Canada Parliament
Sessional Papers
ALPHABETICAL INDEX

TO THE

SESSIONAL PAPERS

OF THE

PARLIAMENT OF CANADA

THIRD SESSION, TWELFTH PARLIAMENT, 1914.

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, Report of Minister of, ended March 31, 1914</td>
<td>H. P. Duchemin re copy of instructions issued to, on appt. as Commissioner in N.S., &c.</td>
</tr>
<tr>
<td>Agriculture, Dept. of; number of lecturers, inspectors, &c., belonging to, in Province of Nova Scotia, &c.</td>
<td>Of Train or Ticket Agents on I.C.Ry., and P.E.I.Ry., amts. rec’d, results, &c.</td>
</tr>
<tr>
<td>Agriculture, Dept. of; correspondence with re importation of pure bred animals into Canada</td>
<td>Of J. G. H. Bergeron as Commissioner; date of, number of investigations held, &c.</td>
</tr>
<tr>
<td>Agricultural Instruction Act; copy of all arrangements between Govt. and Provinces under</td>
<td>Of P. Roy as Postmaster of St. Philippe de Nery, Province of Quebec.</td>
</tr>
<tr>
<td>Aldershot Camp, N.S., re supply of ice for season of 1914, &c.</td>
<td>Of Mr. J. G. H. Bergeron as Commissioner, &c.</td>
</tr>
<tr>
<td>Aldershot Camp, N.S., accounts re supplies for summer and autumn drill at, 1913</td>
<td>Of Mr. T. J. Oliver, of Humboldt, Sask., to present position; also appt. of successor at</td>
</tr>
<tr>
<td>Antigonish Harbour, correspondence re dredging of, &c.</td>
<td>Of successor to W. S. McKechnie, Dom. Lands Agent, Prince Albert, Sask, &c.</td>
</tr>
<tr>
<td>Antigonish Co., N.S., Blue Rock Breakwater, in, re expenditures on in 1913, &c.</td>
<td>Of Jos. Lemieux, Postmaster at Mont Louis, County of Gaspé, &c.</td>
</tr>
<tr>
<td>Archives: Documents re Constitutional History of Canada, 1791-1818, &c.</td>
<td>Of successor to C. A. R. Desjardins, Postmaster at St. André de Kamouraska, &c.</td>
</tr>
<tr>
<td>Arichat, N.S., re Public Building at, expenditures on, &c.</td>
<td>Of for year 1913, of Captains, first and second Engineers for Dredges 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, Dept. of Marine, below Montreal: Appointment of Captains and Engineers for 1913 for Tugs 'Car- melia,' 'Chambly,' 'Contrecoeur,' 'De Lévis,' 'Emilia,' 'Iberville,' 'Jas. Howden,' 'Jesse Hume,' &c.</td>
</tr>
<tr>
<td>Armstrong, David, mail carrier of city of Sherbrooke, re dismissal, &c.</td>
<td>Appointments:—Continued. Of Public Officers in city of Quebec, Depts. of Inland Revenue, Rys., Customs, Immigration, Marine, &c., since Oct. 1, 1911, to April 14, 1913; names, duties, &c.</td>
</tr>
<tr>
<td>Archives: Documents re Constitutional History of Canada, 1791-1818, &c.</td>
<td>H. P. Duchemin re copy of instructions issued to, on appt. as Commissioner in N.S., &c.</td>
</tr>
<tr>
<td>Arichat, N.S., re Public Building at, expenditures on, &c.</td>
<td>Of Train or Ticket Agents on I.C.Ry., and P.E.I.Ry., amts. rec’d, results, &c.</td>
</tr>
<tr>
<td>Armstrong, David, mail carrier of city of Sherbrooke, re dismissal, &c.</td>
<td>Of J. G. H. Bergeron as Commissioner; date of, number of investigations held, &c.</td>
</tr>
<tr>
<td>Antigonish Harbour, correspondence re dredging of, &c.</td>
<td>Of P. Roy as Postmaster of St. Philippe de Nery, Province of Quebec.</td>
</tr>
<tr>
<td>Antigonish Co., N.S., Blue Rock Breakwater, in, re expenditures on in 1913, &c.</td>
<td>Of Mr. J. G. H. Bergeron as Commissioner, &c.</td>
</tr>
<tr>
<td>Archives: Documents re Constitutional History of Canada, 1791-1818, &c.</td>
<td>Of Mr. T. J. Oliver, of Humboldt, Sask., to present position; also appt. of successor at</td>
</tr>
<tr>
<td>Arichat, N.S., re Public Building at, expenditures on, &c.</td>
<td>Of successor to W. S. McKechnie, Dom. Lands Agent, Prince Albert, Sask, &c.</td>
</tr>
<tr>
<td>Armstrong, David, mail carrier of city of Sherbrooke, re dismissal, &c.</td>
<td>Of Jos. Lemieux, Postmaster at Mont Louis, County of Gaspé, &c.</td>
</tr>
<tr>
<td>Archives: Documents re Constitutional History of Canada, 1791-1818, &c.</td>
<td>Of successor to C. A. R. Desjardins, Postmaster at St. André de Kamouraska, &c.</td>
</tr>
<tr>
<td>Armstrong, David, mail carrier of city of Sherbrooke, re dismissal, &c.</td>
<td>Of for year 1913, of Captains, first and second Engineers for Dredges 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, Dept. of Marine, below Montreal: Appointment of Captains and Engineers for 1913 for Tugs 'Carmelita,' 'Chambly,' 'Contrecoeur,' 'De Lévis,' 'Emilia,' 'Iberville,' 'Jas. Howden,' 'Jesse Hume,' &c.</td>
</tr>
</tbody>
</table>

63433—1
A

- Of number of additional employees added to Customs Dept., city of Halifax, since Oct. 10, 1911... 117
- Of correspondence re appt. of Care-takers of Post Office at Rigaud, &c. 77m
- Of Morrison, Allan, St. Peter's, N.S., Inspector of dwellings in Guysborough Island, N.S., 1912-1913... 77n
- Of names, length of service of all employees, Dept. Interior, in outside service since Jan. 1, 1912, to Dec. 31, 1913... 77o
- Of number of appointments made in Customs at Montreal since Oct. 1, 1911, names, salaries, &c... 77p
- Of number of Engineers, Asst. Engrs., Clerks, Divsrs., Dept. of Public Works, in Co. Bonaventure, since Oct. 1, 1911... 77q
- Of showing whether Louis P. Thibault, Alphonse Poirier, J. A. Morin, C. F. Rioux, and others, were appointed by Postmaster General... 77r
- Of correspondence re appointment of present Collector of Customs at Antigonish... 77s
- Of correspondence re appointment of present Collector of Customs at Antigonish... 77t

B

- Belanger, Capt. of Stmr. 'Eureka': correspondence between, and Dept. Marine and Fisheries, year 1912... 231
- Binders, Reapers, Mowers, &c., exported to Canada, values, &c., in 1910, 1911, 1912, 1913... 184
- Bonaventure Co., Que., expenditure incurred since Oct. 1, 1911, re investigations held in... 93c
- Boring Mill at Lethbridge, Alta.: correspondence in Dept. of Customs relating to... 213
- Banks, Shareholders in Chartered, of the Dominion of Canada, to Dec. 31, 1913... 6
- Banks, unclaimed balances, &c., in... 7
- Barre, Etienne, Trudeau, Jos., of municipality of Chambly Basin, re petition of, to Minister of Justice... 214
- Bergeron, J. C. H., Inquiring Commissioner—Report made by, re Dr. J. D. Pagé, Quebec, year 1913... 60
- Bergeron, J. C. H., return showing date of appointment, salary, travelling expenses, number of investigations, &c... 77a
- Bertrand, Mrs. C. F., Dionne, Arthémise, re purchase of land from, connection with works, &c... 232y
- Boards of Com. on Migration, Report of for year 1913... 36a
- Bonds and Securities, Statement of all since Dec. 1912... 39
- Bonaventure Co., Que., Expenditure of public moneys in, since Oct., 1911, to Feb., 1914... 232(28)
- Blais, M. C., Documents re resignation from Govt. yards at St. Joseph de Sorel, and appointment of successor... 146

B

- Bourinot, John C., Seizures made by, as Preventive Officer and Collector of at Port Hawkesbury, N.S., &c... 49a
- Bourinot, John C., Return re telegrams, letters, &c., received or sent to, by Dept. Customs, during years 1895-6-7... 49
- Bouthilier's of dwellings, Lorraine, N.S., correspondence re tenders, accounts, &c., connected with... 168
- Branch Lines of Ry. of I.C.Ry. re construction of into Co. of Guysborough, &c... 86a
- Branch Lines Ry. of I.C.Ry. re documents respecting question of acquiring any or all of, also running rights over I.C.Ry... 117
- Branch Lines of Ry. of I.C.R., Orange-dale to Cheticamp, in Inverness Co., N.S., Documents referring to... 117c
- Bruce, Jas., re all documents connected with entry and cancellation of homestead entry of... 116c
- British Columbia, Indian Lands in, inquiry of, N. W. White during 1912-1913 as Commissioner... 130
- Breakwater at Green Point, Gloucester Co., N.B., re construction of a... 165
- Breakwater at Gouldman's Point, Guysborough Co., N.S., correspondence re... 232f
- Breakwater at Blue Rock, Antigonish, N.S., correspondence re... 232v
- Breakwater at Meat Cove, N.S., &c... 232y
- ” White Point, N.S., &c... " Mill's Harbour, N.S., &c... 271
- ” McLeod's, Ingonish, &c... 271
- ” Breton Cove, N.S., &c... 271
- ” Little Bras d'Or, N.S., &c... 271
- ” Cape Dauphin, N.S., &c... 271
- ” Point Anconi, N.S., &c... 271
- ” Jamesville, N.S., &c... 271
- ” at the Griff. Halfax, N.S., &c... 271
- Bhwagon Singh, a Sikh Priest, correspondence re the deportation of, &c... 267

C

- Campbell, John, and Albert E. Milligan, correspondence re expropriation of lands of... 232(28)
- Canadian National Bureau of Breeding, Ltd., date of incorporation of, names, &c, of members of... 289
- Chateauguay River, re damming of, number of employees on, wages, &c... 232g
- Coal lands situated in 28, 27, 27-18, and 27-17, west of the Fourth Meridian... 110f
- Coal in Canada, Report of Conservation Commission on conservation of... 210a
- Customs, Report of, year ended March 31, 1913... 11
- Canadian Northern Railway Co.: No. 1. Copy of trust deed, date 30th June, 1903, between, and British Empire Trust Co., &c... 259
<table>
<thead>
<tr>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 2. Copy of trust deed, date 6th May, 1910, between, and British Empire Trust Co., &c.</td>
<td>Civil Service, for each Dept. of Civil Service, names, salaries, &c., of employees; also names, &c., not in Service, employed in any Dept., since Oct. 19, 1911; also names removed from office, &c.</td>
</tr>
<tr>
<td>No. 3. Copy of trust deed, dated 19th Nov., 1913, between Mackenzie, Mann, Ltd., and British Empire Trust Co., &c.</td>
<td>Civil Service, Number of Certificates asked from Civil Service Commission since March 31, 1913; number refused, and reasons for refusal.</td>
</tr>
<tr>
<td>No. 5. Statement of securities pledged as collateral to Temporary Loans of Canadian Northern Ry. System.</td>
<td>Civil Service Commission, Report of, for year 1913.</td>
</tr>
<tr>
<td>No. 6. Statement of Engineer's Estimate of cost of completing Canadian Northern Ry. System.</td>
<td>Commissioners appointed by Govt. since Oct. 10, 1911. Number of names, amount paid, number still under pay.</td>
</tr>
<tr>
<td>Allegations of damages for six years of Canadian Northern Ry. System.</td>
<td>Commissions created since Oct. 12, 1911, Names and members of, purposes, salaries, &c.</td>
</tr>
<tr>
<td>Statement bearing on financing of Canadian Northern Ry. System to Dec. 31, 1913.</td>
<td>Country Harbour, Guysborough, Co., N.S., Survey of line of Ry. from, to Cape George, N.S.</td>
</tr>
<tr>
<td>Papered Screen, Canadian Northern Ry. System.</td>
<td>Conference of Representatives of the Provinces held Oct., 1913, Minutes of, &c.</td>
</tr>
<tr>
<td>List of Companies whose total stock is owned by Canadian Northern Ry. Co., &c.</td>
<td>Cruiser, G.D., 'Margaret,' re the building of; contract price, names of tenderers, &c.</td>
</tr>
<tr>
<td>Further Statements bearing on financing of Canadian Northern Ry. System.</td>
<td>Criminals released from parole from Penitentiaries, &c., year ended Mar. 31, 1913, &c.</td>
</tr>
<tr>
<td>Correspondence, telegrams, &c., from Premiers of Provinces of N.S., B.C., Alberta and Sask, re matter of aid.</td>
<td>Car Ferry Service between Mainland and P. E. Island, Correspondence, &c., re.</td>
</tr>
<tr>
<td>Copy of trust deed, Dec. 28, 1903, Lake Superior Terminals Co., Ltd., &c.</td>
<td>Canadian Contracting Coy, showing names of promoters and powers given to Company, by letters patent.</td>
</tr>
<tr>
<td>Colonels, Honorary do. Lieut. do. re return showing number appointed by Minister of Militia since Oct. 11, to March 31, 1914.</td>
<td>Cape Breton Railway, re purchasing of by Govt., and building line from St. Peter's to Sydney and Louisbourg.</td>
</tr>
<tr>
<td>Return re number of Honorary appointments to Military rank made by Minister of Militia, &c.</td>
<td>Canal, Souanges, Names of employees on, salary and date of hiring, &c.</td>
</tr>
<tr>
<td>Canadian Forestry Association, Communications made by, to the Govt. &c.</td>
<td>Central Ry. Co. of Canada, Annual Report by, to the Railway Dept.</td>
</tr>
<tr>
<td>Canadian Pacific Railway Strikes, Return re application for Board of Conciliation, &c.</td>
<td>Climson, Hon. Mr. Justice, re amount of money received by, from 1890 to 1913, during time of connection with Kamouraska.</td>
</tr>
<tr>
<td>Canadian Pacific Railway Coy, re lands and buildings, &c.</td>
<td>Chartered Banks in Canada in liquidation since Confederation, Number of; date in each case, &c.</td>
</tr>
<tr>
<td>Canadian Pacific Railway, Copy of all contracts with Dept. Rys. with re joint station at the Palais, Quebec city.</td>
<td>Citizens of the United States, how many employed by Govt. since Nov. 1, 1911.</td>
</tr>
<tr>
<td>Canadian Pacific Railway, Copy of all contracts with Dept. Rys. with re installation of letter boxes in, &c.</td>
<td>Chemical Manure, re report of Geo. Lafontaine respecting manufacturing of, during fiscal year.</td>
</tr>
<tr>
<td>Civil Service Insurance Act, Statement re, for year ending March 31, 1913.</td>
<td>Citizenship in Canada in years 1911, 1912 and 1913.</td>
</tr>
<tr>
<td>Civil Service, Inside, Number of persons appointed, not passing exams, held in May and November each year.</td>
<td>63433—11</td>
</tr>
</tbody>
</table>
C

Commissits Investigation Act, Board

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>appt. under, to investigate United Shoe Machinery Co., Report.</td>
</tr>
<tr>
<td>91b</td>
<td>Commissions, re each issued by Govt. since Oct. 10, 1911; Copy of Evidence, &c.</td>
</tr>
<tr>
<td>91c</td>
<td>Commissions formed by Govt. since Oct., 1911; names, occupations of Commissioners, &c.</td>
</tr>
<tr>
<td>91d</td>
<td>Commission for purchase of mobilizing Ottawa city and vicinity, Correspondence re, &c.</td>
</tr>
<tr>
<td>91e</td>
<td>Commissions created by legislation or Orders in Council since Oct. 12, 1911, Members of, &c.</td>
</tr>
<tr>
<td>138</td>
<td>Commission of N. W. White to inquire into Indian Lands in British Columbia.</td>
</tr>
<tr>
<td>132</td>
<td>Commission to investigate the cost of living, copy of O. C. appointment, names of officers</td>
</tr>
<tr>
<td>29e</td>
<td>Commissions appointed under Inquiries Act; number of since Oct. 1, 1911; names of Commissioners, &c.</td>
</tr>
<tr>
<td>250</td>
<td>Constitutional History of Canada, 1781-1818, Documents re, &c.</td>
</tr>
<tr>
<td>250</td>
<td>Correspondence re, names of vessels moored at, &c.</td>
</tr>
<tr>
<td>116</td>
<td>Custom Tariff Act, correspondence re temporary suspension of re wire rods, &c.</td>
</tr>
<tr>
<td>156</td>
<td>Custom Tariff Act, Copy of Orders in Council since June, 1914, altering rates of duties existing under, &c.</td>
</tr>
<tr>
<td>232(24)</td>
<td>Customs Building in Village of Chelse, South Bruce, Documents re, &c.</td>
</tr>
</tbody>
</table>

D

Dredging

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15a</td>
<td>Dairy and Cold Storage, Report of Commissioner of, for year ending March 31, 1913.</td>
</tr>
<tr>
<td>247</td>
<td>Distilled Water, &c., Amount paid for, in Ottawa by Govt. since Jan. 1, 1912, to March 1, 1914, also cost per day.</td>
</tr>
<tr>
<td>110</td>
<td>Dominion Lands, Order in Council re, between Oct., 1912, and Nov. 30, 1913, Forest Reserves Park Act.</td>
</tr>
<tr>
<td>110c</td>
<td>Dominion Lands, Orders in Council re, between Oct. 1, 1912, and Nov. 30, 1913.</td>
</tr>
<tr>
<td>43</td>
<td>Dominion Police Force, Average number of men employed on; travelling expenses, &c.</td>
</tr>
<tr>
<td>174</td>
<td>Dorchester Poultry, re vacancy of Deputy Warden, and appt. of successor to Mr. A. B. Pipes, &c.</td>
</tr>
<tr>
<td>101</td>
<td>Dredging operations in British Columbia.</td>
</tr>
<tr>
<td>170</td>
<td>Dredging at Bathurst Harbour, N.B., relating to, done on bar, seasons of 1910, 1911, 1912, 1913.</td>
</tr>
<tr>
<td>170a</td>
<td>Dredging at Bathurst Harbour, N.B., re all tenders for, and contracts awarded.</td>
</tr>
<tr>
<td>170b</td>
<td>Dredging at Bathurst Harbour, N.B., Correspondence re deposit of sand, &c., dumped into S.W. channel.</td>
</tr>
<tr>
<td>232c</td>
<td>Dredging at Bonaventure River, all documents, &c., connected with.</td>
</tr>
<tr>
<td>154</td>
<td>Dredging, Nova Scotia Dredging Co., re dredging performed by, or other companies, at Jeddore, N.S.</td>
</tr>
<tr>
<td>232a</td>
<td>Dredging in Harbour of St. John, N.B. or tributary, Number of persons engaged in, since Oct. 1, 1911.</td>
</tr>
<tr>
<td>222a</td>
<td>Dredging in Harbour and River, St. John, N.B., Number of tug boats engaged in, since Sept. 21, 1911.</td>
</tr>
<tr>
<td>232(2a)</td>
<td>Dredging of Des Prairies River, all documents re, &c.</td>
</tr>
<tr>
<td>232(2g)</td>
<td>Dredging operations carried on in Bonaventure Co. in 1913.</td>
</tr>
<tr>
<td>232(2p)</td>
<td>Dredging operations at Port Elgin, N.B., all documents relating to, &c.</td>
</tr>
<tr>
<td>232(21)</td>
<td>Dry-Dock, Specifications, tenders, &c., re proposed, at Lauzon, Que.</td>
</tr>
<tr>
<td>65</td>
<td>'Destructive Insect and Pest Act,' Regulations under.</td>
</tr>
<tr>
<td>78</td>
<td>Desjardins, C. A., Postmaster, St. Andre des Kamours, resignation of, &c.</td>
</tr>
<tr>
<td>85b</td>
<td>Demers, Eugene, and Jos. Ollvier, Claims of, against the I.C.Ry. &c.</td>
</tr>
<tr>
<td>104f</td>
<td>Deputy Ministers, Number of employees under each, &c., also salary of Customs Commissioner &c.</td>
</tr>
<tr>
<td>66</td>
<td>Dog-Fish Reduction Works at Clark's Harbour, N.S., Cost of maintenance, receipts, &c., years 1910, 1911, 1912.</td>
</tr>
<tr>
<td>67</td>
<td>Drake, Remission and refund of under section 95, Audit Act.</td>
</tr>
<tr>
<td>339</td>
<td>Dubisso, Arthur, re employment of, as Immigration Agent at Gravelbourg, Sask.</td>
</tr>
<tr>
<td>77a</td>
<td>Duchemin, H. P., Return re date of appointment, number of investigations held since, &c.</td>
</tr>
<tr>
<td>93f</td>
<td>Duchemin, H. P., Return re expenditures by I.C.Ry. in connection with inquiries held by.</td>
</tr>
</tbody>
</table>

Dismissals:

- Return re dismissal of Horace Rindress, Quarantine Medical Officer, North Sydney, N.S., 1913.
- Return re dismissal of A. T. Doubcett, Postmaster and Collector of Customs at Salmon River, Digby Co., N.S., 1913.
- Return re dismissal of Alex. Bourque, Storm Signal Agent at Bonaventure, Que., 1913.
- Return re dismissal of Patrick Conway, Lighthouse Keeper, White Head Island, N.S., 1913.
- Return re dismissal of Capt. Wm. Smith, Coxswain, Lifeboat at Shedburne, Co., N.S., 1913.
- Return re dismissal from Public Offices, Co. of Kings, N.S., since Oct. 11, 1911.
- Return re dismissal of Jos. E. A. Landry, Lighthouse Keeper, St. Omor, Que., Copy of charges against.
- Return re dismissal of Colin MacIsaac, Preventive Officer at Port Hood, N.S., 1913.
<table>
<thead>
<tr>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Return re dismissal of Mr. Pesha, Postmaster at Kent Bridge, Ont.</td>
<td>44h</td>
</tr>
<tr>
<td>Return re dismissal of John F. Reeves, Postmaster at Mulgrave, N.S.</td>
<td>44i</td>
</tr>
<tr>
<td>Return re dismissal of Havelock McLeod, Postmaster at Big Intervale, N.S.</td>
<td>44j</td>
</tr>
<tr>
<td>Return re dismissal of S. Lapointe, Postmaster, St. Eliot, Témiscouata Co., Que.</td>
<td>44k</td>
</tr>
<tr>
<td>Return re dismissal of Wm. Bow, Postmaster at Winchester Village, Dundas Co., Ont.</td>
<td>44l</td>
</tr>
<tr>
<td>Return re dismissal of Mrs. Ellen O'Neill, Postmistress at O'Neill's P.O., Westmorland Co., N.B.</td>
<td>44m</td>
</tr>
<tr>
<td>Return re dismissal of Alex. Labillois, Postmaster at Miguasha.</td>
<td>44n</td>
</tr>
<tr>
<td>Return re dismissal of Madame Z. Narcotte, Postmistress, Nouvelle West, Bonaventure Co., Que.</td>
<td>44o</td>
</tr>
<tr>
<td>Return re dismissal of Jos. Venaught, Postmaster at Guay, Co. of Lévis, Que.</td>
<td>44p</td>
</tr>
<tr>
<td>Return re dismissal of John McDowell, Postmaster at Osage, Sask., and appointment of successor, &c.</td>
<td>44q</td>
</tr>
<tr>
<td>Return re dismissal of Geo. Taylor, Postmaster at Bickerton, N.S.</td>
<td>44r</td>
</tr>
<tr>
<td>Return re dismissal of Mlle Paulhus, Postmistress, Point St. Victoire, Que.</td>
<td>44s</td>
</tr>
<tr>
<td>Return re dismissal of Perker S. Hart, Postmaster number, South Manchester, N.S.</td>
<td>44t</td>
</tr>
<tr>
<td>Return re dismissal of Chas. L. Gass, Postmaster at Bayfield, N.S., also copy of evidence, &c.</td>
<td>44u</td>
</tr>
<tr>
<td>Return re dismissal of Madame Belzil, Postmistress at St. Octave, Co. of Rimouski, Que.</td>
<td>44v</td>
</tr>
<tr>
<td>Return re dismissal of John McDonnell, Postmaster at Essex, Inverness Co., N.S.</td>
<td>44w</td>
</tr>
<tr>
<td>Return re dismissal of Jas. Bain, Postmaster of Ninga, N.B., Ninga Manitou</td>
<td>44x</td>
</tr>
<tr>
<td>Return re dismissal of Wm. McKinnon, Postmaster at Erinville, Guysborough, N.S.</td>
<td>44y</td>
</tr>
<tr>
<td>Return re dismissal of J. N. Cloutier, Postmaster at St. Benoit Lake, Beauce Co., Que.</td>
<td>44z</td>
</tr>
<tr>
<td>Return re dismissal of Mrs. Weave, Postmistress at Coal Creek, Queen's Co., N.B.</td>
<td>44(2a)</td>
</tr>
<tr>
<td>Return re dismissal of Postmasters in Bonaventure Co., by present Government, &c.</td>
<td>44(2b)</td>
</tr>
<tr>
<td>Return re dismissal of Alex Fraser, Postmaster at Fraser's Grant, Antigonish Co., N.S.</td>
<td>44(2c)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Government in the district of Portneuf, &c.</td>
<td>44(2d)</td>
</tr>
<tr>
<td>Return re dismissal of the Postmasters in Co. of Two Mountains, &c.</td>
<td>44(2e)</td>
</tr>
<tr>
<td>Return re dismissal of Thos. Chalmers McLean, Postmaster at Ivera, North Cape Breton and Victoria, N.S.</td>
<td>44(2f)</td>
</tr>
<tr>
<td>Return re dismissal of C. P. Blanchard, Postmaster at Truro, N.S.</td>
<td>44(2g)</td>
</tr>
<tr>
<td>Return re dismissal of Samuel Atwood, Atwood's Brook, Shelburne Co., N.S.</td>
<td>44(2h)</td>
</tr>
<tr>
<td>Return re dismissal of Postmasters in Co. of Berthier, since 21st September, 1911, &c.</td>
<td>44(2i)</td>
</tr>
<tr>
<td>Return re dismissal of Wilfrid Pellemahe, Postmaster, Co. of Carrogy, Junction, County of Portneuf</td>
<td>44(2j)</td>
</tr>
<tr>
<td>Return re dismissal of Rufus D. Corrigan, Postmaster at Sand Point, Guysborough Co., N.S.</td>
<td>44(2k)</td>
</tr>
<tr>
<td>Return re dismissal of Daniel Dunlop, Postmaster at New Campbellton, North Cape Breton, N.S.</td>
<td>44(2l)</td>
</tr>
<tr>
<td>Return re dismissal of Duncan Cameron, Postmaster, Craigmore, Inverness Co., N.S.</td>
<td>44(2m)</td>
</tr>
<tr>
<td>Return re dismissal of Angus Cameron, Postmaster at Fairlight, Sask.</td>
<td>44(2n)</td>
</tr>
<tr>
<td>Return re dismissal of M. Sauriol, Postmaster, Port Janvier, Co. of Témiscouata</td>
<td>44(2o)</td>
</tr>
<tr>
<td>Return re dismissal of Donald Johnston, Postmaster, Leitch's Creek; changes made in names of Leitch's Creek, &c.</td>
<td>44(2p)</td>
</tr>
<tr>
<td>Return re dismissal of Jas. McLees, Postmaster at Bishop's Mills, Grenville Co., Ont. &c.</td>
<td>44(2q)</td>
</tr>
<tr>
<td>Return re dismissal of Mrs Sara C. Rankin, Postmistress at S. W. Ridge, Mabou, N.S.</td>
<td>44(2r)</td>
</tr>
<tr>
<td>Return re number of dismissals from public service in County of Cumberland, N.S., from June 23, 1896, to September 21, 1911, &c.</td>
<td>44(2s)</td>
</tr>
<tr>
<td>Return re dismissal of all employees in Co. of Three Rivers, and St. Maurice, since Oct. 15, 1911, to April, 1913.</td>
<td>44(2t)</td>
</tr>
<tr>
<td>Return re number of dismissals by present Govt. in constituency of Regina, up to Dec. 10, 1912.</td>
<td>44(2u)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Govt. in Co. of Kamouraska, names, duties, &c.</td>
<td>44(2v)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Govt. in Co. of Prince P.E.I., up to Dec. 10, 1913, &c.</td>
<td>44(2w)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Govt. in Strathcona Riding, to Dec. 10, 1912.</td>
<td>44(2x)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Govt. in Saltcoats Riding, to Dec. 10, 1912.</td>
<td>44(2y)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Govt. in Co. of Champlain since Oct. 15, 1911, to April, 1913.</td>
<td>44(2z)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Govt. in Co. of Cumberland, N.S., since Oct. 11, 1911, to March 3, 1913.</td>
<td>44(3a)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Govt. in Co. of Westmorland, N.B., since Oct. 1911, to Feb. 3, 1913.</td>
<td>44(3b)</td>
</tr>
<tr>
<td>Return re dismissal of all public officers by present Govt. in Co. of Annapolis, N.S., since Oct., 1911, to Mar. 3, 1913.</td>
<td>44(3c)</td>
</tr>
</tbody>
</table>
Return re dismissal of all public officers by present Govt. in Co. of New-
fouldland, since Oct., 1911, to April, 28, 1913. 44(3d)
Return re dismissal of all public officers in constituency of Victoria, Alta., to 28th Jan., 1913, &c. 44(3e)
Return re dismissal of all public officers by present Govt. in Co. of Shelburne and Queens, N.S. 44(3f)
Return re number of Postmasters dismissed in County of Antigonish, N.S. 44(3g)
Return re dismissal of Dr. Freeman O'Neill, Port Physician, Louis-
burg, C.B., N.S. 44(3h)
Return re dismissal from public offices by present Govt. in County of Digby, N.S., since Oct. 11, 1911, to Mar. 2, 1913. 44(3i)
Return re dismissals from public offices by present Govt. in Co. of Queens-Shelburne, N.S., since Oct. 11, 1911, to date. 44(3j)
Return re dismissals from public offices by present Govt. in city of Quebec, Dept. of Rys. and Canals and others. 44(3k)
Return re dismissals from public offices by present Govt. in Co. of L'Assomption, Que., &c. 44(3l)
Return re dismissals from public offices by present Govt. by each Dept., names, P.O. address, since Oct. 11, 1911. 44(3m)
Return re dismissals from public offices by present Govt. in Co. of Digby, N.S., since Oct. 11, 1911, to Mar. 3, 1913. 44(3n)
Return re dismissal of Philias Hal- bel, Lightkeeper, St. Louis de Lotbinière, Co. of Lotbinière, Que. 44(3o)
Return re dismissal of Fishery Over- see General at Seven Islands, and appt. of Elzéar Levesque. 44(3p)
Return re dismissals from public offices by present Govt. in Co. of Maskinongé since Oct. 11, 1911, to April 28, 1913. 44(3q)
Return re dismissals from public offices by present Govt. in Co. of Kings, N.S., since Oct. 11, 1911, to Mar. 1913. 44(3r)
Return re dismissals from public offices by present Govt. in Co. of Colchester, N.S., since Oct. 11, 1911, to Mar. 3, 1913. 44(3s)
Return re dismissals from public offices by present Govt. in Co. of Hants, N.S., since Oct. 11, 1911, to Mar. 5, 1913. 44(3t)
Return re dismissal of Miss Eugenie Dorion from office of P. O. Inspec-
tor, Quebec, &c. 44(3u)
Return re dismissal of Jas. R. Laing, Postmaster, Liscombe, N.S., &c. 44(3v)
Return re dismissal of A. L. Desjére, Officer in charge of Fish Hatch-
ery, Magog, Que., &c. 44(3w)
Return re dismissal of Jas. T. Rich-
ardson, Sub-Collector of Customs, Humboldt, Sask. 44(3x)
Return re dismissals from public offices in constituency of Regina, names, &c., to Dec. 10, 1912. 44(3y)
| Return re dismissal of Inland Revenue Dept., Irona town Co., since Jan. 1, 1913, to Feb. 3, 1914, also appointments | 44(4w) |
| Return re dismissal of Mr. Arthur Dunbar, Postmaster at Portland, Megantic Co., &c. | 44(42) |
| Return re dismissal of Jos. Serguis Archambault, Postmaster of Town of Terrebonne, also appt. of successor | 44(49) |
| Return re dismissal of Martin Langan, Postmaster, Sexton, Co. of Kent, N.B., minutes of evidence re. | 44(45) |
| Return re Sub-Lands Agency at Gravelbourg, Saskatchewan | 44(5b) |
| Return re dismissal of all public officers by present Govt. in Co. of Kings, N.S., &c. | 44(5c) |
| Return re dismissal of Postmaster at Ainslie Green, Inverness Co., N.S., and appt. of successor | 44(5d) |
| Return re appointment of Postmaster at Upper Ohio, Shelburne Co., N.S., &c. | 44(5e) |
| Return re dismissal of J. Robins, Postmaster at Alexander, Inverness Co., and appt. of successor, &c. | 44(5f) |
| Return re dismissal of N. H. McLennan, N. East Margaree, N.S., official of Geological Survey, &c. | 44(5g) |
| Return re dismissal of M. Barry from Marine Dept. at Prescott, Ont. | 44(5h) |
| Return re dismissal of W. Granton, Marine Dept. at Prescott, Ont. | 44(5j) |
| Return re dismissal of Postmaster at Fletwode, Sask., also changing of said P.O. | 44(5k) |
| Return re dismissal of all Postmasters and Postmistresses in the Co. of Westmorland, N.B., since Feb. 1, 1913, to Feb. 1, 1914, &c. | 44(5l) |
| Return re dismissal of Postmaster of St. Henri de Lévis, County of Lévis, &c. | 44(5m) |
| Return re dismissal of Geo. Skates, Postmaster at Apin, Ont. &c. | 44(5n) |
| Return re dismissal of Geo. J. Ryan and Chas. Hamlin, Canadian Customs Service, Newport, Vermont, U.S. | 44(5o) |
| Return re dismissal of J. Shaver, employee of Marine Shipyard, Prescott, Ont. | 44(5p) |
| Return re dismissal of R. Lumary, employee of Marine Shipyard, Prescott, Ont. | 44(5q) |
| Return re dismissal of J. Slattery, employee of Marine Shipyard, Prescott, Ont. | 44(5r) |
| Return re dismissal of J. Walsh, employee of Marine Shipyard, Prescott, Ont. | 44(5s) |
| Return re dismissal of W. Gerts, employee of Marine Shipyard, Prescott, Ont. | 44(5t) |
| Return re dismissal of D. Boivard, employee of Marine Shipyard, Prescott, Ont. | 44(5u) |
| Return re dismissal of G. Scott, employee of Marine Shipyard, Prescott, Ont. | 44(5v) |
| Return re dismissal of J. Offspring, employee of Marine Shipyard, Prescott, Ont. | 44(5w) |
| Return re dismissal of J. Hayes, employee of Marine Shipyard, Prescott, Ont. | 44(5x) |
| Return re dismissal of P. Belanger, employee of Marine Shipyard, Prescott, Ont. | 44(5y) |
| Return re dismissal of L. Place, employee of Marine Shipyard, Prescott, Ont. | 44(5z) |
| Return re dismissal of C. Kavanagh, employee of Marine Shipyard, Prescott, Ont. | 44(60) |
| Return re dismissal of J. Roche, employee of Marine Shipyard, Prescott, Ont. | 44(6a) |
| Return re dismissal of C. Wright, employee of Marine Shipyard, Prescott, Ont. | 44(6b) |
| Return re dismissal of L. Lalonde, employee of Marine Shipyard, Prescott, Ont. | 44(6c) |
| Return re dismissal of H. Birks, employee of Marine Shipyard, Prescott, Ont. | 44(6d) |
| Return re dismissal of W. Jarvis, employee of Marine Shipyard, Prescott, Ont. | 44(6e) |
| Return re dismissal of J. McDermott, employee of Marine Shipyard, Prescott, Ont. | 44(6f) |
| Return re dismissal of Geo. L Brown, Lightkeeper, Prescott Depot, Ont. &c. | 44(6g) |
| Return re dismissal of J. Lane, employee of Marine Shipyard, Prescott, Ont. | 44(6h) |
| Return re dismissal of D. Perrin, employee of Marine Shipyard, Prescott, Ont. | 44(6i) |
| Return re dismissal of J. A. Mundle, employee of Marine Shipyard, Prescott, Ont. | 44(6j) |
| Return re dismissal of Postmasters of Parish of St. Lambert, County of Lévis, &c. | 44(6k) |
| Return re dismissal of Postmasters in Bonaventure Co., from Jan. 1, 1913, to Feb. 1, 1914, &c. | 44(6l) |
| Return re dismissal of J. McDermott, employee of Customs official in Bonaventure Co., from Jan. 1, 1913, to Feb. 1, 1914, &c. | 44(6m) |
| Return re dismissal of Postmasters in Albert Co., N.B., since Oct. 1, 1911, to Feb. 2, 1914. | 44(6n) |
| Return re dismissal of Customs officials by present Govt. in Queens, Shelburne, Oct. 11, 1911, to Mar. 1913. | 44(6o) |
D

Return re dismissal of public officials by present Govt. in District of Kamouraska, &c. ... 44(6c)
Return re dismissal of W. H. McKechnie, Dominion Lands Agent, Prince Albert, Sask., &c. ... 77d
Return re names, salaries, &c. of persons removed from different Depts. since Oct. 10, 1911, &c. 104b
Return re dismissal of Postmaster, Parish Notre Dame de Charny, Co. of Lévis, Correspondence, &c., &c. ... 44(6f)
Return re dismissal of Chas. S. Mélanson, Postmaster of Corbeville, Digby Co., N.S., &c. ... 44(6h)
Return re dismissal of Gordon McDonald, Homestead Inspector, Grouard Land Agency, &c. ... 44(6v)
Return re dismissal of W. F. Slack, documents re suspension and reinstating of, &c. ... 44(6w)
Return re dismissal of Wm. Brunelle, Lightkeeper at Point à Citrouille, Champlain Co. of Quebec, &c. ... 44(6x)
Return re dismissal of Arthur Levesque, Lightkeeper at Grosse Isle, Que., Documents re, &c. ... 44(6y)
Return re dismissal of L. Phillipe Carignan, Lightkeeper, Champlain, Co. of Champlain, &c. ... 44(6z)
Return re dismissal of Dominique Levesque, Lightkeeper at Rivière Ouelle Wharf, Co. of Kamouraska, &c. ... 44(7a)
Return re number of dismissals by Govt. in Co. of Shefford, since Oct. 1, 1911, to Feb. 2, 1914, &c. ... 44(7b)
Return re dismissal of all public officers by present Govt. in District of Portneuf, &c. ... 44(7c)
Return re dismissal of Alex. W. Finlayson, Lightkeeper, St. Esprit Island, Co. of Richmond, N.S., &c. ... 44(7d)
Return re dismissal of Lightkeeper of Cape Cove, County of Gaspé, investigation against, in 1911 ... 44(7e)
Return re dismissal of Dan. Cormier, officer in the Life Saving Station at Eastern Harbour, N.S., &c. ... 44(7f)
Return re dismissal of Ben. V. Willlet, Lightkeeper at Point Duthie, Que., and app't. of successor ... 44(7g)
Return re dismissal of Postmasters in the Co. of Lévis since Sept., 1911, number reinstated who were dismissed by late Govt. ... 44(7h)
Return re dismissal of John A. McLellan, Lightkeeper at Fish Island, P.E.I., ... 44(7i)
Return re dismissal of Thos. LeBlanc, Postmaster of Allard, Bonaventure Co., &c. ... 44(7j)
Return re dismissal of Wm. E. Ehler, Lightkeeper, Queensport, N.S., expenses re investigation, &c. ... 44(7k)
Return re dismissal of Samuel Dickson, Postmaster at Queensport, &c. ... 44(7l)
Return re investigation held, &c. ... 44(7m)
Return re dismissal of Chas. McPherson, Postmaster, North River-side, Guysborough Co., N.S., &c. ... 44(7n)

D

Return re dismissal of Christian L. Ehler, Postmaster at Queensport, N.S., appointment of successor, &c. ... 44(7o)
Return re dismissal of Christian L. Ehler, Postmaster at Queensport, &c. ... 44(7p)
Return re dismissal of Jas. White, Postmaster at Sydney, B.C., re investigation held, &c. ... 44(7q)
Return re dismissal of Postmaster at Mount St. Patrick, South Renfrew; change in location of Post Office in, &c. ... 44(7r)
Return re dismissal of Edwd. Dea. officer in charge of Loberster Hatchery, Port Daniel West, Que., &c. ... 44(7s)
Return re dismissal of A. C. Cameron, Mail Contractor of Fairlight, Sask., correspondence re, ... 44(7t)
Return & re dismissal of Geo. F. Payne, Postmaster at Granby, Que., app't. of successor, &c. ... 44(7u)
Return re dismissal of Postmasters in Co. of Portneuf, names of, number of investigations, &c. ... 44(7v)
Return re dismissal of Postmaster at Havre Boucher, N.S., correspondence re, and appointment of successor ... 44(7w)
Return re dismissal of Wm. Campbell, Lightkeeper, wharf at New Richmond, and app't. of successor ... 44(7x)
Return re number of dismissals of public employees in Co. of Westmorland, N.B., since Feb. 1, 1913, to Feb. 2, 1914 ... 44(7y)
Return re number of dismissals from Dept. Marine and Fisheries from Dec. 5, 1912, to April 14, 1913 ... 44(7z)
Return re dismissal of J. R. Denison, Postmaster of Richmond, Que., and app't. of successor ... 44(7a)
Return re dismissal of Arthur B Caldwell, Asst. Inspector Weights and Measures, Dist. of Quebec ... 44(7b)
Return re dismissal of public officials in Co. of Annapolis, N.S., since Oct. 11, 1911, to March 3, 1913 ... 44(7c)
Return re dismissal of public officials in Prov. of P.E.I. by Govt., since Oct. 16, 1911, number of, &c. ... 44(7d)
Return re dismissal of Capt. J. De coste, Mate and Craneman on dredge No. 6, during season of 1912 ... 44(7e)

E

Estimates of sums required, for year ending March 31, 1915 ... 3
Estimates, Supplementary, for year ending March 31, 1914 ... 3a
Estimates, Supplementary, for year ending March 31, 1915 ... 4
Elections, General, &c., Resumed, of, for 1896, 1900, 1904, 1908, 1911, and By-elections between July 11, 1898, and January 1, 1899 ... 18
Elections, By, &, for House of Commons, for year 1913 ... 18a
Elmira Branch Ity, P.E.I., Total cost of, &c. ... 84
E

Employees of Dep'ts, at Ottawa, and in all Provinces and Territories, inside and outside service, who have left their employment since Oct. 1, 1911, up to Jan. 10, 1912, names, &c. 104
Exchequer Court of Canada, General Rules and Orders of, made on Sept. 16 and Dec. 13, 1913, Express Statistics of Canada, year ended June 30, 1913 64
Expenditure to June 4, 1913, by present Gov't, into allotted partizan conduct of officials, &c. 93a
Experimental Farms, Report of Director and Officers of year ending Mar. 31, 1913 16
Experimental Farm at Ste. Anne de la Pocatière, Number of employees at, in years 1912, 1913, &c. 221
Experimental Farm in Prov. of Quebec, re purchase of horses, cattle, &c., during 1913, expenses, &c. 297
External Affairs, Report of 29e
Edmonton Power Co., re lease of property on Saskatchewan River, at Rocky Rapids, Alberta, &c. 80d

F

Flour and Grain, Quantities of, shipped from Port William to Port Arthur by vessel, 1912, &c. 46
Farm labourers and servants respectively, placed by Govt. Agents in 1912, 1913; where placed, &c. 182
Falmouth, Township Dyke, Hants Co., Expenditures, pay-lists, &c., on 232f
Fair, Mrs. Marguerite, Postmistress of Black Cape, Que., Copy of charges against, &c. 207
Fairen, Frank, Evidence taken before Commissioner to inquire into charges against, of partisanship 211
Falardeau, A. O., and Falardeau, C. N., Document re withdrawal of appeal in case of, in Supreme Court 238
Farmers Bank, Correspondence re appointing Sir Wm. Meredith, Commissioner; letters re relief of shareholders, &c. 272
Ferry Service, Steam, between New Brunswick and Nova Scotia and P. E. Island, all correspondence appertaining to the proposed, for all seasons of the year 121
Ferry Service, Car, between Mainland and P. E. Island, all documents, &c. 121a
Fenian Raid Volunteer Bounty, Report of Board of Inquiry re claims for Bounty in Province of Nova Scotia 153
Fenian Raid Volunteer Bounty, List of applicants in N.S. whose claims are approved list of, in N.S. not yet considered, &c. 188c
Ferguson, John M., Correspondence re seizure of 11 horses belonging to, &c. 216
Fisher, W. W., Inspector, re amounts paid to, for salary, expenses, &c., 1912-1913 150

F

Fishery Hatchery at Port Daniel West, Report of operations at, for year 1913 151
Fishing Pond at Margaree, Correspondence re men appointed at, &c. 164
Fish exported from Canada to United States, months of Oct., Nov., and Dec., 1913, and Jan., 1914, alive, 1912, 1913 186
Fish, Transportation of, from Maritime Provinces to U.S., documents received by Dept. since Jan. 1, 1914, Forestry Association, Canadian, Documents, &c. 264
Fraser, Jos., re purchase of lands from, in connection with works at Cariboo Island, Fictou Co. 248
Friar’s Head Boat Harbour, re expenditure of money at, by Simon P. Doucet, in 1912-13, and 1913-14 232(2b)

G

Geographic Board, Report of 25d
Gold River, Lunenburg Co., N.S., Correspondence re tenders, contracts, &c., for work at 167
Governor General’s Warrants issued since last session of Parliament on acct. 1913-14 50
Government Public Buildings at Lunenburg, N.S., re supply of coal for, &c. 169
Government of Canada, showing cash on deposit to credit of, in last day of each month between April 1, 1913, and Dec. 31, 1913 180
Government of Canada Loans placed by on London market in years 1912, 1913: date, copy of prospectus, price, &c. 181
Grazing Leases, Regulations re, of vacant Dominion Lands, &c. 149
Gravelbourg, Immigration Hall at, documents re, since Jan. 1912, Gran Trunk Pacific Railway Co.:— Copy of protest of, against changes in grades from Winnipeg eastward, terminals at Quebec, &c. 222r
Showing who were from incorporation, and who are the officers and directors of, amount of capital stock, &c. 134
Estimates of cost re construction of Mountain Section of, &c. 187
Grain Commission, Copy of rules, regulations, &c., re hauling of grain, made by Commission to March 2, 1914 241
Guyborough Co., N.S., re statement of salary and expenses of Commissioner Duchemin re investigations in 93d

H

Harbour Commissioners of Montreal, Documents re proposed advances to, for 1914, 1915, 1916, 1917, Harbour Commissioners of Quebec, Memo. of proposed improvements for 1914 out of advances to, &c. 157
Harbour Commissioners of Quebec, re construction of Shelburne, Island, to connect Trans. Ry. with Union Station at the Palais 178
H
Halifax Ocean Terminals, Names of owners from whom land has been expropriated for.... 172
Halifax Ocean Terminals, construction of by National Bedford Hotel at Halif-

ax Harbour, in connection with Terminals... 172a
Hantsport, N.S., re erection of public building at... 202
Herald Publishing Co., fee of Halifax, re amounts paid by Gov't re, since Oct. 11, 1911... 232(2f)
Hudson Bay Railway, re provisions, supplies forwarded to Port Nelson during 1913 by Gov't connection with Terminals at... 291
Hydrographic Survey, 1911-1912... 25f

