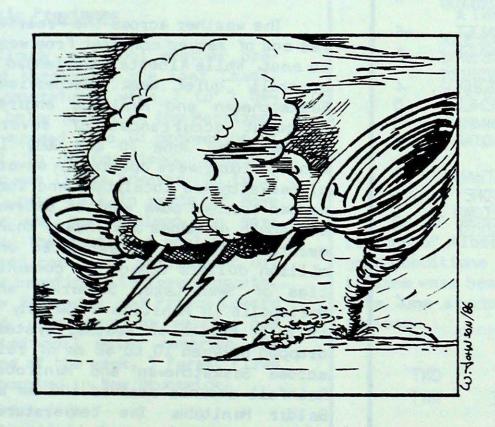
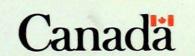
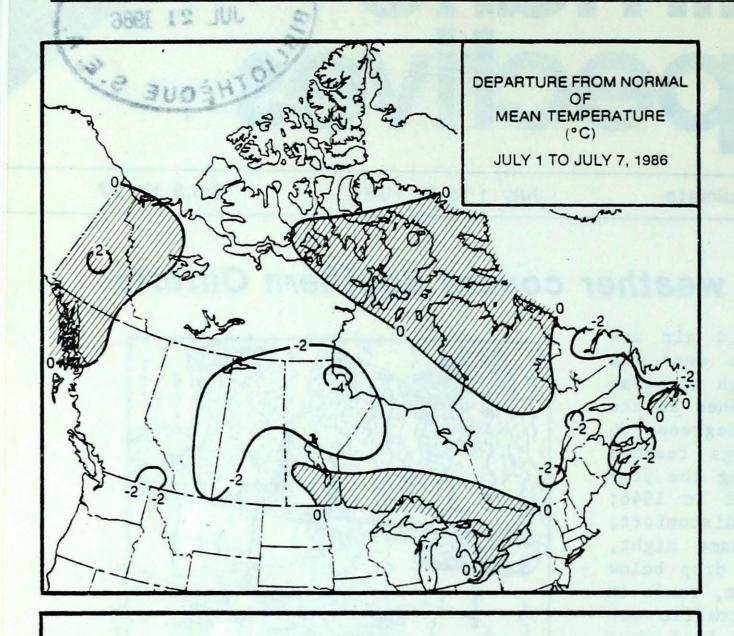

A weekly review of Canadian climate

July 1 to 7, 1986


Vol.8 No.27

Hot Hazy Humid weather covers Southern Ontario


Oppressively hot and humid air arrived in southern Ontario over the weekend. Several daily high temperature records were established as the mercury climbed above 30 degrees. On July 6, afternoon readings reached 34.3° at Toronto surpassing the previous record of 32.8° set in 1946; the humidex, a measure of discomfort, registered at 41°. The same night, the temperature failed to drop below 20°. Under the intense heat, roads in Toronto buckled causing traffic accidents. The most intense heat wave in Toronto occurred in July 1936 when daytime temperatures remained above 40° for 3 consecutive days.



Severe weather hits Eastern Prairies

Outbreak of severe thunderstorms spawned two tornadoes and several funnel clouds in southern Saskatchewan on June 30. A tornado was sighted west of Estevan and another tornado touched down just south of Moose Jaw. On July 3, destructive storms caused an estimated one million dollars damage in southern Manitoba communities of Swan Lake, Sommerset and Mariapolis. In Sommerset, three massive wooden structures were uprooted, roofs were blown off a local hockey arena and a school. In Mariapolis, winds destroyed steeple of a local church and tore trees from ground. Heavy deluges of 100 mm at Baldwin, southeast of Brandon, caused flash floods.

