Climatic Perspectives MONTHLY SUPPLEMENT adian Climate Centre SHADED AREAS ABOVE NORMAL ISSN 0821-6762 UDC: 551.506.1(71) (Aussi disponible en français) VOL.6 JUNE ,1984 #### ACROSS THE COUNTRY ... #### Yukon and Northwest Territories West of the Mackenzie Valley. the weather was cool and damp. In contrast, most of the Northwest Territories experienced mild weather. After many months of abnormally cool temperatures, the readings rose above normal over Baffin Island. In the vicinity of Great Slave Lake. daytime temperatures climbed near 30° on several occasions. Mean temperatures were about 1° cooler than normal and precipitation was abundant in the Yukon. Most of the Yukon stations received 50 per cent more than their normal share; however, Whitehorse received only half its average rainfall. Across the Northwest Territories, precipitation was quite variable ranging from 13 per cent of normal at Cape Parry to 400 per cent of normal at Yellowknife. The cool and wet weather proved beneficial to forestry and numerous forest fires were brought under control in the southern Yukon. With 510 hours of bright sunshine, Sachs Harbour was the sunniest place in Canada this month. #### British Colombia It was a disappointing month for early summer vacationers. Due to an extensive cloud cover daytime temperatures were generally below normal. During the latter part of the month, active weather systems approached from the Pacific and produced widespread rains. Although no locality received record rainfalls this month, the majority of sites reported values well above normal. Not suprisingly, total hours of sunshine were below normal this month; only Prince Rupert on the North Coast received above normal sunshine. The cool and wet weather condition hampered farming and the growth of most agricultural crops was retarted several weeks. #### **Prairies** Severe weather was pronounced across most of the agricultural districts, especially during the latter half of the month. Severe struck thunderstorms southern Manitoba and parts of sothern Saskatchewan on more than four separate locations. The storms spawned tornadoes and were also assolcated with heavy downpours and large hail, which laid waste crops in many communities, flooded farm machinery left in low lying fields and in urban areas and flooded streets and basements. On June 15, hail devastated crops near Brandon accumulating to a depth of 15 cm on the ground. On June 16, Elle, west of Winnipeg, received more than 200 mm of rain in a six hour period alone. On June 21 and 22, tornadoes were reported in several communities across the south causing significant damage. On June 29, severe thunder storms crossed cental Alberta, spawning tornadoes which resulted in a swath of destruction just north of Edmonton, damaging as many as 35 farms. Winnipeg recorded its second wettest month on record with 227.9 mm of rain while Bissett set a new June record of 205 mm of precipitation. #### Ontario June's temperatures were near normal in Ontario. Mean values were within 1 degree of normal almost everywhere. Only parts of central Ontario experienced cooler weather. The month was very wet across all of the North and most of the South. At least 10 stations established record-high rainfall Including 216 mm at Timmins, the old record dates back to 1922. Although precipitation was excessive along the lower Great Lakes, less than normal amounts fell in some communities; for example Windsor received only 58 mm and Peterborough experienced a meagre 37 mm. Elsewhere in the South, amounts ranged from 100 to 140 mm. A tornado struck the town of Westport in eastern Ontario on July 18 demolishing two brick houses. Earlier, severe thunderstorms lashed the Niagara Peninsula. A 15-year old was killed by lightning northeast of continued on page 9B #### GROWING DEGREE - DAYS | TOTAL | TO END | OF JUN | Œ | |---|--|--|--| | | 1984 | 1983 | NORMAL | | (Aut Seif Lafe | | | | | Kamloops Penticton Prince George Vancouver Victoria | 742
652
310
722
635 | 887
829
485
865
797 | 814
757
393
698
639 | | ALBERTA Calgary Edmonton Mun. Grande Prairie Lethbridge Peace River | 378
544
425
481
378 | 472
572
493
555
456 | 400
451
428
507
415 | | SASKATCHEWAN Estevan Prince Albert Regina Saskatoon Swift Current | 561
458
526
523
471 | 552
422
431
538
441 | 549
443
506
507
484 | | MANITOBA
Brandon
Dauphin
Winnipeg | 502
493
527 | 418
388
453 | 513
484
544 | | ONTARIO London Muskoka North Bay Ottawa Thunder Bay Toronto Trenton Windsor | 686
568
514
690
434
635
634
820 | 601
519
457
627
348
597
598
745 | 694
547
514
669
386
687
674
846 | | QUEBEC Bale Comeau Montreal Quebec Sept-lles Sherbrooke | 236
695
542
212
498 | 288
634
517
268
502 | 302
682
526
231
583 | | NEW BRUNSWICK
Charlo
Fredericton
Moncton | 381
537
458 | 422
570
545 | 398
521
438 | | NOVA SCOTIA
Halifax
Sydney
Yarmouth | 433
366
419 | 499
419
464 | 414
305
401 | | PRINCE EDWARD Charlottetown | 1SLAND
433 | 517 | 370 | | NEWFOUNDLAND
Gander
St. John's
Stephenville | 277
266
355 | 383
204
445 | 245
193