I
Inland Revenue, Reports, Returns and Statistics for year ended March 31, 1913—
1913
Part I—Excise... 12
" II—Inspection of Weights and Measures... 13
" III—Adulteration of Food... 14
Indian Reserve at Sydney, N.S., re sale and transfer of, and removal of Indians therefrom... 195a
Indian Titles, Report re presented to Superintendent General Indian Aff-
airs, Aug. 20, 1909... 47
Immigrants, Documents re mental, moral and physical inspection of all entering Canada... 228
Internal Economy Commission, Report of, for 1912-1913... 199
Interprovincial Conference, Copy of proceedings and resolutions adopted at last... 119
Interprovincial Conference, Minutes of proceedings in Conference of Repre-

sentatives of...
International Convention for safety of human life at sea, Copy of... 119a
Imperial Naturalization, Correspondence between Imperial Govt. and Govt. of Canada... 129
Imperial Naturalization, Documents re passing of an Act in Great Britain and Dominions providing for... 111a
Indian Affairs, Report of... 27
Inspectors of Agents, Reports made by, re placing farm labourers, domes-
tic servants, &c., in years 1912-13... 220
Industrial Disputes of, 1913, between operators and employees in Coal Mines on Vancouver Island, also be-

fore or since 1913...
International Conference on safety of life at Sea, O.C. appointing repre-

sentatives of Canada on, &c... 147b
Industrial Disputes of, 1913, between operators and employees in Coal Mines on Vancouver Island, also be-

fore or since 1913...
Irish, Fred. B., Postmaster at Afton, N.S., Correspondence re charges against... 147
International Purity Congress, Report of Delegates appt. by Govt. of Can-

ada to attend in November, 1913... 251

Intercolonial Railway:—
Return re amounts of receipts and expenditures on, during months of April, May and June, 1913, also same re corresponding months of 1912; also working expenses 1912 and 1913, for same periods... 126
Total revenue of, during fiscal year 1912-1913, revenue east and west of Campbellton, N.B.... 126a
Names re persons from whom land has been expropriated, in connection with Dartmouth and Dea

Settlement branch of... 128
Documents re claim for damages from fire in Village of Hopewell, Picton Co., N.S.... 85c
Electrical Branch at Moncton, con-
duct of John W. Gaskin and others, cost of inquiry into, &c... 93c
Documents re loss of horse killed on Sept. 19, 1913, property of John Roy, of Amqui... 152
Re increase of freight on live stock carried over; tariff of May 1, 1913, compared tariff April, 1909... 153
Agreement, Copy of, between Can-
dian Govt. Rys. and C.P.Ry. Co. re freight and passengers between Halifax and St. John over I.C.Ry., making Halifax terminal port, &c... 155
Re any arrangement between, and C.P.Ry. In 1913, re hauling C.P. freight and passenger transit be-

tween St. John and Halifax...
Re local minimum rate of freight, small parcels on, prior to Oct. 19, 1911, also present rate on same to Feb. 12, 1911... 173
Re papers, plans, &c., re shortening of distance between Picton and Port Maitland and bridge connec-

tion... 189
Re purchase of quantity of coal for, in United States within past few months... 199
Re time when I.C.Ry. called last for tenders for coal supply, also P.E.I. R.,; number received, &c... 199a
Re freight rates on flour, hay, oats, lumber, &c., between Bathurst, N.B., and Nepisiquit Junction, and other places, &c... 200
Re purchase of property in Moncton owned by late P. S. Archibald, now occupied by General Supt... 202
Supplementary re property in Monc-
ton owned by late P. S. Archibald, now occupied by General Supt... 202a
Freight rates under old tariff on fresh, dried and cured fish, molasses, &c., from Gloucester Jct. and Bathurst to St. John... 203
Copy of all documents, &c., for pur-pose of diversion of, from Linwood Station, through Linwood, Cape

Jack, &c... 117d
Names of contractors, &c., for double-tracking, from Cape Curve to St. Romuald, Que., from Nelson to D. Junction, N.B... 117e
Re elimination of present grades, re-

placing light bridges with heavier, and all reports thereon by F. P. Gutteius... 117f
Alphabetical Index to Sessional Papers. A. 1914

<table>
<thead>
<tr>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re total earnings on Division 3, in connection with passenger traffic, 1911, 1912, and 1913. 126b</td>
<td>Lachine Canal, re cancellation of leases of water lots by Govt., dates of, names of lessees, &c. 80a</td>
</tr>
<tr>
<td>Re purchase of property in Moncton, N.B., formerly owned by late P. S. Archibald, &c. 202b</td>
<td>Lachine Canal, re cancellation of leases of water lots by Govt., length of time said leases were in force, &c. 80c</td>
</tr>
<tr>
<td>Re retirement of Amasa E. Killam, an officer of the Insurance Co. 229</td>
<td>Labour, Report of Department of. 36</td>
</tr>
<tr>
<td>Number of engineers employed at Moncton, and names of; number of formerly in employ of C.P.R., &c. 235</td>
<td>Land, Purchases of, made by Dominion of Canada since Confederation, &c. 90</td>
</tr>
<tr>
<td>Rules, regulations re employees on I.C.R. and P.E.I.Ry. 242</td>
<td>Land, Purchases of, made by Dominion of Canada since supplementary return, &c. 90a</td>
</tr>
<tr>
<td>All documents re refusal of Dept. to permit employees of Ry. to attend Militia Camp last year. 270</td>
<td>Loans, Dominion, showing rates of interest paid on all, from 1890 to 1914. 225</td>
</tr>
<tr>
<td>Bringing of, to ballast ground at Sydney, N.S., wharf at Sydney Mines, &c. 271</td>
<td>Long Sault Development Co., re application of, to dam St. Lawrence River, &c. 79</td>
</tr>
<tr>
<td>Number of passengers, tons of freight, total earnings, number of cars, &c., carried by C.P.Ry. over I.C.Ry. under agreement between said Rys., from Nov. 13, 1913, to March 31, 1914, &c. 283</td>
<td>Long Sault Development Co., Correspondence re application made by, &c. 79a</td>
</tr>
<tr>
<td>Showing number of cars purchased in past six months, quantity, price, &c. 199b</td>
<td>Lobster Fishery Regulations, New, by O. in C. of Mar. 25, 1914, in lieu of those of Sept. 30, 1910. 234</td>
</tr>
<tr>
<td>Ice-breaker, Documents, &c., re construction of, by Canadian Vickers Co. of Montreal. 301</td>
<td>Long Beach, St. Marys, B.C. N.S., Correspondence, &c., re purchase of property for Lobster Pond. at. 95</td>
</tr>
<tr>
<td>Immigration: — Reports re, made by C. F. McKinnon, F. A. McClench, John A. McDougall, J. M. McDonald, Wm. Walkins, S. P. Pream and J. J. Walker, Special Agents, from Nova Scotia. 244</td>
<td>Lévis Co., Fees and disbursements paid to witnesses in, summoned by Commissioners in, &c. 93</td>
</tr>
<tr>
<td>Names, duties, &c., of officials in both inside and outside services of, in 1911 and 1913. 42</td>
<td>Lévis, Quarantine Station at, contracts, &c., re purchase by Govt., July 29, 1913. 265</td>
</tr>
<tr>
<td>Jackson, Mr. J. S., Correspondence, &c., re appt. of, Supt. of Govt. Shipyards at St. Joseph de Sorel. 69</td>
<td>Leroux, Pacifique, re application for damages sustained by removal of bridges on Soulanges Canal. 130</td>
</tr>
<tr>
<td>Judges, Number of, retired since 1850, names, salaries, reasons for, &c. 234</td>
<td>Lingan Beach, South Cape Breton, N.S., re work done on, under H. D. McLean. 166</td>
</tr>
<tr>
<td>Justice, Dept. of, Names of lawyers representing, in Dist. of Quebec since Sept. 21, 1911, &c. 237</td>
<td>Liquor, Relating to, brought from outside of Canada into Territories by special permission, &c. 105</td>
</tr>
<tr>
<td>Justice, Report of Minister of, for year ended March 31, 1913. 34</td>
<td>Library of Parliament, Report of Joint Committee on. 33</td>
</tr>
<tr>
<td>K</td>
<td>Lighthouse at Red Cape, Margaree Harbour, N.S., Correspondence re. 232g</td>
</tr>
<tr>
<td>Karluk, Documents containing all information re charter, outfit, instructions, &c., of the strmn. 191</td>
<td>Lingan Bar, N.S., Names of all employees on, wages, &c. 232k</td>
</tr>
<tr>
<td>Kelly, Wm. J., all documents re imprisonment and proposed liberation of, &c. 302</td>
<td>Life-saving station at Cheticamp, N.S., documents, pay-rolls re, &c. 232m</td>
</tr>
<tr>
<td>Kingsport Pier, Kings Co., N.S., re amount of money spent on, during year 1913. 231(2e)</td>
<td>Lighthouse at Grand Anse, Gloucester Co., N.B., re tenders received for. 232x</td>
</tr>
<tr>
<td>Kitsilano Indian Reserve, re purchase of, by Govt. from Province of British Columbia, &c. 219</td>
<td>Live Stock, re purchase of, by Howard Cornig, of Yarmouth, N.S., in the Maritime Provinces, &c. 295</td>
</tr>
<tr>
<td>Kraut Point Wharf, Lunenburg Co., N.S., re construction of, &c. 231(2d)</td>
<td>Magdalen Islands, Documents re latest changes in Lobster Fishing Regulations at, &c. 205</td>
</tr>
<tr>
<td>M</td>
<td>Manitoba Water-powers. 25e</td>
</tr>
<tr>
<td>Margaree Harbour, N.S., re repairs to pier at, &c. 231x</td>
<td></td>
</tr>
</tbody>
</table>
M

Margaree, N.S., Correspondence respecting supplying of coal to Lobster Hatchery at Port N.S., 1911-12, 1913-14... 206
Margaree, N.S., Correspondence re Sheer Dams on Margaree River, 1911-12, 1912-13... 232 (2v)
Meridian, Demarcation of 141st Degree of West Longitude, Joint Report Commissioners, &c. 106
Metapedia Road Cos. of Rimouski and Bonaventure, Documents re repairing of... 2320
Medical Inspection of Immigrants at port of entry in Canada... 98
Masinisin, Province of Alberta, documents, re location of P.O. in... 72
Miscellaneous Unforeseen Expenses, from April 1, 1914, to January 11, 1914, &c. 54

Militia:
Copies of General Orders promulgated to period from Nov. 18, 1912, to Nov. 25, 1913... 59
Names, addresses, rank or occupation of persons accompanying Ministers of the Crown in Old Europe in 1913... 143
Re transfer of lands by, to Harbour Commissioners of Montreal, &c. 239
Total amount paid for pensions by Dept. of, for year ending March 31, 1913, &c. 257
Correspondence between Dept. of, and Messrs. Macdonald and Montpetit re organization of 33rd Hunters... 258
Correspondence re land in Farnham, Que., for Military Camp ground... 259
Militia, Sydney, N.S., Documents re transportation of, over L.C.Ry, in year 1912... 97
Militia Council, Report of... 35
 Moosejaw, City of, re purchase of lots 1 and 2, Block 125, Plan 96, in, for warehouse, by Government... 222 (2v)
Montagnais Band of Indians, re advances made to, through Agency of Seven Islands, Que. 287
Mira, Co. of Cape Breton, petitions, &c., for subsidies for wharfs, &c., at. 96
Moravian Indians of the Thames, and Regulations of the Abenaki Indians of St. Francis, approved of by Govt., &c., on March 27, 1915, and April 21, 1913... 63
"Montfort," Strn., Report re groundling of April 28, 1914... 278
Municipalities of Pictou, Guysborough and St. Mary's, Claim for refund of monies, &c. 85
Mails, re contract for carrying between Sherbrooke, Guysborough Co., N.S., and Moser's River, Halifax Co., N.S. 70
Mail Contract between Scotsburn Station and West Branch, River John, Pictou Co., N.S., year 1912... 70a
Mail Contract between Scotsburn Station and West Branch, River John, Pictou Co., N.S., since Oct. 1, 1911... 70b
Mail Contract, each one awarded, names and figures of tenderer, since Oct. 15, 1911, &c. 70c

M.
Mail Carriers, showing contracts cancelled or renewed by present Govt., in Co. of Two Mountains... 70d
Mail Contracts made between P. O. Dept. and party or parties, and cancelled before maturity, from Oct. 15, 1911, to Nov. 15, 1912... 70e
Mail Contract between Back Plane and Pictou, Co. of Pictou, N.S., since death of late contractor, D. G. McKay, in 1912... 70f
Mail Contract between P. O. Dept. and N. LeBlanc, for carriage of, between Carleton Centre and Carleton, &c. 70g
Mail Contract, re from Noël to Walton, Hants Co., N.S., during 1913... 70h
Mail, Correspondence re carrying of, between Warkworth and Colborne, County of Northumberland... 70i
Mail, Correspondence re carrying of, between St. François Xavier de Brémond, and Windsor Mills, Que. 70j
Mail Contracts cancelled in Nova Scotia since Oct. 10, 1911, names of contractors, &c. 70k
Mail Contracts cancelled in Co. of Pictou, N.S., since Oct. 1, 1911, names of contractors, &c. 70l
Mail Contracts, Documents re, between Tatamagouche and Brulé Shore, Colchester, N.S., during 1913... 70m
Mail Contracts and tenders received for carrying of, between Antigonish and Livingstone Cove, N.S.,... 70n
Mail, Correspondence on file re service of, and tenders received, between Antigonish and Livingstone Cove, N.S.,... 70o
Mail, Correspondence, &c., re service between Bridgetown, Port Lorne and Hampton, Parker's Cove, Annapolis Cove, N.S.,... 70p
Mail, Correspondence, &c., re contracts for carrying of, between Antigonish and Livingstone Cove, N.S., &c. 70q
Mail, names, amounts, to whom given of all tenders, in 1913, for mail routes in Co. of Shelburne, N.S.&c. 70r
Mail, Documents re contracts of, between Bridgetown and Port Lorne, Hampton and Parker's Cove, 1912... 70s
Mail, Copy of Contract for carrying of, between North Lochaber and Collegeville, for 1913... 70t
Mail, re tenders received for carrying of, between Merigomish and Malignant Cove... 70u
Mail, number of Contracts cancelled in County of Inverness since Sept. 1, 1911, to Mar. 19, 1914... 70v
Mail, Documents re renewal of contract with Geo. A. Stewart for carrying, between N. Lochaber and West Lochaber... 70w
Mail, Documents re increased mail subsidy agreed upon by Postmaster General and various Ry. Companies... 70x
Mail, Names of 82 tenders for carrying of, between Baie St. Paul and Murray Bay, Co. of Charlevoix... 70y
Mail Contract between Pictou Post Office and Ry. Station, between Dept. and Peter Foley... 70z
M

- Mail Contract awarded to Christophe Leveque of St. Eleuthère, for carriage of, between St. Eleuthère and Sully. 70 (2d)
- Mail lock patent, No. 151043, correspondence, application, &c., for. 74b
- Rural Mail service in Parish of Ste. Marguerite de Blaindride, Co. of St. Johns and Iberville. 141c
- Rural Mail service in Co. of Quebec, what Parishes of said County, &c. 141d
- Rural Mail route from New Glasgow, through Mount William, Granton and Amherstorphie, N.S. 141e
- Rural Mail service in Parish of St. Théodore d'Acton, Que. 141f
- Mail carriage between Canadian and European Ports, Agreement between Govt. and Stm. Co.'s re. 282
- Mail carriage from Port Hood to S. West Port Hood, &c. 70 (2c)
- Mail Contracts cancelled in Counties of Westmorland, Albert, King's, and Kent, N.B., since Oct. 9, 1911. 70 (2d)
- Rural Mail Routes in Pictou Co., N.S.; re establishment of, also number of P.O. closed. 141g
- Melville, Sask, re applications to Govt. for Post Office Building at. 292
- Montreal, re buildings, offices, &c, occupied by Govt., rented or otherwise. 291

N

- Newspapers in Canada. List of re advertisements in, by Govt., or Minis- ter, Officer, or Dept., between Oct. 10, 1911, and April 28, 1913. 81
- Newspapers in Canada. List of re advertisements in, by Govt., Oct. 19, 1905, to Oct. 10, 1907, up to Oct. 10, 1911. 81a
- Newspapers in Canada. List of re advertisements in, by Govt., between Oct. 10, 1906, and Oct. 1907, and years up to 1911. 81b
- Newspapers in Canada. List of re advertisements in, by Govt., between Oct. 10, 1911, and April 28, 1913, amount paid. 81c
- Newspapers in Canada. List of re advertisements in, by Govt., between Oct. 10, 1906, and 1907, and years up to 1911. 81d
- Newspapers in Nova Scotia, Moneys paid to, during years 1912, 1913, and nature of service. 81f
- Newspapers in Canada. List of advertisements in, by Govt., between Oct. 10, 1911, and April 28, 1913. 81g
- New London Branch of P.E.I. Railway, re copy of contracts, tenders, in connection with proposed. 179
- New Carlisle, Bonaventure Co., re non-reerection of public buildings in, &c. 232f
- Navy, Royal Canadian, Pensions or Gratuities to Officers of, &c., Copy of Order in Council re. 48
- Navy, Royal Canadian, Documents, &c., re death and burial at Montreal of Jos. LeBlanc, sailor on D. G. S. Canada. 144
- Naval Affairs, Correspondence respecting requests that vessels belonging to Navy be present at regattas or celebrations in 1912-1913. 227
- Naval Service, Report of Dept. of, for year 1913. 38
- Yobe, Cruiser, Number of men on duty on, &c. 41
- Natural Resources, certain portions of King's Dominions, Interim Report of Royal Commission on. 135
- National Drop Forge Co., Ltd., re listing of names of promoters, powers held by, given by letters patent. 193
- National Battalions Commission, Receipts and Expenditures of, to March 31, 1914. 268
- Northeast § 22-11-5-W. 3 M., Copy of all papers in connection with. 110h
- Northeast § 22-11-5-W. 3 M., Supplementary papers in connection with. 110j
- Northwest § Section 20-4, Range 16, West of 2nd Meridian. 110l
- North § 1-3-16-W. 2-M., Copy of all papers in possession of Dept. re. 110m
- North Cape Breton and Victoria, South Cape Breton, Antigonish and Inverness, Names of witnesses in connection with investigations held by H. P. Duchemin in Counties of &c. 93d
- North Cape Breton and Victoria, South Cape Breton, Antigonish and Inverness, Names of witnesses in connection with investigations held by H. P. Duchemin in Counties of, &c., Supplementary re. 93e
- North Cape Breton and Victoria, South Cape Breton, Antigonish and Inverness, Names of witnesses in connection with investigations held by H. P. Duchemin in Counties of, &c., Supplementary re. 93f
- North Cape Breton and Victoria, South Cape Breton, Antigonish and Inverness, Names of witnesses in connection with investigations held by H. P. Duchemin in Counties of, &c., Supplementary re. 93g
- North Cape Breton and Victoria, Ry. extension into, Breakwaters, Wharfs, opening of Harbours in, &c. 271
- Northumberland, Dredge, Number of men employed on, at Pictou, in Jan., Feb. and March, 1913, &c. 233
- Nova Scotia, New Brunswick and P. E. Island, Memoranda re claims to representation, &c. 118a

O

- Ontario Equipment Co., re Order of the House for production of sample of patent lock and key sold by, to F. O. Dept. 74
- Orders in Council, Copies of all required by House under Resolution passed on February 20, 1882, since date of last Return under Resolution. 107g
| O | Provided Fund Board of the L.C.Ry. and P.E.I.Ry.'s employees, Return re proceeding of, from Jan. 1, 1912, to Feb. 2, 1914 ... | 125a |
| | Pure Bred Animals, re names and addresses of persons with whom pure bred animals have been placed ... | 234 |
| | Pure Bred Stallions or Bulls, Number of, purchased by Govt. for breeders in Man., Sask., and Alta., since Jan. 1, 1912 ... | 296 |
| | Post Offices:— Masasin P.O., Province of Alberta, re change in location, &c. ... | 72 |
| | Moulin Basinet P.O., St. Jean de Matha, Co. of Joliette, re closing of ... | 73 |
| | Post Office Dept., regarding return for production of one sample of patented lock and key, &c. ... | 74 |
| | Post Office Dept., Correspondence between, and Alleyn Taschereau, avocat, re locks for mail bags, &c. ... | 74a |
| | Post Office Dept., Correspondence between, and Messrs. A. de Macdonald, Elizéar Montpetit and others. ... | 75 |
| | Documents re changes in Postmastership of Port Daniel Centre, Avignon, New Richmond, Black Cape, Que. &c. ... | 75a |
| | Documents re removal of the Post Office from store of Alex. Robertson, Red Point, P.E.I., Nordicle ... | 75b |
| | Documents re complaints against John A. Campbell, Postmaster, New Richmond, Que., &c. ... | 75c |
| | Correspondence between P.O. Dept., P.O. Inspector, St. John, N.B., and Postmaster at Kouchibouguac. ... | 76 |
| | Re new Post Offices made in Co. of L'Islet, names of Postmasters, revenues and expenses, &c. ... | 142 |
| | Appt. of Caretakers of P.O. at Rigaud, Que., &c. ... | 77m |
| | Number of persons appointed to Inside Service of, by present Govt., names, salaries, &c. ... | 104f |
| | Documents re opening of Post Office, named Glasson, Parish of St. Albert, Co. of L'Islet ... | 142a |
| | Building in Saskatchewan, re purchase of a site for ... | 232h |
| | Building in Halifax, Purchase of site for, on Gottingen Street ... | 232w |
| | Post Office at Canning, N.S, re purchase of site for ... | 232w |
| | Post Office in Village of Egagnville, Correspondence re location and erection of ... | 232z |
| | Post Office in Village of Egagnville, Supplementary ... | 233(2f) |
| | Post Office in Village of Egagnville, re further supplementary. ... | 232(2g) |
| | Postmaster General, Report of, for year ended March 31, 1913, &c. ... | 24 |
| | Pointe Cascades, re tearing down of houses and dependencies erected on Govt. grounds at, the property of L. A. Sauvé ... | 176 |
| | Population of Canada and Territories, years 1871, 1881, 1891, 1901 and 1911, &c. ... | 133 |

<p>| P | Orders in Council, Return re those published in Canada Gazette between Oct. 1, 1912, and Nov. 30, 1913, in accordance with Dominion Lands Survey Act, Sec. 5, Chap. 21, 7-8 Edward VII ... | 110a |
| | Orders in Council, Return re those published in Canada Gazette between Oct. 1, 1912, and Nov. 30, 1913, in accordance with Sec. 77 of Dominion Act, Chap. 20, Statutes of Canada, 1908 ... | 110b |
| | Orders in Council under a Resolution passed on Feb. 20, 1882 since the date of last Return and Resolution ... | 110d |
| | Order in Council, Copy of, No. P.C. 976 re Regulations governing the entry of Naval Cadets ... | 266 |
| | Order in Council, dated May 18, 1914, re the organization of a Naval Volunteer Force ... | 266a |
| | Ottawa Improvement Commission, Receipts and Expenditures of, to March 31, 1914 ... | 53 |
| | Ottawa City, Commission appointed for beautifying of, and vicinity, correspondence, &c. ... | 91d |
| | Ottawa City, Correspondence between and Govt. re pure water supply for city and Govt. buildings ... | 175 |
| | Ouellette, Arsène, re death of, at Trois Pistoles, I.C.Ry. ... | 88 |
| | Public Accounts of Canada for year ended March 31, 1913 ... | 2 |
| | Public Works, Report of Minister of, year ended March 31, 1913 (2 Vols.) ... | 19 |
| | Public Health Service, Several Branches of: P. S. engaged in ... | 99 |
| | Public Printing and Stationery, Total number of employees in, on Feb. 1, 1914, increased wages, 1913 ... | 104d |
| | Public Land of Dominion, Number of acres of, given to Ry. Cos. by Govt. from 1878 to March, 1914, &c. ... | 275 |
| | Patrol Boat Davis and Lobster Hatchery, Charges incurred by, season of 1912 ... | 40 |
| | Parcel Boxes re Rural Boxes, Contracts for, &c. ... | 224 |
| | Parcel Post Service, Regulations relating to ... | 108 |
| | Petroleum and Natural Gas rights, Disposal of, in Manitoba, Saskatchewan, Alberta, N. W. Territories, Yukon, &c. ... | 148 |
| | Penitentiaries, Report of Royal Commission on, Evidence taken, &c. ... | 252 |
| | Public Printing and Stationery, Report of 1913 ... | 32 |
| | Private Secretaries of Members of Liberal Govt., names, salaries, grades, on Oct. 11, 1911 ... | 139 |
| | Prince Edward Island, Memo. of special claim of, re representation in House of Commons ... | 118 |
| | Prince Edward Island, and New Brunswick, Memo. re claims of ... | 118a |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Potatoes, Quantities and values of, imported monthly during years 1911, 1912, 1913; countries from which imported.</td>
<td>217</td>
</tr>
<tr>
<td>Potatoes, Quantities and values exported monthly from Provinces, from Sept. 1, 1911, to Jan. 1, 1914, &c.</td>
<td>217a</td>
</tr>
<tr>
<td>Picton Bank, Documents re incorporation and licensing of, growing up of business of, &c.</td>
<td>217b</td>
</tr>
<tr>
<td>Plante, Arthur, Copy of O.C. appointing Commissioner re claims against Quebec, &c.</td>
<td>218</td>
</tr>
<tr>
<td>Plante, Arthur, Supplementary return relating to, appointment of, &c.</td>
<td>219</td>
</tr>
<tr>
<td>Privy Council, Judicial Committee of, Documents generally respecting proposed changes of.</td>
<td>245</td>
</tr>
<tr>
<td>Public Works: Return re amount of expenditure in Counties of Rimouski and Gaspe since Oct. 1, 1911, &c.</td>
<td>232</td>
</tr>
<tr>
<td>Return re amount of expenditure in Antigonish Co. since Oct. 11, 1911, &c.</td>
<td>232a</td>
</tr>
<tr>
<td>Return re documents concerning proposed building and purchase of site for, at Bear River, N.S.</td>
<td>232b</td>
</tr>
<tr>
<td>Return re expenditure on Mabou Harbour, in years 1911-12, 1912-13, &c.</td>
<td>232c</td>
</tr>
<tr>
<td>Return re specifications, tenders, &c., connected with proposed drydock at Lauzon, Que.</td>
<td>232d</td>
</tr>
<tr>
<td>Public Building at Guelph, all documents in connection with, since Jan. 1, 1912.</td>
<td>232(2c)</td>
</tr>
<tr>
<td>Public Building at Brantford, re all specifications and tenders pertaining to.</td>
<td>232(2d)</td>
</tr>
<tr>
<td>Public Works in Richmond Co., N.S., all documents received from J. A. Gillies.</td>
<td>232(2e)</td>
</tr>
<tr>
<td>Post Office at Eganyville, Renfrew Co. re location and erection of.</td>
<td>232f</td>
</tr>
<tr>
<td>Public Works in Co. of Bonaventure since Oct. 10, 1911, to Feb. 2, 1914.</td>
<td>232g</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quebec Oriental Ry. and Atlantic. Quebec and Western Ry. Correspondence, re acquisition of, by Govt. as branch lines of L.C.Ry. &c.</td>
<td>117a</td>
</tr>
<tr>
<td>Quebec Harbour Commission, re construction of a line of Ry. to connect Trans. Ry. with Union Station at the Palais.</td>
<td>178</td>
</tr>
<tr>
<td>Quebec Harbour Commissioners, Board of, re purchase of stone quarry by, at St. Nicholas, Que.</td>
<td>263</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Railway Commissioners, Board of, Copy of all decisions of, made on or after Oct. 10, 1911, re appeals from, &c.</td>
<td>124</td>
</tr>
<tr>
<td>Railway Belt in B.C. Sale by Govt. of following lands in: Townships 23-24, R. 18; T. 23-24, R. 19; T. 24-25, R. 20, &c.</td>
<td>110k</td>
</tr>
<tr>
<td>Rainy River Navigation Co., Claim of, against Govt. re operation of boats, season of 1911, &c.</td>
<td>63</td>
</tr>
<tr>
<td>Radio-Telegraphy, Copy of Regulations governing, under Radio Telegraph Act, 1913.</td>
<td>300a</td>
</tr>
<tr>
<td>Radio-Telegraphy, Copy of Order in Council, No. P.C. 1395, re Regulations governing.</td>
<td>300</td>
</tr>
<tr>
<td>Restigouche River re projected Railway or Highway bridge over, at Campbellton, N.B., and Quebec.</td>
<td>103</td>
</tr>
<tr>
<td>Rideau Canal, re permits to Clubs to erect boat houses on, between Laurier Ave., Bridge and Hartwell's Locks.</td>
<td>80b</td>
</tr>
<tr>
<td>Ride Range, near Souris, P.E.I., all documents connected with purchase of.</td>
<td>255</td>
</tr>
<tr>
<td>Royal Society of Canada, Statement of affairs of, for year ended April 30, 1913.</td>
<td>55</td>
</tr>
<tr>
<td>Royal Mail Steam Packet Co. Agreement between Govt. of Canada and, re British W. I. service.</td>
<td>113</td>
</tr>
<tr>
<td>Royal Northwest Mounted Police, Report of.</td>
<td>28</td>
</tr>
<tr>
<td>Royal Northwest Mounted Police, Report of Magisterial cases entered by.</td>
<td>28a</td>
</tr>
<tr>
<td>Ross, Jean, or Joseph, of Amqui, Rimouski Co., re claim of, against L.C.R., for accident to horse, &c.</td>
<td>131</td>
</tr>
<tr>
<td>Rowell, Newton W., re sums of money paid to, for legal services during past fifteen years.</td>
<td>223a</td>
</tr>
<tr>
<td>Rowell, Newton W., re payments made by Govt. to, for legal services, &c.</td>
<td>224</td>
</tr>
<tr>
<td>Roy, Hon. Judge, re travelling, &c. of, during years 1912, 1913 and 1914.</td>
<td>236</td>
</tr>
<tr>
<td>Roy, Mrs. Marcelline, Complaints against, investigation into conduct of, &c.</td>
<td>71</td>
</tr>
<tr>
<td>Railways and Canals, Report of Dept. of, for year ending March 31, 1913.</td>
<td>29</td>
</tr>
<tr>
<td>Rural Mails, &c. - Routes established in Co. of Bonaventure from Oct. 1911, to Feb. 2, 1914, &c.</td>
<td>141</td>
</tr>
<tr>
<td>Tabulated Statement of Rural Mail Routes opened since 1911, number of boxes used, delivery, contracts, &c.</td>
<td>141a</td>
</tr>
<tr>
<td>Number of Rural Mail Routes established in N.S., names, &c.</td>
<td>141b</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Shareholders in Chartered Banks to December 31, 1913.</td>
<td>6</td>
</tr>
<tr>
<td>Seizures made by John C. Bourinot, as Acting Preventive Officer and Collector of Customs for Port Hawkesbury, N.S., from 1884 to 1886, and from 1886 to 1898, also from 1898 to 1912.</td>
<td>49a</td>
</tr>
</tbody>
</table>
Section 36, East § of, in Township 6, Range 8, West of Fourth Meridian, Correspondence, &c., re .. 61
Section 19-23-4, S.W., all Res. 7-49-28-1, Documents, &c., In Dept. of Interior re .. 610
Shelburne, N.S., Reports, &c., re mail service, to Jordan Bay and Jordan River since Oct. 1, 1911 .. 208
Shareholders Montreal City and District Savings Bank and La Caisse d'Économie de Notre-Dame de Québec, Statement of, as on December 31, 1913 .. 58
Scales, G. R., re contract entered into by, for completion of Atlantic and Lake Superior Ry .. 87
S.E. § of Section 16, Township 25, Range 5, West Fifth Meridian, Papers connected with, &c. .. 110f
S.W. § of 23-16-12, W. 3 M., Papers connected with, &c. .. 110g
Secretary of State, Report of .. 29
Skinner's Pond, Proposed Harbour at, Surveys made for .. 100
Skinner's Cove, N.S., Bank of Nova Scotia payments made for, purchase of land at, year 1913 .. 230
Steamboat Inspection, Report of Dept. of Marine on, for fiscal year 1912-13 .. 23
Steamship Service between Canada and West Indies, all documents re between May 1, 1912, to Dec., 1913 .. 236
Strike in British Columbia coal mines, Correspondence re, also copy of all Orders in Council, &c. .. 147c
Stream Measurements, Report of .. 25c
Sackville, N.B., re proposal to have spur line to connect public wharf at, with L.C.Ry., &c. .. 117b
Salisbury and Albert Railway, Annual Report made by, to the Ry. Dept. .. 127
Salmon Hatchery, Nepisiguit River, N.B., Copy of tenders for construction received, and contracts let .. 145
Salmon Fishing in St. John River above tide water, Orders in Council, Documents re, &c. .. 162
Saturna Strm., Report of Commissioner on grounding of, April 23, 1914 .. 277
Senate, Opinion of Deputy Minister of Justice on increased representation in, of the Western Provinces .. 212
Senate, Copy of Resolution of Assembly of B.C. re increased number of Senators from said Province .. 212c
Senate, increased representation in, Copy of Assistant Deputy Minister on subject of .. 212d
Senates or Upper Chambers in British Empire, or foreign countries, Information respecting constitution of .. 246
Senates or Upper Chambers in British Empire, or foreign countries, Supplementary Return re .. 246a
Smelt Fishing licenses issued in Co. of Pictou, N.S., during past season, all correspondence, re .. 204
Smelt Fishing licenses issued in Co. of Pictou, N.S., during past season, all correspondence re .. 204a
Southern Railway Co., return re documents, &c., relating to, Reports of Engineers, &c. .. 255
南
South Lake, Lakeville, Antigonish Co., re expenditures in 1913, at .. 232(21)
Steamship Service between St. John, N.B., and Bear River, N.S., during 1912, to Dec., Memo, re .. 159
Smith, B. F., re cutting lumber on Tobique Indian Reserve, N.B., also amounts paid since Jan. 1, 1912 .. 198
Stikes and Lockouts from 1901 to 1912 .. 36b
‘Stevens Dam,’ across River Trent, Documents connected with power privileges relating to .. 262
Stellarton, Town of, re purchase of site for public building in, &c. .. 232a
Steamer Canada, Memo, of subsidy paid to, and copy of reports made by proprietors of, season of 1913 .. 160
St. Peter's Indian Reserve, Instructions issued to C. P. Fullerton and Fawcett Taylor in reference to .. 198b
St. Lin des Laurentides, re public building authorized in Estimates of 1911-12 .. 2321
St. Jean, Bank of, Banque Ville Marie, Bankers, Quebec Cartier, investigation into incorporation and licensing of .. 243
St. Phillipe East and St. Phillipe West, re expenses of, since June 1, 1912, to Feb. 2, 1914 .. 276

T
Trade and Commerce, Report of, year ended March 31, 1913 .. 10
(Par I—Canadian Trade) .. 10
(Par II—Canadian Trade with (1) France, (2) Germany, (3) United Kingdom, and (4) United States) .. 10a
(Par III—Canadian Trade with foreign countries, except France, Germany, the United Kingdom, and United States) .. 10b
(Par IV—Miscellaneous information) .. 10c
(Par V—Report of Ocean Commissioners for Canada) .. 10d
(Par VI—Subsidized Steamship Services, Statistics, Traffic, &c., to Dec. 31, 1913, and Estimates for fiscal year 1914-1915) .. 10e
(Par VII—Trade of Foreign Countries, Treaties and Conventions) .. 10f
Treasury Bills discounted since March 31, 1913 .. 57
Trade Unions, Return respecting, &c. .. 89
Telegraph or Telephone line from Baddeck, N.S., to Margaree, N.S., re construction of, by Govt. .. 232f
Telegraph Statistics of Canada, year ended June 30, 1913 .. 20f
Telegram Statistics of Canada, year ended June 30, 1913 .. 20d
Temporary Loans, Statement of, since March 31, 1913 .. 56
Temporary Loans, re total liability of, between May 1, 1913, and Dec. 31, 1913, rates of interest paid, &c. .. 122
Temporary Clerks, re number employed in Library in Sessions of 1911-12, and 1912-13, names, salary, &c. .. 162
Three Rivers, Report re documents held in District of, since Oct. 15, 1911, to April, 1913 .. 92
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy of original contract and amended one of Mr. Jos. Gosselin re Car shops at St. Malo, Que.</td>
<td>Copy of correspondence re appointment of Messrs. Lynch-Staunton and Gutelius as Commissioner re.</td>
<td>Re expenditure on construction of wharf at Finlay Point, Inverness Co., N.S.</td>
</tr>
<tr>
<td>Copy of agreements between, and the Canadian Northern Ry. for use of line by trains of Trans. Ry. to St. Malo.</td>
<td>Copy of all documents re the intended construction of, from Pointe St. Claire, east of Quebec Bridge, &c.</td>
<td>Re expenditure on construction of Wharf at Bear River, N.S. &c.</td>
</tr>
<tr>
<td>Return re choice of site for station at Village of St. Eleuthère, on N.T.Ry., &c.</td>
<td>Return re choice of site for station at Village of St. Eleuthère, on N.T.Ry., &c.</td>
<td>Re expenditure for Public Wharf at Centreville, Shelburne Co., N.S.</td>
</tr>
<tr>
<td>Return re Costing Plants on N.T.Ry., number of, where constructed, names of tenderers, &c.</td>
<td>Return re Costing Plants on N.T.Ry., number of, where constructed, names of tenderers, &c.</td>
<td>Re expenditure for Public Wharf at Sainte Croix, Lotbinière Co., Que.</td>
</tr>
<tr>
<td>Report of Commissioners of, for 1913.</td>
<td>Report of Commissioners of, for 1913.</td>
<td>Relating to proposed Wharf at Little Cape and Great Smeghe Harbor, N.B.</td>
</tr>
<tr>
<td>Taschereau Alleys, Que. Correspondence between, and P. O. Dept. re purchase of locks for mail bags.</td>
<td>Taschereau Alleys, Que. Correspondence between, and P. O. Dept. re purchase of locks for mail bags.</td>
<td>Relating to expenditure on Wharf at Aricht, N.S., since Oct. 11, 1911.</td>
</tr>
<tr>
<td>Towns on Ontario having a population larger than town of Chesley, S. Bruce, number of, having letter boxes, &c.</td>
<td>Towns on Ontario having a population larger than town of Chesley, S. Bruce, number of, having letter boxes, &c.</td>
<td>Relating to claim re Wharf at Bonaventure River, Bonaventure Co.</td>
</tr>
<tr>
<td>Trent Valley Canal, Correspondence re investigation by Mr. Ferguson concerning affairs of.</td>
<td>Trent Valley Canal, Correspondence re investigation by Mr. Ferguson concerning affairs of.</td>
<td>Relating to purchase of site for Wharf at Bear River, N.S.</td>
</tr>
<tr>
<td>Trawling, Steam, correspondence since Oct., 1911, between Govt. of Canada and Govt. of United States.</td>
<td>Trawling, Steam, correspondence since Oct., 1911, between Govt. of Canada and Govt. of United States.</td>
<td>Relating to expenditure. &c., on Wharf at L'Île Verte, Co. of Témiscouata.</td>
</tr>
<tr>
<td>Unclaimed Balances, dividends unpaid, &c.</td>
<td>Unclaimed Balances, dividends unpaid, &c.</td>
<td>Relating to copy of pay-list of employees on Wharf at west of Rivière Verte, Témiscouata.</td>
</tr>
</tbody>
</table>

U

- United Shoe Machinery Co., Report of Board appt. to investigate matters of...
- United States, Citizens of, employed by Government since October 11, 1911.

W

- Wharfs:—
 - Expenditure of Govt. for Wharf at Whycocoomah...
 - Re expenditure on Wharf at Feltzen South, Lunenburg, N.S., &c.
 - Re expenditure on Wharf at Wharf at Gut, Victoria Co., by Govt. during summer of 1913...
 - Re expenditure on Wharfs, Breakwaters, &c., in Co. of Yarmouth, N.S., since Oct., 1911...
 - Re expenditure on Extension of Wharf at Finlay Point, Mabou, Inverness Co., year 1910-11.
 - Re expenditure on Wharf at Finlay Point, Inverness Co., N.S....
 - Re expenditure on construction of Wharf at Finlay Point, Inverness Co., N.S....
 - Re expenditure on construction of Wharf in Town of L'Assomption, Que....
 - Re expenditure on construction of Wharf at Bear River, N.S. &c.
 - Re expenditure for Public Wharf at Centreville, Shelburne Co., N.S.
 - Re expenditure for Public Wharf at Sainte Croix, Lotbinière Co., Que.
 - Relating to proposed Wharf at Little Cape and Great Smeghe Harbor, N.B.
 - Relating to construction of Wharf in Town of L'Assomption, Petitions for and against, &c.
 - Relating to expenditure on Wharf at Aricht, N.S., since Oct. 11, 1911.
 - Relating to expenditure on Govt. Wharf at Croft's Cove, N.S., in 1911.
 - Relating to claim re Wharf at Bonaventure River, Bonaventure Co.
 - Relating to completion of Wharf at Ste. Croix, since Sept. 21, 1911, to March, 1914.
 - Relating to purchase of site for Wharf at Bear River, N.S. ...
 - Relating to expenditure on Hall's Harbour Wharf, N.S., 1913. ...
 - Relating to expenditure. &c., on Wharf at L'Île Verte, Co. of Témiscouata.
 - Relating to completion of Wharf at Sainte Croix, Co. of Lotbinière.
<table>
<thead>
<tr>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relating to construction of Wharf at Cole Harbour, N.S.</td>
<td>Wire Rods, Temporary suspension of,</td>
</tr>
<tr>
<td></td>
<td>Dumping Clause of Act respecting,</td>
</tr>
<tr>
<td></td>
<td>correspondence, &c.</td>
</tr>
<tr>
<td>Relating to repairs on Pier at Margaree Harbour, N.S.</td>
<td>116</td>
</tr>
<tr>
<td>Relating to construction of Feltzen South Wharf, N.S.</td>
<td></td>
</tr>
<tr>
<td>Relating to building and repairing Wharf at Port Hood, N.S.</td>
<td>140</td>
</tr>
<tr>
<td>Relating to expenditure of $500 on Finlay Point Wharf, N.S. during 1913</td>
<td>161</td>
</tr>
<tr>
<td>Relating to expenditure on Wharf at Arichat, N.S. for use of stmr. Magdalen</td>
<td>277</td>
</tr>
<tr>
<td>Wheat, Quantities of, by grades received at elevators at Fort William</td>
<td>278</td>
</tr>
<tr>
<td>Wheat, Quantities of, by grades received at elevators at Fort William and Port Arthur, 1910-11, 1911-12</td>
<td>240</td>
</tr>
<tr>
<td>Wheat, Freight charges on, from Fort William or Port Arthur to Canadian Lake Ports, by C. P. stmr.s. and other lines, year 1912</td>
<td>254</td>
</tr>
<tr>
<td>Winnipeg River, re leases of water-powers granted on, dates, to whom, &c.</td>
<td>80</td>
</tr>
</tbody>
</table>

Yarmouth, Bank of, Documents re incorporating and licensing of, also re winding up | 243a |
Yarmouth Harbour, N.S., re removal of ice in, by C.G.S. Stanley, in Feb., 1914 | 251 |
Yarmouth, North, re Postmaster of, selling stamps out of jurisdiction | 273 |
Young, Captain Murdock, investigation held against, by Mr. Wilson, B.C. | 101a |
LIST OF SESSIONAL PAPERS

Arranged in Numerical Order, with their titles at full length; the dates when Ordered and when Presented to the Houses of Parliament; the Names of the Senator or Member who moved for each Sessional Paper, and whether it is ordered to be Printed or Not Printed.

CONTENTS OF VOLUME 1.

(This volume is bound in three parts.)

CONTENTS OF VOLUME 2.

2. The Public Accounts of Canada, for the fiscal year ended March 31, 1913. Presented by Hon. Mr. White, January 19, 1914. Printed for distribution and sessional papers.

CONTENTS OF VOLUME 3.

CONTENTS OF VOLUME 4.

CONTENTS OF VOLUME 5.

(This volume is bound in two parts.)

CONTENTS OF VOLUME 6.

 Printed for distribution and sessional papers.

10a. Report of the Department of Trade and Commerce, for the year ended March 31, 1913; Part II.—Canadian Trade with (1) France, (2) Germany, (3) United Kingdom, and (4) United States. Presented by Hon. Mr. Foster, January 22, 1914.
 Printed for distribution and sessional papers.

CONTENTS OF VOLUME 7.

10b. Report of the Department of Trade and Commerce for the fiscal year ended March 31, 1913: Part III.—Canadian Trade with Foreign Countries (except France, Germany, the United Kingdom and United States). Presented by Hon. Mr. Foster, April 15, 1914.
 Printed for distribution and sessional papers.

 Printed for distribution and sessional papers.

 Printed for distribution and sessional papers.

CONTENTS OF VOLUME 8.

 Printed for distribution and sessional papers.

 Printed for distribution and sessional papers.

CONTENTS OF VOLUME 9.

 Printed for distribution and sessional papers.

CONTENTS OF VOLUME 10.

 Printed for distribution and sessional papers.

 Printed for distribution and sessional papers.

 Printed for distribution and sessional papers.

 Printed for distribution and sessional papers.

CONTENTS OF VOLUME 11.

 Printed for distribution and sessional papers.

 Printed for distribution and sessional papers.

 Printed for distribution and sessional papers.

CONTENTS OF VOLUME 12.

 Printed for distribution and sessional papers.

CONTENTS OF VOLUME 13.

CONTENTS OF VOLUME 14.

CONTENTS OF VOLUME 15.

CONTENTS OF VOLUME 16.

21a. List of Shipping issued by the Department of Marine and Fisheries, being a list of vessels on the Registry Books of the Dominion of Canada, on December 31, 1913. Presented by Hon. Mr. Hazen, May 1, 1914. Printed for distribution and sessional papers.

CONTENTS OF VOLUME 17.

CONTENTS OF VOLUME 18.

CONTENTS OF VOLUME 19.

(This volume is bound in two parts.)

CONTENTS OF VOLUME 20.

CONTENTS OF VOLUME 21.

25e. Manitoba Water-powers.

CONTENTS OF VOLUME 22.

CONTENTS OF VOLUME 23.

CONTENTS OF VOLUME 24.

28a. Statement of Magisterial cases entered, and convictions obtained by the Royal Northwest Mounted Police in the Provinces of Alberta and Saskatchewan, the Yukon Territory and a portion of Manitoba, during the years 1909 to 1913. Presented by Hon. Mr. Borden, February 16, 1914. Not printed.

CONTENTS OF VOLUME 25.

CONTENTS OF VOLUME 26.

CONTENTS OF VOLUME 27.

34. Report of the Minister of Justice as to Penitentiaries of Canada, for the fiscal year ended March 31, 1913. Printed for distribution and sessional papers.
CONTENTS OF VOLUME 27—Continued.

CONTENTS OF VOLUME 28.

40. Return to an Order of the House of April 7, 1913, for a copy of all accounts, vouchers and charges incurred by and relating to the Lobster Hatchery and Patrol Boat Davis during the season of 1912, to December 31, 1912, with the names of the officers and crews, and the wages paid to each. Presented January 19, 1914—Mr. Kyle. *Not printed.*

41. Return to an Order of the House April 21, 1913, for a Return showing the names and the respective ranks and positions of the officers now on duty on the Niobe at Halifax, under the Department of Naval Affairs; the number of men now on duty as seamen or other like positions on the Niobe; the number of men dropped from the service on the Niobe since July 1, 1912; and if any efforts have been made to recruit men for the Niobe since July 1, 1912. Presented January 19, 1914—Mr. Macdonald. *Not printed.*

42. Return to an Order of the House of May 12, 1913.—1. For a Return showing the respective names, duties and salaries of Officials of the Immigration Department of both Inside and Outside Service on March 31, 1911.

