Climatic Perspectives

Monthly review

NOVEMBER

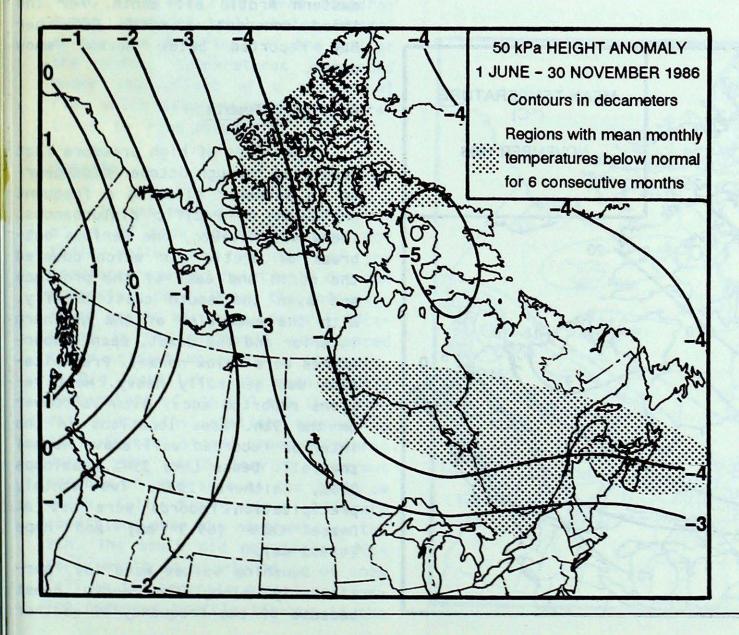
Vol.8 1986

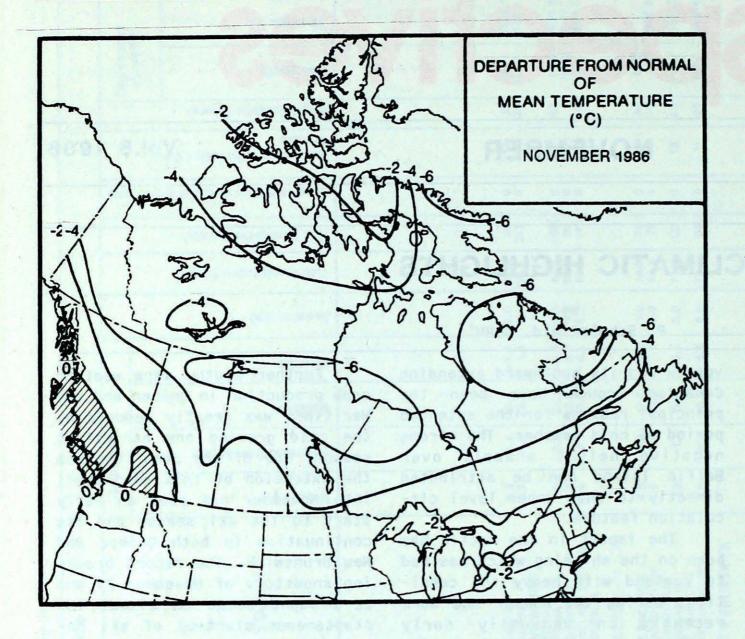
CLIMATIC HIGHLIGHTS

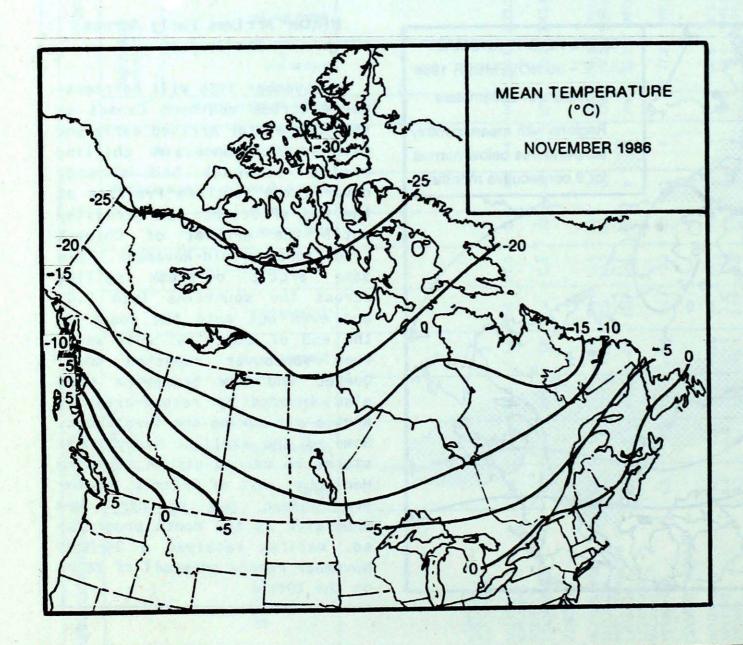
by P. Scholefield, CCRM

Cold Spell Extends to 6 Months in the East

The eastern Canada cold spell was discussed briefly last month. Now that it has continued for another month and in fact has intensified it is worthy of further analysis. The accompanying map shows that there are two extensive areas that have had below normal temperatures for the past six months.


The intensity and the southward displacement of the polar vortex and its southward extending Canadian trough have been the principal reasons for the extended period of cold weather. The strong negative height anomaly over Baffin Island can be attributed directly to this upper level circulation feature.


The impact in the Arctic has been on the shipping which has had to contend with heavy ice conditions during the summer and more recently an unusually early freeze-up (see the article on ice conditions on page 4B).


Further south, warm weather crop production in Québec and the Maritimes was greatly reduced by the cold growing and harvesting season. One of the benefits from the extension of this cold spell into November has been an early start to the ski season and its continuation in both Québec and New Brunswick. The record breaking snowstorm of November 21 and 22 brought about an almost instantaneous start-up of ski resort operations.

Winter Arrives Early Across The Country

November 1986 will be remembered across southern Canada as the year winter arrived early and with a vengeance. A chilling arctic outbreak had already covered the southern Prairies at the end of October and persisted until the arrival of Chinook conditions in mid-November. This same arctic outbreak spilled across the mountains into B.C. and even out onto the coast at the end of the first full week. Even Vancouver reported snow. Québec and New Brunswick were also invaded by record-breaking arctic air during the first week. Some of the earliest heavy snowstorms on record struck southern Manitoba, most of Ontario, southern Québec and northern New Brunswick as the month progressed. Halifax received a 24-hour November record snowfall of 28 cm on the 19th.

ACROSS THE COUNTRY

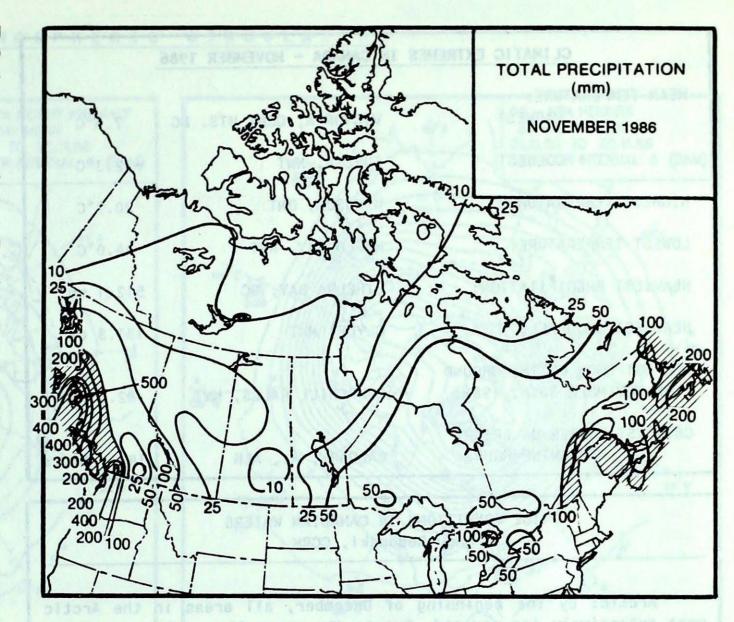
Yukon and Northwest Territories

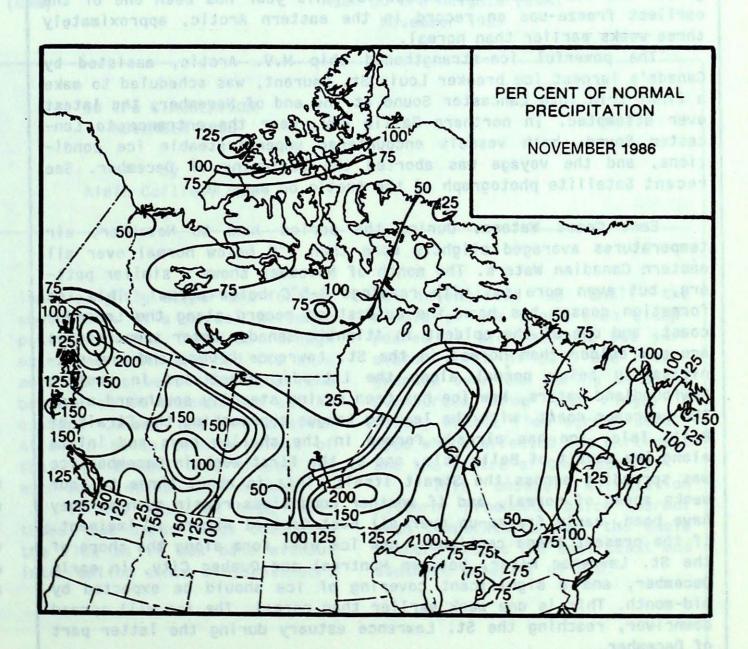
It was generally very cold through the Yukon and Northwest Territories in November. Over the far north, the central and the eastern territories, the cold was a continuation of a trend which began in September under the influence of a frigid dome of arctic air associated with the upper level trough which extended further south than usual. In the northwest, the influence of the upper ridge was not as favourable as last monthly because of a dramatic change in location as it retreated further west. This allowed cold arctic air to invade the Yukon and District of Mackenzie. At the beginning of the month, temperatures plunged well below seasonal normals. Ogilvie reported the country's lowest daily temperature of -43°C on the 9th. It was clear and frigid most of the time despite some snow and drifting snow. Several daily minimum temperature records were established on Baffin Island. Winds were generally strong over the eastern Arctic all month. For the third consecutive month Frobisher Bay reported below normal snow depth.

British Columbia

The ridge of high pressure that persisted through October disappeared in November allowing a frequent onslaught of Pacific disturbances. There was however, one serious outbreak of arctic air which covered the north and east of the province and even the south coast briefly. With the exception of the southern interior and the coast, mean temperatures were below normal. Precipitation was generally heavy. Most regions reported snow, even Vancouver on the 9th. Some locations in the interior recorded well above normal snowfall. Dease Lake 254%, Kamloops 276%, Smithers 209%. Two monthly precipitation records were set at Dease Lake (69.9 mm) and Hope (479.2 mm).

Sunshine values were low, particularly along the north coast because of the frequency of weather disturbances. Strong winds occurred in coastal areas. Ferry service to Vancouver Island was interrupted at the end of the month.


Prairie Provinces


Winter, which had already arrived at the end of October became well entrenched during November. From the 6th of November onward, a frigid outbreak of arctic area infiltrated the south and remained for nearly three weeks. Southern Manitoba experienced the worst snowstorm since March 1966. Winnipeg was paralysed by a 35.8 cm snowfall accompanied by winds gusting to 90 km/hr and visibilities near zero. Saskatchewan and Alberta were spared the worst of the storm. Monthly precipitation amounts were high in the Rockies where Banff received 72 cm of snow, the largest monthly accumulation since 1946. In southern Manitoba, Portage-la-Prairie, Gimli and Winnipeg received nearly twice monthly snowfall. Numerous daily minimum temperature records set. Despite pronounced were chinooks in southern Alberta (on the 15th, 20th and 21st) mean temperatures remained well below normal across the Prairies. At the end of the month, temperatures moderated under the effect of a meridional flow which allowed maximum temperatures to rise above 0°C.

Ontario

the mal nops thly at Hope

It was very cold and there was a lot of snow in northwestern Ontario while the remainder of the province remained relatively dry and moderately cold. Under the influence of an arctic air mass, several locations in the northwest experienced their coldest November in 20 years. At Big Trout Lake, the mean monthly temperature of -15.9°C was the coldest since the station opened in 1939. Several storms crossed Ontario during the month leaving generous amounts of snow such as the 30-50 cm which fell during near blizzard conditions over the northwest on the 9th. The south did not escape winter's wrath as nearly 20 cm of snow fell on two separate occasions causing numerous traffic tie-ups in the

CLIMATIC EXTREMES	IN CANADA - NOVEMBER 1986	E TROPINS
MEAN TEMPERATURE: WARMEST	VICTORIA, GONZ HTS. BC	7.4°C
COLDEST	EUREKA, NWT	-32.3°C
HIGHEST TEMPERATURE:	WINDSOR, ONT	20.7°C
LOWEST TEMPERATURE:	MOULD BAY, NWT	-44.0°C
HEAVIEST PRECIPITATION:	ETHELDA BAY, BC	512.1 mm
HEAVIEST SNOWFALL:	CLYDE, NWT	131.8 cm
DEEPEST SNOW ON THE GROUND ON NOVEMBER 30th, 1986:	CHURCHILL FALLS, NWT	82.0 cm
GREATEST NUMBER OF BRIGHT SUNSHINE HOURS:	CALGARY, A., ALB	142 hours

ICE CONDITIONS IN CANADIAN WATERS Andy Radomski, CCRM

Arctic: By the beginning of December, all areas in the Arctic were extensively ice covered. Due to the unusually cold temperatures in the eastern Arctic during October and November, the rate of ice growth and its extent was excessive. This year has been one of the earliest freeze-ups on record in the eastern Arctic, approximately three weeks earlier than normal.

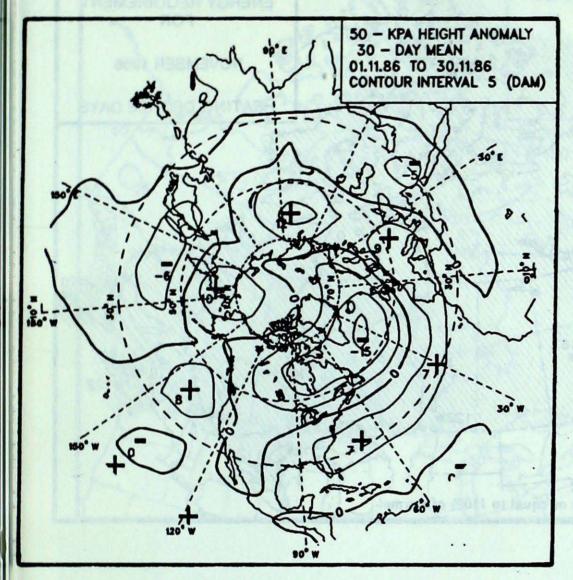
The powerful ice-strengthened ship M.V. Arctic, assisted by Canada's largest ice breaker Louis St. Laurent, was scheduled to make a final trip into Lancaster Sound at the end of November, the latest ever attempted. In northern Baffin Bay, near the entrance to Lancaster Sound, both vessels encountered unpenetrateable ice conditions, and the voyage was aborted the beginning of December. See recent Satellite photograph of the Arctic on page 8b.

East Coast Waters: During the period June to November, air temperatures averaged slightly more than 1°C below normal over all eastern Canadian Waters. The month of November shows a similar pattern, but even more so, with readings 3-5°C below normal. This ice formation season has been the coldest on record along the Labrador coast, and one of the coldest in Atlantic Canada. Water temperatures are now colder than normal in the St. Lawrence River, and are significantly below normal along the Labrador coast and in eastern Newfoundland waters. New ice has been moving steadily southward along the Labrador coast, with the leading tongue approaching the Strait of Belle Isle. Ice has already formed in the shallow bays and inlets along the Strait of Belle Isle, and by the first week in December ice was spreading across the Strait itself. This is about three to four weeks ahead of normal, and if weather conditions remain much as they have been, early freeze-up over all East Coastal Waters is imminent. If the present trend continues, new ice will form along the shore of the St. Lawrence River, between Montreal and Quebec City, in early December, and a significant covering of ice should be expected by mid-month. This is one week earlier than normal. The ice will spread downriver, reaching the St. Lawrence estuary during the latter part of December.

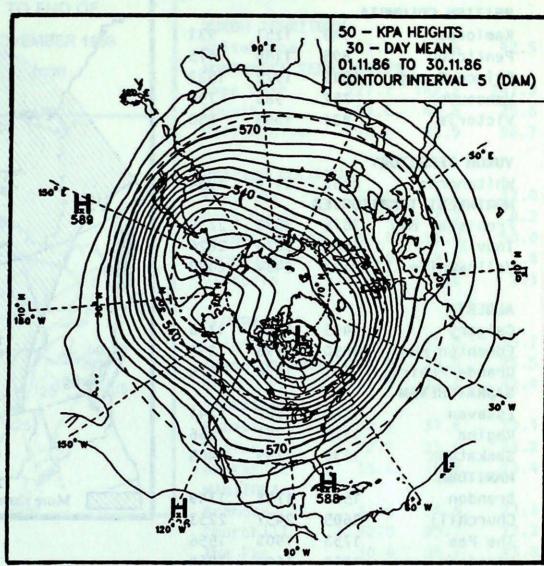
Toronto area on the 20th and a big multi-car pile-up near Barrie on the 27th. Monthly precipitation totals for southern and central regions remained below normal as they were in October, a complete reversal from the excesses of summer and early autumn. Winds associated with the storms again aggravated the high water level problem on the Great Lakes (see article on page 8B).

Quebec

The Quebec weather was dominated by the long-wave upper level trough which, for the second consecutive month, was deeper and more intense than normal. Arctic air invaded the province several times mean temperatures below keeping normal. Many minimum temperature records were set: -10°C at Outawais and at Dorval on the 4th which was the lowest ever recorded so early in the season - 28 daily minimum records on the 13th and 14th in total, no less than 8 new monthly minimum records and 3 others equalled at Sept-Iles, Gaspé and Chibougamau. Although precipitation amounts were moderate and variable, there were a few extremes. A heavy snowstorm on the 21st and 22nd dumped 70 cm of snow at Gaspé bringing the monthly total up to 107.2 cm, a monthly record. During the same period, Québec City and Sherbrooke received 32 and 52.4 cm respectively, which was the largest accumulation ever so early in the season. Milder weather at the end of the month melted most of the snowcover in the south.


It was remarkable that Kuujjaq received nearly double (186%) its normal sunshine even though it was near the centre of the polar vortex.