WEEKLY TEMPERATURE EXTREME (C)

MAXIMUM

MINIMUM

BRITISH COLUMBIA YUKON TERRITORY	PENTICTON DAWSON	31 30	QUESNEL KOMAKUK BEACH A	2 0
NORTHWEST TERRITORIES ALBERTA	INUVIK MEDICINE HAT	28 31	SHINGLE POINT A POND INLET ROCKY MTN. HOUSE	-6 4
SASKATCHEWAN MANITOBA ONTARIO QUEBEC	SASKATOON PORTAGE LA PRAIRIE WINDSOR MANIWAKI	33 31 34 30	COLLINS BAY CHURCHILL TIMMINS QUAQTAQ	4 0 1 -1
NEW BRUNSWICK NOVA SCOTIA PRINCE EDWARD ISLAND NEWFOUNDLAND	CHATHAM SYDNEY CHARLOTTETOWN BADGER DEER LAKE	25 25 23 25	CHATHAM SYDNEY CHARLOTTETOWN GOOSE	6 5 6 1

ACROSS THE NATION

WARMEST MEAN TEMPERATURE	22	WINDSOR	ONT
COOLEST MEAN TEMPERATURE	2	RESOLUTE	NWT

ACROSS THE COUNTRY ...

Yukon and Northwest Territories

Heaw rains of 30 to 60 mm and cool temperatures dominated the weather in the southern Yukon and the Mackenzie District. Watson Lake was deluged with nearly 70 mm of rain. In the central and northern Yukon record daily maximum temperatures were established as the mercury reached near 30°. Lightning strikes in the hot weather helped ignited several major forest fires near the Alaska border. Smoke from these fires hampered flight operations in parts of the Yukon. In the eastern Arctic, the temperatures climbed above 10° for the first time this year. June's cool weather has delayed break up of ice in the Davis Strait this year.

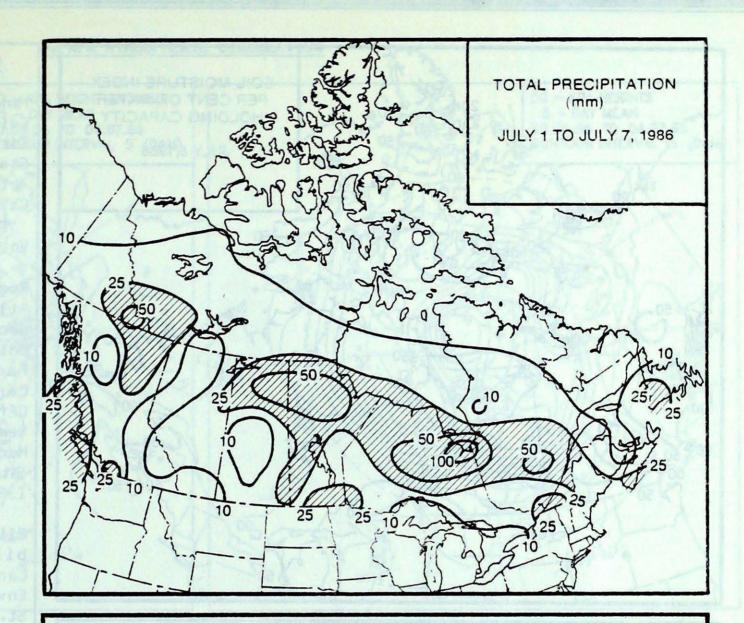
British Columbia

The weather was cool and generally damp across most of the province. The temperature were a few degrees below normal. Precipitation amounts ranged from 20 to 40 mm in the South but less than 10 mm were recorded in the North. Hours of sunshine were below normal, especially in the southern Interior. Due to excessive rains, up to 40 percent of the cherry crops suffered from splitting in the Okanagan Valley.

Prairie Provinces

The weather across the Prairies was one of marked contrast from west to east. While Alberta experienced a generally quiet week weatherwise, Saskatchevan and Manitoba endured frequent occurrences of severe weather One June 30 and July 1, funnel clouds were spotted in several Saskatchewan localities and tornadoes touched down west of Estevan and south of Moose Jaw. Heavy thunderstorms caused an estimated one million dollars damage to communities of Swan Lake, Sommerset and Mariapolis in Manitoba From July 3 to 6, a series of weather systems dropped between 10 to 60 mm of rain across Saskatchewan and Manitoba Rainfall amounts reached 100 mm at Baldir Manitoba The temperatures were near normal except in Alberta where cool weather prevailed