2. The respective names, duties and salaries of Officials of the Immigration Department of both Inside and Outside Service on March 31, 1913. Presented January 19, 1914—Mr. Oliver. *Not printed.*

43. Return to an Order of the House of February 24, 1913, for a copy of all regulations relating to the disposition of Dominion Lands made by the Minister of the Interior from October 12, 1911, to January 1, 1912, and of the regulations for the placing of half-breed scrip on homestead or other lands, made by the Minister of the Interior from October 12, 1911, to January 1, 1912. Presented January 19, 1914.—Mr. Oliver. *Not printed.*

44. Return to an Order of the House of January 15, 1913, for a copy of all charges, correspondence, letters, telegrams nd other documents relative to the dismissal of Horace Hindress, Quarantine Medical Officer at North Sydney, in the Riding of North Cape Breton and Victoria, and of the evidence taken and report of investigation held by H. P. DuChemin, in regard to same, and a detailed statement of the expenses of such investigation. Presented January 19, 1914.—Mr. McKenzie. *Not printed.*

44a. Supplementary Return to an Order of the House of December 11, 1912, for a copy of all papers, documents and correspondence relating to the dismissal of A. T. Doucet, Postmaster and Collector of Customs at Salmon River, Digby County, N.S. Presented January 19, 1914—Mr. Maclean (Halifax). *Not printed.*

44b. Return to an Order of the House of April 21, 1913, for a copy of the charges made against Alexis Bourque, Storm Signal Agent at Bonaventure, on which he was dismissed by the Minister of Marine and Fisheries, and a copy of all letters and other documents bearing on the appointment of his successor. Presented January 29, 1914.—Mr. Marcil (Bonaventure). *Not printed.*
CONTENTS OF VOLUME 28—Continued.

44c. Return to an Order of the House of January 29, 1913, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Department of Marine and Fisheries, or any Department of the Government relating to the dismissal of Patrick Conway, Lightkeeper at White Head Island, N.S., and if there was an investigation the names of the witnesses, a copy of the evidence, and a detailed statement of the expenses of such investigation. Presented January 21, 1914.—Mr. Sinclair. Not printed.

44d. Return to an Order of the House of May 7, 1913, for a copy of all papers, documents, telegrams and correspondence in connection with the dismissal of Captain Wm. Smith, Connaught, Established 1873, Shelburne County, N.S. Presented January 21, 1914.—Mr. Law. Not printed.

44e. Return to an Order of the House of March 2, 1913, for a Return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in the County of King's, Province of Nova Scotia, in connection with any of the Departments of the public service, not including cases in which orders have already passed; together with the names of the dismissed officials or employees, the reason for their respective dismissals, the vacancies created by such dismissals, and the names of the persons by whom such vacancies have been filled, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the Departments of the Government, also the names of all parties appointed to fill the vacancies created by such dismissals, and the names of all cases of dismissals which have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid, or to be paid, by any Department in connection with the said dismissals and investigations or removals from office. Presented January 21, 1914.—Mr. McKenzie. Not printed.

44f. Return to an Order of the House of the 23rd April, 1913, for a copy of the charges made by Messrs. J. A. Mousseau, A. Godbout and J. Hondin, against Jos. E. A. Landry, keeper of the lighthouse at St. Omer, Quebec, on which he was dismissed for alleged political partisanship. Presented January 21, 1914.—Mr. Marchi (Bonaventure). Not printed.

44g. Return to an Order of the House of the 29th January, 1913, for a copy of all charges, correspondence, letters, telegrams and other documents relating to the dismissal of Colin McIsaac, preventive officer at Port Hood, Inverness County, N.S. Presented January 21, 1914.—Mr. Chisholm (Inverness). Not printed.

44h. Return to an Order of the House of the 19th May, 1913, for a copy of all petitions and correspondence relating to the dismissal of Mr. Pesha, postmaster at Kent Bridge, Ontario. Presented January 22, 1914.—Sir W. Laurier. Not printed.

44i. Return to an Order of the House of the 29th January, 1913, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Post Office Department or any department of the Government, relating to the dismissal of John F. Reeves, postmaster at Malgrave, N.S., and if there was an investigation, the names of all witnesses examined, a copy of the evidence, and a detailed statement of the expenses of such investigation. Presented January 22, 1914.—Mr. Sinclair. Not printed.

44j. Return to an Order of the House of the 29th January, 1913, for a copy of all letters, correspondence, letters, telegrams and other documents relating to the dismissal of Havelock McLeod, postmaster at Big Intervale, North East Margaree, Inverness County, Nova Scotia. Presented January 22, 1914.—Mr. Chisholm (Inverness). Not printed.

44k. Return to an Order of the House of the 21st April, 1913, for a copy of all documents, petitions, correspondence, messages, inquiries, reports, &c, relating to the dismissal of S. Lapointe, postmaster of St. Eloi, County of Temiscouata, and to the appointment of his successor. Presented January 22, 1914.—Mr. Gauvreau. Not printed.

44l. Return to an Order of the House of the 3rd February, 1913, for a copy of all correspondence, letters, telegrams and other documents relative to the dismissal of William Bow, postmaster at Winchester Village, County of Dundas, and of all recommendations for the appointment of his successor. Presented January 22, 1914.—Mr. MacNutt. Not printed.

44m. Return to an Order of the House of the 26th March, 1913, for a copy of all letters, correspondence, letters, telegrams, petitions and other documents relating to the dismissal of Mrs. Ellen O'Neil, postmistress at O'Neil's post office, Parish of Moncton, County of Westmorland, New Brunswick, and of all evidence, if any, taken in regard to the same, and of all reports concerning same; and also a copy of all recommendations, correspondence, letters, telegrams, petitions and other documents relating to the appointment of a successor, or of Robert C. Kelly as postmaster of or at the said O'Neil post office, and of all reports, if any, as to the proper location of the office. Presented January 22, 1914.—Mr. Emmerson. Not printed.
CONTENTS OF VOLUME 28—Continued.

444. Return to an Order of the House of the 21st April, 1913, for a copy of the charges made against Alex. Labillois, postmaster of Miguasha, on which his dismissal took place, and of all letters and documents regarding the appointment of John Caissy in his place. Presented January 22, 1914.—Mr. Marcil (Bonaventure) Not printed.

445. Return to an Order of the House of the 21st April, 1913, for a copy of all letters and other documents containing evidence or charges against Madame Z. Marcotte, postmistress of Nouvelle West, Bonaventure County, on which the Postmaster General acted in removing her from office, and also of letters and other documents regarding the appointment of Mr. Lazare Fallu in her stead. Presented January 22, 1914.—Mr. Marcil (Bonaventure) Not printed.

446. Return to an Order of the House of the 23rd April, 1913, for a copy of all complaints, accusations, correspondence, petitions, and telegrams respecting the dismissal of Joseph Verault, postmaster at Guay, County of Lévis, of the evidence and report made following the inquiries held by the inquiring Commissioner Smith and the inquiring Commissioner Jolicoeur in this matter; also the names of the witnesses summoned and heard, with a copy of the evidence heard at each inquiry, the names of those who represented the Government at these inquiries, and a detailed statement of the expenses caused by these inquiries, with a copy of all documents respecting the appointment of his successor, such as petitions, letters of recommendation, &c. Presented January 22, 1914.—Mr. Bourassa Not printed.

447. Return to an Order of the House of the 2nd June, 1913, for a copy of all telegrams, papers and correspondence in the possession of the Post Office Department, or with any of the officials thereof, regarding the removal from office of the postmaster of Osage, Saskatchewan, and of the appointment of a successor thereto; and all correspondence bearing upon the said removal or appointment with the post office inspector for that portion of the province of Saskatchewan, and of all other letters and documents with respect thereto. Presented January 22, 1914.—Mr. Carvell Not printed.

448. Return to an Order of the House of the 29th January, 1913, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Post Office Department, or any department of the Government relating to the dismissal of George Taylor, postmaster at Bickerton, N.S., and if there was an investigation, the names of all witnesses examined, a copy of the evidence and a detailed statement of the expenses of such investigation. Presented January 22, 1914.—Mr. Sinclair Not printed.

449. Return to an Order of the House of the 21st April, 1913, for a copy of all correspondence, telegrams, complaints, affidavits, reports, recommendations, requests, certificates and other documents, relating to the dismissal of Mademoiselle Paul Hus, as postmistress of the Parish Ste. Victoire, County of Richibucto, and the appointment of Mr. Paul Bardier, of the same place, as postmaster. Presented January 22, 1914.—Mr. Cardin Not printed.

450. Return to an Order of the House of the 3rd March, 1913, for a copy of all charges, correspondence, letters, telegrams and other documents relating to the dismissal of Parker S. Hart, postmaster at Guysborough, South Manchester, Guysborough County, the evidence taken and report of investigation held by H. P. Duchemin in regard to the same, and also a detailed statement of the expenses of such investigation. Presented January 22, 1914.—Mr. Sinclair Not printed.

451. Return to an Order of the House of the 17th February, 1913, for a copy of all complaints and charges made against Charles L. Gass, late postmaster at Bayfield, Antigonish County, of the evidence taken, if any, before Commissioner Duchemin, and of his report thereon, and of all letters, telegrams and documents of every kind relating to his dismissal and the appointment of his successor. Presented January 22, 1914.—Mr. Chisholm (Antigonish) Not printed.

452. Return to an Order of the House of the 27th January, 1913, for a copy of all documents, correspondence, letters, reports, &c., relating to the dismissal of Madame Belzil, postmistress at St. Octave, County of Rimouski, and the appointment of her successor. Presented January 22, 1914.—Mr. Lapointe (Kamouraska) Not printed.

453. Return to an Order of the House of the 9th April, 1913, for a copy of all charges, correspondence, telegrams and other documents relating to the dismissal of John McDonnell, postmaster at Essex, Inverness County, Nova Scotia. Presented January 22, 1914.—Mr. Chisholm (Inverness) Not printed.

454. Return to an Order of the House of the 31st March, 1913, for a copy of all letters, telegrams and documents in connection with the dismissal of James Bain, from the postmastership of Ninga post office, Ninga, Manitoba. Presented January 22, 1914.—Mr. Turriff Not printed.
CONTENTS OF VOLUME 28—Continued.

44v. Return to an Order of the House of the 9th April, 1913, for a copy of all letters, petitions, telegrams, complaints, and other papers and documents in the possession of the Post Office Department, relating to the dismissal of William McKinnon, postmaster at Erinville, Guysborough County, N.S., and the appointment of Daniel Kenny as successor; and if there was an investigation in connection with the dismissal of the said William McKinnon, the names of all witnesses examined, a copy of the evidence and report of the commissioner, and a detailed statement of the expenses of such investigation. Presented January 22, 1914.—Mr. Sinclair. Not printed.

44w. Return to an Order of the House of the 7th May, 1913, for a copy of all correspondence, evidence and reports in connection with the dismissal of J. N. Cloutier, postmaster at St. Benoît Labre, County of Beauce, Quebec. Presented January 22, 1914.—Mr. Ireland. Not printed.

44 (2a). Return to an Order of the House of the 12th February, 1913, for a copy of all letters, telegrams, papers and documents relative to the dismissal of Mrs. Weave, postmistress at Coal Creek, Queens County, N.B., and of the appointment of Michael L. Knox. Presented January 22, 1914.—Mr. McLean (Sunbury). Not printed.

44 (2b). Return to an Order of the House of the 26th May, 1913, for a copy of all correspondence and documents of any kind whatsoever relating to the dismissal of postmasters in Bonaventure County, by the present administration, not already ordered and brought down. Presented January 22, 1914.—Mr. Marcil (Bonaventure). Not printed.

44 (2c). Return to an Order of the House of the 28th April, 1913, for a copy of all petitions, complaints, and correspondence containing any charges against Alexander Fraser, postmaster at Fraser's Grant, Antigonish County, N.S., and all other documents and correspondence on the file in relation thereto. Presented January 22, 1914.—Mr. Chisholm (Antigonish). Not printed.

44 (2d). Partial return to an Order of the House of the 19th December, 1912, for a return showing all public officers removed by the present Government in the District of Portneuf, together with the name and duties of each person, the reasons for their dismissal, the nature of the complaints brought against them, also a copy of all correspondence relating thereto and reports of inquiries in cases where such were held. Presented January 22, 1914.—Mr. Delisle. Not printed.

44 (2e). Return to an Order of the House of the 15th January, 1913, for a return showing a list of the postmasters dismissed or removed by the present Government in the County of Two Mountains, the names of such persons, the reason for their dismissal, the nature of the complaints brought against them, and a copy of all correspondence and petitions relating thereto, and reports of inquiry in the cases where such have been held, also the names of their successors. Presented January 22, 1914.—Mr. Ethier. Not printed.

44 (2f). Return to an Order of the House of the 15th January, 1913, for a copy of all charges, correspondence, letters, telegrams and other documents relative to the dismissal of Thomas Chalmer McLean, postmaster at Ivera, Middle River, Riding of North Cape Breton and Victoria, N.S., and of the evidence taken and reports of investigation held by H. P. Duchemin in regard to the same, and a detailed statement of the expenses of such investigation. Presented January 22, 1914.—Mr. McKewie. Not printed.

44 (2g). Return to an Order of the House of the 29th January, 1913, for a copy of all letters, telegrams, reports and other documents relative to the dismissal of C. P. Blanchard, postmaster at Truro, Nova Scotia, and the appointment of his successor. Presented January 22, 1914.—Mr. Macdonald. Not printed.

44 (2h). Return to an Order of the House of the 29th January, 1913, for a copy of all papers, documents, evidence, letters, correspondence, &c., relating to the dismissal of Samuel Atwood, Atwood's Brook, Shelburne County, N.S. Presented January 22, 1914.—Mr. Law. Not printed.

44 (2i). Return to an Order of the House of the 3rd February, 1913, for a return showing the names of the postmasters in the County of Berthier dismissed since the 21st September, 1911; their respective parishes, the date of their dismissals and the reason alleged; if an inquiry was held in each case; on whose recommendation were these dismissals made; the names of those appointed as their successors and on whose recommendation they were appointed. Presented January 22, 1914.—Mr. Beland. Not printed.

44 (2j). Return to an Order of the House of the 3rd March, 1913, for a copy of all complaints, accusations, correspondence, petitions and telegrams, respecting the dismissal of Wilfrid Pellemare, postmaster at Hervey Junction, County of Portneuf, and of all documents respecting the appointment of his successor, such as petitions, letters of recommendation, &c., and also of the evidence and reports made after the inquiry held by the inquiring commissioner; together with a detailed statement of the expenses caused by this inquiry. Presented January 22, 1914.—Mr. Delisle. Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (2k). Return to an Order of the House of the 16th February, 1913, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Post Office Department, or any department of the Government, relating to the dismissal of Rufus D. Carrigan, postmaster at Sand Point, Guysborough County, N.S., and if there was an investigation, the names of all witnesses examined, and a detailed statement of the expenses of such investigation. Presented January 22, 1914. —Mr. McKenzie. Not printed.

44 (2l). Return to an Order of the House of the 15th January, 1913, for a copy of all charges, correspondence, letters, telegrams and other documents relative to the dismissal of Daniel Dunlop, postmaster at New Campbellton, Riding of North Cape Breton and Victoria, N.S., and of the evidence taken and reports of the investigation held by H. F. Duchemin in regard to the same, and a detailed statement of the expenses of such investigation. Presented January 22, 1914. —Mr. McKenzie. Not printed.

44 (2m). Return to an Order of the House of the 9th April, 1913, for a copy of all charges, correspondence, telegrams and other documents relating to the dismissal of Duncan Cameron, postmaster at Craigmore, Inverness County, Nova Scotia. Presented January 22, 1914. —Mr. Chisholm (Inverness). Not printed.

44 (2n). Return to an Order of the House of the 29th January, 1913, for a copy of all letters, telegrams, reports, charges and other documents relating to the dismissal of Angus Cameron, late postmaster at Fairlight, Sask., and of the evidence taken at the investigation held by Mr. Dorset. Presented January 22, 1914. —Mr. Turriff. Not printed.

44 (2p.) Return to an Order of the House of the 2nd June, 1913, for a copy of all petitions, letters, telegrams and resolutions in connection with the changes made in the names of the post offices at Letches Creek Crossing and Letches Creek, North Cape Breton, N.S., the dismissal of Donald Johnson, the former postmaster at Letches Creek, and the appointment of his successor. Presented January 22, 1914. —Mr. McKenzie. Not printed.

44 (2r). Return to an Order of the House of the 9th April, 1913, for a copy of all charges, correspondence, telegrams and other documents relating to the dismissal of Mrs. Sarah C. Rankin, postmistress at S. W. Ridge Mabou, Inverness County, Nova Scotia. Presented January 22, 1914. —Mr. Chisholm (Inverness). Not printed.

44 (2s). Partial Return to an Order of the House of the 19th March, 1913, for a Return showing in detail the number of dismissals from the public service during the period from June 23, 1896, to November 21, 1911, in the County of Nova Scotia, in connection with any department of the public service; together with the names of the dismissed officials or employees, their ages at the time of entering the public service, the length of their period of service with dates, the amount of their remuneration, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communication with respect to each such case of dismissal, and of all minutes of evidence on investigation, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the government; also the names of all persons appointed to fill vacancies caused by such dismissals, their ages at the date of appointment, the amount of their remuneration, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with said dismissals and investigations or removal from office. Presented January 22, 1914. —Mr. Chisholm (Inverness). Not printed.

44 (2t). Partial Return to an Order of the House of the 29th April, 1913, for a Return showing all employees of the Dominion dismissed in the County of Three Rivers and St. Maurice since October 15, 1911, to date, the date of dismissal, the employment of each man, the salary he was receiving at the time of his dismissal, the reason for dismissal, whether there has been an investigation or not, with the names and places of residence of the men appointed to replace them. Presented January 22, 1914. —Mr. Bureau. Not printed.

44 (2u). Partial Return to an Order of the House of the 19th December, 1912, for a return showing the number of dismissals from public offices by the province in the constituency of Regina, together with the names of the dismissed officials, the reasons for their dismissals, the complaints against such officials, and a copy of all correspondence relating thereto and reports of inquiries in cases where such have been held in respect of the same. Presented January 22, 1914. —Mr. Martin (Regina). Not printed.
CONTENTS OF VOLUME 28 Continued.

44 (2v). Return to an Order of the House of the 10th December, 1912, for a return showing all the public officers dismissed by the present Government in the electoral district of Kamouraska, with the names and duties of such persons respectively, the reason for their dismissal, the nature of the complaints brought against them, also of all correspondence relating thereto and reports of inquiries in cases where such have been held. Presented January 22, 1914.—Mr. Lapointe (Kamouraska).................Not printed.

44 (2w). Partial Return to an Order of the House of the 10th February, 1913, for a return showing in detail the number of dismissals from public offices by the present Government to this date in the County of Prince, Prince Edward Island, giving the names of the dismissed officials, the reasons for their dismissal, the complaints against such officials and a copy of all the correspondence with respect to the same and of all notes of evidence and reports of investigations where such were held; also the names of all parties appointed to fill the vacancies caused by such dismissals and the names of the persons by whom the same have been recommended for appointment. Presented January 22, 1914.—Mr. Richards..Not printed.

44 (2x). Return to an Order of the House of the 10th December, 1912, for a return showing the detail and number of dismissals from public offices by the present Government to this date in the riding of Strathcona, together with the names of the dismissed occupants, the reasons for their dismissal, the complaints against such officials, and a copy of all correspondence with respect to the same, and of all reports of investigations, where such were held. Presented January 22, 1914.—Mr. Douglas..............Not printed.

44 (2y). Partial Return to an Order of the House of the 10th December, 1912, for a return showing the detail and number of dismissals from public offices by the present Government to this date in the riding of Saltcoats, Sask., together with the names of the dismissed occupants, the reasons for their dismissal, the complaints against such officials, and a copy of all correspondence with respect to the same, and all reports of investigations, in cases where such were held. Presented January 22, 1914.—Mr. MacNutt. Not printed.

44 (2z). Return to an Order of the House of the 25th April, 1913, for a return showing all employees dismissed in the County of Champlain since October 15, 1911, to date, the employment of each man, the salary each was receiving at the time of his dismissal, the reasons for dismissals, whether there has been any investigation or not, with the names and places of residence of the men appointed to replace them. Presented January 22, 1914.—Mr. Bureau. Not printed.

44 (3a). Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and position of employment, by the present Government since the 11th day of October, 1911, to this date, in the County of Cumberland, Nova Scotia, not including those for which returns have already been ordered, in connection with any of the departments of the public service; together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the government; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removal from office. Presented January 22, 1914.—Mr. Kyte..Not printed.

44 (3b). Return to an Order of the House of the 3rd February, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment, by the present Government since the first day of October, 1911, to this date, in the County of Westmorland, New Brunswick, in connection with any of the departments of the public service; together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and by whom made, save and except the case of George H. Cochrane, Collector of Customs at Moncton (the papers for which have been already moved for); together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of government, or of the Government Railways Managing Board, or of the officials of the Intercolonial and the Prince Edward Island Railway; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented January 22, 1914.—Mr. Emmerson......................................Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (3c). Partial Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in the County of Antigonish, Nova Scotia, in connection with any of the departments of the public service, but not including cases in which orders have already passed together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and vice versa; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the Government; also the names of all parties appointed to fill vacancies caused by such dismissals and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented January 22, 1914.—Mr. Chisholm (Antigonish). Not printed.

44 (3d). Return to an Order of the House of the 25th April, 1913, for a return showing all employees dismissed in the County of Nicolet since October 15, 1911, to date, the date of dismissal, the employment of each man, the salary he was receiving at the time of his dismissal, the reasons for dismissal, whether there has been an investigation or not, with the names and places of residence of the men appointed to replace them. Presented January 22, 1914.—Mr. Bureau. Not printed.

44 (2c). Return to an Order of the House of the 29th January, 1913, for a return showing in detail the number of dismissals from public offices by the present Government to this date in the county of Victoria, Alberta, together with the names of the dismissed officials, the reason of their dismissal, the complaints or charges against them, and a copy of all correspondence with respect to the same and all notes of evidence and of the reports of investigations where such were held; also the names of all parties appointed to fill the vacancies caused by such dismissals and the names of the persons by whom the same have been recommended for appointment. Presented January 22, 1914.—Mr. White (Alberta). Not printed.

44 (3f). Officials dismissed in the constituency of Shelburne and Queens, N.S.—(Senate). Not printed.

44 (3g). Postmasters dismissed in the County of Antigonish, N.S.—(Senate) Not printed.

44 (3h). Return to an Order of the House of the 26th January, 1913, for a copy of all charges, correspondence, letters, telegrams, and other documents relating to the dismissal of Dr. Freeman O'Neill, from the office of post physician at Louisburg, Cape Breton South, Nova Scotia, and of the evidence taken and reports of investigation held by H. P. Duchemin in regard to the same. Presented January 26, 1914.—Mr. Sinclair. Not printed.

44 (3i). Partial Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in the County of Digby, Nova Scotia, in connection with any of the departments of the public service, but not including cases in which orders have already passed together with the names of the dismissed officials or employees, the reasons for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications, with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the Government; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all accounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. And also—Supplementary return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in the County of Digby, Nova Scotia, in connection with any of the departments of the public service, but not including cases in which orders have already passed together with the names of the dismissed officials or employees, the reasons for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications, with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the Government; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all accounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented January 22, 1914.—Mr. Sinclair. Not printed.
44 (3f). Partial Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in the constituency of Queen's, Shelburne, Nova Scotia, in connection with any of the departments of the public service, not including cases in which orders have already been passed; together with the names of all officers responsible for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all reports relating to such dismissals now in the possession of any of the departments of the Government; the names of all officers appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations of removals from office. Presented January 27, 1914.—Mr. Law. Not printed.

44 (3k). Partial Return to an Order of the House of the 19th March, 1913, for a list of public officers employed in the city of Quebec, in the Departments of Inland Revenue, Railways and Canals, the Transcontinental Railway, Customs, Immigration, Marine and Fisheries, Public Works and Militia, the names and duties of such persons, the reason for their dismissal, the nature of the complaints brought against them, also a copy of all correspondence relating thereto, and of reports of inquiry in the cases where such inquiries were held. Presented January 26, 1911.—Mr. Lachance. Not printed.

44 (3l). Return to an Order of the House of the 29th January, 1913, for a return showing all the public officers removed by the present Government in the District of L'Assomption, together with the names and duties of such persons, the reasons for their dismissal, the nature of the complaints brought against them; also a copy of all correspondence relating thereto and reports of inquiries in cases where such inquiries were held. Presented January 26, 1914.—Mr. Seguin. Not printed.

44 (3m). Further Supplementary Return to an Order of the House of the 7th February, 1912, for a return showing for each department of the Government the names, post office addresses, offices, employment, and salaries of all persons employed either in the inside or outside service thereof, and of such persons not in the Civil Service, employed by the Government in any department, on the tenth day of October, 1911, who have been removed from office or employment by dismissal; specifying in each case the manner of and grounds of such dismissals and the length of notice given to the persons removed, and also indicating in each case whether an inquiry was or was not held prior to such dismissal. Presented January 26, 1914.—Mr. Kyte. Not printed.

44 (3n). Supplementary Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in the County of Diggig, Nova Scotia, in connection with the departments of the public service, but not including cases in which orders have already passed; together with the names of the dismissed officials or employees, the reasons for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the Government; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all accounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented January 28, 1914.—Mr. Sinclair. Not printed.

44 (3o). Return to an Order of the House of the 26th May, 1913, for a copy of all correspondence, telegrams, inquiries and reports respecting the dismissal of Phihal Hable, lightkeeper at St. Louis de Lotbinière, County of Lotbinière, Quebec. Presented February 4, 1914.—Mr. Fortier. Not printed.

44 (3p). Return to an Order of the House of the 19th May, 1913, for a copy of all correspondence, complaints, petitions and reports connected with the dismissal of Fishery Overseer Mignanui at Seven Islands, and the appointment in his place of Elzear Levesque. Presented February 10, 1914.—Mr. Bélanger. Not printed.

44 (3q). Return to an Order of the House of the 28th April, 1913, for a return showing all employees dismissed in the County of Maskinonge, since October 15, 1911, to date, the date of dismissal, the employment of each man, the salary he was receiving at the time of his dismissal, the reasons for dismissal, whether there has been investigation or not, and the names and places of residence of the men appointed to replace them. Presented February 10, 1914.—Mr. Bureau. Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (37). Partial Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in connection with any of the departments of the public service, not including cases in which orders have already passed; together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the Government; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid, or to be paid, by any department in connection with the said dismissals and investigations or removals from office. Presented February 10, 1914. — Mr. McKenzie. Not printed.

44 (38). Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public office and positions of employment by the present Government since the 11th day of October, 1911, to this date, in connection with any of the departments of the public service, not including cases in which orders have already passed; together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the Government; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented February 10, 1914. — Mr. Macdonald. Not printed.

44 (31). Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in connection with any of the departments of the public service, not including cases in which orders have already passed; together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the Government; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented February 10, 1914. — Mr. Chisholm (Inverness). Not printed.

44 (32). Return to an Order of the House of the 10th December, 1912, for a copy of all correspondence, documents, recommendations, and reports concerning the dismissal of Miss Eugenie Dorion, an employee in the office of the post office inspector at Quebec: the reasons for her dismissal, the nature of the complaints brought against her, if any, the names of the persons who brought these complaints, also a copy of all correspondence relating thereto, and the report of inquiry, if there was one held. Presented February 29, 1914. — Mr. Wilson (Laval). Not printed.

44 (33). Return to Order of the House of the 2nd February, 1914, for a copy of all charges, correspondence, letters, telegrams and other documents in the possession of the Post Office Department, relating to the dismissal of James R. Laing, postmaster at Liscombe, N.S., and of the facts taken, and report of investigation in regard to the same; if any, a detailed statement of the expenses of such investigation, together with a copy of all recommendations, letters, telegrams, and other papers relating to the appointment of his successor. Presented February 23, 1914. — Mr. Sinclair. Not printed.

44 (34). Return to an Order of the House of the 5th June, 1913, for a copy of all correspondence, papers, &c., in connection with the dismissal of Mr. A. L. Desèvè, officer in charge of the fishery hatchery at Magog, Quebec, and the appointment of Mr. L. A. Audet to the said position. Presented February 23, 1914. — Sir W. Laurier. Not printed.

44 (35). Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence, telegrams and other documents relating to the removal of Jas. T. Richardson as sub-Collector of Customs at Humboldt, Saskatchewan, and the appointment of a successor. Presented February 22, 1914. — Mr. Neely. Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (3y). Supplementary Return to an Order of the House of the 16th December, 1912, for a return showing the names of all officials and officers in the public service whose salaries were discontinued or reduced, their ages at the time of entering the public service, the length of their service with the government, the amount of their remuneration, the reason for their discontinuance, the complaints of the public and employees against them, and such other evidence as might be desirable in connection with the matter. Presented March 2, 1914.—Mr. Fortier .. Not printed.

44 (32). Return to an Order of the House of the 9th February, 1914, for a copy of all papers, documents, correspondence, &c., in connection with the dismissal of Mr. Hicks, of Bridgetown, N.S., from the customs service in 1903. Presented February 24, 1914.—Mr. Martin (Regina) .. Not printed.

44 (40). Return to an Order of the House of the 16th February, 1914, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Customs Department, relating to the dismissal of Ralph Harris, sub-collector of customs at Pelee Island, Ont., and if there was an investigation, the names of all the witnesses, and a copy of the evidence; and also of all the papers presented with the appointment of his successor. Presented February 26, 1914.—Mr. Clarke (Essex) .. Not printed.

44 (4b). Return to an Order of the House of the 16th February, 1914, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Customs Department, relating to the dismissal of Aylmer Orton, customs officer at Windsor, Ont., and if there was an investigation, the names of all the witnesses, and a copy of the evidence; and also of all the papers connected with the appointment of his successor. Presented February 26, 1914.—Mr. Clarke (Essex) .. Not printed.

44 (4c). Return to an Order of the House of the 16th February, 1914, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Customs Department, relating to the dismissal of Frederick Forster, sub-collector of customs at Kingsville, Ont., and if there was an investigation, the names of all the witnesses, and a copy of the evidence; and also of all the papers presented with the appointment of his successor. Presented February 26, 1914.—Mr. Clarke (Essex) .. Not printed.

44 (4d). Return to an Order of the House of the 16th February, 1914, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Interior Department, relating to the dismissal of Andrew Darragh, immigration officer at Windsor, Ont., and if there was an investigation, the names of all the witnesses, and a copy of the evidence; and also of all the papers connected with the appointment of his successor. Presented March 2, 1914.—Mr. Clarke (Essex) .. Not printed.

44 (4f). Return to an Order of the House of the 26th May, 1913, for a copy of all correspondence, telegrams, inquiries, and reports, respecting the dismissal of Napoleon Daigle, lighthouse keeper at Barre à Bouard, Parish of St. Louis de Lotbinière, Quebec. Presented March 2, 1914.—Mr. Fortier .. Not printed.

44 (4f). Supplementary Return to an Order of the House of the 15th March, 1913, for a return showing in detail the number of dismissals from the public service during the period from June 23, 1896, to September 21, 1911, in the County of Cumberland, Nova Scotia, in connection with any department of the public service; together with the names of the dismissed officials and employees, their ages at the time of entering the public service, the length of their period of service with dates, the amount of their remuneration, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissals, and of all minutes of evidence on investigation, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the government; also the names of all persons appointed to fill vacancies caused by such dismissals, their ages at the date of appointment, the amount of their remuneration, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with said dismissals and investigations or removal from office. Presented March 2, 1914.—Mr. Rhodes .. Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (4h). Return to an Order of the House of the 16th February, 1914, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Department of the Postmaster General, relating to the dismissal of James H. Smart, postmaster at Kingsville, Ont., and if there was an investigation, the names of all the witnesses and a copy of the evidence; and also of all the papers connected with the appointment of his successor. Presented March 2, 1914.—Mr. Clarke (Essex) .. Not printed.

44 (4i). Return to an Order of the House of the 11th February, 1914, for a copy of all papers, letters and documents of every kind relating to the dismissal of John A. Roy from the position of postmaster at Maitland, County of Hants. Presented March 2, 1914.—Mr. Macdonald ... Not printed.

44 (4j). Return to an Order of the House of the 11th February, 1914, for a copy of all papers, letters and documents of every kind relating to the dismissal of Thomas Nelson, from the position of postmaster at Sussex Village, County of Hants. Presented March 2, 1914.—Mr. Macdonald ... Not printed.

44 (4k). Return to an Order of the House of the 11th February, 1914, for a copy of all papers, letters and documents of every kind relating to the dismissal of Albert McHefley from the position of postmaster at Shubenacadie, County of Hants. Presented March 2, 1914.—Mr. Macdonald ... Not printed.

44 (4l). Return to an Order of the House of the 11th February, 1914, for a copy of all papers, letters and documents of every kind relating to the dismissal of C. Stewart McPhee from the position of postmaster at Enfield, County of Hants. Presented March 2, 1914.—Mr. Macdonald ... Not printed.

44 (4m). Return to an Order of the House of the 2nd February, 1914, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the first day of February, 1913, to date, in the County of Westmorland, New Brunswick, in connection with any of the departments of the public service, except the Post Office Department; together with the names of the dismissed officials or employees, the reasons for their respective dismissal, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the government, or of the Government Railway Managing Board, or of the officials of the Intercolonial and the Prince Edward Island Railways; also the names of all parties aggrieved to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented March 3, 1914.—Mr. Emmerson ... Not printed.

44 (4o). Return to an Order of the House of the 11th February, 1914, for a copy of all papers, letters and documents of every kind relative to the dismissal of A. Michael Russell from the position of caretaker of the drill hall at Windsor, County of Hants. Presented March 3, 1914.—Mr. Maclean (Halifax) ... Not printed.

44 (4p). Return to an Order of the House of the 2nd February, 1914, for a copy of all charges, correspondence, letters, telegrams and other documents relating to the dismissal of Mr. A. Goyette, postmaster at St. Valerien de Milton, Sheffield County, Quebec, and of the evidence taken, and of the reports of investigation held by Dr. W. L. Shurtleff in regard to the same. Presented March 5, 1914.—Mr. Boivin ... Not printed.

44 (4q). Return to an Order of the House of the 21st April, 1913, for a copy of the evidence and report in the investigation held by Mr. W. A. E. Flynn, in the case of P. D. Bourdages, keeper of the lighthouse at Bonaventure Point, Quebec, of the charges made against the said Bourdages by Ovide Bourdages, Raymond Bourdages, Pierre Henry, J. A. Mousseau and D. Champoux. Presented March 5, 1914.—Mr. Marel (Bonaventure) ... Not printed.

44 (4r). Return to an Order of the House of the 21st April, 1913, for a copy of the charges made by Messrs. Y. J. Motzorew, Y. J. Motzorew, J. I. L. Mercurean, against Louis BuJold, keeper of the lighthouse at Carleton Point, Quebec. Presented March 5, 1914.—Mr. Marel (Bonaventure) ... Not printed.

44 (4s). Return to an Order of the House of the 11th February, 1914, for a return showing reasons for the dismissal of Mr. Shinbine, caretaker of the Immigration Hall at Edmonton, the date of his appointment and of dismissal, and salary at time of dismissal; also the name of caretaker appointed in his place, with date of appointment, salary and qualifications. Presented March 6, 1914.—Mr. Oliver ... Not printed.
44 (4f). Return to an Order of the House of the 11th February, 1914, for a return showing the reasons for the dismissal of Mr. Webster, immigration agent at Edmonton; the date of his appointment and of dismissal, and salary at time of dismissal; also the name of the agent appointed in his place, with date of appointment, salary and qualifications? Presented March 6, 1914.—Mr. Oliver..........................Not printed.

44 (4w). Return to an Order of the House of the 11th February, 1914, for a return showing reasons for the dismissal of Jacob Mohr, interpreter for the immigration agency at Edmonton; the date of his appointment and of dismissal, and salary at time of dismissal; also the name of the interpreter appointed in his place with date of appointment, salary and qualifications. Presented March 6, 1914.—Mr. Oltman.....Not printed.

44 (4v). Return to an Order of the House of the 11th February, 1914, for a return showing reasons for the dismissal of Mr. P. Tomkins, Dominion Lands Agent at Grouard, the date of his appointment and of dismissal, and salary at time of dismissal; also the name of agent appointed in his place, with date of appointment and salary. Presented March 6, 1914.—Mr. Oliver..Not printed.

44 (4w). Return to an Order of the House of the 2nd February, 1914, for a copy of all documents bearing upon dismissals and appointments of officials of the Inland Revenue Department, together with the minutes of the meetings held at the Post Office Department, by F. J. Robidoux, M.P., of the evidence taken and of the reports of investigation held by Dr. W. L. Shortle in regard to the same. Presented March 6, 1914.—Mr. Paccaud.....Not printed.

44 (4y). Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, letters, telegrams, and other documents relating to the dismissal of Mr. Arthur Dupuis, postmaster at Pontbriand, County of Mégantic, Quebec, and of the evidence taken and of the reports of investigation held by Dr. W. L. Shortle in regard to the same. Presented March 6, 1914.—Mr. Paccaud.....Not printed.

44 (4z). Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, letters, telegrams, and other documents relating to the dismissal of Jos. Serguis Archambault, as postmaster of the town of Terrebonne, and to the appointment of George Beausoldeil, as his successor. Presented March 6, 1914. Mr. Seguin..........................Not printed.

44 (42). Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, letters, telegrams, reports and all other papers relating to the dismissal of Martin Lanigan, postmaster at Sexton, County of Kent, New Brunswick, and of the minutes of evidence of any investigation or inquiry held relating to the said dismissal, and of all and any charges and recommendations connected therewith; also a copy of all letters written to the Postmaster General or to any official of the Post Office Department, by F. J. Robidoux, M.P., or by any other person relating to the said dismissal. Presented March 6, 1914.—Mr. Emmerson........Not printed.

44 (5a). Return to an Order of the House of the 2nd February, 1914, for a copy of all documents, letters, correspondence and petitions asking for the dismissal of Mr. Felix Raymond, postmaster at Ste. Scholastique Village, County of Two Mountains, together with everything in connection with such dismissal. Presented March 6, 1914.—Mr. Etheridge...Not printed.

44 (5b). Return to an Order of the House of the 16th February, 1914, for a copy of all papers in connection with the sub-lands agency in Gravelburg, Saskatchewan. Presented March 10, 1914.—Mr. Knowles..........................Not printed.

44 (5c). Further Supplementary Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th of October, 1911, to this date, in the County of King's, Province of Nova Scotia, in connection with any of the departments of the public service, not including cases in which orders have already passed; together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the government, also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid, or to be paid, by any department in connection with the said dismissals and investigations or removals from office. Presented March 10, 1914.—Mr. McKenzie........Not printed.

44 (5d). Return to an Order of the House of the 11th February, 1914, for a copy of all papers in connection with the correspondence and petitions relating to the dismissal of the postmaster at Ainslie Glen, Inverness County, and the appointment of Neil McKinnon to said office. Presented March 12, 1914.—Mr. Chisholm (Inverness). Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (5a). Return to an Order of the House of the 9th February, 1914, for a copy of all papers, documents, correspondence, letters, &c., since October 1, 1911, relating to the appointment of a postmaster at Upper Ohio, Shelburne County, N.S. Presented March 12, 1914.—Mr. Maclean (Halifax)..........................Not printed.

44 (5b). Return to an Order of the House of the 9th February, 1914, for a copy of all papers, documents, correspondence, letters and telegrams, relating to the dismissal of Jos. H. Lefebvre, postmaster at Howick Station, County of Chateauguay, and the appointment of his successor. Presented March 12, 1914.—Mr. Robb.............Not printed.

44 (5c). Return to an Order of the House of the 11th February, 1914, for a copy of all correspondence, letters, telegrams, petitions and other documents in any way connected with the dismissal of the postmaster at Alexander, Inverness County, and the appointment of a successor. Presented March 12, 1914.—Mr. Chisholm (Inverness) Not printed.

44 (5d). Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, letters, telegrams and documents of all kinds in possession of the Government or any department thereof, in any way relating to the employment of and dismissal from the Geological Survey of Canada of N. H. McLeod, North East Margaree, Inverness County, N.S. Presented March 12, 1914.—Mr. Chisholm (Inverness) Not printed.

44 (5e). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence and recommendations in any way relating to the dismissal of M. Harry, from the service of the Marine Department at Prescott, Ontario, Presented March 17, 1914.—Mr. Lounieux...........Not printed.

44 (5f). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence and recommendations in any way relating to the dismissal of W. Granton, from the service of the Marine Department at Prescott, Ontario. Presented March 17, 1914.—Mr. Thomson (Que'Appelle) Not printed.

44 (5g). Return to an Order of the House of the 9th February, 1914, for a copy of all letters, and telegrams in connection with the dismissal of the postmaster at Fletwode, Saskatchewan, and the changing of the location of the said post office. Presented March 17, 1914.—Mr. Turriff......................Not printed.

44 (5h). Return to an Order of the House of the 2nd February, 1914, for a return showing in detail the number of dismissals or removals from office from 1st February, 1913, of postmasters in the County of Westmorland, New Brunswick; together with the names of the dismissed postmasters, or postmistresses, the reason of their dismissal, and a copy of the charges or complaints against such officials respectively, and of all correspondence with respect to the same; and of all correspondence, recommendations, petitions, protests and other documents, and of all notes of evidence and of the reports of investigations, where such were held, relating thereto, or to the appointment of successors to fill such offices respectively; and also the names of all persons appointed to fill the vacancies caused by such dismissals, and of the persons by whom the same respectively were recommended for appointment. Presented March 17, 1914.—Mr. Emmerson Not printed.

44 (5i). Return to an Order of the House of the 16th February, 1914, for a return showing the name of the postmaster of the Parish of St. Henri de Lauzon, County of Lévis, who, it is said, was dismissed from office since September, 1911, the reasons for such dismissal, the nature of the complaints made against him, the names of the parties who made those complaints, together with a copy of all correspondence and telegrams relating thereto, the name of the inquiring commissioner, and report of investigation, if any, and of all evidence taken at the investigation, the names of those who recommended the successor, names of the parties by whom the Government was represented at such investigation, with a detailed statement of all the accounts paid or to be paid by any department in connection with the aforesaid dismissal and investigation, the names of the parties who received any money or filed their accounts in connection with said investigation, and the amount awarded to or claimed by each of them. Presented March 17, 1914.—Mr. Bourassa..................Not printed.

44 (5j). Return to an Order of the House of the 23rd February, 1914, for a copy of all letters, petitions, telegrams, evidence, reports, papers and documents, in the possession of the Post Office Department, or any other department, relating to the dismissal of such Skates, postmaster at Appin, Ontario; and if there was an investigation, the name of the investigator and witnesses, a copy of the evidence and of letters, papers, petitions, recommendations and other documents connected with the appointment of Mr. Skates' successor. Presented March 17, 1914.—Mr. Ross..................Not printed.

44 (5k). Return to an Order of the House of the 9th March, 1914, for a copy of all charges, correspondence, letters, telegrams and other documents relating to the dismissal of Geo. J. Ryan and Charles Hamlin from the Canadian customs service at Newport, and of the appointment of Charles A. Boright and Frank S. Baker to the said positions. Presented March 20, 1914.—Mr. Boivin..................Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (5s). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of J. Walsh, employee of the Marine shipyard at Prescott, Ontario. Presented March 20, 1914.—Mr. Chisholm (Inverness). Not printed.

44 (5t). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of W. Gerts, employee of the Marine shipyard at Prescott, Ontario. Presented March 20, 1914.—Mr. Wilson (Laval). Not printed.

44 (5x). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of J. Hayens, employee of the Marine shipyard at Prescott, Ontario. Presented March 20, 1914.—Mr. Turviff. Not printed.

44 (5y). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of P. Belanger, from the service of the Marine Department at Prescott, Ontario. Presented March 20, 1914.—Mr. Proulx. Not printed.

44 (5z). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of L. Place, employee of the Marine shipyard at Prescott, Ontario. Presented March 20, 1914.—Mr. Pacaud. Not printed.

44 (6a). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of C. Kavanagh, employee of the Marine shipyard at Prescott, Ontario. Presented March 20, 1914.—Mr. Carvell. Not printed.

44 (6b). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of J. Roche, employee of the Marine shipyard at Prescott, Ontario. Presented March 20, 1914.—Mr. Sinclair. Not printed.

44 (6e). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of C. Wright, employee of the Marine shipyard at Prescott, Ontario. Presented March 20, 1914.—Mr. Clark (Red Deer). Not printed.

44 (6g). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations, in any way relating to the dismissal of H. Birks, employee of the Marine shipyard at Prescott, Ontario. Presented March 20, 1914.—Mr. Charlton. Not printed.

44 (6h). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of W. Jarvis, employee of the Marine shipyard at Prescott, Ontario. Presented March 29, 1914.—Mr. Gauvreau. Not printed.

44 (6k). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of J. Lane, employee of the Marine shipyard at Prescott, Ontario. Presented March 22, 1914.—Mr. MacNutt. Not printed.

44 (6m). Return to an Order of the House of the 15th January, 1913, for a copy of all letters, documents, telegrams, reports, correspondence, and recommendations in any way relating to the dismissal of J. A. Mundie, employee of the Marine shipyard at Prescott, Ontario. Presented March 23, 1914.—Mr. Maclean (Halifax). Not printed.

44 (6n). Return to an Order of the House of the 16th February, 1914, for a return showing the name of the postmaster of the Parish of St. Lambert, County of Levis, who, it is stated, was dismissed from office since September, 1911, the reasons for such dismissal, the nature of the complaints made against him, the names of the persons who made those complaints, together with a copy of all correspondence and telegrams relating thereto, the name of the inquiring commissioner, and report of investigation, if any, and of all evidence taken at the investigation, the names of those who recommended the successor, names of the parties by whom the Government was represented at such investigation, with a detailed statement of all the accounts paid or to be paid by any department in connection with the aforesaid dismissal and investigation, the names of the parties who received any money or filed their accounts in connection with said investigation, and the amount awarded to or claimed by each of them. Presented March 23, 1914.—Mr. Bonnassa. Not printed.

44 (6o). Return to an Order of the House of the 2nd February, 1914, for a return showing the changes in postmasterships in Bonaventure County from January 1, 1913, to date, with a list of dismissals, and reasons therefor, and of new appointments, also a copy of all reports, correspondence, petitions and documents generally bearing on this subject; together with a list of post office contracts cancelled in said constituency, with reasons therefor, if any, and of new contracts awarded, with the old rate and the new, and whether tenders were called for, in each case, and whether contracts were awarded to lowest tenderer or not. Presented March 23, 1914.—Mr. Marcil (Bonaventure). Not printed.

44 (6p). Return to an Order of the House of the 2nd February, 1914, for a return showing in detail the number of dismissals from office since October 1, 1911, not already brought down, of postmasters in the County of Albert, New Brunswick, together with the names of the dismissed postmasters, the reasons of their dismissals, the reasons of their resignations, or complaints against such officials respectively, also a copy of all correspondence, recommendations, petitions, protests and other documents, and of all notes of evidence and of the reports of investigations, where such were held with respect to the same or relating thereto, or to the appointment of successors to fill such offices respectively. Also the names of all persons appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same were respectively recommended for appointment. Presented March 25, 1914.—Mr. Emmerson. Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (6r). Supplementary Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in the constituency of Queen's, Shelburne, Nova Scotia, in connection with any of the departments of the public service, not including cases in which orders have already been passed; together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held and of all reports relating to such dismissals now in the possession of any of the departments of the Government, also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same may have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented March 26, 1914.—Mr. Law. Not printed.

