

This NOAA 9 infrared satellite image of 0837 GMT, May 24, 1985 reveals the temperature structure of the Great Lakes. See page 3 for more detail.

Tornado touches down East of Quebec City
Prospects for agriculture good in most areas

2

ATNTH

- 3.6 Battle Harbour

WEEKLY TEMPERATURE EXTREMES (*C)

MAY THE MA

	INVALIDA	HININGH						
YUKON TERRITORY	22.0 Beaver Creek	- 5.5 Komakuk Beach Shingle Point						
NORTHWEST TERRITORIES	19.5 Fort Smith	-15.0 Alert						
BRITISH COLUMBIA	30.4 Kamloops	- 5.0 Dease Lake						
ALBERTA	29.7 Medicine Hat	- 5.0 Fort Chipewyan						
SASKATCHEWAN	30.1 Estevan	- 2.5 La Ronge						
MANITOBA	29.6 Portage la Prairie	- 3.0 Thompson						
ONTARIO	29.0 Windsor	- 4.4 Moosonee						
QUÉBEC	25.2 Maniwaki	- 3.6 La Grande Rivière						
NEW BRUNSWICK	26.9 Chatham	2.7 Charlo						
NOVA SCOTIA	27.8 Sydney	- 0.4 Sydney						
PRINCE EDWARD ISLAND	23.9 Charlottetown	2.8 East Point						

ACROSS THE COUNTRY ...

ingreases in the second second

Yukon and Northwest Territories

In the Yukon skies were mainly sunny. Temperature were above normal through out the north, with the exception of the Mackenzie Valley. Several Arctic communities set new daily temperature records. The Great Slave Lake district received the heaviest precipitation, between 10 and 25 millimetres. The spring runoff in the Yukon has been increasing due to the warm weather and is becoming critical in some areas. The major lakes are still ice covered although the rivers are open.

British Columbia

It was a relatively pleasant spring week. Skies were mainly sunny. Some scattered showers developed in the afternoons. Temperatures climbed as high as 30°C in the southern interior. The mild weather caused some minor flooding near the north coast due to snow melt. Cool weather of the past few weeks has slowed crop growth by approximately two weeks.

Prairies

There was some frost in southern Manitoba earlier in the week, but no damage was reported. Minimum temperatures in the north dropped to as low as -5°C at night. Overall, it was sunny and hot until the weekend. Maximum temperatures climbed to the record high twenties and low thirties. A rash of forest fires broke out in Alberta. Cooler unsettled weather arrived for the weekend. Precipitation amounts varied, but some agricultural districts received 10 to 20 millimetres of rain. In the southern regions, 35 per cent of the early seeded crops have already emerged.

ACROSS THE NATION

25.2 Deer Lake

Warmest mean temperature Coolest mean temperature

NEWFOUNDLAND

18.3 Lytton, BC - 8.0 Alert, NWT

Ontario

More rain fell in southern and central Ontario during the weekend, as a series of weak weather disturbances crossed the districts. Rainfalls were significant, ending farmers concerns about the unusually dry spring season. In southwestern Ontario, on May 26, a frontal trough triggered heavy thunderstorm activity, with hail and strong winds. Several daily precipitation records were broken in the south. Temperatures averaged near normal. Frost was reported in some northern and eastern Ontario communities.

Québec

Mean temperatures varied several degrees either side of normal. A few daily minimum temperature records were broken in the north. Precipitation in the south was light, with only scattered rain showers. In the north, amounts were more general, between 10 and 15 millimetres. On May 20 a line of heavy thunderstorms crossed the Eastern Townships. A tornado touched down near the farming community of St. Raphaël east of Quebec City. A barn was completely destroyed and several mobile homes were damaged. Fifteen forest fires were burning in the province at the end of the week.

