Environment E

Environnement Canada

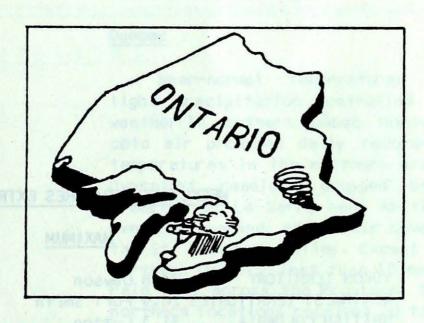
Climatic Perspectives Perspectives of Canadian Gumate

JUNE 22,1984

(Aussi disponible en français)

VOL. 6 NO. 24

FOR THE PERIOD JUNE 12 TO 18, 1984

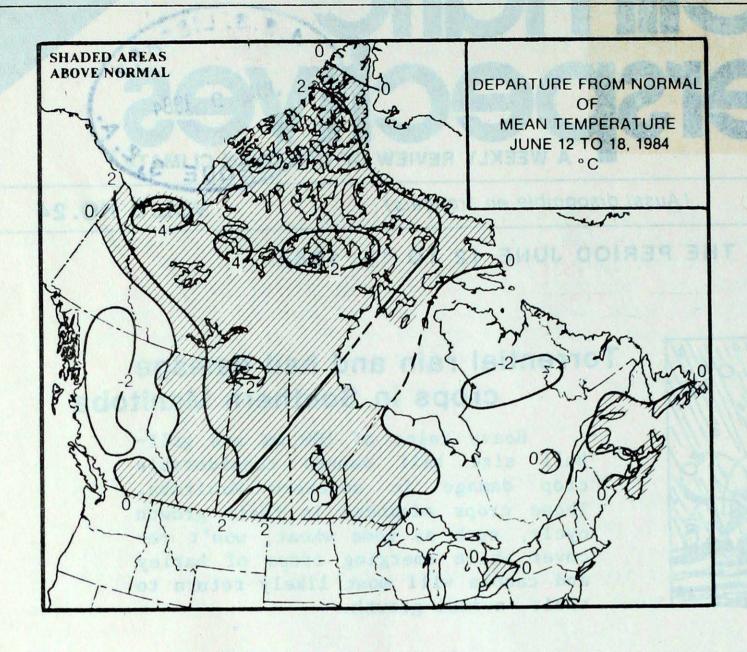



Torrential rain and hail damage crops in Southern Manitoba

Heavy rains of 100 mm and golf-ball size hail caused considerable crop damage in southern Manitoba. Those crops advanced in their growth cycle, such as some wheat, won't recover while emerging crops of barley and canola will most likely return to their normal growth.

Summer severe weather produces flash floods and a twister in Southern Ontario

Severe thunderstorms dumped 50 to 150 mm of rain along the lower Great Lakes. The rains caused mud slides in Hamilton and a twister levelled a few houses at Smith Falls. Trees were uprooted and cottages were demolished.



Fine summer weather attracts thousands to the tall ships parade in Halifax

Warm and dry summer weather allowed at least 300,000 people to attend the tall ships parade at the Halifax Harbour. The ships sailed towards Québec over the weekend.

ISSN 0225-5707 UDC: 551.506.1(71) NOTE: The data shown in this publication are based on unverified reports from approximately 225 Canadian synoptic stations.

