Climatic Perspectives Perspectives dian Climate Centre ISSN 0821-6762 UDC: 551.506.1(71) (Aussi disponible en français) VOL. 6 JULY , 1984 # ACROSS THE COUNTRY ... # Yukon and Northwest Territories In the Yukon, the cool and damp weather of the previous month continued into July. At Whitehorse 6 daily low temperature records were established, and on July 19 the mercury dropped to -0.5° establishing a record-low for July. But, towards the end of the month summery weather arrived over the Yukon and the Mackenzie Valley. Daytime temperatures rose to 33° at several locations in the vicinity of the Great Slave Lake. The eastern Arctic and the Far North enjoyed warm weather for the first 3 weeks; however, cooler temperatures returned near the end of the month. Weather systems crossing the Mackenzie Valley deposited 30 to 90 mm of rain over the western Arctic and helped to keep the number of forest fire below average. Elsewhere, precipitation pattern was quite variable ranging from 5 per cent of normal at Coral Harbour to 242 per cent of average at Mould Bay. The North experienced rather dull weather in July, hours of bright sunshine were below normal almost everywhere. Clyde received the most sunshine - 441 hours. # British Columbia Pleasant summer weather predominated over a large portion of the Province as most Pacific weather systems were deflected towards the North Coast, where unfortunately weather conditions were unsettled. In general, the Queen Charlotte Islands, the north coast and the adjacent coastal mountains were wetter than normal. Prince Rupert received 222 mm of rain, more than twice the normal precipitation for the month. In contrast, all other areas of the Province with the exeption of the east Kootenays were significantly below normal in rainfall. Most locations in the south Canada received only 25 to 50 per cent of their normal expected rainfall. Victoria City had no measurable precipitation during July. Sunshine was plentiful in all districts except the North Coast, Sandspit received only 148 hours. Record amounts of sunshine were enjoyed in many communities of the southern interior. Victoria City was the sunniest location in the Province, receiving more than 400 hours of bright sunshine during the month. # Prairies Hot and very dry weather conditions created serious drought conditions for prairie farmers in the south and brought an outbreak of forest fires in the more northern forest districts. Precipitation totals in many areas of southern Saskatchewan since April 1 have been less than 50 per cent of normal; Moose Jaw received only 35 per cent of its normal rainfall. Lethbridge had 36 consecutive days without any measurable rain. North Battleford's rainfall was the lowest ever observed in July since records began. Maximum temperature readings in the thirties were almost a daily occurrence. Towards the end of the month several locations in Alberta and Saskatchewan reached daytime maximums of 38°. Uranium City recorded a new all-time high temperature of 34.7° on July 28. Severe weather struck several communities on July 8. Hail and three tornadoes cut a swath of destruction from Brandon to the southeast corner of Manitoba. An area northeast of Weyburn Saskatchewan, had heavy thunderstorm on the evening of July 30, rainfalls were as high 240 mm. # Ontario July's temperatures were near normal across Ontario. Mean values ranged from about one degree colder than normal in the South to slightly warmer than average in the North. In southwestern region, July was the coolest since 1976. Frequent thunderstorms produced quite a mixed rainfall pattern, Atikokan received 156 mm - the most July rainfall since 1972 and 127 mm at Earlton...continued on page 8B # GROWING DEGREE-DAYS | TOTAL | TO END | OF JUL | <u>Y</u> | |---|---|---|---| | | 1984 | 1983 | NORMAL | | BRITISH COLUMB Kamloops Penticton Prince George Vancouver Victoria | 1362
1237
686
1177
1069 | 1241
1152
725
1152
1076 | 1396
1319
774
1152
1054 | | ALBERTA Calgary Edmonton Mun. Grande Prairie Lethbridge Peace River | 846
1049
768
1028
795 | 749
877
748
858
713 | 840
884
848
1033
838 | | SASKATCHEWAN Estevan Prince Albert Regina Saskatoon Swift Current | 1217
975
1104
1081
1016 | 951
755
789
880
758 | 1117
930
1035
1033
1008 | | MANITOBA
Brandon
Dauphin
Winnipeg | 1043
1020
1092 | 789
757
875 | 1047
1003
1106 | | ONTARIO London Muskoka North Bay Ottawa Thunder Bay Toronto Trenton Windsor | 1246
1072
1014
1298
931
1199
1199 | 1029
907
827
1042
723
1034
1022
1215 | 1283
1056
1036
1262
858
1281
1272
1500 | | QUEBEC Baie Comeau Montréal Québec Sept-lies Sherbrooke | 961
1312
1107
620
995 | 542
1040
876
507
829 | 938
1295
1065
611
1138 | | NEW BRUNSWICK
Charlo
Fredericton
Moncton | 905
1101
1004 | 715
914
857 | 897
1057
957 | | NOVA SCOTIA
Halifax
Sydney
Yarmouth | 946
910
858 | 826
714
743 | 905
797
756 | | PRINCE EDWARD I | SLAND
992 | 829 | 881 | | NEWFOUNDLAND
Gander
St. John's
Stephen ville | 799
777
849 | 669
473
724 | 684
584
679 | # WARMER CLIMATES AND THE ARCTIC by H. Hengeveld Canadian Climate Centre #### INTRODUCTION: Recent articles in Climatic Perspectives have addressed the subjects of global climate change (Vol. 6 (19) May 18, 1984) and the threat of possible climatic warming due to rising concentrations of atmospheric CO, (Vol. 5, June 1983). The magnitude of climate change on a global scale, however, often appears to be of little concern to members of societies who already regularly experience much larger regional variations of their climates. Canadians in particular, living along the cold margins of habitable earth, must cope with large year-to-year climate fluctuations that bring with them increased risk to the socioeconomic activities of our country. Hence, the real threats and /or opportunities of a global climate change only become evident when translated into recognizable terms of regional climates. This article, dealing with climate change and the Arctic, is the first of several which will explore the possible implications of a global CO,-induced warming on the environment of Canada and hence its citizens. # CLIMATE CHANGE IN THE ARCTIC: THE PAST The Arctic terrestial surface is abundant with evidence that todays climate, on a time scale of millenia and longer, is not normal but only a momentary state of a constantly changing environment. Major ice ages have come and gone at regular 100,000 year intervals, while significant although smaller warm and cold periods have succeeded each other in between. In the Arctic these changes appear to have been significant amplifications of similar changes in the global climate. This magnification of global change is largely related to the role of snow and ice as reflectors of incoming sunlight and insulators of the ocean sur meteorological records. faces. On the regional scale, climate change becomes considerably more complex, within one area often displaying changes quite different in characteristics from those in an adjoining region. For example, during the most recent ice age, the northwest Canadian Arctic remained largely ice free while most of the North American continent was covered with a massive ice