Ontario

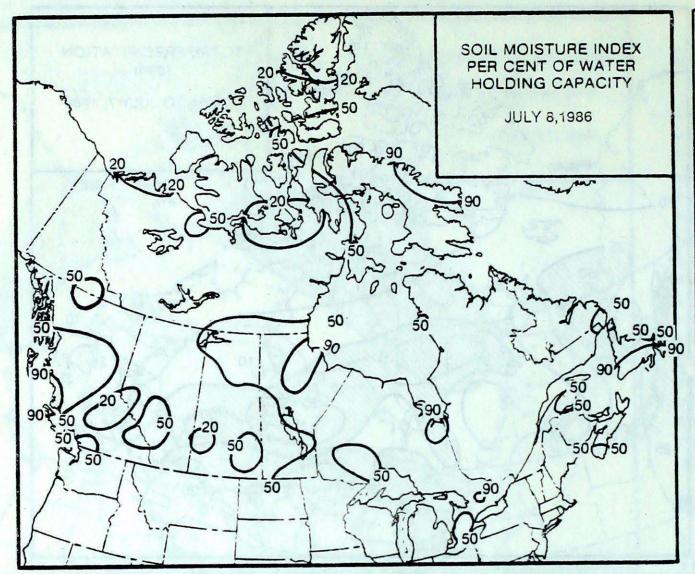

After a cool and showery start, the weather turned hot across southern Ontario over the weekend. A warm and humid air mass produced record-high temperatures in southern Ontario. In Toronto, the mercury climbed to 34° on July 6, breaking the old record of 32° set in 1946. The temperatures were seasonable in northern Ontario. Storms crossing central and northern regions dropped 25-115 mm of rain during the week. On July 5, severe thunderstorms dumped 144 mm of rain in 6 hours at Mossonee.

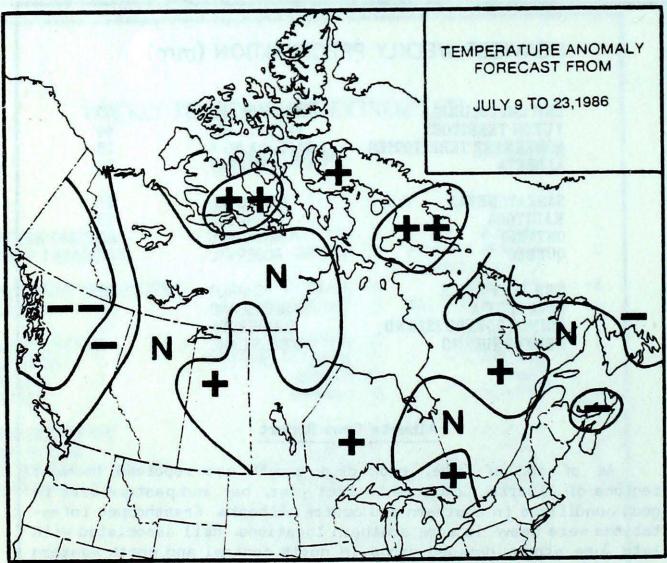
Quebec

Cool and cloudy weather covering the province set several low daytime temperature records. Over the weekend, very warm air mass reached southwestern areas, and near 30° readings were common along the lower St.Lawrence Valley. Mean temperatures in northern Quebec were 1 to 3 degrees above normal. Heavy rains in the 30 to 65 mm range fell along the St. Lawrence Valley, elsewhere less than 20 mm were recorded. On July 6, weather systems deposited 50 to 65 mm of rain in the Forêt Montmorency area. By the end of the week, 8 forest fires were burning. This brings the seasonal total to 708 fires compared to the five-year average of 560 fires.

Atlantic Provinces

Cloudy and cool weather prevailed throughout the East Coast. The temperatures were 3 to 5 degrees below normal in the Maritimes and averaged 5 to 10 degrees below normal in Newfoundland Precipitation was light; however, 20 to 35 mm of rain fell in parts of Nova Scotia and Newfoundland In Nova Scotia, the continued cool weather hampered corn crop development but it was beneficial to forage growth. In New Brunswick and Prince Edward Island, persistent dry weather has depleted soil water reserves. By the end of the week, 3 forest fires were burning in New Brunswick.