Canadä

WEEKLY TEMPERATURES EXTREMES (°C)

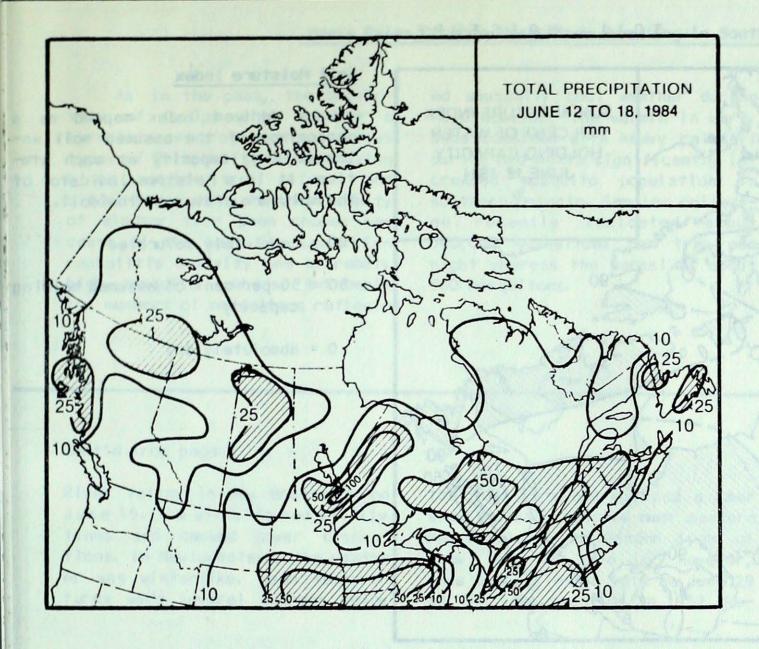
	MAXIMUM	MINIMUM
YUKON TERRITORY NORTHWEST TERRITORIES	24.8 Dawson 26.9 Fort Smith	- 3.0 Burwash - 5.5 Broughton Island
BRITISH COLUMBIA ALBERTA	31.3 Lytton 29.6 Fort McMurray	- 1.4 Dease Lake - 2.3 Banff
SASKATCHEWAN MANITOBA	31.1 Estevan 31.0 Portage La Prairie	
ONJARIO QUEBEC	33.1 Windsor 26.4 Gaspé	- 1.5 Moosonee - 2.5 Kuujjuarapik
NEW BRUNSWICK	28.6 Chatham	La Grande Rivière 3.0 Charlo 0.6 Eddy Point
PRINCE EDWARD ISLAND NEWFOUNDLAND	29.4 Greenwood 22.4 Charlottetown 25.4 Goose	4.2 Charlottetown - 3.8 Badger
NEWFOUNDLAND		Ma book and a second

ACROSS THE NATION

Warmest	mean	temperature	21.4	Windsor, Ont
		temperature	- 1.6	Alert, NWT

ACROSS THE COUNTRY ...

Yukon and Northwest Territories


Warm air covered almost all of the Northwest Territories. temperatures were 2 to 7 degrees above normal; and in the vicinity of the Great Slave Lake, daytime readings reached near 27°. Owing to the warm weather, depth of snow on the ground dropped from 80 to 40 centimetres at Clyde in one week. In the weekly temperatures were slightly below normal. Precipitation was light. However, weather systems crossing the Mackenzie District deposited about 20 mm of rain. Forest fire danger was described as low in the Yukon.

British Columbia

Except for the North, fine summer-like weather returned to the Province. Near normal temperatures and very little precipitation in the South allowed the fire hazard index to climb to moderate. The hay harvest was in full swing across the South with good drying conditions. The snow pack continues to be above normal at higher elevations.

Prairies

The west was sunny and pleasant during the first half of the week, while in the east severe weather conditions developed and moved into southern Manitoba during the early part of the weekend. On June 15, golf ball size hail completely devastated some crops in many parts of southwestern Manitoba, especially near Brandon, where hail in some areas accumulated to a depth of 15 cm on the ground. On the evening of June 16, severe thunderstorms redeveloped across southern Manitoba from west of Winnipeg to Bissett. Also, near the community of Elie, torrential downpours resulted in heavy flooding and washouts to rural roads. Approximately 200 mm of rain fell in one evening, laying waste to newly planted field crops and completely flooding farm machinery left behind in low lying areas. A small tornado touched down, damaging several buildings and out door structures. In Winnipeg, 60 mm of rain established a record six-hour fall