sheet. Similarly, during periods of glacial accretion of some Arctic ice caps (e.g. the Greenland ice cap), others appear to have decreased in size (e.g. Ellesmere ice caps), and vice versa. Hence caution must be used in discussing the characteristics of Arctic climate change, since its manifestation may vary across the north. Two warm periods during the last 10,000 years are of significant interest as possible analogs for future climate warming. The warmest, known as the Alti- or Hypsithermal, occurred during the peak of the current inter-glacial some 5-8000 years ago. During this period the Arctic climate was still significantly dominated by a residual ice sheet over northern Quebec-Labrador. While average global temperatures were about 1.5°C warmer than today, evidence suggests that the Arctic warming was considerably larger (3-4°C warmer than today), with District of Mackenzie possibly as much as 11°C warmer. Summer temperature increases were more modest, averaging about 1-3°C and peakin at v5°C in the Mackenzie District. Conditions in general were wetter than today. The tree-line moved about 200-300 km north of its present location. The subsequent cooling was interrupted by several weaker, but significant warm periods, the latest occurring approximately 1000-1200 years ago. During this latter period, based on terrestial, archeological and historical records, the Vikings established farming colonies on Iceland and south-west Greenland, Inuits were present on Ellesmere Island, cyclone tracks moved some 3-5° northward to 60-65°N and the treeline was approximately 100 km north of todays location. Sea ice limits retreated 1000 km northward to 80°N, with a 20% reduction in Arctic sea ice cover. Yet global average temperatures were only about 1°C warmer than today. Finally, meteorological records of the last 100 years (Figure 1) indicate global temperature variation of about 0.6°C with a trend to warmer conditions while concurrent Arctic temperatures display a range in ariation of 2°C. Hence past climates consistently suggest that Arctic climate variations are amplified by a factor of 2-3 with respect to those of global climate. # THE FUTURE Prediction of future climate is a complex problem, involving many variables and dependent on an inadequate
scientific understanding of the processes to be considered. The results of studies todate remain highly uncertain. Scientists, however, generally agree that a significant climate warming is about to take place. This conclusion is based on scientific research results indicating the probable domination of man-made influences on climate, particularly relating to rising concentrations of atmospheric CO, over all other natural causes of climate change during the next few centuries (see Climatic Perspectives Vol. 6, (19) May 18, 1984). The timing and magnitude of such a warming remains an actively debated question. Present understanding suggests a probable global warming of 1.5°C to 4.5°C for a doubled concentration of atmospheric CO, This is likely to occur during the second half of the 21st century. Such a warming would equal or exceed the warmest climate of the earth during the last 100,000 years. Although the characteristics of such a warming difficult to parameterize, intricate numerical models climate, together with studies of past climates, provide some important clues. Following are patterns that emerge for the Canadian Arctic. Temperature. As already suggested by the above review of past climates, results of mathematical model experiments indicate that Arctic warming will likely exceed global warming by a factor of 2-3. Furthermore, winter warming would be much greater than that of summer. While winter warming could reach 10-15°C, Arctic summer warming would not likely exceed 3-4°C. Precipitation. A displacement of dominant storm tracks northward, together with increased moisture availability from expanded areas of ice free oceans, appear likely to result in a significant increase in precipitation, with some areas experiencing as much as 40-50% increase. Snow season will be shorter, but greater snow depths may actually accumulate due to precipitation increases. Hence river runoff would increase and peak earlier in the year. Increased summer evaporation will partially offset the effect of increased precipitation during the rainy season. Increased winter Permafrost. temperatures and snow cover, together with warmer summers, will result in the slow decay of the thickness of the permafrost layer (v30 metres/°C warming). The effect on continuous permafrost zone will be very slow, taking centuries and millenia to stabilize. Areas within the discontinuous zone, where the permafrost layer is relatively thin and interrupted, will however likely deteriorate more rapidly, since a shorter time is required for the frost to reach melting point. Land instability, development of thermokarst topography and lakes, and occurrence of mudslides would consequently increase. ice: Fresh Water. Ice seasons will become significantly shorter due to later freezup and earlier breakup of inland lakes and rivers. Preliminary studies suggest seasons could reduce duration by 4 to 11 days per °C of warming. Hence ice free seasons could lengthen by from one half to more than two months. Sea ice on the other hand, is influenced by not only temperature but also ocean currents, salinity and predominant winds. Studies of past climates as well as results of numerical model experiments suggest a major retreat of southern ice limits, possible complete disappearance of ice in the Arctic ocean durin mid summer, and a Hudson Bay free of ice year-round. The prognosis for glacial ice is much more difficult. Increased melting of ice sheet margins during warmer and longer summers could very well be offset by net annual increase in snow depth accumulation at higher glacial elevations. This could result in increased glacial flow and, hence, iceberg production. Sea Level. During the expected warming of the next 100 years, thermal expansion of the oceans together with melting of temperate glaciers are likely to raise sea levels by ½ to 1 metre. A more remote possibility exists of a 5-6 metre rise due to the disintegration of the West Antarctic ice cap (see Climatic Perspectives Vol. 5 (44) Nov. 4, 1983). Such an event, if it does occur, would likely take 200 to 500 years to develop. #### IMPLICATIONS OF A WARMER ARCTIC The effects of a climate warming as described on socioeconomic activities of our north would be profound. In general it would result in a significant improvement of conditions of northern living, reducing the hazards of human activities in a harsh environment and increasing the potential for economic development. It would also increase land instability, deteriorate winter road conditions and result in increased storminess. Much work remains to be done to assess northern sensitivity to such change. Some qualitative inferences however, can already be derived. Following are some of these: ## Offshore Development /Transportation. Major constraints of offshore marine activities in the Arctic are harsh winter temperatures and less ice cover. Shipping