Atlantic Provinces


All the Atlantic Provinces have experienced an unusual winter noted more for its early arrival than its severity. It was generally very cold with several storms which dumped record snowfalls and were accompanied by violent winds. Mean

... Continued on page 7B, Regions

ATMOSPHERIC CIRCULATION

Mean 50 kPa height anomaly (dam) November 1986

Mean 50 kPa heights (dam) November 1986

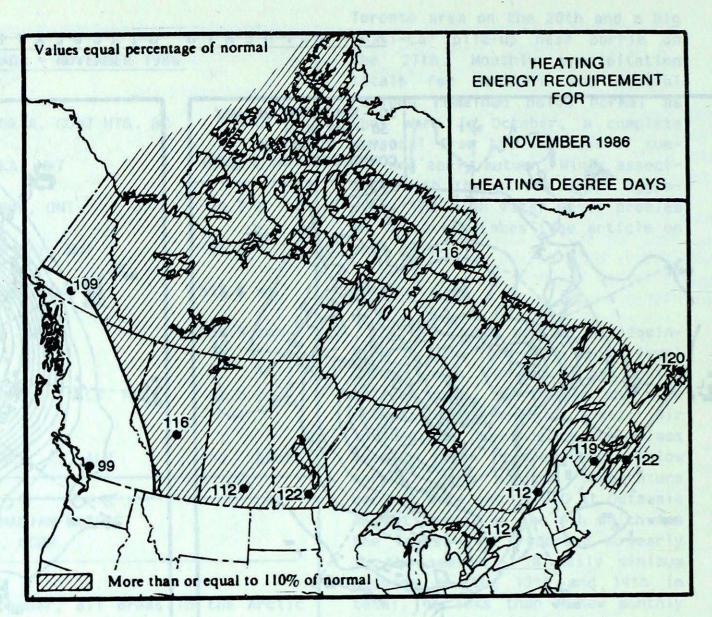
50 kPa CIRCULATION NOVEMBER 1986

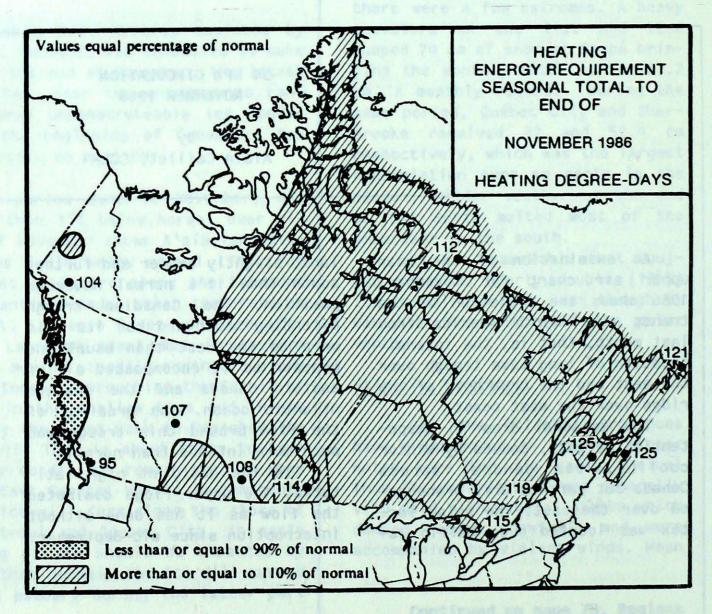
by Alain Caillet, CCRM

An examination of the mean upper air chart for November, 1986 shows the evolution of the trends over North America from last month, that is, the intensification of long wave trough over the east and the breakdown of the ridge over the west coast.

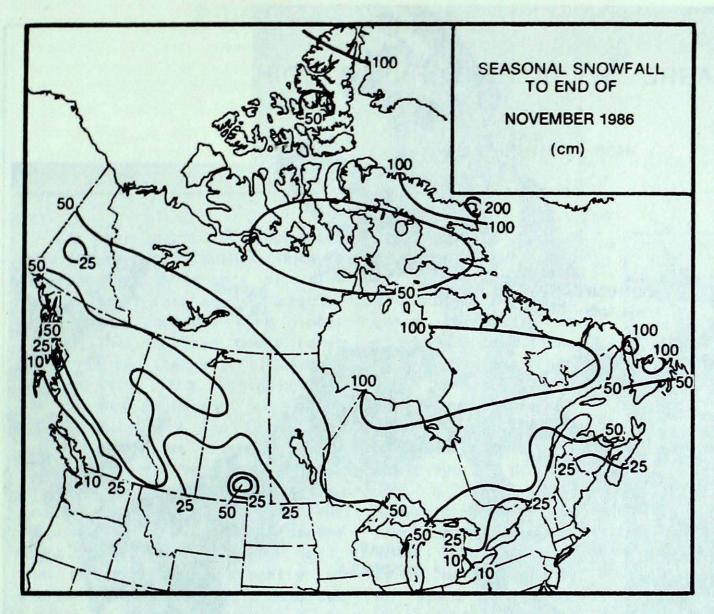
The seasonal drop in geopotential heights, caused by winter cooling, was general across Canada but particularly pronounced over the east. The polar vortex was located over Baffin Is-

land, slightly deeper and further south than it's normal November position. The Canadian trough extending southward had its axis more to the west than usual and broader so it encompassed all of eastern Canada and the western Atlantic ocean. The gradient of the flow around this trough was much more intense than normal.


In the west, at high latitudes, the upper ridge dominated the flow as it has done without interruption since mid-September. It intensified up until the middle of the month then disappeared at mid latitude but persisted north of 50°N and retrogressed over the Bering Straits. Downstream from the ridge, a strong arctic flow stream developed which affected the northwest and the centre of the country.


This unusual circulation pattern produced below normal mean temperatures over the whole country except the west coast and southern interior of B.C.

ENERGY


SEASONAL TOTAL OF HEATING DEGREE-DAYS TO END OF NOVEMBER

	1986	1985	NORMAL
BRITISH COLUMBI			
Kamloops	943	1251	931
Penticton	895	1184	875
Prince George	1510	1972	1522
Vancouver	757	983	794
Victoria	831	1005	850
VAIRON TERRITORY			
YUKON TERRITORY Whitehorse	2033	2414	1954
NORTHWEST TERRI			
Frobisher Bay	3076	2573	2739
Inuvik	2880	3014	2826
Yellowknife	2197	2484	2092
ALBERTA			Magn
Calgary	1495	1845	1388
Edmonton Mun	1490	1793	1398
Grande Prairie SASKATCHEWAN	1661	1996	1574
Estevan	1340	1607	1241
Regina	1475	1757	1366
Saskatoon	1530	1799	1405
MANITOBA			
Brandon	1562	1788	1349
Churchill	2605	2457	2253
The Pas	1753	1903	1556
Winnipeg	1438	1604	1264
ONTARIO			
Kapuskasing	1757	1508	1488
London	903	764	829
Ottawa	1073	934	706
Sudbury	1323	1167	1186
Thunder Bay	1465	1456	1316
Toronto	938	803	819
Windsor	709	612	694
QUÉBEC			
Baie Comeau	1715	1459	1461
Montréal	1040	890	872
Quebec	1300	1083	1087
Sept-Iles	1779	1517	1533
Sherbrooke	1301	1114	1200
Val-d'Or	1672	1435	1428
Terror con Sont Was	it to t		
NEW BRUNSWICK	1506	1225	1145
Charlo Fredericton	1266	1047	1013
Moncton	1274	1050	1007
NOVA SCOTIA			
Halifax	1029	870	822
Sydney	1193	977	915
Yarmouth	1041	902	881
	ISLAND		- Harry
Charlottetown	1196	978	936
NEWFOUNDLAND	1400	1250	1011
Gander	1482 1415	1358 1287	1211
St. John's	1413	1201	1100


SNOWFALL

WATER EQUIVALENT OF SNOW COVER DECEMBER 2, 1986 (mm) 100 50 25 50 100 25 100 50 25 50 2

SEASONAL SNOWFALL TOTALS (CM) TO END OF NOVEMBER

	1986	1985	NORMAL
YUKON TERRITOR		E7 (112 E
Whitehorse NORTHWEST TERR	63.4	57.6	42.5
Cape Dyer	227.2	162.2	241.3
Inuvik	53.6	44.6	75.6
Yellowknife	24.2	91.9	56.7
BRITISH COLUMB			
Kamloops	32.0	6.6	12.0
Port Hardy	0.6	7.2	4.2
Prince George	67.0	53.4	50.0
Vancouver	0.0	14.6	2.8
Victoria	0.0	45.8	2.3
ALBERTA			
Calgary	26.5	33.0	35.7
Edmonton Namao		28.5	26.5
Grande Prairie		29.4	42.4
SASKATCHEWAN			
Estevan	14.2	37.8	23.1
Regina	72.2	35.4	24.2
Saskatoon	15.6	14.8	23.4
MANITOBA			
Brandon	11.6	78.9	23.3
Churchill	52.0	85.7	77.3
The Pas	30.6	39.7	43.8
Winnipeg	47.6	58.7	27.3
ONTARIO	10%	70.0	05 0
Kapuskasing	104.6	78.9	85.0 26.3
London	16.6	20.4	25.5
Ottawa	23.0	12.6	38.6
Sudbury Thunden Bay	34.2	97.6	33.1
Thunder Bay	14.2	11.0	8.9
Toronto Windsor	9.0	9.8	11.6
QUEBEC	7.0	7.0	
Baie Comeau	74.4	42.6	41.6
Montréal	35.9	14.7	22.9
Quebec	62.2	36.2	38.3
Sept-Iles	65.9	32.5	61.4
Sherbrooke	68.4	33.7	42.4
Val-d'Or	69.8	29.2	63.7
NEW DOWNSTAY			
NEW BRUNSWICK	79.0	34.9	42.9
Charlo	16.9	20.5	22.7
Fredericton Moncton	10.9	16.9	24.7
NOVA SCOTIA	A A A A A A A A A A A A A A A A A A A	10.7	
Shearwater	22.8	11.3	9.5
Sydney	42.4	33.5	14.6
Yarmouth	14.4	2.2	8.3
PRINCE EDWARD	ISLAND		
Charlottetown	23.8	32.3	24.2
NEWFOUNDLAND			
Gander	137.6	51.6	44.1
St. John's	67.1	41.7	25.6

Regions ... continued from 4b

monthly temperatures over all regions were below normal for the 3rd consecutive month. Eight monthly minimum records were equalled or broken such as at Charlot (N.B.) -4°C one degree less than in 1978, at Goose Bay -10.3°C which was 3.7°C lower than the previous record in 1977. On the 20th, Goose Bay reported a record monthly extreme minimum of

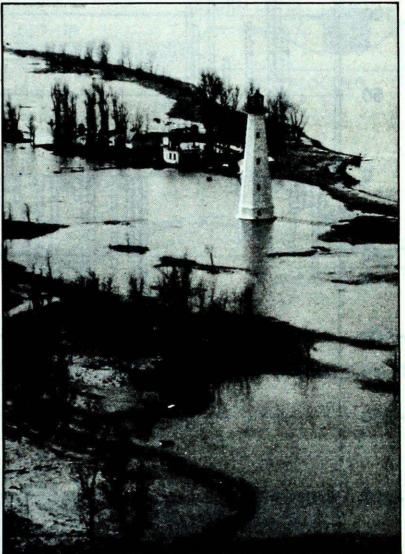
-26.1°C. The first major snowstorm of the season brushed by Nova Scotia on the 19th. Several days later, on the 21st and 22nd, Chatham was practically buried under 62 cm of snow. Extreme winds were associated with these weather systems. Gusts reached 120 km/h over the Hibernia oil fields, up to 140 km/hr on the 13th and 14th over coastal Newfoundland (over-

turning 3 tractor trailers on the ferry M.V. Caribou off the coast of Portes-aux-Basques), in excess of 130 km/hr on Prince Edward Island on the 21st and 22nd and near 100 km/hr on the 24th in Nova Scotia causing the loss of a fishing boat and the drowning of a fisherman.

医凹陷性 环烷烷 人名英格内 电线系统 医肾经管 医电影 电电影 医一粒 网络人名英格兰

HIGH WATER LEVEL IN THE GREAT LAKES

by André Saulesleja, CCAH


In the month of September many locations in Southern Ontario received record amounts of rainfall. Greater than average precipitation was recorded over almost all of the southern Great Lakes Basin. From the end of August through till the beginning of Lake Levels on Lakes October Huron, St. Clair and Erie crept upwards by almost 10 cm. This was time when levels are usually falling because of increased autumn evaporation. At the end of October, levels were at record highs. With the coming of fall, the frequency and severity of storms increases. An cold outbreak October 5th was accompanied by storm force winds over the Lake Huron/Georgian Bay areas. This resulted in flooding at the St. Clair River exit from Lake Huron where water levels rose because of the winds piling water up along southern shore. Similarly there was also a lesser storm surge in the Georgian Bay area, and considerable damage to structures built on shoreline properties because of high water levels and waves. The combination of high water levels and winter storms also results in a much increased rat of shoreline erosion in some areas. The stormiest season is here with use now approaching and the potential for further damage is very high along Great Lake shorelines particularly for Lakes Huron/Georgian Bay, St. Clair and Erie

The impending crisis caused by the high levels has arisen because precipitation over the Great Lakes and basin areas has been above "normal" since about the mid 60's. "Normal" refers to average conditions experienced over the past 30 or so years. The most recent climatological "normals" have been prepared for per-

iod 1951-1980. Most of the structures and facilities designed around the Great Lakes are based on climatic conditions experienced before 1970. The recent high lake levels are an accumulated result of a number of years of above average precipitation (page 10b). However, climate and the conditions we would like to think of as "normal" are by no means a static process. Some historical information and paleoclimatological analyses indicate that higher lake levels and thus perhaps greater amounts of precipitation were the norm in the early 1800's and before. In the 1600's levels on

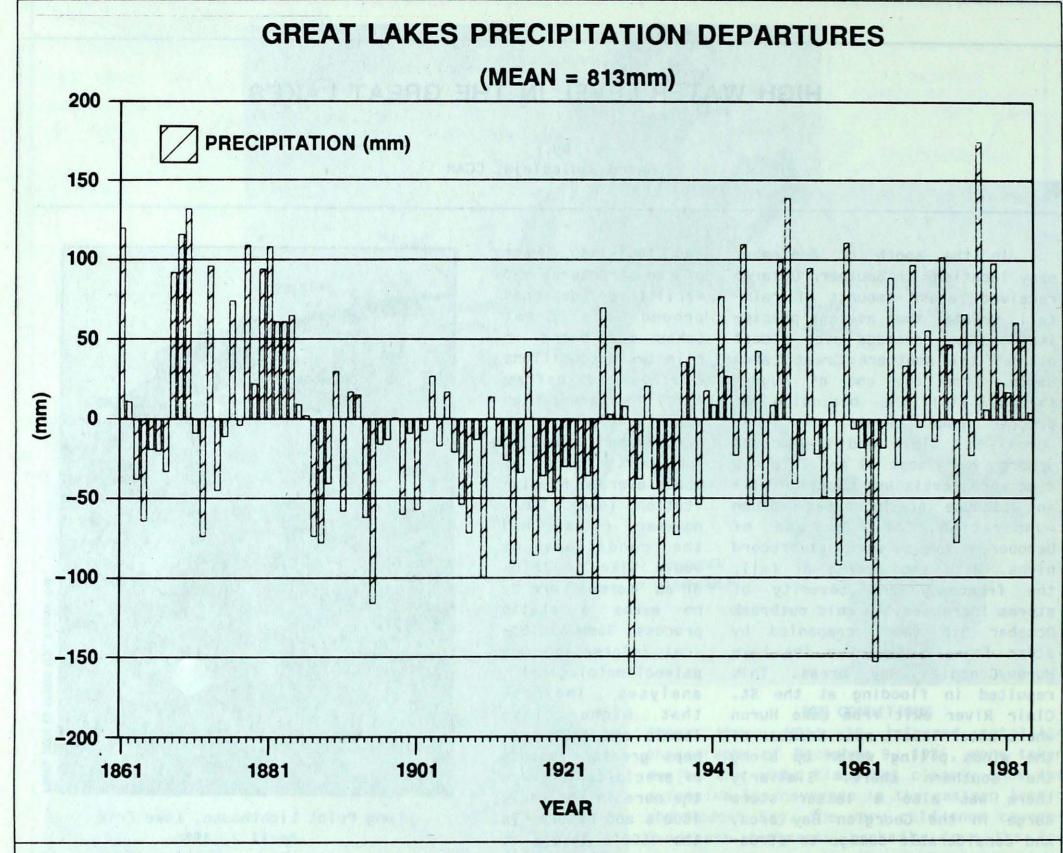
Lakes Michigan/Huron were approaching levels almost a meter higher than even the present day extremes.

The climatic causes of shifts in the precipitation regime, their duration and extent are still unknowns requiring further investigation, but for the present, the high lake levels are likely to remain a cause for concern. Even with a return to a "normal" climate, lake levels in the lower Great Lakes would not be expected to return to "normal" ranges for about nine years. The past records of precipitation indicate that precipitation variations in amounts are not unusual over periods of 5-20 years. The odds would seem to favour a return to drier conditions, however there would always remain the possibility of

Long Point Lighthouse, Lake Erie April 2, 1986

climatic variations which could last for a much longer time.

Damages resulting from high lakes levels will occur during winter storms. The damages will result from a combination of storm surge and waves.


What is a Storm Surge

A storm surge is a temporary change in water level brought about by a combination of wind and differences in pressure across a water body. For the Great lakes, the wind is the most important factor in determining the magnitude of short-period water level fluctuations.

Each lake responds uniquely to wind blowing across its surface. The water level increase, or set-up at the downwind end of

LE STUDIO LTD., Simcoe, Ont

FEATURE

the lake is approximately directly proportional to the wind speed and length of the water body, but inversely poportional to its depth. Moreover, the wind forcing of the water body results in some inertial or sloshing motions of the water body. These motions are periodic and are generally referred to as seiching motions. The period for these seiches is about 15 hours for Lake Erie, and 6 hours for the major part of Lake Huron for the principal mode of oscillation along the greatest length of the lake. The storm response is actually much more complex, and a storm surge is made up of the set-up and the many possible modes of oscillation which are induced by wind forces on the lakes surface.

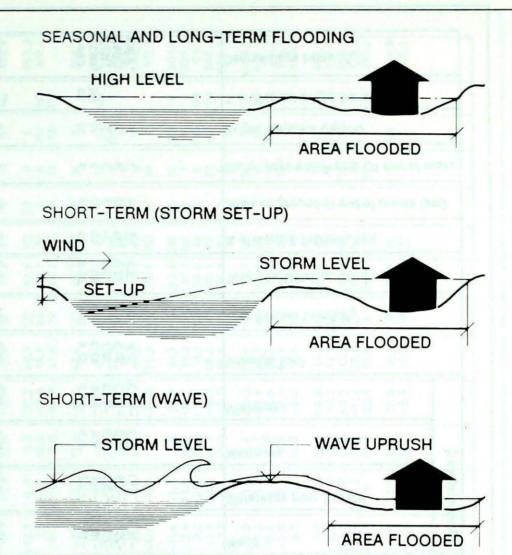
The combination of possible

modes of motion was numerically modelled. The model used is that developed from the Lake circulation model of Simons and Lam of the Canadian Center for Inland Water. This model is also being

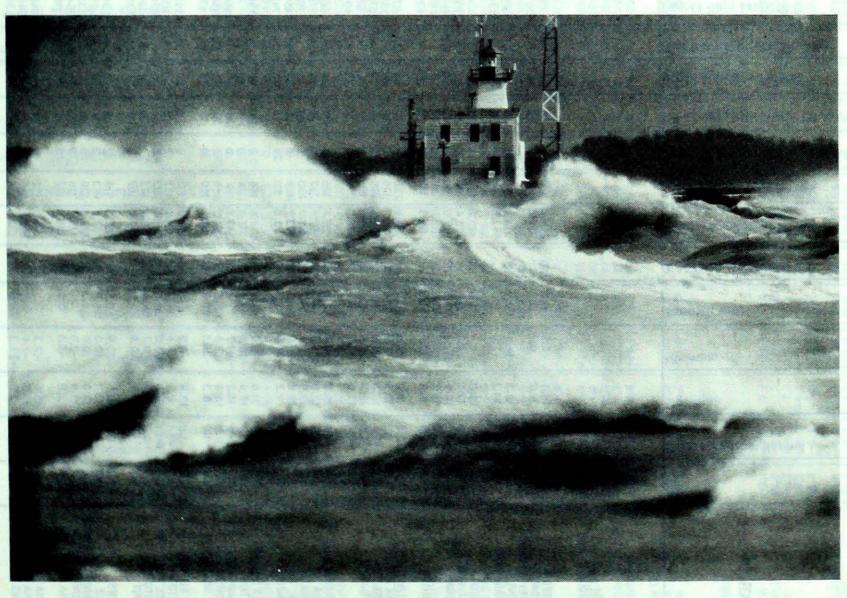
used by the Ontario Weather Centre for producing warnings of high lake levels.