HEAVIEST WEEKLY PRECIPITATION (mm)

YUKON	14.0	Teslin
NORTHWEST TERRITORI	IES 22.2	Norman Wells
BRITISH COLUMBIA	33.6	Prince Rupert
ALBERTA	23.4	High Level
SASKATCHEWAN	48.2	Cree Lake
MANITOBA	102.2	Bissett
ONJARIO	81.0	London
QUEBEC	70.8	Québec
NEW BRUNSWICK	31.0	Chatham
NOVA SCOTIA	25.2	Greenwood
PRINCE EDWARD ISLAN	ND 22.9	Summerside
NEWFOUNDLAND	39.6	Daniels Harbour

Historically this week...

A look into the past reveals some extreme weather events that occurred during mid-June.

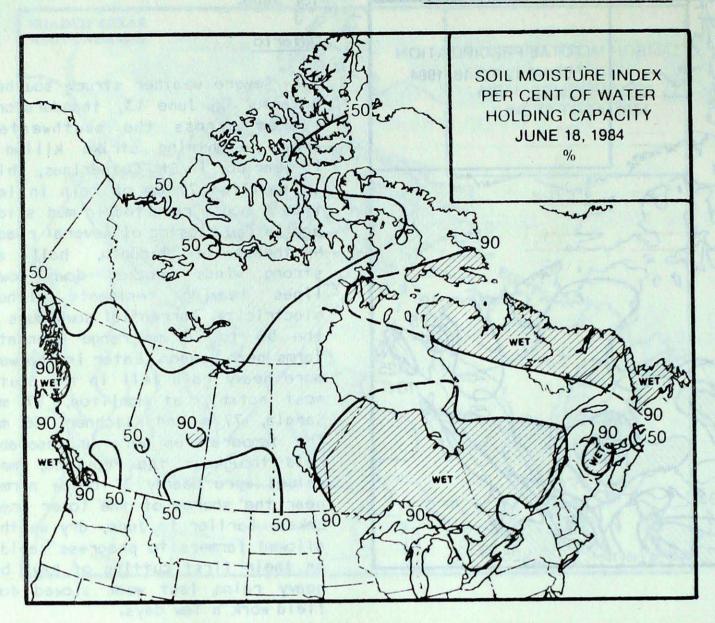
June 11, 1972: a widespread record-breaking late killing frost struck the rich agricultural lands of Ontario's southwestern Counties. Official screen temperatures dropped to -3°, and grass minimum temperatures to -8°. Farmers and growers suffered substantial economic losses as hundreds of hectares of tobacco, tomato, potato and cash crop vegetables were killed overnight.

June 14, 1969: the high est temperatures on record in the Yukon Territory occurred on this date 36° at Mayo, and 35° at White horse Riverdale.

for June.

Ontario

Severe weather struck southern Ontario On June 13, thunderstorms roared across the southwestern areas. Lightning strike killed a 15-year boy in St. Catherines, While in Hamilton 75 mm of rain in less than 6 hours resulted in mud slides and in the closing of several roads. Northeast of Toronto, hail strong winds knocked down power leaving residents without electricity. Torrential downpours in the 50 to 70 mm range inundated farms near London. Later in the week more heavy rain fell in the South, most notably at Hamilton, 87 mm; Sarnia, 77 m and Kitchner, 66 mm. The temperatures were unseasonably cold thoughout the Province, mean values were nearly 3° below normal near the shores of the lower Great Lakes. Earlier in June, dry weather allowed farmers to progress rapidly on their first cutting of hay, but heavy rains last week slowed down field work a few days.


Quebec

Near-normal temperatures and light precipitation controlled the weather in southern Québec. However, cold air produced daily record-low temperatures in the northern areas. Overnight readings dropped below freezing at La Sarre near Abitibi. Over the weekend, colder air covered the St. Lawrence Valley. Except for northern Québec, less than 10 mm of rain fell across the Province. Some northern locations received 20 to 30 mm of rain. Forest fire hazard was low thoughout Québec.