44 (6s). Supplementary Return to an Order of the House of the 10th December, 1912, for a return showing all the public officers dismissed by the present Government in the electoral district of Kamouraska, with the names and duties of such persons respectively, the reason for their dismissal, the nature of the complaints brought against them, also of all correspondence relating thereto and reports of inquiries in cases where such have been held. Presented March 26, 1914.—Mr. Lapointe (Kamouraska). Not printed.

44 (6t). Return to an Order of the House of the 16th February, 1914, for a return showing the name of the postmaster of the Parish of Notre Dame de Charny, County of Lévis, who, it is stated, was dismissed from office since September, 1911, the reasons for such dismissal, the nature of the complaints made against him, the names of the parties who made those complaints, together with a copy of all correspondence and telegrams relating thereto, the name of the inquiring commissioner, and report of investigation, if any, and of all evidence taken at the investigation, the names of those who recommended the successor, names of the parties by whom the Government was represented at such investigation, with a detailed statement of all the accounts paid or to be paid by any department in connection with the aforesaid dismissal and investigation, the names of the persons who received any money or filed their accounts in connection with said investigation, and the amount awarded to or claimed by each of them. Presented March 31, 1914.—Mr. Bourassa. Not printed.

44 (6u). Return to an Order of the House of the 16th March, 1914, for a copy of all telegrams, letters and correspondence in connection with the dismissal of Charles S. Melanson, postmaster of Corberrie, Digby County, N.S. Presented April 1, 1914.—Mr. Law. Not printed.

44 (6v). Return to an Order of the House of the 11th February, 1914, for a return showing reasons for the dismissal of Gordon McDonald, homestead inspector in the Grouard Land Agency, the date of his appointment and of dismissal, and salary at time of dismissal; also the names of those appointed in his place, with date of appointment and salary. Presented April 2, 1914.—Mr. Oliver. Not printed.

44 (6w). Return to an Address to His Royal Highness the Governor General of the 17th February, 1915, for a copy of all letters, papers and documents relating to the appointment of W. F. Slack as clerk of works in the Department of Public Works at Ottawa; a copy of the charges against the said W. F. Slack, which were investigated by Honourable F. D. Monk, and of all the letters suspending and re-instating the said W. F. Slack; of the employees memorial, dated May 11, 1912, and addressed to Honourable F. D. Monk; praying for the retention in office of the said W. F. Slack; a copy of the charges investigated by Commissioner R. V. Sinclair, of the evidence taken and the reports made by the said commissioner; and also of all correspondence, requests, recommendations and orders in council relating to the dismissal of the said W. F. Slack. Presented April 2, 1914.—Mr. Murphy. Not printed.

44 (6x). Return to an Order of the House of the 28th April, 1913, for a copy of all correspondence, memoranda, reports, telegrams, and of all documents whatsoever, in connection with and having relation to the dismissal of William Brunelle, lighthouse keeper at Pointe à Citrouille, County of Quebec. Presented April 2, 1914.—Mr. Bureau. Not printed.

44 (6y). Return to an Order of the House of the 23rd March, 1914, for a copy of all documents, correspondence, petitions, telegrams, etc., in correspondence and recommendations in relation to Arthur Levesque, light keeper at Grosse Isle, Kamouraska, and with the appointment of his successor? Presented April 7, 1914.—Mr. Lapointe (Kamouraska). Not printed.

44 (6z). Return to an Order of the House of the 25th March, 1913, for a copy of all correspondence, memoranda, telegrams and all other documents whatsoever having reference to the dismissal of L. Philippe Carignan, lighthouse keeper at Champlain, County of Champlain. Presented April 2, 1914.—Mr. Bureau. Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (7a). Return to an Order of the House of the 23rd March, 1914, for a copy of all documents, petitions, correspondence, recommendations, investigations, &c., in connection with the dismissal of Dominique Levesque, lightkeeper at Rivière Ouelle wharf, County of Kamouraska, and with the appointment of his successor. Presented April 7, 1914.—Mr. Lapointe (Kamouraska). ... Not printed.

44 (7b). Return to an Order of the House of the 2nd February, 1914, for a return showing in detail the number of dismissals from public offices by the present Government in the electoral district of Shefford from the 1st of October, 1911, not already brought down to the present date; together with the names of the dismissed offices, the reasons for their dismissal, the complaints against such officials, names of the complainants in each case, and the names of their successors in office. Presented April 16, 1914.—Mr. Boivin. Not printed.

44 (7c). Supplementary Return to an Order of the House of the 10th December, 1912, for a return showing all public officers removed by the present Government in the District of Portneuf, together with the names and duties of each person, the reasons for their dismissal, the nature of the complaints brought against them, also a copy of all correspondence relating thereto and reports of inquiries in cases where such were held. Presented April 16, 1914.—Mr. Delisle. ... Not printed.

44 (7d). Return to an Order of the House of the 4th February, 1914, for a copy of all correspondence relative to the dismissal of Alex. W. Finlayson, keeper of light on St. Esprit Island, Richmond County, N.S., and to his resignation and the appointment of a successor. Presented April 17, 1914.—Mr. Kyte. ... Not printed.

44 (7e). Return to an Order of the House of the 4th March, 1914, for a copy of all papers, evidence, &c., in connection with the investigation held by the Department of Marine and Fisheries against the light keeper of Cape Cove, County of Gaspé, in 1911. Presented April 17, 1914.—Mr. Lemieux. ... Not printed.

44 (7f). Return to an Order of the House of the 16th February, 1914, for a copy of all telegrams, correspondence and documents of all kinds in any way relating to the dismissal or suspension from duty of Dan Cormier, an officer in the life-saving station at Eastern Harbour, Inverness County, Nova Scotia. Presented April 21, 1914.—Mr. Chisholm (Inverness) ... Not printed.

44 (7g). Return to Order of the House of the 16th February, 1914, for a copy of all documents bearing on the appointment and dismissal of Ben. V. Willett, as light keeper at Point Duthie, Quebec, and of the appointment of James Doolittle, as his successor, as well as of those bearing on the contemplated removal of that light to Maria wharf. Presented April 21, 1914.—Mr. Marcil (Bonaventure) ... Not printed.

44 (7h). Return to an Order of the House of the 12th February, 1914, for a return showing the names of the postmasters who have been dismissed in the County of Lévis since the month of September, 1911; the number of the dismissed postmasters, since the month of September, 1911, who have been appointed in the place of postmasters dismissed under the late administration; and the names of the postmasters who were dismissed under the late administration. Presented April 22, 1911.—Mr. Bouwassa. Not printed.

44 (7i). Return to an Order of the House of the 2nd March, 1914, for a copy of all correspondence, papers, documents, evidence, reports, telegrams, &c., relating to the dismissal of John A. L. McLellan, late Light keeper at Fish Island, Prince Edward Island. Presented April 28, 1914.—Mr. Hughes (Kings, P.E.I.) ... Not printed.

44 (7j). Return to an Order of the House of the 6th April, 1914, for a copy of all documents bearing on the dismissal of Thomas Le Blanc, as postmaster of Allard, Bonaventure County, and the appointment of his successor. Presented April 30, 1914.—Mr. Marcil (Bonaventure) ... Not printed.

44 (7k). Return to an Order of the House of the 21st April, 1913, for a copy of all letters, telegrams, petitions, complaints, evidence, reports and other documents relating to the dismissal of William E. Ehler, Lightkeeper, Queensport, N.S., also a detailed statement of the expenses connected with the investigation, distinguishing the allowance paid the commissioner from travelling expenses and witness fees; and of all papers connected with the appointment of Mr. Ehler’s successor. Presented May 5, 1914.—Mr. Sinclair. Not printed.

44 (7l). Return to an Order of the House of the 2nd March, 1914, for a copy of all letters, petitions, telegrams, evidence, reports, papers and documents in the possession of the Post Office Department, or any other Department, relating to the dismissal of Samuel Dickson, postmaster at Seaforth, Ontario, and if there was an investigation, the names of the investigator and witnesses, with a copy of the evidence and of all letters, papers, petitions, recommendations, or other documents connected with the appointment of Mr. Dickson's successor. Presented May 8, 1914.—Mr. Ross. Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (7m). Return to an Order of the House of the 6th April, 1914, for a copy of all petitions, letters, complaints and other documents relating to the dismissal of Charles McPherson, postmaster at North Riverside, County of Guysborough, N.S., and of all recommendations and correspondence relating to the appointment of his successor; also a copy of all evidence and of the report of the investigation, if any, and a statement of the expenses of said investigation. Presented May 8, 1914.—Mr. Sinclair. Not printed.

44 (7n). Return to an Order of the House of the 9th March, 1914, for a copy of all letters, telegrams, petitions, notes of evidence, charges, if any, and other papers and documents relating to the dismissal of Christian L. Ehler, postmaster at Queensport, N.S., and of all correspondence, petitions and other papers and documents relating to the appointment of his successor, with a detailed statement of the expenses of the said investigation, if any. Presented May 11, 1914.—Mr. Sinclair. Not printed.

44 (7o). Return to an Order of the House of the 12th March, 1914, for a return showing:—
1. Whether Christian L. Ehler, postmaster at Queensport, N.S., has been dismissed; and if so, when?
2. Whether the charges against this postmaster were in writing, and by whom the said charges were signed?
3. What the charges were?
4. Who conducted the investigation, if any?
5. Whether the investigation took place after the dismissal or before?
6. Whether the commissioner recommended the dismissal of this postmaster?
7. The names of the witnesses examined?
8. The expense of the investigation in detail?
9. If the Postmaster General is of the opinion that the evidence taken at the investigation justified this dismissal? Presented May 11, 1914.—Mr. Sinclair. Not printed.

44 (7p). Return to an Order of the House of the 19th February, 1913, for a copy of all letters, petitions, telegrams, complaints, findings, reports and other papers in the possession of the Post Office Department, or any Department of the Government, relating to the dismissal or discharge of James White, postmaster at Sidney, British Columbia, and if there was an investigation, the names of the witnesses examined and a detailed statement of the expenses of such investigation; also of all letters, telegrams, recommendations and other papers connected with the appointment of his successor. Presented May 11, 1914.—Mr. Sinclair. Not printed.

44 (7q). Return to an Order of the House of the 9th March, 1914, for a copy of the petition, recommendations and other correspondence relating to the change in the location of the post office at Mount St. Patrick in South Renfrew, and the dismissal of the postmaster. Presented May 11, 1914.—Mr. Graham. Not printed.

44 (7r). Return to an Order of the House of the 16th February, 1914, for a copy of all documents bearing on the dismissal of the officer in charge of the Port Daniel West, Quebec, lobster hatchery, Edward Dee, and on the appointment of his successor. Presented May 15, 1914.—Mr. Murrell (Bonaventure). Not printed.

44 (7s). Return to an Order of the House of the 20th April, 1914, for a copy of all correspondence in connection with the dismissal of A. C. Cameron of Fairlight, Saskatchewan, from his position as mail contractor. Presented May 16, 1914.—Mr. Turiff. Not printed.

44 (7t). Return to an Order of the House of the 16th March, 1914, for a copy of all charges, correspondence, letters, petitions, telegrams and other documents relating to the dismissal of Mr.—Geo. F. Payne, postmaster at Granby, Shafford County, Quebec, and of the appointment of his successor, Mr. J. L. Dozois, N.P., and also of the transfer of the said office from the one to the other, together with a copy of the evidence taken at all investigations held in connection with the said dismissal, appointment and transfer, and of the reports of said investigations. Presented May 16, 1914.—Mr. Dozois. Not printed.

44 (7u). Return to an Order of the House of the 30th March, 1914, for a return showing the names of the postmasters who have been dismissed from the office since 1900, in the County of Portneuf, the number of investigations and the names of those whose cases were investigated. Presented May 16, 1914.—Mr. Delisle. Not printed.

44 (7v). Return to an Order of the House of the 23rd March, 1914, for a copy of all letters, telegrams, correspondence, complaints and protests on file, referring to the dismissal of the late postmaster at Havre Boucher, N.S., and to the appointment of a successor. Presented May 16, 1914.—Mr. Chisholm (Antigonish). Not printed.

44 (7w). Return to an Order of the House of the 6th April, 1914, for a copy of all documents, investigations, reports and letters, concerning the dismissal of William Campbell, light keeper on the wharf at New Richmond, Quebec, and the appointment of James Robertson as his successor; together with a copy of recommendations and the letters respecting the appointment, if any. Present May 29, 1914.—Mr. Murrell (Bonaventure). Not printed.
CONTENTS OF VOLUME 28—Continued.

44 (7x). Supplementary Return to an Order of the House of the 2nd February, 1914, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the first day of February, 1913, to date, in the County of Westmorland, New Brunswick, in connection with any of the departments of the Public Service, not except the Post Office Department, together with the names of the dismissed officials or employees, the reasons for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal and of all minutes of evidence of investigations where any such were held and of all reports relating to such dismissals now in the possession of any of the departments of the Government, or of the Government Railway Managing Board, or of the officials of the Intercolonial and the Prince Edward Island Railways; also the names of all parties appointed to fill the vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented June 2, 1914.—Mr. Emmerson. Not printed.

44 (7y). Return to an Order of the House of the 14th April, 1913, for a return showing the detail and number of dismissals from public offices in the Department of Marine and Fisheries from December 5, 1912, to this date, in the County of Bonaventure, the names of the dismissed occupants, the reasons for their dismissals, the complaints against such officials, and a copy of all correspondence with respect to the same, and of all reports of investigations, where such were held; as well as a list of the new appointments made by the department, with names, residence, salaries and duties, and a copy of all recommendations of such appointments. Presented June 2, 1914.—Mr. Marcil (Bonaventure). Not printed.

44 (7z). Return to an Order of the House of the 4th May, 1914, for a copy of all complaints and other documents bearing upon the dismissal of J. H. Denison as postmaster of Richmond, Quebec, and the appointment of his successor. Presented June 2, 1914.—Mr. Tobin. Not printed.

44 (8a). Return to an Order of the House of the 4th May, 1914, for a copy of all correspondence exchanged by and with the Department of Inland Revenue and the late J. R. Mousseau and A. M. Coldwell, New Carlisle, Quebec, and David Champoux, Campbellton N.B., or Restigouche, Quebec, in connection with the dismissal of Arthur B. Coldwell, Assistant Inspector of Weights and Measures, District of Quebec. Presented June 8, 1914.—Mr. Marcil. Not printed.

44 (8b). Supplementary Return to an Order of the House of the 3rd March, 1913, for a return showing in detail the number of dismissals from public offices and positions of employment by the present Government since the 11th day of October, 1911, to this date, in the County of Annapolis, Nova Scotia, in connection with any of the departments of the public service, but not including cases in which orders have already passed together with the names of the dismissed officials or employees, the reason for their respective dismissals, the complaints or charges against them, and by whom made; together with a copy of all correspondence, letters, telegrams and other communications with respect to each such case of dismissal, and of all minutes of evidence of investigations, where any such were held, and of all reports relating to such dismissals now in the possession of any of the departments of the government; also the names of all parties appointed to fill vacancies caused by such dismissals, and the names of the persons by whom the same have been respectively recommended for appointment; together with a detailed statement of all amounts and expenses paid by any department in connection with the said dismissals and investigations or removals from office. Presented June 8, 1914.—Mr. Chisholm (Antigonish). Not printed.

44 (8c). Partial Return to an Order of the House of the 18th February, 1914, for a copy of all charges, complaints, memorials, correspondence and telegrams, not already produced, relating to officials in any department of the Government since October 10, 1911, the number of officials dismissed, reports of investigations held in respect of such charges, items of expenditure and cost of each investigation, the names of persons appointed to office in the place of dismissed officials, and of all recommendations received in behalf of persons so appointed in the Province of Prince Edward Island. Presented June 12, 1914.—Mr. Hughes (Kings, P.E.I.). Not printed.

44 (8d). Return to an Order of the House of the 1st June, 1914, for a copy of all charges and complaints, letters, telegrams and correspondence respecting the dismissal of Captain Jeremiah Decoste, mate and cranesman, employed on dredge No. 6 under Captain Dan Gill in the Department of Public Works, or any officer thereof regarding his re-instatement. Presented June 12, 1914.—Mr. Chisholm (Antigonish). Not printed.

45. Return to an Order of the House of the 12th May, 1913, for a copy of all communications made by the Canadian Forestry Association to the Government between March 31, 1912, and March 31, 1913, with the replies made thereto. Presented January 19, 1914.—Mr. Oliver. Not printed.
CONTENTS OF VOLUME 28—Continued.

46. Return to an Order of the House of the 16th January, 1913, for a return showing the number of bushels of grain and sacks of flour which were shipped from Port William and Port Arthur by vessel during 1912, and the different kinds of grain respectively; to what points they were the same shipped in Canada and the United States giving the quantities and kinds respectively, and at what points in Canada was grain or flour received by vessel from the United States, giving the quantities and kinds respectively. Presented January 19, 1914.—Mr. Bennett (Simcoe) Not printed.

47. Return to an Order of the House of the 7th May, 1913, for a copy of the report concerning Indian Titles which was presented to the Superintendent General of Indian Affairs under date of August 20, 1909. Presented January 19, 1914.—Mr. Thompson (Yukon). Not printed.

49. Return to an Order of the House of the 26th May, 1913, for a copy of all telegrams, letters, &c., from the Department of Customs sent to or received from John C. Bourinot, Port Hawkesbury, customs officer, during the years 1895-6-7. Presented January 19, 1914.—Mr. Chisholm (Inverness) Not printed.

49a. Return to an Order of the House of the 26th May, 1913, for a return showing a complete list of the seizures made by John C. Bourinot, during his incumbency as acting preventive officer from 1884 to 1886; also during his term of office as Collector of Customs for the Port of Hawkesbury from 1886 to 1898, also during his term of office as special officer of customs from 1898 to 1912; with the date of each seizure, number of each seizure, name of party from whom seizure was made, in case of vessels, the names of the vessels; also the names of the owners of such vessels, the amount of each seizure, name of port where seizure was made, and the amount of the seizures made by him from 1884 to May 1, 1912, for the whole Province of Nova Scotia. Presented January 19, 1914.—Mr. Chisholm (Inverness) Not printed.

51. Statement in pursuance of Section 17 of the Civil Service Insurance Act, for the year ending March 31, 1913. Presented by Hon. Mr. White, January 19, 1914. Not printed.

52. Statement of Superannuation and Retiring Allowances in the Civil Service during the year ending December 31, 1913, showing name, rank, salary, service, allowance and cause of retirement of each person superannuated or retired, also whether vacancy is filled by promotion or by appointment, and salary of any new appointee. Presented by Hon. Mr. White, January 19, 1914. Not printed.

58. Certified List of Shareholders of the Montreal City and District Savings Bank, and La Caisse D'Economie de Notre Dame de Quebec, as on the 31st December, 1913. Presented by Hon. Mr. White, January 19, 1914. Not printed.

60. Return to an Order of the House of the 30th April, 1913, for a copy of the report made by the Inquiring Commissioner, Mr. J. H. Bergeron, in the inquiry lately held by him, at Quebec, re Doctor J. D. Page, of Quebec, and of the reports made by the advocate of the complainant and defendant in the same cause at the request of the Inquiring Commissioner. Presented January 29, 1914.—Mr. Boulay. Not printed.

61. Return to an Order of the House of the 26th March, 1913, for a copy of all petitions, reports, recommendations, correspondence, letters, telegrams and other communications concerning the east half of section 36, in township 6, range 8, west of the fourth meridian. Presented January 29, 1914.—Mr. Buchan. Not printed.
CONTENTS OF VOLUME 28—Continued.

62. Return to an Order of the House of the 22nd January, 1913, for a copy of all correspondence, &c., exchanged between the Minister of Labour and the Canadian Pacific Railway strikers on their application for a Board of Conciliation and Investigation. Presented January 20, 1914.—Mr. Lemieux. Not printed.

63. By-laws of the Moravian Indians of the Thames and Regulations of the Abenakis Indians of St. Francis, approved by His Excellency the Administrator in Council on the 27th March, 1912, and the 21st April, 1913, respectively. Presented by Hon. Mr. Codere, January 20, 1914. Not printed.

64. General Rules and Orders of the Exchequer Court of Canada made, respectively, on the 24th September, 1913, and the 13th December, 1913. Presented by Hon. Mr. Codere, January 20, 1914. Not printed.

66. Remission of Duties and refund under Section 92, Audit Act.—(Senate). Not printed.

67. Return to an Order of the House of the 19th May, 1913, for a return showing a comparative and detailed statement of costs of production, maintenance, operation, and management, and receipts of the Dog Fish Reduction Works at Clark's Harbour, N.S., for the years 1910, 1911 and 1912. Presented January 21, 1914.—Mr. Maclean (Halifax). Not printed.

68. Return to an Order of the House of the 21st May, 1913, for a copy of all papers, letters, documents, contracts, settlements, records of settlements, and all other papers and documents in any way relating to the claim of the Rainy River Navigation Company against the Government, arising out of a subsidy agreement for the operation of certain boats between Fort Frances and Kenora for the season of 1911, or in connection with the settlement of the said claim, or of the said subsidy. Presented January 21, 1914.—Mr. Maclean (York). Not printed.

69. Return to an Order of the House of the 31st March, 1913, for a copy of all correspondence, letters, telegrams, reports, recommendations, certificates, and of all other documents relating to the appointment of Mr. J. S. Jackson as superintendent of the Government shipyards at St. Joseph de Sorel. Presented January 22, 1914.—Mr. Cardin. Not printed.

70. Return to an Order of the House of the 23rd January, 1913, for a copy of all letters, petitions, telegrams, complaints, reports, bonds of indemnity, and all other papers and documents in the possession of the Post Office Department, or any department of the Government, relating to the letting of a contract for carrying the mails between Sherbrooke, County of Guysborough, N.S., and Moser's River, County of Halifax, N.S., during the years 1911 and 1912. Presented January 22, 1914.—Mr. Sinclair. Not printed.

70a. Return to an Order of the House of the 23rd January, 1913, for a copy of all letters, and other documents relating to the mail contract between Scotsburn Station and West Branch, River John, County of Pictou, in the year 1912. Presented January 22, 1914.—Mr. Macdonald. Not printed.

70b. Return to an Order of the House of the 2nd April, 1913, for a copy of all correspondence, reports and other documents relative to the mail contract between Scotsburn and West Branch, River John, Pictou County, since October 1, 1911. Presented January 22, 1914.—Mr. Macdonald. Not printed.

70c. Return to an Order of the House of the 16th December, 1912, for a return showing (a) each mail contract awarded since the 15th of October, 1911; (b) the name of the tenderer in each case; (c) the figures of each tender; and (d) the name of each party to whom such contract has been awarded. Presented January 22, 1914.—Mr. Lemieux. Not printed.

70d. Return to an Order of the House of the 15th January, 1913, for a return showing a list of the mail carriers whose contracts have been cancelled or renewed by the present Government in the County of Two Mountains, the names of such persons, the reasons for cancelling or renewing the said contracts, the former price and the present price of the said contracts; also a copy of all correspondence relating to the said mail carriers. Presented January 22, 1914.—Mr. Ethier. Not printed.

70e. Return to an Order of the House of the 9th December, 1912, for a return showing all the mail contracts made between the Post Office Department of Canada and any party or parties, and cancelled before the maturity thereof from October 15, 1911, to the 15th of November, 1912, designating such cancelled mail contracts by giving the name of the contractor, the amount of the contract, the period of the unexpired service, the name of the district or districts, and the county and province wherein the service was performed, together with the reasons for such cancellation. Presented February 12, 1914.—Mr. Maclean (Halifax). Not printed.
CONTENTS OF VOLUME 28—Continued.

70f. Return to an Order of the House of the 29th January, 1913, for a copy of all papers, and documents of every nature and kind relating to a certain mail contract between Back Shore and Picton, County of Picton, since the death of the late contractor D. G. McKay, in 1912. Presented February 20, 1914.—Mr. Macdonald. Not printed.

70g. Return to an Order of the House of the 14th April, 1913, for a copy of the contract between the Post Office Department and Napoleon Le Blanc, for the carrying of the mail’s between Carleton Centre and Carleton, Quebec, Railway Station, and of all correspondence, petitions, and other letters bearing on the cancelling of that contract and the awarding of a new one, with a copy of said new contract. Presented February 23, 1914.—Mr. MacNeil (Bonaventure). Not printed.

70h. Return to an Order of the House of the 2nd April, 1913, for a copy of all papers relating to the mail contract from Noel to Walton, County of Hants, during the present year. Presented February 26, 1914.—Mr. Macdonald. Not printed.

70i. Return to an Order of the House of the 12th May, 1913, for a copy of all tenders for, and correspondence relating to, the awarding of the contract for the carrying of His Majesty’s mail between Warkworth and Cobborne, County of Northumberland. Presented February 26, 1914.—Mr. Graham. Not printed.

70j. Return to an Order of the House of the 12th May, 1913, for a copy of all correspondence, papers, &c., in connection with the carrying of the mail between St. Francois Xavier de Brompton and Windsor Mills, Quebec. Presented February 26, 1914.—Mr. Tobin. Not printed.

70k. Return to an Order of the House of the 17th February, 1913, for a return showing the number of mail contracts cancelled in the Province of Nova Scotia since October 1, 1911, the names of the contractors, the prices paid to them, the reason for the cancellation in each case, and a copy of any investigations and reports had into the causes of such cancellations, the names of the new contractors and the prices paid to them in each case. Presented March 2, 1914.—Mr. Sinclair. Not printed.

70l. Return to an Order of the House of the 4th December, 1912, for a return showing the number of mail contracts cancelled in the County of Pictou since the 1st of October, 1911; the names of the contractors, the prices paid to them, the reason for the cancellation in each case; and a copy of any investigations and reports had into the causes of such cancellations, the names of the new contractors and the prices paid to them in each case. Presented March 2, 1914.—Mr. Macdonald. Not printed.

70m. Return to an Order of the House of the 31st March, 1913, for a copy of all tenders received and of all letters, telegrams, papers and other documents relating to the mail contract between Tatamagouche and Brulé Shore, Colchester County, during the present year. Presented March 2, 1914.—Mr. Macdonald. Not printed.

70n. Return to an Order of the House of the 9th December, 1912, for a copy of all letters, telegrams and correspondence referring to the tenders received and the contracts awarded, if any, for the carrying of the mails between Antigonish and Livingstone Cove. Presented March 5, 1913.—Mr. Chisholm (Antigonish). Not printed.

70o. Return to an Order of the House of the 19th May, 1913, for a copy of all telegrams and correspondence on file relating to the mail service between Antigonish and Livingstone Cove, and of the tenders received, and the contract entered into for this service. Presented March 12, 1914.—Mr. Chisholm (Antigonish). Not printed.

70p. Return to an Address to His Excellency the Administrator of the 25th April, 1913, for a copy of all documents, tenders, contracts, correspondence, orders in council, &c., in reference to the mail service between Bridgetown, Port Lorne and Hampton, Parker’s Cove, Annapolis County, N.S., for which service tenders were recently solicited. Presented March 12, 1914.—Mr. Maclean (Halifax). Not printed.

70q. Return to an Order of the House of the 9th February, 1914, for a copy of the advertisement for tenders, and of the tenders received, and of the contract awarded last year, for the carrying of the mails between Antigonish and Livingstone Cove, and of all letters, telegrams, correspondence and documents in any way relating thereto. Presented March 12, 1914.—Mr. Chisholm (Antigonish). Not printed.

70r. Return to an Order of the House of the 2nd February, 1914, for a return showing the names of all persons tendering, the amount of tender, and to whom awarded in 1913, for the carriage of mails covering the following mail routes in Shelburne County, Nova Scotia; Shelburne to Jordan Bay and Jordan Ferry and return; Clyde River to Upper Clyde and return; Lower Woods Harbour to Charlesville and return; Port La.Hertford to Sable River. Presented March 20, 1914.—Mr. Maclean (Halifax). Not printed.

70s. Return to an Order of the House of the 9th February, 1914, for a copy of all tenders, contracts, documents, papers and correspondence in connection with tenders and contracts for the carriage of mails between Bridgetown and Port Lorne, Hampton and Parker’s Cove, in 1912. Presented March 20, 1914.—Mr. Maclean (Halifax). Not printed.
CONTENTS OF VOLUME 28—Continued.

707. Return to an Order of the House of the 9th February, 1914, for a copy of the contract entered into last year for the carrying of the mails between North Lochaber and Collegeville, and of all letters, telegrams, and correspondence referring to said service and the awarding of said contract. Presented March 23, 1914.—Mr. Chisholm (Antigonish). Not printed.

708. Return to an Order of the House of the 9th February, 1914, for a copy of the advertisement for tenders, and of the tenders received last year for the carrying of the mails between Merigomish and Malignant Cove, and of all letters, telegrams and correspondence in connection therewith. Presented March 25, 1914.—Mr. Chisholm (Antigonish) Not printed.

709. Return to an Order of the House of the 19th March, 1914, for a return showing how many mail contracts have been cancelled in the County of Inverness from September, 1911, up to date.
1. The route of each contract, the name of the contractor, and the amount of each contract.
2. The reasons for cancelling the several contracts. Presented April 22, 1914.—Mr. Chisholm (Inverness) Not printed.

7010. Return to an Order of the House of the 30th March, 1914, for a copy of all letters, telegrams, correspondence, guarantee bonds, and other documents and security relating to the renewal of the contract with George A. Stewart for carriage of mail between North Lochaber and West Lochaber, in or about the month of May, 1913, of the subsequent cancellation of said renewal contract, and of the contract made with Hugh D. Cameron for said service. Presented April 29, 1914.—Mr. Chisholm (Antigonish) Not printed.

7011. Return to an Order of the House of the 4th March, 1914, for a copy of all correspondence, telegrams and papers generally concerning the increased railway mail subsidy recently agreed upon by the Postmaster General and the various railway companies. Presented April 30, 1914.—Mr. Lemieux Not printed.

7012. Return to an Order of the House of the 4th May, 1914, for a return showing the names of the 82 tenders for the carrying of the mails between Baie St. Paul and Murray Bay, County of Charlevoix, and the amount of the tender in each case. Presented May 8, 1914.—Mr. Lemieux Not printed.

7013. Return to an Order of the House of the 20th April, 1914, for a copy of all letters, papers, contracts, memoranda and other documents relative to the mail contract between Pictou 1st office and railway station, between the Post Office Department and Peter Foley. Presented May 8, 1914.—Mr. Macdonald Not printed.

7014. Return to an Order of the House of the 23rd March, 1914, for a copy of all documents, letters, recommendations, &c., in connection with a contract awarded to Christophe Lavergne, of St. Eleuthère, for the conveyance of the mail between St. Eleuthère and Sully. Presented May 11, 1914.—Mr. Lepointe (Kamouraska) Not printed.

7015. Return to an Order of the House of the 11th May, 1914, for a return showing:
1. Whether Mr. David Armstrong, mail carrier of the City of Sherbrooke, has been dismissed. If so, for what cause?
2. Whether an investigation was held at which he was given an opportunity of meeting his accusers and being heard in his own defence?
3. How many years Mr. Armstrong has been in the service?
4. What remuneration he was receiving for his services?
5. Whether a successor has been appointed? If so, what his name is, who recommended him and what remuneration he received. Presented May 28, 1914.—Mr. McIlvra Not printed.

7016. Return to an Order of the House of the 18th May, 1914, for a copy of all correspondence, papers, tenders and other documents in any way referring to the transfer from J. A. Campbell to Alexander Macdonell of the contract for carrying the mail from Port Hood to South West Port Hood. Presented June 2, 1914.—Mr. Chisholm (Inverness) Not printed.

7017. Return to an Order of the House of the 17th February, 1913, for a return in duplicate showing the number of mail contracts cancelled in the Counties of Westmorland, Albert, Kings and Kent, Province of New Brunswick, since October 9, 1911, the names of the contractors, the prices paid to them, the reason for the cancellation in each case, and a copy of any investigations and reports had into the causes of such cancellations, the names of the new contractors, and the prices paid to them in each case; and in cases where tenders were asked and received preliminary to such new contracts, a statement in duplicate showing names of the tenderers, with the offers made by each, the name of the successful tenderer, and the amount or price, for which contract was executed in each case; together with a copy in duplicate of all letters, correspondence and other communications relating to each such cancellation and the giving of any new contract. Presented June 2, 1914.—Mr. Emmerson Not printed.
71. Return to an Order of the House of the 2nd June, 1913, for a copy of all correspondence and telegrams relating to complaints, political or otherwise, made against Mrs. Marcelline Roy, postmistress at Elm Tree, Gloucester County, N.B., which led the department to issue an order for an investigation, and the said postmistress to tender her resignation, and to the appointment of her successor. Presented January 22, 1914.—Mr. Turgeon ..Not printed.

72. Return to an Order of the House, of the 26th March, 1913, for a copy of all petitions recommending in correspondence, letters, telegrams and other communications concerning the change in location of the post office known as Massasin, Province of Alberta. Presented January 22, 1914.—Mr. Buchanan.................................Not printed.

73. Return to an Order of the House of the 31st March, 1913, for a copy of all letters, telegrams and petitions concerning the closing of the Moulin Basinet post office, Parish of St. Jean de Matha, County of Joliette. Presented January 22, 1914.—Mr. Lementiez. Not printed.

74. Return to an Order of the House of the 7th April, 1913, for the production of one sample of a patented lock and key sold by the Ontario Equipment Company of Ottawa to the Post Office Department. Presented January 22, 1914.—Mr. VervilleNot printed.

74a. Return to an Order of the House of the 2nd April, 1913, for a copy of all correspondence between the Post Office Department and Allyn Taschereau, advocate of Quebec, concerning the purchase of new locks for the new post office January 22, 1914.—Mr. CarvelNot printed.

74b. Return to an Order of the House of the 4th March, 1914, for a copy of the application, correspondence and papers generally concerning mail lock patent No. 151643. Presented May 11, 1914.—Mr. LementiezNot printed.

75. Return to an Order of the House of the 16th February, 1913, for a copy of all letters, telegrams and other correspondence exchanged between the Post Office Department and Messrs. A. de Macdonald, Elzear Monpetit and all others, relating to the change of the postmasters at Ile Perrot North and Ile Perrot South, Vaudreuil Station, Rochebrune, St. Lazare Village, Mount Oscar and Pte. Fortune, and of the report of the inquiring commission in the cases in which an inquiry is held and exchanged between the parties above named relative to the new post office building at Rigaud and correspondence exchanged between the parties above mentioned, relating to the post offices lately named Choisy and Demartigny. Presented January 22, 1914.—Mr. BoyerNot printed.

75a. Return to an Order of the House of the 9th April, 1913, for a copy of all documents bearing on changes asked for in the postmastership of Port Daniel Centre, Avignon, New Richmond and Black Cape, Bonaventure County; and of all documents bearing on the closing of Black Cape Post post office, Bonaventure County. Presented January 22, 1914.—Mr. Marcil ..Not printed.

75b. Return to an Order of the House of the 2nd February, 1914, for a copy of all letters, telegrams, papers, and other documents connected with the removal of the post office from the store of Alexander Robertson at Red Point, P.E.I., to the store of J. E. Robertson of the same place. Presented February 20, 1914.—Mr. Hughes (P.E.I.). Not printed.

75c. Return to an Order of the House of the 16th February, 1914, for a copy of any complaints made against John A. Campbell, postmaster of New Richmond, Quebec, and of all correspondence bearing on any change called for in that office. Presented March 17, 1914.—Mr. Marcil (Bonaventure)Not printed.

76. Return to an Order of the House of the 7th May, 1913, for a copy of all correspondence and telegrams exchanged between the Post Office Department, the Government or any member thereof, the post office inspector at St. John, N.B., or any official of the Post Office Department at St. John, N.B., on the one hand, and the postmaster at Kouchibougauac, Kent County, N.B., Mr. Cliff Atkinson, or any other person, corporation or firms, relating to the sale or non-purchase of postage stamps, or the mailing of letters, delivery of mail, &c., at the said post office; together with a copy of all correspondence, reports and other papers and documents in any wise relating thereto, on file in the Post Office Department at Ottawa, or in the office of the post office inspector at St. John, N.B.; also a copy of all regulations or orders of the Post Office Department relating to the sale of postage stamps, or the mailing of letters, or the delivery of mails, or generally as to the use of post office by residents and non-residents. Presented January 22, 1914.—Mr. EmmersonNot printed.

77. Return to an Order of the House of the 2nd June, 1913, for a return showing the names, dates of appointment and salary respectively, of the employees of the Moosejaw post office. Presented January 22, 1914.—Mr. Knowles ..Not printed.

77a. Return to an Order of the House of the 24th February, 1913, for a copy of all letters, telegrams, recommendations, petitions and documents, relating to the appointment of Mr. Pierre Cournoyer as postmaster at St. Pierre de Sorel, County of Richelieu. Presented January 22, 1914.—Mr. Cardin ..Not printed.
CONTENTS OF VOLUME 28—Continued.

77b. Return to an Order of the House of the 14th April, 1913, for a return showing what public officers have been appointed in the City of Quebec, in the Departments of Inland Revenue, Post Office, Railways and the Transcontinental, Customs, Immigration, Marine and Fisheries, Public Works and Militia, since the 1st October, 1911, up to this date; together with the number of investigations held since their appointment, the salaries paid in each case and the increases granted since; also the date of these increases, and which ones of these officers have passed the Civil Service examinations required for the positions which they occupy, and on what dates they passed such examinations; and also a copy of all correspondence, requests, recommendations and reports relating to the appointment of these officers. Presented January 22, 1914.—Mr. Lackhance. Not printed.

77c. Return to an Order of the House of the 29th January, 1913, for a copy of all letters, petitions, telegrams, complaints, evidence, reports and other papers and documents in the possession of the Department of Railways and Canals, or of the Intercolonial Railway, or of the Government Railways Managing Board, relating or in any manner appertaining to the appointment and employment of train or ticket agents on the Intercolonial Railway and Prince Edward Island Railway, together with a copy of all statements showing the amounts received by said agent, in cash and tickets, on the trains of the respective divisions of said railways; and also showing the amounts received during corresponding periods for the past two years, in cash and tickets, on the same trains on the said respective divisions by the conductors of said trains, when no train or ticket agents were employed thereon, either before or since the employment of such agents on the respective trains and also a copy of all statements showing the results of the experiment in employing such ticket agents. Presented January 22, 1914.—Mr. Emmerson. Not printed.

77d. Partial Return to an Order of the House of the 9th December, 1912, for a return showing when Mr. J. G. H. Bergeron was appointed commissioner to hold investigations, the number of investigations held since his appointment, salary received in each case and the amount paid for travelling expenses in each case. Presented January 22, 1914.—Mr. Lemieux. Not printed.

77e. Return to an Address to His Royal Highness the Governor General of the 29th January, 1913, for a copy of all orders in council, memoranda or instructions issued to or written to H. P. Duchemin in connection with his appointment as a commissioner to conduct investigations regarding political partisanship in the Province of Nova Scotia; also a copy of all letters received by any department of the Government from the said H. P. Duchemin relating to such investigations since the date of his appointment as such commissioner, and all instructions of whatever nature at any time issued to him relating to such investigations. Presented January 22, 1914.—Mr. Lemieux. Not printed.

77f. Appointment of F. Roy, as postmaster of St. Philippe de Nery, &c., Province of Quebec. Presented January 22, 1914.—Mr. Lapointe (Komouraska). Not printed.

77g. Supplementary Return to an Order of the House of the 9th December, 1912, for a return showing when Mr. J. G. H. Bergeron was appointed commissioner to hold investigations, the number of investigations held since his appointment, salary received in each case and the amount paid for travelling expenses in each case. Presented February 23, 1914.—Mr. Lemieux. Not printed.

77h. Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence, telegrams, and other documents, relating to the removal of T. J. Oliver, as Dominion Lands Agent at Humboldt, Saskatchewan, his appointment to his present position, and the appointment of his successor at Humboldt. Presented March 6, 1914.—Mr. Neely. Not printed.

77i. Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence, telegrams, letters of instructions, or other documents relating to the removal of W. S. McKechnie, as Dominion Lands Agent at Prince Albert, Saskatchewan, and the appointment of his successor. Presented March 6, 1914.—Mr. Neely. Not printed.

77j. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, telegrams and papers generally in connection with the appointment of Joseph Lemieux as postmaster at Mont Louis, County of Gaspé. Presented March 6, 1914.—Mr. Lemieux. Not printed.

77k. Return to an Order of the House of the 7th April, 1913, for a copy of all correspondence, telegrams, petitions, affidavits, complaints, certificates, recommendations, reports and other documents relating to the engagement and appointment for the year 1913, of the captains and first and second engineers for dredging machines Nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 of the Department of Marine and Fisheries, under the control of the agency at Sorel, and employed in the deepening of the St. Lawrence below Montreal. Return to an Order of the House of the 7th April, 1913, for a copy of all correspondence, telegrams, petitions, affidavits, complaints, certificates, recommendations, reports and other documents, relating to the engagement and appointment of the captains and engineers for the year 1913, for the tugs Carmella, Chaubly, Contrecouer, De Lois, Emilia, Oberville, James Howden, Jesse Hume, Luc St. Pierre, Lanoraie, Lotbinière, Portneuf, Varennes and Vorchers, of the Department of Marine and Fisheries under the control of the agency at Sorel. Presented March 23, 1914.—Mr. Cardin. Not printed.
CONTENTS OF VOLUME 28—Continued.

77l. Return to an Order of the House of the 23rd March, 1914, for a return showing:
1. How many additional employees have been added to the Customs Department in the City of Halifax, since October 16, 1911.
2. Their names and salaries at the time of their appointment, their respective salaries and present, and also their respective ages at the time of appointment.
3. Whether all of them passed the necessary Civil Service examinations for the Customs service.
4. How many temporary clerks there are upon the said Customs staff, who they are, and the dates of their appointment. Presented April 2, 1914.—Mr. Maclean (Halifax) .. Not printed.

77m. Return to an Order of the House of the 28th April, 1913, for a copy of all letters and telegrams exchanged between the Government and Messrs. Arch. Macdonald, Elz. Monpetit and others, on the subject of the appointment of caretakers of the post office at Rigaud, Messrs. Jean Baptiste Charlebois and Napoleon Vallée. Presented April 2, 1914. —Mr. Boyer .. Not printed.

77n. Return to an Order of the House of the 23rd February, 1914, for a copy of all correspondences, recommendations, &c., relating to the appointment of Allan Morrison, St. Peter's, N.S., as inspector of dwellings erected on Gregory Island, Richmond County, N.S., in 1912-1913, and of all accounts, charges, vouchers, &c., rendered to the Department of Marine and Fisheries by the said Allan Morrison as such inspector. Presented April 7, 1914.—Mr. Kyte .. Not printed.

77o. Return to an Order of the House of the 9th February, 1914, for a return showing the names, date of appointment, length of service, remuneration and office held by each of all the employees of the Department of the Interior in the outside service since January 1, 1912, to December 31, 1913, not given in the Civil Service list of 1912 or 1913. Presented April 21, 1914.—Mr. Nicode .. Not printed.

77p. Return to an Order of the House of the 16th April, 1914, for a return showing:
1. How many appointments have been made in the Customs Department at Montreal since the 1st of October, 1911.
2. The names of the persons so appointed, and the dates of their respective appointments.
3. After what recommendations have they been appointed.
4. The salary of each of these new employees.
5. What increases or salaries have been granted in the same department since the same date, and to whom, and why. Presented April 29, 1914.—Mr. Proutz .. Not printed.

77q. Return to an Order of the House of the 2nd February, 1914, for a return showing the number of engineers, assistant engineers, draftsmen, clerks, divers, and students in engineering or surveying, or other parties employed by the Department of Public Works in the constituency of Bonaventure, from October 11, 1911, to date, with their names, residence, date of appointment, time employed in their work, their respective recommendations, together with a copy of all correspondence, and reports bearing on such employment, and of reports made to the said Department of Public Works in that constituency from January, 1913, to date. Presented April 30, 1914.—Mr. Marcil (Bonaventure) .. Not printed.

77r. Return to an Order of the House of the 12th March, 1914, for a return showing:
1. Whether Louis Philippe Thibault, Alphonse Poirier, J. A. Morin, C. F. Rioux, Thomas Thibault and Adjutor Deners, of Lévis, have been appointed to positions under the control of the Postmaster General of Canada.
2. If so, to what positions they have been appointed, what their duties are, when they were appointed and their salaries, respectively.
3. The names of the officers who have been dismissed and replaced by the above.
4. The total amount of the annual salaries or semi-annual wages. Presented May 4, 1914.—Mr. Bourassa .. Not printed.

77s. Return to an Order of the House of the 16th March, 1914, for a copy of all recommendations, protests, petitions, and representations received by the Government or any Department or Minister thereof, regarding the appointment of the present collector of customs at Antigonish, and of all the letters, telegrams and correspondence relating thereto. Presented May 15, 1914.—Mr. Chisholm (Inverness) .. Not printed.

77t. Return to an Order of the House of the 16th March, 1914, for a copy of all recommendations, protests, petitions, and representations received by the Government or any Department or Minister thereof, regarding the appointment of the present collector of customs at Antigonish and of all the letters, telegrams and correspondence relating thereto. Presented May 16, 1914.—Mr. Chisholm (Antigonish) .. Not printed.

77u. Return to an Order of the House of the 16th February, 1914, for a copy of all papers in connection with the employment of Arthur Dubisson as Immigration agent at Gravelburg, Sask, and all papers in connection with the said Dubisson, showing the money paid to him and the work performed by him. Presented May 30, 1914.—Mr. Knowles. Not printed.
CONTENTS OF VOLUME 28—Continued.

78. Return to an Order of the House of the 7th April, 1913, for a copy of all documents, recommendations and correspondence relating to the resignation of C. A. R. Desjardins, as postmaster at St. Andre de Kamouraska, and the appointment of his successor. Presented January 22, 1914.—Mr. Lapointe (Kamouraska) ... Not printed.

78a. Return to an Order of the House of the 25th April, 1913, for a copy of all complaints or charges against Fred. R. Irish, postmaster at Afton, Antigonish County, N.S., and of all correspondence on file in reference thereto. Presented January 22, 1914.—Mr. Chisholm (Antigonish) .. Not printed.

79. Return to an Order of the House of the 29th January, 1913, for a copy of all correspondence, papers, &c., concerning the application made by the Long Sault Development Company, with a view to dam the St. Lawrence river above the Long Sault rapids from the American to the Canadian side. Presented January 22, 1914.—Mr. Lemieux. Not printed.

79a. Supplementary Return to an Order of the House of the 29th January, 1913, for a copy of all correspondence, papers, &c., concerning the application made by the Long Sault Development Company, with a view to dam the St. Lawrence river above the Long Sault rapids from the American to the Canadian side. Presented February 12, 1914.—Mr. Lemieux .. Not printed.

80. Return to an Order of the House of the 21st April, 1913, for a return showing all leases of water powers granted on the Winnipeg river, the dates of such leases, to whom granted, and the location of the water powers covered by each; together with a copy of all correspondence passing between the Government, or any member thereof and any person or persons, with respect to such leases. Presented January 22, 1914.—Mr. Martin (Regina) .. Not printed.

80a. Return to an Order of the House of the 2nd April, 1913, for a return showing whether the Government cancelled any water lot leases on the Lachine Canal and, if so, the dates of such cancellation; the names of the lessees; length of time the cancelled leases were in force, and the rental paid in each case; the names of the lessees whose water lot leases or permits were cancelled, and the rental paid by each; the basis on which rental has been calculated and the method to be followed in future; the reasons why some leases were cancelled and others allowed to remain in force; and if tenders are to be invited through the press for such water lot leases in future. Presented January 22, 1914.—Mr. Buchanan............... Not printed.

