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ABSTRACT 
Watershed inventories and population monitoring are essential components of efforts to 
conserve and recover freshwater mussel diversity.  Since 2002, a quadrat-based sampling 
protocol has been used to monitor the status, distribution, and demographics of mussel species 
at risk in southern Ontario rivers.  However, low population densities, typical of most mussel 
species at risk, limit the effectiveness of the current protocol to support monitoring objectives.  In 
this study, simulation-based methods (computer program SAMPLE) were used to evaluate 
whether adaptive clustering sampling could improve single-species monitoring.  Census data for 
eight mussel species (including three species at risk) collected from two sites (Rawdon Creek 
and Sydenham River) with contrasting mussel assemblages were used.  Sampling design 
performance was assessed based on the accuracy of density and occupancy estimates and 
sampling efficiency, over a gradient of increasing sampling effort.  In all cases, adaptive 
sampling was less accurate and efficient than simple random sampling or systematic sampling 
with random starts.  Improvements to the monitoring program will only be achieved by 
increasing the spatial coverage of the existing systematic sampling design.   

RÉSUMÉ 
Les répertoires de bassins hydrographiques et la surveillance de la population sont des 
composantes essentielles des efforts visant la conservation et le rétablissement de la diversité 
des moules d’eau douce. Depuis 2002, un protocole d’échantillonnage fondé sur le quadrat a 
été utilisé pour surveiller l’état, la répartition et les données démographiques des espèces de 
moules en péril dans les rivières du sud de l’Ontario. Cependant, la faible densité de la 
population, phénomène représentatif de la plupart des espèces de moules en péril, limite 
l’efficacité du protocole actuel qui vise à appuyer les objectifs de surveillance. Dans le cadre de 
cette étude, des méthodes reposant sur la simulation (programme d’ordinateur ‘SAMPLE’) ont 
été utilisées pour évaluer si l’échantillonnage en grappes adaptatif améliorerait la surveillance 
d’une seule espèce. Les données proviennent du recensement de huit espèces de moules (y 
compris les trois espèces en péril) recueillies à partir de deux sites (ruisseau Rawdon et rivière 
Sydenham) et dont les communautés de moules contrastaient. Le rendement de la conception 
d’échantillon a été évalué en fonction de l’efficacité d’échantillonnage, et de l’exactitude de la 
densité et des estimations de l’occupation, selon un gradient d’effort d’échantillonnage 
croissant. Dans tous les cas, l’échantillonnage d’adaptation était moins précis et efficace que le 
simple échantillonnage aléatoire ou systématique comprenant des démarrages aléatoires. Les 
améliorations du programme de surveillance ne peuvent être réalisées qu’en augmentant la 
couverture spatiale de la conception existante de l’échantillonnage systématique.  
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INTRODUCTION 
In Canada, there are 55 native freshwater mussel species with 41 species occurring in 

the province of Ontario (Metcalfe-Smith et al. 2005).  Almost a third of these species in Ontario 
are listed as Endangered, Threatened, or of Special Concern under the federal Species at Risk 
Act and the provincial Endangered Species Act (COSEWIC 2013, MNRF 2014).  Catastrophic 
declines to the mussel fauna occurred after the introduction and spread of non-native dreissenid 
mussels to the Laurentian Great Lakes (Schloesser and Nalepa 1994).  In contrast to nearshore 
Great Lakes habitats, most Ontario rivers are not heavily infested by dreissenids and historical 
mussel diversity is largely intact (Clarke 1992, McNichols-O’Rourke et al. 2012).  Actions 
undertaken to conserve remnant mussel diversity include the identification and protection of 
critical habitats, establishment of a network of permanent monitoring sites, implementation of 
best management practices to improve water quality and quantity (e.g. reduced loadings of 
chloride and nutrients), and evaluation of the feasibility of relocations, reintroductions and 
artificial propagation (Morris and Burridge 2006, DFO 2013). 