is presently restricted to 4-6 months of the year, with some areas of the high Arctic totally inaccessible by marine route. Costs of building and operating powerful icestrengthened vessels are high and risk of damage substantial. Offshore resource exploration is similarly limited, with costly drilling platforms remaining idle for much of the year. Ice free summer conditions, reduced thickness and extent of winter ice and more clement winter temperatures would dramatically reduce these restrictions. Costs of design and construction, operation insuring offshore platforms and marine vessels, as well as risk to life and environment would be substantially reduced. Year round operation would become a reality. On the other hand, potential increase for storminess, increased wave activity in ice free waters, and possible increase in ice berg populations in eastern Arctic waters have negative, although less substantial, implications. Fish populations are Fishing. known to be highly sensitive to ocean climate conditions. example, cod populations off West Greenland were abundant during that warm period of 1000-1200 AD (historical reports), and more recently during the 1920-1950 warm period, only to disappear during subsequent cool periods. These changes are apparently related to climate related changes in ocean currents. How fish population will migrate in Arctic waters during a climate warming are as yet unknown, although major changes will undoubtedly take place. Accessibility to fishing grounds will improve as ice conditions become less restrictive. Agriculture and Forestry. Warmer summer temperatures, longer growing seasons and less severe Arctic winters, together with high photosynthesis potential of long summer days, bode well for a northern agricultural industry under warmer climate. Soil limitations will however restrict this potential to the Mackenzie Valley and smaller valleys of the western Arctic. Whitehorse, for example, could experience a 40% increase in both growing degree days and frost free period (see Table 1.) while Yellowknife's improvements would be more modest at 34% and 18% respectively. Similarly forest productivity would increase substantially, with a gradual migration of the treeline northward by about 100 km/°C of global warming. Natural vegetation of the Arctic landscape would change substantially as certain species thrive and others disappear. Other Implications include reduced heating costs, increased damage to buildings and roads due to decaying permafrost, shorter seasons for using winter roads and effects on migration of wildlife. While the uncertainty surrounding the regional characteristics and magnitude of possible climate change, as well as the sensitivity of our northern society to such change remains high, scientists are quite certain that WILL projected general trends materialize. A global warming, with an amplified Arctic change, now appears inevitable. Much more effort now needs to be devoted to uncertainties, reducing the quantifying the impacts and devising methods to mitigate or adapt to them. It calls for a coordinated effort between the various government, university and public interest groups, within Canada, and internationally too. | Location | 1951 | -80 | +2.3 | °C | |-------------------------|---------|------|------|-------| | | GDD | FFD | GDD | FFD | | Fort Simpson | 1094 | 79 | 1525 | 99 | | Inuvik | 654 | 51 | 826 | 72 | | Whitehorse | 897 | 82 | 1269 | 115 | | Yellowknife | 982 | 111 | 1312 | 131 | | senior burch | ALCO IN | 1000 | | HA FA | | Comparison:
Edmonton | √1 400 | M 20 | n en | | Table 1. Probable changes in growing-degree days (GDD) and frost free days (FFD) for various Arctic locations for a global 2.3°C warming. # ICE BREAK UP - HUDSON BAY 1984 | CLIMATIC E | XTREMES - JULY, 1984 | | |--|---------------------------------|---------------| | MEAN TEMPERATURE: | | | | WARMEST
COLDEST | Estevan, SASK
Mould Bay, NWT | 22.1°
3.1° | | HIGHEST TEMPERATURE: | Lytton, BC | 40.5° | | LOWEST TEMPERATURE: | Clyde, NWT
Mould Bay, NWT | -2.6° | | HEAVIEST PRECIPITATION: | Prince Rupert, BC | 222.3 mm | | HEAVIEST SNOWFALL: | Cape Dyer, NWT | 16.0 cm | | DEEPEST SNOW ON THE GROUND
ON JULY 31, 1984 | Cape Dyer, NWT | 12 cm | | GREATEST NUMBER OF BRIGHT
SUNSHINE HOURS: | Clyde, NWT | 441 hrs | # ...continued from page 2B proved to be the highest July amount since 1969. In sharp contrast, Windsor received only 38 mm and a sparse 29 mm provided the driest July since 1971 at St. Catharines. Hamilton and Mount Forest were dry with only 40 mm and Toronto received a meagre 44 mm. The last 10 days of the month were especially dry in the South, little or no rain fell across the lower Great Lakes. On July 15, tornadoes carved wide paths of destruction from Ralphton to Deep River along the Ottawa Valley. Although these storms caused extensive property damage and injuries in Ontario, the brunt of the damages were felt on the Québec side of the border. # Québec Over most of Québec, mean temperatures were
near normal. Temperature departures were within 1° of normal along the St. Lawrence Valley; at Blanc Sablon, a monthly mean of 12.7 broke the old record dating back to 1975. Precipitation was less than 75 per cent of normal in the Hull-Ottawa and Montréal area with quantities 53 mm and 60 mm respectively. However, rainfall exceeded 150 mm at Trois-Rivières, Sherbrooke and Québec City. Sherbrooke received the most - 174 mm. Over eastern Québec, precipitation ranged from 68 mm at Gaspé to 137 mm at Blanc Sablon while the northern portion of the Province received amounts up to 141 mm at Nitchequon. Hours of bright sunshine were close to normal, but 275 hours of sunshine were 109 per cent of normal at Chibougamau. On July 15, tornadoes ripped through communities along the Ottawa Valley. The village of Blue Sea Lake was the hardest hit where many homes were reduced to rubble and 1 person was killed and 38 others were injured from flying debris. #### Atlantic Provinces The East Coast enjoyed sunny and warm weather during July. The temperatures were above normal throughout most of the Provinces. St. Lawrence recorded the largest temperature anomaly of 3°. It was the warmest July since 1975 at many Maritime locations; At Halifax, the monthly mean of 20.1° was the highest July mean value since 1961. During the last week of July, a heat wave covered the Maritimes and daytime temperatures climbed into the low thirties. Precipitation was generally below normal in Nova Scotia and eastern Newfoundland. A number of stations received less than half their normal amount; for example, Sable Island had only 26 mm making this the driest July since 1945. Although Labrador had excessive rainfall, 178 mm at Hopedale was 211 per cent of normal. Eastern Newfoundland was very dry, a meagre 41 mm at St. John's was about 55 per cent of the norm. In New Brunswick, rainfall was above normal. The dry weather depleted soil moisture resources in eastern Newfoundland and crops exhibited moisture stress. Some crops were suffering from stunted growth. Dry conditions also contributed to below average river levels in Newfoundland. Except for