HEAVIEST WEEKLY PRECIPITATION (mm)

BRITISH COLUMBIA YUKON TERRITORY NORTHWEST TERRITORIES ALBERTA	MCINNES ISLAND WATSON LAKE CAPE YOUNG A FORT MCMURRAY	50 69 28 38
SASKATCHEWAN MANITOBA ONTARIO QUEBEC	CREE LAKE THOMPSON MOOSONEE ROBERVAL	87 83 163 67
NEW BRUNSWICK NOVA SCOTIA PRINCE EDWARD ISLAND NEWFOUNDLAND	CHARLO SABLE ISLAND SUMMERSIDE WABUSH LAKE	22 56 10 43

Alberta Crop Report

As of end of June, good crop growth was reported in most regions of Alberta. Compared to last year, hay and pasture were in good conditions in southern and central Alberta. Grasshopper infestations were heavy in some southern locations. Hail associated with late June storms damaged crops in north central and north eastern regions.

Temperature Anomaly Forecast

much above normal above normal

normal

below normal

much below normal

This forecast is prepared by searching historical weather maps to find cases similar to the present. The historical outcome during the 15 days subsequent to the chosen analogues is assumed to be a forecast for the next 15 days from now.

CLIMATIC PERSPECTIVES VOLUME 8

Managing Editor M.J. Newark Editor (English) A.K. Radomski Editor (French) A.A. Caillet Staff Writer M. Skarpathiotakis

K. Czaja Art Layout

Cartography G. Young/T. Chivers

B. Taylor

Word Processing U.Ellis, M.Baptiste

Regional Correspondents

Atla: F.Amirault; Que.: J.Miron Central: B.Tortorelli;

Ont.: A.Radecki; Western: W.Prusak; Pac.: R.McLaren; Yukon Weather Centre; Frobisher Bay Weather Office; Yellowknife Weather Office; Newfoundland Weather Centre George MadMillan: Ice Central Ottawa; AES Satellite Data Lab

ISSN 0225-5707 UDC 551.506.1(71)

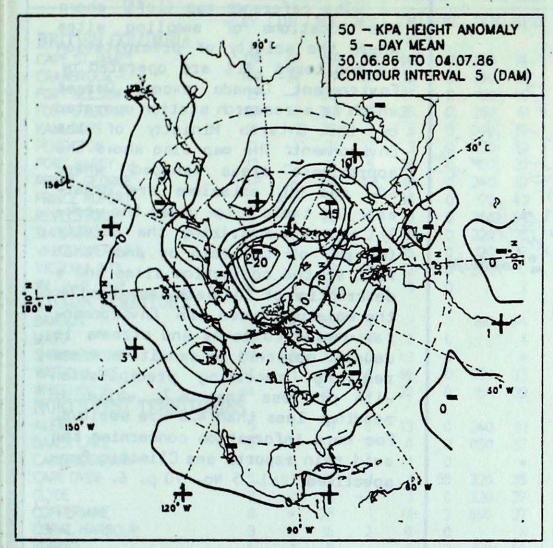
Climatic Perspectives is a weekly bilingual publication of the Canadian Climate Centre, Atmospheric Environment Service, 4905 Dufferin St., Downsview, Ont. Canada M3H 5T4.

Phone (416)667-4906/4711.

The purpose of the publication is to make topical information available to the public concerning the Canadian Climate and its socioeconomic impact.

Unsolicited articles are welcome but should be at maximum about 1500 words in length. They will be subject to editorial change without notice due to publishing time constraints. The contents may be reprinted freely with proper credit.