270 | #### Weather and Asthma These notes were written by a staff meteorologist who has had personal experience with severe asthma in his family. They have been reviewed by a medical doctor but have not been endorsed by the Medical Association. The word "asthma" is used to indicate recurrent paroxysmal breathlessness accompanied by wheezing, coughing, and a sense of chest construction. Because each individual case has its own unique combination of contributing factors, attempts to relate climate to asthma frequencies have been inconclusive. In fact, some studies produce results that conflict with those from other studies the location of the study and the group of asthma sufferers in the sample have a marked effect on the conclusions reached by the investigator. For these reasons general statements can be absolutely wrong when applied to individual cases. There is no substitute for the advice of a doctor who has firsthand knowledge of the individual case. True asthma can be brought on by many causes. Allergic food reactions are fairly common in children, as are inhalent reactions in adults and children. In many cases respiratory infections can incite as astma attack - attacks caused by such infections can be very difficult to relieve. A complicating effect in many cases are emotions; some attacks are brought on by the emotions, while other cases are made more severe through this factor. To further complicate the picture, there are the imitators of true asthma, such as cardiac "asthma" caused by heart disease. The most marked influence that climate has on asthma occurrences is ecological - some allergens can exist in some climates and not in others. For example, for a person whose asthma is caused primarily by ragweed, polar regions would be havens because that weed is unknown in those places. For severe attacks of acute asthma, high humidity is part of the treatment, yet in areas with high temperature and high humidities, fungi and moulds (which are major causes of attacks in many sufferers) proliferate. For this reason tropical regions that were once thought of as havens for asthma victims can be just the opposite tropical regions for some sufferers. The only solution in cases where inhalants are the principal causes of the asthma is to determine the allergens responsible and to locate an area where these inhalants do not occur or are at a minimum. An allergy specialist should be able to help in both matters. There are other cases where this action can only help a little. For example, many asthma sufferers are allergic to house dust, or to the dander of animals. In such cases climate contributes little and the solution is to minimize contact with the causative allergens and to receive injections of desensitizing extracts, where these are known to be effective e.g. pollens, dust, mould. There are some cases where climatic factors can be contributory. As an example, some asthma victims react to certain pollutants in the atmosphere. An area with a high potential for air pollution, such as Los Angeles, should be avoided by such people. Unfortunately, many urban areas have high pollutions levels under certain weather patterns, so it is almost impossible to avoid such occurrences completely. Another factor is gusty winds. The contribution of these is not completely clear, but it is felt that it must, at least in part, be connected with their ability to raise allergens such as pollens and fungal spores from the ground and thus make them available for inhaling. Climatic stress is often quoted as a contributing factor. Sharp changes in temperature, humidity and pressure have all been correlated with higher asthma frequencies. However, the physiological connection between such ...continued on page 6B #### The Climatic Water Balance Paul Y.T. Louie Canadian Climate Centre The climatic water balance. simply stated, is an accounting over a specified time period of what happens to the precipitation at a location or region. It is with a quantitative concerned evaluation over time of the varlous ways that the precipitation be dispersed, utilized, stored, or changed. Such an evaluation can provide valuable insight to the solution of various problems. Problems in hydrology and agriculture come immediately to mind as logical fields where knowledge of the water balance can provide quantitative answers to such specific questions as: What is the
monthly or annual streamflow in ungauged streams? What is the available water supply for a reservoir or irrigation project? What are the possibilities of flooding or drought for a region? A water balance can be applied to different temporal and spatial scales. On the largest scale, a water balance can be used In the same sense as the hydrological cycle--considering the annual global balance of water in the oceans, atmosphere, and earth in all of its various stages. On an intermediate scale, it may be applied to a region or major drainage basins. On small scales, it may be applied to account for the water of agricultural fields, forest stands, or even individual plants. Although simple in concept, the evaluation of all the factors in a water balance can be a very complex undertaking. Factors such as evapotranspiration, infiltration and soil moisture storage are not normally measured and must be determined from other more readily measured parameters. Methods for computing a water balance at a given location were advanced in the 1940's by the works of C. W. Thornthwaite in the U. S., H. L. Penman in England and M. I. Budyko In the U.S.S.R. There have since been numerous modifications to these three basic methods. The Thornthwalte water bal- ften 011 ## WATER BALANCE COMPONENTS OCT. 1982 to SEPT. 1983 ance procedure is perhaps the most popular method. Originally developed for the classification of climates, this method has gained world wide popularity because of its simplicity and basic data needs. Requiring only temperature, precipitation and an assumption of the soil water holding capacity, i.e. the depth of water that can be stored in the root