parts of northern New Brunswick and western Nova Scotia, hours of bright sunshine were above normal across Atlantic Canada. Eddy point received the most hours of sunshine, 285.6, however, with 268.5 hours of sun Gander established record amount of sunshine ## CORN HEAT UNITS # Seasonal Accumulation to the end of July | Station | 1984 | 1983 | Per cent of Norma | |---------------|------|------|-------------------| | Lethbr ldge | 1114 | 1058 | 112 | | Brandon | 1304 | 1253 | 96 | | Pilot Mound | 1336 | 1372 | 100 | | Earlton | 1121 | 1124 | 1 08 | | London | 1609 | 1548 | 97 | | Ottawa | 1593 | 1559 | 95 | | Thunder Bay | 1111 | 1102 | 117 | | Toronto | 1557 | 1546 | 95 | | Trenton | 1573 | 1544 | 92 | | Wiarton | 908 | 1297 | 68 | | Windsor | 1871 | 1845 | 98 | | Montréal | 1693 | 1597 | 97 | | St Agathe | 1185 | 1187 | 74 | | Sherbrooke | 1324 | 1233 | 99 | | Fredericton | 1322 | 1271 | 98 | | Truro | 1119 | 993 | 111 | | Charlottetown | 1173 | 1092 | 103 | Canadian Climate Centre Atmospheric Environment Service 4905 Dufferin Street Downsview, Ontario (416) 667-4711/4906 CANADA MBH 5T4 Annual subscription rate for weekly issues---\$35.00 Annual subscription rate for one issue per month including monthly supplement--- \$10.00 EDITOR: A. Shabbar ASSISTANT EDITOR: A. Caillet STAFF WRITER: A. Radomski Correspondents: T. Mullane, Ottawa; H. Wahl, Whitehorse; N. Penny, Vancouver; W. Prusak, Edmonton; F. Luciow, Winnipeg; B. Smith, Toronto; J. Miron, Montréal; F. Amirault, Halifax. | | | | | | | | | | | | | | JULY | | |--|--------------------------------------|-------------------------------------|--------------------------------------|----------------------------------|---------------------------------|----------------------|--|------------------------------|-------------------------------------|---------------------------------------|----------------------------------|-----------------------------|--|--| | STATION | Tem | Dirterence from Normal | Maximum | Minimum | Snowrall (cm) | % or Normal Snowrall | Total Precipitation (mm) | % or Normal Precipitation | Snow on ground at end of month (cm) | No or days with Precip 1,0 mm or more | Bright Sunshine (hours) | % of Normal Bright Sunshine | Degree Days below 18 C | | | BRITISH
COLUMBIA | | | | | | | | | | | | | | The state of s | | ABBOTSFORD
ALERT BAY
BLUE RIVER
BULL HARBOUR | 17.0
13.5
16.4
12.7 | 0.0
-0.5
0.0
-0.4 | 32.1
22.1
33.9
19.0 | 6.5
7.5
1.9
7.4 | 0.0 | 0 0 | 22.9
58.5
35.0
79.9 | 56
112
46
130 | 0 0 0 0 0 | 3
8
11
15 | 340
X
283
X | 117 | 51.3
134.3
MSG
164.5 | | | CAPE ST. LAMES CAPE SCOTT CASTLEGAR COMOX CRANBROOK | 12.7
13.0
20.1
17.2
19.3 | 0.0
-0.2
-0.2
-0.2
-0.2 | 18.4
17.7
36.7
30.4
35.5 | 3.0
3.0
3.0
9.1 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 53.0
73.4
10.0
10.6
34.3 | 91
38
28
38
109 | 0 0 0 0 0 0 | 13
11
4
4
5 | 168
X
338
X
362 | 107 | 103.0
106.0
3.4
35.4
26.3 | | | DEASE LAKE
ETHELDA BA 1
FORT NELSON
FORT ST. JOHN
HOPE | 11.5
12.9
16.0
15.3
18.4 | -1.0
-0.3
0.0
0.2
-0.i | 27.5
21.2
33.0
30.1
33.0 | 0.5
4.4
4.9
5.0
6.9 | 0.4
0.0
0.0
0.0
0.0 | 40
0
0
0 | 20.4
102.4
103.0
42.1
20.5 | 37
31
128
55
55 | 0 0 0 0 | 10
15
13
9
4 | 229
X
MSG
X
312 | 115
* | 201.3
157.9
66.9
34.7
32.4 | | | KAMLOOPS
KELO NNA
LANGARA
LYTTON
MACKENZIE | 21.a
19.3
12.3
21.7 | 0.7
1.1
0.1
0.1
-0.3 | 38.3
35.7
16.4
40.5
32.2 | 7.5
3.6
8.1
10.2
0.9 | 0.0
0.0
0.0
0.0 | 0 0 0 | 15.5
10.6
97.3
3.6
30.0 | 69
44
121
33
58 | 0 0 0 0 0 0 | 4
3
2:
6 | 364
350
X
3:2
280 | 115
112
106
104 | 11.6
17.3
176.2
9.7
128.7 | | | MCINNES ISLAND MERRY ISLAND PENTICTON PORT ALBERNI PORT HARD | 14.0
17.9
20.3
17.0
13.7 | 0.3
0.3
0.5
-0.1 | 19.3
27.3
35.0
33.5
21.6 | 9.4
11.0
5.6
5.0
7.0 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 0 | 100.4
4.2
12.0
12.0
56.0 | 101
11
57
43
103 | 0 0 0 0 0 0 | 16
2
2
2
7 | X
342
349
374
193 | 112
#
98 | 127.2
26.7
11.5
43.9
133.0 | | | PRINCE GEORGE
PRINCE RUPERT
PRINCETON
QUESNEL
REVELSTOKE | 14.9
12.7
17.9
16.7
19.2 | -0.2
-0.3
0.3
0.3 | 32.0
19.3
37.7
35.3
34.4 | 2.3
6.9
2.0
3.3
6.4 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 41.6
222.3
4.4
58.3
25.2 | 70
216
20
112
44 | 0 0 0 0 0 | 7
21
2
8
6 | 332
133
368
MSG
279 | 113
93
*
104 | 103.2
162.3
MSG
65.8
26.6 | | | SANDSPIT
SMITHERS
STEWART
TERRACE
VANCOUVER HARBOUR | 13.4
13.9
MSG
14.3
17.3 | -0.6
-0.9
MSG
-1.3 | 20.2
33.2
MSG
31.2
28.1 | 6.7
0.5
MSG
7.6
10.5 | 0.0
0.0
MSG
0.0 | 0
0
MSG
0 | 63.5
31.3
MSG
72.0
3.3 | 147
68
MSG
128
9 | O
MSG
O | 12
7
MSG
13 | 148
230
MSG-
165
MSG | 80
95
#
94 | 141.4
132.4
MSG
110.1
29.0 | | | V ANCOUVER INTIL VICTORIA GONZ. mTS VICTORIA INTIL VICTORIA MARINE WILLIAMS LAKE | 17.2
15.3
16.0
14.2
15.7 | -0.1
0.4
0.3
0.2
0.3 | 26.9
27.0
30.3
26.2
3i.3 | 10.1
9.3
7.7
6.7
3.5 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0
| 3.9
0.0
1.2
0.6
40.3 | 0 7 | 0 0 0 0 0 | 1
0
0
0
6 | 347
403
390
X
344 | 113
113
119 | 39.3
78.9
56.1
117.5
90.1 | | | | | | | 7 | | | | | | | | | | | | 1984 | | | | | | | | | | | | | | |--|------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|----------------------------------|----------------------------|---------------------------------------|-------------------------------|-------------------------------------|---|--|-----------------------------|--| | STATION | Mean | Ditterence from Normal | Maximum | Minimum | Snowfull (cm) | Z or Normal Snowtall | Total Precipitation (mm) | % or Normal Precipitation | Snow on ground at end or month (cm) | No. or days with Precip I.O ann or more | Bright Sunshine (hours) | Z or Normal Bright Sunsnine | Deyree Days below 18 C. | | YUKON TERRITORY | 11.2 | -1 | 22,4 | 0.4 | 0.0 | 0 | 43.0 | 70 | ō | :0 | And the state of t | | 214.7 | | DAWSON MAYO WATSON LAKE WHITEHORSE NORTHWEST TERRITORIES | 14.0
14.5
14.2
12.5 | -0.7
-0.7
-1.0 | 26.2
26.1
28.0
24.0 | 0.3
i.9
2.5
0.5 | 0.0 | 0 0 0 | 91.2
33.9
45.0
19.9 | 269
66
77
59 | 0 0 0 | 3 9 | 250
MSG | 95
* | ;25.9
;07.3
;19.0
;70.3 | | ALERT
BAKER LAKE
CAMBRIDGE BAY
CAPE DYER
CAPE PARRY | 4.4
12.2
9.2
3.6
6.5 | 0.3
0.7
i.3
3.5
0.3 | 14.6
25.3
20.7
19.1
19.5 | -1.7
2.1
1.4
-1.7
2.9 | 9.0
0.0
0.0
16.0
1.0 | 31
0
0
235
229 | 45.4
38.9
13.0
19.0
38.3 | 231
102
91
44
228 | 0
0
0
12
0 | 4 3 9 | 262
333
293
7 | 33
110
96 | 4 23 3
133.0
272.0
291.0
356.3 | | CLYDE
COPPERMINE
CORAL HARBOUR
EUREKA
FORT RELIANCE | 6.5
MSG
11.5
4.9
i5.3 | 2.4
MSG
2.3
-0.5
1.4 | 18.4
23.9
23.2
15.2
34.3 | -2.6
1.0
2.9
0.3
7.4 | 13.0
0.0
0.0
0.0
0.0 | 181
0
0
0 | 29.5
62.6
1.9
8.5
65.7 | 129
243
5
70
193 | TR 0 0 0 0 0 | 67:33 | 441
294
394
317
X | ,69
93
133
93 | 356.2
223 4
200.3
392.2
100.0 | | FORT SIMPSON
FORT SMITH
FROBISHER BAY
HALL BEACH
HAY RIVER | 16.3
17.1
9.0
7.3
16.3 | 0.2
1.1
1.4
2.4
0.5 | 33.5
33.5
24.4
20.9
32.7 | 5.6
6.5
-0.2
0.3
7.5 | 0.0
0.0
0.2
TR
0.0 | 0
67
0
0 | 103.0
35.0
46.3
12.5
98.0 | 174
149
74
36
204 | 0 0 0 | 13
14
3
10 | 273
290
296
X
X | 96
36
30 | 64.7
57.4
277.6
3:6.0
74.7 | | INUVIK MOULD BAY NORMAN WELLS POND INLET RESOLUTE SACHS HARBOUR | 12.3
3.1
15.3
MSG
3.7 | -1.3
-0.3
-0.5
MSG
-0.4 | 28.3
i5.3
30.2
MSG
i3.8 | 0.9
-2.6
6.1
MSG
-2.0 | 15.3
0.0
MSG
5.9 | 479
0
MSG
179 | 35.3
65.0
MSG
31.4 | 242
116
MSG
140 | MSG
0 | 3
i3
MSG
9 | 129
233
MSG
207 | 47
3.