80b. Return to an Order of the House of the 23rd April, 1913, for a return showing all leases or permits granted to clubs or individuals to erect or maintain boat houses on the Rideau canal between Laurier avenue bridge and Hartwellis Locks, the date of such leases, to whom granted, and the rental in each case; together with a copy of all correspondence between the Government, or any member thereof and any person or persons concerning such leases or permits and the cancellation thereof. Presented January 22, 1914.—Mr. Murphy ... Not printed.

80c. Supplementary Return to an Order of the House of the 2nd April, 1913, for a return showing whether the Government cancelled any water lot leases on the Lachine canal and, if so, the date of such cancellation; the names of the lessees; length of time the cancelled leases were in force, and the rental paid in each case; the names of the lessees whose water lot leases or permits were cancelled, and the rental paid by each; the basis on which rental has been calculated and the method to be followed in future; the reasons why some leases were cancelled and others allowed to remain in force; and if tenders are to be invited through the press for such water lot leases in future. Presented March 13, 1914.—Mr. Buchanan .. Not printed.

80d. Return to an Order of the House of the 23rd March, 1914, for a copy of the agreement for a lease of water power on the Saskatchewan river at Rocky Rapids, Alberta, made with the Edmonton Power Company, with information in detail as to the operations carried on by the company to date. Presented April 21, 1914.—Mr. Oliver Not printed.

81. Return to an Order of the House of the 25th April, 1913, for a return showing a list of all the newspapers in Canada in which advertisements have been inserted by the Government, or any minister, officer or department thereof, between October 16, 1911, and the present date, together with a statement of the gross amount paid therefor between the above dates to each of said newspapers or to the proprietors of the same. Presented January 22, 1914.—Mr. Sinclair ... Not printed.

81a. Partial Return to an Order of the House of the 30th April, 1913, for a return showing a list of all newspapers in Canada in which advertisements have been inserted by the Government, or any minister, officer or department thereof, between the 10th day of October, 1906, and 10th October, 1907, and between said dates in each of the years following, October, 1911, together with a statement of the gross amount paid therefor for the years mentioned, to each of the said newspapers or to the proprietors of the same. Presented January 22, 1914.—Mr. Thornton Not printed.
CONTENTS OF VOLUME 28—Continued.

81b. Supplementary Return to an Order of the House of the 30th April, 1913, for a return showing a list of all the newspapers in Canada in which advertisements have been inserted by the Government, or any minister, officer or department thereof, between the 10th day of October, 1906, and 10th October, 1907, and between said dates in each of the years following up to the 10th of October, 1911, together with a statement of the gross amount paid therefor for the years mentioned, to each of the said newspapers or the proprietors of the same. Presented April 1, 1914.—Mr. Thornton. Not printed.

81c. Further Supplementary Return to an Order of the House of the 28th April, 1913, for a return showing a list of all the newspapers in Canada in which advertisements have been inserted by the Government, or any minister, officer or department thereof, between October 10, 1911, and the present date, together with a statement of the gross amount paid therefor between the above dates to each of said newspapers or to the proprietors of the same. Presented April 2, 1914.—Mr. Sinclair. Not printed.

81d. Supplementary Return to an Order of the House of the 29th April, 1913, for a return showing a list of all the newspapers in Canada in which advertisements have been inserted by the Government, or any minister, officer or department thereof, between the 10th day of October, 1906, and 10th October, 1907, and between said dates in each of the years following up to the 10th of October, 1911; together with a statement of the gross amount paid therefor for the years mentioned, to each of the said newspapers or the proprietors of the same. Presented April 2, 1914.—Mr. Sinclair. Not printed.

81e. Return to an Order of the House of the 15th April, 1914, for a return showing how much money has been paid by the Government, or any department thereof, since October 10, 1911, to the Herald Publishing Company of Halifax, N.S., for advertising, printing and lithographing. Presented April 27, 1914.—Mr. Sinclair. Not printed.

81f. Return to an Order of the House of the 4th February, 1914, for a return showing the names of all printing and publishing companies, and newspapers in Nova Scotia to whom any sum of money has been paid respectively, by any department of Government, during the calendar years 1912 and 1913 respectively; and the nature of the service performed. Presented April 22, 1914.—Mr. Sinclair. Not printed.

81g. Supplementary Return to an Order of the House of the 25th April, 1913, for a return showing a list of all the newspapers in Canada in which advertisements have been inserted by the Government, or any minister, officer or department thereof, between October 10, 1911, and the present date, together with a statement of the gross amount paid therefor between the above dates to each of said newspapers or to the proprietors of the same. Presented May 11, 1914.—Mr. Sinclair. Not printed.

82. Return to an Order of the House of the 3rd February, 1913, for a copy of all letters, correspondence, reports and other documents in the possession of the Department of Railways and Canals relating to an application by the Central Railway Company of Canada to the Honourable Minister of Railways and Canals for the approval of their proposed route between Hawkesbury and South Indian. Presented January 22, 1914.—Mr. Prodt. Not printed.

83. Return to an Order of the House of the 9th December, 1912, for a copy of all documents, papers, memoranda, rulings, findings, appeals and correspondence relating to any appeal assessed from the action of the Privy Council of Canada to the Privy Council therein. Presented January 22, 1914.—Mr. Maclean (Halifax). Not printed.

84. Return to an Order of the House of the 7th May, 1913, for a return showing the total cost of the Elmira Branch Railway in Prince Edward Island; the total amounts paid the contractors, Whitehead Brothers; the total amount paid by the Government after taking the work off the contractor's hands, and showing the amount paid in wages each month, the names of the men to whom it was paid, the positions they held, and the wages per day to each; also showing what materials were used, each kind and class, with the cost of each, from whom purchased, and when, and the quantities left over, if any. Presented January 22, 1914.—Mr. Hughes (P.E.I.). Not printed.

85. Return to an Order of the House of the 15th January, 1913, for a copy of all letters, telegrams, correspondence and documents referring in any way to the claim of the municipalities of Picton, Antigonish, Guysboro and St. Mary's for payment or refund to them of the monies paid by said municipalities for the right of way or for that part of the Intercolonial Railway running through the Counties of Picton, Antigonish and Guysboro. Presented January 22, 1914.—Mr. Chisholm (Antigonish). Not printed.

85a. Return to an Order of the House of the 12th May, 1913, for a copy of all claims made by H. F. McDougall, of Grand Narrows, N.S., against the Intercolonial Railway, and of all letters, telegrams and other documents in connection with the said claim or claims; together with the particulars of said claims; the amount or amounts paid upon said claim or claims; the amount paid upon the particular items of the claim or claims upon which payments, if any, were made; the date of the filing of the claims and of the payment or payments, if any, made thereon; and the total amount paid on said claims or upon any other claims made by the said H. F. McDougall against the said Intercolonial Railway or the Government of Canada. Presented January 22, 1914.—Mr. Sinclair. Not printed.
CONTENTS OF VOLUME 25—Continued.

85b. Return to an Order of the House of the 16th February, 1914, for a copy of all documents, letters, petitions, telegrams and evidence heard, reports, &c., in connection with the claims of Eugene Demers and Joseph Olivier, of the parish of St. Nicholas, County of Lévis, for damages arising out of fires caused by the Intercolonial Railway's locomotives; and, if investigations have been held, a copy of all evidence and documents relating thereto. Presented March 6, 1914.—Mr. Bourassa. Not printed.

85c. Return to an Order of the House of the 27th April, 1914, for a copy of all letters, telegrams, reports, correspondence and documents relative to the claims made for damages from a fire in the village of Hopewell, County of Pictou, which was occasioned by sparks from a locomotive on the Intercolonial Railway. Presented May 13, 1914.—Mr. Macdonald. Not printed.

86. Return to an Order of the House of the 14th May, 1913, for a copy of all reports, correspondence and other documents on file in the Department of Railways and Canals, relating in any way to a suggested survey and construction of a line of railways from Country Harbour, Guysborough County, N.S., to Cape George, N.S., or any other point in Antigonish County. Presented January 22, 1914.—Mr. Chisholm (Antigonish.) Not printed.

86a. Return to an Order of the House of the 29th January, 1912, for a copy of all letters, written to the Right Honourable the Prime Minister, the Honourable the Minister of Railways and Canals, or any other member of the Government since October 19, 1911, by S. R. Griffin, Goldboro, N.S., John S. Wells, White Head, N.S., and G. A. R. Rowlings, Sydney, N.S., relating to the construction of a branch line of the Intercolonial Railway into the County of Guysborough, N.S., also of the replies to the same. Presented January 22, 1914.—Mr. Sinclair. Not printed.

87. Return to an Order of the House of the 27th January, 1913, for a copy of the contract entered into by C. R. Scoles, New Carlisle, Quebec, with the Department of Railways and Canals for the completion of the Atlantic and Lake Superior Railway between Caplin and Paspeblac, and of the report of the engineers on such work, of details of payments, and of all documents bearing on such matter. Presented January 22, 1914.—Mr. Marcil. Not printed.

88. Return to an Order of the House of the 21st May, 1913, for a copy of all documents, correspondence, reports and inquiries, relating to an accident which occurred at Trois Pistoles, Intercolonial Railway on 10th September, 1912, respecting the death of Arsené Ouellet, and the wounds inflicted on Joseph Gagnon, at the time that these two men were struck by train No. 150 on the above date. Presented January 22, 1914.—Mr. Boulay. Not printed.

90. Return to an Order of the House of the 29th January, 1913, for a return showing:—

1. What purchases of land have been made by the Dominion of Canada since Confederation?
2. The amount of money paid for same?
3. The approximate area of land so purchased?
4. In what provinces the said land is now situated?
5. The approximate area in each province?
6. The acreage of school lands set aside by the Government for the Provinces of Manitoba, Saskatchewan and Alberta?
7. The present approximate value of the said school lands so set aside in each of the said Provinces?
8. The number of acres of the said school lands already sold in each of the said Provinces, and the proceeds of such sales, deducting expenses?
9. The acreage of lands set apart at any time by the Government as an endowment to any university, the name of the university, and the Province in which the lands are situated?
10. The number of acres of swamp lands transferred to the Province of Manitoba under the provisions of Chapter 50 of the Acts if 1885 and amendments thereto?
11. The gross amount of cash allowance made at any time by the Federal Government to each or any Province of Canada, to assist in the construction of necessary public buildings?
12. The approximate value of the railway, public works and other assets of each of the Provinces of Canada, taken over by the Federal Government at the time that each Province entered the union?
13. The annual compensation made to the Province of Manitoba, Saskatchewan and Alberta, by reason of the fact that they are deprived of the public lands as a source of revenue?
14. The debt allowance to any time placed to the credit of each of the Provinces of Canada by the Federal Government. Presented January 22, 1914.—Mr. Sinclair. Not printed.
CONTENTS OF VOLUME 28—Continued.

90a. Supplementary Return to an Order of the House of the 29th January, 1913, for a return showing:
1. What purchases of land have been made by the Dominion of Canada since Confederation?
2. The amount of money paid for same?
3. The approximate area of land so purchased?
4. In what Provinces the said land is now situated?
5. The approximate area in each Province?
6. The average of school lands set aside by the Government for the Provinces of Manitoba, Saskatchewan and Alberta?
7. The present approximate value of the said school lands so set aside in each of the said Provinces?
8. The number of acres of the said school lands already sold in each of the said Provinces, and the proceeds of such sales, deducting expenses.
9. The acreage of lands set apart at any time by the Government as an endowment to any university, the name of the university, and the Province in which the lands are situated?
10. The number of acres of swamp lands transferred to the Province of Manitoba under the provisions of Chapter 56 of the Acts of 1885 and amendments thereto?
11. The gross amount of cash allowance made at any time by the Federal Government to each or any Province of Canada, to assist in the construction of necessary public buildings?
12. The approximate value of the railway, public works and other assets of each of the Provinces of Canada, taken over by the Federal Government at the time that each Province entered the union?
13. The annual compensation made to the Provinces of Manitoba, Saskatchewan and Alberta, by reason of the fact that they are deprived of the public lands as a source of revenue?
14. The debt allowance to any time placed to the credit of each of the Provinces of Canada by the Federal Government. Presented March 12, 1914.—Mr. Sinclair.
Not printed.

91. Partial Return to an Order of the House of the 12th May, 1913, for a return showing the names and purposes of the several Commissions created by legislation or Orders in Council since October 12, 1911; the names of the members of the several commissioners, with their respective salaries and remuneration; the names of commissions still in existence; and the names of commissions created since October 12, 1911, which have ceased to exist. Presented January 22, 1914.—Mr. Oliver. Not printed.

91a. Partial Return to an Address to His Royal Highness the Governor General of the 4th December, 1912, for a copy of each Commission issued by the Government since October 10, 1911, directing an investigation to be held; and also for a copy of the evidence taken and the report made in each case that has been concluded. Presented January 22, 1914.—Mr. Murphy. Not printed.

91b. Further Supplementary Return to an Address to His Royal Highness the Governor General of the 4th December, 1912, for a copy of each Commission issued by the Government since October 10, 1911, directing an investigation to be held; and also for a copy of the evidence taken and the report made in each case that has been concluded. Presented February 9, 1914.—Mr. Murphy. Not printed.

91c. Return to an Order of the House of the 9th December, 1912, for a return showing the number of Commissions formed by the Government since September 21, 1912, the names and the occupations of the Commissioners appointed, their duties, the duration of their services, and their remuneration. Presented February 12, 1914.—Mr. Deelinc. Not printed.

91d. Return to an Address to His Royal Highness the Governor General of the 5th February, 1914, for a copy of the Order in Council appointing a Commission for the purpose of beautifying the city of Ottawa and vicinity, of all correspondence with regard to the same, and of all reports made by the commission up to date. Presented March 6, 1914.—Sir W. Launder. Not printed.

91e. Supplementary Return to an Order of the House of the 12th May, 1913, for a return showing the names and purposes of the several Commissions created by legislation or Orders in Council since October 12, 1911; the names of the members of the several commissioners, with their respective salaries and remuneration; the names of commissions still in existence; and the names of commissions created since October 12, 1911, which have ceased to exist. Presented March 9, 1914.—Mr. Oliver. Not printed.

91f. Return to an Order of the House of the 9th February, 1914, for a return showing the number and particulars of Commissions appointed or issued under the Inquiries Act since October 1, 1911, the purpose or object thereof, the name of the Commissioner or Commissioners, and the cost of each to the present time. Presented May 29, 1914.—Mr. Macleam (Halifax). Not printed.
CONTENTS OF VOLUME 28—Continued.

92. Partial Return to an Order of the House of the 28th April, 1913, for a return showing all those who have been holding investigations within the judicial district of Three Rivers, since October 15, 1911, to date, in reference to the conduct of men holding offices from the Dominion Government, the place where each investigation was held, the amount paid to each investigator in each case; the names of the solicitors employed in each case, the post office addresses, and the amount paid in each case to the solicitor. Presented January 22, 1914.—Mr. Bureau......................Not printed.

93. Return to an Order of the House of the 26th March, 1913, for a return showing whether the Government paid or intends to pay fees and disbursements of the witnesses summoned by the commissioners appointed by it in the County of Lévis, to hold inquiries on the conduct of public officers whose dismissal had been requested; the amounts which have been paid and to whom, and the sum remaining to be paid for the same purpose. Presented January 23, 1914.—Mr. Bourassa......................Not printed.

93a. Partial Return to an Order of the House of the 4th June, 1913, for a return showing the total expenditure to date by the present administration in connection with the investigation of charged partisan conduct against officials. Presented January 23, 1914.—Mr. SinclairNot printed.

93b. Partial Return to an Order of the House of the 7th May, 1913, for a return showing in detail the names of witnesses summoned by Commissioner H. P. Duchemin in connection with all investigations held by him in the counties of North Cape Breton and Victoria, South Cape Breton, Inverness and Antigonish, Nova Scotia, and the amounts paid in each such case. Presented January 23, 1914.—Mr. Carroll..............Not printed.

93c. Return to an Order of the House of the 9th April, 1913, for a return showing in detail the expenditure incurred since October 11, 1911, in connection with investigations held in Bonaventure County by commissioners appointed by the Departments of the Post Office, Customs, and Marine and Fisheries into charges made against employees of said departments of offensive political partisanship, together with the names and amounts paid to each of said commissioners in each investigation, as well as details of amounts paid to witnesses and others. Presented January 23, 1914.—Mr. Marcil...........Not printed.

93d. Return to an Order of the House of the 26th February, 1913, for a copy of all statements of account for salary or remuneration to the commissioner, and his expenses for witness fees, and all other expenses in connection with the investigation by Commissioner Duchemin, of the following, persons in the County of Guysboro, Nova Scotia namely:

H. L. Tory, fishery officer, Guysboro.
John W. Davis, fishery officer, Guysboro.
Patrick Shea, postmaster, Tompkinsville.
John M. Rogers, postmaster, East Roman Valley.
James Bowles, postmaster, Alder River.
Aber M. Carr, postmaster, St. François Harbour.
Everett Hadley, postmaster, Oyster Ponds.
Parker S. Hart, postmaster, Lower Manchester.
S. M. Ferguson, preventive officer, Oyster Pond.
Robert Hendee, postmaster, Half Island Cove.
A. B. Cox, Manager Reduction Works, Canso.
Edward Kelly, engineer, Reduction Works, Canso.
D. S. Hendee, weigher, Reduction Works, Canso.
Alax. Roberts, postmaster, Canso.
David Sutherland, caretaker, Canso.
Henry Hanlon, chief engineer, Hatchery, Canso.
Thos. Sullivan, assistant engineer, Canso.
W. G. Matthew, coxswain life-boat, Canso.
Patrick Ryan, assistant coxswain life-boat, Canso.
M. McCutcheon, postmaster, Sonora.
Stanley McCutcheon, preventive officer, Sonora.
Freeman Pride, lightkeeper, Sonora.
David Reid, fishery officer, Port Hilford.
L. M. Pye, customs officer, Liscomb.
Stanley Hemlow, lightkeeper, Liscomb.
W. H. Hemlow, keeper storm drum, Liscomb.
R. Couroy, postmaster, Country Harbour.
John Milward, postmaster, Stormont.
A. W. Salesman, postmaster, Lower Country Harbour.
W. B. Harris, postmaster, Whitehead.
E. L. Munro, customs officer, Whitehead.
W. L. Munro, lightkeeper, Whitehead.
Patrick Conway, lightkeeper, Whitehead.
H. P. Munro, coxswain life-boat, Whitehead.
Levi Munro, harbour master, Whitehead.
William McKinnon, postmaster, Erinville.
CONTENTS OF VOLUME 25—Continued.

J. H. McMillan, manager hatchery, Isaac's Harbour.
Sanford Langley, postmaster, Isaac's Harbour North.
Fred. E. Cox, engineer lobster hatchery, Isaac's Harbour.
Simon Hodgson, assistant engineer, Isaac's Harbour.
Archibald Brass, postmaster, L. New Harbour.
Parker Sangster, postmaster, New Harbour West.
William Gervais, customs officer, Larry's River.
James M. Webs, lightkeeper, Torbay Point.
W. J. Hattie, preventive officer, Mulgrave.
J. F. Reeves, postmaster, Mulgrave.
John P. Oldaker, foreman deck-hand, Mulgrave.
Philip H. Ryan, Intercolonial Railway employee, Mulgrave.
Alex. Wilkinson, Intercolonial Railway employee, Mulgrave.
Alex. McInnis, car Inspector, Mulgrave.
Frank Fougere, postmaster, Port Felix.
Sam. Smith, postmaster, Port Felix, West.
Captain Freeman Myers, postmaster, Cole Harbour.
George Taylor, postmaster, Beckerton.
Stephen C. Richard, lightkeeper, Charlo's Cove. Presented January 26, 1914.—Mr. Sinclair.

93e. Supplementary Return to an Order of the House of the 5th May, 1913, for a return showing in full the names of witnesses summoned by Commissioner H. P. Duchemin in connection with all investigations held by him in the Counties of North Cape Breton and Victoria, South Cape Breton, Inverness and Antigonish, Nova Scotia, and the amounts paid in each such case. Presented February 10, 1914.—Mr. Carroll. Not printed.

93f. Return to an Order of the House of the 9th December, 1912, for a return showing when H. P. Duchemin, of Sydney, Nova Scotia, was appointed commissioner to hold investigations, the number of investigations held since his appointment, names of officials investigated, if evidence and report in each investigation has been forwarded by Mr. Duchemin to the department interested, if not, in what cases has no evidence and report been submitted, salary or remuneration received in each case, and amount paid for travelling expenses in each case. Presented February 10, 1914.—Mr. Carroll. Not printed.

93g. Return to an Order of the House of the 23rd February, 1914, for a return showing the expenditures by the Intercolonial Railway in connection with all the inquiries and investigations held by H. P. Duchemin, concerning any and all employees of the Department of Railways and Canals, or of the Intercolonial Railway, for any cause whatever, and relating to any complaints or charges, or to any matter of whatsoever nature, giving in detail the items of all accounts or bills of or payments to the said H. P. Duchemin in connection with same, during the years 1912, 1913, and for the year 1914 to date; together with a statement showing the total amounts paid in each specified investigation and the total paid in each year for the whole period to the said H. P. Duchemin. Presented March 5, 1914.—Mr. Emmerson. Not printed.

93h. Supplementary Return to an Order of the House of the 5th May, 1913, for a return showing in full the names of witnesses summoned by Commissioner H. P. Duchemin in connection with all investigations held by him in the Counties of North Cape Breton and Victoria, South Cape Breton, Inverness and Antigonish, Nova Scotia, and the amounts paid in each such case. Presented March 17, 1914.—Mr. Carroll. Not printed.

93i. Return to an Order of the House of the 23rd March, 1914, for a return showing in detail the expenses and cost of an inquiry or investigation held by Commissioner Adair, under the authority of the Department of Railways and Canals, into the affairs of the Electrical Branch of the Intercolonial Railway at Moncton, and the conduct of John W. Gaskin and others, in relation to their services in said branch or otherwise, held during the year 1912; together with the names of the commissioner, the agents, attorneys, counsel, constables, police officers, detectives, witnesses or other persons in connection with said inquiry; the number of days consumed and paid for in the conduct thereof, and the services rendered by each person in connection therewith; and a detailed statement of all the sums or sums of money paid to each party therefor, at what rate and the amounts paid to each witness sworn and in attendance or otherwise, together with a copy of all bills, claims or accounts rendered in connection with said inquiry, and all vouchers for moneys paid, by whom paid and to whom; with a copy of all letters or other correspondence relating to the appointment of a commissioner, and of counsel to be engaged or other officers employed, and relating to the compensation to be paid for services, and in connection with any of said bills, accounts, payments and vouchers, with a statement or summary of the total cost of said investigation, showing the number of railway employees called as witnesses, the witness fees allowed and paid them, and the cases in which their time respectively was not allowed them while absent to give such evidence as the cases to which such time was allowed and no deduction made from their wages or salaries for the period of their absence in attendance at such inquiry as such witnesses respectively. Presented May 13, 1914.—Mr. Emmerson. Not printed.
CONTENTS OF VOLUME 28—Continued.

94. Return to an Order of the House of the 9th December, 1912, for a return showing how many citizens of the United States have been employed by the Government since November 1, 1911, in what department employed, their names and occupations and salary paid to each, and also, the number appointed under section 21 of the Civil Service Act. Presented January 24, 1914.—Mr. Murphy. Not printed.

95. Return to an Order of the House of the 23rd April, 1913, for a copy of all letters, telegrams, papers and documents in any way relating to the purchase of property at Long Beach St. Mary's, Digby County, N.S., for a lobster pond. Presented January 23, 1914.—Mr. Law. Not printed.

96. Return to an Order of the House of the 24th February, 1913, for a copy of all requests, petitions, &c., made to the Government, or any department thereof, by the residents of Mira, County of Cape Breton, for subsidies for boats, wharf accommodations, or increased facilities on the Mira river. Presented January 23, 1914.—Mr. Carroll. Not printed.

97. Return to an Order of the House of the 7th May, 1913, for a copy of all reports, correspondence, telegrams and other documents in the custody or control of the Militia Department or the Railway Department, concerning matters brought to the attention of the Militia Department by B. A. Ingraham, of Sydney, N.S., with reference to the transition of the Sydney militia over to the Intercolonial Railway in the year 1912. Presented January 23, 1914.—Mr. Carroll. Not printed.

98. Medical inspection of immigrants at port of entry in Canada.—(Senate) Not printed.

100. Proposed harbour at Skinner's Pond—Surveys made for, &c.—(Senate) Not printed.

101. Investigation held in 1912 re dredging operations in British Columbia.—(Senate) Not printed.

101a. Investigation held by Mr. Wilson, B.C., against Captain Murdock Young.—(Senate) Not printed.

102. Quantities of wheat by grades received at elevators at Fort William.—(Senate) Not printed.

103. Projected railway or highway bridge over the Restigouche River, N.B. Presented January 26, 1914.—Mr. Marel Not printed.

104. Relating to the employees of the different departments at Ottawa, the provinces, and territories, &c. Presented January 26, 1914.—Mr. Wilson (Laval) Not printed.

104a. Return to an Order of the House of the 11th December, 1912, for a return showing for each department of the Civil Service, the names, ages, offices and salaries of such persons employed either in the inside or outside divisions thereof, and of such persons not in the Civil Service employed by the Government in any department since the 10th October, 1911; and in cases where no commission of investigation was appointed, as have been removed from office by dismissal, superannuation or otherwise, specifying in each case the manner of, and grounds for such removal, and the length of notice given to the person removed, and the amount of superannuation or gratuity granted, if any; also showing the name, age, office and salary or remuneration of any and every person appointed to the Civil Service in the place of, or as a consequence of any such removal. Presented January 26, 1914.—Mr. Murphy. Not printed.

104b. Partial Return to an Order of the House of the 11th December, 1912, for a return showing for each department of the Civil Service, the names, ages, offices and salaries of such persons employed either in the inside or outside divisions thereof, and of such persons not in the Civil Service employed by the Government in any department since the 10th October, 1911; and in cases where no commission of investigation was appointed, as have been removed from office by dismissal, superannuation or otherwise, specifying in each case the manner of, and grounds for such removal, and the length of notice given to the person removed, and the amount of superannuation or gratuity granted, if any; also showing the name, age, office and salary or remuneration of any and every person appointed to the Civil Service in the place of, or as a consequence of any such removal. Presented February 10, 1914.—Mr. Murphy. Not printed.

104c. Further Supplementary Return to an Order of the House of the 11th December, 1912, for a return showing for each department of the Civil Service, the names, ages, offices and salaries of such persons employed either in the inside or outside divisions thereof, and of such persons not in the Civil Service employed by the Government in any department since the 10th October, 1911; and in cases where no commission of investigation was appointed, as have been removed from office by dismissal, superannuation or otherwise, specifying in each case the manner of, and grounds for such removal, and the length of notice given to the person removed, and the amount of superannuation or gratuity granted, if any; also showing the name, age, office and salary or remuneration of any and every person appointed to the Civil Service in the place of, or as a consequence of any such removal. Presented March 10, 1914.—Mr. Murphy. Not printed.
CONTENTS OF VOLUME 28—Continued.

104d. Return to an Order of the House of the 23rd February, 1914, for a return showing the total number of officials and employees in the Department of Public Printing and Stationery on February 1, 1914; and the increase in wages granted to the several groups of employees during the year 1913. Presented March 18, 1914.—Mr. Murphy. Not printed.

104e. Return to an Order of the House of the 23rd February, 1914, for a return showing how many persons have been appointed to positions in the inside Civil Service since October 10, 1911, who had not passed the public competitive examination held by the Civil Service Commission in May and November of each year.
2. How many of such persons were appointed in each department. Presented March 23, 1914.—Mr. Murphy...Not printed.

104f. Return to an Order of the House of the 4th March, 1914, for a return showing how many persons have been appointed to the Inside Service of the Post Office Department by the present Government, with the names of the appointees, the grade each of them was appointed to, and the salary in each case; how many of these appointees passed the Civil Service examination, and how many did not do so, with the names in each case. Presented April 1, 1914.—Mr. Proulx..Not printed.

104g. Further Supplementary Return to an Order of the House of 11th December, 1912, for a return showing for each department of the Civil Service, the names, ages, offices and salaries of such persons employed either in the inside or outside divisions thereof, and of such persons not in the Civil Service employed by the Government in any department since the 1st October, 1911; and in cases where no commission of investigation was appointed, as have been removed from office by dismissal, superannuation or otherwise, specifying in each case the manner of and grounds for such removal, and the length of notice given to the person removed, and the amount of superannuation or gratuity granted, if any; also showing the names, age, office and salary or remuneration of any and every person appointed to the Civil Service in the place of, or as a consequence of any such removal. Presented April 2, 1914.—Mr. Murphy...Not printed.

104h. Return to an Order of the House of the 2nd April, 1914, for a return showing how many certificates for promotion have been asked from the Civil Service Commissioners since the 31st March, 1913; how many of such certificates have been refused, and to whom, and the reasons given in each case for such refusal. Presented April 16, 1914.—Mr. Carroll..Not printed.

104i. Return to an Order of the House of the 30th March, 1914, for a return showing the salary of each deputy minister; the number of clerks or employees under each of the deputy ministers, or over whose work the deputy is supposed to exercise supervision; the salary of the Customs Commissioner, and length of time employed. Presented April 23, 1914.—Mr. Chisholm (Inverness)..Not printed.

105. Return called for by Section 88, of Chapter 62, Revised Statutes of Canada, requiring that the Minister of the Interior shall lay before Parliament, each year, a return of liquor brought from any place out of Canada into the Territories by special permission in writing of the Commissioner of the Northwest Territories. Presented by Hon. Mr. Roche, January 27, 1914..Not printed.

107. Return showing lands sold by the Canadian Pacific Railway Company during the year which ended on the 1st October, 1913. Presented by Hon. Mr. Roche, January 28, 1914..Not printed.

110. Return of Orders in Council which have been published in the Canada Gazette between the 1st October, 1912, and 30th November, 1913, in accordance with the provisions of "The Forest Reserves and Park Act," Section 19, of Chapter 10, 1-2 George V. Presented by Hon. Mr. Roche, February 2, 1914..Not printed.

110a. Return of Orders in Council which have been published in the Canada Gazette, between the 1st October, 1912, and 30th November, 1913, in accordance with the provisions of Section 5 of 'The Dominion Lands Survey Act,' Chapter 21, 7-8 Edward VII. Not printed.

110b. Return of Orders in Council which have been published in the Canada Gazette, between 1st October, 1912, and 30th November, 1913, in accordance with the provisions of Section 77 of 'The Dominion Lands Act,' Chapter 20 of the Statutes of Canada, 1908. Not printed.
CONTENTS OF VOLUME 23—Continued.

110c. Return of Orders in Council which have been published in the Canada Gazette and in the British Columbia Gazette, between 1st October, 1912, and 30th November, 1913, in accordance with provisions of subsection (d) of Section 38 of the regulations for the survey, administration, disposal and management of Dominion lands within the 40-mile railway belt in the Province of British Columbia. Presented by Hon. Mr. Roche, February 2, 1914. Not printed.

110d. Return of copies of all Orders in Council, plans, papers and correspondence which are required to be presented to the House of Commons, under a resolution passed on the 20th February, 1882, since the date of the last return, under such resolution. Presented by Hon. Mr. Roche, January 28, 1914. Not printed.

110e. Return to an Order of the House of the 9th February, 1914, for a copy of all letters, papers, homestead inspector's reports, declarations and of all other documents connected in any way with the entry and cancellation proceedings against the homestead entry of James Bruce for the southeast quarter section 36, in township 45, range 27, West one half meridian. Presented March 6, 1914.—Mr. Necty. Not printed.

110f. Return to an Order of the House of the 9th February, 1914, for a copy of all papers in connection with the disposition of the S.E. 3, section 16, township 25, range 5, West fifth meridian. Presented March 10, 1914.—Mr. Oliver. Not printed.

110g. Return to an Order of the House of the 16th February, 1914, for a copy of all papers in connection with the S.W. 1/4, 22-18-12 W. 3 M. Presented March 10, 1914.—Mr. Knowles. Not printed.

110h. Return to an Order of the House of the 16th February, 1914, for a copy of all papers in connection with the N.E. 1-22-11-5 W. 3 M. Presented March 23, 1914.—Mr. Knowles. Not printed.

110j. Supplementary Return to an Order of the House of the 16th February, 1914, for a copy of all papers in connection with the N.E. 1-22-11-5 W. 3 M. Presented May 5, 1914.—Mr. Knowles. Not printed.

110k. Return to an Address to His Royal Highness the Governor General of the 20th April, 1914, for a copy of all documents, letters, telegrams, papers, Orders in Council and agreements of sale, in connection with the sale by the Government of Canada of the following lands in the railway belt in British Columbia, viz.: Townships 23 and 24, range 18; townships 23 and 24, range 19; townships 24 and 25, range 20; townships 25, 26 and 27, range 21; townships 26 and 27, range 22, all West of the fifth meridian. Presented May 13, 1914.—Mr. Buchanan. Not printed.

110l. Return to an Order of the House of the 27th April, 1914, for a copy of all letters, telegrams, &c., in the Department of the Interior in connection with the N.W. 1 section 20-4, range 18 west of the second meridian. Presented May 18, 1914.—Mr. Turriff. Not printed.

110m. Return to an Order of the House of the 27th April, 1914, for a copy of all papers, letters, telegrams, &c., in possession of the Department of the Interior in connection with the N.-S.-1-3-16-W. 2 M. Presented May 18, 1914.—Mr. Turriff. Not printed.

111a. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence and documents, or other information, as to the passage of an Act in Great Britain and the different Dominions, providing for uniformity of the Naturalization Law. Presented February 18, 1914.—Mr. Macdonald. Not printed.

112. Account of the average number of men employed on the Dominion Police Force during each month of the year 1913, and of their pay and travelling expenses, pursuant to Chapter 92, section 6, subsection 2, of the Revised Statutes of Canada. Presented by Hon. Mr. Doherty, February 5, 1914. Not printed.

114. Return to an Order of the House of the 2nd February, 1914, for a return showing what changes have been made in the original scheme for terminals of the Transcontinental Railway at the city of Quebec; the estimated cost of the former; the estimated cost of the said terminals under the present scheme. Presented February 16, 1914.—Mr. Graham. Not printed.
CONTENTS OF VOLUME 28—Continued.

114a. Return to an Address to His Royal Highness the Governor General of the 23rd February, 1914, for a copy of all correspondence between the National Transcontinental Railway Commissioner and the Minister of Railways, and between the National Transcontinental Railway Commissioner and the Canadian Pacific Railway regarding the Joint Terminals at Quebec; also a copy of the Order in Council regarding joint terminals at Quebec, and of the final agreement regarding same. Presented March 19, 1914.—Mr. Graham. Not printed.

114b. Return to an Order of the House of the 16th March, 1914, for a copy of all contracts by the Department of Railways or the Transcontinental Railway Commission with the Canadian Pacific Railway Company with regard to the establishment of a joint station at the Palais, city of Quebec, and of all correspondence with regard to the same. Presented March 20, 1914.—Sir Wilfrid Laurier. Not printed.

115. Return to an Order of the House of the 9th December, 1912, for a return showing the number of commissioners appointed by the Government since October 10, 1911, to hold investigations, giving their names, the amount paid to each commissioner up to November 21, 1912, the number of the said commissioners still under pay, with their names. Presented February 10, 1914.—Mr. Murphy. Not printed.

116. Return to an Order of the House of the 31st March, 1913, for a copy of all papers, documents, correspondence, &c., relating to requests for the temporary suspension of the application of the dumping clause of the Customs Tariff Act in reference to wire rods or any other products or articles, made to the Department of Customs, or the Department of Finance, since January 1, 1911. Presented February 10, 1914.—Mr. Maclean (Halifax). Not printed.

117. Return to an Order of the House of the 20th January, 1913, for a copy of all proposals, offers, agreements, reports, estimates, letters, telegrams and of all other communications or documents in the possession of the Department of Railways and Canals, or of the Prime Minister of Canada, or of any other department of the Government, filed with said department or any of them, since the first day of January, 1910, relating to or in any way appertaining to the question or proposal of acquiring any or all, or any one of the lines of railways connecting with the Intercolonial Railway along its line, and serving as a feeder or feeders of said railway, either by lease, purchase or otherwise, also of all proposals, offers, requests, applications, petitions, memorials, or other documents, and of all letters, telegrams and other communications and correspondence, relating to or in any manner appertaining to the acquisition by any Railway company of running rights, so called, or the securing of a leasehold or other interest involving the rights by any Railway company to operate its trains over the rails of the Intercolonial Railway, together with a copy of all answers, letters, telegrams, correspondence and reports relating thereto, on the files of the Department of Railways and Canals, or of the Prime Minister, or of any Department of the Government. Presented February 10, 1914.—Mr. Emmerson. Not printed.

117a. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, memorials, petitions, engineers' reports and other documents exchanged by or on behalf of the proprietors of the Quebec Oriental Railway and the Atlantic, Quebec and Western Railway, and the Department of Railways and Canals, since last session, with the view of the acquisition by the Government of these roads as branch lines or feeders of the Intercolonial Railway. Presented March 6, 1914.—Mr. Marcil (Bonaventure). Not printed.

117b. Return to an Order of the House of the 9th February, 1914, for a copy of all letters, telegrams, petitions, reports, correspondence and other documents on file in any Department of the Government, or in the possession of any member of the Government, relating to, or in any manner connected with, the proposal to have a spur line or siding to connect the new public wharf at Sackville, N.B., with the Intercolonial Railway at that place, and of all letters, telegrams and other correspondence passed between any person or persons and any member of the Government. Presented March 11, 1914.—Mr. Emmerson. Not printed.

117c. Return to an Order of the House of December 9, 1912, for a copy of the report made by Mr. Treasurer to the Department of Railways and Canals on a proposed line of railway from Orangedale to Cheticamp in the County of Inverness, N.S.; and also all petitions, memorials and correspondence referring to the proposed line of railway. Presented March 17, 1914.—Mr. Chisholm (Antigonish). Not printed.

117d. Return to an Order of the House of the 23rd March, 1914, for a copy of all petitions, correspondence, engineers' reports of surveys, and of all other reports on file, referring to a proposed diversion of the Intercolonial Railway from, at or near Linwood Station, through the districts of Linwood, Cape Jack, and to village of Harbour au Bouché; and more particularly of the petitions and reports relating to such diversion filed in or about the years 1857 and 1891. Presented April 7, 1914.—Mr. Chisholm (Antigonish). Not printed.
CONTENTS OF VOLUME 28—Continued.

117c. Return to an Order of the House of the 23rd March, 1914, for a return showing the names of the successful contractors, with the particulars of their schedule prices respectively, on the contracts awarded by the Intercolonial Railway for the work of double tracking from Chaudiere Curve to St. Romuald, Quebec, and the division line from Nelson to Derby Junction, New Brunswick, and the division or spur line from North Sydney to Leitch's Creek, Nova Scotia, with a copy of the reports, correspondence and recommendations relating to the awarding of said tenders or contracts respectively, and also showing the estimate of cost of said works respectively. Presented April 15, 1914.—Mr. Emmerson ... Not printed.

117f. Return to an Order of the House of the 16th March, 1914, for a copy of all memoranda, instructions and authorizations issued by the Minister of Railways and Canals since October 11, 1911, relating to the eliminating of the present grades and replacing the light bridges with heavier steel structure on the Intercolonial Railway; and of all memoranda, recommendations and reports made by Mr. F. P. Gutelius or the Board of Management of the Intercolonial Railway thereon. Presented May 6, 1914.—Mr. Kyle. Not printed.

118. Memorandum on special claim on behalf of Prince Edward Island in respect to representation in the House of Commons. Presented by Hon. Mr. Foster, February 10, 1914. Printed for distribution and sessional papers.

118a. Memorandum on behalf of Nova Scotia, New Brunswick and Prince Edward Island, claiming the right to have their original representation in the House of Commons restored. Presented by Hon. Mr. Foster, February 10, 1914. Printed for distribution and sessional papers.

119. Copy of the proceedings and resolutions adopted at the last Interprovincial Conference. Presented by Hon. Mr. Foster, February 10, 1914. Printed for distribution and sessional papers.

120. Return to an Order of the House of the 2nd June, 1913, for a copy of the application of Pacifique Leroux for damages sustained by removal of a bridge on the Soulanges Canal, and of all reports and correspondence on the same. Presented February 12, 1914.—Sir Wilfrid Laurier ... Not printed.

121. Return to an Order of the House of the 20th January, 1913, for a copy of all plans, proposals, diagrams, specifications, reports, surveys, requests, correspondence, letters, telegrams and of all other communications and documents in possession of the Department of Railways and Canals, relating or in any wise appertaining to the proposed steam ferry service for all seasons of the year between the mainland of New Brunswick, or of Nova Scotia, and Prince Edward Island, whereby a connection could be made between the Intercolonial Railway and the Prince Edward Island Railway, by the transfer of railway cars over and across the waters of the Straits of Northumberland by means of said proposed ferry, together with a statement of all estimates and figures as to the total cost of construction of such ferry, and the items of said estimate or estimates in detail. Presented February 12, 1914.—Mr. Emmerson. Not printed.

121a. Return to an Order of the House of the 11th December, 1912, for a copy of all letters, telegrams and other documents relative to the establishment of a car ferry between Prince Edward Island and the mainland, of the report or reports of any engineers or experts in regard to the said proposal, and of their estimates of the cost thereof, the advertisement calling for tenders therefor, and a copy of any plans, conditions or proposed specifications therefor, or in regard thereto, and of any tenders received in response to said advertisement, of the reports, if any, of any officials in regard thereto, and of all data in possession of the Department in respect of said project. Presented February 12, 1914.—Mr. Macdonald. Not printed.

122. Return to an Order of the House of the 2nd February, 1914, for a return showing the total amount of liability in the form of temporary loans on the last day of each month during the period between the 1st day of May, 1913, and December 31, 1913, together with, in each case, the rate of interest paid upon said amounts during the same periods. Presented February 12, 1914.—Mr. Maclean (Halifax). Not printed.

123. Report of the Royal Commission appointed to investigate the construction of the National Transcontinental Railway, together with the evidence taken and exhibits filed before the said commission. Presented by Hon. Mr. Cochrane, February 12, 1914. Printed for distribution and sessional papers.

CONTENTS OF VOLUME 28—Continued.

123b. Return to an Order of the House of the 15th February, 1914, for a copy of the contract with Mr. Joseph Gosselin for the locomotive and car shops at St. Malo, and of all telegrams, letters and correspondence between the Department and Mr. W. J. Press, mechanical engineer, or the chief engineer, with regard to change of the price of 85 cents per cubic yard for common excavation to the price of $2.30 per cubic yard for frozen earth. Presented March 11, 1914.—Mr. Graham. Not printed.

123c. Return to an Address to His Royal Highness the Governor General of the 16th February, 1914, for a copy of all papers in any way relating to the tender, original contract, and amended contract of Mr. Joseph Gosselin for the locomotive and car shops at St. Malo, Quebec, together with a copy of the advertisements for tenders, the specifications, the contract, the amended contract, reports of engineers, recommendations to Council, orders in Council, letters, telegrams, minutes or reports of interviews, and of all other documents referring in any way to the said contract or the amendment thereof. Presented March 11, 1914.—Mr. Graham. Not printed.

123d. Return to an Address to His Royal Highness the Governor General of the 23rd February, 1914, for a copy of all correspondence in connection with the appointment of Messrs. Lynch-Staunton and Gutelius as commissioners to investigate the cost of construction of the Eastern division of the National Transcontinental Railway, and also of the Order in Council appointing them. Presented March 12, 1914.—Mr. Graham. Not printed.

123f. Return to an Order of the House of the 23rd March, 1914, for a copy of all plans and profiles designed by the engineers, in connection with the intended construction of the Transcontinental Railway from a point called Ste. Claire, County of Dorchester, between the twentieth and thirtieth miles, east of the Quebec Bridge, going through the parishes of St. Malachie, Standon, Cranbourne, Ste. Germaine and Ste. Justine, passing through the townships of Panet, Rolette and Valois, towards Ste. Perpetue, on the 19th mile east of the Quebec bridge, and of all the information and reports on the nature of the land, timber and minerals through which the engineers have been showing also how much the railway would have cost per mile had it been built in that part of the country. Presented April 7, 1914.—Mr. Sewigny. Not printed.

123g. Return to an Order of the House of the 23rd March, 1914, for a copy of all correspondence, messages, petitions, and other documents in connection with the choice of a site intended for the construction of a station at the village of St. Eleuthere, on the National Transcontinental Railway. Presented April 15, 1914.—Mr. Lapointe (Ramouraska). Not printed.

123h. Return to an Order of the House for a return showing,—
1. What kind of coaling plants have been provided on the National Transcontinental Railway?
2. How many have been provided?
3. Where they have been constructed?
4. If any tenders were called for them?
5. The name and address of the lowest tenderer.
6. From whom they were obtained and at what price? Presented April 15, 1914.—Mr. Macdonald. Not printed.

124. Return to an Address to His Royal Highness the Governor General, of the 2nd February, 1914, for a copy of all decisions of the Board of Railway Commissioners made on or after the 10th of October, 1911, on which appeals have been taken to the Governor in Council, and of all decisions given by the Governor in Council on such appeals. Presented February 13, 1914.—Mr. Sinclair. Not printed.

125. Return to an Order of the House of the 2nd February, 1914, for a copy of all rules and regulations made and passed by the Board, with the approval of the Minister, under the provisions of the Intercolonial and Prince Edward Island Railways Employees' Provident Fund Act, pursuant to section eight of said Act. Presented February 13, 1914.—Mr. Emmerson. Not printed.

125a. Return to an Order of the House of the 2nd February, 1914, for a return showing in detail the transactions and proceedings of the so-called Provident Fund Board from the 1st day of January, A.D., 1912, to date, with the names of applicants and their addresses and the nature of their employment, for retirement under the provisions of The Intercolonial and Prince Edward Island Railways Employees' Provident Fund Act, and a statement of the names so retired during that period, showing the amount of their respective retiring allowances, their respective terms of service, their respective ages, and the total of the fixed yearly charges upon the said fund made thereby; together
with a copy of all correspondence, letters, documents and other communications relating to such applications and retirements on file in the Railway Department either at Moncton or at Ottawa, and of all correspondence, letters, petitions or other communications addressed to and received by the Minister of Railways and Canals, the Department, or any official thereof, or any member of the Government from any member of Parliament, or other person charged with the responsibility of directing Government or railway patronage, or from any person or persons, club or association assuming to advise or direct with respect to any such patronage, and of all replies made to any such letters, petitions or other communications. Presented March 3, 1914.—Mr. Emmerson ..Not printed.

126. Return to an Order of the House of the 2nd February, 1914, for a return showing the amounts of receipts and expenditures on the Intercolonial Railway during the months of April, May and June, of 1913, respectively, giving separately the revenue from passenger trains, freight traffic, mail and express and miscellaneous revenue, respectively, with the total thereof during that period; also the same information respecting the corresponding months of 1912, with the total thereof for that period. Also a statement showing the working expenses or expenditure during months of April, May and June of 1913, respectively, giving separately the working expenses or expenditure on maintenance of way and structures, maintenance of equipment, traffic expenses, transportation expenses and general expenses; with the total thereof during that period; and also the same information respecting the corresponding months of 1912, with the total thereof for the same period; also a statement showing the cost of transporting freight per ton mile during the period named in the years 1912 and 1913. Presented February 13, 1914.—Mr. Emmerson ..Not printed.