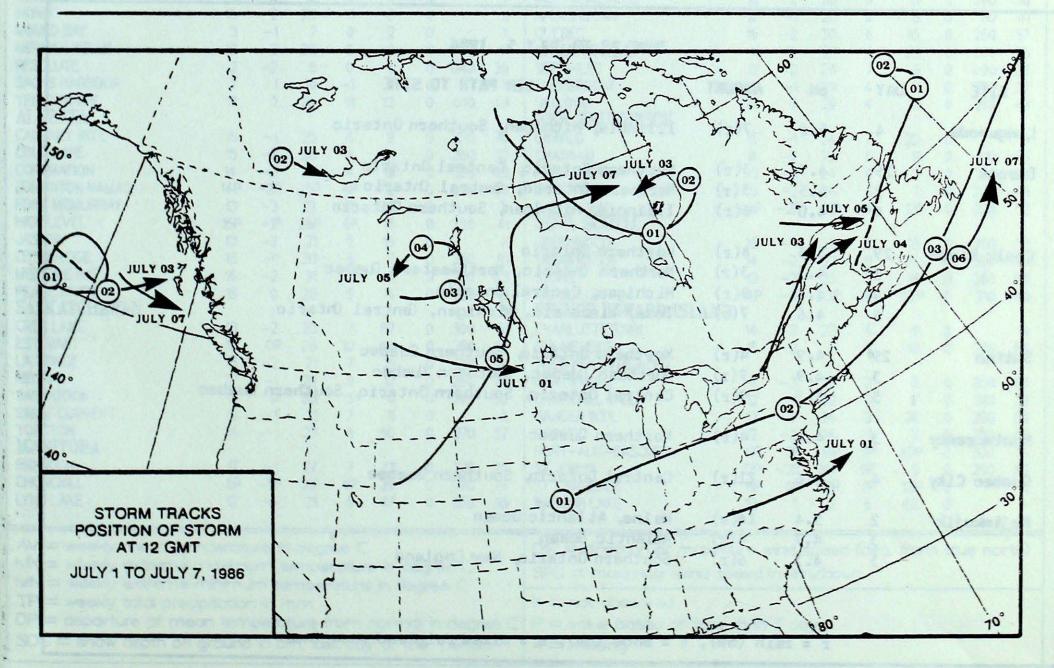
The data shown in this publication are based on unverified reports 225 Canadian from approximately synoptic weather stations. Information concerning climatic impacts is gathered from AES contacts with the public and from the media. Articles do not necessarily reflect the views of the Atmospheric Environment Service

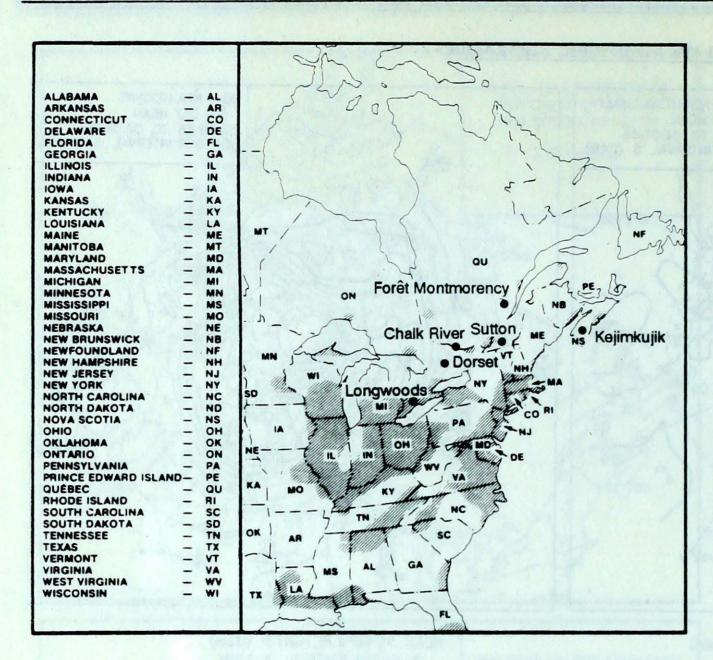

Annual Subscriptions

Weekly issue including monthly supplement: Monthly issue only:

\$35.00 \$10.00

Subscription enquiries: Supply and Services Canada, Publishing Centre, Ottawa, Ontario, Canada, KIA 059. Phone (613)994-1495


50 KPa ATMOSPHERIC CIRCULATION



50 - KPA HEIGHTS
5 - DAY MEAN
30.06.86 TO 04.07.86
CONTOUR INTERVAL 5 (DAM)

MEAN 50 KPa HEIGHT ANOMALY (dam) June 30 to July 4, 1986

MEAN 50 KPa HEIGHTS (dam) June 30 to July 4,1986

ACID RAIN REPORT

The reference map (left) shows the locations of sampling sites where the acidity of precipitation is monitored All are operated by Environment Canada except Dorset which is a research station operated by the Ontario Ministry of the Environment. The map also shows the approximate areas (shaded) where 50, and NO, emissions are greatest. The table below gives the weekly report summarizing the acidity (or pH) of the rain or snow that fell at the collection sites and a description of the path travelled by the moisture laden air. Environmental damage to lakes and streams is usually observed in sensitive areas regularly receiving precipitation with pH less than 4.7, while pH readings less than 4.0 are serious. For more information concerning the acid rain report, see Climatic Perspectives, Vol. 5 No. 50 p. 6.