*
70 | 460.2
77.3
MSG
443.0 | | YELLOWKNIFE ALBERTA BANFF | 17.1 | 0.3 | 31.0 | 9.0 | 0.0 | 0 | 61.0 | 62 | 0 | MSG | 305
MSG | 30 | MSG
MSG | | BROOKS CALGARY INT'L COLD LAKE CORONATION EDMONTON INT'L | 18.7
17.4
17.7
17.0 | 0.2
1.0
0.3
-0.3 | 36.5
35.3
30.5
35.0 | 4.0
3.4
6.4
3.1 | 0.0
0.0
0.0
TR | 0 0 0 | 53.3
24.0
47.4
38.2 | 133
38
55
61 | 0 0 0 | MSG
6
7
6 | MSG
367
306
360
320
343 | 114
93
107 | 46.0
43.0
60.0
62.0 | | EDMONTON MUN. EDMONTON NAMAO EDSON FORT CHIPEWY AN | 18.6
17.2
15.2
17.7 | 1.2
0.3
0.3
1.7 | 33.4
31.5
30.4
33.5 | 7.1
6.5
2.5
8.0 | 0.0 | 0 0 0 | 44.5
65.7
66.3
57.9 | 50
96
75
77 | 0 0 0 | 0
3
MSG | 324
MSG | 112 | 54.7
96.7
MSG | | | | | | | | | | | | | | | JULY | 1984 | - | | | | | | | | | | | | | |--|--|--|--|---|---|---|--|---|---|---|---|----------------------------------|---|---|---|--|--|--|--|---|--|---|---|--|---|-----------------------------|--| | The state of s | Tem | peratu | re C | | | T | | | (cm) | more | T | | | |
Ten | nperatu | re C | | | | | | (cm) | more | | | | | STATION | Mean | Ditterence trom Normal | Moximum | Minimum | Snowfall (cm) | % of Normal Snowfall | Total Precipitation (mm) | % of Normal Precipitation | Snow on ground at end of month (| No. of days with Precip 1.0 mm or o | Bright Sunshine (hours) | % of Normal Bright Sunshine | Degree Days below 18 C | STATION | Mean | Difference from Normal | Moximum | Minimum | Snowfall (cm) | % of Normal Snowrall | Total Precipitation (mm) | Z of Normal Precipitation | Snow on ground at end of month (c | No. of days with Precip 1.0 mm or r | Bright Sunshine (hours) | Z of Normal Bright Sunshine | Deyree Days below 18 C | | FORT MCMURRAY GRANDE PRAIRIE HIGH LEVEL JASPER LETHBRIDGE MEDICINE HAT PEACE RIVER RED DEER ROCKY MTN HOUSE | 17.6
16.0
16.3
15.6
19.4
20.6
16.1
15.9
15.4 | 1.2
0.1
0.6
0.5
0.3
0.7
0.4
-0.2
0.1 | 34.6
31.4
33.6
31.1
35.7
38.0
30.6
32.7
30.3 | 5.7
3.0
4.3
3.2
4.4
5.0
4.3
0.4
0.2 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0 | 87.4
27.4
61.8
23.4
20.2
14.2
43.3
73.5
37.9 | 116
42
90
47
46
35
72
95
41 | 0 | 8
6
12
5
2
2
6
9 | 316
344
300
302
373
379
X
X | 111
* 102
* 108 | 49.2
31.1
77.9
93.3
14.8
9.7
76.7
81.0
90.7 | PORTAGE LA PRAIRIE
THE PAS
THOMPSON
WINNIPEG INT'L
ONTARIO | 19.9
18.8
17.0
19.6 | 0.2
1.i
1.4
0.0 | 33.7
34.6
34.0
31.1
30.1 | 4.2
4.4
4.1
4.6 | 0.0 | 0 | 36.9
47.2
54.2
38.3 | 48
67
58
50 | 0 0 0 0 | 7
15
12
5 | X
357
323
333
279
X | 113
127
106 | 14.3
24.3
47.0
14.9 | | SLAVE LAKE SUFFIELD WHITECOURT SASKATCHEWAN BROADVIEW COLLINS BAY CREE LAKE ESTEVAN | 16.1
20.4
16.3
19.2
16.1
16.7
22.1 | 1.5
2.0
1.1
2.2 | 31.7
36.7
30.3
35.4
31.6
31.9
38.0 | 4.0
5.3
6.7
7.3 | 0.0 | 0 0 0 0 0 0 0 0 0 | 50.1
30.9
22.5
46.8
88.0
51.1
24.7 | 94
22
92
102
65
46 | 0 0 0 0 0 0 0 0 | 9
2
5
6
14
12
3 | 348
357
X
376
257
269
363 | 119
102
113
* 96
102 | 76.4
MSG
75.4
26.8
75.1
67.8
1.2 | GERALDTON GORE BAY HAMILTON RBG HAMILTON KAPUSKASING KENORA KINGSTON LANSDOWNE HOUSE LONDON MOOSONEE | 17.5
18.4
20.7
19.8
16.7
20.0
20.0
17.9 | 1.2
-0.4
-1.0
-0.7
-0.i
0.9
-0.1
0.9 | 29.4
27.4
32.2
30.5
30.5
29.6
29.0
30.2
30.4
32.7 | 8.5
3.7
6.9
9.0
7.9 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0 | 39.8
156.6
43.5
41.3
114.0 | 56
163
47
78
119 | 0 | 17
9
5
16
8
7
13
9 | X
X
X
X
275
X
259
250 | 98
94
105 | 42.6
19.0
MSG
12.3
62.5
16.6
6.7
32.2
14.5
92.6 | | HUDSON BAY KINDERSLEY LA RONGE MEADOW LAKE MOOSE JAW NIPAWIN NORTH BATTLEFORD PRINCE ALBERT REGINA | 18.2
18.3
17.0
20.6
18.2
18.5
18.7
20.5 | 0.9
-0.1
1.6
-0.2
0.9
*
0.4
1.3
1.6 | 33.9
38.0
32.1
33.4
36.0
33.3
36.1
35.0
35.3 | 3.7
5.2
8.0
4.6
5.6
4.7
6.2
6.4
6.3 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0 | 22.8
27.1
53.1
57.4
19.5
47.3
11.4
38.7
25.6 | 29
57
59
70
37
*
18
59
48 | 0 | 6
4
8
5
3
8
5
7
4 | 384
X
X
347
374
391
X
366
385 | 109
118
124
112 | 32.0
22.0
26.0
54.0
5.4
30.3
32.6
23.7
8.0 | MOUNT FOREST MUSKOKA NORTH BA Y OTTAWA INT'L PETAWAWA PETERBOROUGH PICKLE LAKE RED LAKE ST. CATHARINES | 17.5
17.9
18.0
21.0
18.8
18.6
17.9
18.0 | -0.7
-0.4
-0.3
0.4
-0.6
0.8
-0.2 | 28.3
27.7
26.2
31.9
30.7
31.3
29.5
29.9 | 5.2
5.7
8.2
8.9
6.7
4.0
5.9
4.3
9.5
8.7 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0 | 71.0
95.1
137.2
53.2
114.7
88.8
109.6
107.1
29.2
99.7 | 94
123
134
62
136
114
99
123 | 000000000000000000000000000000000000000 | 9