Atlantic Provinces

Sunny skies and unseasonable warmth dominated Maritime's weather, but cold temperatures returned to Newfoundland. The fine weather attracted at least 300,000 people to the tall ships parade at the Halifax Harbour. Owing to the warm weather, abundant strawberry crop was expected ahead of schedule in the Martimes, also the first cut of the hay crop was described as excellent. Damaging winds struck the Saint John ...continued on page 5

SOIL MOISTURE

Soil Moisture Index

A derived index mapped as a percentage of the assumed soil water holding capacity at each station. It is a relative indicator of the moisture status of the soil.

100 = completely saturated

50 = 50 per cent of assumed holding capacity

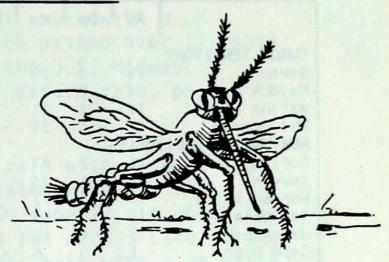
0 = absolutely dry

TEMPERATURE ANOMALY FORECAST

Forecast chart not available

TO MILE TO THE BUILDING WITH THE RESERVE OF

Temperature Anomaly Forecast

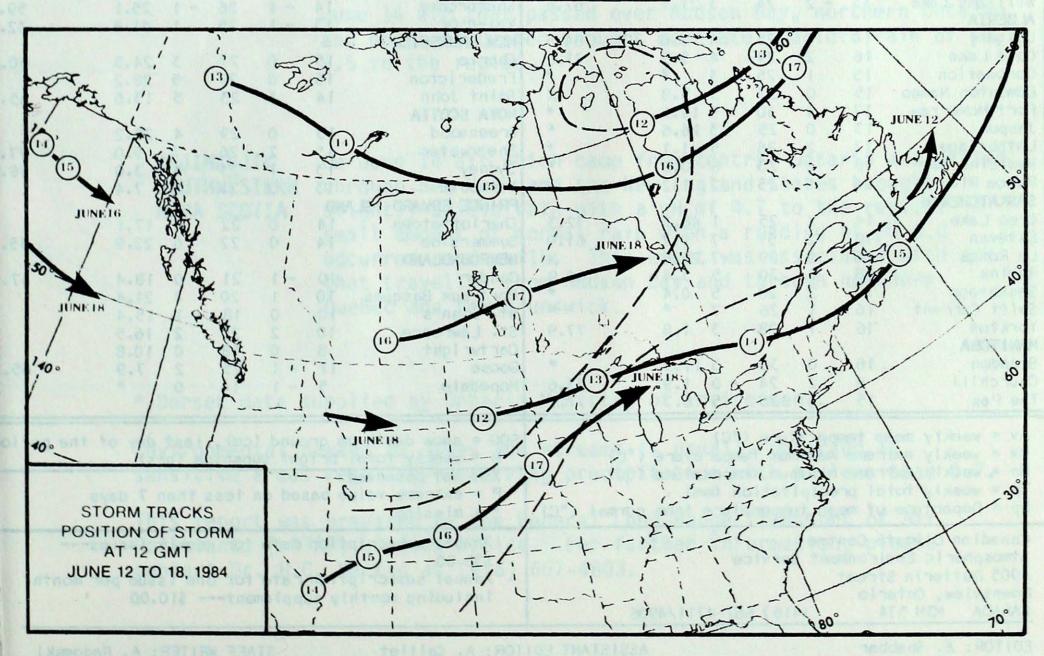

The temperature anomaly forecast, for each of the 70 Canadian
stations, is prepared by searching
historical weather maps to find
cases similar to the present one.
The principle used is that a
prediction for the next 15 days may
be based on what is known to have
actually happened during the 15-day
anomaly periods. After the five best
sets are selected, the surface temperature anomalies are calculated.
This results in five separate forecasts, which are averaged to provide
the consensus forecast depicted.