zone of the soil, the Thornthwaite water balance provides useful information on many aspects of the water relationships at a location. It provides an estimate of actual evapotranspiration or the actual loss of water from plant and soil surfaces. In many cases this is different from the climatic demand or potential evapotranspiration defined as the water loss from a homogeneous vegetation cover with an unlimited water supply. The difference between potential and actual evapotranspiration provides a quantitative value of the moisture deficit at a location--the amount which available moisture fails to satisfy the climatic demand for water. On the other hand, when precipitation exceeds water demand, excess moisture will infiltrate the soil and first be used to recharge the soil root zone. Any remaining excess water will become water surplus and is available for surface and/or subsurface runoff. During periods when the water need is greater than the precipitation, the water demand is met in part by using stored soil moisture. Tracking the soil moisture storage at a location using a water balance has been found to be a particular useful indicator of the moisture status since it not only accounts for the current water supply and demand at a location but it also integrates the antecedent moisture conditions. The four derived components from the climatic water balance--actual evapotranspiration, water deficit, water surplus, and soil moisture storage-are vital in any effort to understand or use the water resource of a region. of the water balance components computed in weekly time steps for Regina from October 1982 to September 1983 using the Thornth-waite water balance method. There is no change in the soil moisture storage from November to March because the precipitation is in the form of snow. A snowpack accumulates during this period. As temperature increases to above freezing from the beginning of April, the snowpack melts and the melt water recharges the soil as shown by the increasing soil moisture storage. Through April and May, the water from snowmelt and rainfall is sufficient to meet the evaporative demand, actual evapotranspiration is equal potential evapotranspiration and there is no moisture deficit. In the month of June, the rainfall water no longer satisfies the evaporative demand and there is a moisture deficit indicated by the difference between the potential and actual evapotranspiration curves. also that moisture is also being withdrawn from the soil to meet some of the evaporative demand and the soil moisture storage is decreased. From July to mid-August, the rainfall water was sufficient to meet the evaporative demand. potential and actual evapotranspiration was equal and there was a recharge of the soil moisture storage. From mid-August to mid-September, moisture deficit conditions again prevailed. In this example, a moisture surplus condition did not occur since the soil moisture storage did not fully recharge to its full water holding capacity. #### ... continued from pg 4B stresses and asthma attacks has eluded discovery. It is possible that the effects are secondary, or that they operate through the emotions. An asthmatic who is depressed mentally, no matter the cause (weather or otherwise), if often more susceptible to an attack, or an attack brought on by other causes can be more severe. A definite link between respiratory infections and asthma occurrences has been noted by several investigators. The most obvious climatic influence here is that such infections are more frequent in some climates than in others. In areas that undergo frequent and sharp changes in temperature during some seasons, the incidence of respiratory infections is higher. In such climates, humidity in buildings, is often very low during cold periods, causing more irritation to respiratory systems and more severe infections. Humidifying equipment has been found to help alleviate both the symptoms of the respiratory infection and the asthma attack that may also occur. In summary, the link between climate and asthma varies from case to case. Where the principal cause of the asthma is an allergen one must seek a region that minimizes contact with that allergen. This overrides all other climatic considerations. If the major cause of severe attacks is respiratory infections, then a climate in which these are not as numerous could help. However, one must be careful not to trade one cause for another - moving to a less stressproducing climate could also expose a sufferer to a higher incidence of some inhaled allergen that could counteract any benefit that otherwise might be gained. It is therefore most important that an asthmatic who is contemplating a move for medical reasons should consult with a qualified medical practioner who can make recommendations for the individual case. Reference: DS No. 9-72 Atmospheric Environment Service #### CORN HEAT UNITS #### Seasonal Accumulation to the end of June | Station | 1984 | <u>1983</u> | Per cent of Normal | |---------------|------|-------------|--------------------| | Lethbridge | 430 | 463 | 115 | | Brandon | 629 | 550 | 95 | | Pilot Mound | 643 | 635 | 97 | | Earlton | 437 | 450 | 101 | | London | 868 | 771 | 96 | | Ottawa | 802 | 792 | 89 | | Thunder Bay | 451 | 437 | 134 | | Toronto | 822 | 778 | 94 | | Trenton | 812 | 776 | 88 | | Wiarton | 554 | 580 | 86 | | Windsor | 1047 | 1000 | 97 | | Montréal | 876 | 841 | 92 | | St Agathe | 515 | 545 | 61 | | Sherbrocke | 660 | 624 | 98 | | Fredericton | 576 | 610 | 89 | | Truro | 382 | 409 | 105 | | Charlottetown | 413 | 463 | 101 | | CLIMATIC E | XTREMES - JUNE, 1984 | | |---|----------------------------|----------------| | MEAN TEMPERATURE: | | | | WARMEST