8
12
7
11
8
13
10
4
9 | X
X
244
282
X
X
287
X
MSG | 89 | 42.2
MSG
29.5
4.4
14.3
25.5
40.1
35.4 | | SASKATOON
SWIFT CURRENT
URANIUM CITY
WYNY ARD
YORKTON
MANITOBA | 19.8
19.1
17.4
18.3
18.6 | 1.3
0.3
1.2
0.9
0.3 | 38.i
34.5
34.7
35.i
34.5 | 6.5
6.0
8.7
5.4
4.5 | 0.0 | 0 0 0 0 | 13.4
22.5
100.3
15.6
30.5 | 212
28
54 | 0 0 0 0 0 | 12 7 5 | X
364
X
381
371 | 106
117
113 | 21.0
17.4
50.8
31.4
30.5 | SARNIA SAULT STE. MARIE SIMCOE SIOU X LOOKOUT SUDBURY THUNDER BA Y TIMMINS TORONTO TORONTO INT'L | 20.4
MSG
19.6
18.5
18.8
18.2
16.5
21.2
19.8 | -0.5
MSG
-1.0
0.2
0.1
0.6
-0.7
-0.8
-0.3 | 33.3
MSG
30.0
29.4
31.7
31.5
30.3
31.8
32.1 | MSG
8.0
7.3
7.9
6.9
3.6
10.2
7.1 | MSG
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0000 00000 | MSG
66.4
78.0
61.1
97.0
95.4
44.0
63.3 | MSG
97
83
74
129
106
59
89 | MSG 00 00000 0 | MSG
7
13
10
15
16
5
5 | MSG
X
X
271
304
X
X
X
MSG | 94 | MSG
15.4
30.7
21.7
30.3
57.4
5.3
13.5 | | BRANDON CHURCHILL DAUPHIN GILLAM GIMLI ISLAND LAKE LYNN LAKE NORWAY HOUSE PILOT MOUND | 19.1
12.2
18.8
16.8
19.1
18.7
17.6
18.6
19.4 | 0.3
0.4
0.3
1.8
0.5
1.6
1.9
* | 32.2
27.3
31.5
31.8
29.2
31.8
33.0
30.5
33.0 | 2.2
2.0
1.5
4.2
5.9
7.8
5.1
7.5
3.9 | 0.0 | 0 | 30.9
32.2
29.1
69.2
32.6
78.9
48.2
39.3
33.6 | 71
45
74
56
75
59 | 0 | 6
6
4
8
9
13
8
11
4 | 303
342
X
308
X
281
X | 106
106
94
101 | 23.i
182.0
22.3
56.2
16.0
27.3
40.7
24.2
21.4 | TORONTO ISLAND TRENTON TROUT LAKE WATERLOO-WELL WAWA WIARTON WINDSOR | 19.1
19.9
16.6
18.8
13.6
18.0
21.8 | -1.2
-0.7
-0.6
-1.0
*
-0.5
-0.4 | 29.3
30.4
29.2
29.9
25.5
28.7
33.5 | 7.8
7.3
4.9
6.0
4.7
3.0
9.7 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 0 | 50.8
44.0
90.3
77.4
104.8
78.4
38.1 | 95
103 | 00000 00 | 5
11
6
10
5
5 | MSG
24
X
301
MSG | 102 | i1.0
65.i
24.i
135.2
26.2
3.2 | | | | | | | | | | | | | | | JULY | 1984 | | | | | | | | | | | | | | |--|--------------------------------------|----------------------------------|--------------------------------------|----------------------------------|---------------------------------|----------------------|--|---------------------------------|----------------------------------|----------------------------------|---------------------------------|------------------------------|--|--|--------------------------------------|----------------------------------|--------------------------------------|-------------------------------------
---------------------------------|----------------------|---------------------------------------|-----------------------------|----------------------------------|-----------------------------------|------------------------------|-----------------------------|------------------------------------| | | īem | peratu | re C | | | | | | (cm) | more | | | | AND OF | Ten | nperatur | e C | 1 21 | 182 | | 22 | | (cm) | more | | | | | STATION | Mean | Ditterence from Normal | Maximum | Minimum | Suowiall (cm) | Z or Normal Snowtall | Total Precipitation (mm) | % or Normal Precipitation | Snow on ground at end or month (| No or days with Precip 1.0 mm or | Bright Sunshine (hours) | % or Normal Bright Sunshine | Degree Days below 18 C | STATION | Mean | Dirterence from Normal | Maximum | Minimum | Snowrall (cm) | Z or Normal Snowrall | Total Precipitation (mm) | % of Normal Precipitation | Snow on ground at end or month (| No. or days with Precip 1.0 mm or | Bright Sunsnine (hours) | % or Normal Bright Sunshine | Degree Days below 18 L | | | | | | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | CONTROL OF THE PARTY PAR | | 131 | 12 P | | | | - 3.1 | 15 3
10 3
140 | | | 185 | | | | JEBEC . | | | 100 | | | | | | | | | | | NOVA SCOTIA | 10 To | | 313 | | | | | | | | | | | | AGOTVILLE
AIE COMEAU
LANC SABLON
HIBOUGAMAU
UUJUUAQ | 13.5
16.0
12.7
16.4
10.9 | 0.0
0.2
1.0
0.0
-0.0 | 32.4
25.3
20.2
32.2
24.4 | 7.3
4.0
5.2
5.3
0.0 | 0.0
0.0
X
0.0
0.0 | 0 0 0 | 121.2
111.1
136.0
118.4
61.1 | 101
137
141
103
106 | 0 0 0 0 0 0 0 0 | 16
12
16
13 | X
244
126
202
198 | 3: | 22.7
66.4
164.1
63.5
220.4 | EDDY POINT
GREENWOOD
HALIFAX INT'L
SABLE ISLAND
SHEARWATER | 13.2
20.7
20.1
17.3
13.7 | 1.0 | 29.0
31.3
31.0
23.0
30.0 | 10.7
9.4
11.2
11.3
10.9 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 | 57.3
35.2
50.5
26.5
48.2 | 60
110
54
29
50 | 0 0 0 0 0 | 9 :2 0 9 | 286
)
y
198
260 | 126 | 19.