In order to gauge the kind of damage which might be anticipated and as a basis for the

SURGES AND WAVES DURING WINTER STORMS ON THE GREAT LAKES


Lake	Max storm surge in	<u>Remarks</u>
Erie St. Clair Huron Georgian Bay	1.7-2.5 1 1-1.5 0.5 - 1 Wave Height in m	Eastern End South and Eastern Mainly South 30 Thousand Islands to Owen Sound
Erie St. Clair Huron Georgian Bay	10 do 4 do 4 do 7 do 7 do 7 do 7 do 7 do 7	Deep water waves approaching shorelines

FEATURE


development of contingency plans, estimates have been prepared of the temporary increase in water level (storm surge) and expected wave heights during a normal or typical extreme winter storms. These are the kind of storms which can be expected as the most severe for a particular lake in each winter. The figures of previous table are intended to serve as a rough guide to the conditions possibly occurring this winter.

Some further words about waves

The wave heights in the previous table are the waves which would be produced in deep water. These should not be construed as the waves which would directly impact a shoreline. When large waves approach a shoreline, they will commence breaking when their height is about 3/4 of the water depth. During a storm the width of the breaker zone increases and the wave reaching any depth within this zone will have a height about 80% of the depth at that time. This depth will be the sum of the mean or still water depth and any change in depth arising from wind-set or the storm surge. Shoreline damage is the result of a combination of higher than normal levels, the greater waves these sustain, and increased erosion during these events.

TYPES OF FLOODING ON THE GREAT LAKES

Waves appear to be engulfing Port Colborne Lighthouse - Photo - Toronto Star

		X A											NOVEME	BER 1986		1									,	1	
STATION	Tem	Difference from Normal	Махітит	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm ar more	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C
BRITISH COLUMBIA ABBOTSFORD ALERT BAY AMPHITRITE POINT BLUE RIVER BULL HARBOUR	5.4 5.8 -2.2 6.7	-0.2 0.1 0.1 0.6	13.5 12.2 9.3 14.1	-3.3 0.7 -18.4 -2.3	0.8 0.0 90.9	14	244.0 375.3 110.2 462.8	127 176 147	0 0 45 0	18 23 15 25	70 X X 36	96 77	377.1 360.3 MSG 338.8	YUKON TERRITORY BURWASH DAWSON MAYO WATSON LAKE WHITEHORSE	-14.5 -25.0 -20.9 -18.2 -11.5	-1.1 -6.9 -5.7 -4.4 -2.7	9.2 0.2 0.2 6.6 8.5	-40.3 -46.3 -42.9 -38.6 -34.0	17.4 61.5 15.7 42.3 32.6	121 243 61 113 136	8.4 38.6 7.8 30.6 26.8	155 31 96	14 42 8 22 15	3 8 3 9 9	X X X 61 50	142 85	974. 1288 1167. 1085. 884.
CAPE SCOTT CAPE ST.JAMES CASTLEGAR COMOX CRANBROOK DEASE LAKE ETHELDA BAY FORT NELSON FORT ST.JOHN HOPE KAMLOOPS KELOWNA LANGARA LYTTON MACKENZIE MCINNES ISLAND PENTICTON PORT ALBERNI PORT HARDY PRINCE GEORGE PRINCE RUPERT PRINCETON QUESNEL	7.7 1.9 5.9 -2.6 -11.1 5.3 -17.7 -9.3 4.5 1.3 1.0 6.2 2.7 -7.0 6.9 3.1 6.0 6.1 -4.5	0.8 0.2 0.6 -0.8 -2.6 0.1 -5.7 -3.3 -0.2 -0.3 -0.1 0.6 0.1 -3.1 0.9 0.1 ** 0.8 -1.6	13.3 12.9 10.4 14.2 8.4 6.2 12.5 7.3 12.3 13.0 16.8 13.0 13.5 13.8	1.0 -12.3 -1.3 -20.2 -29.0 -2.6 -31.5 -26.9 -7.0 -13.2 -14.2 -0.4 -11.9 -24.5 -2.0 -10.9 -1.7 -2.0 -26.1	0.8 0.0 34.2 1.8 51.8 88.2 12.4 26.0 28.9 9.8 32.0 14.6 4.2 23.6 73.2 1.4 6.3 0.6 67.0	19 113 22 221 254 121 91 93 58 275 114 73 107 147 23 81 * 15 169	427.8 176.4 80.3 188.9 60.3 69.9 512.1 22.6 31.8 479.2 27.7 30.8 258.9 92.7 73.8 450.6 17.8 357.7 454.3 81.0	129 94 99 98 181 238 129 99 101 214 125 127 130 129 121 146 74 * 185 160	0 0 0 0 0 7 38 0 29 8 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 12 17 13 14 24 7 7 12 21 7 8 8 8 10 17 24 6 17 23 12 12 17 21 21 21 21 21 21 21 21 21 21 21 21 21	X 466 70 X 61 48 X 79 X 25 94 75 X 62 43 X 80 31 33 55 28 71 X	* 122 * 79 * 85 133 130 95 89 133 * 53 84 56 *	309.6 482.4 363.3 620.2 871.4 368.8 1072.0 817.7 405.2 501.9 510.6 352.5 459.9 749.7 333.2 359.5 355.6 675.1	NORTHWEST TERRITORIES ALERT BAKER LAKE CAMBRIDGE BAY CAPE DYER CAPE PARRY CLYDE COPPERMINE CORAL HARBOUR EUREKA FORT RELIANCE FORT SIMPSON FORT SMITH FROBISHER BAY HALL BEACH HAY RIVER INUVIK MOULD BAY NORMAN WELLS POND INLET RESOLUTE	-27.8 -25.5 -27.3 -21.3 -23.0 -23.6 -23.7 -21.5 -32.3 -18.1 -19.6 -16.9 -17.3 -23.1 -16.7 -26.0 -28.2 -23.6 -28.7 -27.1	-1.2 -5.2 -3.5 -6.6 -4.7 -6.2 -4.0 -0.8 -4.1 -4.0 -5.3 -1.6 -5.4 -5.4 -5.1 -2.6	-10.1 -13.2 -16.5 -8.5 -10.8 -11.5 -11.2 -9.3 -15.3 -2.4 -1.7 0.1 -21.1 -9.4 -0.2 -9.0 -14.4 -5.4 -16.6 -15.9	-39.7 -35.1 -36.0 -36.4 -35.0 -39.5 -38.0 -31.5 -43.6 -30.3 -32.6 -36.7 -32.0 -41.1 -44.0 -40.6 -37.6 -36.1	26.2 26.9 8.2 49.2 12.6 3.2 21.4 7.1 3.8 15.2 14.6 30.1 10.5 22.1 12.6 7.4 18.0 5.2 3.4	301 155 91 72 83 19 141 39 126 59 57 104 40 81 56 55 168 84 17 56	9.3 22.2 7.5 26.8 6.1 3.2 13.0 7.1 3.0 8.8 13.4 18.6 6.8 21.5 8.8 6.2 18.0 3.4 3.4	135 97 45 63 21 90 39 120 40 49 71 40 53 58 49 167 86 23	35 34 20 32 13 32 30 8 15 15 15 17 22 18 30 12 11 10	47 18 2 0 5 1 2 4 6 5 2 10 5 2 0 5	0 77 29 X X 0 21 49 0 X 44 52 22 X X	151 305 172 86 85 119 48	1372 1305 1358 1178 1228 1247 1250 1184 1509 1081 1130 1056 1057 1231 1039 1318 1387 1246 1400 1353
REVELSTOKE SANDSPIT SMITHERS TERRACE VANCOUVER HARBOUR VANCOUVER INT'L VICTORIA GONZ. HTS VICTORIA INT'L VICTORIA MARINE WILLIAMS LAKE	-2.9 0.9 6.7 -3.2 0.8 6.8 6.2 7.4 6.4 -3.3	0.2 1.2 -0.9 0.5 0.0 0.3 0.2 0.4 -0.2	10.7 15.4 11.5 13.1 12.6 13.9 13.8 15.6 12.6	-11.7 -0.9 22.9 -10.0 0.0 -2.3 -0.1 -2.3 -2.4	80.5 89.0 0.2	133 7 209 182 7	138.4 294.8 67.8 187.5 269.3 175.2 160.1 160.0 287.4 50.8	163 162 116 103 126 116 167 122 154	1 0 12 2	12 19 28 14 19 18 19 16 12 18 10	34 42 2 25 X 65 70 64 X 80	81 65 4 44 93 84 82 109	514.0 338.5 634.4 509.9 335.7 354.4 319.0 349.2 348.7	SACHS HARBOUR YELLOWKNIFE ALBERTA BANFF BROOKS CALGARY INT'L COLD LAKE CORONATION EDMONTON INT'L EDMONTON MUNI. EDMONTON NAMAO EDSON FORT CHIPEWYAN	-18.0 -5.4 -5.8 -5.4 -10.5 -9.0 -8.9 -7.8 -8.5 -9.3 -16.1	-3.9 -1.5 -2.8 -2.7 -4.3 -4.1 -3.4 -4.1 -3.6 -2.9 -5.2	13.4 11.4 11.3 10.9 13.8	-31.3 -25.5 -26.0 -22.0 -25.5 -26.9 -26.9 -24.3 -24.1 -32.2 -32.0	72.2 12.5 14.2 33.0 23.8 22.7 24.2 24.2 51.3 19.0	224 82 87 155 149 126 157 144 200 76	15.4 11.7 28.5 18.2 23.8 27.2 20.9	160 101 92 140 121 142 173 116 213	6 28 0 12 8 8 2 5 16 18	2 14 4 5 4 8 8 8 12	76 X 90 142 81 105 107 117 X 94 X	* 114 85 81 104 109	701 853 808 806 774 794 818

													NOVEME	DER 1986													
	Tem	peratur	e C					ŕ	(cm)	more					Tem	peratur	• C						(cm)	more			
STATION	Медп	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (c	No. of days with Precip 1.0 mm or n	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Doys below 18 C	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (c	No. of days with Precip 1.0 mm or n	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C
FORT MCMURRAY GRANDE PRAIRIE HIGH LEVEL JASPER LETHBRIDGE	-13.6 -9.6 -18.5 -6.0 -4.2	-5.4 -3.6 -7.1 -2.1 -3.4	6.3 14.0 8.4 11.0 14.4	-27.7 -30.3 -38.7 -27.5 -27.5	40.8 32.1 42.2 35.2 30.6	140 122 145 143 162	32.3 29.5 35.9 26.8 37.5	128 106 128 90 223	28 9 35 23 0	7 11 10 8 8	57 89 63 71 108	68 * 89 * 92	947.3 827.2 1093.8 721.4 666.2	THE PAS THOMPSON WINNIPEG INT'L ONTARIO	-12.9 -19.2 -9.6	-5.4 -7.3 -5.1	4.3 -2.5 6.4	-27.8 -36.3 -26.3	25.4 14.1 47.4	79 41 216	17.6 13.8 48.4	61 44 192	11 11 15	6 3 7	80 107	119	927.5 115.7 829.2
MEDICINE HAT PEACE RIVER RED DEER ROCKY MTN HOUSE SLAVE LAKE	-4.7 -11.8 -7.8 -8.0 -9.9	-3.1 -3.7 -3.2 -4.4 -3.6	13.9 10.1 12.7 13.0 10.1	-24.5 -30.3 -28.5 -28.6 -26.3	15.2 21.7 12.7 22.0 21.2	107 98 84 111 90	23.3 23.7 11.9 13.1 28.0	159 118 78 73 117	0 8 2 5 7	5 10 3 8 9	100 X X X 80	89 80 76	680.0 893.2 772.4 779.6 837.7	ATIKOKAN BIG TROUT LAKE EARLTON GERALDTON GORE BAY	-7.5 -15.9 -5.3 -9.4	-2.9 -6.9 -2.8 -3.9	6.8 -1.0 11.8 7.4	-28.3 -29.4 -24.0 -28.9	49.0 57.8 45.3 56.8 26.2	119 * 115 101 102	45.8 57.6 44.4 56.2 27.5	112 139 62 91 33	11 47 2 16	13 11 10 15	86 89 X X	119	764.9 1016.5 679.1 821.6 520.7
SUFFIELD WHITECOURT SASKATCHEWAN BROADVIEW	-4.9 -9.0	-2.6 -2.7 -3.4	13.3	-24.0 -28.8 -25.5	10.1 26.6	72 121	14.2 23.4	97 99	7	5 6	93 X		683.8 810.6	HAMILTON RBG HAMILTON KAPUSKASING KENORA KINGSTON	0.6 2.7 1.5 -8.0 -8.4 2.1	-1.3 -1.8 -1.9 -3.6 -3.8 -1.3	13.5 19.2 17.5 8.9 3.8 13.5	-12.3 -10.0 -11.9 -25.0 -23.0 -11.0	22.0 24.8 67.2 55.1 19.8	297 215 109 147 137	73.6 64.5 63.1 59.5 74.6	111 94 78 147 88	0 0 16 22 0	10 9 17 13 11	124 X X X 111	142	496.2 780.6 806.0 476.9
COLLINS BAY CREE LAKE ESTEVAN HUDSON BAY	-18.6 -15.4 -6.2 -11.6	-6.1 -5.0 -2.6 -4.5	7.9 -3.2 1.5 12.4 5.6	-30.1 -30.1 -22.5 -31.3	21.0 21.1 13.4 22.6	64 38 75 89 80	16.3 12.1 14.2 20.0	37 57 87 80	16 15	6 5 5 6	80 71 83 91	112 69 *	1097.7 1003.8 725.1 887.6	LANSDOWNE HOUSE LONDON MOOSONEE MOUNT FOREST	-13.7 1.5 -9.3	-6.3 -1.6 -4.8	1.3 18.0 4.3	-32.2 -12.9 -26.3	58.2 16.5 37.4	122 68 79	52.6 50.7 43.2	112 59 65	23 0 19	8 6 12	X 110 65	147	953.3 497.2
KINDERSLEY LA RONGE MEADOW LAKE MOOSE JAW NIPAWIN	-9.1 -14.2 -13.0 -6.0 -11.2	-3.9 -6.3 -6.4 -2.4	11.8 6.0 9.6 11.0 7.0	-26.0 -31.0 -33.8 -22.0 -26.7	12.8 48.0 27.8 9.8 28.6	125 136 147 52	13.2 38.5 27.4 13.1 17.1	105 145 127 78	5 20 13 TR 9	4 12 6 * 6	X X 65 79 78	* 83 *	811.5 966.4 928.6 723.4 877.0	MUSKOKA NORTH BAY OTTAWA INT'L PETAWAWA PETERBOROUGH	-1.0 -3.3 -0.5 -1.7 0.3	-2.1 -2.3 -1.7 -1.6 -1.8	12.8 12.0 13.8 12.7 16.4	-16.0 -19.7 -11.8 -17.0 -12.4	49.4 42.2 22.8 18.1 16.8	122 123 100 95 105	54.2 46.8 32.3 37.4	63 62 60 49 53	5 0	16 12 9 8 8	82 106 X	125	564.2 637.6 552.3 592.7 508.2
NORTH BATTLEFORD PRINCE ALBERT REGINA SASKATOON SWIFT CURRENT	-9.5 -10.7 -8.1 -9.0 -6.7	-3.7 -3.5 -3.0 -3.3 -3.0	10.9 10.0 11.2 9.7 8.6	-27.0 -30.3 -23.7 -25.3 -24.2	31.3 14.2 6.7 12.6 8.1	228 82 47 96 54	26.8 16.0 7.3 13.0 9.5	187 94 54 88 60	6 7 TR 4 TR	7 6 4 6 3	X 91 79 X 84	108 75 76	826.4 861.2 784.2 809.6 739.8	PICKLE LAKE RED LAKE ST. CATHARINES SARNIA SAULT STE. MARIÉ	-12.7 -11.4 2.9 2.2 -1.0	-5.1 -5.6 -1.8 -2.0 -1.7	1.9 18.5 18.8 15.3	-29.9 -29.8 -10.2 -10.7 -15.1	91.7 16.2 9.1 58.5	225 273 197 56 141	74.6	210 107 49 82	38 0 0	10 10 7 4 13	98 X 110 60	* 119 93	917.5 881.6 235.3 476.1 569.3
URANIUM CITY WYNYARD YORKTON	-9.5 -9.7	-3.8 -3.8	7.3 6.2	-25.6 -24.8	9.4 9.6	50 49	9.4 8.8	48 43		5 4	X 107 98	113 108	825.0 799.8	SIMCOE SIOUX LOOKOUT SUDBURY THUNDER BAY TIMMINS	1.7 -9.0 -3.0 -5.4 -7.0	-1.9 -3.7 -1.8 -2.8 -3.2	18.0 4.4 11.7 10.0 9.5	-13.0 -26.2 -20.4 -19.4 -27.3	19.4 64.4 28.9 24.2 59.9	119 141 90 81 98	65.0 73.7 42.6 62.7 62.1	147 54 118 78	0 19 7	9 14 9 9 16	X 81 105 X	104 121	488.8 1075.5 630.2 701.2 749.2 436.7
MANITOBA BRANDON CHURCHILL DAUPHIN GILLAM	-9.1 -19.0 -9.2 -18.7	-3.4 -6.9 -4.0 -5.9	8.2 -1.9 7.2 -4.5	-25.1 -28.8 -25.5 -31.7	11.1 11.8 26.3 13.4	66 28 109 30	11.1 9.9 28.6 6.4	61 25 113 20	6	4 4 3 3	X 124 97 X	250 103	849.4 1108.6 814.5 1101.6	TORONTO INT'L TORONTO ISLAND TRENTON WATERLOO-WELL WAWA	3.5 1.6 3.8 1.5 0.4 -4.3	-1.4 -1.7 -0.8 -1.7 -2.2	16.2 18.8 15.1 14.9 16.5 13.5	-8.2 -10.8 -7.7 -3.3 -11.7 -22.3	14.4 14.2 13.0 12.2 28.0 76.8	177 220 93 195 *	52.0 44.4 51.1 59.8 62.6 110.8	76 70 79 69 86 *	0 0 0 0 7	5 7 10 8 20	X X X		492.4 427.4 492.4 528.2 667.2
GIMLI ISLAND LAKE LYNN LAKE NORWAY HOUSE PILOT MOUND PORTAGE LA PRAIRIE	-9.9 -14.4 -19.0 -15.1 -8.4	-5.3 -6.0 -6.7 *	5.5 -0.7 -1.6 1.7 8.2	-24.7 -27.9 -33.3 -29.9 -24.3	54.6 24.1 12.4 27.4 51.7	190 48 33 *	54.3 23.6 14.8 25.0 44.6	182 59 45 *	14 23 11 17 3	9 7 8 7	119 X * *	125	973.4 110.5 991.8 792.6	WIARTON WINDSOR	1.4	-1.5 -1.2	17.0 20.7	-10.0 -9.9	31.1 9.0	78 78	25.3 47.4	26 72	0	6 7	63 X	104	493.9 445.5