Atlantic Provinces

th-

ek,

njn

to

ind

the

101

ires setsekied, icts

35

rops

After several days of unsettled showery weather in the Maritimes, the weather became sunny and

HEAVIEST WEEKLY PRECIPITATION (man)

YUKON TERRITORY NORTHWEST TERRITORIES BRITISH COLUMBIA ALBERTA

SASKATCHEWAN MANITOBA ONTARIO QUÉBEC

NEW BRUNSWICK NOVA SCOTIA PRINCE EDWARD ISLAND NEWFOUNDLAND

- 7.2 Teslin 26.8 Yellowknife 24.0 Revelstoke 22.3 Rocky Mountain House
- 23.8 Wynyard 12.4 Dauphin 41.6 Trenton 19.6 Kuujjuarapik
- 58.2 Saint John 31.8 Yarmouth 41.0 Summerside 91.2 St. John

The Front Cover

3

warm. Heavy rains and above normal temperatures were beneficial to crops and welcomed by farmers. Daytime readings climbed to the mid to high twenties. Fruit trees went into bloom just in time for the annual Annapolis Valley Apple Blossom Festival held on May 25. In Newfoundland it was frequently cloudy and wet, particularly on the Avalon Peninsula. Freezing nighttime temperatures were experienced in Labrador and in northern Newfoundland. This NOAA 9 satellite image of the surface water temperature of the Great Lakes reveals features which can be observed each Spring. The most interesting of these is the thermal bar. This is the sharply defined zone which separates masses of winter-cooled water with a temperature at or a little below 4°C (the light gray areas) from the much darker (and therefore warmer) areas near the lake shores. In Lake Erie, the shallowest and therefore the warmest of the Great Lakes, only a small area of 4°C water remains at the east end. At its extreme western end, temperatures are as high as 16°C. In Lake Huron, a line of warmer waters (between A and B) indicates the presence of the underwater ridge, which divides the basin into two distinct geological zones.

CLIMATIC PERSPECTIVES VOLUME 7

Managing Editor	M.J. Newark
Editor (English)	A. Radomski
Editor (French)	A. Caillet
Staff Writer	M. Skarpathiotakis
Art Layout and	W. Johnson
Graphics	K. Czaja
werden official used to	J. Rautenberg
Word Processing	U. Ellis. N. Khaja
May 12 Marine Land	P. Hare

Regional Correspondents

Atl.: F.Amirault; Que.: J.Miron Central: F.Luciow; Ont.: W.Christian Western: W.Prusak; Pac.: N.Penny Yukon : H.Wahl; Ice Central Ottawa AES Satellite Data Lab ISSN 0225-5707 UDC 551.506.1(71)

Climatic Perspectives is a weekly bilingual publication of the Canadian Climate Centre, Atmospheric Environment Service, 4905 Dufferin St., Downsview, Ont. Canada M3H 5T4. Phone (416)667-4906/4711.

It began in 1978 and in 1983 was expanded to include a monthly supplement (formerly known as the Canadian Weather Review). The purpose of the publication is to make topical information available to the public concerning the Canadian Climate and its socioeconomic impact.

Unsolicited articles are welcome but should be at maximum about 1500 words in length. They will be subject to editorial change without notice due to publishing time constraints. Black and white photographs can be used, but not colour. The contents may be reprinted freely with proper credit.

The data shown in this publication are based on unverified reports from approximately 225 Canadian synoptic weather stations. Information concerning climatic impacts is gathered from AES contacts with the public and from the media. Articles

Temperature Anomaly Forecast

- ++ much above normal + above normal N normal
- below normal
- -- much below normal

This forecast is prepared by searching historical weather maps to find cases similar to the present. The historical outcome during the 15 days subsequent to the chosen analogues is assumed to be a forecast for the next 15 days from now. do not necessarily reflect the views of the Atmospheric Environment Service.

Annual Subscriptions Weekly issue including monthly supplement: \$35.00 Monthly issue only: \$10.00 Subscription enquiries: Supply and Services Canada, Publishing Centre, Ottawa, Ontario, Canada, KIA 059. Phone (613)994-1495

24 21 23 50 MAY 23 E) MAY B

views Ser-

04

23

(26)

ACID RAIN REPORT

The reference map (left) shows the locations of sampling sites where the acidity of precipitation is monitored All are operated by Environment Canada except Dorset which is a research station operated by the Ontario Ministry of the Environment. The map also shows the approximate areas (shaded) where SO2 and NOx emissions are greatest. The table below gives the weekly report summarizing the acidity (or pH) of the rain or snow that fell at the collection sites and a description of the path travelled by the moisture laden air. Environmental damage to lakes and streams is usually observed in sensitive areas regularly receiving precipitation with pH less than 4.7, while pH readings less than 4.0 are serious. For more information concerning the acid rain report, see Climatic Perspectives, Vol. 5 No. 50 p. 6.