Since 2002, the Ontario Freshwater Mussel Recovery Team (OFMRT) has implemented 
a quadrat-based protocol to assess the status, distribution, and demographics of mussel 
species at risk (SAR) in Ontario rivers, and to evaluate recovery actions.  The protocol is based 
on a systematic design (with a fixed number of random starts within each sampling block) that 
samples 20% of the surface area of the monitoring site (Thompson 2002, Pooler and Smith 
2005, Metcalfe-Smith et al. 2007) (Figure 1).  Each sampling block is comprised of 15 quadrats. 
The number of sampling blocks at each site varies based on the amount of suitable mussel 
habitat. Mussels are initially collected from the surface of 1 m2 quadrats by visual and tactile 
methods.  Afterwards, the substrate in each quadrat is excavated to a depth of 10-15 cm to 
improve detection of juveniles and small-bodied species.  Systematic designs such as this 
protocol are considered efficient for sampling freshwater mussels when populations are 
expected to be clustered and rare (Christman 2000).  The protocol has been implemented at 
more than 40 sites in five southwestern Ontario rivers.  Information collected relevant to 
recovery efforts includes: locations of species and populations; descriptions of habitat attributes 
for different life-stages; population status (i.e. density, size and age structure, sex-ratio); and, 
the presence of invasive species (Cudmore et al. 2006, DFO 2011). 

A recent assessment of data collected using the protocol (Reid and Morris 2017) 
identified that it will reliably detect most species at a site, and provide accurate and precise total 
mussel (i.e. all species combined) density estimates.  Also, excavation is essential for detection 
of small individuals and to accurately estimate density.  However, the protocol was not 
considered reliable for detecting most mussel species at risk.  Further, imprecise estimates 
prevent future detection of all but large changes (>70%) to population size.  Overall, low 
population densities (i.e. <0.5 m2) limit the effectiveness of the current design.  Substantially 
greater sampling effort with the current design, or a fundamental revision of the approach is 
required to increase the likelihood of data collection achieving monitoring objectives. 

For this study, we used a simulation-based approach to evaluate whether adaptive 
cluster sampling could improve mussel species at risk monitoring.  Adaptive cluster 
sampling refers to a survey design in which an initial set of units is randomly selected, and, 
whenever the variable of interest of a selected unit satisfies a given criterion, additional units in 
the neighborhood of that unit are added to the sample (Thompson 2002).  The final sample 
includes all clusters detected in the initial sample plus any sample units that were below the 
criterion threshold.  The design was developed for sampling populations that are rare and 
clustered (Manly and Navarro Alberto 2015).  A desirable property of adaptive cluster sampling 
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is that effort is targeted where the species is found, leading to assumed improvements in 
efficiency (Smith et al. 2004, Manly and Navarro Alberto 2015).  However, adaptive cluster 
sampling of low density populations of riverine freshwater mussels has only had limited 
evaluation (Smith et al. 2003, Smith et al. 2004). 

The computer program SAMPLE (Smith and Nichols 2006) was used to simulate mussel 
quadrat-sampling associated with three designs: 1) simple random sampling (SRS), 2) grid-
based systematic sampling (GSS), and, 3) adaptive grid-based systematic sampling (AGSS).  
GSS is the design currently used to sample mussels at Ontario river index monitoring sites.  
Simulations were run using census data (i.e. all quadrats in each block were sampled) collected 
at two 375 m2 sites that represent contrasting mussel assemblages.  Design performance was 
evaluated based on the accuracy of density and occupancy estimates and sampling efficiency. 

METHODS 

SIMULATION DATA 
At the two census sites (Rawdon Creek and Sydenham River), we sampled all 15 

quadrats in each of the 25 blocks using visual-tactile and excavation methods.  Live mussels 
were identified to species (Metcalfe-Smith et al. 2005), dimorphic species were sexed when 
possible, and shell lengths were measured.  Sampling was completed at Rawdon Creek 
between August 27 and September 4, 2013, and at Sydenham River between August 7 and 14, 
2012.  Sampling Rawdon Creek took 5 days with a four to five-person crew, and sampling the 
Sydenham River took 6 days with a four to eleven-person crew (Reid and Morris 2017). 

Rawdon Creek is a tributary of the Trent River which flows into Lake Ontario. The 
census site was located 17 km north of the city of Trenton (44o16’08” N; 77o33’12” W).  Mean 
wetted channel width was 8.3 m and mean water depth was 0.29 m.  The Sydenham River 
drains into Lake St. Clair, and the census site was located 11 km east of the town of Dresden 
(42o36’20” N; 82o02’40” W).  Mean wetted channel width was 20.0 m and mean water depth 
was 0.34 m.  River bed material (substrate) at both sites was a relatively even mix of sand, 
gravel and cobble. Site selection was informed by past quadrat (Sydenham River) and timed-
search (Rawdon Creek) surveys (Metcalfe-Smith et al. 2007, Reid 2016).  

At the Rawdon Creek site, 866 individuals (representing 7 species) were collected.  One 
mussel species-at-risk was detected, Villosa iris.  Individual mussels were generally evenly-
distributed across the site, with the exception of aggregations located at the bottom end of the 
site, and within the upper third of the site (Figure 2).   