													NOVEME	BER 1986													
SOUTH TY SEE SOUT	Tem	peratur	e C	will	RE's		13	ea fi	(cm)	more			150		Tem	peratur	e C						(cm)	more			
STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (No. of days with Precip 1.0 mm or r	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of month (c	No. of days with Precip 1.0 mm or n	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C
QUEBEC	6.7		on the same	X2	200		100 100 100	10 11 11 11 11 11 11 11 11 11 11 11 11 1	E I				1380 1380 1380 1881 1881	NOVA SCOTIA	A	2000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 11 10 11 10 10 10 10 10 10 10 10 1	873 873 873 873		26 1 26 1 26 2 25 3 1 27 9	22238		65-4 Cal	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
BAGOTVILLE BAIE COMEAU BLANC SABLON CHIBOUGAMAU GASPE	-5.2 -5.4 -5.5 -9.4 -3.4	-3.2 -3.6 -5.1 -4.0 -3.2	12.1 5.0 4.2 6.6 9.6	-19.7 -20.2 -18.5 -30.5 -14.3	45.3 71.4 89.1 81.4 107.2	95 201 247 153 346	58.1 81.8 104.9 76.4 110.6	102 107 99	5 14 38 29 40	13 17 15 18 13	X 83 92 67 85	* * 135	694.7 701.1 822.0 641.9	GREENWOOD HALIFAX INT'L SABLE ISLAND SHEARWATER SYDNEY	1.1 1.0 5.4 2.2 1.6	-2.8 -2.4 -1.9 -2.4 -2.2	18.6 14.0 14.0 13.7	-11.3 -10.9 -4.3 -10.5 -8.6	24.9 33.2 0.4 22.8 42.4	170 278 12 292 353	87.1 160.1 217.6 144.7 158.4	80 104 159 101 98	0 0 0 0	13 15 15 13 18	X * 73 98 65	103 90 86	510.2 511.2 376.6 471.9 494.0
INUKJUAK KUUJJUAQ KUUJJUARAPIK LA GRANDE RIVIERE MANIWAKI	-13.0 -15.1 -10.5 -11.7 -2.4	-5.8 -6.8 -5.6 *	-2.5 2.1 2.8 3.1 12.4	-29.3 -28.1 -25.1 -23.6 -15.9	67.6 20.4 89.2 57.8 28.6	178 56 169 *	59.8 18.6 87.4 54.0 38.4	151 46 143	24 15 25 32	15 9 20 19 14	39 96 49 60 87	140 185 127 * 132	931.8 96.3 885.2 897.2 610.4	TRURO YARMOUTH PRINCE EDWARD ISLAND	0.5 3.1	-2.4 -2.1	14.9 14.0	-12.6 -9.0	23.6	182 225	93.6 114.8	80 85	0	11 12	80 90	95 101	527.6 448.1
MATAGAMI MONT JOLI MONTREAL INT'L MONTREAL M INT'L NATASHQUAN	-8.5 -3.1 0.3 -1.3 -5.2	-3.3 -2.8 -1.7 * -4.1	8.9 9.8 16.2 14.4 5.9	-29.0 -16.3 -10.8 -13.3 -19.7	75.0 48.9 35.9 30.8 66.8	177 137 169 * 208	52.8 112.1 72.4 58.0 89.2	150 89	28 3 5 17	13 16 13 10 13	56 69 101 123 90	120 90 117 * 105	788.2 633.0 530.9 578.9 695.9	CHARLOTTETOWN SUMMERSIDE NEWFOUNDLAND	0.1 0.1	-2.8 -2.9	14.4	-11.9 -11.2	22.8 33.7	105	107.2 98.7	88 98	0	13 12	X 72	75	537.7 536.1
QUEBEC ROBERVAL SCHEFFERVILLE SEPT-ILES SHERBROOKE	-2.8 -4.9 -15.8 -6.8 -2.0	-2.6 -2.7 -6.8 -4.3 -2.4	12.0 12.8 1.2 5.1 13.8	-15.3 -22.0 -31.0 -23.5 -16.5	31.3 36.2 64.9	183 65 59 127 185	35.2 83.8 100.0	100	11 32 36 20 14	14 11 11 13 15	81 98 71 93 64	109 * * 99 *	627.5 586.0 1014.6 744.7 600.6	BATTLE HARBOUR BONAVISTA BURGEO CARTWRIGHT	-6.8 0.9 0.5 -6.9	-6.2 -2.5 -2.7 -5.1	4.8 10.7 9.7 4.1	-19.3 -8.3 -9.4 -17.6	70.8 71.4 27.6 77.3	* 637 233 166	81.9 129.8 209.5 70.9	131 134 118 88	61 B 50	11 15 17 10	X X * 89	127	743.6 512.5 525.1 746.5
STE AGATHE DES MONTS ST-HUBERT VAL D'OR NEW BRUNSWICK	-3.2 -0.4 -6.3	-1.7 -2.2 -2.9	12.7 14.0 9.8	-17.2 -17.1 -28.2	44.0	148 183 126	80.4 83.6 57.1	79 94 72	17	17 13 17	89 # 65	127	637.5 550.3 728.1	CHURCHILL FALLS COMFORT COVE DANIEL'S HARBOUR DEER LAKE GANDER INT'L	-14.5 -1.7 -2.2 -2.1 -1.4	-6.6 -3.6 -4.0 -3.1 -3.2	0.9 1.9 6.0 9.4 9.8	-31.3 -5.2 13.2 -15.8 -12.3	35.0 63.6	123 212 133 183 351	70.8 101.5 67.6 90.2 138.7	90 94 65 83 129	82 16 9 13 27	11 14 14 15 15	84 X 39 X 82	161 79 123	976.4 596.7 603.3 595.1 582.3
CHARLO CHATHAM FREDERICTON MONCTON SAINT JOHN	-4.0 -2.5 -1.5 -1.1 -0.2	-3.7 -3.4 -2.9 -3.1 -2.5	15.8	-17.6 -14.1 -15.4 -16.2 -13.6	61.8 16.9	210 235 82 145	84.3 101.6 112.0 144.5	101	58 15 116	12 12 11 11 12	79 82 96 95 89	84 82 * 98 91	660.2 614.3 586.0 544.2	GOOSE PORT-AUX-BASQUES ST ANTHONY ST JOHN'S ST LAWRENCE	-10.3 0.8 -5.0 0.7 1.4	-6.5 -2.4 * -2.7	5.5 9.4 3.5 12.8 11.1	-26.1 -7.4 -15.3 -10.0 -8.3	87.1 30.8 131.8 64.9 38.7	152 270 * 306 *	71.7 161.4 137.2 203.1 244.8	103	46 2 49 1 0	10 19 23 18 20	94	130	850.1 515.2 686.4 520.6
CONTROL OF THE PARTY OF T	1940		32333 332	0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0				Mary Andrews	Constitution 1926 (CONSTITUTION	of and the display Section of any				STEPHENVILLE WABUSH LAKE	0.0 -13.9		11.7 2.4	-7.8 -33.1	45.5 82.1		133.1		59	15 12	46 95	84 173	540.0 961.8

ation (mm) Precipitation ad at end of month (ith Precip 1.0 mm ne (hours)	gree days bove 5 C	Temperature C		month (cm)	Degree days above 5 C
recipitation at at end of ith Precip 1.6				EE	
Norma Norma of days ore	Since jan. 1st Since jan. 1st	Mean Difference from Normal Maximum Minimum	nowfall (cm) tal Precipit	% of Normal Precipitation Snow on ground at end of No. of days with Pracip 1.0 or more	Bright Sunshine (hours) This month Since jan. 1st
.2 344.B 163 D 20 62 4	0.0 2263.8 GUELPH HARROW	0.3 -2.2 16.4 -11.6 3.3 -1.2 21.0 -10.0		67 0 8 110 0 8	102 9.3 1999.4 112 29.6 2568.0
.0 20.0 79 D 13 81 1	17.7 2180.9 KAPUSKASING MERIVALE OTTAWA	-0.2 -1.8 14.1 -11.5		56 0 6	106 9.1 2038.
	3.3 1323.9 SMITHFIELD VINELAND STATION WOODSLEE QUEBEC	-0.2	17.0 62.7	71 0 6	27.6 2195.3 101 29.2 2278.0
	3.2 1320.2 LA POCATIERE L'ASSUMPTION LENNOXVILLE NORMANDIN ST. AUGUSTIN	-1.8 -2.2 11.0 -16.0 -19.0 -5.8 -2.9 12.5 -22.0			94 111 6.0 1866.6 99 2.2 1167.7
8 9.6 71 1 3 8 15.9 99 TR 5 84	0.0 1575.0 0.0 1495.5 0.0 1438.0 0.5 1589.0 0.0 1350.9 1.8 1650.1 NOVA SCOTIA	0.7 -1.2 18.5 -11.0	43.0 79.7	99 1 12	91 17.9 2026.3
.2	0.0 1739.0 0.0 1619.2 PRINCE EDWARD 0.0 1935.0 ISLAND				
	CHARLOTTETOWN NEWFOUNDLAND				
0	66.6 81 0 13 103 1 38.2 58	66.6 81 0 13 103 17.6 2188.7 NEWFOUNDLAND	66.6 81 0 13 103 17.6 2188.7 NEWFOUNDLAND	66.6 81 0 13 103 17.6 2188.7 NEWFOUNDLAND	66.6 B1 0 13 103 17.6 2188.7 NEWFOUNDLAND

					Bilght Suneham (Dourn		
					No. of days with Paris to soft-more		
			200		guar-en-dianes ayaya		
	282-38	TA			Sabhamal François		
	20000				Total Precipitation Gran		

Climatic Perspectives

Monthly review

DECEMBER

Vol. 8 1986

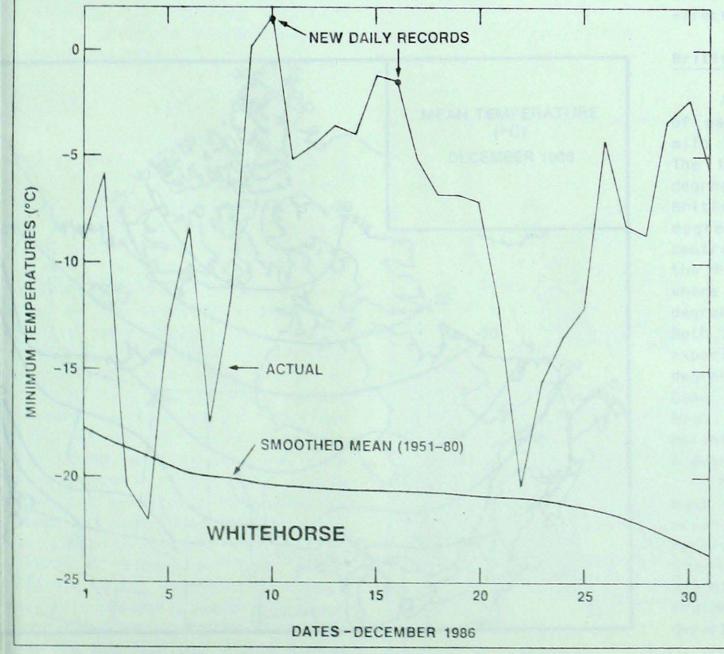
CLIMATIC HIGHLIGHTS

by P. Scholefield, CCRM

Winter in Retreat as Mild Pacific Air Invades from the West

For most of central and western Canada December was almost a complete reversal of the unusually cold weather that dominated during November. Abnormally low 50 kPa heights in the North Pacific and a strong westerly current across the ocean carried mild Pacific air deep into the heart of Canada (see discussion of the upper atmospheric circulation on page 5B).

The areas with the largest positive monthly mean temperature anomalies were located in the lees ide of the major mountain ranges in Alberta, northern B.C. and the southwestern Yukon. In these areas, the mild Pacific air was further warmed adiabatically as it descended to lower elevations.


The rather spectacular effect of this combined ocean and adiabatic air mass warming can be seen by examining the graph of daily minimum temperatures at White-

horse. Note that minimum temperatures dropped below the seasonal mean on only two days, remained above freezing on two days and two daily high minimum temperatures records were set. Overall it was the 2nd warmest December (mean of -5.1°C) experienced in Whitehorse (warmest mean of -3.9°C occurred in 1943).

The mild air greatly depleted the snowcover across country. Valleys in southern B.C., southwestern Yukon, most of the southern Prairies and southern Ontario had less than 10 cm of snow on the ground at the end of December with many locations reporting no snowcover at all. Fortunately most major ski areas still have enough snow to maintain operations.

Cold Spell Continues in the East and North

In the November monthly issue, the areas affected by a 6-month cold spell were delineated. The 50 kPa polar vortex has persisted over Baffin Island being further south and more intense than normal. As a result, the cold spell in the Arctic Islands has extended to 7 months. Further south, the intrusion of mild Pacific air terminated the cold spell in Quebec, northern Ontario and northeastern Manitoba. The cold spell has continued though in eastern New Brunswick, Prince Edward Island and Cape Breton, Nova Scotia.

Menthly review

DECEMBAR

ADDITION TO VINCEN

CLIMATIC HIGHLIGHTS

MARKET BY STREET OF

Wieter in Newton as Wild

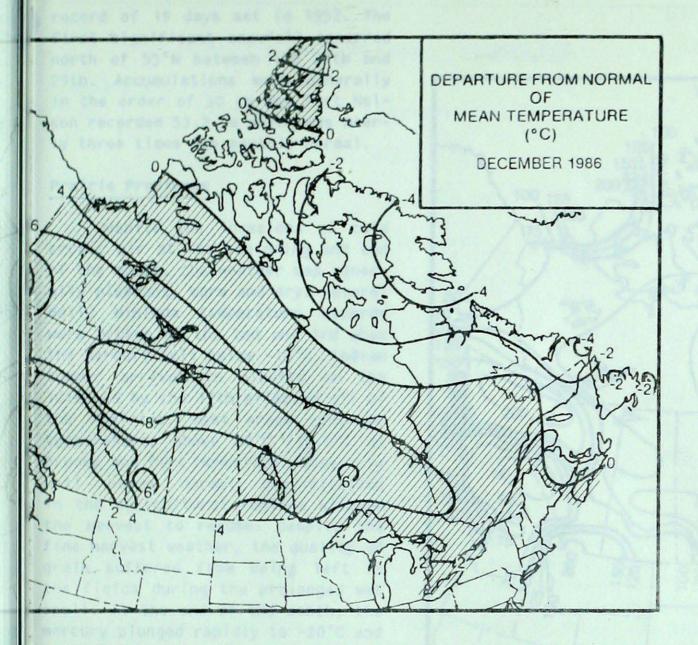
Team and larrance to team to?

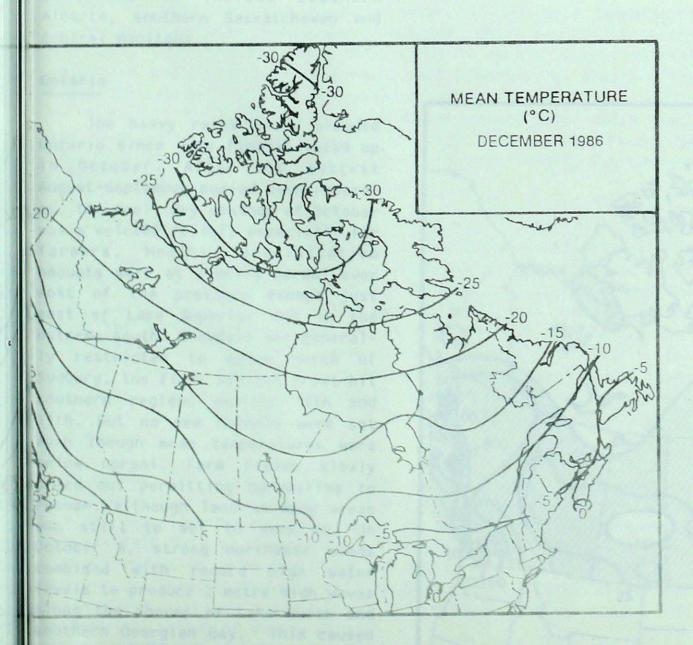
Team and larrance to team to?

Team and the standard and the standard and team to a standard and team to a

The areas with the temperature and the fet and the fet

ACTUAL OF THE THE PARTY OF THE


North Mote unit sinjers theories constituted and the seasons of seasons on said two days, reserved about on said two days, reserved about freezeling on the days and two days and two days and two days and two days are the said warmers the said two days are the said warmers the said two days are the said two


THE RESIDENCE OF A STATE OF A STA

tell per periode de l'assistant

STRONGULAN

THE PERSON THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS

ACROSS THE COUNTRY

Yukon and Northwest Territories

Record breaking warmth arrived over the Yukon and the Mackenzie Valley. The temperatures were 8 to 12 degrees above normal in the Yukon. A reading of 12.5 degrees at Burwash on December 9 was only half a degree shy from the all-time high for the Yukon for December. At Whitehorse, 9.5 degrees proved to be the highest maximum temperature for any December. In contrast, eastern Arctic continued to endure very cold weather. The temperatures were 2 to 4 degrees below normal over Baffin Island and Eureka experienced the coldest December temperature of -46 degrees.

Snowfall was well below normal over western Arctic. At Whitehorse, 10 cm of snow was less than half the normal amount; however, some locations in eastern Arctic received up to 3 times their normal amounts. Trapping for fur in the Yukon was adversely affected by the lack of snow, snow sled could not be used effectively on scanty snow cover.

British Columbia

A persistent southwesterly flow of maritime air mass produced very mild December across the Province. The temperatures averaged about 2 degrees above normal in southern British Columbia and rose to 4 degrees above normal over the central areas. The northern third of the Province was particularly mild where the readings were 4 to 9 degrees above the long term average. Both Fort Nelson and Fort St. John experienced temperatures that were 8 degrees above normal. Cape Scott and Cape St. James tied their record high monthly values and Langara established a record for the month, 6 degrees.

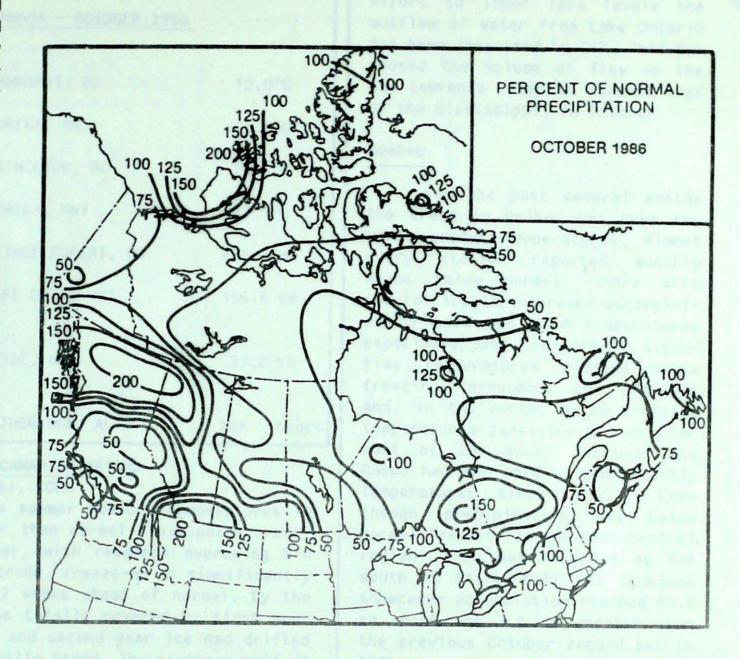
Precipitation was light across most of the Province. Southeastern areas including the interior valley received less than their normal shares. However, above formal amounts fell over the south coastal regions, Comox had the highest departure from normal, 16 percent.