				MAY 19 to MAY 25, 1985
SITE	DAY	pH	AMOUNT	AIR PATH TO SITE
Longroods	20	4.3	13(r)	Illinois, Indiana, Ohio
Dorset	19	4.4	6(r)	Wisconsin, Michigan, Southern Ontario
	20	4.4	17(r)	Illinois, Indiana, Ohio, Southern Ontario
	25	4.5	2(r)	Northern Ontario, Central Ontario
Chalk River	20	4.5	2(r)	Illinois, Indiana, Ohio, Southern Ontario
Montmorency	19	4.2	15(r)	Wisconsin, Michigan, Central Ontario, Central Quebec, Southern

6

20 4.5 2(r) Southern Ontario, New York, Vermont, Southern Quebec 23 4.2 1(r)Northern Ontario, Central Quebec Central Ontario, Central Quebec, Southern Quebec 24 4.3 3(r) 25 5.9 6(r) Northern Ontario, Northern Quebec

Kejimkujik194.15(r)Quebec, New England, Atlantic Ocean214.212(r)Atlantic Ocean224.710(r)Atlantic Ocean

r = rain (mm), s = snow (cm), m = mixed rain and snow (mm).

STATION	TEMP			MP PRECI			IP SUN	STATION		J	EMP	PRE	SUN		
	Av	Dp	Mx	Mn	Тр	SOG	Н		Av	Dp	Mx	Mn	Тр	SOG	н
								The Ree	12						
UKUN TERRITUR		2	22	- 2	0.0		Y	Thomson	12	2	22	2	2 0		71
awson	9	- 1	20	- 1	0.0		Ŷ	Winning	14	- 2	20	- 1	2.8		16
bingle Point	0	- 12	8	- 6	0.2	0.0	*	ONTARIO	14	- -	27	1			
atson Lake	8	- 1	20	- 2	0.5		92.4	Atikokan	11	- 2	25	- 3	7.8		74
hitehorse	8	- 1	20	- 3	3.3		*	Big Trout Lake	6	Ō	14	- 1	1.0		58
ORTHWEST TERRI	TORIES	S						Earlton	11	0	25	- 1	*		
oppermine	- 1	3	3	- 6	*	8.0	*	Kapuskasing	10	0	22	0	0.0		
ort Smith	7	- 1	20	- 3	6.6		*	Kenora	14	2	26	4	1.2		
nuvik	2	- 1	11	- 4	4.4	0.0	1	Kingston	15	Q	23	6	*		
orman wells	1	U	16	- 1	0.4		40 0	London	15	1	26	3	20.8		63
ellowknire	4	- 2	14	5	20.0		40.9	Muskoka	12	- 2	2/	- 4	4.2		
arel Harbour	- 1	5	2	- 4	*		*	North Bay	12	U	24	U	0 4		57
ane Dver	ő	6	5	- 4	4.8	80.0	X	Ottawa	15	1	26	7	15.2		,,
lvde	- 2	3	2	- 8	1.0	52.0	26.1	Pickle Lake	9	ō	22	- i	4.8		
robisher Bay	2	4	5	0	14.0	3.0	5.5	Red Lake	11	Ō	26	- ī	0.0		80
lert	- 8	0	- 1	-15	1.6	42.0	94.7	Sudbury	12	1	25	2	0.8		67
ıreka	- 3	3	4	-10	0.2	24.0	85.0	Thunder Bay	11	1	25	0	4.2		72
all Beach	0	7	2	- 4	*	15.0	X	Timmins	10	- 1	22	- 1	0.8		
solute	- 2	6	3	- 7	2.2	12.0	*	Toronto	13	0	26	3	28.3		
mbridge Bay	- 3	4	2	- 6	*	33.0	*	Trenton	14	0	26	4	41.6		
uld Bay	- 5	3	- 1	-12	0.8	13.0	*	Wiarton	11	- 1	23	2	24.0		63
ichs Harbour	- 3	3	1	- 7	5.8	18.0	12.5	Windsor	17	1	29	6	35.6		
ITISH COLUMBI	A	a sugar	172					QUEBEC		1.1	in the				