126a. Return to an Order of the House of the 4th March, 1914, for a return showing the total revenue of the Intercolonial Railway during the fiscal year 1912-1913, and the revenue from Campbellton and all stations east of Campbellton, and from those west thereof as far as Halifax, on the main line, including the branches east of Campbellton, Prince Edward Island Railway excluded. Presented March 17, 1914.—Mr. Boulay.

Not printed.

126b. Return to an Order of the House of the 2nd February, 1914, for a return showing the total earnings of the Intercolonial Railway on Division 3 in connection with passenger traffic for the calendar years 1910, 1911, 1912 and 1913 respectively, and the monthly passenger traffic earnings for each of the said years; the total expenses or expenditures connected with the said passenger traffic on said division during the said years respectively; together with a statement showing the monthly passenger traffic expenses or expenditures connected with said passenger traffic for each of the months of the said years; and showing, in addition, the loss and surplus for each of said years and the months thereof respectively, in connection with the passenger traffic on said division 3 between St. John and Halifax; also a statement of the revenue and expenditures on the transactions connected with said passenger traffic over said division during the months of December, 1913, and January, 1914, separately; and also a statement showing the gross passenger earnings for December, 1912, and January, 1914, respectively, and the gross expenditures with the passenger traffic for the said months respectively; together with a copy of all reports, returns, letters and correspondence relating to the earnings, expenditures or losses or surpluses on said division either in connection with freight or passenger traffic. Presented April 7, 1914.—Mr. Emmerson.

Not printed.

127. Return to an Order of the House of the 2nd February, 1914, for a return showing the names of the employees of all kinds on the Soulanges Canal in the section extending from the foot of the canal to the first bridge; with the functions of each of them, the salary thereto attached and the date of their hiring during the season of navigation. Presented February 15, 1914.—Mr. Boyer. ..Not printed.

128. Return to an Order of the House of the 2nd February, 1914, for a return showing:

1. The names of all persons from whom land or property has been expropriated for right of way and station purposes in connection with the Dartmouth to Dean Settlement Branch of the Intercolonial Railway of Canada.

2. The quantity of land or property so expropriated.

3. The amount paid or offered to such person or persons for such land or property, in cases where payment or an offer has been made. Presented February 13, 1914.—Mr. Maclean (Halifax) ..Not printed.

129a. Return to an Address to His Royal Highness the Governor General of the 2nd February, 1914, for copies of all correspondence with the Imperial Government, or any official thereof, or any member of the Senate, or other person charged with the responsibility of directing Government or railway patronage, or from any person or persons, club or association assuming to advise or direct with respect to any such patronage, and of all replies made to any such letters, petitions or other communications. Presented February 29, 1914.—Sir Wilfrid Laurier.

Not printed.
CONTENTS OF VOLUME 28—Continued.

130. Return to an Order of the House of the 9th February, 1914, for a copy of all accounts, bills, receipts and vouchers in connection with the services of N. W. White, during 1912 and 1913, as commissioner to inquire into Indian lands in the Province of British Columbia. Presented February 17, 1914.—Mr. Maclean (Halifax).......................... Not printed.

131. Return to an Order of the House of the 2nd February, 1914, for a copy of all documents whatsoever relating to the investigation of a claim of Jean Ross or Joseph Ross, of Amqui, County of Rimouski, Province of Quebec, against the Intercolonial Railway, following an accident to a horse, which occurred on the 10th of December, 1906. Presented February 17, 1914.—Mr. Bouliey.. Not printed.

133. Statement of the population of Canada and its Provinces and Territories in the years 1871, 1881, 1891, 1901 and 1911, according to the census returns. Presented by Hon. Mr. Borden, February 17, 1914.. Not printed.

134. Return to an Order of the House of the 9th February, 1914, for a copy of all reports, if any, by the Grand Trunk Pacific Railway Company, against changes in grades of the National Transcontinental Railway from Winnipeg eastward, and terminal facilities at Quebec; of all subsequent approvals of such changes, if any, by the Grand Trunk Pacific Railway Company, and of all correspondence on the above subject. Presented February 18, 1914.—Sir W. Laurier................................. Not printed.

136. Return to an Order of the Senate dated 27th January, 1914, for a copy of the Annual Report made in January, 1913, by the Central Railway Company to the Railway Department.—(Senate) .. Not printed.

137. Return to an Order of the Senate dated 27th January, 1914, for a copy of the Annual Report made by the Salisbury and Albert Railway Company to the Railway Department.—(Senate) .. Not printed.

138. Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence and documents in reference to the matter submitted to Sir William Whyte by the Government, the Transcontinental Commission or the commission appointed to investigate the construction of the National Transcontinental Railway, between the Government or any member or official thereof, and any official of the Grand Trunk Pacific Railway Company; and also of all correspondence between any member or official of either the above named commissions and the Justice Department, concerning the said matter. Presented February 19, 1914.—Mr. Graham.............. Not printed.

139. Return to an Order of the House of the 16th February, 1914, for a return showing the names, salaries and grades of the private secretaries of the members of the Liberal Government on October, 1911; the names of the private secretaries employed from time to time by the members of the present Government, and the salary and grade of each. Presented February 19, 1914.—Mr. Murphy.............................. Not printed.

140. Return to an Order of the House of the 9th February, 1914, for a return showing how many woollen industries are operated in the country; where situated, in which province, and in what city, town or village; the number of hands employed in each, and the output for each during 1913. Presented February 19, 1914.—Mr. Versailles

Not printed.

141. Return to an Order of the House of the 2nd February, 1914, for a return showing the number, location, and mileage of rural mail routes established in Bonaventure County from October, 1911, to date, if any; together with a copy of all applications, memorials, reports and correspondence generally on this matter. Presented February 23, 1914.—Mr. Mareil (Bonaventure) .. Not printed.

141a. Return to an Order of the House of the 2nd February, 1914, for a return showing a tabulated statement of the number of rural mail delivery routes opened since 1911, including the number of boxes used; also the new mail delivery contracts necessitated by the establishment of said routes in each county, not already moved for. Presented February 23, 1914.—Mr. Lemieux................................. Not printed.

141b. Return to an Order of the House of the 19th February, 1914, for a return showing the number of rural mail delivery routes which have been established in Nova Scotia, and their names; and if any of the routes are provided with a daily service. Presented March 2, 1914.—Mr. Sinclair.............................. Not printed.
CONTENTS OF VOLUME 28—Continued.

141c. Return to an Order of the House of the 15th February, 1914, for a copy of all documents, petitions, letters, telegrams, &c., exchanged between any officers and the Post Office Department, in connection with the establishing of a rural mail service in the Parish of Sté. Marguerite de Blairfindie, County of St. Johns and Iberville, and of all documents, letters and telegrams, &c., relating to the contracts for the conveyance of rural mail in said parish. Presented April 29, 1914.—Mr. Demers. Not printed.

141d. Return to an Order of the House of the 20th April, 1914, for a return showing:—
1. Whether the rural postal delivery service has been started in the County of Quebec? If so, when and in what parishes of said county?
2. Whether public tenders have been advertised for such service? If so, when, how many were received and from whom, the amount of each tender, and what tender was accepted?
3. The price of the accepted tender, the name of the tenderer, the condition or conditions of payment, and the length of the contract. Presented April 30, 1914.—Mr. Laplante.

141e. Return to an Order of the House of the 6th April, 1914, for a copy of all letters, petitions and documents relative to the establishment of a rural mail delivery route from New Glasgow through Mount William, Granton and Abercornia, County of Pictou. Presented May 8, 1914.—Mr. Macdonald.

141f. Return to an Order of the House of the 4th March, 1914, for a copy of all correspondence, telegrams, petition, recommendation and other documents relating to the establishment of the rural mail service in the parish of St. Theodore d'Acton. Presented May 16, 1914.—Mr. Morell (Bonaventure).

141(g). Return to an Order of the House of the 11th February, 1914, for a copy of all petitions, letters, telegrams and other papers relative to the establishment of rural mail delivery routes in the County of Pictou since January 1, 1912, together with the number of said routes, the carriers on each route, the tenders received in each case for the service, a copy of the correspondence in relation to said tenders and their acceptance, and the post offices closed or to be closed as the result of the establishment of said routes. Presented June 12, 1914.—Mr. Macdonald.

142. Return to an Order of the House of the 2nd February, 1914, for a return showing what new post offices have been established in the County of L'Islet since 1911; the names of the officer in charge of each of them; the revenue brought; the expenses incurred by these offices, including the salary and fees of the postmaster and charges for the conveyance of the mails; if these officers have been asked for by petition of the interested ratepayers, and if so, by whom; the quantity of letters and other postal matters that have passed through each of these offices since they have been established. Presented February 23, 1914.—Mr. Lapointe (Kamovuwa). Not printed.

142a. Return to an Order of the House of the 19th March, 1914, for a copy of all documents, papers, petitions, correspondence, reports, &c., in connection with the opening of a post office under the name of Glasson in the parish of St. Aubert, County of L'Islet. Presented April 22, 1914.—Mr. Lapointe (Kamovuwa).

143. Return to an Order of the House of the 2nd February, 1914, for a return showing the names and addresses, with rank or occupation, of all persons who accompanied the Minister of Militia and Defence to the Old country and Europe during the summer of 1913, and whose expenses were paid wholly or in part by the Dominion Government, or who were paid salary or allowance during such time, with the amount paid to each person. Presented February 23, 1914.—Mr. Curvel. Not printed.

144. Return to an Order of the House of the 11th February, 1914, for a copy of all correspondence, telegrams and other papers to be found in the Department of the Naval Service in connection with the death and burial, at Montreal, of Joseph LeBlanc, a sailor on D.G.S. Canada. Presented February 23, 1914.—Mr. Sinclair. Not printed.

145. Return to an Order of the House of the 2nd February, 1914, for a copy of all tenders received for the construction of a salmon hatchery on Nipissiguit river, Gloucester County, N.B., and of the contract awarded. Presented February 23, 1914.—Mr. Tanguy. Not printed.

146. Return to an Order of the House of the 8th April, 1913, for a copy of all correspondence, telegrams, petitions, affidavits, certificates, reports, complaints and other documents, relating to the resignation of Mr. M. C. Blair, recruiting officer of the Department of Marine and Fisheries from the Government shipyards at St. Joseph de Sorel, and to the appointment of Mr. F. P. Vanasse to this office. Presented February 23, 1914.—Mr. Cardin. Not printed.
147. Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence, letters, telegrams, and other documents relating to industrial disputes during the year 1913, between the operators and employees of any of the companies operating coal mines on Vancouver Island, and disturbances arising out of the same; and of any correspondence, either before or since the year 1913, in respect to any of the said disputes. And in particular of all correspondence, letters, telegrams, and other documents to or from the Prime Minister, the Honourable the Minister of Labour or any of the officers of the Department of Labour, respecting attempts at conciliation in connection with these disputes, and to or from the Honourable the Minister of Militia, or any officers of the Department of Militia and the Honourable the Minister of Justice, or any officers of the Department of Justice, respecting the calling out and services of the militia in connection with said disputes; and a statement of the arrests made and of convictions, if any, for infringement of the laws. Also a copy of the evidence taken and reports of investigations made by the Honourable the Minister of Labour, Mr. Samuel Price, Commissioner appointed by the Department of Labour, and of the Deputy Minister of Labour; together with a detailed statement of the expenses of all such investigations and expenses otherwise incurred by any of the Departments of the Government in consequence of said disputes or difficulties arising out of same. Presented February 23, 1914.—Sir W. Laurier. Not printed.

147a. Return to an Address to His Royal Highness the Governor General of the 2nd February, 1914, for a copy of all correspondence, letters, telegrams and reports that have been exchanged between the Government and the strikers and operators of coal mines in British Columbia since the beginning of the strike until the present; also a copy of all Orders in Council in connection with said strike. Presented February 23, 1914.—Mr. Vereille. Not printed.

147b. Supplementary Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence, letters, telegrams, and other documents relating to industrial disputes during the year 1913, between the operators and employees of any of the companies operating coal mines on Vancouver Island, and disturbances arising out of the same; and of any correspondence, either before or since the year 1913 in respect to any of the said disputes. And in particular of all correspondence, letters, telegrams, and other documents to or from the Prime Minister, the Honourable the Minister of Labour or any of the officers of the Department of Labour, respecting attempts at conciliation in connection with these disputes, and to or from the Honourable the Minister of Militia, or any officers of the Department of Militia and the Honourable the Minister of Justice, or any officers of the Department of Justice, respecting the calling out and services of the militia in connection with said disputes; and a statement of the arrests made and of convictions if any, for infringement of the laws. Also a copy of the evidence taken and reports of investigations made by the Honourable the Minister of Labour, Mr. Samuel Price, Commissioner appointed by the Department of Labour, and of the Deputy Minister of Labour; together with a detailed statement of the expenses of all such investigations and expenses otherwise incurred by any of the Departments of the Government in consequence of said disputes or difficulties arising out of same. Presented February 24, 1914.—Sir Wilfrid Laurier. Not printed.

148. Regulations, approved by Order in Council, dated the 19th day of January, 1914, for the disposal of petroleum and natural gas rights, the property of the Crown in Manitoba, Saskatchewan, Alberta, the Northwest Territories, the Yukon Territory, the Railway Belt in the Province of British Columbia, and within the tract containing three and one-half (3½) million acres of land acquired by the Dominion Government from the Province of British Columbia, and referred to in subsection (b) of section 3 of the Dominion Lands Act. Presented by Hon. Mr. Roche, February 23, 1914. Not printed.

150. Return to an Order of the House of the 9th February, 1914, for a return showing the amounts in detail paid to Ward Fisher, of Shelburne, N.S., fishery inspector, for the years 1912 and 1913 for salary, office expenses, travelling expenses, and all other expenses. Presented February 24, 1914.—Mr. Maclean (Halifax). Not printed.

151. Return to an Order of the House of the 2nd February, 1914, for a copy of the report of operations at the fishery hatchery at Port Daniel West, for the year 1913. Presented February 24, 1914.—Mr. Marcil (Bonaventure). Not printed.

152. Return to an Order of the House of the 15th February, 1914, for a copy of all correspondence, investigations or other documents respecting the loss of a horse killed on the Intercolonial, on the 16th of September last, the property of Johnny Roy, of Amqui. Presented February 24, 1914.—Mr. Boulay. Not printed.
153. Return to an Order of the House of the 16th February, 1914, for a return showing the increase in freight rates on live-stock, including horses, carried over the Intercolonial Railway, by the tariff effective May 1, 1913, as compared with the tariff effective April 15, 1909, for the following distances, respectively:

Over 5 and not over 10 miles.	" 10 "	" 15 "
" 15 "	" 20 "	" 25 "
" 20 "	" 25 "	" 30 "
" 25 "	" 30 "	" 35 "
" 30 "	" 35 "	" 40 "
" 35 "	" 40 "	" 45 "
" 40 "	" 45 "	" 50 "
" 45 "	" 50 "	" 55 "
" 50 "	" 55 "	" 60 "
" 55 "	" 60 "	" 65 "
" 60 "	" 65 "	" 70 "
" 65 "	" 70 "	" 75 "

Presented February 24, 1914.—Mr. Kyte ... Not printed.

154. Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence, letters, telegrams, and other documents relative to the report and recommendations of the Board appointed under the Combines Investigation Act to investigate the methods adopted by the United Shoe Machinery Company. Presented February 24, 1914.—Sir Wilfrid Laurier .. Not printed.

155. Return to an Address to His Royal Highness the Governor General of the 2nd February, 1914, for a copy of memorandum of agreement between the Canadian Government railways and the Canadian Pacific Railway Company, covering the transportation of freight and passengers between Halifax and St. John over the Intercolonial Railway, in connection with the Canadian Pacific and Allan Line Steamships, carrying British mails, making Halifax the terminal port; also of all agreements, Orders in Council, petitions, memorials, regulations or orders of the Department of Railways and Canals, or of any officer or officers of the Intercolonial Railway; or letters or other correspondence, interviews with the Prime Minister and other member or members of the Government, and representations to the Prime Minister, or other member or members of the Government, in any matter relating to the said memorandum of agreement; and of all telegrams and letters received by the Government, or any member thereof, or sent by them, either in reply or otherwise; also of all letters, telegrams, representations or other documents relating to the said agreement or in any way connected therewith, received by F. P. Gutelius, the General Manager of the Intercolonial Railway, from the Canadian Pacific Railway, or from any corporation, persons or body, or sent by him, in reply thereto or otherwise, to the said Canadian Pacific Railway or to any other corporation, body or person. Presented February 24, 1914.—Mr. Emmerson, Not printed.

156. Return to an Address to His Royal Highness the Governor General of the 9th February, 1914, for a copy of all Orders in Council since the 1st of June last in any way altering the rates of duties existing under the Customs Act. Presented February 24, 1914.—Sir Wilfrid Laurier .. Not printed.

157. Correspondence, statements, &c., in respect to certain proposed advances to the Harbour Commissioners of Montreal, for expenditure during the years 1914, 1915, 1916 and 1917. Presented by Hon. Mr. Hazen, February 27, 1914. Not printed.

158. Memorandum of proposed harbour improvements to be made by the Harbour Commissioners of Quebec during 1914, out of certain proposed advances to be made to the said commission. Presented by Hon. Mr. Hazen, February 27, 1914. Not printed.

159. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, correspondence, telegrams, &c., between the Department of Trade and Commerce and any person or persons, companies or corporations, in the years 1912 and 1913, respecting a steamship service between St. John, N.B., and Bear River, N.S., and intermediate points, and the matter of the payment of a subsidy therefor. Presented March 2, 1914.—Mr. Maclean (Halifax) Not printed.

160. Return to an Order of the House of the 2nd February, 1914, for a copy of the reports made by the proprietors of the steamer Canadia, on which the subsidy was paid to them for the season of 1913, for the service between Campbeltown, N.B., and Gaspé, Que., together with a copy of all complaints regarding the said service and of the correspondence respecting the same. Presented March 2, 1914.—Mr. MacCall (Bonaventure) Not printed.
CONTENTS OF VOLUME 28—Continued.

161. Return to an Order of the House of the 4th February, 1914, for a return showing what sum or sums of money, if any, have been expended by the Government since the 21st of September, 1911, in the County of Wright, Quebec, and how much money has been expended. Presented March 2, 1914.—Mr. Devlin. Not printed.

162. Return to an Order of the House of the 26th February, 1914, for a return showing:—
 1. How many temporary clerks were employed in the Library of Parliament during the Sessions of 1911-1912 and 1912-1913, their names and the salary paid to each for such service, and the total so paid?
 2. How many temporary clerks are at present so employed, their names and salaries respectively?
 3. If any temporary clerks were employed in said library, during the Session of 1910-1911; if so, how many?
 4. What was the then number of permanent clerks in the library, and the present number of temporary clerks employed in said library?
 5. Why temporary clerks are employed in said library in positions superior to and at higher pay than that paid to permanent clerks? Presented March 3, 1914.—Mr. Turgeon. Not printed.

163. Return to an Address to His Royal Highness the Governor General of the 2nd February, 1914, for a copy of all correspondence, telegrams, memoranda, Orders in Council, instructions to officers, regulations and other papers and documents relating to a change in the regulations governing the fishing of salmon in the St. John River, above tidal water. Presented March 3, 1914.—Mr. Sinclair. Not printed.

164. Return to an Order of the House of the 2nd February, 1914, for a copy of all letters, telegrams, and correspondence in any way relating to the appointment of men in any way connected with the salmon fishing pond at Margaree during the year 1913. Presented March 3, 1914.—Mr. Chisholm (Inverness). Not printed.

165. Return to an Order of the House of the 2nd February, 1914, for a copy of all tenders received in 1912 for the construction of a breakwater at Green Point, Gloucester County, N.B., and of all correspondence, letters and telegrams showing why the contract was not awarded to lowest tenderer. Presented March 3, 1914.—Mr. Turgeon. Not printed.

166. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, letters, telegrams, &c., touching in any way the work done on Lining Beach, South Cape Breton, under Superintendent H. D. McLean. Presented March 3, 1914.—Mr. Carroll. Not printed.

167. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, advertisements, tenders, bids, contracts, reports, vouchers, accounts, receipts, correspondence, &c., in connection with a wharf recently constructed at Gold River, Lunenburg County, N.S. Presented March 3, 1914.—Mr. Maclean (Halifax). Not printed.

168. Return to an Address to His Royal Highness the Governor General, of the 9th February, 1914, for a copy of all documents, Orders in Council, correspondence, telegrams, tenders, accounts, vouchers, part, &c., in connection with the construction of a bridge or work between the mainland and an island, known as Boutilier's island, at South West Cove, Lunenburg County, N.S. Presented March 3, 1914.—Mr. Maclean (Halifax). Not printed.

169. Return to an Order of the House of the 8th February, 1914, for a copy of all advertisements, tenders, contracts, documents, letters and correspondence relating to the supply of coal for the Government public buildings at Lunenburg, N.S. Presented March 3, 1914.—Mr. Macdonald. Not printed.

170. Return to an Order of the House of the 2nd February, 1914, for a comparative statement of the quantity of cubic yards of dredging done by the Restigouche, or dredge No. 5, on the outside bar of Bathurst Harbour, during the sessions of 1910, 1911, 1912 and 1913. Presented March 3, 1914.—Mr. Turgeon. Not printed.

170a. Return to an Order of the House of the 2nd February, 1914, for a copy of all tenders received for the dredging in Bathurst Harbour, and of the contract awarded. Presented March 3, 1914.—Mr. Turgeon. Not printed.

170b. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, letters and telegrams relating to the deposit of sand and mud dumped into the southwestern channel by the contractors of dredging in Bathurst Harbour. Presented March 3, 1914.—Mr. Turgeon. Not printed.

171. Return to an Address to His Royal Highness the Governor General of the 9th February, 1914, for a copy of all correspondence, telegrams, petitions and memorials received by the Right Honourable R. L. Borden, Premier of Canada, or the Minister of Railways and Canals, from J. A. Gilles, Esq., Sydney, N.S., or from any resident of the County of Richmond, N.S., relative to the purchasing of the Cape Breton Railway by the Government and the building of a line of railway from St. Peter's to Sydney and Louisbourg, and of replies thereto. Presented March 3, 1914.—Mr. Kyte. Not printed.
CONTENTS OF VOLUME 28—Continued.

172. Return to an Order of the House of the 2nd February, 1914, for a return showing:—
1. The names of all proprietors from whom land and property have been expropriated for the purpose of the Halifax Ocean Terminals between Three Mile House and the proposed site of the railway and shipping terminals?
2. The price or amount of damages paid therefor, or the amount offered and accepted in the case of each proprietor?
3. The amount offered or tendered each proprietor for damages and which has not been accepted?
4. The quantity of land and nature of property so expropriated from each proprietor. Presented March 3, 1914.—Mr. Maclean (Halifax)........................Not printed.

172a. Return to an Order of the House of the 2nd February, 1914, for a copy of all advertisements, tenders, papers, documents, letters and correspondence relating to the construction of the railway from Three Mile House at Bedford Basin to Halifax Harbour, and also to the piers or wharves and sea walls in connection with the proposed Halifax Ocean Terminals. Presented March 16, 1914.—Mr. Maclean (Halifax).............Not printed.

173. Return to an Order of the House of the 2nd February, 1914, for a copy of all agreements, correspondence, papers and documents referring to any arrangement made between the Intercolonial Railway of Canada and the Canadian Pacific Railway in the year 1913, relating to the hauling of Canadian Pacific Railway freight and passenger trains between Jolches of the Prince Edward Island Railway and the proposed railway lines in Halifax during the winter season of 1913-14. Presented March 4, 1914.—Mr. Maclean (Halifax)..Not printed.

174. Return to an Order of the House of the 26th January, 1914, for a copy of all recommendations, correspondence, letters, telegrams and reports now on file in the Department of Justice, relating to the vacancy in the office of deputy warden of the Dorchester penitentiary, and the appointment of a successor to Mr. A. B. Pipes, who was promoted from the position of deputy warden of Dorchester penitentiary to that of warden. Presented March 4, 1914.—Mr. Emmerson..........................Not printed.

175. Correspondence between the City of Ottawa and the Government, on the subject of a pure water supply for the city and Government buildings. Presented by Hon. Mr. Borden, March 4, 1914..Not printed.

176. Return to an Order of the House of the 2nd February, 1914, for a copy of all letters, correspondence, telegrams and all other documents between the Department of Railways and Canals and Archer, Macdonald, E. Montpetit, C. A. Harwood, and A. Marceau, local engineer, St. Amour, Superintendent of the Canal of Soulanges, L. A. Sauvé, and others, respecting the tearing down of several houses and dependencies erected on the Government grounds at Pointe Cascades, the property of the said L. A. Sauvé. Presented March 5, 1914.—Mr. Boyer..Not printed.

177. Return to an Order of the House of the 23rd February, 1914, for a copy of all agreements between the Transcontinental Railway Commission and the Canadian Northern Railway for the use of the line of the said company by the trains of the Transcontinental Railway from Cap Rouge to the shops at St. Malo. Presented March 5, 1914.—Sir Wilfrid Laurier..Not printed.

178. Return to an Order of the House of the 23rd February, 1914, for a copy of all correspondence between the Minister of Railways or the Transcontinental Railway Commission and the Quebec Harbour Commission, with regard to the construction by the said Harbour Commission of a line of railway to connect the said Transcontinental Railway from Champlain Market with the proposed Union Station at the Palais, and of all contracts by the said Harbour Commission towards that end. Presented March 5, 1914.—Sir Wilfrid Laurier..Not printed.

179. Return to an Order of the House of the 9th February, 1914, for a copy of all advertisements, tenders, contracts and correspondence in connection with the proposed New London Branch of the Prince Edward Island Railway. Presented March 5, 1914.—Mr. Graham..........................Not printed.

180. Return to an Order of the House of the 4th February, 1914, for a return showing the total amount of available cash on deposit to the credit of the Government of Canada on the last day of each month between April 1, 1913, and December 31, 1913. Presented March 5, 1914.—Mr. Maclean (Halifax)............................Not printed.

181. Return to an Order of the House of the 4th February, 1914, for a return showing the following particulars respectively, of all loans placed or extended by the Government of Canada, upon the London market during the calendar years 1912 and 1913: Loan date and copy of prospectus; price in prospectus and price realized; date on which loan matures; rate per cent; total issue; amount realized; charges including discount for immediate payments, &c.; net amount of cash realized; and the annual effective rate of interest per unit. Presented March 6, 1914.—Mr. Maclean (Halifax)......Not printed.
CONTENTS OF VOLUME 28—Continued.

182. Return to an Order of the House of the 9th February, 1914, for a return showing the number of farm labourers and public servants respectively, placed by the Government employment agents during the years 1912 and 1913; also the counties where placed and amount of bonus paid. Presented March 6, 1914.—Mr. Sutherland. Not printed.

183. Return to an Order of the House of the 26th February, 1914, for a return showing:
1. What chartered banks in Canada have gone into liquidation since Confederation, and at what date in each case;
2. The loss in each case to the depositors, the note holders and the stockholders respectively;
3. What relief, if any, was given in each case by the Government to any of the parties suffering loss. Presented March 6, 1914.—Mr. Neely. Not printed.

184. Return to an Order of the House of the 11th February, 1914, for a return showing the number of binders, reapers, mowers, ploughs, seeders, and cultivators exported from and imported to Canada, with their value respectively, in each of the years 1910, 1911, 1912 and 1913. Presented March 6, 1914.—Mr. Neely. Not printed.

185. Return to an Order of the House of the 23rd February, 1914, for a return showing the number of cattle exported from Canada to the United States in the months of October, November and December, 1913, and January, 1914, and for the corresponding months in 1912 and 1913. Presented March 6, 1914.—Mr. Maclean (Halifax). Not printed.

186. Return to an Order of the House of the 23rd February, 1914, for a return showing the quantities and varieties of fish exported from Canada to the United States in the months of October, November and December, 1913, and January, 1914, and for the corresponding months in 1912 and 1913. Presented March 6, 1914.—Mr. Maclean (Halifax). Not printed.

187. Return to an Order of the House of the 26th February, 1914, for a return showing:
1. Who were, from incorporation, and who are, the officers and directors of the Grand Trunk Pacific Railway Company;
2. The amount of capital stock of said company, the amount paid up, and who are the holders of such paid up stock, and the amount held, and still held, by each;
3. If this company, or a subsidiary company, has contracted to build any portion of the National Transcontinental Railway; and, if so, the total amount of their contracts for such work;
4. What portion of such contracts or work was sublet, and on such sublet contracts what profit was made by the said company. Presented March 6, 1914.—Mr. Middlebro. Not printed.

188a. List of applicants, in Nova Scotia, for the Fenian Raid Volunteer Bounty whose claims have been approved.—List of Fenian Raid Volunteer Bounty applicants, in Nova Scotia, received to December 31, 1915; certified to by Mr. Hughes, March 9, 1914. Not printed.

189. Return to an Order of the House of the 12th February, 1914, for a return showing what was the local minimum rate of freight on small parcels on the Intercolonial Railway prior to October 10, 1911, and also the present rate on the same. Presented March 9, 1914.—Mr. Sinclair. Not printed.

190. Return to an Order of the House for a copy of all correspondence, reports, evidence taken, and of all other papers in the possession of the Minister of Railways and Canals, relating to the Investigation recently held by Mr. Ferguson, M.L.A., concerning the affairs of the Trent Valley Canal. Presented March 9, 1914.—Mr. Burnham. Report only printed for distribution and sessional papers.

191. Return to an Order of the House of the 16th February, 1914, for a copy of all papers necessary to convey full information as to the charter, outfit and instructions of the Kaminik and auxiliary vessels; the names, rank, pay and terms of engagement of their officers and crews; and of all communications received from Mr. V. Steffansson, or any other person who has received such a communication, written after the expedition sailed for the Arctic Ocean. Presented March 10, 1914.—Mr. Oliver. Not printed.

192. Return to an Order of the House of the 2nd February, 1914, for a return showing the number of towns in the Province of Ontario which have a population larger than the town of Chesley, South Riding of Bruce, which was 1,754, according to the last census; also the number of such towns served by letter boxes on the streets. Presented March 10, 1914.—Mr. McCraney. Not printed.

193. Return to an Order of the House of the 2nd February, 1914, for a return showing the names of the promoters of the National Drop Forge Company, Limited, and the powers asked by and given to said company by letters patent. Presented March 10, 1914.—Mr. Lemieux. Not printed.
CONTENTS OF VOLUME 23—Continued.

194. Return to an Order of the House of the 2nd February, 1914, for a return showing the names of the principals of the Canadian Contracting Company, and the names asked by and given to said company by letters patent. Presented March 10, 1914.—Mr. Lemieux .. Not printed.

195. Return to an Order of the House of the 4th February, 1914, for a copy of all papers, letters, telegrams, reports, inquiries and documents or other communications had with any of the Departments of the Government, particularly with the Interior, Customs and Marine and Fisheries Departments, relating to Gustavas A. Colpitts, a Canadian citizen returning as a passenger on the Royal Mail Steamship Empress of Britain, in September, 1911, who alleged that he was not allowed by officers of the Government to disembark at Rimouski from said steamship. Also a copy of all letters, correspondence or other communications received by any members of the Government, particularly by the Minister of Marine and Fisheries, and by any Department of the Government, from the said Gustavas A. Colpitts, who was at the time a student at Mount Allison University, Sackville, New Brunswick, and of all letters or other communications sent in reply thereto. Presented March 10, 1914.—Mr. Emmerson. Not printed.

196. Number of Chinamen entering Canada during years 1911-12-13, &c.—(Senate). Not printed.

197. Return to an Order of the House of the 23rd February, 1914, for a copy of all letters, papers, plans, correspondence, memoranda and other documents relative to the shortening of distances on the Intercolonial Railway between Pictou and Port Mulgrave, and to the construction of a new bridge at Pictou in connection therewith. Presented March 12, 1914.—Mr. Macdonald. Not printed.

198. Return to an Order of the House of the 23rd February, 1914, for a copy of all letters, telegrams, correspondence, leases and other documents relating to the cutting of lumber by Mr. B. F. Smith from the so-called Tobique Indian reserve, in the Province of New Brunswick, and of all recommendations with reference thereto, made by the Indian agent for that portion of the Province, or any other official of the Department in the said Province; together with a statement of the lumber cut by said Smith from said reserve, with the rates of stumpage charged and amounts paid since January 1, 1912. Presented March 12, 1914.—Mr. Carvell. Not printed.

198b. Return to an Order of the House of the 23rd March, 1914, for a copy of all the instructions issued to C. P. Fullerton and Fawcett Taylor, or either of them, in reference to the St. Peter's Indian reserve. Presented April 8, 1914.—Mr. Oliver. Not printed.

199. Return to an Order of the House of the 11th February, 1914, for a copy of all correspondence, letters, telegrams and other documents relative to the purchase for the Intercolonial Railway of a quantity of coal in the United States, within the last few months. Presented March 12, 1914.—Mr. Macdonald. Not printed.

199a. Return to an Order of the House of the 2nd February, 1914, for a return showing:

1. When the Intercolonial Railway and the Prince Edward Island Railway last called for tenders for its coal supply, and when the tenders were returnable?
2. The number of tenders received, the names of the tenderers, and their respective prices?
3. The date of the last contract or contracts for coal for the Intercolonial Railway, and who was the contractor or contractors respectively?
4. The names of the successful tenderers, as the result of the last call for tenders, and their prices respectively?
5. The amount in tons of the contract made with each, and at what prices per ton respectively?
6. If any coal was purchased for the Government system of railways in the United States since March 31, 1913? If so, by whom, from whom, and through whom it was purchased, and at what price, the cost per ton delivered, inclusive of commissions to the railways. Presented March 18, 1914.—Mr. Emmerson. Not printed.

199b. Return to an Order of the House for a return showing whether the Government has purchased any coal, freight or passenger cars during the past six months for the Intercolonial Railway; if so, from whom and in what quantity; the price paid in each case; if any tenders were called for the same; who the tenderers were and the amount of each tender. Presented April 6, 1914.—Mr. Macdonald. Not printed.

200. Return to an Order of the House of the 4th March, 1914, for a return showing the freight rates on flour; hay, oats, lumber and firewood per 100 lbs. or per ton, between Bathurst, N.B., and Nepisiquit Junction; between Bathurst, N.B., and Barreishough; between Bathurst, Beresford, Petit Rocher and Belledune, before the changes made in August, 1913, and the freight rates on the same articles, between the same points, under the new schedule of rates. Presented March 16, 1914.—Mr. Turgeon. Not printed.
CONTENTS OF VOLUME 28—Continued.

201. Return to an Order of the House of the 11th February, 1914, for a copy of all contracts, accounts, bills, memoranda, letters, correspondence, receipts, vouchers, bills of lading, &c., referring to all materials, provisions, supplies and goods of every description purchased and forwarded to Port Nelson during the year 1913, by any Department of the Government of Canada, and agreements for employment of workmen in connection with the construction of the Hudson Bay Railway terminals at Port Nelson. Presented March 18, 1914.—Mr. Maclean (Halifax) .. Not printed.

202. Return to an Order of the House of the 9th February, 1914, for a copy of all papers, letters or other correspondence, instructions, reports, valuations, appointment of valuators, or appraisers, appraisements, abstracts of titles, deeds or other conveyances, in any Department of the Government or in the railway offices at Moncton, relating to, or in any manner connected with, the purchase by the Intercolonial Railway of a property in Moncton, N.B., at the corner of Archibald and Main streets in said city, formerly owned in his lifetime by the late P. S. Archibald, C.E., and now occupied by the General Superintendent of the Intercolonial Railway, F. P. Brady, as a residence; together with a copy of all bills, accounts and statement of expenditures for repairs made on the buildings of said property; and also of accounts, commissions and bills paid to solicitors, attorneys or other agents, for searches, conveyances, and a statement of all moneys paid for charges and expenses in connection with such purchase or the procuring of a deed of said property. Presented March 19, 1914.—Mr. Emmerson .. Not printed.

202a. Supplementary Return to an Order of the House of the 9th February, 1914, for a copy of all papers, letters or other correspondence, instructions, reports, valuations, appointment of valuators, or appraisers, appraisements, abstracts of titles, deeds or other conveyances in any department of the Government or in the railway offices at Moncton, relating to, or in any manner connected with, the purchase by the Intercolonial Railway of a property in Moncton, N.B., at the corner of Archibald and Main streets in said city, formerly owned in his lifetime by the late P. S. Archibald, C.E., and now occupied by the General Superintendent of the Intercolonial Railway, F. P. Brady, as a residence; together with a copy of all bills, accounts and statement of expenditures for repairs made on the buildings of said property; and also of accounts, commissions and bills paid to solicitors, attorneys or other agents, for searches, conveyances, and a statement of all moneys paid for charges and expenses in connection with such purchase or the procuring of a deed of said property. Presented March 26, 1914.—Mr. Emmerson .. Not printed.

202b. Further Supplementary Return to an Order of the House of the 9th February, 1914, for a copy of all papers, letters or other correspondence, instructions, reports, valuations, appointment of valuators, or appraisers, appraisements, abstracts of titles, deeds or other conveyances in any department of the Government or in the railway offices at Moncton, relating to, or in any manner connected with, the purchase by the Intercolonial Railway of a property in Moncton, N.B., at the corner of Archibald and Main streets in said city, formerly owned in his lifetime by the late P. S. Archibald, C.E., and now occupied by the General Superintendent of the Intercolonial Railway, F. P. Brady, as a residence; together with a copy of all bills, accounts and statement of expenditures for repairs made on the buildings of said property; and also of accounts, commissions and bills paid to solicitors, attorneys or other agents, for searches, conveyances, and a statement of all moneys paid for charges and expenses in connection with such purchase or the procuring of a deed of said property. Presented April 1, 1914.—Mr. Emmerson .. Not printed.

203. Return to an Order of the House of the 4th March, 1914, for a return showing the freight rates under the old tariff of the Intercolonial Railway, per 100 lbs. or per ton, on fresh, dried and cured fish, molasses, coal oil, nails, hardware and anthracite coal from Gloucester Junction and Bathurst station to and from St. John, and the present rates for the same articles between the same points. Presented March 17, 1914.—Mr. Turpeon. Not printed.

204. Return to an Order of the House of the 23rd February, 1914, for a return showing all smelt fishing licenses issued in the County of Pictou during the past season, and of all correspondence in reference to the same. Presented March 17, 1914.—Mr. Macdonald. Not printed.

204a. Supplementary Return to an Order of the House of the 23rd February, 1914, for a return showing all smelt fishing licenses issued in the County of Pictou during the past season, and of all correspondence in reference to the same. Presented April 17, 1914.—Mr. Macdonald .. Not printed.

205. Return to an Order of the House of the 2nd February, 1914, for a copy of all documents concerning the latest changes in the lobster fishing regulations at Magdalen Islands. Presented March 17, 1914.—Mr. Lemieux .. Not printed.
CONTENTS OF VOLUME 28—Continued.

206. Return to an Order of the House of the 16th February, 1914, for a copy of all correspondence, telegrams, tenders and documents connected in any way with the supplying of coal to the lobster hatchery at Margaree during the years 1910-1911, 1911-1912, 1912-1913 and 1913-1914. Presented March 17, 1914.—Mr. Chisholm (Antigonish).

Not printed.

207. Return to an Order of the House of the 16th February, 1914, for a copy of the charges made against Mrs. Marguerite Fair, postmistress of Black Cape, Quebec, on which Mr. Louis Taché of Rimouski, was authorized to hold an investigation, together with the appeal of said investigation, if any was held. Presented March 17, 1914.—Mr. Marcel (Bonaventure) .. Not printed.

208. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, papers, documents, reports, &c., in connection with the proposed increase of mail service from Shelburne, N.S., to Jordan Bay and Jordan Ferry and return since October 1, 1911. Presented March 17, 1914.—Mr. Maclean (Halifax) Not printed.

209. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence between the Post Office Department, or any official thereof, and any person or persons, concerning the installation of street letter boxes in the village of Chesley, in the riding of South Bruce. Presented March 17, 1912.—Mr. Graham Not printed.

211. Copy of evidence taken before Mr. William Henry Moore, the commissioner appointed to inquire into certain charges against Mr. Frank Fahlen, store keeper on the Trent Canal, sentinon in the Senate, or the Western provinces of Canada. Presented by Hon. Mr. March 19, 1914 .. Not printed.

212. Copy of the opinion of the Deputy Minister of Justice on the subject of increased representation in the Senate, of the Western provinces of Canada. Presented by Hon. Mr. Borden, March 19, 1914 .. Not printed.

212a. Copy of a resolution of the Legislative Assembly of the Province of British Columbia, approved by His Honour the Lieutenant Governor in Council, in which application is made to the Federal Government to increase the number of senators for the said province. Presented by Hon. Mr. Borden, March 19, 1914 Not printed.

212b. Copy of opinion of the Assistant Deputy Minister of Justice on the subject of increased representation in the Senate, of the prairie provinces of Canada. Presented by Hon. Mr. Borden, March 23, 1914 .. Not printed.

214. Return to an Order of the House of the 16th March, 1914, for a copy of a petition dated the 9th of July, 1911, signed by Etienne Barre, Joseph Trudeau and others, taxpayers of the municipality of Chambly Basin, and addressed to the Minister of Justice, together with a copy of all documents and vouchers attached to said petition, and of all correspondence and other documents relating thereto. Presented March 23, 1914.—Mr. Lamarche .. Not printed.

215. Return to an Order of the House of the 2nd February, 1914, for a return showing where the D.G. cruiser Margaret was built; the names of the builders; the contract price; whether the contract was awarded to the lowest tenderer; the name and address of each tenderer and amount of each tender; if the Government or any department thereof has contracted for any other vessel or vessels during the past eighteen months; and if so, the number of such vessels, the names and addresses of the contractors, the gross tonnage of each and the contract price, and the service for which they were intended. Presented March 23, 1914.—Mr. Sinclair .. Not printed.

216. Return to an Order of the House of the 2nd March, 1914, for a copy of all letters, telegrams or other correspondence in connection with the seizure of eleven (11) horses belonging to Mr. John M. Ferguson, Kaledia, Manitoba, on or about the 28th day of March, 1912. Presented March 24, 1914.—Mr. Turriff .. Not printed.

217. Return to an Order of the House of the 4th February, 1914, for a return showing the quantities and values of potatoes imported monthly into Canada during the years 1911, 1912 and 1913, and the countries from which such potatoes were imported. Presented March 25, 1914.—Mr. Hughes (Kings, P.E.I.) .. Not printed.
217a. Return to an Order of the House of the 2nd February, 1914, for a return showing the quantities and values of potatoes exported monthly from each province of Canada, from September 1, 1911, to January 1, 1914, and the countries to which the same were exported. Presented March 25, 1914.—Mr. Cartell. Not printed.

218. Return to an Order of the House of the 12th March, 1914, for a return showing how many colonels, honorary colonels, lieut.-colonels, honorary lieut.-colonels, and other officers, honorary and otherwise, have been appointed by the Minister of Militia and Defence from October, 1911, to the present time. Presented March 25, 1914.—Mr. Hughes (Kings, P.E.I.). Not printed.

218a. Return to an Order of the House of the 11th February, 1914, for a return showing the number of honorary appointments to military rank which have been made by, or with the approval of, the present Minister of Militia and Defence since he assumed office, giving the names of the persons so appointed, and the rank of each. Presented April 1, 1914.—Mr. Murphy. Not printed.

220. Return to an Address to His Royal Highness the Governor General of the 9th March, 1914, for a copy of all papers, documents, Orders in Council, correspondence, &c., in reference to the suspension of Mr. Joseph McGillis of the Department of Customs, Ottawa. Presented March 27, 1914.—Mr. Maclean (Halifax). Not printed.

221. Return to an Order of the House of the 2nd February, 1914, for a return showing the names of all parties who have been employed at the Experimental Farm at Ste. Aune de la Pocatière during the years 1912 and 1913, and the salary and fees paid to each of them. Presented March 30, 1914.—Mr. Lapointe (Kamouraska). Not printed.

222. Return to an Order of the House of the 9th February, 1914, for a return showing the total number of veterinary inspectors employed by the Government in the slaughter houses of the country; how they are distributed in each Province; the names of the establishments they are connected with, and the number of officers in each of them; if the Government employ any others to supervise the health of the herds on the farms besides the veterinary inspectors connected with the slaughter houses; the number of them, and how they are distributed in each Province; the number of herds of both cattle and hogs that have been submitted to inspection during the years 1911, 1912 and 1913; the number of animals in each Province slaughtered after tuberculosis was found in them; if the Government paid indemnities to the owners on account of such slaughtering, and if so, the amount in each Province; the respective salaries of the veterinary inspectors employed in the slaughter houses; the working hours of those officers; the respective salaries paid to the veterinary inspectors employed for other purposes; the amount of the expenses of that branch of the Department of Agriculture for the years 1911, 1912 and 1913 for internal management, such as salaries, and the salaries and expenses for each of the Provinces. Presented March 26, 1914.—Mr. Boyer. Not printed.

223. Return to an Order of the House of the 23rd February, 1914, for a copy of the report of George Lafontene, received by the Department of Agriculture during the present fiscal year, relating to the manufacture of chemical manure. Presented March 30, 1914.—Mr. Boulay. Not printed.

224. Return to an Order of the House of the 16th February, 1914, for a return showing:—
1. Whether the Postmaster General has given a contract for rural parcel boxes; and, if so, to whom?
2. Whether tenders for the boxes were asked?
3. From whom tenders were received?
4. The price, if any, of the different tenders?
5. How many boxes were ordered, and at what price?
6. Whether the Postmaster General, since he came into office, has made a contract for rural mail boxes, and, if so, when?
7. The amount of the contract?
8. Who the tenderers were, and the price, if any, of the different tenders?
9. Who received the contract, and the price paid per box?
10. How many boxes, if any, were ordered? Presented March 31, 1914.—Mr. Nesbitt. Not printed.

225. Return to an Order of the House of the 23rd March, 1914, for a return showing the rates of interest paid on all Dominion loans from 1890 to 1914. Presented March 31, 1914.—Mr. Pardie. Not printed.

226. Return to an Address to His Royal Highness the Governor General, of the 9th March, 1914, for a copy of all correspondence since October, 1911, between the Government of Canada, represented by the Department of Marine and Fisheries, of the one part, and the Government of the United Kingdom, the Government of the United States, or any other Government, of the other part, relating to steam trawling in Atlantic waters. Presented March 31, 1914.—Mr. Sinclair. Not printed.
227. Return to an Order of the House of the 11th February, 1914, for a copy of all letters, telegrams, and written requests during the years 1912 and 1913, addressed to the Department of Marine and Fisheries, or the Department of Naval Affairs, or any officer of either Department, or Marine branches of said department, or any officer or persons of either branch, by any person or persons, relating to proposals or requests that the vessels or any vessel under the control of the Naval Branch of said Department, should be present at any regatta or celebration of any description held anywhere on the Atlantic or Pacific Coasts of Canada during said years; also of all replies to such letters, telegrams and written requests. Presented March 31, 1914.—Mr. Law ... Not printed.

228. Return to an Order of the House of the 9th March, 1914, for a copy of all correspondence, memoranda and other documents relating to the moral, mental and physical inspection of all immigrants entering Canada. Presented April 1, 1914.—Mr. Pequet. Not printed.

229. Return to an Order of the House of the 16th March, 1914, for a copy of all orders, reports, applications, letters, telegrams and other documents connected with or in any manner relating to the retirement of Amasa E. Killam, an official of the Intercolonial Railway, from the employment of the said railway, and to his claim for a retiring allowance, under the provisions of the Intercolonial and Prince Edward Island Railway Employees’ Provident Fund Act; and also of all letters showing the date of his beginning work in the service of the said railway and of his appointment to a position in the employ of said railway on the first of April, 1897, or at any other date. Also a copy of all instructions and letters from the then Minister of Railways to the general manager or to any other official of the Intercolonial, relating to engagement or employment of the said Amasa E. Killam, and of all letters, correspondence, instructions, reports, or other documents in any way relating thereto and to the engagement of the said Amasa E. Killam, during the month of March, 1897, to take the position of bridge and building inspector on the Intercolonial Railway, to commence work on the first day of April, 1897. Presented April 1, 1914.—Mr. Emmerson. Not printed.