- ++ much above normal
- + above normal
- N normal
- below normal
- -- much below normal

Heavy Rains Promote Mosquitoes Breeding in Southern Ontario

As in the past, the University of Guelph will conduct a surveillance program for various types of Encephalitis by analyzing blood samples from chicken and birds. Three sites in the vicinity of Windsor have been chosen because of the past St. Louis Encephalitis activity and extremely high mosquito numbers. Extremely low numbers of mosquitoes reflect-

ed unusually cool weather during May. However, the warmth in early June combined with heavy rainfall during mid-month significantly increased mosquito population in southern Ontario. Samples collected recently indicated about 300,000 mosquitoes per trap per night whereas the normal is about 500 mosquitoes.


Cont'd from page 3

River Valley in New Brunswick on June 15. The winds downed utility lines and caused power disruptions. In Newfoundland, the weather was winterlike. Mean temperatures were severel degrees below

the long-term average and a rear snowfall was reported over eastern Newfoundland. At Gander 1 cm of snow fell on June 16; however, snow has fallen as late as June 29 at the same location in 1952. Re-

cord-cold temperature was established at St. John's as the mercury dropped to a chilly -1° on June 17.

STORM TRACKS

			And the second later was a second later with the second later and the se	Control of the Contro		THE WAY THE WAY TO A PARTY OF THE PARTY.	THE RESERVE THE PERSON NAMED IN	A STATE OF THE PERSON NAMED IN COLUMN 1	
TELBEDATION	COFOLDITATION AND	DOLOUT	CHAIGHAA				 	I was a second of the second	at the second second
ILMULDATIDL	DOLL'IDII AIII MA ANII		CHRICHIAL	INAIA		MELV		111111 10	1001
ILITERATURE	, PRECIPITATION AND	DIVIDITI	SUISHINE	UNIA	FUR I FIE		1 (-101	IIIN- IV	IUKA