COLDEST | Windsor, ONT
Alert, NWT | 21.3°
-0.7° | | HIGHEST TEMPERATURE: | Federicton, NB | 34.9° | | LOWEST TEMPERATURE: | Cape Dyer, NWT | -10.5° | | HEAVIEST PRECIPITATION: | Daniels Harbour, NFLD | 294.8 mm | | HEAVIEST SNOWFALL: | Frobisher Bay, NWT | 39.4 cm | | DEEPEST SNOW ON THE GROUND
ON MAY 31, 1984 | Cape Dyer, NWT | 10 cm | | GREATEST NUMBER OF BRIGHT
SUNSHINE HOURS: | Sachs Harbour, NWT | 510 hrs | #### ... continued from page 2B Hamilton that also recorded 75 mm of rain in less than 6 hours. A few days later, an additional 87 mm fell at the same location. Sunshine was sparse across northern Ontario by some 30 to 40 hours. Despite the very wet weather in the southwestern region, London received 58 more hours of sunshine than normal and 340 hours of sun provided the brightest June ever at Hamilton. ## Québec June was cool and wet over eastern Québec. In contrast, near temperatures and drier normal weather prevailed over the western areas. Mean temperatures were nearly 3° below normal at Baie Comeau where the monthly average of 11.2° equalled the record-low value for June set in 1972. Elsewhere, mean temperatures ranged from 19° at Hull to 6° in Northern Québec. Except for Gaspe and the lower North Shores, precipitation was near normal. Blanc Sablon received the most, where 186 mm set a record for June. Significant rainfall was recorded at Montreal and Quebec City on July 18; At Montreal, 54 mm of rain was less than 1 mm shy of the 24-hour record fall for June. Hours of bright sunshine ranged from about 125 per cent of normal along the lower St. Lawrence Valley to 79 per cent of normal at Natashquan. #### Atlantic Provinces Atlantic Canada experienced wet and slightly cooler than normal weather during June. Mean temperatures were below normal throughout most of the East, but there was a record-breaking warm spell during July 9th-13th. The readings reached into the low thirties at many locations; at Fredericton, 34.9° was only 1° shy of the June record. The unusual warmth coincided with the visit of the Tall Ships to Halifax, helping to make this event a tremendous success. During the 3rd week of June, damaging frost occurred in the Maritimes as the temperatures dropped to record low values; corn and tobacco suffered freeze damage. Precipitation was excessive, the amounts ranged from 156 per cent of normal at Saint John to 45 per cent of normal at Moncton. At Saint John, 241 mm of rain proved to be of record proportions. Snowfall, a rare occurrence in June, fell in parts
of Cape Breton on June 4. Both Shelburne and Sable Island received record amounts of sunshine, 283 and 262 hours respectively. June was rather dull in Newfoundland, hours of bright sunshine were below normal in most locations. Canadian Climate Centre Atmospheric Environment Service 4905 Dufferin Street Downsview, Ontario CANADA M3H 5T4 (416) 667-4711/4906 Annual subscription rate for weekly issues---\$35.00 Annual subscription rate for one issue per month including monthly supplement--- \$10.00 EDITOR: A. Shabbar ASSISTANT EDITOR: A. Caillet STAFF WRITER: A. Radomski Correspondents: T. Mullane, Ottawa; H. Wahl, Whitehorse; N. Penny, Vancouver; W. Prusak, Edmonton; F. Luciow, Winnipeg; B. Smith, Toronto; J. Miron, Montréal; F. Amirault, Halifax. | | Tem | peratu | re C | | | | | | (cm) | more | | | | | Ten | peratu | re C | | | | | 18 | (cm) | more | | | 186 | |--|--|--|--|---|--|----------------------|--|---|----------------------------------|---------------------------------------|---|-----------------------------|--|--|---|--------------------------------------|--------------------------------------|--|----------------------------------|-----------------------------|--|---------------------------|-----------------------------------|-------------------------------------|---------------------------------|--------------------------------|---------------------------------| | STATION | Mean | Difference from Normal | Maximum | Minimum | Snowtall (cm) | % of Normal Snowfall | Total Precipitation (mm) | % of Normal Precipitation | Snow on ground at end of month (| No. of days with Precip 1,0 mm or | Bright Sunshine (hours) | % of Normal Bright Sunshine | Degree Days below 18 C | STATION | Mean | Difference from Normal | Maximum | Minimum | Snowfall (cm) | % of Normal Snowfall | Total Precipitation (mm) | % of Normal Precipitation | Snow on ground at end of month (a | No. of days with Precip 1.0 mm or r | Bright Sunshine (hours) | % of Normal Bright Sunshine | Degree Days below 18 C | | BRITISH COLUMBIA | | | | | | | | 01 1180
NULL 01 | 76.7 | lon rec | | 100 | | YUKON TERRITORY | | | | | | | | | | | | | | | ABBOTSFORD
ALERT BAY
BLUE RIVER
BULL HARBOUR
BURNS LAKE | 14.3
11.6
13.0
MSG | -0.4
-0.7
-0.8
-0.8 | 28.1
19.4
27.2
MSG | 3.8
5.2
-2.7
MSG | 0.0
0.0
0.0
0.0 | 0 0 0 | 73.2
52.1
126.3
95.4 | 113
79
147
123 | 0 0 0 0 | 10
10
16
13 | 153
X
184
X | 71 93 | 192.5
X
X | BURWASH
DAWSON
MAYO
WATSON LAKE
WHITEHORSE | 9.6
13.5
14.1
12.0
11.3 | -0.7
-0.7
-0.7
-0.7
-0.7 | 23.0
28.3
26.0
22.4
21.8 | -3.0
-1.3
0.7
0.5
-1.3 | 0.0
0.0
0.0
0.0
TR | 0 0 0 0 0 | 75.5
20.1
52.7
67.9
14.5 | 161
149
132
47 | 0 0 0 0 0 0 | 10
3
10
10
5 | X
X
X
225
217 | 85
80 | 250
135
115
179
202 | | CAPE ST. JAMES CAPE SCOTT CASTLEGAR COMOX CRANBROOK DEASE LAKE ETHELDA BAY | 10.5
10.9
15.2
14.4
13.4 | -0.1
-0.3
-1.7
-0.6
-1.5 | 15.6