5.
0.
25.
17. | | ASPE
AUKJUAN
A GRANDE RIVIERE
ANIWANI
A TA GAMI | 17.7
11.4
12.3
18.1
16.3 | 0.5
2.1
*
-0.2
1.2 | 31.5
23.3
30.0
30.0
32.4 | 6.1
2.1
1.5
6.6
MSG | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 | 63.3
46.0
63.0
MSG
MSG | 82
86
* | 0 0 0 | 15
13
12
13
16 | 232
214
199
239
228 | 104
83
91 | 32.,
203.3
134.1
23.2
36.0 | SYDNEY
TRURO
YARMOUTH
PRINCE EDWARD | 19.4
19.5
16.0 | 1.7 | 28.0
30.7
25.0 | 3.5
3.0
9.0 | 0.0 | 0 0 0 | 50.1
42.6
77.2 | 62
47
99 | 0 | 6 6 | 283
272
194 | 110
121
94 | 42
45 | | ONT JOLI
ONTREAL INT'L
IONTREAL M INT'L
A TASHQUAN
ITCHEQUON | 14.9
21.3
19.0
14.9
14.0 | -2.4
0.4
*
0.7
1.0 | 27.2
30.0
29.3
24.3
23.2 | 3.9
10.4
3.3
4.3
6.7 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 0 0 0 | 89.4
60.1
99.9
73.6
140.3 | 119
67
77
132 | 0 0 0 0 0 | 10
6
9
14
21 | 275
270
272
208
181 | 109
98
*
35
39 | 19.9
26.0
9.3
100.0
102.7 | CHARLOTTETOWN
SUMMERSIDE | 19.3 | 1.5 | 27.5
28.3 | 11.5
12.4 | 0.0 | 0 0 | 51.4
113.0 | 61 | 0 | 9 12 |)
272 | 103 | 7. | | UUWUARAPIK
JEBEL
OBERVAL
TEAGATHE DES MONT
THUBERT | 9.7
19.3
18.3
17.3
21.1 | -0.3
0.7
0.9
0.2
0.4 | 25.3
31.1
32.4
28.6
30.1 | 2.5
10
8.5
7.9 | 0.0
0.0
0.0
0.0
0.0 | 0 0 0 | 92.3
152.4
77.3
133.4
MSG | 100
131
65
121 | 0 0 0 | 14
14
11
12
9 | 144
234
255
240 | 169
95
*
275 | 256.9
9.6
16.4
30.9
1.9 | ARGENTIA BATTLE HARBOUR BONA VISTA | 14.2
15.0
17.2 | 0.2
5.4
2.5 | 25.1
28.2
27.0 | 5.3
5.0
5.9 | 0.0 | 0 0 | 41.2 66.5 31.2 | 57
98
51 | 0 0 | 3
16
6 | XXX | | 120
75
51 | | CHEFFERVILLE
EPT-ILES
HERBROOKE
AL D'OR | 13.3
15.1
13.0
17.2 | 0.7
-0.2
0.2
0.3 | 23.3
24.3
29.4
29.7 | 4.2
6.9
5.2
6.2 | 0.0
0.0
0.0
0.0 | 0 0 0 0 | | 135
128
148
96 | 0 0 0 | 19
13
10
16 | 187
223
236
237 | 101
92
*
91 | 147.4
70.9
32.1
43.4 | BURGEO
CARTWRIGHT
CHURCHILL FALLS
COMFORT COVE
DANIEL'S HARBOUR | 14.1
12.5
14.2
18.2
15.0 | 0.6
-0.2
0.5 | 23.0
25.3
25.5
29.3
23.6 | 9.1
2.3
5.0
5.2
8.3 | 0.0 | 0 0 0 | 145.2
36.9
148.2
63.1 | | 0 0 0 | 17
12
23
10
12 | 113
212
185
X
93 | 92
95 | 121.
157.
113.
44.
30. | | EW BRUNSWICK | | | | 3 | | 1 | | | | 1 | | | | DEER LAKE
GANDER INT'L | 18.4 | 1.2
2.5
1.5 | 31.2 | 3.9 | 0.0 | 0 | 85.3
63.2 | 110 | 0 | 12 | 263 | 125 | 42. | | CHARLO CHATHAM REDERICTON MONCTON SAINT JOHN | 13 9
20.1
20.0
19.0
17.3 | 0.9
0.7
1.1
0.4 | 30.5
32.0
32.1
31.0
27.4 | 3.2
8.0
8.3
9
9.2 | 0.0
0.0
0.0
0.0 | 0 0 0 | 104.3
81.0
141.0
103.3
165.7 | 159 | 0 0 0 0 | 12
12
13
12
10 | 250
252
243
259
225 | 98
100
*
106
103 | 17.3
11.0
8.1
8.3
33.2 | GOOSE
HOPEDALE
PORT-AUX-BASQUES
ST ANTHONY
ST JOHN'S | 16.3
9.6
15.2
14.9
17.9 | 1.0
-0.9
2.0
2.0
2.4 | 28.4
24.1
22.5
25.6
28.7 | 5.2
1.1
9.1
3.0
5.4 | 0.0 | 0 0 0 | 91.3
173.3
36.2
34.0
41.4 | 37
211
80
34
55 | 0 0 0 | 13
17
13
12
7 | 198
X
163
*
286 | 130 | 94.
93.
34. | | | | 7 | | | | | - Country | Terrando | PAGE OFF | No. | | The same of | | ST LAWRENCE
STEPHENVILLE
WABUSH LAKE | 15.1
17.7
14.0 | 3.0
1.7
0.5 | 24.3
25.0
22.0 | 5.0
9.5
4.4 | 0.0 | 0 0 | 67.3
110.0
191.1 | 67
194
131 | 0 0 | 9 12 19 | 137
131 | 90
92 | MS
32.