STATION		TEMP PRECIP		SUN	STATION		SE YMMEN TEMP				PRECIP				
	Av	Dp	Mx	Mn	Тр	sog	Н.		Av	Dp	Mx	Mn	Тр	SOG	Н
YUKON TERRITORY								Thompson	12	nt and	28	54 19	9.8	A	53.
Dawson	14	0	25	3	3.3		X	Winnipeg	16	0	27	5	100 M 10		57.
Mayo A	14	0	24	1	13.0		X	ONTARIO		54 - 16	to a mean	water			
Watson Lake	11	- 2	21	1	6.9		64.0	Big Trout Lake	11	0	26	2	53.0		
Whitehorse	11	- 1	21	- 1	0.4		65.9	Earlton	15	0	25	4	*		
NORTHWEST TERRIT								Kapuskasing	13	- 1	26	3	25.8		
Fort Smith	16	2	27		12.3		78.0	Kenora	17	2	25	10	10.0		
Inuvik	16	4	26	5	7.4		114.3	London	18	105010	31	8	81.0		53.
Norman Wells	18	3	27		22.2		42.8	Moosonee	10	=-1	25	- 2	44.4		48.
Yellowknife	15	3	23	8	19.4	Low	100.6	Muskoka	15	Tel I	26	3	36 a*1 t		
Baker Lake	!	4	16	0	0.0	0.0	m(8) n	North Bay	14	- 2	24	3	31.8		ALVER !
Cape Dyer	1	0	6	- 5	0.2	25.0	X	Ottawa	18	0	27	7	18.4		70.
Clyde	2		7	- 2	4.6		111.7	Pickle Lake	14	2	25	4	15.0		
Frobisher Bay	2	0 2	3	0	3.0	2.0	16.8	Red Lake	15		28	2	52.5		40.
Alert	- 2 6	3	15	- 4	1.0	15.0	21.6	Sudbury	15	- 1	24	4	54.4		34.
Eureka Hall Beach	7	3	9	- 2	0.5	60	V	Thunder Bay	13	0	27	2	16.4		-37.
	7	3	10	100	0.0	6.0	X	Timmins	13	- 2	26	0	57.0		
Resolute Combaidae Bay	4	3	11	-	0.0		156 1	Toronto	17	- 1	29	7	26.7		
Cambridge Bay	3	3	9	- 2	0.0	0.0	156.1	Trenton	17	- 1	30	6	80.8		
Mould Bay	10	8	16	- 2	0.0	0.0	156.0	Wiarton	15	- 1	28	4	20.8		44.
Sachs Harbour		0	10)	0.0		156.9	Windsor	21	2	33	11	36.2		
BRITISH COLUMBIA		0	15	0	12 5		E0 7	QUEBEC		-	25		77 7		
Cape St. James	10	1	15		12.5		50.3	Bagotville	14	- 2	25	2	33.3		
Cranbrook	16	No. of Lond	25		14.8		heat again	Blanc-Sablon	6	to be	13	- 2	22.2		-00
Fort Nelson	14		25		31.2		100 34	Inukjuak	3	- 1	10	- 1	10.2		29.
Fort St. John	14	0	23	4	0.0		X	Kuuj juaq	2	- 2	13	0	15.6		20
Kamloops	19	7	30	9	1.8			Kuujjuarapik	3	- 3	17	- 3	5.7		10
Penticton	14	- 3	25	8	0.0		74.0	Maniwaki	15	- 1	26	2	18.0		51.
Port Hardy	11	- 1	16	5	7.7		52.9	Mont-Joli	14	- 0	25	3	17.2		55
Prince George	13	- !	26	4	1.7		77.6	Montreal	17	- 1	26	6	54.6		62
Prince Rupert	11	- 1	15		33.6		19.8	Natashquan	10	0	15	3	2.2		70
Revelstoke	18	3	30	9	1.0		63.0	Nitchequon	8	- 2	19	1	15.4		30.
Smithers	10	- 3	23	2	0.4		76.9	Quebec	15	- 1	26	5	70.8		50.
Vancouver	15	- 1	20	8 7	2.2		67.2	Schefferville	5	- 4	14	-	8.8		39.
Victoria	14	0	20				83.8	Sept-lles	11	- 0	21	4	6.2		50.
Williams Lake	13	- 2	24)	21.1		62.6	Sherbrooke	14	- 1	26	- !	25.1		59.
ALBERTA			25	-	0.0		04.5	Val-d'Or	13	-10	25		51.8		32.
Calgary	14	1	25 29	4	0.6		84.5	NEW BRUNSWICK	15	0	27	7	24 5		EO
Cold Lake	16	2			5.5		71.6	Charlo	15	0	27	3	24.5		50.
Coronation	15	0	25	3				Fredericton	16	0	29	5	28.2		(=
Edmonton Namao	15	0	27		5.8		X	Saint John	14		23	5	13.6		65
Fort McMurray	17	4	30		12.1		*	NOVA SCOTIA	15	0	20		25 2		34
Jasper	17	0	25		16.6		4	Greenwood	15	0	29	4	25.2		77
Lethbridge		2	26	5	1.1		*	Shearwater	15	2	26	7	5.0		77.
Medicine Hat	18	2	28	6	0.2		Ĵ	Sydney	13	1	23	4	3.0		58.
Peace River	14	1	25	2	1.2		X	Yarmouth	13	0	21	6	7.4		
SASKATCHEWAN		V	25		40 2		70.7	PRINCE EDWARD ISL		0	22	- Action	17 1		
Cree Lake	14	X	25	1	48.2		72.3	Charlottetown	14	0	22	4	17.1		
Estevan	18	2	31	7	9.7		61.9	Summerside	14	0	22	6	22.9		55
La Ronge	16 18	3 2	29	-	28.6		66 Q	NEWFOUNDLAND	10		21	0	10 4		17
Regina Saskatoon	18	2	30 28	5	3.4		66.9	Gander	10	- 1	21	0	18.4		47
Swift Current	16	1	26	5 7	0.4		*	Port aux Basques	10	1	20 18	- 1	15.4		
Yorkton	16	7	28	3				St. John's	10	0 2		2	16.5		
MAN I TOBA	10		28)	1.8		77.9	St. Lawrence	8	2	20	2	10.8		
Brandon	16	0	30	7	17.3		*	Cartwright	A Barrier	- 1	25	2	7.9		65
	16	0 2						Goose	11		14	0	1.9		0)
Churchill The Pas	15	1	24 26	- 0 5	1.9		73.6	Hopedale)		14	U			
Av = weekly mea Mx = weekly ext					ature	(°C)		SOG = snow depth of H = weekly tota						the p	erio
Mn = weekly ext Tp = weekly tot Dp = Departure	reme al pr	minim recipi	tatio	emper	rature nm)	(°C)	il (°C)	X = not observe P = extreme value * = missing	d	7.1				S	
Canadian Climat Atmospheric Env 4905 Dufferin S Downsview, Onta	viron Stree	ment S	Servi	СӨ			1	Annual subscri \$35.00 Annual subscri including month	ption	rate	for	one i	ssue pe		th