230. Return to an Order of the House of the 23rd February, 1914, for a copy of all letters, papers and other documents relating to the payments made at Skinners Cove, Pictou County, for purchase of land or other rights in the year 1913. Presented April 2, 1914.—Mr. Macdonald .. Not printed.

231. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, correspondence, telegrams, letters, pay rolls, accounts and vouchers in any way referring to the expenditure of money by this Government for the public wharf at Whycocomagh. Presented April 2, 1914.—Mr. Maclean (Highfjord) Not printed.

231a. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, advertisements, tenders, bids, contracts, reports, vouchers, accounts, receipts, correspondence, &c., in connection with the construction of a wharf at Feltzen South, Lunenburg County, N.S., now under construction or recently completed. Presented April 2, 1914.—Mr. Chisholm (Inverness) Not printed.

231b. Return to an Order of the House of the 4th March, 1914, for a return showing:—
1. How much money was expended on the repairs to the wharf at South Gut, Victoria County, during the summer of 1912?
2. How much on labour and how much on material, respectively?
3. Who was the foreman, by whom recommended, and his rate of wages per day?
4. How many days he was employed as foreman?
5. How many men he had working for him on the wharf each day, and the wages paid each man?
6. How much was paid for material for the repairs, and where it was obtained?
7. From whom the material was purchased, the nature of it, and the price paid per foot?
8. Who was the paymaster on this work and when the men were paid? Presented April 2, 1914.—Mr. McKenzie .. Not printed.

231c. Return to an Order of the House of the 9th February, 1914, for a return showing the amount expended by the Government on wharfs, breakwaters, public works and dredging in the County of Yarmouth since October 11, 1911; and to whom the amounts so expended were paid. Presented April 2, 1914.—Mr. Law. Not printed.

231d. Return to an Order of the House of the 4th March, 1914, for a return showing:—
1. How much money was expended on repairs to the Englishtown wharf, County of Victoria, in the summer of 1913?
2. How much on labour and how much on material, respectively?
3. Who was the foreman, by whom he was recommended, and his rate of wages per day?
4. How many days he was employed as foreman?
5. How many men he had working for him on the wharf each day, and the wages paid each man?
CONTENTS OF VOLUME 28—Continued.

6. From whom the material was purchased, of what it consisted, and the price paid per foot?
7. Who was the paymaster on this work, and when the men were paid?
8. When the work was begun and when completed? Presented April 2, 1914.—Mr. McFiezie ... Not printed.

231c. Return to an Order of the House of the 16th February, 1913, for a copy of all letters, telegrams, correspondence, pay-rolls, vouchers and documents of all kinds connected in any way with repairs or extension of wharf at Finlay Point, Mabou, Inverness County, during the year 1910-1911. Presented April 2, 1914.—Mr. Chisholm (Inverness) ... Not printed.

231f. Return to an Order of the House of the 4th March, 1914, for a return showing the amount of timber used and the price paid for same in renewing and repairing the wharf at Port Clyde, Shelburne County, N.S.; the amount of wages paid on same, and to whom; and the number and price of ballast poles used in the above work. Presented April 2, 1914.—Mr. Law ... Not printed.

231g. Return to an Order of the House of the 12th May, 1913, for a copy of all papers, telegrams, documents, reports, correspondence, &c., in any way relating to a proposed connection of the town of L’Assomption with the county, N.S. Presented April 2, 1914.—Mr. Chisholm (Inverness) ... Not printed.

231h. Return to an Order of the House of the 26th May, 1913, for a copy of all papers, letters and documents relating to the building of a wharf in the town of L’Assomption. Presented April 2, 1914.—Mr. Seguin ... Not printed.

231i. Return to an Address of the 19th May, 1913, to His Excellency the Administrator for a copy of all papers, tenders, contracts, accounts, and Orders in Council, between the Department of Public Works and any other person or persons, relating to the purchase of a site for the public wharf being erected or recently erected at Bear River, N.S., and also relating to the construction of said wharf, and anything in connection therewith. Presented April 2, 1914.—Mr. Maclean (Halifax) ... Not printed.

231j. Return to an Order of the House of the 31st March, 1913, for a copy of all papers, documents, correspondence, &c., relating to the purchase of a property at Centerville, Shubenacadie County, Nova Scotia, as a site connected with the Public Works, or in any of the Departments of the Government, relating to a proposed wharf or breakwater at Little Cape, and Great Shemogue Harbour, Westmorland County, N.B.; also of all correspondence, letters and telegrams exchanged between any member of the Government and M. G. Siddal, or any other persons or corporations, relating to a proposal or application to construct a wharf or breakwater at Little Cape or Great Shemogue Harbour in Westmorland County, N.B., or in connection with having a survey made in connection with any such proposal. Presented April 17, 1914.—Mr. Emmer-son ... Not printed.

231m. Return to an Order of the House of the 9th February, 1914, for a copy of all reports, memoranda, correspondence and documents of every nature, relating to the construction of a wharf in the town of L’Assomption, and of all petitions and correspondence in favour or against such construction to date, and the reasons why the construction of such wharf, authorized in the estimates of 1911-1912, has not been proceeded with. Presented April 17, 1914.—Mr. Seguin ... Not printed.

231n. Return to an Order of the House of the 16th March, 1914, for a copy of all accounts, vouchers, pay-rolls, instructions, correspondence and recommendations relating to the expenditure on the public wharf at Arichat, N.S., since the 11th day of October, 1911. Presented April 30, 1914.—Mr. Kyte ... Not printed.

231o. Return to an Order of the House of the 16th February, 1914, for a copy of all tenders, contracts, memorandums, pay-rolls, accounts, vouchers, correspondence, papers and documents, &c., in connection with work performed upon the Government wharf at Croft’s Cove, Lunenburg County, in 1912. Presented April 30, 1914.—Mr. Maclean (Halifax) ... Not printed.

CONTENTS OF VOLUME 28—Continued.

231a. Supplementary Return to an Order of the House of the 9th March, 1914, for a copy of all correspondence, letters, telegrams, notes, requests, &c., addressed to the Department or the Minister of Public Works, directly or indirectly, in connection with the purchase of a site for the Government wharf at Bear River, N.S., and the construction of the said wharf. Presented April 30, 1914.—Mr. Maclean (Halifax). Not printed.

231b. Return to an Order of the House of the 2nd February, 1914, for a copy of all tenders, contracts, pay rolls, vouchers, documents, correspondence, &c., in connection with the purchase of a site for the Government wharf at Bear River, N.S., and the construction of the said wharf. Presented April 30, 1914.—Mr. Maclean (Halifax). Not printed.

231c. Return to an Order of the House of the 9th March, 1914, for a return showing:—
1. How much was spent upon Hall’s Harbour wharf, Kings County, N.S., in 1913?
2. The name of the commissioner or foreman, by whom he was recommended, and his remuneration?
3. How much lumber was used upon the said wharf during 1913, from whom the same was purchased, and the price paid for the various forms thereof. Presented April 30, 1914.—Mr. Maclean (Halifax). Not printed.

231d. Return to an Order of the House of the 16th February, 1914, for a copy of the pay-list, including the names and residences, of all those who have worked at the wharf of L’ile Verte, County of Témiscouata; the number of days of employment of each of them; the amount received by each of them; who has or have signed the receipt or receipts for said amounts, in connection with the works which have been going on during the summer of 1912 and during the summer of 1913. Presented April 30, 1914.—Mr. Gauvreau. Not printed.

231e. Further Supplementary Return to an Order of the 9th March, 1914, for a copy of all correspondence letters, telegrams, notes, requests, &c., addressed to the Department or the Minister of Public Works, directly or indirectly, in connection with the work necessary for the completion of the wharf at Sainte Croix, County of Lotbinière, since the 21st of September, 1911, to date. Presented May 4, 1914.—Mr. Fortier. Not printed.

231f. Return to an Order of the House of the 30th March, 1914, for a copy of all letters and telegrams addressed by G. A. R. Rowings and J. S. Wells to the Department of Public Works, or the Minister, since October 1, 1911, relating to the construction of a public wharf at Cole Harbour, Guysborough County, N.S., and of all replies thereto. Presented May 12, 1914.—Mr. Sinclair. Not printed.

231g. Return to an Order of the House of the 16th March, 1914, for a copy of all letters, telegrams and correspondence of all kinds in any way relating to repairs required on the pier at Margaree Harbour, Inverness County, received in 1912-1913 and 1913-1914. Presented May 12, 1914.—Mr. Chisholm (Inverness). Not printed.

231h. Return to an Order of the House of the 25th April, 1914, for a copy of all correspondence, pay-rolls, vouchers, receipts, vouchers and papers relating to wharves and piers located on the South wharf, Lunenburg County, N.S. Presented May 16, 1914.—Mr. Maclean (Halifax). Not printed.

231i. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, correspondence, telegrams, letters, pay-rolls, accounts and vouchers in any way referring to the expenditure of money by this Government for the building and repair of the public wharf at Port Hood. Presented May 16, 1914.—Mr. Chisholm (Inverness). Not printed.

231 (2a). Return to an Order of the House of the 4th May, 1914, for a copy of all correspondence, telegrams, complaints, pay-rolls, vouchers and all other documents in any way connected with the expenditure of $500 during the year 1913 on Finlay Point wharf, Inverness County. Presented May 16, 1914.—Mr. Chisholm (Inverness). Not printed.

231 (2b). Return to an Order of the House of the 6th April, 1914, for a copy of all correspondence, letters, telegrams, petitions and recommendations relating to the wharf at Arichat, N.S. As used by Mr. MacIsaac. Presented May 9, 1914.—Mr. Kyle. Not printed.

231 (2c). Return to an Order of the House of the 9th March, 1914, for a return showing:—
1. How much money was spent upon Kingsport Pier, Kings County, N.S., during the year 1913?
2. The name of the foreman or commissioner, by whom he was recommended, and the remuneration paid him?
3. How much lumber was purchased and used for said pier, from whom it was purchased, and the particulars of the prices paid therefor?
4. What was done with the lumber or piling taken out of said pier, and if the same was sold, to whom and at what price? Presented May 29, 1914.—Mr. Maclean (Halifax). Not printed.
CONTENTS OF VOLUME 28—Continued.

231. (2d). Return to an Order of the House of the 27th April, 1914, for a copy of all correspondence, pay-rolls, accounts, receipts, vouchers and papers relating to the construction of Kegut Point wharf, Lunenburg County, N.S. Presented June 12, 1914.—Mr. Maclean (Halifax) Not printed.

232. Return to an Order of the House of the 4th March, 1914, for a return showing:—
1. How much money has been expended in public works in the Counties of Rimouski and Gaspé, respectively, since October 11, 1911.
2. How much of the money so expended was provided for in the estimates of 1911-1912?
3. What amount was expended on the works for which money was not included in the estimates of 1911-1912? Presented April 2, 1914.—Mr. Marcil (Bonaventure). Not printed.

232a. Return to an Order of the House of the 23rd February, 1914, for a return showing how much money has been expended on public works in Antigonish County since October 11, 1911.
2. How much of the amount so expended was provided in the estimates for 1911-1912?
3. What amount, not included in the estimates for 1911-1912, was expended on public works in said county? Presented April 2, 1914.—Mr. Chisholm (Antigonish).

232b. Return to an Order of the House of the 9th February, 1914, for a copy of all papers, reports, documents, correspondence, plans, &c., in reference to a proposed Government public building at Bear River, N.S., and the purchase of a site for the same. Presented April 2, 1914.—Mr. Maclean (Halifax) Not printed.

232c. Return to an Order of the House of the 9th April, 1914, for a copy of all charges, correspondence, pay-rolls, telegrams and other documents relating in any way to the expenditure of money on the harbour improvements at Mahou Harbour by the Department of Public Works, during the years 1911-12, 1912-13. Presented April 2, 1914.—Mr. Chisholm (Inverness) Not printed.

232d. Return to an Order of the House of the 23rd February, 1914, for a copy of the specifications and tenders for materials to be used in connection with the proposed dry dock at Lauzon, Quebec. Presented April 2, 1914.—Mr. Lemieux. Not printed.

232e. Return to an Order of the House of the 3rd March, 1913, for a copy of all documents, letters, reports of engineers and statements of detailed expenditure in connection with dredging at Bonaventure River, Quebec. Presented April 2, 1914.—Mr. Marcil (Bonaventure) Not printed.

232f. Return to an Order of the House of the 3rd March, 1913, for a copy of all petitions, correspondence, reports or other papers or documents in the Department of Public Works relating to the building of a breakwater at Goulman's Point, Half Island Cove, Guysboro' County, N.S. Presented April 2, 1914.—Mr. Shelair Not printed.

232g. Return to an Order of the House of the 16th February, 1914, for a copy of all letters, telegrams, correspondence and documents of all kinds in any way relating to a lighthouse to be built at Red Cape, Margaree Harbour, Inverness County. Presented April 7, 1914.—Mr. Chisholm (Inverness) Not printed.

232h. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, documents, telegrams, correspondence, &c., in reference to the purchase of a site in Saskatoon for a post office building. Presented April 16, 1914.—Mr. McCrae. Not printed.

232i. Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence, reports, petitions and documents exchanged by and with the Department of Public Works since the 1st of September, 1911, to date, with the reasons why the construction of the public building, authorized in the town of St. Lin Des Laurentides, County of L'Assomption, as per the estimates of 1911-1912, has not been proceeded with. Presented April 17, 1914.—Mr. Seguin Not printed.

232j. Return to an Order of the House of the 2nd February, 1914, for all correspondence, reports and documents exchanged by and with the Department of Public Works from October, 1911, to date, regarding the non-erection of the public building authorized to be erected at New Carlisle, the county seat of Bonaventure County, in the estimates of 1911-1912. Presented April 17, 1914.—Mr. Marcil (Bonaventure) Not printed.

232k. Return to an Order of the House of the 2nd February, 1914, for a return showing the names of all persons who worked on L'ingen Bar, South Cape Breton, under Superintendent H. D. McLean, the wages paid to each per diem, the amount paid each or payable to each, and showing generally how the amount voted for such work was expended, and the amount received by H. D. McLean in connection with said work. Presented April 17, 1914.—Mr. Carroll Not printed.
CONTENTS OF VOLUME 28—Continued.

2321. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, advertisements, tenders, contracts, papers, telegrams, correspondence, returns, reports, accounts, vouchers, receipts, &c., in connection with any dredging performed by the Nova Scotia Dredging Company, or any other company, corporation or individuals, at Jeddore, Halifax County, N.S., in the years 1912 and 1913. Presented April 17, 1914.—Mr. Maclean (Halifax) Not printed.

2322. Return to an Order of the House of the 12th May, 1913, for a copy of all papers, telegrams, documents, reports, correspondence, pay-rolls, &c., in any way relating to a life-saving station which was constructed at Cheticamp, during 1912. Presented April 28, 1914.—Mr. Chisholm (Inverness) Not printed.

2323v. Return to an Order of the House of the 12th March, 1914, for a return showing:—
1. What firms or persons are or have been engaged in dredging for the Government in the harbour of St. John and upon the St. John river and its tributaries since October 1, 1911.
2. What amount has been paid to each firm or person for this work from October 1, 1911, to the present time?
3. Who are the officers, president, manager and secretary of each of these corporations? Presented April 30, 1914.—Mr. Carvell Not printed.

2320. Return to an Order of the House of the 16th February, 1914, for a copy of all documents bearing on the repairing and improvement of the Metapedia Road in the Counties of Rimouski and Bonaventure. Presented April 30, 1914.—Mr. MacLell (Bonaventure) Not printed.

232p. Return to an Order of the House of the 12th March, 1914, for a return showing:—
1. What tug boats, steam or gasoline tenders, have been employed by the Government since September 21, 1911, in connection with the dredging operations in St. John harbour and in the River St. John and its tributaries?
2. Who are the registered owners of these boats and from whom each is hired?
3. The sum paid per day for each tug boat or tender and how many days each has worked in the period referred to.
4. What amount of money has been paid for the service of each boat in the period referred to and to whom it has been paid. Presented April 30, 1914.—Mr. Carvell Not printed.

232e. Return to an Order of the House of the 9th March, 1914, for a return showing the details as to the nature of the work concerning the damming of the Chateauguay river, the number of men employed, their names, the wages paid in each case and the period of their employment during the calendar year 1913. Presented April 30, 1914.—Mr. Lomieuze Not printed.

232r. Return to an Order of the House of the 16th March, 1914, for a copy of all letters, telegrams, correspondence, reports, petitions, and communications filed in the Department of Public Works since 1910, relating to the dredging of Antigonish harbour, or the straightening or widening of the channel, or other improvements proposed to be made there. Presented April 30, 1914.—Mr. Chisholm (Antigonish) Not printed.

232s. Return to an Order of the House of the 23rd March, 1914, for a copy of all letters, papers and other documents relative to the purchase of a lot of land in the town of Stellarton, for a public building. Presented April 30, 1914.—Mr. Macdonald Not printed.

232f. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, correspondence, telegrams, letters, pay-rolls, accounts, and vouchers in any way referring to the expenditure of money by this Government in the construction of the new telephone line from Baddeck, Victoria County, N.S., to North East Margaree, Inverness County, N.S., thence to Big Intervale, Inverness County, N.S., and also in connection with the lines from South West Margaree to Loch Ban, and from Scoglerville to Whycombach, all in Inverness County, N.S. Presented May 4, 1914.—Mr. Chisholm (Antigonish) Not printed.

232u. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, documents, telegrams, correspondence, &c., in reference to the purchase of a property or site on Gottingen street, Halifax, for the erection of a post office building. Presented May 4, 1914.—Mr. Maclean (Halifax) Not printed.

232v. Return to an Order of the House of the 16th March, 1914, for a return showing all payments made in the year 1913 in connection with repairs done to or moneys expended on, the Blue Rock breakwater in Antigonish County, with the names of the persons to whom such payments were made, the amount paid to each, and what such amounts were for. Presented May 4, 1914.—Mr. Chisholm (Antigonish) Not printed.

232w. Return to an Order of the House of the 9th March, 1914, for a copy of all papers, documents, correspondence, &c., from any person or persons in connection with the purchase of the site for the post office at Canning, N.S. Presented May 4, 1914.—Mr. Maclean (Halifax) Not printed.
CONTENTS OF VOLUME 28—Continued.

232v. Return to an Order of the House of the 2nd February, 1914, for a copy of all tenders received for the construction of a lighthouse at Grand Anse, Gloucester County, N.B., and of the contract awarded. Presented May 5, 1914.—Mr. Turgeon. Not printed.

232w. Return to an Order of the House of the 16th February, 1914, for a copy of all papers, letters, telegrams, reports, deeds, fees paid to lawyers, and other documents relative to the purchasing of land from Mrs. C. P. Bertrand and Arthemise Dionne, in connection with the works on the southwest side of Rivière-Verte, l'Islet, County of Témiscouata. Presented May 5, 1914.—Mr. Gauvreau. Not printed.

232x. Return to an Order of the House of the 20th April, 1914, for a copy of all correspondence between the Minister of Public Works, the Minister of Justice, or any other member of the Government, and any person or persons, relating to the location and erection of the new post office in the village of Eganville, County of Renfrew. Presented May 5, 1914.—Mr. Graham. Not printed.

232 (2a). Return to an Order of the House of the 18th March, 1914, for a copy of all correspondence, documents, recommendations and reports, respecting the dredging of the Prairies river, the work done, depth, length and width of channel dredged, the list of men employed to perform that work, their salaries respectively, and the amount of money spent on that work since the 22nd of November, 1912, up to the 2nd of February, 1914. Presented May 7, 1914.—Mr. Wilson (Laval). Not printed. Mr. Chisholm (Inversness). Not printed.

232 (2b). Return to an Order of the House of the 6th April, 1914, for a copy of all letters, telegrams, correspondence, complaints, bills, accounts, vouchers, receipts and any documents in any way connected with the expenditure of money at Friar's Head Harbour by Simon P. Doucet, during the years 1912-13, 1913-14. Presented May 7, 1914.—Mr. Chisholm (Inversness). Not printed.

232 (2c). Return to an Order of the House of the 16th February, 1914, for a copy of all papers in connection with the public building at Gravelbourg, from and since January 1, 1912. Presented May 7, 1914.—Mr. Knowles. Not printed.

232 (2d). Return to an Order of the House of the 23rd March, 1914, for a copy of all specifications and of all tenders pertaining to the Brantford public building now being erected, and of the contract awarded, and of all correspondence, whether by letter or telegram, with reference thereto. Presented May 7, 1914.—Mr. Nesbitt. Not printed.

232 (2e). Return to an Address to His Royal Highness the Governor General of the 9th February, 1914, for a copy of all correspondence, telegrams, petitions and memorials received by the Right Honourable R. L. Borden, Premier of Canada, or any other Minister of the Crown since the first day of October, 1911, from J. A. Gillies, Esq., N.S., or any resident of the County of Richmond, N.S., relative to expenditure of public money on public works in the said County of Richmond. Presented May 8, 1914.—Mr. Kyle. Not printed.

232 (2f). Supplementary Return to an Order of the House of the 20th April, 1914, for a copy of all correspondence between the Minister of Public Works, the Minister of Justice or any other member of the Government, and any person or persons, relating to the location and erection of the new post office in the village of Eganville, County of Renfrew. Presented May 8, 1914.—Mr. Graham. Not printed.

232 (2g). Return to an Order of the House of the 2nd February, 1914, for a return showing the dredging operations carried on in Bonaventure County in 1913, together with a copy of estimates, reports, and correspondence. Presented May 11, 1914.—Mr. March. Not printed.

232 (2h). Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence and other documents in reference to the erection of a customs building in the village of Chesley, Riding of South Bruce. Presented May 12, 1914.—Mr. Truax. Not printed.

232 (2i). Return to an Order of the House of the 6th April, 1914, for a copy of all accounts and vouchers covering the expenditure during the calendar year 1913 at South Lake, Lakevale, Antigonish County, and showing in detail, the persons to whom such payments were made, what such payments were for, the number of day labourers employed, and the rate of wages, the quantity of material used and the price paid therefor, the quantity of material hauled to the work and not used, and the persons supplying such material. Presented May 12, 1914.—Mr. Chisholm (Antigonish). Not printed.

232 (2j). Return to an Order of the House of the 23rd February, 1914, for a copy of all letters, papers, telegrams, valuations, appraisals and other documents relative to the obtaining of a site for a public building at Hantsport, Nova Scotia. Presented May 12, 1914.—Mr. Macdonald. Not printed.

232 (2k). Return to an Order of the House of the 11th February, 1914, for a copy of all correspondence, letters, telegrams, reports, appraisals and other documents relative to the expropriation of the lands of John Campbell and Albert E. Milligan, in connection with the improvements on the East River in Picton. Presented May 13, 1914.—Mr. Macdonald. Not printed.
CONTENTS OF VOLUME 28—Continued.

232 (21). Return to an Order of the House of the 16th March, 1914, for a copy of all papers, letters and other documents, including pay-lists relating to the expenditure of money by the Public Works Department on Pelmouth Town, Pictou, County, N.S. in 1913. Presented May 12, 1914.—Mr. Macdonald. Not printed.

232 (22m). Return to an Order of the House of the 16th March, 1914, for a copy of all accounts, vouchers, pay-rolls, instructions, correspondence and recommendations relating to the expenditure on the public building at Arichat, N.S., since the 11th day of October, 1911. Presented May 16, 1914.—Mr. Kyte. Not printed.

232 (22n). Return to an Order of the House of the 4th March, 1914, for a copy of all correspondence and other documents in connection with the letting of the construction for the Toronto harbour works. Presented May 16, 1914.—Mr. Pardee. Not printed.

232 (2o). Return to an Order of the House of the 2nd February, 1914, for a return showing the nature and cost of works carried on in the County of Bonaventure by the Department of Public Works since October 16, 1911, to date, together with a copy of all reports, estimates, pay-lists, and correspondence in connection therewith. Presented May 27, 1914.—Mr. Marcil (Bonaventure). Not printed.

232 (2p). Return to an Order of the House of the 23rd March, 1914, for a copy of all correspondence, documents, recommendations and reports respecting the dredging at Port Elgin, Westmorland County, N.B., with the names of men employed to perform that work, their salaries, respectively, and the amount of money spent on the same from January 1, 1911, to January 1, 1914. Presented May 27, 1914.—Mr. Robidoux. Not printed.

232 (2q). Further Supplementary Return to an Order of the House of the 26th April, 1914, for a copy of all correspondence between the Minister of Public Works, the Minister of Justice, or any other member of the Government, and any person or persons, relating to the location and erection of the new post office in the village of Eganville, County of Renfrew. Presented May 27, 1914.—Mr. Graham. Not printed.

232 (2r). Return to an Order of the House of the 16th February, 1914, for a copy of all papers in connection with the Immigration Acts, a return at Grand-Mere, from and since the 1st of January, 1912. Presented June 1, 1914.—Mr. Knowles. Not printed.

232 (2s). Return to an Order of the House of the 2nd February, 1914, for a copy of all advertisements, tenders, accounts, vouchers, letters, documents and correspondence relating to the construction of a breakwater at The Graff, Halifax County, N.S. Presented June 2, 1914.—Mr. Maclean (Halifax). Not printed.

232 (2t). Return to an Order of the House of the 23rd February, 1914, for a copy of all letters, telegrams, correspondence, contracts and documents relating to the surrender of a contract for dredging in Miramichi Bay, N.B., by Messrs. A. and R. Loggie, and also with reference to the letting of a contract for the same, or any portion of said work, to the Northern Dredging Company; together with a copy of all notices for tenders, tenders and contracts in connection therewith. Presented June 2, 1914.—Mr. Carvell. Not printed.

232 (2u). Return to an Order of the House of the 6th April, 1914, for a copy of all letters, telegrams, documents, papers, &c., in connection with the purchase by the Government of lots 1 and 2, block 125, plan 96, in the city of Moosejaw, for an examining warehouse site. Presented June 2, 1914.—Mr. Knowles. Not printed.

232 (2v). Return to an Order of the House of the 16th February, 1914, for a copy of all letters, telegrams, correspondence of all kinds, pay-rolls, vouchers, &c., in any way referring to the expenditure of moneys on sheer dams on the Margaree river, at Margaree and North East Margaree, during 1911-1912 and 1912-1913. Presented June 2, 1914.—Mr. Chisholm (Inverness). Not printed.

233. Return to an Order of the House of the 24th April, 1913, for a return showing what officers and men were employed on the dredge Northumberland at Pictou in the months of January, February and March, 1913, and the salaries and wages paid to them respectively; the amounts paid for repairs and supplies respectively, for said dredge during said months and to whom paid respectively. Presented April 2, 1914.—Mr. Macdonald. Not printed.

234. New Lobster Fishery Regulations established by Order in Council of the 25th March, 1914, in lieu of those established by Order in Council of the 30th September, 1910, and all amendments thereto, by virtue of the provisions of Section 54 of the Fisheries Act, in accordance with the Revised Statutes of Canada, 1906. Presented by Hon. Mr. Hazen, April 7, 1914. Not printed.

235. Return to an Order of the House of the 23rd March, 1914, for a return showing:—
1. How many engineers there are in the employ of the Intercolonial Railway at Moncton and at other points on that railway, and their names?
2. How many were formerly in the employ of the Canadian Pacific Railway Company?
3. Whether Martin Murphy, C.E., is employed in the service of that railway. If so, when he was employed and what his age is? Presented April 7, 1914.—Mr. Emmerson. Not printed.
CONTENTS OF VOLUME 28—Continued.

236. Return to an Order of the House of the 30th March, 1914, for a return showing the travelling expenses paid by the Government to the Honorable Rodolphe Roy, Judge of the Superior Court at Rimouski, during the years 1912-1913 and 1914, for trips from Quebec to Rimouski and return. Presented April 8, 1914.—Mr. Boulay........Not printed.

237. Return to an Order of the House of the 23rd March, 1914, for a return showing:
1. The names of the lawyers who represented the Department of Justice in the district of Quebec, since the 21st September, 1911.
2. The amount of money paid to each of them. Presented April 8, 1914.—Mr. Lapointe (Rimouski)..................Not printed.

238. Return to an Order of the House of the 4th February, 1914, for a copy of all letters, telegrams and documents generally concerning the withdrawal of an appeal in the Supreme Court of Canada, in the case of His Majesty the King, appellant, and Alfred Olivier Falardeau and Constant Napoleon Falardeau, respondents. Presented April 8, 1914.—Mr. Lefebvre ..Not printed.

239. Return to an Order of the House of the 16th March, 1914, for a copy of all transfers of lands by the Militia Department to the Harbour Commissioners of Montreal, and of all correspondence with regard to the same. Presented April 15, 1914.—Mr. Carvell. Not printed.

240. Return to an Order of the House of the 2nd March, 1914, for a return showing:—
1. The quantities of wheat, by grade, received into the terminal elevators at Fort William and Fort Arthur, from the date of the weigh-up in 1910, to date of weigh-up in 1911, the same for 1911-1912, and the same for 1912-1913.
2. The quantities, by grade, delivered by each of the said elevators during the same periods.
3. The average or shortage, as the case may be, of each grade in each of the said elevators, as shown by the said weigh-ups in each of those above mentioned periods.
4. The date of the weigh-up in each case. Presented April 15, 1914.—Mr. Neely. Not printed.

241. Return to an Order of the House of the 2nd March, 1914, for a copy of all rules, orders and regulations, &c., affecting the handling of grain made by the Grain Commission, and of any changes made in elevator charges and terms, if any. Presented April 15, 1914.—Mr. Neely ..Not printed.

243. Return to an Address to His Royal Highness the Governor General of the 30th March, 1914, for a copy of all correspondence, petitions, lists of shareholders, Orders in Council, licenses, certificates and other papers and documents, and of all renewals thereof, relating to the incorporation and licensing of the Bank of St. Jean, the Banque Ville Marie and the Banque Jacques Cartier, all in the Province of Quebec. Presented April 16, 1914.—Mr. Demers ..Not printed.

243a. Return to an Address to His Royal Highness the Governor General of the 23rd March, 1914, for a copy of all correspondence, petitions, lists of shareholders, Orders in Council, licenses, certificates and other papers and documents and all renewals thereof, relating to the incorporation and licensing of the Bank of Yarmouth, and all of papers and documents relating to the winding up of the business of the said bank. Presented April 16, 1914.—Mr. Law. Not printed.

243b. Return to an Address to His Royal Highness the Governor General, of the 16th March, 1914, for a copy of all correspondence, petitions, lists of shareholders, Orders in Council, licenses, certificates and other papers and documents and all renewals thereof, relating to the incorporation and licensing of the Pictou Bank, and all of papers and documents relating to the winding up of the business of the said bank. Presented April 30, 1914.—Mr. Macdonald. Not printed.

245. Return to an Address to His Royal Highness the Governor General of the 4th February, 1914, for a copy of all correspondence and papers generally concerning the proposed changes of the Judicial Committee of the Privy Council. Presented April 16, 1914.—Mr. LemieuxNot printed.
CONTENTS OF VOLUME 28—Continued.

246. Return to an Order of the House of the 2nd March, 1914, for a return giving the following information, as far as may be available, respecting the constitution of Upper Chambers or Senates within the British Empire and in foreign countries, and especially such information in respect of the self-governing Dominions and of foreign countries possessing a federal system of Government:
 1. As to the method of appointment, whether by executive authority or by election by the people, or otherwise.
 2. As to the term of appointment, whether for life or for a term of years, or otherwise.
 3. As to a re-appointment or re-election, and generally as to the filling of vacancies occasioned by death or otherwise.
 4. As to qualifications, whether by age, residence, possession of real or personal property, or otherwise.
 5. As to limitation of the membership, and as to the numerical relation of the membership to that of the Lower House.
 6. As to provisions for dissolution, appeal to the electorate, conferences or additional appointments in case of disagreement between the Upper and Lower Houses.
 7. As to the operation of the various systems in the several Dominions and countries mentioned, and in what respect defects or difficulties have made themselves manifest.
 8. All other relevant information respecting the constitution and status of such Upper Chambers. Presented April 16, 1914.—Mr. Middlebro. Printed for sessional papers only.

246a. Further Supplementary Return to an Order of the House of the 2nd March, 1914, for a return giving the following information, as far as may be available, respecting the constitution of Upper Chambers or Senates within the British Empire and in foreign countries, and especially such information in respect of the self-governing Dominions and of foreign countries possessing a federal system of Government:
 1. As to the method of appointment, whether by executive authority or by election by the people, or otherwise.
 2. As to the term of appointment, whether for life or for a term of years, or otherwise.
 3. As to a re-appointment or re-election, and generally as to the filling of vacancies occasioned by death or otherwise.
 4. As to qualifications, whether by age, residence, possession of real or personal property or otherwise.
 5. As to limitation of the membership, and as to the numerical relation of the membership to that of the Lower House.
 6. As to provisions for dissolution, appeal to the electorate, conferences or additional appointments in case of disagreement between the Upper and Lower Houses.
 7. As to the operation of the various systems in the several Dominions and countries mentioned, and in what respect defects or difficulties have made themselves manifest.
 8. All other relevant information respecting the constitution and status of such Upper Chambers. Presented June 10, 1914.—Mr. Middlebro. Printed for sessional papers only.

247. Return to an Order of the House of the 1st April, 1914, for a return showing:
 1. What it has cost the Government for bottled and distilled water in Ottawa since January 1, 1912, to March 1, 1914?
 2. What it is costing the Government per day now for bottled and distilled water? Presented April 16, 1914.—Mr. Sexsmith. Not printed.

248. Return to an Order of the House of the 11th February, 1914, for a copy of all papers, letters, telegrams, reports and other documents relative to the purchase of land from Joseph Fraser, in connection with the works at Cariboo Island, Pictou County, in the Public Works Department. Presented April 16, 1914.—Mr. Macdonald. Not printed.

249. Return to an Order of the House of the 21st May, 1913, for a copy of all correspondence exchanged during the year 1912, between Captain Belanger, commandant of the Coteau and the Department of Marine and Fisheries, both at Quebec and Ottawa. Presented April 16, 1914.—Mr. Boulay. Not printed.

250. Return to an Order of the House of the 23rd March, 1914, for a return showing:
 1. The names of the wharfingers at Coteau Landing from 1900 to 1914.
 2. The names of the vessels which moored there during that period.
 3. What wharfage each of those vessels paid during that time.

CONTENTS OF VOLUME 23—Continued.

252. Report of the Royal Commission on Penitentiaries, together with the evidence taken and exhibits filed before the said commission. Presented by Hon. Mr. Doherty, April 22, 1914. (Report only) ________________________Printed for distribution and sessional papers.

253. Return to an Order of the House of the 9th March, 1914, for a return showing:—
1. How many professors, lecturers and inspectors the Department of Agriculture has in the Province of Prince Edward Island?
2. Their names, the salaries they receive, and the travelling expenses of each.
3. The duties of these professors, lecturers and inspectors?
4. How many meetings were held or demonstrations given by each of these professors, lecturers and inspectors during the months of March, April, May, June, July, August, September and October last year?
5. Where each meeting was held or demonstration given, and how each was advertised?
6. How many boxes, baskets and barrels of fruit were inspected last season, and the kinds of fruit so inspected?
7. When and where the inspection took place and how many boxes, baskets and barrels were found to be improperly or falsely marked?
8. Whether the Department received a resolution or petition from the Fruit Growers' Association of Prince Edward Island.
9. If so, what prayer or request the said resolution or petition contained, and what the Department decided to do in regard to the matter?
10. How many cheese and butter factories were operated in each of the counties of Prince Edward Island in the year 1910 and how many in the year 1913. Presented April 22, 1914.—Mr. Hughes (P.E.I.) ________________________Not printed.

254. Return to an Order of the House of the 26th February, for a return showing:—The freight rates charged during the years 1912 and 1913 on wheat from Port William or Port Arthur to ports on the Georgian Bay and Canadian ports on Lake Huron and Lake Erie, by the Canadian Pacific Steamship Line, the Northern Navigation Company, the Merchant's Mutual Line, Inland Lines, and the Canadian Lake Line. Presented April 24, 1914.—Mr. Atkins ________________________Not printed.

255. Return to an Order of the House of the 23rd March, 1914, for a copy of all letters, papers, telegrams, recommendations and documents of every kind in connection with the purchase of a Rifle Range near Souris, Prince Edward Island. Presented April 27, 1914.—Mr. Hughes (P.E.I.) ________________________Not printed.

256. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, advertisements, tenders, bids, contracts, telegrams, correspondence, accounts, receipts, vouchers, &c., in reference to the supply of meats, hay, oats, and all other supplies for the 1913 summer and autumn drill at Aldershot Camp, Nova Scotia. Presented April 27, 1914.—Mr. Maclean (Halifax) ________________________Not printed.

256a. Return to an Order of the House of the 30th March, 1914, for a copy of all advertisements, tenders, contracts, documents, papers, &c., relative to the supply of ice for the Aldershot Military Camp, N.S., for the season of 1914. Presented May 29, 1914.—Mr. Maclean (Halifax) ________________________Not printed.

257. Return to an Order of the House of the 1st April, 1914, for a Return showing:—
1. The total amount paid for pensions by the Department of Militia and Defence for the year ending March 31, 1913.
2. The number of militia officers at present on the pay-roll of the permanent corps.
3. How many private soldiers are at present on the pay-roll of the permanent force?
4. How many private soldiers joined the force during 1912?
5. How many deserted during 1912?
6. The gross amount expended by the Department of Militia and Defence for the salaries of officers and officials of every kind in the employ of the Department at Ottawa or elsewhere during the fiscal year 1912-1913.
7. The gross amount paid out for services to the private soldiers of the permanent corps during the said year 1912-1913. Presented April 27, 1914.—Mr. Sinclair. ________________________Not printed.

258. Return to an Order of the House of the 4th February, 1914, for a copy of all letters, telegrams, &c., exchanged between the Department of Militia and Messrs. A. Macdonald, E. Montpetit and others, in connection with the organization of the 33rd Hussars, at Val- reuil and Soulanges. Presented April 27, 1914.—Mr. Boyer. ________________________Not printed.

259. Return to an Order of the House of the 9th March, 1914, for a copy of all letters, telegrams, reports, and other correspondence, in possession of the Department of Militia and Defence, relating to the purchase of land in Parnham, Quebec, for a military camp ground. Presented April 27, 1914.—Mr. Kay. ________________________Not printed.

260. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence between the Department of Agriculture or the Department of Customs and C. S. Campbell, Esq., R.C., relating to the importation of pure-bred animals into Canada. Presented April 27, 1914.—Mr. Kay ________________________Not printed.
CONTENTS OF VOLUME 28—Continued.

261. Return to an Order of the House of the 2nd March, 1914, for a copy of all correspondence, letters, telegrams, and other documents relative to the immigration of Asiatics, including Hindus, Japanese and Chinese, which have a bearing either directly or indirectly upon the Order in Council passed by the Government during December, 1913, restricting immigration into the Province of British Columbia. Presented April 27, 1914.—Mr. Oliver .. Not printed.

262. Return to an Address to His Royal Highness the Governor General of the 30th March, 1914, for a copy in duplicate of all leases, agreements, correspondence, Orders in Council and other documents relating to the water-power or privileges connected with the Stevens Dam, so called, that had been constructed across the River Trent at the village of Campbellford, together with a copy in duplicate of a license in connection with said dam, granted to the Honourable James Cockburn and others under date December 9, 1859, and of all correspondence with, and opinions of, the Minister of Justice at the time of the granting of said license and since that date; also a duplicate copy of all papers, correspondence, Orders in Council and other documents relating to or connected with the cancellation, termination and revocation of such license on the 12th of August, 1911, and of all correspondence, propositions, agreements or other documents had and made by, to or with the Trent Valley Woollen Manufacturing Company, Limited, and of all correspondence with the Department of Justice and opinions thereof relating thereto; also a duplicate copy of all correspondence, reports, Orders in Council and other documents referred to or mentioned in an Order in Council of date August 25, 1913, set forth on page W 295, in the third volume of the Auditor General's Report, 1913, and of all correspondence with the Auditor General and any department thereto or relating therewith. Presented April 27, 1914.—Mr. Emmerson .. Not printed.

263. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, deeds, contracts, &c., in connection with the purchase by the Board of Harbour Commissioners of Quebec, of a stone quarry at St. Nicholas, Que. Presented April 23, 1914.—Mr. Lemieux .. Not printed.

264. Return to an Order of the House of the 6th April, 1914, for a copy of all petitions, correspondence, telegrams and other papers and documents received by the Department of Marine and Fisheries since January 1, 1914, relating to the transportation of fish from the Maritime Provinces to the United States, and of all replies thereto. Presented April 29, 1914.—Mr. Sinclair .. Not printed.

265. Return to an Order of the House of the 2nd February, 1914, for a copy of all papers, deeds and contracts in connection with the purchase by the Department of Agriculture of a quarantine station at Lévis, Que., on or about July 29, 1913. Presented April 29, 1914.—Mr. Lemieux .. Not printed.

267. Return to an Order of the House of the 4th March, 1914, for a copy of all papers, correspondence and telegrams concerning the deportation of Bhawan Singh, a Sikh priest, in defiance of a writ of Habeas Corpus. Presented April 30, 1914.—Mr. Lemieux. Not printed.

269c. Statement showing the floating liabilities of the railway companies embraced in the general title of the Canadian Northern Railway System. Presented by Hon. Mr. Borden, May 4, 1914. Not printed.

CONTENTS OF VOLUME 28—Continued.

269c. Statement showing the engineer's estimate of the cost of completing the Canadian Northern Railway System. Presented by Hon. Mr. Borden, May 4, 1914. Not printed.

269g. Approximate estimate of betterments for six years of the lines of the Canadian Northern Railway System. Presented by Hon. Mr. Borden, May 6, 1914. Not printed.

269h. Statements as on 31st December, 1913, bearing on the financing of the Canadian Northern Railway System. Presented by Hon. Mr. Borden, May 6, 1914. Not printed.

269i. Papers and statements in respect to the Canadian Northern Railway System:
 1. Correspondence, including official application for aid.
 2. Detailed statements showing particulars of capitalization, earnings, cost to complete, &c. Presented by Hon. Mr. Borden, May 6, 1914. Printed for distribution and sessional papers.

269l. Copy of trust deed dated October 4, 1911.—The Canadian Northern Railway to the Guardian Trust Company, Limited, and the British Empire Trust Company, Limited, and His Majesty the King and the Canadian Northern Railway Company. Presented by Hon. Mr. Borden, May 7, 1914. Printed for distribution and sessional papers.

269k. List of companies whose total issued stock is owned by the Canadian Northern Railway Company; also, list of companies whose total issued stock is to be transferred to The Canadian Northern Railway Company; and also, list of companies in which the controlling interest is to be transferred to The Canadian Northern Railway Company. Presented by Hon. Mr. Borden, May 7, 1914. Not printed.

269l. Further statements bearing on the financing of the Canadian Northern Railway System. Presented by Hon. Mr. Borden, May 7, 1914. Printed for distribution and sessional papers.

269m. Correspondence and telegrams received from the premiers of the Provinces of Nova Scotia, British Columbia, Alberta, and the Acting Premier of Saskatchewan, in regard to the granting of aid to the Canadian Northern Railway System. Presented by Hon. Mr. Borden, May 7, 1914. Printed for distribution and sessional papers.

270. Return to an Order of the House of the 29th April, 1914, for a copy of all letters, telegrams and other documents relating to the refusal of the Railway Department, or any official of the Intercolonial Railway to permit employees of the railway at Moncton to attend the militia camp in the last year. Presented May 6, 1914.—Mr. Macdonald. Not printed.

271. Return to an Order of the House of the 23rd March, 1914, for a copy of all correspondence received by the Government since October 1, 1911, to date, from John M. Cormick, of Sydney Mines, N.S., in reference to the following matters in the Riding of North Cape Breton and Victoria:—Railway extension into the Riding of North Cape Breton and Victoria; the opening of the harbour at Dingwall, Aspy Bay, C.B.; the breakwater at Meat Cove in the said Riding; the boat harbour at Bay St. Lawrence; the breakwater at White Point; the breakwater at Neil's Harbour; the breakwater at McLeod's Ingonish; in respect to Ingonish Harbour; the breakwater at Breton Cove; the breakwater at Little Bras d'Or; the breakwater at Cape Dauphin; the breakwater at Point Aconi; the proposed wharf at North Sydney the proposed extension of the breakwater at North Sydney; the bringing of the Intercolonial Railway to the ballast ground at North Sydney; the wharf at Sydney Mines; the wharf at Leitches Creek; the repairs to the wharf at Graves Point; the rebuilding of the wharf at Boisdale; the breakwater at Jamesville; the wharf at Castle Bay, and the proposed wharf at Shenacadie. Presented May 7, 1914.—Mr. McKenzie. Not printed.

273. Return to an Order of the House of the 6th April, 1914, for a copy of all letters, telegrams and correspondence received by the Postmaster General in connection with complaints made that the postmaster at Yarmouth North, N.S., had been or is selling stamps outside his jurisdiction. Presented May 8, 1914.—Mr. Law. Not printed.

274. Return to an Order of the House of the 9th February, 1914, for a return showing the number of criminals released on parole from the various penitentiaries of the Dominion for the year ending March 31, 1913; the offence for which each prisoner so released was convicted, and showing at the same time whether such offence was a first, second, or subsequent offence. Presented May 8, 1914.—Mr. Sinclair. Not printed.
CONTENTS OF VOLUME 28—Continued.

275. Return to an Order of the House of the 9th March, 1914, for a return showing:—
1. How many acres of public land have been given to railway companies in the
Dominion of Canada by the Federal Government from 1878, to the present time?
2. How many acres were granted in each year during the above period of time.
 Presented May 11, 1914.—Mr. Tobin . Not printed.

276. Return to an Order of the House of the 2nd February, 1914, for a return showing the
receipts and expenses of the post office at St. Philippe, East, and of the post office at
St. Philippe, West, in the parish of St. Philippe de Néri, since the first of June, 1912,
to date. Presented May 11, 1914.—Mr. Lapointe (Kamouraska) . Not printed.

277. Report of the Dominion Wreck Commissioner in the matter of a formal investigation into
the causes which led to the British steamer Saturna touching the ground in the Lower
Traverse, River St. Lawrence, on Tuesday, April 28, 1914. Presented by Hon. Mr.
Hazen, May 12, 1914. . Printed for sessional papers only

278. Report of the Dominion Wreck Commissioner in the matter of a formal investigation into
the causes which led to the stranding of the British steamship Montfort, on Beaumont
Bank, River St. Lawrence, on Tuesday, April 28, 1914. Presented by Hon. Mr.
Hazen, May 12, 1914. . Printed for sessional papers only

279. Return to an Address to His Royal Highness the Governor General of the 2nd February,
1914, for a copy of the Order in Council appointing Arthur Plante, Esq., a Commissi-
oner to receive claims against the Atlantic and Lake Superior Railway, the Baie des
Chaleurs Railway and the Quebec Oriental Railway, and of the report of said Com-
mis-sioner to the statement of claims accepted and those rejected by him. with the
reasons therefor, as well as of all correspondence, memorials, petitions and documents,
generally bearing on said subject. Presented May 12, 1914.—Mr. Marcel (Bonaventure).
 . Not printed.