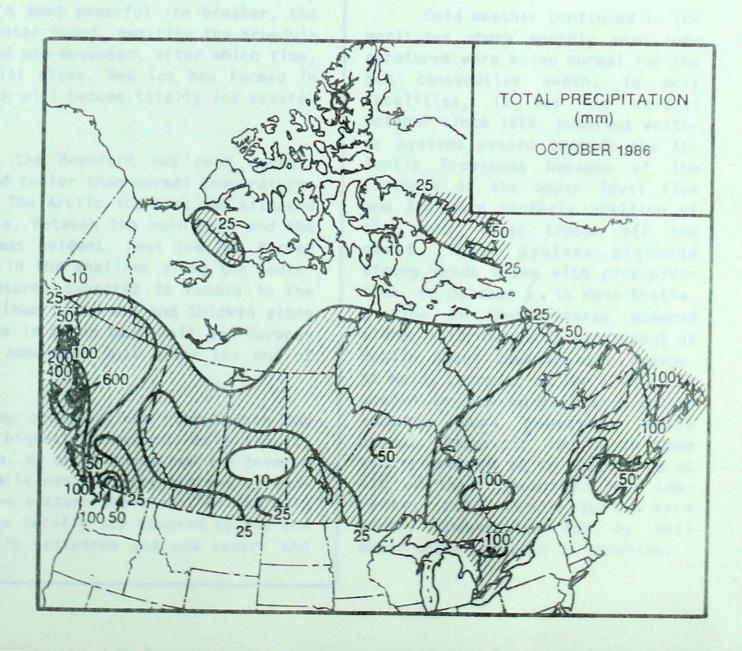
STRUCK THE ZAVAGE

particular design and the growth

The state of the property of the state of th

THE RESIDENCE OF THE PARTY OF T

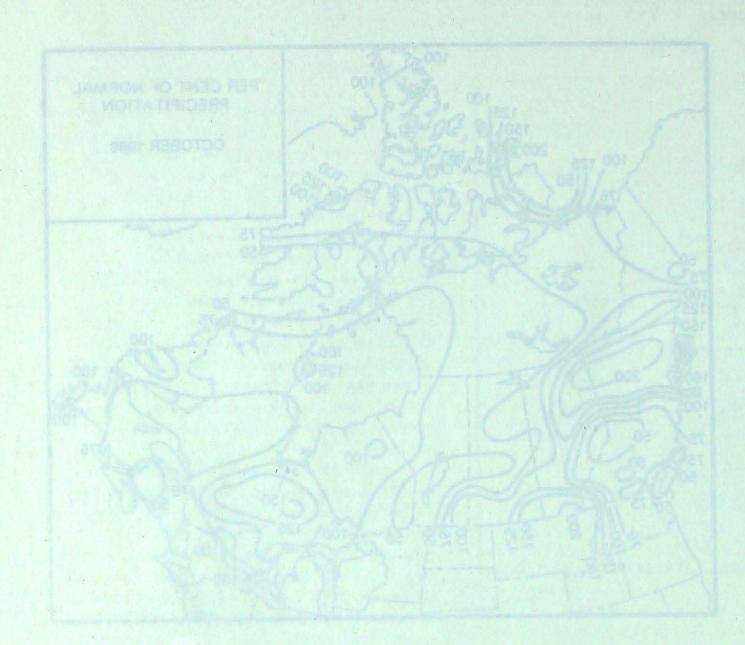

record of 19 days set in 1952. The first significant snowfall occurred north of 55°N between the 27th and 29th. Accumulations were generally in the order of 30 cm but Fort Nelson recorded 53.2 cm which was nearly three times the monthly normal.


Prairie Provinces

Despite the invasions of cold arctic air at the beginning and end of the month, the weather was generally pleasant, warm and dry. Several daily minimum temperature records were broken on the 2nd and 3rd when the mercury fell below -10°C. Indian Summer arrived in Alberta on the 10th and by the 12th affected all of the Prairies. Most areas recorded temperatures above 20°C (25.5°C at Brooks and Fort McMurray). Generally well below normal precipitation in the agricultural regions allowed the harvest to resume. Despite the fine harvest weather, the quality of grain suffered from being left in the fields during the prolonged wet spell. At the end of the month, the mercury plunged rapidly to -20°C and low daily temperature records became commonplace. Also the snowline moved southward to include southern Alberta, southern Saskatchewan and central Manitoba.

Ontario

The heavy rains which plagued Ontario since June finally eased up in October. After the wettest August-September period ever recorded, the cool, dry weather of October was a welcome relief, especially for farmers. Monthly precipitation amounts were at a below normal over most of the province except just east of Lake Superior and in the extreme south. Snowfall was generally restricted to areas north of Sudbury. The first killing frost hit southern regions on the 10th and 11th, but no new records were set even though mean temperatures were below normal. Farm fields slowly dried out permitting harvesting to resume, although land in many areas was still to wet to work on. On October 6, strong northwest winds combined with record high water levels to produce 2 metre high waves along the shores of Lake Huron and southern Georgian Bay. This caused considerable damage to lakefront


record of 19 days set in ,952 The course creat significant encertail accurred north of 55'N between the 27th and 29th Accusulations sore generally in the order of 30 cs but fort Natural concerded 53.2 cs which was nearly three tiest the monthly norms?

Prairie Provinces

Despite the inventions of cold arctic air of the cepiming and and of the centh, the cepther was generally pleasant, were and dry. Several ally pleasant, were and dry. Several daily pleasant, were and dry. Several daily pleasant, were broken on the che arcury fell below -10°C Indian the sercury fell below -10°C Indian 10ch and by the 12th effected all of the Prairies. Nost areas recorded the Prairies. Nost areas recorded the Prairies where 20°C (25.5°C of the other series and for measure are precipitation for the series recorded and for the series recorded and for the series and for measure the augint of the series the contact weather the augint of the augint of the augint of the augint of the series and the field during the precipitation and the series and series and the series and s

.

Details since June firelly eased an action of details are the method of the cool, dry vestmen of Details to the cool, dry vestmen of Details as a selecter separately for action relief especially for actions were at a selection action and the series one action as the province except just action of the court of the selection of the court of the selection of the first tilling frost tilling fros

		LIE BULL
CLIMATIC EXTREMES	IN CANADA - OCTOBER 1986	
MEAN TEMPERATURE: WARMEST	SANDSPIT, BC	12.0°C
COLDEST	EUREKA, NWT	-25.8°C
HIGHEST TEMPERATURE:	PRINCETON, BC	25.6°C
LOWEST TEMPERATURE:	EUREKA, NWT	-39.9°C
HEAVIEST PRECIPITATION:	PRINCE RUPERT, BC	674.7 mm
HEAVIEST SNOWFALL:	CAPE DYER, NWT	136.6 cm
DEEPEST SNOW ON THE GROUND ON OCTOBER 31st, 1986:	CLYDE, NWT	33.0 cm
GREATEST NUMBER OF BRIGHT SUNSHINE HOURS:	LETHBRIDGE, ALT.	208 hours

ICE CONDITIONS IN CANADIAN WATERS

Andy Radomski, CCRM

Eastern Arctic: Throughout the summer season, temperatures in the eastern Arctic have been cooler than normal. This pattern continued through the month of October, with readings averaging 5°C below normal. As a result of this trend, freeze-up is significantly more advanced, approximately 1 to 2 weeks ahead of normal. By the end of October, Lancaster Sound was totally covered by first year ice, as was most of Fox Basin. Old and second year ice had drifted into Barrow Strait and Viscount Melville Sound. The southern half of Baffin Bay was comprised of bergy water. If the cold temperature trend continues through November, pack ice, which now covers northern Baffin Bay should spread southwards to Hudson Strait shortly after the middle of month. Canada's most powerful ice breaker, the Louis St. Laurent, remains in Lancaster Sound, awaiting the scheduled arrival of the M.V. Arctic around mid-November, after which time, the 1986 Arctic shipping season will close. New ice has formed in the shallows of Frobisher Bay, which will become totally ice covered by mid-November.

Western Arctic: Freeze-up in the Beaufort was near normal, the combination of a mild summer and cooler than normal temperatures during the latter half of October. The Arctic ice pack was situated 120 km off the Tuktoyatuk Peninsula. Between the main pack and the coast, grey-white first year ice was evident. Fast ice has formed along the Tuktoyatuk Peninsula and in the shallows along the southern Arctic coastline. With temperatures expected to remain in the seasonal range, fast ice will continue to spread and thicken along the coast. The ice will consolidate in Queen Maud Gulf and Coronation Gulf by mid-November, and in Admundsen Gulf after the end of the month.

Hudson Bay: Freezing degree-day accumulations over Hudson Bay and Hudson Strait are amongst the highest on record. As a result, ice has developed rapidly this month. By month's end new ice covered the northern half of Hudson Bay, while new and grey ice was spreading southwards to James Bay along the western shoreline. If the cold weather continues Hudson Bay will be totally ice covered by the end of November. Ice has spread steadily eastwards and now covers the western two thirds of Hudson Strait.

homes, cottages and stores. In an effort to lower lake levels the outflow of water from Lake Ontario has been increased by 26%. This has caused the volume of flow in the St. Lawrence river to surpass that of the Mississippi, in October.

Québec

For the past several months the trend in Québec has been towards cooler temperatures. Almost every station reported monthly means below normal. There were several arctic outbreaks accompanied by snow and cold temperatures especially over the north. Nighttime temperatures plunged below freezing throughout the province and, in the north, below freezing temperatures persisted all day for most of the week. Kuujjuag and Gaspé had the coldest mean monthly temperatures since 1972. Even though precipitation was below normal (except for the east-central region) snow was recorded as far south as Ottawa-Hull. At Inukjuak snowcover accumulation reached 64.8 cm which was 1.5 cm greater than the previous October record set in 1933.

Atlantic Provinces

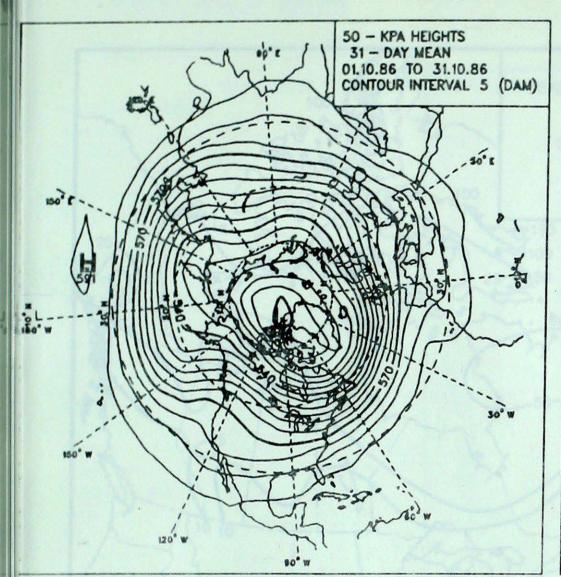
Cold weather continued in the maritimes where monthly mean temperatures were below normal for the 5th consecutive month. In most localities, it was the coldest October since 1974. Numerous weather systems passed through the Atlantic Provinces because of the strength of the upper level flow and the more easterly position of the upper level trough off the coast. These systems produced strong winds along with precipitation. On October 6, in Nova Scotia, a line of thunderstorms spawned either a tornado or a waterspout at Dublin Shore causing some damage. At Nain, Labrador on the 25th, wind gusted to 128 km/h. Precipitation amounts were generally below normal. Reservoir levels in Nova Scotia dropped 5% to leave them at 41% of their capacity. Over Labrador, cold temperatures were partly compensated for by well above normal amounts of sunshine.

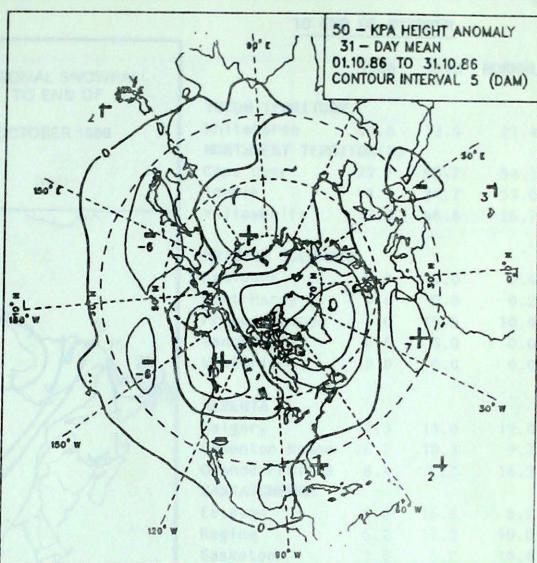
mar V, 810	HERVIEST PRICIPITATIONS
	DEERST SMIN DN THE ORGUND ON OCKNER 21ST, 1881.

CHATTAN SHATOMONES HE CHICATOL SCHOOL STATEMENT

Mestors Arctics from the Monder the Monderst was now hormal topperstured the combination of a sild Ausmon and coulor than normal topperstured for int ing the lates half of October. The Artic ice pack who situated for any the lates half the taktopatus for its was polyment that its and the the court of the ingle first year its was polyment for its half the source and in the shallows store the source of the ingle first ice will continue a special to reach in the the continue to served and this the the continue to served and this the continue to served and this continue to served and this continue to served and this continue the continue to served and this continue to served and the loss of the server.

the total transport of the state of the stat


Process outleges and stores in an effect to lower lake levels the effect to lower lake onterior that the bed the votes of flow in the cauched the votes of flow in the State Lawrence river to surpner that of the Mississips, in October


antiner terms and added of board off come and antiner off come and added of board off come added to board and added to board a

ANTHONY DESIGNATION

meritiens where sonthly mean tear the persons were below normal for the personal for the personal for the personal for the personal feet in sent deceptives. It was the cortest occurs since 1974. Augustaus whath of rydies passed through the strength of the upon through the strength of the upon theyer the and the upon the personal frough of the and the upon the special occast from one setting personal from the upon the strength of the strength

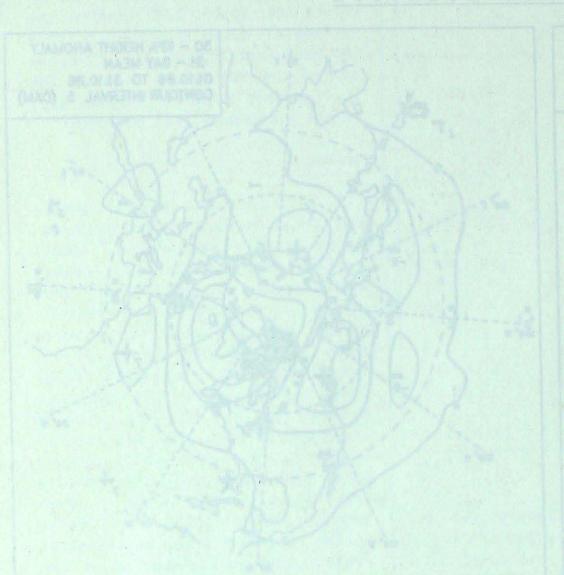
ATMOSPHERIC CIRCULATION

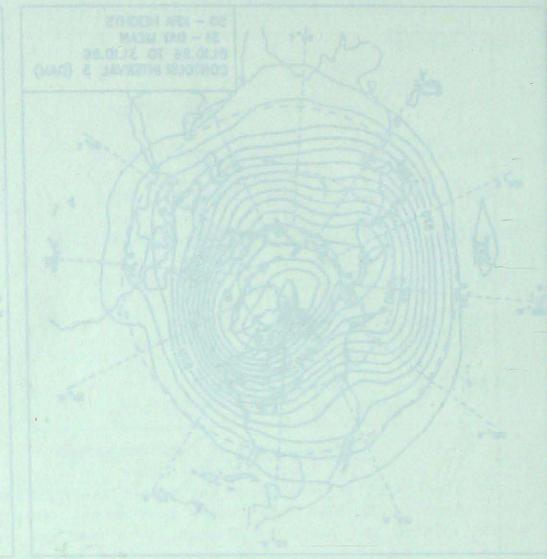
Mean 50 kPa height anomaly (dam) October 1986

Mean 50 kPa heights (dam) October 1986

MEAN 50 kPa CIRCULATION OCTOBER 1986 Alain Caillet, CCRM

The mean upper level circulation for October continued to intensify as the seasonal, northern hemispheric cooling continued. geopotential height falls The related to this cooling were most significant at high latitudes particularly over northeastern Canada. The monthly mean map shows a pronounced arctic vortex over Ellesmere Island which had shifted southward from its position last month over the north pole. There has also been a strengthening of the persistent wave features over North America; that is, the ridge over the west coast and the extensive trough over eastern Canada.


The Pacific coast ridge reestablished a more or less normal position with its axis just inland from the B.C. coast. It became a more pronounced feature than usual dominating the maritime flow stream as far south as 40°N. Despite a progressively slow displacement towards the east its position was quite stable throughout the month as indicated by the 10 dam positive height anomaly over the west.


The Canadian trough progressed eastward with its axis lying along the west coast of Greenland and extending southward into the western Atlantic. This position is 30° east of its normal position

over Labrador. Also it expanded southward to dominate the whole north Atlantic. The deepening and southward movement of the polar vortex caused an intensification of the gradient over eastern Canada and gave a more northerly component to the arctic flow stream over eastern Canada.

The surface temperature anomalies corresponded well with the upper height anomalies; that is above normal in the west and below normal in the east. Despite the flow of air off the Pacific, there was very little rain along the south coast of B.C. because of the strong anticyclonic character of the flow.