16.7
31.8
25.0
28.6 | 7.1
5.8
3.2
6.2
-1.3 | 0.0
0.0
0.0
0.0
0.0
TR | 0 0 0 0 0 0 0 | 124.8
148.1
106.3
39.7
76.8
51.2
245.7 | 170
141
185
113
174
117
195 | 0 0 0 0 0 | 16
15
11
8
10
12
16 | X
X
209
X
274
188 | 86
284
87 | 224.3
213.0
94.7
107.2
140.1
247.8
220.5 | NORTHWEST
TERRITORIES ALERT BAKER LAKE CAMBRIDGE BAY CAPE DYER | -0.7
5.8
4.6
1.1 | 0.3
1.7
3.1
0.9 | 7.0
23.5
19.4
12.9 | -10.0
-1.5
-3.1
-10.5 | 6.6
TR
TR
8.0 | 67
0
0
28 | 5.7
16.1
5.0
14.6 | 55
77
38
37 | TR
TR
0 | 2 3 3 3 3 | 352
263
418 | 116
100
156 | 56
36
40
50 | | FORT NELSON FORT ST. JOHN HOPE KAMLOOPS KELOWNA LANGARA LYTTON | 14.6
13.0
15.3
17.3
15.6
10.9
17.2 | 0.2
-0.5
-0.5
-0.7
-0.5
0.8
-0.8 | 26.3
24.0
29.1
30.0
29.7
14.7
32.6 | 3.4
3.2
5.6
4.8
2.2
6.9
6.7 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 0 0 0 | 102.0
95.2
83.1 | 148
140
128
106
151
145 | 0 0 0 0 0 0 | 11
9
8
9
8
19 | 227
X
150
225
219
X
206 | 88
81
77 | 102.2
149.4
90.2
53.1
79.6
217.2
55.9 | CAPE PARRY CLYDE COPPERMINE CORAL HARBOUR EUREKA FORT RELIANCE | 3.6
1.8
4.9
3.2
3.4
10.8 | 1.2
1.1
1.1
1.6
1.3 | 12.8
22.4
17.5
14.8
23.1 | -4.0
-7.0
-3.5
-7.1
MSG
0.8 | 13.8
2.0
6.3
6.6
0.0 | 144
77
78
275
0 | 1.8
13.8
32.4
32.0 | 13
110
191
119 | TR 0 0 0 0 0 0 | 3 3 6 6 8 | 290
472
234
441
X | 111
153
83
109 | 48
39
44
43
21 | | MACKENZIE MCINNES ISLAND MERRY ISLAND PENTICTON PORT ALBERNI PORT HARDY | MSG
11.8
15.2
16.2
14.0
11.3 | MSG
-0.2
-0.3
1.0
-0.3
-0.5 | MSG
17.0
22.9
31.0
26.5
19.7 | 7.0
8.1
1.1
3.2
3.7 | 0.0
0.0
0.0
0.0
0.0 | MSG
0
0
0 | MSG
194.1
45.8
38.9
33.1
77.0 | | | MSG
18
9
5
10
12 | MSG
X
195
210
158
167 | # 80
97 | MSG
187.3
85.1
71.6
121.4
199.7 | FORT SIMPSON
FORT SMITH
FROBISHER BAY
HALL BEACH
HAY RIVER | 15.7
14.3
3.6
2.1
12.3 | 1.1
0.7
0.2
2.1
0.4 | 28.7
26.9
14.7
13.3
28.4 | 1.5
0.3
-7.4
-8.6
2.0 | 0.0
0.5
39.4
7.6
0.0 | 0
167
390
123
0 | 59.3
56.9
67.4
25.3
63.6 | 237 | 0 0 0 0 0 | 6
9
9
6
7 | 299
253
197
X
X | 106
*
113 | 7
11.
43
47
17 | | PRINCE GEORGE PRINCE RUPERT PRINCETON QUESNEL REVELSTOKE | 12.4
10.7
13.7
13.7
16.2 | -0.5
0.0
-0.8
-0.3
0.4 | 25.6
16.2
29.7
27.1
30.3 | 1.1
3.5
-1.6
0.8
2.3 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 0 | 66.5
146.2
45.6
47.2
54.6 | 99
117
172
75
82 | 0 0 0 0 0 | 13
15
8
11
10 | 231
136
210
X
214 | 89
90
* | 169.0
218.7
X
128.8
66.9 | MOULD BAY NORMAN WELLS POND INLET RESOLUTE SACHS HARBOUR YELLOWKNIFE | 1.8
16.5
1.1
6.1
13.7 | 2.1
2.5
1.7
4.2
0.8 | 9.4
27.5
10.1
16.0
23.3 | -6.9
0.8
-8.0
-3.5
1.5 | 0.0
0.0
0.8
TR
TR | 0
0
11
0
0 | 2.2
48.9
3.2
15.2
70.6 | 35
132
26
208 | TR 0 0 0 0 0 0 | 1 3 10 | 361
253
373
510
339 | 14.7
81
146
154
86 | 48
6
50
35
12 | | SANDSPIT
SMITHERS
STEWART
FERRACE
/ ANCOUVER HARBOUR | 11.5
11.7
12.2
15.0 | -0.1
-0.8
-1.5 | 16.5
26.0
25.0
25.6 | 5.7
1.2
6.4
9.2 | 0.0
0.0
0.0
0.0 | 0 0 0 | 85.0
18.4
45.2
94.8 | 164
46
106 | 0 0 0 | 16
8
11
9 | 151
217
180
X | 86
88
94 | 196.9
187.7
159.3
94.7 | ALBERTA | 11.7 | 0.1 | 27.5 | -1.5 | 0.0 | 0 | 46.0 | 75 | 00 | MSG | MSG
283 | 99 | N | | ANCOUVER INT'L
VICTORIA GONZ, HTS
VICTORIA INT'L
VICTORIA MARINE
VILLIAMS LAKE | 14.7
13.1
13.8
11.9
12.0 | -0.4
-0.5
-0.6
-1.0 | 25.4
22.1
23.5
19.5
24.5 | 7.4
7.0
6.0
4.2
1.2 | 0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 37.6
46.4 | 196 | 0 0 0 0 | 8
6
7
7
12 | 187
242
221
X
235 | 79
88
86
83 | 101.8
147.7
126.9
181.7
185.0 | BROOKS CALGARY INT'L COLD LAKE CORONATION EDMONTON INT'L FDMONTON MUN | 15.5
13.8
15.5
14.0 | -0.1
0.3
1.0
-0.4 | 36.0
30.2
33.9
34.1
30.0 | 1.5
2.3
3.0
2.3
0.6
5.5 | 0.0
0.0
0.0
0.0 | 0 0 0 | 52.2
73.0
46.6
81.6
66.2
84.9 | 65
142
86 | 0000 | 10
11
13 | 279
277
270
267 | 105
98
87
93 | 131
9
121
12
81 | | and and | THE REAL PROPERTY. | NAME OF THE PERSON | | | | | 23.2 | | 103/65 | | | | | EDMONTON MUN. EDMONTON NAMAO EDSON FORT CHIPEWY AN | 15.5
14.6
12.2
14.2 | 0.4
-0.1
-0.3
0.0 | 30.5
29.1
27.2
27.5 | 5.5
3.4
-0.7
0.0 | 0.0
0.0
0.0
0.0 | 0 0 0 | 84.9
104.5
72.4
70.8 | 110
134
60 | 0000 | 11
9
14
MSG | 285
X
230
MSG | 91 | | MRC " Missing ' A 1 " not observed " " noticel abject- 1984 | | | | | | 1 | | | | | | | | JUNE | |---|--------------------------------------|------------------------------------|--------------------------------------|------------------------------------|---------------------------------|----------------------|--|-------------------------------|-------------------------------------|--|---------------------------------|-----------------------------|--| | STATION | Mean | Difference from Normal | Maximum | Minimum | Snowfall (cm) | % of Normal Snowfall | Total Precipitation (mm) | % of Normal Precipitation | Snow on
ground at end of month (cm) | No. of days with Precip 1.0 mm or more | Bright Sunshine (hours) | % of Normal Bright Sunshine | Degree Days below 18 C | | FORT MCMURRA Y | 15.3 | 1.3 | 29.6 | 1.3 | 0.0 | 0 | 77.6 | 121 | 0 | 9 | 303 | 111 | 95.1 | | GRANDE PRAIRIE
HIGH LEVEL
JASPER
LETHBRIDGE | 13.5
14.2
12.0
15.2 | -0.2
-0.2
-0.4
-0.2 | 26.0
28.0
25.4
33.5 | 1.5
0.5
-2.1
0.4 | 0.0
0.0
0.0
0.0 | 0 0 0 | 108.8
105.3
59.4
50.7 | 155
147
108
65 | 0 0 0 | 10
10
10
6 | 275
286
215
X | 94 | 133.2
112.4
180.1
101.4 | | MEDICINE HAT
PEACE RIVER
RED DEER
ROCKY MTN HOUSE
SLAVE LAKE | 16.3
13.7
13.0
12.6
13.6 | -0.3
0.0
-0.6
-0.2
0.0 | 38.2
25.1
30.9
26.5
25.4 | 3.9
2.0
2.3
-1.3
2.3 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 51.6
120.5
57.1
69.1
60.3 | 81
202
68
66
62 | 0 0 0 0 0 | 6
10
8
9 | 311
X
X
X
X
306 | 112 | 77.7
127.9
146.3
164.2
131.4 | | SUFFIELD
WHITECOURT | 16.4
13.0 | 0.3 | 36.5
26.4 | 2.8 | 0.0 | 0 | 111.6
96.1 | 105 | 0 | 9 | 266
X | * | 75.7