At the Sydenham River site, 6180 individuals (representing 25 mussel species) were 
collected (Table 1).  Nine mussel species-at-risk were detected: Epioblasma torulosa rangiana, 
Epioblasma triquetra, Obovaria subrotunda, Pleurobema sintoxia, Ptychobranchus fascioloris, 
Quadrula quadrula, Simpsonaias ambigua, Truncilla donaciformis, and Villosa fabalis. 
Individuals were distributed with slightly higher densities along the left side of the study area 
(facing upstream), and with the highest aggregation of mussels in the upper left region (Figure 
3). 

SIMULATIONS 
We used the computer program SAMPLE (version: November 2006) to simulate mussel 

sampling using the counts and locations of each species at the census sites.  SAMPLE was 
developed by the United States Geological Survey to support the design of population 
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monitoring programs by simulating adaptive and conventional survey designs. Software was 
downloaded from ftp://ftpext.usgs.gov/pub/er/wv/leetown/Smith/SAMPLE/.  
 
The three designs simulated were: 

1) Simple random sampling (SRS).  In this design, sampling units are randomly 
distributed throughout the site. The design served as a baseline for comparison with 
other sampling designs.   

2) Grid-based systematic sampling (GSS).  It is the current river population monitoring 
design.  Initial sampling units were selected randomly, then additional plots were 
selected at specified intervals in the x and y directions.  

3) Adaptive grid-based systematic sampling (AGSS). Initial sampling units were 
selected as in GSS, then sampling proceeded adaptively.  
 

Density and variance estimators used in simulations are described in Thompson (2002). 
Adaptive sampling is most efficient when populations are clustered, and when those 

clusters are rare (Smith et al. 2004).  While some of the mussel species collected from Rawdon 
Creek and Sydenham River were rare, they tended to be dispersed rather than clustered.  
Moderately clustered populations tended to be less rare (Table 1). Therefore, AGSS simulations 
were only completed for species with densities <0.25 mussels per m² and characterized by a 
moderate degree of clustering (variance to mean ratios: 1.1 to 1.5).  Species included in 
simulations were: Ligumia recta, Alasmidonta marginata, Leptodea fragilis, Epioblasma torulosa 
rangiana, Quadrula pustulosa, Epioblasma triquetra, and Lasmigona complanata from the 
Sydenham River, and Villosa iris from Rawdon Creek. 

We simulated 112 SRS scenarios and 112 GSS scenarios (1 to 14 random starts for 
each of the eight species), and 64 AGSS scenarios (1 to 8 random starts for each of the eight 
species selected for this design). For the grid-based scenarios, the distances between rows and 
columns were 5 units and 3 units, respectively. The criterion to trigger adaptive sampling was 
set as >1 mussel in a quadrat. Due to the low densities of most species, more conservative 
criteria (i.e. >2 mussel in a quadrat) were not simulated.  A cross-shaped sampling 
neighbourhood (Smith et al. 2004) was used when the criterion was met.  With this design, the 
four adjacent quadrats that share a boundary with the occupied quadrat are included.  Design 
scenarios were replicated 1,000 times each and averages of these replications were given as 
output from the program. Sampling costs (i.e., set-up time, rate of travel, and search time) were 
minimal and therefore not factored into this study. Detectability was assumed to be perfect as 
sampling units were excavated. 

Prior to simulations, we modified datasets to be uniformly rectangular.  Blocks that fell 
outside the uniform area were removed from the simulation dataset.  The resultant dimensions 
were 6 m wide by 55 m long for the Sydenham River site, and 6 m wide by 60 m long for the 
Rawdon Creek site. Spatial distributions were mapped for each species within the mussel bed, 
and population files were created following an ‘x, y, count’ format at a 1 m2 grain size. 

We evaluated each sampling design individually for each species.  Performance of the 
designs was evaluated based on: 1) accuracy of density estimates and occupancy estimates, 
and 2) efficiency.  Accuracy of density estimates was based on percent-difference from true 
density.  The observed population of each species (sum of counts from all quadrats divided by 
the total sample area) will be referred to as the true density.  Efficiency was defined as the ratio 
between the variance of density estimate from the SRS design and the variance of the sampling 
scenario in question (Brown et al. 2008).  Ratios were calculated using estimates from 
scenarios with equivalent levels of sampling effort.   Occupancy was defined as the proportion 
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of sampling units occupied by at least one individual of a species: estimates of occupancy were 
evaluated against the occupancy values of the true populations using percent relative bias.  
Relative risk was also calculated, representing the likelihood of sampling occupied units: it was 
calculated as the ratio of the probability of sampling an occupied unit under a specified design to 
the probability of sampling an occupied unit under SRS (Smith et al. 2011).  