MENTAL VORLETTE CONTRACTOR

Mean SU selected annual selected (such Distriction 1986

CONTRACTOR OF STATE O

MONTH HOMEO THEM DETOROGIE THEM

The man was loved on the second of the second on the second on the second on the second of the secon

The policy of the control of the con

control of deposit of burners and control of the co

paragraphs in sala coordal revolution of the design of the

and prognous ero tos additions

Ally for opensocents and sent seons

Jest tost feeds from the sent sent eros

End tost and the least owens of

End tost and for the sent owens of

End to be a sent of the sent owens of

End to be a sent or the sent owens of

End to be a sent or the sent owens of

End to be a sent or the sent owens of

End to be a sent or the sent owens of

End to be a sent or the sent owens of

End to be a sent or the sent owens of

End to be a sent or the sent of

End to be a sent or the sent of

End to be a sent or the sent of

End to be a sent or the sent of

End to be a sent or the sent of

End to be a sent or the sent of

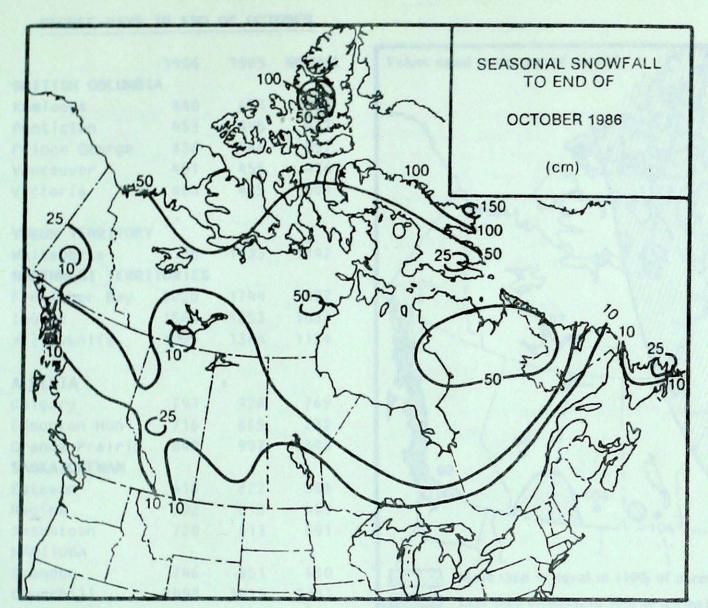
End to be a sent or the sent of

End to be a sent or the sent of

End to be a sent or the sent of

End to be a sent or the sent of

End to be a sent or the sent of


End to be a sent or the sent of

End to be a sent or the sent of

End to be a sent or the sent or the sent of

End to be a sent or the sent

SNOWFALL

WATER EQUIVALENT OF SNOW COVER OCTOBER 1986 25 25 50 (mm) 10 25 25 25 25 10 10 10 25 10

SEASONAL SMOWFALL TOTALS (CM)

TO END OF OCTOBER

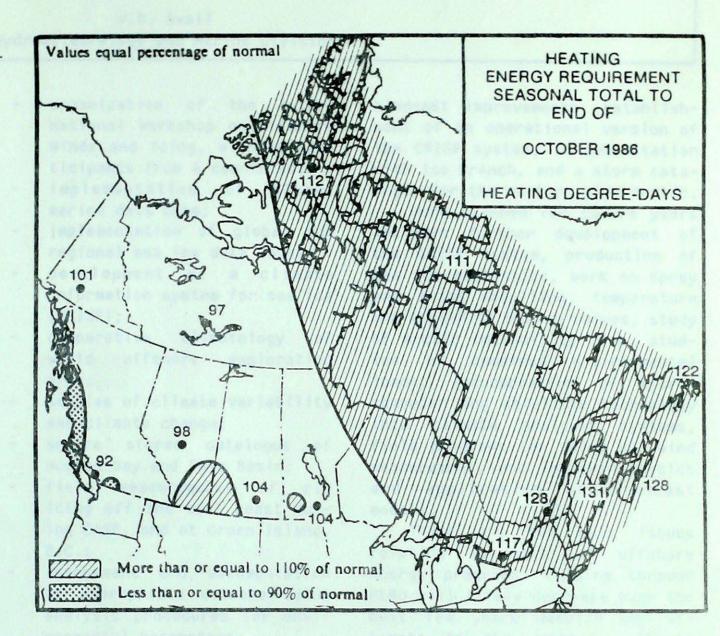
	1986	1985	NORMAL
YUKON TERRITO	DV .		
Whitehorse	30.8	33.6	21.4
MORTHWEST TERM		33.0	21.4
Cape Dyer	22.7	45.2	54.3
Inuvik	41.0	24.7	53.0
Yellowknife	11.8	46.8	26.7
BRITISH COLUME	BIA		
Kamloops	0.0	0.0	0.4
Port Hardy	0.0	0.0	0.2
Prince George	0.0	15.5	10.4
Vancouver	0.0	0.0	0.0
Victoria	0.0	0.0	0.0
ALBERTA			
Calgary	12.3	13.0	19.4
Edmonton Namao		10.3	9.7
Grande Prairie		7.7	16.3
SASKATCHEWAN	0.4	1.1	10.3
Estevan	0.8	16.8	8.2
Regina	5.2	17.2	10.0
Saskatoon	3.0	6.2	10.4
MANITOBA		V.2	
Brandon	0.5	29.3	6.77
Churchill Churchill	40.2	36.1	35.7
The Pas	5.2	23.9	11.7
Winnipeg	0.0	14.2	5.4
ONTARIO			
Kapuskasing.	37.4	12.2	23.5
London	0.0	0.0	1.9
Ottawa	0.2	0.0	2.7
Sudbury	1.6	0.0	6.5
Thunder Bay	10.0	11.6	3.3
Toronto	0.0	0.0	0.9
Windsor QUEBEC	0.0	0.0	0.1
Baie Comeau	3.0	0.0	6.1
Montréal	0.0	0.0	1.7
Quebec	0.0	0.0	4.4
Sept-Iles	1.0	15.9	10.6
Sherbrooke	0.0	0.0	5.6
Val-d'Or	9.0	4.4	15.7
NEW BRUNSWICK			
Charlo	1.0	0.2	5.8
Fredericton	0.0	0.0	2.3
Moncton	0.0	0.0	3.1
NOVA SCOTIA			
Shearwater	0.0	0.0	1.7
Sydney	0.0	7.2	2.6
Yarmouth	0.0	0.0	1.9
	ISLAND	0.0	2 ()
Charlottetown	1.0	8.8	2.6
Gander	25 0	28.0	12.3
St. John's	25.8	11.0	4.4
ot. Julii 5	2.2	11.0	

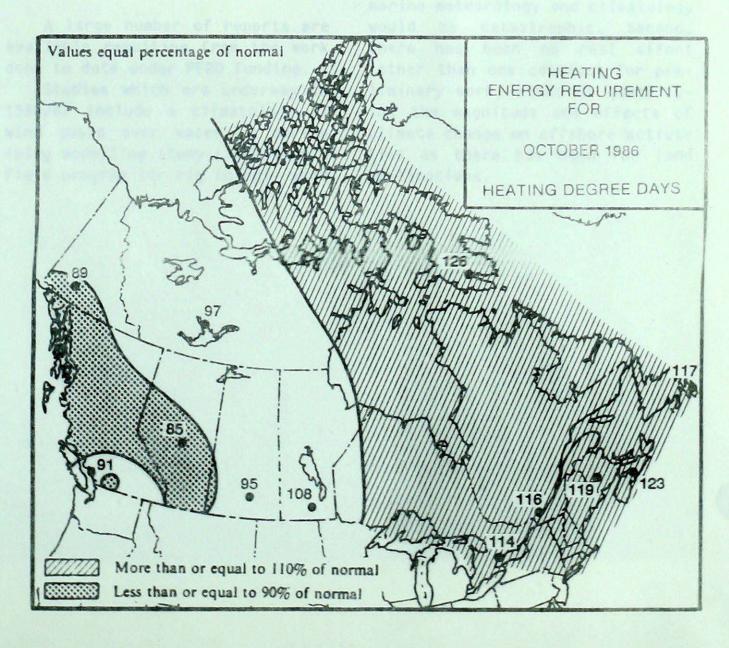
SENT PLATOF LATERIE LAWDEASE

AND THE SECOND

Na a		
		Prince Storge.
		Market Shaket
1)=0)		
		nebeshir. Dilantato

1			
		7 14 9 *	




SEASONAL TOTAL OF HEATING

DEGREE-DAYS TO END OF OCTOBER

DEGLE WILL			
	1986	1985	NORMAL
BRITISH COLUMB		.,,,,	
Kamloops	440	473	436
Penticton	453	495	427
	836	966	897
Prince George			
Vancouver	401	455	436
Victoria	484	485	501
	AND THE		
YUKON TERRITORY		A COLOR	Tropic .
Whitehorse	1150	1333	1142
MORTHWEST TERR			
Frobisher Bay	2020	1744	1827
Inuvik	1565	1853	1637
Yellowknife	1095	1384	1124
ALBERTA			
Calgary	793	928	769
Edmonton Mun	716	869	732
Grande Prairie	840	997	843
SASKATCHEWAN			
Estevan	616	722	588
Regina	692	812	669
Saskatoon	720	813	691
MANITOBA			
Brandon	746	851	650
Churchill	1498	1415	1351
The Pas	827	934	790
Winnipeg	614	714	590
ONTARIO			
Kapuskasing	978	745	821
London	405	346	383
Ottawa	520	401	451
Sudbury	697	566	614
Thunder Bay	768	712	700
Toronto	445	367	381
Windsor	265	250	282
QUEBEC			
Baie Comeau	1015	801	872
Montréal	512	383	401
Quebec	685	502	554
Sept-Des	1035	852	926
Sherbrooke	702	561	664
Val-d'or	945	409	795
	,43	103	173
NEW BRUNSWICK			
Charlo	848	621	615
Fredericton	684	512	524
Moncton	700	510	
NOVA SCOTIA	700	310	535
Halifax	551	027	1121
Sydney	551	427	431
Yarmouth	699	506	502
	600	502	505
	SLAND	0.70	0.05
Charlottetown	656	474	495
NEWFOUNDLAND	001	700	700
Gander St. John's	901	782	728
St. John's	894	755	731

ENERGY REQUIREMENTS

	Spread Control
	ACTION ST
	Carron Salini.

OFFSHORE ENERGY

V.R. Swail Hydrometeorology and Marine Division

The Canadian Climate Centre continues to be involved in supporting the federal Panel on Energy Research and Development (PERD).

The objectives of the PERD projects are (1) to develop new methodologies to infer climate design parameters such as marine winds, icing and design storms, and (2) to develop climate information systems and data bases required for decision making. This information will be of use to design engineers and operational planners, as well as government regulatory agencies.

The bulk of the work is contracted out to consultants in private industry, both in the meteorological fields and computer systems. Contracts were awarded to 10 different companies in 1985/86. A considerable amount of work is also done in the Climate Centre, including work on the east and west coast marine atlases, organization of the International Workshop on Offshore Winds and Icing, and in the development of hindcast procedures. The programs are coordinated both within Atmospheric Environment Service, and other government departments.

Major achievements in marine meteorology have been made in the past year. A partial list is given below.

- organization of the International Workshop on Offshore Winds and Icing, with 70 participants from 6 countries;
- implementation of global marine data base;
- implementation of global and regional sea ice data bases;
- development of a climate information system for sea ice (CRISP);
- comparative climatology of world offshore exploration area;
- studies of climate variability and climate change;
- severe storms catalogue of Hudson Bay and Foxe Basin;
- field measurements of rig icing off the east coast during CASP, and at Green Island, B.C.;
- assessment and documentation of appropriate extreme value analysis procedures for environmental parameters;
- east and west coast coast marine environmental atlases.

A large number of reports are available resulting from the work done to date under PERD funding.

Studies which are underway in 1986/87 include a climatology of wind gusts over water, a marine icing modelling study (including a field program for rig icing), wind

hindcast improvements, establishment of an operational version of the CRISP system, in consultation with Ice Branch, and a storm catalogue for the western high Arctic.

Work planned for future years includes further development of the CRISP system, production of sea ice statistics, work on spray and icing modelling, temperature and windchill design values, study of Arctic instability lows, studies of combined environmental loads, incorporation of microcomputer and satellite technology into climate analysis systems, field programs for icing and wind measurement, and improved physics and application of hindcast models.

There are two main issues relating to work on offshore energy programs. Funding through PERD will likely decrease over the next few years despite our attempts to the contrary. Should this funding be terminated, the impacts on the development of marine meteorology and climatology would be catastrophic. Second, there has been no real effort (other than one contract for preliminary work) aimed at quantifying the magnitude and effects of climate change on offshore activities as there has been for land applications.

NATIONAL PROPERTY.

V.R. Seetle Bearsacteorology and Warter Division

The Canadian Climata Centra
continues to be involved in supporting the laders! Panel on
thereo. Research and Savelopmans
lessos

The objectives of the PERD prejects are (1) to develop new established to infer citatio design percent design percent winds. Icing and design atores, and (2) to develop citation atores and data bases and that cases to remain engineers and operational oration angineers and operational planners, as well as government.

The bure of the esta 45 concracted out to consultants, an
griture races or, beth in to
corplate recession in the and computer
syctues. Confrects were awarded to
fit different compacies in 1920/36.

If considerable means or were
case done in the case of the
case to the consultant of the
and to the later of the
case of the the
case of the
case

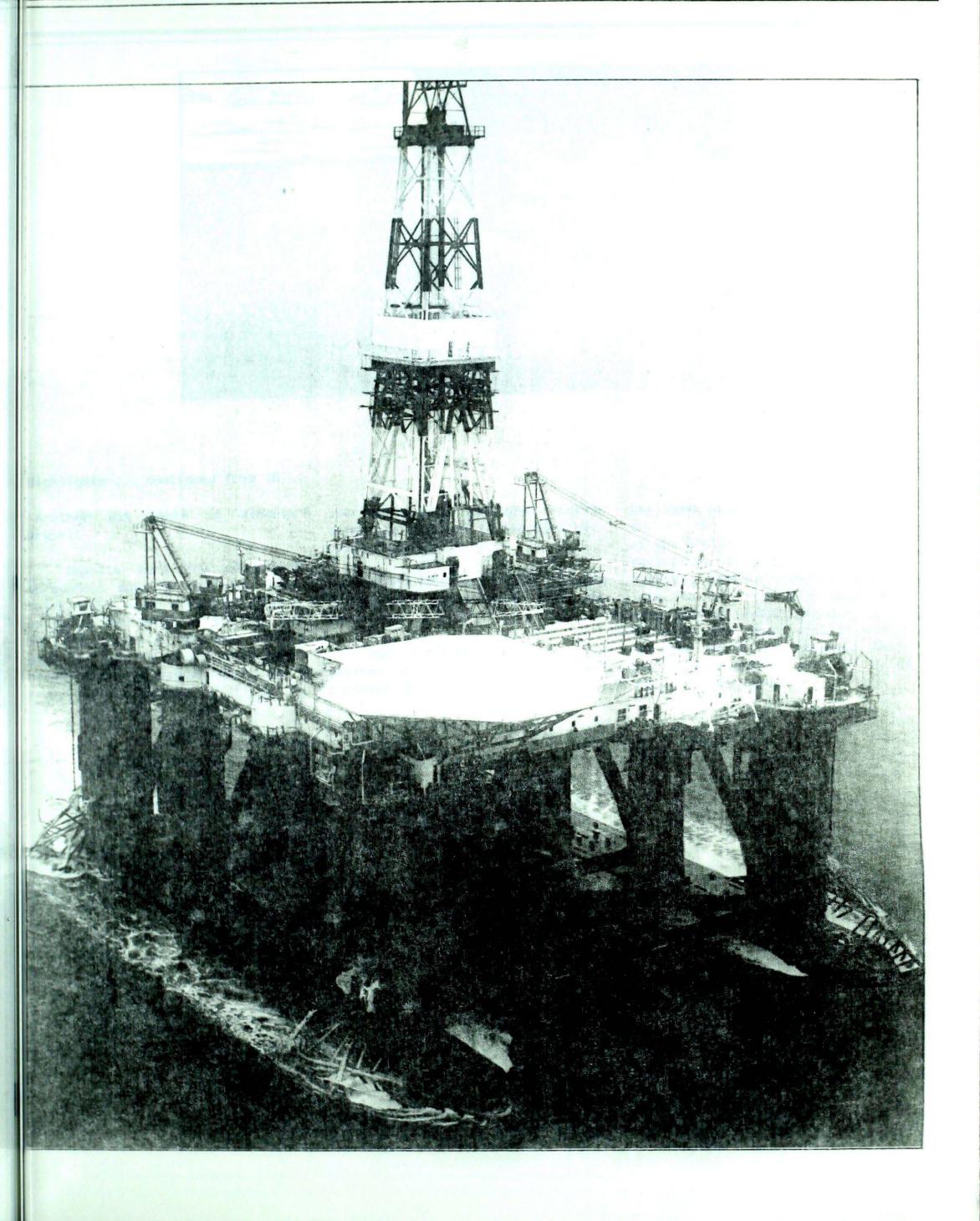
ent was at admesseed a sent the last sent the properties and avery the properties and a service at the properties and the properties are the properties are the properties are the properties and the properties are the prope

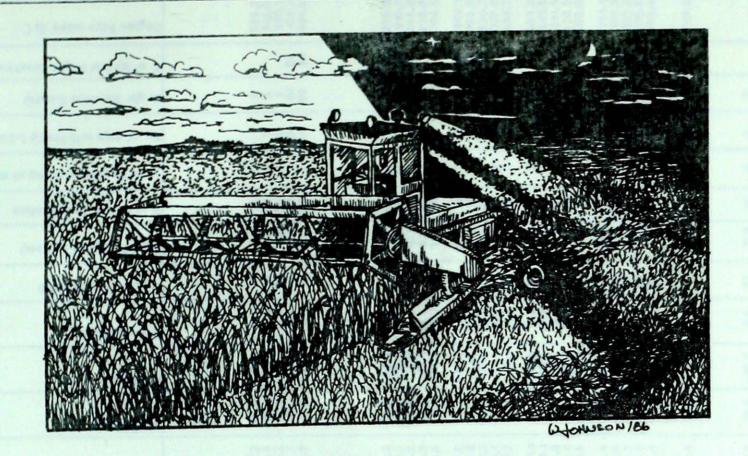
organization of the intereations and leing, with 70 purtreds and leing, with 70 purticipants from 6 communications and avoidal

regional con to deta bones; regional con deta bones; development of a offesto information system for see incompanies;

temperative citempas of

scudies on cilmate variability


to supplied a stora ether of the control of the con


and account to made on epiet and only and property and another another and another ano

the second of th

bindings improveding established of men operational descriptions of the state of th

The country of anner secure secure includes for the secure of a se

Highlights ... continued from 1B

Another Wet Month in Alberta's Drybelt

Despite warm dry conditions throughout most of October, heavy rains fell over southern Alberta early in the month of the 1st and 2nd and again on the last day to push the monthly totals well above normal for the second month in a row. These rains were beneficial in

increasing soil moisture reserves which are critical to the agricultural industry.

Cold Spell Continues over Eastern Canada and Intensifies over the Northeast

One naturally expects cold weather over Baffin Island and northern Québec in October but it has been abnormally cold this year due to the position and intensity of the Arctic vortex which has been dominating the upper level flow over the region. Frobisher Bay was into its 6th consecutive week with below normal temperatures. Elsewhere in the east, most of Québec and the Maritimes recorded their 5th consecutive month with below normal temperatures.

Another Me Month in Alberta's

Chair 1920 Chr. Manis of Manis Chair and Chair

normation and moisture reserves are normal and collections are served.

Cold Spull Continues over Excloration absent

Dies Daniel al Blad new redisoli Dies Daniel al Blad new redisoli Dies Daniel al Blad new redisoli

The book to the position and intensity
of the arctic vertor which has been
deergeling the under year to
ower the region from the web to
into its to the region from the web with
into its to the region from the web with
end its to the eaglest we web with
where its the east to each of Autor
where its the east to each of Autor
and the meanings were mounted their
and the meanings were mounted their
and the meanings were mounted their

. .