124. | | | 1 | 7 | ature *C | | | I | | | FF | T | Decr | ee Days | | 84 JUILLET | | Tempera | iture *C | | | | | | (mm) | | Degree | ee Days | |--|--------------------------------------|--|--------------------------------------|---------------------------------|--------------------------------------|---|---|---|---|---|---|---|--|--|----------------------|--|----------------------|-------------------|--------------------------------------|---|---|---|--|---|----------------------------|---| | | | | eture °C | T | | | | tonth (cm) | 1.0 or more (mm) | - | Degr
su- | ve 5° C
és-jours
dessus
o 5° C | | | | Tempéra | | | | | | nonth (em) | O or more tra | | Degré
au-d | es 5°C
derjours
dessus
5°C | | STATION | Mean | Difference from Normal
Ecert & la normale | Maximum
Maximale | Minimum
Minimale | Snowfell (cm)
Chute de neige (cm) | Total Precipitation (mm)
Precipitation totale (mm) | % of Normal Precipitation
% de précipitation normale | Snow on ground at end of m
Neige au sol à la fin du mois | No. of days with Pracip. 1.0
Nombre de jours de préc. 1. | Bright sunshine (hours)
Durée de l'insolation (heure | This Month
Présent mois | Since Jan. 1st
Depuis le 1 ^{er} Janv. | Mean Dew Point "C
Point de rosée moyen "C | STATION | Mean | Difference from Normal
Ecert à le normale | Maximum | Minimale | Snowfell (cm)
Chute de neige (cm) | Total Precipitation (mm)
Précipitation totale (mm) | % of Normal Precipitation
% de précipitation normale | Snow on ground at end of n
Neige au sol à la fin du mois | No. of days with Pracip 1.0
Nombre de Jours de préc. 1. | Bright sunshine (hours) Durke de l'insolation (heure | This Month
Présent mois | Since Jan. 1st
Depuis le 1 ⁸⁰ jane. | | | AGROCLIMAT | TOLOGI | CAL S | TATIONS | AGR | OCL IMAT | OLOGIQ | UES | | | | | | Guelph
Harrow
Kapuskasing | 18.8 21.1 | -0.9
-0.9 | 30.0 | 4.7
9.5 | 0.0 | 70.8
27.7 | 86
35 | 0 | 5 6 | 237
279 | 428.5
495.0 | 1038,5 | | BRITISH COLUMBIA
COLOMBIE-BRITANNIQUE
Agassiz
Kamploops
Sidney
Summerland | 18.2 | | 33.0 | | 0.0 | 24.2 | 52 | 0 | 5 | 315 | | 1211.9 | | Merivale
Ottawa
Smithfield
Vineland Station
Woodslee | 20.8
20.8
20.8 | 0.2
0.6
-0.7 | 31.3
30.0
32.4 | 8.5
7.0
9.5 | 0.0 | 58.7
38,6
25.4 | 69
57
41 | 0 0 0 | 10
6
5 | 273
270 | 502.4 | 1184.1
1135.8
1163.9 | | ALBERTA Beaverlodge Ellerslie | 16.0
16.3 | | 31.0
32.5 | 3.0 | 0.0 | | 28 | 0 0 | 5 5 | 344
338 | 327.5 | 694.2 | | QUEBEC La Pocatiere L'Assomption Lavaltrie | 19.6
20.3 | 0.9 | 32.0
31.5 | 8.5 | 0.0 | 99.4
67.6 | 105
73 | 0 0 | 9 | 271
259 | 451.1
469.9 | 886.6
1110.7 | | Fort Vermilion
Lacombe
Lethbridge | 15.6 | -0.5 | 33.0 | 1.5 | 0.0 | 49.2 | 68 | 0 | 7 | 307 | 330.5 | 756.2 | | Lennoxville
Normandin
Ste. Clothilde |
17.5 | 0.6 | 32.0 | 5.5 | 0.0 | 136.0 | | 0 | Name of | 226 | | 807.0 | | Vauxhall
Vegreville | 16.1 | -0.2 | 32.0 | 1.5 | 0.0 | 79.1 | 106 | 0 | 8 | | 345.5 | 822.2 | | NEW BRUNSWICK
NOUVEAU-BRUNSWICK | | | | | | | | | | | | | | SASKATCHEWAN Indian Head Melfort Regina Saskatoon Scott | 20.2
18.6
19.5
21.7
17.7 | 1.6
1.2
0.9 | 35.0
33.5
35.5
38.5
37.5 | 5.5
7.0
1.5
5.5
3.0 | 0.0
0.0
0.0
0.0
0.0 | 17.8
40.9
53.1
13.0
8.8 | 34
64
82
15 | 0 0 0 0 0 | 3
5
2
4
3 | 355
380
357 | 476.0
425.0
500.6
459.5
395.8 | 945.5
986.0
1065.0 | | Fredericton NOVA SCOTIA NOUVELLE-ECOSSE Kentville | 21.1 | 1.9 | 31.0 | 9.0 | 0.0 | 43.2 | 62 | 0 | 8 | 285 | 499.4 | 1100.4 | | Swift Current South MANITOBA | 18.1 | | 35.0 | | 0.0 | 14.8 | 39 | 0 | 2 | 343 | 440.1 | 1014.9 | | PRINCE EDWARD ISLAND ILE-DU-PRINCE-EDOUARD | 19.0 | 1.0 | 28.0 | 7.5 | 0.0 | 112.3 | 133 | 0 | 11 | 272 | 435.0 | 916.5 | | Brandon
Glenlea
Morden | 20.0
19.0
20.6 | 0.8
-0.6
0.6 | 33.5
30.0
34.5 | 2.0
6.5
6.0 | 0.0
0.0
0.0 | 27.7
63.4
38.4 | 40
86
52 | 0 0 0 | 4
10
9 | 310 | 445.1
431.0
483.9 | 1047.9
1040.8
1153.7 | | Charlottetown NEWFOUNDLAND TERRE-NEUVE | | | | | | | | | | | | | | Delhi
Elora | 19.9
18.4 | | 31.0
28.8 | 6.0
5.4 | 0.0 | 88.8
42.9 | 126 | 0 0 | 11 6 | 275 | 432.2
414.0 | 1160.2 | | St. John's West | # ACID RAIN REPORT ISSUED BY ENVIRONMENT CANADA FOR AUG. 5 - AUG. 11, 1984 | SITE | DAY | рН | AIR PATH TO SITE | |-------------------------------|-----|-----|---| | Longwoods, | 6 | 3.7 | U.S. Midwest | | near London,
Ont. | 8 | 3.9 | Illinois, Indiana, Ohio. | | | | | | | Dorset,* Muskoka, | 7 | 4.3 | Wisconsin, Michigan, across Lake
Huron and Georgian Bay. | | Ont. | 11 | 4.1 | Wisconsin, Michigan, central Ontario | | Chalk River
Ottawa Valley, | 6 | 4.1 | Illinois, Michigan, central Ontario. | | Ont. | | 4.1 | Northern Ontario, northern Quebec. | | | 8 | 3.7 | Northern Ontario, northern Quebec. | | | 11 | 4.0 | Wisconsin, Michigan, central
Ontario. | | Montmorency, | 6 | 4.9 | Northern Ontario, northern Quebec. | | Quebec City,
Que. | 9 | 3.3 | Maine, southern Quebec. | | | 10 | 4.3 | New Brunswick, Maine, southern
Quebec. | | | 11 | 4.1 | From the northeast off of the Atlantic Ocean. | | Kejimkujik, | 7 | 3.8 | New York, New England states. | | Southwestern N.S. | 8 | 3.8 | New York, New England states. | | | 10 | 4.4 | From the southeast off of the Atlantic Ocean. | | | 11 | 4.7 | From the southeast off of the Atlantic Ocean. | ^{*} Data for Dorset supplied by the Ontario Ministry of Environment. Environmental damage to lakes and streams is usually observed in sensitive areas regularly receiving precipitation with pH less than 4.7. pH readings less than 4.0 are serious. This report was prepared by the Federal Long Range Transport of Air Pollutants (LRTAP) Liaison Office. For further information, please contact Dr. H.C. Martin at (416) 667-4803.