RESULTS 
The accuracy of AGSS-based density estimates was poor compared to GSS and SRS-

based sampling and generally underestimated population density (Figure 4).  For most species, 
this bias increased with greater sampling effort.  In the worst cases, densities were 
underestimated by 9 to 18%.  GSS and SRS-based density estimates were very similar across 
all levels of sampling effort and within 5% of true density.     

For all species, AGSS was not more efficient than the GSS sampling design (Figure 5).  
In most cases, the efficiency of GSS declined as more of the site was sampled.  For 
Alasmidonta marginata, Epioblasma torulosa rangiana, Epioblasma triquetra, and Lasmigona 
complanata, GSS was more efficient than SRS when less than 40% of the site was sampled.    

In comparison to the known numbers of occupied quadrats, AGSS underestimated the 
proportion of quadrats occupied by each species, and the difference between AGGS and the 
other sampling designs increased with greater spatial coverage of the site (Figure 6).  Relative 
risk values indicate that AGSS was more likely to sample quadrats occupied by Villosa iris or 
Liguma recta than SRS when sampling included less than 60% of the site (Figure 7).  For 
Alasmidonta marginata, Epioblasma torulosa rangiana, Epioblasma triquetra, and Quadrula 
pustulosa, AGSS was less likely to sampled occupied quadrats as sample coverage increased 
from 20-40% of the site.  There was little difference between GSS and SRS sampling designs 
across all levels of sampling effort.       

DISCUSSION 
Obtaining accurate estimates of the population parameters for aquatic species at risk 

that demonstrate high spatial variability in distribution and abundance is difficult.  When many 
sampling units do not contain individuals of the species of interest, conventional sampling 
designs either provide inaccurate and imprecise data or require a relatively high cost to obtain 
necessary information (Morrison et al. 2008).  Freshwater mussel detection and monitoring can 
be challenging as they often occur at low densities, are spatially clustered and imperfectly 
detected (Smith et al. 2010).  Adaptive sampling designs allow effort to be increased in areas 
where the species of interest are being detected during sampling (Thompson 2002).  Intuitively, 
adaptive cluster sampling is, therefore, well suited for sampling mussel species at risk and its 
application to monitoring freshwater mussels has been evaluated for some riverine populations 
(Smith et al. 2003, 2004, 2011).  For example, Smith et al. (2003) found (relative to SRS) 
adaptive cluster sampling improved uncommon species detection as well as the total number of 
individuals collected (i.e. yield) from sites along the Cacapon River, West Virginia.   

However, results from our simulation study indicate that adaptive cluster sampling is not 
expected to improve site-level efforts to monitor freshwater mussel populations in southern 
Ontario rivers.  In all cases, AGSS represented the least effective design, with efficiency 
consistently lower than SRS and GSS, and biases in estimates of density and occupancy that 
increased with sample size.  Additionally, based on the degree of clustering, only 8 of 28 
species collected from Rawdon Creek and Sydenham River were considered suitable for 
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simulating sampling with AGSS.  Improvements to data collection at individual monitoring sites 
will therefore only be achieved by increasing the spatial coverage of sampling with the existing 
systematic design (Reid and Morris 2017).  However, our interpretation does not preclude the 
testing of adaptive sampling methods for characterizing the distribution and abundance of 
mussel species at risk along much larger sampling units such as rivers (e.g. Villella and Smith 
2005, Brown et al. 2008).  Adopting the river (or reach), rather than the mussel bed, as the 
sampling frame would also be a better match for population-level inference (Reid and Morris 
2017), as it avoids biases associated with preferential selection of high density sites. 

Census datasets, in combination with simulation approaches, can help to inform the 
design of freshwater mussel population monitoring programs.  We recognize that in this study 
adaptive cluster sampling was only evaluated using a rather limited dataset (8 species, each 
from only 1 site).  The effectiveness of adaptive cluster sampling can be expected to vary 
across populations (Smith et al. 2004) and therefore our results may not be broadly applicable.  
Factors such as mussel density and the degree of spatial clustering influence the performance 
of this sampling design (Smith et al. 2003, 2010).   For Ontario rivers, census data from 
additional sites with low density (<0.2 m2) species that exhibit a greater degree of clustering 
would increase the breadth of our results.  However, the very large amount of effort that was 
required to fully sample the Rawdon Creek and Sydenham River sites renders the future 
collection of a large census dataset unlikely.         
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Table 1. Density (x), variance to mean ratio (s2/x), and frequency of occurrence (FO) of freshwater mussels collected from two 
census quadrat-sampling sites (adapted from Reid and Morris 2017).  FO is the percentage of all quadrats sampled where the 
species was collected.  Species-at-risk are identified by asterisk.  