		1 78											остов	R 1986		er italie											
	Tem	peratur	e C						(cm)	more					Tem	peratur	C						(cm)	тоге			
STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	7. of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (e	No. of days with Pracip 1.0 mm or n	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	Z of Normal Snowfall	Total Precipitation (mm)	X of Normal Precipitation	Snow on ground at end of month (e	No. of days with Precip 1.0 mm or m	Bright Sunshine (hours)	X of Normal Bright Sunshine	Degree Days below 18 C
BRITISH COLUMBIA								THE WEST					30 3 1 30 3 1	YUKON TERRITORY		22		22.0									
ABBOTSFORD ALERT BAY AMPHITRITE POINT BLUE RIVER BULL HARBOUR	11.2 11.4 11.6 5.9 10.4	1.1 2.1 1.0 0.4 1.0	21.3 18.3 16.9 18.5 19.7	0.3 3.2 6.3 -6.2 1.4	0.0 0.0 0.0 0.0 0.0		102.5 198.8 161.4 39.1 137.9	66 94 44 48 51	0 0 0	5 13 8 6 16	156 X X 114 X	114	213.2 204.2 196.2 219.3	BURWASH DAWSON MAYO WATSON LAKE WHITEHORSE	-1.0 -4.8 -1.1 2.6 2.5	2.2 0.6 1.2 2.7 1.9	13.9 13.0 14.6 16.4 14.5	-22.6 -29.4 -21.1 -21.3 -18.0	1.0 6.2 3.0 0.2 1.0	6 25 14 0 6	2.6 16.2 19.4 50.3 29.9	14 58 68 143 139	9	5 8 12 10	X 81 88	84 94	586.2 676.0 590.1 478.1 481.4
CAPE SCOTT CAPE ST.JAMES CASTLEGAR COMOX CRANBROOK	11.7 0.8 10.4 6.2	1.8 0.7 1.2 0.3	15.7 15.4 21.3 19.0 19.1	8.2 -1.3 2.0 -4.9	0.0 0.0 0.0 0.0		194.0 189.8 25.8 27.0 28.6		00000	16 22 5 5 6	156 X 207	124	195.8 284.2 235.1 373.1	NORTHWEST TERRITORIES ALERT BAKER LAKE CAMBRIDGE BAY	-21.7 -11.4 -15.7	-2.0 -3.7 -4.0	-13.2 2.6 0.4	-33.6 -28.8 -29.9	30.4 39.8 11.6	194 171 75	16.1 30.9 10.6	100	25 16 10	5 10 4	12 65 64	141 89 109	1230.8 910.7 1044.8
DEASE LAKE ETHELDA BAY FORT NELSON FORT ST.JOHN HOPE KAMLDOPS	2.8 10.9 1.0 6.3 11.8 8.5	1.5 2.1 -0.1 2.0 1.4	16.3 17.3 19.5 21.9 20.9	-19.5 1.3 -24.3 -18.6 2.1	18.5 0.0 53.2 15.6 0.0	105 281 86	410.7 68.2 29.4 121.8	239 101 280 102 70	12 0 24 15 0	14 21 11 7 5	59 X 92 X 135	67 # 129 120	470.3 210.2 528.6 364.1 192.0	CAPE DYER CAPE PARRY CLYDE COPPERMINE CORAL HARBOUR EUREKA	-12.2 -7.3 -13.9 -7.4 -13.0 -25.8	-4.5 -0.5 -7.0 -0.8 -5.2 -3.7	-2.5 3.0 -1.1 5.3 0.5 -17.0	-27.9 -20.0 -28.7 -21.5 -27.4 -39.9	136.6 34.2 57.2 37.6 19.8 6.4	137 126 153 179 74 85	87.1 31.3 44.4 27.0 19.8 6.2	86 155 129 116 53 88	26 17 33 14 7 13	127 1212 6 2	X 66 46 150	138 99 173	936.8 784.5 989.1 786.8 930.7 1377.0
KELOWNA LANGARA LYTTON MACKENZIE MCINNES ISLAND	7.8 11.0 10.3 4.6	0.9 2.0 0.2 1.0	21.6 16.0 22.5 16.9	-2.8 6.1 0.3 -18.0	0.0 0.0 0.0 13.4	76	19.2 418.0 28.1 66.0	101 157 75 111 84	0 0 0 8	5 26 2 8 18	166 X 154 110 X	110 113 94	317.4 216.9 237.6 415.2 213.6	FORT RELIANCE FORT SIMPSON FORT SMITH FRODISHER BAY HALL BEACH	-1.6 -0.8 0.4 -10.8 -15.5	0.2 1.1 0.1 -5.8 -5.0	20.2 18.7 1.0 -0.4	-17.1 -19.5 -18.5 -23.4 -30.5	18.9 12.2 13.8 17.0 12.1	93 65 85 42 56	17.7 17.4 15.2 14.6 9.6	63 72 57 33 45	3 5 7 5 9	5 5 4 3	85 100 X	99	606.7 583.0 545.9 891.9 1038.5
PENTICTON PORT ALBERNI PORT HARDY PRINCE GEORGE PRINCE RUPERT PRINCETON	8.5 11.4 10.6 6.7 10.8 7.4	-0.2 1.9 1.9 2.9 0.8	22.1 22.0 18.5 18.9 16.1 25.6	-2.3 -2.6 1.1 -12.5 -0.2 -5.2	0.0 0.0 0.0 0.0		13.2 68.0 109.9 26.0 574.7	86 44 43 184 40	0 0 0	3 7 11 8 27 3	189 120 112 145 66 208	120 * 114 132 101 *	293.5 205.1 231.7 352.0 220.7	HAY RIVER INUVIK MOULD BAY NORMAN WELLS POND INLET RESOLUTE	1.5 -7.7 -20.2 -4.1 -18.0 -20.7	0.6 0.4 -2.5 0.5 -6.0 -5.6	3.7 -8.2 9.2 -2.4 -11.1	-16.8 -23.7 -37.9 -19.7 -29.7 -37.3	9.0 23.6 27.8 22.2 13.4 16.3	63 253 88 40 110	21.7 22.2 21.8 21.1 9.6 12.6	71 66 232 78 37 91	7 28 8 10	9 8 9 4 5 3	2 64 X 24	18 108	796.1 1182.9 682.2 1115.4 1198.4
QUESNEL REVELSTOKE SANDSPIT SMITHERS	7.0 8.3 12.0	1.3 1.4 3.0	22.3 17.1 20.6 18.5	-9.4 -0.9 3.7 -3.4	1.2 0.0 0.0	19	26.3 36.4 181.1 56.7	54 43 93 89	0 0 0	6 4 21	X 84 75 84	93 82 92	340.9 339.8 185.7 325.9	YELLOWKNIFE ALBERTA	-1.0	0.6	10.8	-18.1	11.0	47	24.2	70	1	5	77	137	587.0
TERRACE VANCOUVER HARBOUR VANCOUVER INT'L VICTORIA GONZ. HTS VICTORIA INT'L	9.6 11.6 10.8 11.5	3.2 0.9 0.8 0.7	15.0 17.1 19.5 18.7	0.6 5.7 2.3 5.4	0.4 0.0 0.0 0.0	10	163.2 53.7 49.2 35.9	75 33 43 56	0 0 0	13 22 5 5 3	67 X 136 136	107 112 93	260.0 199.4 223.8 202.4	BANFF BROOKS CALGARY INT'L COLD LAKE	6.9 7.5 7.8 5.4	2.5 1.2 2.3 0.9	19.0 24.5 23.0 23.2	-10.0 -7.5 -11.7 -10.5	9.4 9.5 4.2 9.3	52 139 31 132	17.6 25.3 10.6 12.3	56 147 60 72	4 0 4 7	4 3 3	X 189 206 166	117 107	315.2 391.2
VICTORIA MARINE WILLIAMS LAKE	10.1 7.7	0.2	20.1	3.0	0.0	61	57.1 19.4	43 64	0	6 4	X 186	137	244.2 318.1	CORONATION EDMONTON INT'L EDMONTON MUNI. EDMONTON NAMAO EDSON FORT CHIPEWYAN	6.3 6.6 7.3 6.9 6.2 1.5	1.5 1.9 1.5 1.8 3.1 0.5	22.0 22.2 22.2 22.3 23.5 18.5	-9.5 -9.0 -9.1 -15.4 -17.0	0.4 4.0 3.6 6.0 5.4 11.8	59 48 77 31 65	14.8 20.8 20.9 19.3 12.0 18.0	98 135 125 106 41	1 8	4 5 5 5 4	195	109 108 114 110	367.7 353.2 331.2 346.3 297.4

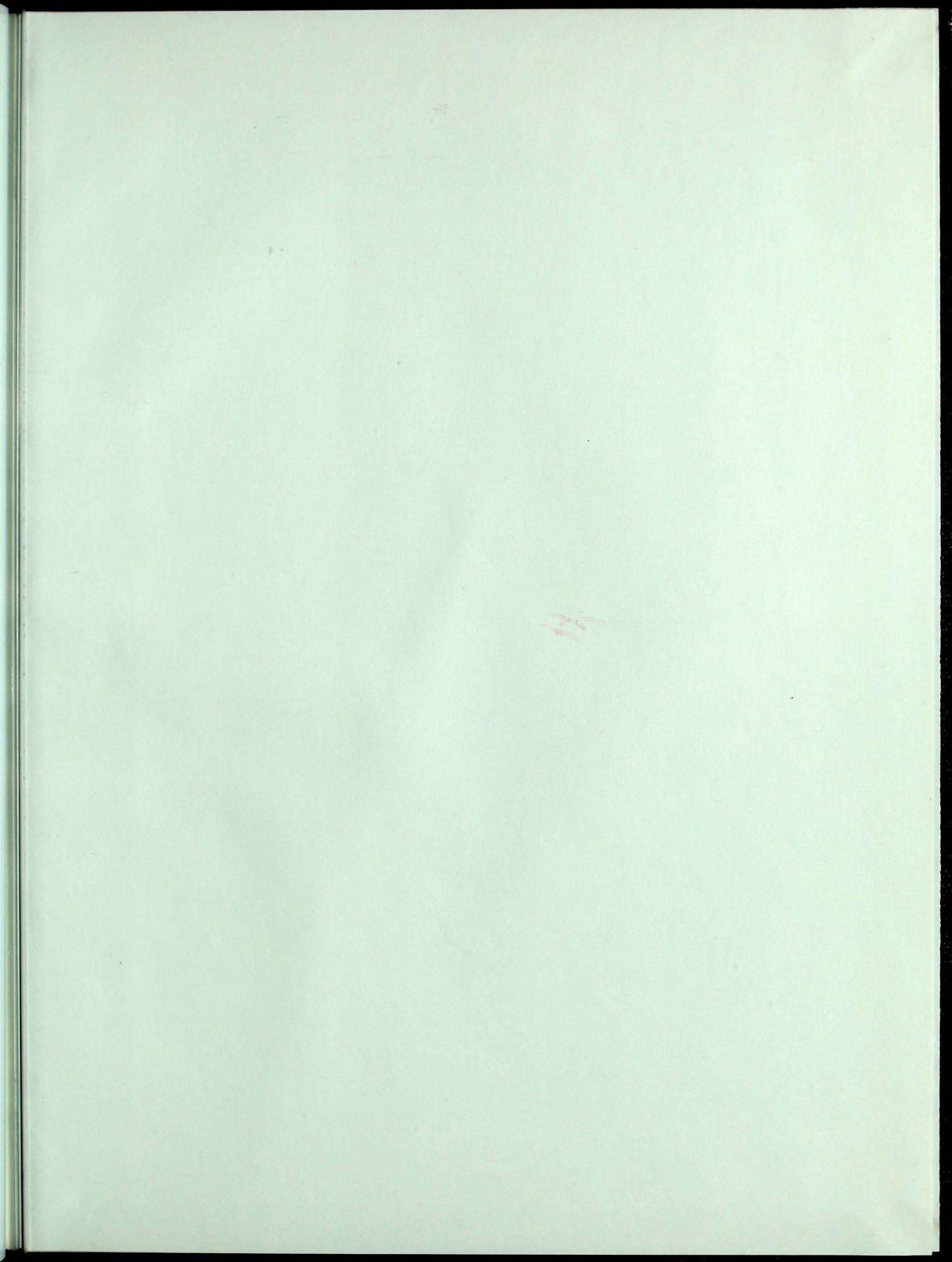
						Degree Days whose to \$	
				•			
	,						

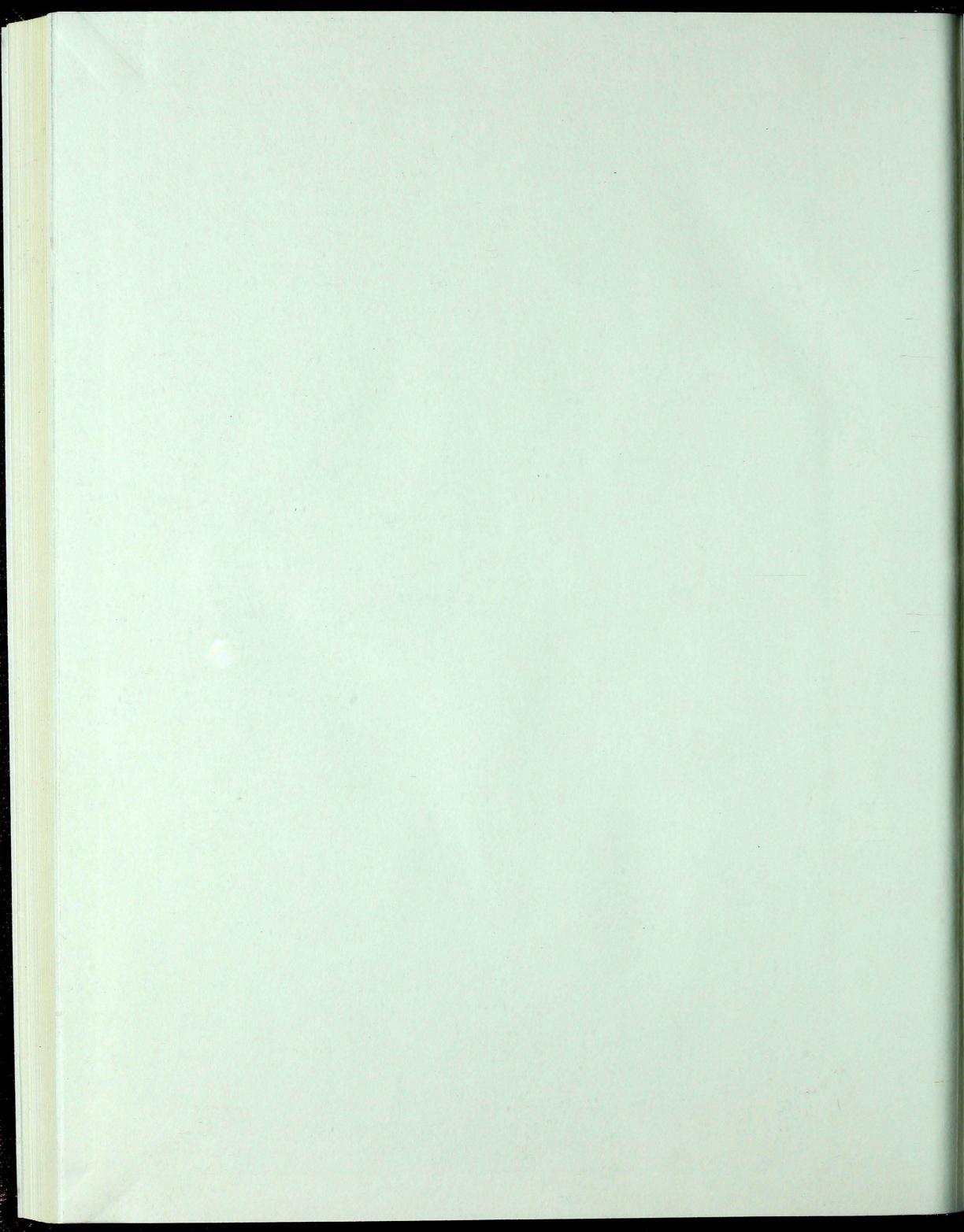
	-	DIES.	
į.	0.00		All I
		-14	
9	多生	100	
		FA	6
		300	
			3
-			
18		B a	
	-	-	
2	530		
8	250		
1	1		
		ю.	
	1		
		-	
	Sections	50	
	100		8
	F1 (5)		鵩
			4
	- 40	-	
		9 8	Æ
	-		-83
	1		8
			20
	1		
	1		e i
		-	墨
	8 6	39	噩
	1		
			48
	2 4		삪
	E 8	-	麗
		4	
	-5 30		
	F 44	E 1	
		The state	100
	100	District Co.	100

	,												OCTOBE	R 1986									-				
	Tem	peratur	e C						(cm)	more					Tem	peratur	e C						(cm)	nore			
STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (No. of days with Precip 1.0 mm or 1	Bright Sunshine (hours)	% of Normal Bright Sunstine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	X of Normal Snowfall	Total Precipitation (mm)	Z of Normal Precipitation	Snow on ground at end of month (e	No. of days with Precip 1.0 mm or m	Bright Sunshine (hours)	7. of Normal Bright Sunshine	Degree Days below 18 C
FORT MCMURRAY GRANDE PRAIRIE HIGH LEVEL JASPER LETHBRIDGE	3.8 3.8 1.0 6.9 8.6	0.5 1.6 -0.3 2.2 1.1	24.5 23.1 19.8 20.5 24.4	-14.0 -19.0 -23.4 -11.4 -13.0	12.2 6.4 17.0 20.6	98 54 111 176	27.6 12.7 34.4 10.2 37.8	98 47 234 34 212	3 3 10 0 3	5 5 5 4 8	137 140 119 161 208	110 # 83 # 118	441.1 379.7 526.7 343.7 294.0	THE PAS THOMPSON WINNIPEG INT'L ONTARIO	5.7 -0.1 5.4	2.1 -0.3 -0.7	23.5 18.8 23.4	-10.5 -15.4 -8.5	5.2 30.7 TR	50	10.1 35.1 11.6	30 72 37	5 10 0	3 9 4	113 189	143 124	375.1 559.1 390.9
MEDICINE HAT PEACE RIVER RED DEER ROCKY MTN HOUSE SLAVE LAKE SUFFIELD	8.7 4.5 6.4 6.3 4.7	1.3 0.8 1.8 1.4 0.6	24.2 22.9 24.2 23.8 20.1	-12.1 -21.0 -10.2 -11.7 -11.2	8.8 25.9 0.6 1.0 17.4 9.3	110 269 5 6 110	25.1 32.4 21.5 12.4 33.6	154 162 104 54 132	9 5	4 8 5 3 6	205 X X X 164	110	289.2 417.3 356.9 363.1 412.7	ATIKOKAN BIG TROUT LAKE EARLTON GERALDTON GORE BAY	3.4 0.9 4.3 2.3 7.5	-1.6 -0.9 -1.1 -1.6	19.6 14.8 17.8 15.1	-12.6 -11.7 -7.2 -12.2	7.4 27.6 0.6 9.4	61 * 8 87	48.1 60.6 96.1 74.6	77 108 137 115	0 3 0 0	8 12 11 10	93 99 X X	82	451.7 529.3 424.9 485.9
WHITECOURT SASKATCHEWAN	6.4	3.0	22.8	-12.0	6.1	39	44.3	160	2	7	X		361.0	HAMILTON RBG HAMILTON KAPUSKASING KENGRA	10.7 9.4 2.5 5.0	-0.8 0.0 -1.9 -0.6	21.0 20.0 16.5 18.4	-2.8 -1.9 -0.7 -10.0 -7.7	0.0 0.0 0.0 32.8 1.4	155 18	75.0 59.6 73.8 90.6 18.0	110 120 117 44	0 0 0 0	12 10 11 14 6	154 X X X		266.3 583.3 403.2
BROADVIEW COLLINS BAY CREE LAKE ESTEVAN HUDSON BAY	5.9 -1.0 1.5 6.7 4.7	1.3 -0.1 -0.1 0.3 0.8	23.2 15.4 18.7 23.9 22.0	-9.8 -18.1 -14.2 -7.6 -11.0	9.0 35.5 16.6 0.8 9.4	105 120 112 11 93	26.2 42.9 38.5 20.4 14.0	118 113 127 92 52	11 4 0 8	6 9 4 3 3	195 100 118 183 163	122 * 121 97 *	375.8 235.5 511.4 348.4 410.7	LANSDOWNE HOUSE LONDON MOOSONEE	1.6 9.4 2.0	-0.7 -1.2 0.0 -2.1	15.8 19.8 14.4	-4.0 -11.8 -1.2 -11.0	0.0 13.2 26.8	42 184	81.8 48.4 82.7 80.1	106 74 112 107	0 0	12 10 12 12	145 X 121 61	95 85 69	289.6 508.5 267.3 495.6
KINDERSLEY LA RONGE MEADOW LAKE MODSE JAW NIPAWIN	6.7 3.3 4.4 7.3 4.4	1.4 -0.2 -0.2 0.9	22.7 22.2 23.4 23.0 22.3	-10.6 -12.3 -14.9 -9.6 -11.1	0.4 12.4 2.0 6.7 6.9	5 126 22 88 *	16.0 33.2 7.2 17.1 15.5	115 111 40 93	4 0 3	5 5 4 5 6	X 175 200 157	2 115 2	322.5 458.7 420.8 333.1 420.2	MUSKOKA NORTH BAY OTTAWA INT'L PETAWAWA	5.6 5.0 7.7 5.7	-0.9 -1.4 -0.4 -1.4	20.4 18.1 19.5 11.7	-6.7 -6.2 -5.6 -0.4	0.2	7	103.5 86.5 78.0 49.6	110 98 114 74	0 0 0 0	11 12 13 9	X 132 142 X	111	344.7 403.4 319.9 382.5
NORTH BATTLEFORD PRINCE ALBERT REGINA SASKATOON SWIFT CURRENT	5.7 4.7 5.9 5.9 7.3	0.8 1.0 0.7 1.0 1.5	23.5 23.2 23.2 22.6 22.8	-10.5 -9.2 -10.9 -10.0 -13.1	5.2 0.2 5.2 3.0 4.5	73 2 63 32 49	19.1 3.0 11.8 6.8 27.5	64 13 62 39 151	TR 2	3 2 4 3 6	151 201 X 186	103 f19	315.1 412.0 374.1 375.2 330.1	PETERBOROUGH PICKLE LAKE RED LAKE ST. CATHARINES SARNIA	7.8 2.2 3.2 10.4 10.0	-0.1 -0.5 -1.3 -0.5 -0.5	19.0 20.4 19.5	-5.3 -10.6 -10.9 -1.5 -0.3	0.0 8.8 0.2 0.0 0.0	1	45.8 39.4 22.5 51.8 69.4	76 62 44 78 115	0 0 0	11 10 6 13 13	130 X 133	4	316.9 489.2 459.9 235.3 248.1
WYNYARD YORKTON MANITOBA	5.5 5.3	0.7	22.9 23.5	-11.1 -11.3	9.6 6.8	84 90	13.9	56 51	7 6	2 3	X 153 193	102	387.5 459.2	SAULT STE. MARIE SIMCOE SIOUX LOOKOUT SUDBURY THUNDER BAY TIMMINS TORONTO	5.2 4.3 3.3 10.6	-1.0 -0.3 -1.1 -1.4 -1.5 -0.4	19.5 21.0 18.2 21.5 18.8 20.5	-5.3 -2.0 -7.0 -10.7 -9.7 0.5	1.6 10.0 8.0 0.0	25 303 63	76.5 28.4 104.0 56.2	115 116 102 51 151 92	0 0 0	15 12 10 8 15	124 X 121 134 X	99	353.6 253.6 397.5 424.9 459.1 230.4
BRANDON CHURCHILL DAUPHIN GILLAM GIMLI	4.9 -2.2 6.2 -1.0 4.8	-0.3 -0.7 0.7 -0.6 -0.8	22.3 9.7 24.8 13.1 22.6	-9.7 -15.1 -10.7 -16.9 -9.3	0.5 37.8 3.6 31.9	7 129 43 151	23.2 41.7 21.1 24.9 12.8	107 96 73 76 33	0 5 2 9	5 10 6 4 3	X 61 165 X 165	98 107	403.9 625.6 350.6 588.2 409.5	TORONTO INT'L TORONTO ISLAND TRENTON WATERLOO-WELL WAWA	8.7 10.3 8.6 8.2 4.0	-0.4 -0.6 0.2 -0.6 -0.6	20.4 20.5 20.5 19.3 16.1	-4.5 1.9 -4.2 -4.5 -8.5	0.0	*	59.6 55.7 59.3 67.0 152.0	96 98 84 102 *	0 0 0 0	9 11 11 11	XXX	*	287.9 239.0 291.4 304.2 432.7
ISLAND LAKE LYNN LAKE NORWAY HOUSE	2.4 -0.2 2.3	-0.8 -0.2	17.9 19.9 15.1	-11.0 -15.5 -11.4	14.8 23.0 21.6	90 82 *	44.2 30.3 52.2	101	8 11 16	8 10 7	X 81 8	113	484.3 565.4 487.4	WIARTON WINDSOR	8.2 11.4	-0.8 0.3	18.8 23.2	-4.2 1.5			93.1 75.4	113 132	0	12	143 X	107	303.2 207.0
PORTAGE LA PRAIRIE	6.3	-0.2	24.0	-6.7	7.1	112	14.7	47	0	6	X		363.7														