pe St. James	9	0	13	6	13.4		*	Bagotville	10	- 2	20	- 1	5.7		
anbrock	16	5	28	6	11.5		70.1	Blanc-Sablon	6	3	15	0	*	0.0	
rt Nelson	11	0	23	0	3.6		66.1	Inukjuak	0	1	5	- 3	*	23.0	10
rt St. John	12	0	23	5	0.6		X	Kuuj juaq	4	2	10	- 1	10.8	61.0	19
micops	18	2	30	9	12.2		46.4	Kuujjuarapik	0	- 3	6	- 4	19.6		-
nticton	18	2	50	9	12.8		26.9	Maniwaki	12	U	25	U	0.0		6
ince Coonce	12	1	20	2	0.7		20.2	Mont-Joli	10	U 1	10	2	11.0		25
ince George	10	1	19	4	17 2		29 5	Notreal	17	÷	17	4	2.6		70
veletake	17	÷	30	2	24.0		46 7	Nitabaquan	2	- 2	17		2.0	10.0	1
ithere	13	2	21	2	12 6		36.6	Ruebac	13	- 0	22	- 4	11 0	10.0	65
DCOLVER	16	2	22	10	3.2		44.1	Schefferville	13	1	9	- 2	10.0	0.0	0,
ctoria	14	ī	21	6	4.8		*	Sent-Iles	8	ī	15	ī	5.2	0.0	59
lliams Lake	13	3	25	5	2.4		53.0	Sherbrocke	13	2	24	ī	14.8		6
BERTA		-						Val-d'Or	9	- 2	23	- 2	3.4		66
loary	13	2	27	4	16.8		48.3	NEW BRUNSWICK		T-					0.
ld Lake	13	ī	27	5	3.8		48.3	Charlo	11	2	22	3	14.2		
ronation	13	1	28	4	15.4		58.4	Chatham	13	2	27	3	23.6		55
monton Namao	14	1	28	4	12.0		*	Fredericton	13	1	27	3	45.8		
rt McMurray	12	1	27	- 1	0.0		85.0	Moncton	13	1	25	5	48.8		60
gh Level	10	- 1	24	- 2	2.0		*	Saint John	11	1	21	3	58.2		44
sper	12	2	25	3	12.8		45.8	NOVA SCOTIA							
thbridge	15	2	29	5	14.3		*	Greenwood	12	- 1	22	2	26.4		
alcine Hat	16	2	30	7	4.2		62.7	Shearwater	12	1	21	4	19.7		55
Ce River	12	1	25	4	2.4		X	Sydney	12	2	28	0	9.4		68
A I CHEWAN	The Lorent						74.	Yarmouth	11	U	17	5	31.8		46
ee Lake	15	X	23	- 2	0.3		16.4	PRINCE EDWARD ISLA	ND		0.4		70.0		
Ronm	15	2	00	4	2.8		49.0	unarlottetown	12	1	24	4	29.9		
line	11	U	20	- 2	15.0		46.0		12	1	22	>	41.0		61
akatoon	14	2	27		13.2		40.9	Candan UUNERLAND	0		21	1	4 4		FC
ft Current	14	2	29	2	/.0		*	Port our Persuan	9	I Z	17	1	4.4	0.0	50
kton	14	2	27	1	16 0		60.0	St. John's	6	- 1	13	0	91 2	0.0	04
ITOBA		-		-	10.9		00.7	St. Lawrence	10	5	20	2	13.2		
andon	13	1	29	2	1.6		*	Cartwright	3	- 1	10	- 2	2.8	45.0	41
urchill	Ĩ	ī	5	- 2	8.8	0.0	18.1	Churchill Falls	5	3	13	- 1	15.6	25.0	41
nn Lake	6	- 3	20	- 2	1.8	0.0	106.3	Goose	8	2	19	ō	18.4	27.0	52
				-											
v = weekly me	an tem	perat	ure	(°C)	atura	(°C)		SOG = snow depth of H = weekly total	on gr	ound	(cm),	last	day of	f the p	eri

7

• •

018

the the the eat-eek-dity

hal

lien

tion pH aus. the Per-