EDITOR: A. Shabbar

ASSISTANT EDITOR: A. Caillet

STAFF WRITER: A. Radomski

LONGWOODS NEAR LONDON ONTARIO

On June 10 air which came from the U.S. Midwest brought moderately acidic rain of pH 4.5 to Longwoods. On June 13 a small amount of strongly acidic rain with a pH reading of 4.0 occurred in air which passed over Illinois and Michigan. Air originating in the U.S. Midwest brought a large amount of strongly acidic rain, pH 3.8 to the region on June 16.

DORSET* MUSKOKA ONTARIO

Dorset received moderately acidic rain with a pH of 4.6 on June 10. This event was associated with air that originated in the U.S. Midwest. On June 12 air which had passed through Wisconsin, Michigan and across Lake Huron, Georgian Bay brought strongly acidic rain with a pH value of 3.9 to the region. Data supplied by Ontario Ministry of Environment.

CHALK RIVER OTTAWA ONTARIO

Air that came from the U.S. Midwest brought moderately acidic rain of pH 4.4 to Chalk River on June 10. On June 12 moderately acidic rain with a pH reading of 4.4 was associated with air that had passed through Wisconsin, Michigan and the Sudbury basin.

MONTMORENCY QUEBEC CITY QUEBEC

Montmorency received moderately acidic rain with pH readings of 4.6 on both June 11 and 12 and normal rain of pH 5.1 on June 13. These events were associated with air that came from northern Ontario and northern Quebec. On June 14 air that passed over Hudson Bay, northern Ontario and northern Quebec brought moderately acidic rain of pH 4.5 to the region.

KEJIMKUJIK SOUTHWESTERN NOVA SCOTIA

On June 14 air which came from central Ontario and passed through New York and the New England States brought slightly acidic rain with a pH of 4.7 to the region. A small amount of normal rain with a reading of pH 6.0 occurred on June 15. This event was associated with air that travelled from Hudson Bay and through northern Quebec and New Brunswick.

* Dorset data supplied by Ontario Ministry of Environment.

Environmental damage to lakes and streams is usually observed in sensitive areas regularly receiving precipitation with pH less than 4.7.

This report was prepared by the Federal Long-Range Transport of Air Pollutants (LRTAP) Liaison Office. For further information, please contact Dr. H.C. Martin at (416) 667-4803.