150.9 | | SASKATCHEWAN | | | | | , | | | | | | | | | | BROADVIEW
COLLINS BAY
CREE LAKE
ESTEVAN
HUDSON BAY | 16.0
12.7
14.0
17.2
15.4 | 0.8
0.5
0.7 | 30.3
28.4
25.5
31.1
29.7 | -0.4
-1.6
1.0
3.9
2.3 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 0 | 46.6
46.9
67.8
87.0
76.4 | 79
106
112 | 0 0 0 0 0 | 11
10
10
9
8 | 296
268
319
285
304 | 100
*
120
94
* | 77.9
164.4
124.2
49.7
87.8 | | KINDERSLEY
LA RONGE
MEADOW LAKE
MOOSE JAW
NIPAWIN | 15.7
15.5
15.1
17.0
15.4 | 0.0
1.5
0.4 | 37.2
33.1
35.8
35.5
30.7 | 4.5
4.4
2.3
5.0
3.8 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 0 | 97.8
56.0
61.7
31.7
84.5 | 171
62
48 | 0 0 0 0 0 | 10
8
8
7
9 | X
X
296
277
284 | *
97
* | 90.4
91.0
98.3
60.5
85.6 | | NORTH BATTLEFORD
PRINCE ALBERT
REGINA
SASKATOON
SWIFT CURRENT | 15.5
15.8
16.6
16.5
15.5 | 0.1
1.2
0.7
0.8
0.4 | 35.9
32.6
32.8
35.5
36.6 | 3.4
4.1
3.7
3.2
4.5 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 | 108.4
94.8
36.0
70.0
74.7 | 180
137
45
119
99 | 0 0 0 0 | 11
8
7
7
9 | MSG
293
274
X
273 | 112
97
97 | 94.2
82.4
65.7
73.4
94.3 | | URANIUM CITY
WYNY ARD
YORKTON
MANITOBA | 13.9
15.6
16.0 | 0.4
0.2
0.5 | 24.4
30.7
29.8 | 3.4
1.9
0.4 | 0.0
0.0
0.0 | 0 0 0 | 40.1
67.7
89.5 | 114
92
127 | 0 0 0 | 9 9 8 | X
268
301 | 92
104 | 120.9
82.1
73.8 | | BISSETT
BRANDON
CHURCHILL
DAUPHIN
GILLAM | 16.2
16.4
7.4
16.6
13.0 | 0.8
0.3
1.2
0.8
2.1 | 29.5
30.8
32.2
29.1
31.4 | 2.3
1.7
-1.1
-0.3
-0.3 | 0.0
0.0
TR
0.0
0.0 | 0 0 0 0 0 0 | 205.0
52:1
34.5
123.8
45.2 | 236
68
79
143
80 | 0 0 0 0 0 | 13
12
9
7 | 245
X
222
267
MSG | 96
95
98 | 71.5
70.2
323.7
61.6
163.5 | | GIMLI
ISLAND LAKE
LYNN LAKE
NORWAY HOUSE
PILOT MOUND | 16.7
14.6
14.1
15.7
16.2 | 0.6
1.6
* | 28.0
29.5
35.2
28.5
30.6 | 4.1
1.8
1.1
0.4
4.3 | 0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 103.6
101.3
42.7
44.6
83.8 | 158
63
106 | 0 0 0 0 0 | 10
10
9
6 | 281
MSG
282
MSG
MSG | 96
107 | 61.2
117.9
130.8
89.9
71.1 | | | Ten | nperatu | re C | | | | | | (m | ore | | | | |---|--------------------------------------|----------------------------------|--------------------------------------|----------------------------------|---------------------------------|----------------------|---|---------------------------------|-------------------------------------|--|---------------------------|-----------------------------|--| | STATION | Mean | Difference from Normal | Maximum | Minimum | Snowfall (cm) | % of Normal Snowfall | Total Precipitation (mm) | % of Normal Precipitation | Snow on ground at end of month (cm) | No. of days with Precip 1.0 mm or more | Bright Sunshine (hours) | % of Normal Bright Sunshine | Degree Days below 18 C | | PORTAGE LA PRAIRIE
THE PAS
THOMPSON
WINNIPEG INT'L
ONTARIO | 17.6
15.7
13.9
17.0 | 0.6
1.3
1.7
0.2 | 31.0
31.2
31.4
30.1 | 5.3
3.9
-1.8
3.2 | 0.0
0.0
0.0
0.0 | 0 0 0 0 | 94.5
74.7
48.4
227.9 | 125
119
66
285 | 0 0 0 0 | 12
9
8
13 | 303
267
268 | 111
102
97 | 47.8
84.2
136.2
57.6 | | ATIKOKAN
EARLTON
GERALDTON
GORE BAY
HAMILTON RBG | 12.8
15.2
14.3
15.2
19.5 | -1.7
0.0
-0.4 | 28.6
28.1
28.2
25.9
32.3 | 0.1
1.6
3.0
4.6
7.0 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 135.5
116.4
142.1
104.8
122.5 | 138
130
180 | 0 0 0 0 0 | 12
15
15
11
11 | X
X
X
X
340 | | 161.1
99.7
113.2
86.3
23.3 | | HAMILTON KAPUSKASING KENORA KINGSTON LANSDOWNE HOUSE | 18.6
14.6
17.1
17.2
14.3 | 0.7
0.5
1.0
0.8
0.8 | 30.5
26.8
28.5
29.0
30.4 | 8.3
1.0
4.9
4.0
MSG | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 172.3
199.7
158.2
45.4
97.0 | 248
236
190
59
119 | 0 0 0 0 0 | 10
14
12
3
13 | X
X
X
291
X | 121 | 26.9
115.9
45.5
45.5
118.2 | | LONDON MOOSONEE MOUNT FOREST MUSKOKA NORTH BA Y | 19.1
11.3
16.3
16.1
15.8 | 1.2
-0.6
0.6
0.2
0.1 | 30.5
25.9
28.0
30.6
26.4 | 7.5
-1.5
3.8
1.8
2.8 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 | | 195
223
134
87
150 | 0 0 0 0 0 | 8
16
9
8
14 | 303
190
X
X | 124
87 | 21.0
200.9
78.6
75.3
78.8 | | OTTAWA INT'L PETAWAWA PETERBOROUGH PICKLE LAKE RED LAKE | 19.0
16.7
16.8
15.0
15.4 | -1.3
0.4
0.1
1.1
0.3 | 32.6
32.4
29.7
29.5
28.1 | 5.2
2.5
1.9
0.9
1.9 | 0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 56.6
57.8
36.9
97.4
132.8 | 77
61
57
111
153 | 0 0 0 0 0 | 4
6
3
12
11 | 304
X
X
X
237 | 123 | 22.1
64.8
68.3
104.1
97.6 | | ST. CATHARINES
SARNIA
SAULT STE. MARIE
SIMCOE
SIOUX LOOKOUT | 19.6
19.5
14.5
18.7
15.7 | 1.1
1.7
0.1
0.7
0.5 | 31.5
31.0
29.8
30.3
28.5 | 8.0
8.6
0.6
8.0
4.4 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 132.0
128.4
107.3
120.6
120.6 | 176
156
129
169
132 | 0 0 0 0 | 9
7
11
8
15 | X
317
203
X
X | 116
79 | 22.6
MSG
114.2
29.0
82.4 | | SUDBURY THUNDER BAY TIMMINS TORONTO TORONTO INT'L | 16.1
14.1
14.6
19.7
18.2 | 0.1
0.1
0.0
0.5 | 29.0
28.4
27.2
30.6
30.7 | 4.2
2.3
0.0
9.8
6.4 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 178.0
120.7
216.1
53.7
48.1 | 215
158
241
72 | 0 0 0 | i2
13
14
5
6 | 210
204
X
X | 85
*
78 | 71.7
119.6
115.8
15.0
40.1 | | TORONTO ISLAND TRENTON TROUT LAKE WATERLOO-WELL WAWA | 18.2
18.1
15.3
17.8
12.8 | 0.3
3.3
0.7 | 30.5
29.9
27.5
29.5
27.1 | 8.3
3.1
2.0
5.8
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 53.8
134.3
106.6
121.6
137.7 | 211
164 | 00000 | 0
3
12
9
14 | MSG
X
200
X
X | | 24.7
35.5
86.6
44.1
158.5 | | WIARTON
WINDSOR | 15.9
21.3 | 0.3 | 28.5
33.1 | 3.7
10.5 | 0.0 | 0 | 44.7 | 67
65 | 3 | 6 7 | 27 4
X | 95 | 88.9
3.5 | | JUNE 1984 Temperature C E E E E E E E E E E E E E E E E E E |