0

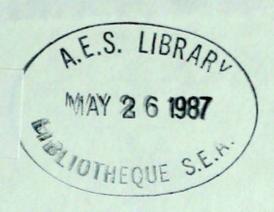
					petrus este tapal agai	
						*
					(crosses beraves care)	
						N THE PERSON

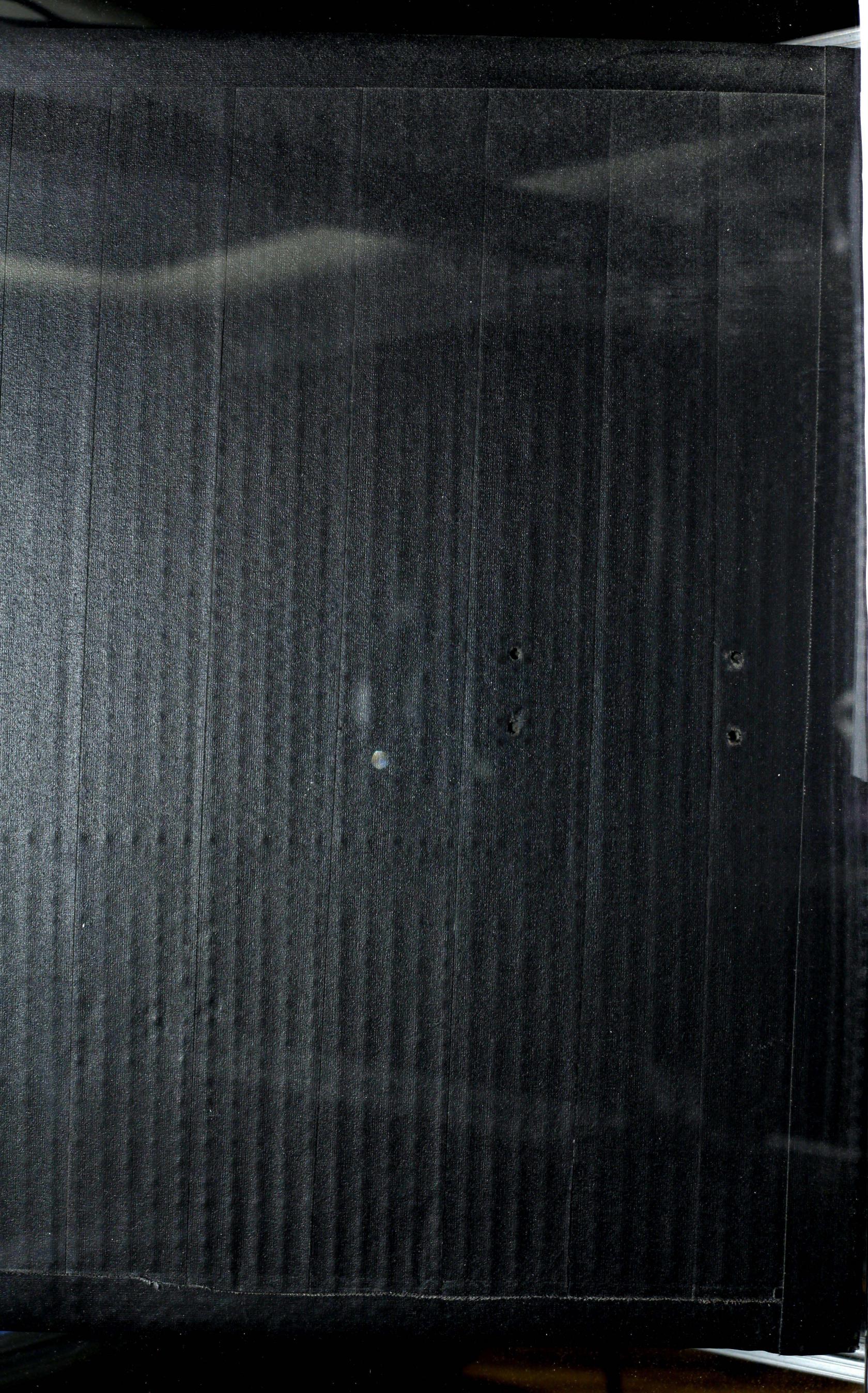

														ОСТОВ	ER 1986													
	J	Temp	eratur	e C						(cm)	more					Ten	peratur	e C						(cm)	more			
STATION	Mean		Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (No. of days with Precip 1.0 mm or 1	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	% of Normal Snowfall	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (c	No. of days with Press 1.0 mm or m	Bright Sunshine (hours)	% of Normal Bright Sunshine	Degree Days below 18 C
QUEBEC															NOVA SCOTIA									=				
BAGOTVILLE BAIE COMEAU BLANC SABLON CHIBOUGAMAU GASPE	1 0	1.6 3.1 1.9	-1.7 -1.2 -2.0 -1.7 -2.0	15.0 16.5 12.0 14.7 16.2	-7.9 -11.0 -10.4 -10.6 -11.8	7.6 3.0 5.0 40.8 6.6	64 49 55 176 132	84.9 60.4 64.0 94.0 50.6	67 69 109	0 0	13 15 10 17 10	X 116 140 69 113	* * 97	447.0 461.8 528.7 437.9	GREENWOOD HALIFAX INT'L SABLE ISLAND SHEARWATER SYDNEY	7.3 7.3 10.1 8.0 7.0	-1.3 -1.3 -1.4 -1.5 -1.4	20.4 19.0 16.6 19.8 18.7	-5.6 -2.7 3.0 -1.5 -4.7	0.0		62.1 75.3 175.6 70.7 87.3	63 56 150 58 71	00000	12 9 12 9 16	X * 118 138 127	98 87 96	331.2 333.3 245.7 310.4 343.1
INUKJUAK KUUJJUAQ KUUJJUARAPIK LA GRANDE RIVIERE MANIWAKI	-2 -4 -0	2.6	-2.2 -4.0 -2.1 * -1.3	5.1 6.2 7.3 8.4 19.5	-14.6 -18.4 -9.5 -11.1 -9.0	64.8 50.4 29.6 47.6	294 185 108	61.6 45.6 49.4 57.0 63.0		20 8 2 5 0	16 15 13 15 7	32 64 34 46 124	61 131 72 * 102	639.7 708.7 561.4 591.7 396.9	TRURO YARMOUTH PRINCE EDWARD ISLAND	6.1 9.3	-1.7 -1.2	19.0 19.5	-5.8 -1.1	0.0		62.8 98.0	56 84	00	13 12	127	98	367.3 304.2
MATAGAMI MONT JOLI MONTREAL INT'L MONTREAL M INT'L NATASHQUAH	8	.3	-1.4 -0.7 * -1.4	15.8 20.9 20.7 -13.5	-7.4 -4.5 -7.9	5.6 0.0 0.0 2.2	75 * 56	57.0 59.2 59.0	75 * 54	66 0 0	12 13 11 10	112 143 163 130	96 104 R 100	426.2 309.6 352.8 468.6	CHARLOTTETOWN SUMMERSIDE NEWFOUNDLAND	6.7	-1.4 2.0	16.8 16.6	-3.4 -0.7	1.0	38	61.8 38.6	58 41	0 0	13	X 128	94	352.2 345.0
QUEBEC ROBERVAL SCHEFFERVILLE SEPT-ILES SHERBROOKE	4 -4 2	.7 .3 .2 .4 .9	-0.9 -0.9 -2.8 -1.2 -0.7	20.1 17.3 7.2 14.8 18.3	-5.1 -8.9 -18.6 -10.6 -7.4	0.0 7.2 58.8 1.0 0.0	71 130 9	77.2 89.8 61.0 70.6 72.9	85 140 80 73 83	0 0 25 0 0	12 13 14 10 13	124 77 63 126 113	106 # # 100 #	381.1 435.9 664.7 483.1 375.9	ARGENTIA BATTLE HARBOUR BONAVISTA BURGEO CARTWRIGHT	6.6 1.8 5.6 5.6 1.0	-1.8 -2.4 -1.6 -1.5 -2.1	14.4 13.8 16.3 14.5 11.5	-1.2 -11.4 -2.8 -4.5 -11.3	0.0 8.0 24.6 0.0 5.8	216	105.0 57.6 119.6 133.6 74.6	74	0 7 0 0	13 8 14 14 8	X X X 128	143	352.8 502.4 383.4 383.9 491.9
STE AGATHE DES MO ST-HUBERT VAL D'OR NEW BRUNSWICK	7	.8 .5 3.1	-0.6 -0.9 -1.5	18.4 20.6 14.8	-10.2 -7.4 -10.3	0.4 0.0 9.0	52	64.8 61.2 105.4	79	0 0 0	10 11 14	137 ± 90	107	410.5 326.2 453.2	CHURCHILL FALLS COMFORT COVE DANIEL'S HARBOUR DEER LAKE GANDER INT'L	-2.2 3.9 3.4 4.8 3.8	-2.1 -2.1 -2.5 -0.5 -2.2	10.5 17.4 10.2 16.6 17.7	-16.7 -6.2 -5.7 -7.5 -7.2	41.7 13.6 1.0 11.6 24.2	77 107 22 158 198	67.6 100.5 88.3 67.5 13.4	78 90 98 64 12	8 3 0 2 1	11 12 12 12 12	94 X 110 X 132	141 131 119	624.5 435.4 452.7 436.3 439.6
CHARLO CHATHAM FREDERICTON MONCTON SAINT JOHN	5	.3 .9 .0 .3	-1.5 -1.8 -1.6 -1.6 -1.3	15.8 16.9 18.5 18.2 18.2	-7.9 -5.6 -6.9 -5.7 -4.4	1.0	17	59.7 30.3 30.1 41.1 49.9	72 31 30 41 39	0 0 0 0	11 5 8 11	130 ± 138 138 141	101 # 97 100	421.7 392.6 374.4 372.2 363.8	GOOSE PORT-AUX-BASQUES ST ANTHONY ST JOHN'S ST LAWRENCE	0.4 6.3 1.9 5.4 6.0	-2.3 -0.7 * -1.5	14.1 14.8 11.5 17.0 14.0	-12.3 -4.0 -10.7 -3.5 -4.9	21.7 0.2 14.2 2.2 0.0	87 6 * 50 *	88.9 107.4 94.1 157.2 145.2	81	0 0 0	8 14 7 17 12	130 133 118	138	544.4 363.0 499.1 391.5
															STEPHENVILLE WABUSH LAKE	5.6 -2.4	-1.4	14.4 9.7	-5.1 -16.3	0.6 32.3	17 *	96.6 52.1	87 *	0 4	15 10	90		385.4


POITRITATE

A REST STATE FRANCE CONTRACT OF THE PROPERTY O		
THE RESERVE OF THE PERSON OF T		
		1686
		decober 1888
		06.00ER 1886
		98H 1390100
		Sections 1888
		OCCUPEN 1888
		9881 N360700
		Sell discoop
		Sel Risoro
		See statement
		9881 4380100
		9891 N340100
		9891 N340100
		Sel Nasoro
		9891 N340100
THE REAL PROPERTY OF THE PARTY		9881 N380100
		3891 N340100

	Terr	peratur	re C					(cmo)			Degree	days		Tem	peratur	e C					(m)			Degree d	doys
STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	This month	Since jon, 1st	STATION	Mean	Difference from Normal	Maximum	Minimum	Snowfall (cm)	Total Precipitation (mm)	% of Normal Precipitation	Snow on ground at end of month (cm)	No. of days with Precip 1.0 mm or more	Bright Sunshine (hours)	This month	Since jan. 1st
BRITISH COLUMBIA																									
AGASSIZ KAMLOOPS	12.2	1.3	21.0	1.0	0.0	113.0	64	0	5	167	223.5	2223.3	GUELPH HARROW	8.3	-0.9	19.3	-5.0	0.0	69.4	95	0	12	137	109.4	1990.1
SUMMERLAND	*		20.0	1.0	0.0	12.8	73	0	4	207	122.2	2163.0	KAPUSKASING MERIVALE	11.6	0.3	23.0	1.0	0.0	118.4	213	0	11	129	208.4	2538.4
ALBERTA		1											OTTAWA SMITHFIELD VINELAND STATION	7.8 9.5 10.9	-0.7 0.6 -0.1	20.1 20.5 20.6	-5.3 -3.0 -0.5	0.0	52.9 55.4 65.2	92 69 111	0	9 15	142	98.5 140.2 104.0	2029. 2167. 2248.
BEAVERLODGE ELLERSLIE FORT VERMILLION	6.0	1.6	23.0	-18.0 -8.9	3.0	19.0	120	0	6	130 179	102.3 78.9	1391.1 1320.6	WOODSLEE QUEBEC												
LETHBRIDGE VAUXHALL	5.8	2.1	24.0	-9.0	0.0	16.3	93	0	5	176	90.0	1261.9	LA POCATIERE	5.0	-0.9	17.0	-4.5	1.0	52.8	74	0	9	134	65.3	
SASKATCHEWAN	6,0	1.9	23.0	-9.0	2.0	13.2	52	2	6		77.2	1317.0	L'ASSUMPTION LENNOXVILLE NORMANDIN	7.4	-0.6	21.5	-7.0 -10.5	5.0	73.0	122	0	10	143	94.1	1165.
NDIAN HEAD	6.1	0.8	23.5	-8.0	4.4	17.4	70	2	5		80.0	1575.0	ST. AUGUSTIN STE CLOTHILDE	8.0	-0.3	20.5	-6.5	0.0	73.4	88	0	11	129		
MELFORT REGINA SASKATOON SCOTT SWIFT CURRENT SOUTH	5.0 4.7 5.9 5.5 7.4	0.8 0.2 0.7 1.3 1.5	23.5 22.5 23.0 23.5 22.5 23.0	-9.0 -11.5 -9.5 -8.5 -9.5	1.1 3.5 4.2 0.0 5.4	17.4 3.7 15.3 6.3 9.8 26.4	14 83 36 72 163	0 3 TR 5	1 3 2 5 5 5	150 155 183 173	68.0 0.0 85.0 63.2	1495.5 1438.0 1588.5	NEW BRUNSWICK FREDERICTON NOVA SCOTIA												
MANITOBA													KENTVILLE NAPPAN	8.3	-0.8	20.0	-3.0 -8.0	0.0	53.7 53.4	53 53	0	8	126 124	106,1 85.8	1698.3
BRANDON GLENLEA MORDEN	5.8 4.9 6.4	0.2	23.1 23.0 24.0	-9.2 -9.0 -8.5	0.0	21.0 14.2 13.6	90 38 43	0 0	6 3	183	70.2 42.1 86.5	1739.0 1619.2 1935.0	PRINCE EDWARD												
ONTARIO													CHARLOTTETOWN												
DELHI ELORA	9.7	-0.7 -0.7	20.5	-3.5 -3.4	0.0	101.3 76.6	135 116	00	12 15	136	141.8 106.2	2171.1 1907.2	NEWFOUNDLAND ST. JOHN'S WEST	5.3	-1.8	16.0	-4.0	0.0	172.2	119	0	20	108	46.7	1154.
								4	1005 ARCH	595 11V	9D C1 ES	VOL IR		4. 001	6 86	ent 6111	1								


							ance to the	
							18 (18 (18 (18 (18 (18 (18 (18 (18 (18 (
		Account of a						



1005959DU 8 MONTHEY SUPP 198601