SITE	DAY	рН	AMOUNT	AIR PATH TO SITE
Longwoods	4	5.6	7(r)	Illinois, Michigan, Southern Ontario
Dorset	29	4.7	3(r)	Northern Ontario, Central Ontario
	2	4.5	3(r)	Northern Ontario, Central Ontario
	4	4.0	6(r)	Illinois, Michigan, Southern Ontario
Chalk River	29	5.3	4(r)	Northern Ontario
	2	4.3	3(r)	Northern Ontario, Northwestern Quebec
	4	4.4	5(r)	Michigan, Central Ontario
	5	4.6	7(r)	Iowa, Wisconsin, Michigan, Central Ontario
Sutton	29	4.9	4(r)	Northern Ontario, Southern Quebec
	3	4.9	9(r)	Northern Quebec, Southern Quebec
	5	3.5	9(r)	Central Ontario, Southern Ontario, Southern Quebec
Montmorency	3	4.4	4(r)	Northern Quebec
Quebec City	4	4.6	21(r)	Central Ontario, Southern Quebec
Kejimkujik	2	5.4	16(r)	Maine, Atlantic Ocean
	3	4.7	4(r)	Atlantic Ocean
	5	4.3	6(r)	Southern Ontario, New England

STATISTICS

TE		TE	EMPE	CRATU	JRE.	PRE	CIP.	WIN	D MX
AV		AV	DP	MX	MN	TP	SOG	DIR	SPI
16		16	*	28	10	20	0	.310	
12			-3			83		050	56
19			0			17		300	83
18		18	1	28	5	11	0	270	57
13		13	*	20	6	32	0	250	78
18			0	The second second second		16	0	210	65
16			0			28	0	260	48
19		960	1	29		47	0	120	48
19			0			7	0		X
20			1	32		163	0	210	52
14			0	29 26		163	0	260	54
19			0	31	6	23 47	0	240	56 X
19			0	33	1)	20	0		X
15			-1	23		49P		250	76
18			0	28	6	18	0	240	70
18			0	29	5	12	Ö	210	X
17			1	29	5	5	0	270	59
16			0	30	1	17	0	220	41
21		21	1	34	8	5	0	230	52
21		21	1	31	11	7	0		X
18P		18P	19	31P	6P	4P	0		X
22		22	0P	34	12	6	0	200	57
15			-2	27	5	42	0	080	41
10P			*	18P		4P			X
10			2	22	2	9	0	110	52
11			2	23	2	4	0	280	46
9			-1	25	0	18	0	150	83
17			-!	30	5	4	0	190	31
15 18			-1 -2	23	9	19	0	240	39 56
12			-2 -1	20	6	15	0	240	
16			-2	30	6	45	0	250	41 57
11			0	22	5	25	0	200	56
12			-2	24	7	9	0	090	37
15			-1	29	4	11	0	270	37
16			o	29	4	13	0	270	48
									.,0
15		15	-1	24	7	22	0		*
16			-2	25	6	11	0	310	65
15			-3	24	8	7	0	210	39
15			-2	24	8	7	0	200	43
14P		14P	-2P	21P	9P	12P	0	220	52
15			-3	23	8	18	0	250	59
14			-2	22	8	24	0	360	39
13			-3	25	5	18	0	360	50
14P	LAND	141	-1P	20P	11P	33P	0	210	43
	LAIND	14	2	22		0	0		
14			-3 -3	23	6	9	0	220	50
13		13	-3	21	9.	10	U	220	50
8		В	-3	23	2	6	0	300	56
12			-1	22	3	7	0	310	35
12			-4	24	3	24	0	280	59
12			-2	24	1	2	0	250	46
11P			OP	19P	7P	33P	o	300	74
12P			-2P	20P	6P	. 9	0	250	80
11P		11P	0P	17P	7P	13P	0		X
13		13	1	22	5	43	0		*
			سن.		d (do	_ (-+1-)
	naximu					y. Iror	n th	ие по	עוט
peed	ind spe	eed	ın kn	n/ho	ur				
than	loss t	boo	7 4-	71.5					
uidh	ו צנטו	חטונ	, 00	JyS					
th	less t	h	an	an 7 da	an 7 days				