---|--|-----------------------------------|--------------------------------------|------------------------------------|---------------------------------|----------------------|---|---------------------------|-----------|---------------------------|---------------------------------|-----------------------------|---|---|---|-------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------|----------------------|--|---------------------------|-----------------------------------|-------------------------------------|---------------------------|-----------------------------|---| | TV ROLL | (mm) Itation end of month (cm) scip 1.0 mm or more Sunshine 18 C | | | | | | | | | | | | | angue and | Ter | nperatu | re C | | T. | | | | (mo | nore | | | | | STATION | Mean | Difference from Normal | Maximum | Minimum | Snowfall (cm) | % of Normal Snowfall | Total Precipitation (mm) | % of Normal Precipitation | of month | 1.0 mm or | Bright Sunshine (hours) | % of Normal Bright Sunshine | | STATION | Mean | Difference from Normal | Maximum | Minimum | Snowfall (cm) | % of Normal Snowfall | Total Precipitation (mm) | % of Normal Precipitation | Snow on ground at end of month (c | No. of days with Precip 1.0 mm or r | Bright Sunshine (hours) | % of Normal Bright Sunshine | Degree Days below 18 C | | QUEBEC | | | | | | | | | | | | | | NOVA SCOTIA | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | | | | | | | | BAGOTVILLE
BAIE COMEAU
BLANC SABLON
CHIBOUGAMAU
KUUJJUAQ | 14.9
11.2
6.6
13.3
7.7 | -0.6
-1.6
-0.6 | 31.4
24.4
18.4
28.0
28.5 | 1.7
-0.8
-1.7
1.4
-4.2 | 0.0
0.0
9.4
0.0
4.2 | 0
0
0
117 | | | 0 0 0 0 0 | 14
8
17
14
11 | X
221
129
X
198 | 94 * | 100.7
203.5
340.9
146.5
314.3 | EDDY POINT . GREENWOOD HALIFAX INT'L SABLE ISLAND | 12.8
16.0
14.7
12.2 | 0.1
-0.1
1.2 | 25.7
33.3
31.6
19.5 | 1.0
0.5
2.4
3.3 | 0.0
0.0
0.0
0.0 | 0 0 0 0 | 103.8
113.2
79.7
50.7 | 158
89
54 | 0 0 0 0 | 8
10
8
6 | 249
X
X
262 | 113 | 156.8
89.8
112.0
171.6 | | GASPE
INUKJUAK
LA GRANDE RIVIERE
MANIWAKI
MATAGAMI | 11.9
6.3
10.6
15.7 | 1.9 | 27.4
23.1
6.3
29.6 | -1.0
-1.4
-3.3
1.5 | 0.0
5.4
TR
0.0 | 0
146
0
0 | 110.6
26.8
81.4
80.8 | 77
90 | 0 0 0 | 14
6
12
9 | 211
242
212
249 | 125
*
100 | 186.2
351.2
224.9
89.1 | SHEARWATER
SYDNEY
TRURO
Y ARMOUTH | 14.2
12.7
14.3
13.8 | 0.3
-0.5
0.1
0.4 | 28.6
29.6
28.0
23.6 | 3.1
1.5
0.6
4.2 | 0.0
TR
0.0
0.0 | 0 0 0 | 72.7
73.6
87.2
150.6 | 128 | 0 0 0 | 11
10
6 | 249
240
222
259 | 113
106
102
123 | 121.3
167.4
120.2
126.5 | | MONT JOLI
MONTREAL INT'L
MONTREAL M INT'L
NA TASHQUAN
NITCHEQUON | 12.9
18.4
17.2
9.6
10.0 | -1.4
0.1
-0.9
0.2 | 27.8
29.8
31.4
18.0
21.2 | 1.0
6.3
4.1
-1.4
-1.3 | 0.0
0.0
0.0
TR
TR | 0 0 0 0 0 0 | 55.0
100.2
130.1
115.8
74.2 | 122 | 0 0 0 0 | 10
5
8
10
12 | 233
310
288
179
190 | 96
125
*
79
88 | 153.4
29.2
50.9
MSG
236.5 | PRINCE EDWARD ISLAND CHARLOTTETOWN SUMMERSIDE | 14.0 | -0.5
-0.6 | 29.8
27.7 | 3.3 | 0.0 | 0 0 | 125.8 | 157 | 0 0 | 13 | X
199 | 83 | 129.7
119.1 | | KUUJJUARAPIK
QUEBEC
ROBERVAL
STE AGA THE DES MONTS
ST HUBERT | 6.3
16.2
15.8 | 0.2
-0.2
0.3
0.1
-0.2 | 25.1
31.7
30.5
28.6
30.7 | -2.5
5.3
4.5
2.7
2.8 | 1.1
0.0
0.0
0.0
0.0 | 23 0 0 0 0 | 69.6
120.2
94.8
88.4
81.9 | 109
117
82 | 0 0 0 0 0 | 8
11
12
9
4 | 210
268
254
247 | 120
*
104 | 334.7
68.8
87.3
97.0
36.6 | NEWFOUNDLAND ARGENTIA BATTLE HARBOUR | 8.6
7.0 | 0.8 | 18.0
26.4 | 0.9 | 0.0 | 0 242 | 87.7
87.0 | | 0 | 13 | X | | 283.5
338.7 | | SCHEFFERVILLE
SEPT-ILES
SHERBROOKE
VAL D'OR | 7.3
10.7
15.4
14.3 | -1.3
-1.0
-0.2
-0.3 | 21.9
21.2
30.4
27.8 | -3.4
-0.2
-0.7
1.0 | 2.0
0.0
0.0
0.0 | 28
0
0 | 72.4 | 98
100
83 | 0 0 0 | 10
11
11
11 | 175
204
262
199 | 93
87
*
82 | 319.9
220.9
90.1
122.5 | BONA VISTA BURGEO CARTWRIGHT CHURCHILL FALLS | 8.3
9.0
7.0
8.5 | -1.3
-0.5
-1.4
-1.2 | 21.0
20.9
25.8
23.0 | -2.2
-1.8
1.6
-2.5
-5.1 | 0.0
0.4
16.9 | 676
84 | 110.0
181.2
142.7
84.5 | 172
132
183 | 0 0 0 | 13
17
18 | 165
170 | 92 | 289.5
269.0
330.9
286.6 | | NEW BRUNWICK | 13.8 | -0.9 | 32.0 | 0.1 | 0.0 | 0 | 124.9 | | 0 | 17 | | | | COMFORT COVE
DANIEL'S HARBOUR
DEER LAKE
GANDER INT'L | 9.0
8.1
10.1
9.4 | -2.9
-1.7
-2.1
-2.4 | 24.5
20.4
23.7
24.8 | -0.5
0.2
-1.1
-0.1 | 1.2
7.6
0.5
1.0 | 36 | 117.5
294.8
145.8
115.9 | 153
342
206
144 | 0 0 0 | 16
19
15
13 | 140
X
139 | 74
76 | 270.7
298.2
248.8
258.0 | | CHATHAM
FREDERICTON
MONCTON
SAINT JOHN | 15.2
15.9
14.4
13.8 | -0.5
-0.3
-0.6
0.0 | 34.7
34.9
32.5
28.3 | 1.9
1.1
-0.7
2.0 | 0.0
0.0
0.0
0.0 | 0 0 0 | 158.0
166.1
130.4
241.2 | 193
195
145 | 0 0 0 0 | 14
10
11
11 | 194
213
197
186 | 85
*
87
92 | 108.5
89.2
121.6
130.3 | GOOSE HOPEDALE PORT-AUX-BASQUES ST ANTHONY ST JOHN'S | 9.3
4.7
9.4
5.9
9.9 | -2.0
-1.7
0.4
-2.2
-1.0 | 26.7
23.0
20.4
19.2
22.7 | -4.2
-2.9
2.2
-1.0
-0.8 | 16.0
7.8
0.2
14.8
0.0 | 125 | 120.6
71.8
118.4
163.7
144.0 | 112 | 0000 | 13
10
5
18
13 | 157
X
X
X
125 | 67 | 261.6
400.5
259.2
362.1
242.5 | | TOTAL TOTAL STATE OF THE PARTY | | | | | | | | | | | | | | ST LAWRENCE
STEPHENVILLE
WABUSH LAKE | 9.1
11.1
8.6 | 0.8
-0.8
-1.3 | 21.0
21.3
20.5 | 2.1
2.1
-2.3 | 0.0
TR
TR | 0 0 0 | 108.1
157.4
77.6 | 98
182
87 | 0 0 0 | 16
16
14 | X
137
178 | 72
93 | 241.7
212.2
283.1 | | | | | | | 10000 | t w. | | 1 3 | | | | | | | | | JUNE 1984 JUIN | 824 122 | Temperature *C Température *C | | | | | (m) | nore (mm)
plus (mm) | | abov | e Days
e 5° C
is-jours | | | | | Tempera
Tempéra | | | | | | (cm) | ore (mm) | | abo | ree Days
we 5°C
refrjours | | | | |--|--------------------------------------|--|----------------------|--------------------------|-----------------------------------|---|---|-----------------------------------|--|--|---|--|--|---|--|----------------------|--|----------------------|---------
--------------------------------------|---|---|--|---|--|-------------------------|---------------------------------------|--| | STATION | Mean | Difference from Normal