  Rawdon Cr. (Total = 866 mussels) Sydenham R. (Total = 6180 mussels) 
Species Common Name X (# m-2) s2/x FO (%)  X (# m-2) s2/x FO (%) 

Actinonaias ligamentina          0.54 1.8 32.0  
Alasmidonta marginata          0.17 1.1 0.5  
Amblema plicata          1.78 2.1 70.7  
Cyclonaias tuberculata          6.98 5 96.0  
Elliptio complanata  1.97 2.49 68.3         
Elliptio dilatata          1.4 1.5 68.3  
Epioblasma torulosa rangiana*          0.16 1.1 14.1  
Epioblasma triquetra*          0.19 1.1 16.8  
Fusconaia flava          0.43 1.2  31.2 
Lampsilis cardium  0.06 1.04 5.6   0.02 1 1.6  
Lampsilis siliquoidea  0.02 0.98 1.9         
Lasmigona complanata          0.12 1.1  10.7 
Lasmigona costata  0.01 0.99 1.1   0.99 2.8  68.5 
Leptodea fragilis          0.18 1.1  16.3 
Ligumia recta  0.003 1.0 0.3   0.24 1.2 19.5 
Obovaria subrotunda*          0.003 1  0.3 
Pleurobema sintoxia*          0.08 1.1  6.9 
Potamilus alatus          0.08 1.1  6.9 
Ptychobranchus fascioloris*          0.46 1.1  36.0 
Pyganodon grandis          0.01 1 1.1  
Quadrula pustulosa           0.17 1.2  14.4 
Quadrula quadrula*          0.74 1.7 42.1  
Simpsonaias ambigua*          0.02 1 1.3  
Strophitus undulatus  0.01 0.99 0.8   0.04 1 4.0  
Truncilla donaciformis*          0.03 4.3 1.1  



 

 

9 

 

 

  Rawdon Cr. (Total = 866 mussels) Sydenham R. (Total = 6180 mussels) 
Species Common Name X (# m-2) s2/x FO (%)  X (# m-2) s2/x FO (%) 

Truncilla truncata          0.01 1 0.5  
Villosa fabalis*          0.69 1.6 41.9  
Villosa iris*  0.24 1.29 19.5         
All Mussels  2.31 2.7     16.48 11.5   
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Figure 1. Representative diagram of the systematic, quadrat-sampling design used to monitor 
mussel populations in Ontario rivers (Reid and Morris 2017).  Locations of 3 random starts 
within each block are highlighted in grey.   
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Figure 2. Distribution of mussel counts (all species pooled) across all quadrats sampled at the 
Rawdon Creek census site (August 27 to September 4, 2013).  
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Figure 3. Distribution of mussel counts (all species pooled) across all quadrats sampled at the 
Sydenham River census site (August 7 and 14, 2012).  
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Figure 4. Comparison of the accuracy of density estimates for 8 mussel species using three 
sampling designs (SRS: simple random sampling; GSS: grid-based systematic sampling; 
AGSS: adaptive grid-based systematic sampling). Accuracy was calculated as the percent 
difference from census data (all quadrats sampled).  Effort is the proportion of the site sampled 
by each design.   
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Figure 5. Comparison of the efficiency of two sampling designs (GSS: grid-based systematic 
sampling; AGSS: adaptive grid-based systematic sampling) for mussel sampling.  Efficiency 
was assessed based on the variance of density estimates from each design relative to that of 
random sampling.  Effort is the proportion of the site sampled by each design.   
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Figure 6. Comparison of occupancy estimates for 8 mussel species using three sampling 
designs (SRS: simple random sampling; GSS: grid-based systematic sampling; AGSS: adaptive 
grid-based systematic sampling). Relative bias was calculated as the percent difference of the 
number of quadrats occupied by a species relative to the census data (all quadrats sampled).  
Effort is the proportion of the site sampled by each design.   
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Figure 7. Comparison of the likelihoods of detecting 8 mussel species using grid-based 
systematic sampling (GSS) and adaptive grid-based systematic sampling (AGSS). Relative risk 
is the probability of sampling an occupied unit under a specified design relative to that of 
random sampling.  Effort is the proportion of the site sampled by each design. 
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