came from northern Ontario, Michigan and Wisconsin.

DORSET* MUSKOKA ONTARIO On May 7 a small amount of strongly acidic rain with a pH of 3.7 fell in air that had passed over southern Ontario and the Ohio river valley. Air that had passed over the same regions brought a large amount of moderately acidic rain with pH 4.5 on May 8. This was followed on May 9 by moderately acidic rain with pH 4.5 in air from Sudbury, northern Ontario and Wisconsin. On May 12 Dorset received strongly acidic rain with a pH of 3.9 from Sudbury and northern Michigan.

CHALK RIVER OTTAWA ONTARIO On May 8 Chalk River received a large amount of moderately acidic rain with a pH of 4.4. This occurred in air from southern Ontario and the Ohio river valley. On May 9 a small amount of slightly acidic rain of pH 4.8 fell in air from northern Ontario, Michigan and the Ohio valley produced strongly acidic rain with a pH reading of 3.8 on May 11. This was followed on May 12 with a small amount of moderately acidic rain of pH 4.5 from the Sudbury region and northern Michigan.

MONTMORENCY QUEBEC CITY QUEBEC On May 8 Montmorency received a large amount of moderately acidic rain of pH 4.6 in air which passed over southern Quebec and New England. This was followed on the next day by a small amount of a moderately acidic mixture of rain and snow from southern Quebec, southern Ontario and the eastern United States. On May 11 strongly acidic rain with pH 4.2 fell in air from southern Quebec, Southern Ontario and Michigan. Strongly acidic rain with a pH of 4.1 fell on May 12. This occurred in air from the Sudbury region and northern Michigan.

KEJIMKUJIK SOUTHWESTERN NOVA SCOTIA

Two rainstorms occurred during the week of May 6-12. The first on May 8 was normal precipitation with a pH of 5.1 from New Brunswick, northern Quebec and northern New England. The second rainstorm was moderately acidic with a pH level of 4.4 in air from the Atlantic ocean and the eastern seaboard of the United States.

This report was prepared by Federal Long-Range Transport of Air Pollutants (LRTAP) Liaison Office. For further information, please contact Dr. H.C. Martin at (416) 667-4803.