Ecart à la normale | Maximum
Maximale | Minimum
Minimale | Snowfall (cm) Chute de neige (cm) | Total Precipitation (mm)
Precipitation totale (mm) | % of Normal Precipitation
% de précipitation normale | Snow on ground at and of month I. | No. of days with Pracip. 1.0 or mo
Nombre de jours de préc. 1.0 ou pi | Bright sunshine (hours) Durée de l'insolation (heures) | au-0 | Since Jan. 1st O. Since Jan. 1st Depuis le 18t janr. | Mean Dew Point °C
Point de rasée moyen °C | | STATION | Mean | Difference from Normal
Ecart à la normale | Maximum | Minimum | Snowfall (cm)
Chute de neige (cm) | Total Precipitation (mm)
Précipitation totale (mm) | % of Normal Precipitation
% de précipitation normale | Snow on ground at end of month
Neige au sol è la fin du mois fcm! | No. of days with Precip. 1.0 or mo
Nombre de jours de préc. 1.0 ou p | Bright sunshine (hours) Durée de l'insolation (heures) | | Since Jan. 1st
Deputs to 1st Jane. | The second secon | | BRITISH COLUMBIA | ROCLIMAT | 010610 | AL STA | TIONS | AGROCL | IMATOLO | GIQUE: | S | | | | | | | Guelph
Harrow
Kapuskasing | 17.9
21.1 | 0.5 | 29.6
32.0 | 3.6 | | 71.1 | 100 93 | 0 | 6 10 | 310
302 | 388.5
487.8 | 610.0 | - | | COLOMBIE-BRITANNIQUE Agassiz Kamloops Sidney Summerland | 15.2 | | 28.0 | 7.0 | 0.0 | 94.1 | | 0 | | 157 | 306.3 | 802.9 | | | Merivale Ottawa Smithfield Vineland Station Woodslee | 18.9
18.0
19.4 | 0.8
0.7
1.0 | 31.0
24.0
32.0 | 11.9 | 0.0 | 58.3
84.8
176.2 | 73
136
248 | 0 0 0 | 7
4
8 | 304 | 417.5
389.7
430.9 | 694.4
633.4
672.9 | The second second second | | ALBERTA Beaverlodge Ellerslie Fort Vermilion Lacombe | 12.8
14.1
13.4 | | 29.5 | 0.5
2.5 | 0.0 | 94.0
53.5
57.3 | | 0 0 | 8
12 | 256
268
248 | 236.3
265.2
253.2 | 366.7
443.3
425.7 | | | QUEBEC La Pocatiere L'Assomption Lavaltrie | 14.6 | -1.1 | 29.5 | 2.5 | 0.0 | 40.0
79.8 | 45
95 | 0 0 | 7 6 | 264
294 | 285.9
389.2 | 435.5
640.8 | The second second second | | Lethbridge Vauxhall Vegreville | 14.4 | 0.2 | 33.5 | 0.0 | 0.0 | 61.8 | 84 | 0 | 11 | | 285.2 | 476.7 | | | Lennoxville Normandin St. Augustin Ste. Clothilde | 14.7 | | 25.0 | | 0.0 | 83.6
48.0 | | 0 | 14 | 224 | 293.0 | 423.1 | - | | SASKATCHEWAN Indian Head Melfort Regina Saskatoon Scott | 16.6
15.8
16.2
16.1
14.2 | 1.0
0.5
0.5 | 31.0 | 1.5
4.0
1.0
1.0 | 0.0
0.0
0.0
0.0 | 62.4
83.0
54.9
52.0
82.1 | 76 | 0 0 0 0 0 | 9
10
7
8
12 | 254
272 | 351.0
317.0
335.8
334.5
209.3 | 520.5
538.5
605.5 | | 7 | NEW BRUNSWICK NOUVEAU-BRUNSWICK Fredericton NOVA SCOTIA | | | | | | | | | | | | | | | Swift Current South MANITOBA | 15.6 | 0.1 | 36.5 | 4.5 | 0.0 | 66.7 | 90 | 0 | 11 | 242 | 312.4 | 574.8 | | | NOUVELLE-ECOSSE Kentville Nappan | 16.2
14.6 | 0.3 | 32.5
30.0 | 2.0 | 0.0 | 83.8
100.2 | 118
128 | 0 0 | 8
11 | 211 203 | 336.8
289.8 | 601.0
481.5 | - | | Brandon
Glenlea
Morden | 17.1
16.5
17.6 | 0.8
-0.4
0.2 | 31.5
29.5
31.5 | -1.0
4.0
5.0 | 0.0 | 57.3
182.5
120.4 | 206 | 0 0 0 | 9
12
12 | 290
251
256 | 358.6
343.5
378.1 | 602.8
609.8
669.8 | | | PRINCE EDWARD ISLAND ILE-DU-PRINCE-EDOUARD Charlottetown | 14.1 | -0.8 | 30.5 | 2.0 | 0.0 | 124.6 | 169 | 0 | 14 | 204 | 274.7 | 450.2 | | | Delhi
Elora | 19.1
17.3 | 0.8 | 30.0 | 5.0 | 0.0 | 101.7
97.2 | 143 | 0 0 | | 321 | 551.2
366.5 | 728.0
579.5 | | | NEWFOUNDLAND
TERRE-NEUVE
ST. John's West | 2 | 11 | ## LONGWOODS NEAR LONDON-ONTARIO Longwoods received strongly acidic rain on July 9 and July 11 with pH readings of 4.0 and 3.8 respectively. The rain on July 9 was associated with air which came from Michigan and Ohio while the rain on July 11 was produced in air which passed over Wisconsin and Michigan. ## DORSET* MUSKOKAONTARIO Air which passed through Wisconsin, Michigan, Ohio and south-central Ontario brought strongly acidic rain with a pH reading of 4.2 to Dorset on July 10. Information on the rainfall for the rest of the week was not available. ## CHALK RIVER OTTAWA VALLEY-ONTARIO On July 10 and July 11 Chalk River received strongly acidic rain with pH values of 3.9 and 4.1 respectively. The air on July 10 came from Michigan, Ohio and central Ontario and the rain on July 11 was associated with air which passed over Michigan, southern Ontario and the Sudbury basin. Air which passed through northwestern Ontario brought moderately acidic rain with a pH of 4.6 to the region on July 12 and strongly acidic rain with a pH reading of 4.2 on July 13. On July 14 a small amount of strongly acidic rain of pH 4.0 was produced in air which originated in Wisconsin, Michigan and central Ontario. ## MONTMORENCY QUEBEC CITY-QUEBEC Montmorency received strongly acidic rain with a pH reading of 3.7 on July 8. This event was associated with air which passed over northern Ontario and northern Quebec. Information for the rainfall for the rest of the week was not available. ## KEJIMKUJIK SOUTHWESTERN NOVA SCOTIA Air which came from the southeast off of the Atlantic Ocean brought a large amount of slightly acidic rain with a pH value of 4.7 to Kejimkujik on July 8. On July 11 air which passed over southern Quebec, Maine and off of the Atlantic Ocean brought strongly acidic rain of pH 4.0 to the region. Environmental damage to lakes and streams is usually observed in sensitive areas regularly receiving precipitation with pH less than 4.7. pH readings less that 4.0 are serious. This report was prepared by the Federal Long-Range Transport of Air Pollutants (LRTAP) Liaison Office. For further information, please contact Dr. H.C. Martin at (416) 667-4803. ^{*} Dorset data supplied by Ontario Ministry of Environment.