279a. Supplementary Return to an Address to His Royal Highness the Governor General of
the 2nd February, 1914, for a copy of the Order in Council appointing Arthur Plante,
Esq., a Commissioner to receive claims against the Atlantic and Lake Superior Railway,
the Baie des Chaleurs Railway and the Quebec Oriental Railway and of the report of
such claims accepted and those rejected by him. with the reasons therefor, as well as of
all correspondence, memorials, petitions and documents, generally bearing on said subject.
Presented May 22, 1914.—Mr. Marcel (Bonaventure) . Not printed.

280 Return to an Order of the House of the 6th April, 1914, for a copy of all correspondence,
accounts, indemnities, travelling expenses, &c., from Fraserville to Quebec, and of all
other documents relating to the amount of money received each year by His Honour
Mr. Justice Ernest Cimon, from 1899 to 1913, as Judge of the Superior Court sitting at
Quebec, during the time he was connected with the District of Kinoe reja. Presented
May 16, 1914.—Mr. Gauvreau . Not printed.

281. Report of the delegates appointed by the Government of Canada to attend the "Inter-
national Purity Congress," held in the city of Minneapolis, Minn., November 7-12, 1913.

282. Agreement between the Government and steamship companies for mail carriage between

283. Return to an Order of the House of the 15th April, 1914, for a return showing:—
1. How many passengers have been carried over the Intercolonial Railway from
St. John to Halifax, and from Halifax to St. John, respectively, under the agreement
made on the 30th September, 1913, between the Canadian Government Railways by F.
P. Gutellus, General Manager and the Canadian Pacific Railway Company, by G. M.
Bosworth, General Traffic Manager, from the 15th November, 1913, when the said agree-
ment went into effect, to the 31st March last?
2. How many tons of freight of each of the classes mentioned in said agreement
have been carried each way over the Intercolonial Railway between St. John and Hal-
ifax, under said agreement during said period?
3. What have been the total earnings by the Intercolonial Railway under said
agreement up to the 31st March last, for passengers and freight carried, respectively?
4. What amount has been paid to or earned by the Canadian Pacific Railway for
car hire under said agreement?
5. What number of empty cars of the Canadian Pacific Railway Company have
been hauled by the Intercolonial Railway free under said agreement, and what has been
the cost of such hauled?
6. What would have been the total amount paid by the Canadian Pacific Railway
Company to the Intercolonial Railway, under the tariff prevailing at the time of the
making of said agreement, for the passengers and the freight so carried, respectively?
7. Whether the said agreement has been submitted, as promised by the Govern-
ment, to the Board of Rail Commissioners by the Minister of Railways for the pur-
pose of having the Board determine as to whether or not said agreement is discrimina-
tory against the port of St. John. If not, why was it not so submitted?

85
CONTENTS OF VOLUME 28—Continued.

8. If it is the intention of the Minister of Railways to renew the said agreement, or to put in force a similar agreement, during the next Winter Port season.

9. What agreement the Government intends to make as to the Atlantic termini of the fast Atlantic mail steamers for the winter of 1914-1915. Presented May 22, 1914.—Mr. Pegg.ey ...Not printed.

284. Return to an Order of the Senate dated 15th May, 1914:—

1. How many judges have been retired since 1889?
2. What are their names?
3. What salary did they receive in each case?
4. How many years did they serve in each case?
5. What was the reason given for their retirement?
6. How much did they receive for retirement allowance each year in each case?
Ordered, that the same do lie on the table, and it is as follows.—(Senate).

Not printed.

285. Return to an Address to His Royal Highness the Governor General of the 9th March, 1914, for a copy of all petitions, letters, telegrams and documents by any and all parties to and by the Department of Railways and Canals, or any other Department of the Government, with reference to the Southampton Railway Company, also of all reports of engineers and recommendations regarding a subsidy to the said railway, and of all Orders in Council granting same, and of all other documents and memoranda in the possession of the Department of Railways and Canals or other Departments of the Government regarding the said railway. Presented May 27, 1914.—Mr. Carrell.

Not printed.

286. Return to an Order of the House of the 2nd February, 1914, for a copy of all correspondence, papers, documents, contracts, &c., between the Government of Canada and any company, firm or individuals from May 1, 1913, to December 1, 1913, referring to the establishment of a subsidized steamship service between Canada and the British West Indies. Presented May 27, 1914.—Mr. Maclean (Halifax) ...Not printed.

287. Return to an Order of the House of the 4th May, 1914, for a copy of all papers, letters, telegrams, accounts and receipts concerning advances made to the Montagnais Band of Indians through the agency of Seven Islands. Presented May 27, 1914. ..Not printed.

288. Return to an Order of the House of the 11th May, 1914, for a copy of all papers, letters, telegrams, accounts and receipts, concerning advances or payments made by the Government to Newton Wesley Rowell, K.C., for legal services in connection with the Oko Indian litigation. Presented May 29, 1914.—Mr. Sharpe (Ontario). ..Not printed.

288a. Return to an Order of the House of the 6th May, 1914, for a return showing:—

1. Whether the Government paid Newton Wesley Rowell, K.C., any sums of money for legal services during the past fifteen years?
2. If so, the amounts and when?
3. Whether the Government paid the firm of which Mr. Rowell is the senior partner any sums of money for legal services?
4. If so, the amounts and in what years? Presented May 29, 1914.—Mr. Sharpe (Ontario). ..Not printed.

289. Return to an Order of the House of the 29th April, 1914, for a return showing:—

1. The date of the incorporation of the Canadian National Bureau of Breeding, Limited, with the names, addresses and occupations of the charter members of said Company.
2. The amount of capital of the Company and the number of shares into which it is divided.
3. The number of shares taken from the commencement of the Company up to the date of the return.
4. The amount of calls made on each share, the total amount of calls received, the total amount of calls unpaid, and the total number of shares forfeited.
5. The names, addresses and occupations of the persons who have ceased to be members within the twelve months next preceding, and the number of shares held by each of them.
6. The amount of money paid to said Company by the Government in each year since incorporation. Presented May 29, 1914.—Mr. Sutherland.Not printed.

290. Return to an Order of the House of the 9th February, 1914, for a copy of all reports made by the inspectors of agents for placing farm labourers and domestic servants in Canada during the calendar years 1912 and 1913. Presented May 29, 1914.—Mr. Sutherland. Not printed.

291. Return to an Order of the House of the 2nd March, 1914, for a return showing all the buildings, houses, offices and improveables, occupied by the Federal Government in Montreal, for the use of the various Departments and services of each branch of the administration, together with the following information in each case; for what Department and for what service; where situated, street and number thereof; whether Government property or under lease; in the latter case, the length of lease, the rent per annum and also the other charges that may be imposed upon the Government. Presented June 4, 1914.—Mr. Wilson (Laval)Not printed.
292. Return to an Order of the House of the 4th May, 1914, for a copy of all correspondence exchanged by and with the Department of Public Works or the Post Office Department, relating to an application or applications for a post office building at the town of Melville, Province of Saskatchewan. Presented June 4, 1914.—Mr. MacNutt. Not printed.

294. Return to an Order of the House of the 4th February, 1914, for a return showing the names and addresses of the people with whom pure bred animals have been placed by the Department of Agriculture, the breed in each case, and the conditions on which these animals were placed. Presented June 5, 1914.—Mr. Kay. Not printed.

295. Return to an Order of the House of the 30th March, 1914, for a copy of all correspondence, telegrams, instructions, accounts, vouchers and other papers and documents relating to the purchase of live stock in the Maritime Provinces by one Howard Corning of Yarmouth, N.S., during the period of his employment; also a copy of the appointment of the said Howard Corning and of all correspondence, complaints and other documents relating to the dismissal of the said Howard Corning, if he has been dismissed or retired from the service, together with a copy of all recommendations, correspondence and other papers relating to the appointment of the said Howard Corning's successor. Presented June 5, 1914.—Mr. Sinclair Not printed.

296. Return to an Order of the House of the 19th March, 1914, for a return showing:—
1. How many pure bred stallions and bulls have been purchased by the Department of Agriculture for the use of settlers in the Provinces of Manitoba, Saskatchewan, and Alberta since the first of January, 1912, to date?
2. Where these animals were purchased, and from whom; and also the price paid for them respectively. Presented June 5, 1914.—Mr. Douglas. Not printed.

297. Return to an Order of the House of the 9th February, 1914, for a copy of all correspondence, including letters, telegrams and accounts, regarding the purchase and disposal during year 1913, of all horses, cattle, sheep and swine for the Department of Agriculture, Province of Quebec for Experimental Farms, or for the improvement of stock, together with a return showing the commission and fees paid, and to whom paid, for and on account of said purchases. Presented June 6, 1914.—Mr. Robb. Not printed.

298. Return to an Address to His Royal Highness the Governor General of the 9th February, 1914, for a copy of all arrangements made between the Government and the various Provinces under the Agricultural Instruction Act. Presented June 10, 1914.—Sir Wilfrid Laurier. Not printed.

299. Partial Return to an Address to His Royal Highness the Governor General of the 4th March, 1914, for a copy of all correspondence, telegrams, petitions, Orders in Council, and other papers and documents, relating to subventions or assistance given, or to be given, by the Department of Marine and Fisheries or the Department of Agriculture to firms or joint stock companies, or persons operating cold storage plants for the preservation of fish products in Nova Scotia during the years 1908, 1909, 1910, 1911, 1912 and 1913, excluding such correspondence, &c., as relates to companies known as Fishermen's Bait Association. Presented June 10, 1914.—Mr. Sinclair. Not printed.

301. Return to an Order of the House of the 27th April, 1914, for a copy of all letters, tenders, telegrams, plans, specifications and other documents in regard to the construction of the new ice breaker by the Canadian Vickers Company of Montreal. Presented June 11, 1914.—Mr. Macdonald. Not printed.

302. Return to an Address to His Royal Highness the Governor General of the 16th March, 1914, for a copy of all petitions, letters, affidavits, telegrams and documents to and by the Department of Justice, or any other Department of Government, on behalf of or in reference to Wm. J. Kelley, a prisoner in the United States federal prison at Atlanta, Ga., and of all the letters, telegrams and other memoranda between the Department of Justice, or any other Department of the Government, and the British Ambassador at Washington, or the Government of the United States, regarding the imprisonment and proposed liberation of the said Wm. J. Kelley. Presented June 12, 1914.—Mr. Currie. Not printed.
REPORT

OF THE

DAIRY AND COLD STORAGE COMMISSIONER

FOR THE

FISCAL YEAR ENDING MARCH 31

1913

DAIRYING, FRUIT, EXTENSION OF MARKETS AND COLD STORAGE

PRINTED BY ORDER OF PARLIAMENT

OTTAWA

PRINTED BY C. H. PARMELEE, PRINTER TO THE KING'S MOST EXCELLENT MAJESTY

1913
TABLE OF CONTENTS

REPORT OF THE DAIRY AND COLD STORAGE COMMISSIONER.

<table>
<thead>
<tr>
<th>Dairying</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Progress of Dairying.</td>
<td>1</td>
</tr>
<tr>
<td>The Export Trade.</td>
<td>1</td>
</tr>
<tr>
<td>The Shipping of Green Cheese.</td>
<td>2</td>
</tr>
<tr>
<td>The Importation of Butter.</td>
<td>2</td>
</tr>
<tr>
<td>The Adulteration of New Zealand Butter</td>
<td>3</td>
</tr>
<tr>
<td>The Home Trade in Dairy Products.</td>
<td>3</td>
</tr>
<tr>
<td>The Ice Cream Trade in Canada.</td>
<td>3</td>
</tr>
<tr>
<td>Milk Trains.</td>
<td>4</td>
</tr>
<tr>
<td>The Finch Dairy Station.</td>
<td>4</td>
</tr>
<tr>
<td>The Brome Dairy Station.</td>
<td>4</td>
</tr>
<tr>
<td>Cow Testing.</td>
<td>4</td>
</tr>
<tr>
<td>The Cool Curing of Cheese</td>
<td>5</td>
</tr>
<tr>
<td>Complaints re Weights of Cheese and Butter.</td>
<td>5</td>
</tr>
<tr>
<td>The Royal Commission on Cheese and Butter Weighing.</td>
<td>6</td>
</tr>
<tr>
<td>Enforcement of Federal Dairy Laws.</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fruit Trade</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit Inspection.</td>
<td>7</td>
</tr>
<tr>
<td>The Fruit Season of 1912-13.</td>
<td>7</td>
</tr>
<tr>
<td>Special Evidence taken by the Committee on Agriculture and Colonization.</td>
<td>8</td>
</tr>
<tr>
<td>The Retail Price of Fruit.</td>
<td>8</td>
</tr>
<tr>
<td>The Education of the Consumer.</td>
<td>9</td>
</tr>
<tr>
<td>The Marketing of Green Fruit.</td>
<td>9</td>
</tr>
<tr>
<td>Apple Packing Demonstrations.</td>
<td>9</td>
</tr>
<tr>
<td>The Fruit Crop Report.</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extension of Markets</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken Cheese Boxes.</td>
<td>10</td>
</tr>
<tr>
<td>The New Zealand Cheese Crate.</td>
<td>12</td>
</tr>
<tr>
<td>Cargo Inspection.</td>
<td>12</td>
</tr>
<tr>
<td>Refrigerator Car Inspection.</td>
<td>12</td>
</tr>
<tr>
<td>Wholesale Market Quotations.</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cold Storage</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creamery Cold Storage Bonuses.</td>
<td>12</td>
</tr>
<tr>
<td>Iced Car Services.</td>
<td>13</td>
</tr>
<tr>
<td>Guaranteed Cold Storage Space on Steamships.</td>
<td>13</td>
</tr>
<tr>
<td>Thermographs.</td>
<td>13</td>
</tr>
<tr>
<td>Cold Storage Subsidies.</td>
<td>13</td>
</tr>
<tr>
<td>The Cold Storage Industry.</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications.</td>
<td>16</td>
</tr>
<tr>
<td>Meetings.</td>
<td>17</td>
</tr>
<tr>
<td>The Staff, 1912-13.</td>
<td>17</td>
</tr>
<tr>
<td>Acknowledgements.</td>
<td>18</td>
</tr>
</tbody>
</table>

15a—1\(\frac{1}{2}\) iii
APPENDIX I.

REPORT OF THE ASSISTANT DAIRY COMMISSIONER (J. C. CHAPAIS.)

Summary of Year’s Work.. 19
List of Meetings... 19
Provincial Meetings.. 21
County and District Meetings.. 21
Co-operation among Fruit Growers in Kamouraska and L’Islet........ 22
Farmers’ Institute Meetings.. 22
Farmers’ Clubs... 23
Dairying in Bonaventure County... 23
Factory Inspection... 25
Office Work... 25

APPENDIX II.

REPORT OF THE CHIEF, EXTENSION OF MARKETS DIVISION.

Organization and Scope of the Division.................................... 27
Direct Relation of Cargo Inspectors to Market Extension............. 27
Export Trade the Objective.. 27
The Marketing Problem... 28
Cheese Transportation.. 28
Paper Boxes for Cheese not a Success..................................... 29
Export of Peaches Increasing... 29
Capacity of Market in Western Canada for Apples...................... 29
Cargo Inspectors at Canadian ports....................................... 30
Cargo Inspector at Portland, Me... 30
Cargo Inspectors in Great Britain... 30
Butter Transportation.. 30
Use of second-hand Butter Tubs and Boxes undesirable.............. 31
Opening of the Argentine Market for Canadian Apples................. 31
Thermographs.. 31
Comparative Prices in Canadian, United States and British Markets. 31
Nova Scotian Apple Sales, 1912-13.. 32
St. John shipments.. 32
Future Markets for Canadian Apples....................................... 32
Extent of British Market.. 33
Our Domestic Market.. 33
Possibilities of Three Big Markets... 34
Increased Production looked for.. 34
Reports of Cargo Inspectors in Great Britain.......................... 35
Liverpool.. 35
Manchester... 40
London... 42
Glasgow... 44
Bristol... 47
Wholesale Quotations for—
Butter.. 50
Cheese... 51
Eggs... 52
Breakfast Bacon... 53
REPORT OF THE DAIRY AND COLD STORAGE COMMISSIONER

SESSIONAL PAPER No. 15a

APPENDIX III.
REPORT OF THE CHIEF, FRUIT DIVISION.

The Staff, 1912-13 ... 66
Inspection Statistics ... 68
Prosecutions .. 69
Meetings attended .. 70
Special Series of Meetings in Nova Scotia 70
Better Farming Special .. 72
Orchard Meetings—Quebec ... 73
The Work of the Inspectors by Provinces, Season 1912-13 73
The Fruit Crop Report ... 81
Co-operative Movement among Fruit Growers in Canada in 1912 85
No. 3 Grade .. 87
Fruit Packages .. 88

APPENDIX IV.
FINCH AND BROME DAIRY STATIONS.

FINCH—
Building ... 89
Equipment .. 91
BROME—
Building ... 93
Equipment .. 94

APPENDIX V.
DAIRY RECORDS.

Cow Testing, General ... 94
Increases in Yield ... 94
Some Good Records ... 96
Contrasts between Individual Cows in the Same Herd 97
" Districts in the Same Province .. 98
" Length of Milking Period .. 99
What some Farmers say about Cow Testing 99
Difference in Profit: A Study of Individuality 100
Testing for Fat, a Guide in Breeding 101
Summary of Yields in Ontario .. 101
 " " Quebec ... 105
 " " Nova Scotia .. 106
 " " New Brunswick .. 106
 " " Prince Edward Island .. 107
 " " British Columbia ... 108
 " Average Monthly Yields .. 109
 " Percentage of Fat ... 111
Dairy Record Centres, General ... 113
The Need for Pure Bred Dairy Sires 113
Dairy Record Centres, Summary ... 115
Dairy Record Centres, Contrasts .. 116
St. Hyacinthe, Que., Dairy Record Centre, Contrasts 121

APPENDIX VI.

CREAMERY COLD STORAGE BONUSES.

List of Creameries receiving Bonus in 1912-13 124

APPENDIX VII.

COLD STORAGE SUBSIDIES.

Subsidies for Public Cold Storage Warehouses 126
Contracts in 1912-13 .. 126
List of Warehouses erected under Contract to receive a Subsidy since 1907 .. 126
The Gravity Brine System .. 127

APPENDIX VIII.

SOME STATISTICS OF THE EXPORT TRADE IN DAIRY PRODUCE.

Total Exports of Cheese and Butter in Fiscal Years, 1880-1913 128
Detailed Exports of Dairy Produce for Years ending March 31, 1913 128
Comparative Value of Detailed Exports for Years ended March 31, 1909-1911-12-13 .. 129
Exports of Cheese by Countries .. 130
Exports of Butter by Countries .. 131
Cheese Imports into the United Kingdom 132
Butter Imports into the United Kingdom 132
Imports of Dairy Produce for Consumption in Canada 133
Imports of Butter by Countries .. 133
REPORT
OF THE
DAIRY AND COLD STORAGE COMMISSIONER

To the Honourable
The Minister of Agriculture.

Sir,—I have the honour to submit my report for the year ended March 31, 1913. The report is presented under the four heads of Dairying, Fruit, Extension of Markets and Cold Storage, to correspond with the organization and work of the Branch.

DAIRYING.

THE PROGRESS OF DAIRYING.

While no exact figures can be quoted with respect to the total quantity of milk produced in Canada from year to year, if the annual increase in the home consumption of milk, condensed milk, cream, ice cream, butter and cheese is taken into account, it is evident that there is a large yearly increase, after allowing for the decrease in the total exports and the increase in the imports of butter.

There has been a very noticeable increase in the attention given to dairy farming in some parts of the prairie provinces during the past year. The quantity of creamery butter produced in Alberta, Saskatchewan and Manitoba has been quadrupled within a few years, and in 1912 it amounted to about 6,000,000 pounds, or approximately one-fourth of the creamery butter marketed west of the Great Lakes, including what was imported at Vancouver from the Antipodes.

The season of 1912 witnessed a further diversion of milk from the cheese factories of Western Ontario to the milk condensers and milk powder factories and also to the city creameries and milk depots. The increasing demands of the city of Montreal for fresh milk is resulting in a diminished supply at the cheese factories and creameries in some of the districts near that city.

THE EXPORT TRADE.

Although there was an increase in the quantity of milk produced during the year, it was not sufficient to meet the constantly growing demand for milk and its products. Both the quantities and values of all products exported in 1912-13 were somewhat below the figures for 1911-12, as will be seen by a reference to the tables in Appendix VIII. The total export of butter in 1911-12 was 8,844,402 pounds, which was the largest quantity exported in any year since 1907. In 1912-13 the exports
fell to 828,323 pounds, and of this amount only 681,797 pounds were sent to Great Britain. This is all the more notable in view of the fact that the exports of butter from Canada to Great Britain have not been less than one million pounds in any year since 1850.

The exports during the past year consisted chiefly of canned butter from the Maritime Provinces to the West Indies, and some inferior dairy butter which went to the United States.

THE SHIPPING OF GREEN CHEESE.

The practice of shipping green, immature cheese still continues with many factories, and the writer believes that it is the most serious danger that threatens the export trade. It means that the consumer in Great Britain is being offered an article which does not suit his taste. It makes no difference what the cause is so long as he looks upon it as a defect, for the inevitable result is a reduced demand.

It has been proposed to prevent the shipping of green cheese by legislation, and it must be admitted that strong arguments can be made in favour of that method of controlling the matter. There would, however, be some difficulty in determining what would be a reasonable time to compel cheese factories to hold their cheese before shipment. Cheese varies greatly in the rate at which they ripen. The conditions under which the cheese are held as regards temperature, &c., have much to do with the age of the cheese in point of maturity. In any case, the fixing of a legal time limit before shipment would be an arbitrary act at best, as there is no practical or accurate basis to work from. The writer is of the opinion that it would be difficult to administer such a law fairly and without hardship in many cases. United action on the part of salesmen is not easy to secure, but that is all that is necessary to settle the matter effectually. The usual excuse or refuge of the salesman, when urged to put a stop to the shipping of green cheese, is to put the blame on the buyer. The buyer is certainly doing wrong in handling these green cheese and thus encouraging a practice which is detrimental to the trade, but as he is not likely to suffer to any extent for his part in the transaction, it seems to me that the responsibility rests upon the salesman as representing the people who will lose if the trade is seriously injured.

THE IMPORTATION OF BUTTER.

The imports of butter during the year under review amounted to 7,959,269 pounds, valued at $2,081,989. Canada has imported more or less butter for over twenty years, but the quantity has been insignificant until the last year or two. Naturally, the importation of this large amount of butter has caused considerable comment, and many expressions of surprise have been heard that a great agricultural country like Canada should be obliged to procure supplies of dairy products from other countries. After all is said, it is a question of population in relation to productive areas. The United Kingdom of Great Britain and Ireland produces more milk than Canada does, being the second largest producer in the world, and yet the value of the butter and cheese annually imported into that country is practically double that of all other countries in the world combined.
SESSIONAL PAPER No. 15a

A very large proportion of the butter imported into Canada consists of direct shipments from New Zealand to Vancouver to supply the Pacific coast trade, although a considerable quantity of New Zealand butter was brought to Eastern Canada during the past year via London. New Zealand butter as it arrives in Canada is a freshly made grass article, and being carried from New Zealand to Vancouver at suitable refrigerating temperatures, it naturally arrives in good condition and makes a strong competitor with the Canadian stored butter. The duty is three cents a pound on the New Zealand butter under the preferential tariff, but the ocean freight on butter from New Zealand to Vancouver is rather less than the rail freight is from Montreal. The cost of carrying butter in cold storage from June and July, for consumption during the winter months, is practically equal to the duty. When all these points are considered, it is not so strange after all that Western Canada finds it advantageous to import butter from the Antipodes. Even though there should be a surplus above all Canadian requirements in Eastern Canada, the imports of butter into British Columbia will probably continue until the western provinces make a sufficient quantity, as I believe they eventually will, to supply their own markets.

ATTEMPTS TO MANIPULATE NEW ZEALAND BUTTER.

Shortly after the New Zealand butter began to arrive in British Columbia in large quantities, it was reported to this office that certain firms in the city of Vancouver were rechurning it with a view of adding to its water content. Steps were at once taken to investigate the matter and an inspector was instructed to secure samples for analysis. It was found in several cases that the legal limit of 16 per cent of water was being very greatly exceeded. Several wholesale firms were convicted on a charge of selling butter containing more than the legal limit of water, and retailers were notified that they would be held responsible for butter of similar character passing through their hands. The law is now believed to be carefully observed, although a strict watch will be maintained for further violations. The law requires, although it is not a very important matter, that butter not produced in Canada shall bear evidence of the country of origin when offered for sale in this country. Some dealers have neglected to observe this requirement and attention has been called to it through the press and otherwise.

THE HOME TRADE.

There is quite naturally a continued expansion of the home trade to correspond with the increase of population. The per capita consumption of milk, cream, ice cream and other products has also increased very largely during recent years. The value of the home consumption of dairy products increases something like $3,000,000 every year.

THE ICE CREAM TRADE.

Some figures relating to the ice cream trade were collected during the year. Returns were obtained from 60 ice cream manufacturers in 24 towns and cities. Of this number, all but 13 have been established since 1904, and they all report that their business is growing at the rate of 20 per cent to 25 per cent per year. The
quantity of cream used for ice cream by the manufacturers from whom returns were received is equivalent to about 2,000,000 pounds of butter and, of course, this does not take into account the large quantity used by the hundreds of smaller ice cream makers all over the country.

The successful factory of the future, in the more populous districts of the country will be located at a convenient shipping point, and must be fully equipped to manufacture cheese or butter, or to engage in the cream trade at a moment’s notice at any season of the year. There is no reason why ice cream should not be manufactured in creameries instead of shipping the cream to the cities for that purpose.

Milk Trains.

In this connection, the following news paragraph from a Montreal paper of April 29, 1912, is reproduced to record an interesting event in the evolution of the trade in dairy products:

‘The first special milk train in Canada arrived at the Bonaventure station this morning, bringing a large consignment of milk from the rich dairying district on the Fort Covington division. In order to cope with the ever growing needs, and as a response to a widespread appeal last summer by philanthropic bodies generally for an increased supply of milk for the babies of the city during the parching summer months, when the problem is one of life and death to the tiny citizens of the future, the Grand Trunk Railway has to-day inaugurated the first special milk train in Canada.’

The Finch Dairy Station.

The new building for this station was not ready for use until August 23, 1912, on which date the manufacturing of cheese was transferred from the two old factories to the new premises. The manufacture of butter was started on November 21, and has been continued all winter, although the supply of milk was rather small. It is expected that the high price obtained for the butter and the return of sweet pasteurized skimmilk will encourage the patrons in the production of winter milk. Owing to the lateness of the season when the new station was completed, no experimental work was undertaken in 1912.

The Brome Dairy Station.

The new building at Brome was opened on December 13 last. The creamery will be operated the year round. The Brome Creamery is a very neat looking building, and when the grounds are trimmed and planted, as they will be in a few weeks’ time, the whole place will have a very attractive appearance.

Illustrations of both the Finch and Brome stations and brief statements of the year’s operations will be found in Appendix IV. The plans and specifications are being published in bulletin form. It is proposed to carry on some experimental work this year.

Cow Testing.

I am pleased to be able to say that the cow testing movement has shown increased activity during the past year. With your authority, eight new Dairy Record Centres were established, six in Ontario and two in the Province of Quebec. The old cow
SESSIONAL PAPER No. 15a

testing associations have been continued in a great many localities. A very marked feature of the work at the present time is the increasing number of requests received for the forms which are used in keeping the records of individual cows. These forms are supplied to any person who asks for them, and the number thus furnished during the past year was greatly in excess of any previous year. Many hundreds of farmers are now keeping records of their cows quite independent of any cow testing association or Dairy Record Centre, and every encouragement is being offered to the owners of herds to adopt that course. Seven or eight Record Centres have already been organized for the calendar year of 1913, and it is expected that one or two others will yet be started.

The keeping of the records of the cows tested, as carried out in this office, is assuming large proportions, and it is possible that some other plan may have to be devised to lessen the clerical work involved.

Arrangements were made a few months ago to transfer the cow testing in the Province of British Columbia to the Provincial Department of Agriculture, and the Live Stock Commissioner for that province now has the matter in hand.

THE COOL CURING OF CHEESE.

Except in Western and Central Ontario, the cool curing of cheese, that is to say, the equipment of cheese factories with curing rooms in which the temperature can be controlled, has not made as much progress as the importance of this improvement would seem to warrant. This is partly due, no doubt, to the practice already referred to, of the cheese factories in the extreme eastern part of Ontario and in some parts of the Province of Quebec shipping their cheese in a very green condition. Another reason why cool curing rooms have not been provided at more factories is because of the low rates for manufacturing cheese. In a factory with a small output, the revenue is too small to permit the necessary expenditure being made to provide improvements of any kind. Patrons of factories would be well advised to agree to a higher price for manufacturing and then demand a better service in return. It is hoped that the operation of the new dairy stations will demonstrate that patrons can afford to pay a higher rate for manufacturing and still receive a better return for their milk. The rates at both stations have already been raised with the unanimous consent of the patrons.

The cost of labour, boxes, fuel and other supplies that are used in the manufacture of cheese and butter has increased very considerably during recent years, and there has not been a corresponding increase in the revenue to the manufacturer. The smallness of the revenue at many factories is a positive barrier to progress in the dairy industry.

COMPLAINTS RE WEIGHTS OF CHEESE AND BUTTER.

Complaints as to excessive short weights of cheese and butter, especially of cheese, as reported to salesmen by the Montreal merchants, supported by the Public weigher's certificate, on shipments subject to Montreal inspection, have been common for years among the factories in Eastern Ontario and the Province of Quebec, where a large proportion of the cheese and butter is sold in the country, weights and quality guaranteed in Montreal.
During the same period, and more particularly during the past two or three years, very serious complaints have come from exporters in Canada, and from merchants in the Old Country as to irregularities in the marked weights on Canadian cheese. Overmarkings of 5 to 10 pounds on one or more cheese in a shipment, indicating gross carelessness or worse, have been too common for the good of the trade. The public weigher at Montreal and the cargo inspectors in Great Britain were requested to report cases of serious over-markings to this office. These cases were quietly investigated, not with the expectation of securing much positive evidence as to how the cause of complaint originated, but rather to show that such inaccurate marking was sure to be discovered sooner or later and brought home to the responsible parties. I am informed that since this policy was adopted, there has been less complaint with regard to over-marking. The over-marking here referred to is not to be confused with 'short weights' resulting from shrinkage of the cheese, inaccurate scales, or too close weighing at the factory.

The short weight trouble as complained of by the factories has not grown less, but has, on the contrary, and very naturally, shown a tendency to become more acute since the cheese have been shipped in a greener condition.

A demand has arisen for the appointment of a government weigher, in the belief that the appointment of such an official would very largely eliminate the cause of complaint. Those who are familiar with the situation know that a mere change of weighers would leave the matter exactly where it stood before, because it would not go to the root of the trouble. I would like to add that I believe the charges of dishonesty which have been so freely made in this connection are wholly unwarranted. There has been no evidence produced to substantiate such statements which, made without foundation, do much harm by sowing the seeds of distrust where mutual confidence is desirable.

THE ROYAL COMMISSION ON CHEESE AND BUTTER WEIGHING.

A Royal Commission consisting of Mr. R. A. Pringle, K.C., Ottawa, Chairman, Mr. Arthur J. Hodgson, Cheese and Butter Merchant, Montreal, and Mr. Samuel J. Macdonell, Cheese Manufacturer, Strathmore, Ont., was appointed by an order in council dated July 9, 1912, to investigate the question of the weighing of cheese and butter. A further order in council of August 1 enlarged the scope of the Commission by giving it ‘full power to inquire into the complaints made by representative dairymen as shown by documents on file in the Department of Agriculture as to present methods of payment for butter and cheese in Montreal.’ The Commission has not yet submitted a report, but will do so very shortly, and the probabilities are that it may appear in print before these lines do. It would be out of place to make any comment here on the work of the Commission, but I may be permitted to say that the facts made public at the various sittings of the Commission would alone justify the appointment, even if no further action should be taken.

ENFORCEMENT OF THE FEDERAL DAIRY LAWS.

Apart from the prosecutions already mentioned for adding water to New Zealand butter by dealers in Vancouver, B.C., there are few serious violations of the law to
SESSIONAL PAPER No. 15a

be recorded. A produce dealer in Quebec was convicted and heavily fined for putting on the market a butter adulterated with foreign fats. Some other cases are now being dealt with.

The high price of butter during the past year or two has increased the incentive to violate the law in the admixture of cheaper fats with pure butter. The growth of the cities makes it easier to carry on any illegal process without detection, and the matter of regulating the manufacture and sale of dairy products is daily becoming more difficult. Some reorganization of and addition to the inspection service now seems to be necessary.

I propose as far as possible to utilize the services of the permanent fruit inspectors for this purpose, especially during their slack season, as was done with success in the Vancouver cases.

The changing conditions in the trade in dairy products in this country will make some revision of the dairy laws necessary in the near future in the interests of producers and consumers alike.

THE FRUIT TRADE.

The work of this Branch in relation to the fruit growing industry during the past year included the administration of Part IX. of the Inspection and Sale Act, which covers the packing and marking of fruit and the sale thereof, the publication of a monthly fruit crop report from May to September, inclusive, educational work in the box packing of apples, and attendance of the experts at short courses and fruit institutes. The illness and consequent absence of the Chief of the Fruit Division during the greater part of the active fruit shipping season, was a distinct loss to the office, and made it necessary for the writer to give more of his personal attention to this Division than usual.

FRUIT INSPECTION.

The fruit inspection service was completely reorganized at the beginning of the season of 1912-13. The country was divided into five districts with a chief inspector over each, and inspectors were assigned to definite territories within each district. For assignments of the inspectors see Appendix III.

The number of inspectors, temporary and permanent, was increased from 30 in 1911-12 to 48 in 1912-13, thus making it possible to cover the whole country more completely than in any past season.

Although the character of the season's crop tended towards violations of the law, the total number of convictions shows a decrease in proportion to the number of examinations made.

The past season developed some features which made it rather an unsatisfactory one for the growers in British Columbia and in some parts of Ontario. The great increase in the crop of apples in the Northwestern States, together with a large increase in the crop in British Columbia, introduced new conditions which were not very satisfactorily met by the selling agencies on either side of the line. As a result
of the inefficient organization, the markets became demoralized and a large quantity
of fruit was sold at slaughter prices. The absence of the usual apple buyers was a
factor in preventing many of the growers in some parts of Ontario from securing
remunerative prices for their crops. The season's experience has, however, taught
some useful lessons for fruit growers, and has proved very conclusively the value of
and necessity for a thorough organization of the selling end of the business. The
co-operative associations in Nova Scotia, through their central selling agency, had
a successful season as a result of combination in the distribution of their crop.

While the season's operations did not turn out very well for some growers and
dealers, it can be said, I think, that in the adoption of more scientific methods in the
orchards, and in the attention given to attractive packing, decidedly forward steps
have been taken and that the fruit trade is gradually developing into a more stable
and reliable business.

SPECIAL EVIDENCE TAKEN BY THE COMMITTEE ON AGRICULTURE AND COLONIZATION.

Considerable interest was manifested in the special evidence taken by the Select
Standing Committee of the House of Commons on Agriculture and Colonization
with regard to the fruit trade. Representative fruit growers from Ontario, Nova
Scotia and British Columbia were called to give evidence before the committee. The
writer and chief traffic officer of the Railway Commission also gave evidence, the
latter dealing specially with the question of freight rates, and submitting definite
information on some points that had not been made clear to the committee by
previous witnesses.

Mr. W. S. Foggo, the witness from British Columbia, argued for the adoption
of more effective measures for the inspection of fruit imported into the prairie
markets from the United States. He also presented to the committee, in a convinc-
ing manner, the serious nature of the competition which British Columbia growers
had to meet in heavy shipments of fruit, on consignment, from the United States
to the Canadian prairie markets.

The witness from Nova Scotia was Mr. S. B. Chute, President of the United
Fruit Companies, the selling organization for the co-operative fruit growers soci-
eties in that province. Mr. Chute gave very interesting evidence as to the working
of his society and the success which has attended its operation so far. He spoke
hopefully as to the future of the apple trade in his province.

Mr. D. Johnson, President of the Ontario Fruit Growers' Association, who
appeared before the committee as a representative of the fruit growers of Ontario,
complained of unfair freight rates and a lack of refrigerator cars during the ship-
ning season. Mr. Johnson expressed himself as strongly in favour of co-operation.

The printed evidence, which will be published by the House of Commons, should
be interesting and instructive reading for fruit growers.

THE RETAIL PRICE OF FRUIT.

It was very noticeable during the past season that although the growers were
complaining of low prices in many instances the cost to the consumer was well main-
tained, except occasionally and in places where there was a glut of tender fruit on
the market. Apples of indifferent quality have been sold at retail, by count, for the same prices as oranges and in the same shops. It is highly important to the grower, especially in a year of heavy production, that the consumer should get the advantage of the lower price which the grower is compelled to accept to thus promote consumption and enlarge the market for the surplus fruit.

THE EDUCATION OF THE CONSUMER.

A great deal might be done to increase the consumption of apples by educating the consumer respecting the qualities and seasons of the different varieties. The average consumer cannot be expected to identify very many varieties, or to know when they are at their best, or whether a particular variety is best adapted for dessert or cooking purposes. A little information imparted along these lines would, it seems to me, bring good results. It would cost very little to put a printed slip in each package stating the season when the variety which it contains should be at its best, and pointing out at the same time the use for which that variety is best adapted. We know by the records of the fruit inspectors that large quantities of late winter apples go forward to market in the early part of the season. If these apples are offered for sale at that time they cannot be expected to give good satisfaction. If consumers were better advised on these points, they would not be so likely to purchase apples that were out of condition on account of being kept too long, and dealers would be more careful to see that they were placed on the market at the proper time. There can be no question that a large increase in the consumption of apples could be effected in this way, and the fruit growers' organizations would do well, it seems to me, to consider plans for giving effect to some such form of advertising. This matter of advertising is one which is commanding much attention these days. The citrus fruit growers spend large sums for such purposes, and those who are interested in the banana trade are also fully alive to the importance of publicity. The consumption of the banana is growing more rapidly than that of any other fruit which competes with apples to-day.

THE MARKETING OF GREEN IMMATURE FRUIT.

Another matter which deserves the attention of fruit growers as a whole is the increasing quantity of immature fruit which is every year being put on the markets both at home and abroad. Consumers are apt to attribute the unsatisfactory character of such fruit to inherent qualities rather than to the real cause, and being disappointed once are less inclined to purchase again. One basket of green, sour grapes, for instance, loses a customer for half a dozen later on, and the same is true of other fruits. Very green apples, other things being equal, do not keep as well as those of the same sort that are well matured. This applies particularly to the later and slow ripening varieties.

APPLE PACKING DEMONSTRATIONS.

The packing of high grade apples in boxes instead of barrels is increasing among the growers in Eastern Canada. In British Columbia all the apples are packed in boxes. The demand for instruction in the box packing of apples has been
met, in part at least, by employing an expert in this particular line of work, under the direction of this Branch.

Assistance was given in the training of packers for the co-operative societies, and classes were held in different parts of Ontario and in the Maritime Provinces.

THE FRUIT CROP REPORT.

An improvement was made in the Fruit Crop Report in 1912 by giving estimates and crop prospects on a percentage basis, 100 per cent representing an average or standard crop. The reporting of fruit crops in Canada at the present time is somewhat complicated by the rapidly increasing acreage of bearing trees that have to be taken into account every year. The Chief of the Fruit Division has given this matter very careful study, and we feel that on the whole the forecasts and crop estimates have been well confirmed by actual results.

EXTENSION OF MARKETS.

The Extension of Markets Division continues to exercise a close supervision over the handling of perishable farm products in transit, and we are able, with the accurate knowledge gained through the reports of the inspectors, to make suggestions from time to time looking towards improvement in refrigerator car and steamship services. It is only fair to say that those in authority in the transportation companies have always shown a readiness to meet such suggestions in a reasonable spirit.

BROKEN CHEESE BOXES.

During the season of 1912 the old trouble and complaint about broken cheese boxes, as found in the cars arriving at Montreal, became more pronounced and general than ever before. A special investigation was instituted to determine if possible the exact cause of the unusually large percentage of boxes damaged between the factories and Montreal. Special inspectors were assigned to the freight terminals with instructions to note carefully the percentage of broken boxes in different cars, the names of the stations from which the cars showing excessive breakage came, the shippers' names as far as possible, and also to look for indications as to the manner in which these cars had been loaded. As would be expected, the most damage occurred in those cars in which it was evident that the piles of cheese had been begun at either end, but did not cover the whole of the car, leaving a vacant space in the centre. In such cases, the cheese were invariably found scattered all over the floor of the car where they had fallen or rolled as a result of the jolting received in shunting or during the course of the journey. Other men were sent to the shipping stations to look into specific cases and to bring the matter plainly before those who are responsible for the loading of the cars. It is here that a difficulty is met with in trying to bring about a remedy.

In the first place, the railway companies disclaim any responsibility for the loading of cheese in car lots. That is a rule which is applied generally to all classes of goods. Whether it is a reasonable one or not need not be argued here. The fact
SESSIONAL PAPER No. 15a

is the railway companies do not at present pretend to supervise the loading of cheese in carloads. It must be admitted that where there is only one man at a station he can hardly be expected to do it.

The almost universal practice is for patrons of factories to take turns in hauling the cheese to the station, and they are expected to place the cheese in the cars. The trouble is that as the cheese from several factories are shipped from a single station and in the same car, the hauler never knows whether his load is the least or not and, in any case, if one is to judge by the general attitude of patrons in matters of this kind, he doesn’t care what happens to the cheese after he gets them off his hands. When the last load of cheese is placed in a car which is only partially filled, the boxes should be distributed in piles of even height over the whole area of the car, or they should at least be stepped down, one box for every row of piles, or better still, every two rows, until in the last row there is only one box on the floor. If this were done, most of the breakages in transit would be avoided. A further precaution is necessary and that is to see that the piles are placed in close contact throughout the car, leaving no vacant spaces.

The matter is important for two reasons. In the first place, many of these broken boxes are ‘coopered’ at Montreal, or tied with rope after being patched up. Arriving on the Old Country markets in this condition, the appearance is very bad and the sale of the cheese is prejudiced to the ultimate loss of the producer. New boxes have to be put on many cheese, and the cost of these as well as all other expenses of cooperage must in the end also come out of the man who produces the milk. It seems, therefore, that responsibility for breakages in the cause herein recited must rest on the man who under the present system does the loading of the cars.

A practical remedy would be for the railway company to engage, or the factories shipping at one station to combine in the employment of some one on shipping days to supervise the work and to see that the cheese are properly stowed before the car is allowed to be moved. As proof of this, it may be pointed out that in those districts in which the buyer has a representative at the car to receive the cheese, and who attends the loading thereof, the number of broken boxes found in the cars is very much smaller.

The broken box trouble is naturally bound to grow worse rather than better, for the simple reason that the material from which the boxes are made is becoming more scarce every day, and with the increasing cost there is a tendency to use stock which in former days would be discarded as unsuitable for the purpose. Much might still be done at the factories to avoid breakages by exercising greater care in having the boxes fit the cheese properly, but on the whole it is hopeless to expect that the present box will ever become the ideal package, or much better results obtained from it in the future, for the reason that constant deterioration in the material will offset any better care that may be exercised in the handling.

This all emphasizes the need, which has been recognized for some time, for an improved or different style of package; one which will meet the requirements without costing too much, and which is adapted to the existing methods of handling. Many attempts have been made to meet this need, but so far they have all failed for one reason or another.
THE NEW ZEALAND CHEESE CRATE.

The suggestion has recently been made that Canadian cheese-makers should adopt the New Zealand crate, a style of package with which the writer has had some personal experience. This package, which is illustrated on Plate II, consists of two 12-sided ends with a centre piece to match, covered with slats about 3 inches wide to form a crate holding two cheese. The factories procure the material in 'knocked down,' and during spare time the crates are partly put together by nailing on half the slats. When the proper time comes, the cheese are dropped into place and the remaining slats attached. The ends are sometimes bound with wire or band iron to give additional strength. With regard to durability, the crate is practically a perfect package, as very few of them are ever broken in transit. Once the crate is nailed up there is no occasion to open it until the cheese goes to the counter of the retailer. The cheese may be tested at any time by inserting the trier between the slats. The cost, made up, would probably be 30 or 35 cents per crate, or possibly less in some places according to the price and availability of the raw material. At 35 cents each, the cost would be about equal to the present cost of two boxes and there would be the additional saving for renewals and cooperage, to say nothing of the advantage of having sound unbroken packages on arrival at their destination. A possible objection would be the awkwardness of handling as compared with the present boxes, but that matter does not seem to present any difficulties with the New Zealand cheese. I submit that the crate is well worth a trial in any case.

CARGO INSPECTION.

The usual staff of cargo inspectors was employed at the ports of Montreal and Quebec during the shipping season of 1912. This service was extended during the year by the placing of a permanent cargo inspector at the port of Halifax, N.S., and one at the Grand Trunk docks at Portland, Me., for the winter months.

REFRIGERATOR CAR INSPECTION.

The refrigerator car inspection has been carried out along the same lines as in former years, with the addition of an inspector for the Toronto terminals to watch the shipment of butter in refrigerator cars for that city.

THE REGISTER OF WHOLESALE MARKET QUOTATIONS.

Continuing the work started in 1911, a careful register has been kept of the wholesale weekly prices of butter, cheese, eggs, dressed poultry, bacon, dressed beef, live hogs, live cattle, cash wheat, malted barley and flour in the principal markets of Canada and the United States, the details of which will be found in Appendix II.

COLD STORAGE.

CREAMERY COLD STORAGE BONUSES.

Since October, 1896, provision has been made every year for the payment of a bonus not to exceed $100 to assist creamery owners in the erection of suitable cold storages as a part of the creamery equipment. Plans and specifications are supplied
SESSIONAL PAPER No. 15a

by this Branch to applicants, free of cost, as a guide in the erection of cold storages that will meet creamery requirements. The cold storages are inspected and proof must be submitted as to their efficiency before the bonus is paid. The bonus will be paid in future only on cold storages constructed on what is known as the circulation system, with an insulated ice chamber large enough to hold a full season's supply of ice.

Out of 84 applications for this bonus in 1912-13, only 53 were approved. Some failed to qualify on account of poor construction or careless operation, and others were not erected as proposed.

ICED CAR SERVICES.

The usual services of iced cars for the carriage of butter, cheese and fruit were arranged for with the railway companies. The iced butter cars give the shippers of less than carloads the advantage of a safe transportation, which otherwise would be available only by paying the charges on the minimum carload of 24,000 pounds. These cars are run over regular routes on stated days to pick up all shipments offered. The iced cheese cars and the iced fruit cars are available on demand of shippers to the local railway agent for the shipment of cheese, in carloads, to Montreal or Quebec, during a fixed period covering the hottest weather, and for fruit intended for export in cold storage.

GUARANTEE OF EARNINGS ON COLD STORAGE SPACE FOR FRUIT TO GREAT BRITAIN.

The earnings of a cold storage chamber were guaranteed for a sufficient number of sailings to London, Liverpool, Glasgow and Bristol, to afford ample space at suitable temperatures for all the tender fruit offered for shipment.

THERMOGRAPHS.

The recording thermometers which have been used since 1900 to secure records of temperature in cold storage or cool air chambers on board steamships, in refrigerator cars or cold storage warehouses and also with perishable goods shipped as ordinary cargo, have been of great assistance in securing improved services. Through these continuous records of temperature the weak spots in the transportation services have been more easily detected, and the effect of different temperatures and variations in the shipment of fruits has been studied in a manner that would have been impossible without their use. We now have in working order 210 of these instruments, from which 620 records were made in 1912 on steamships sailing from Montreal and Quebec, and 76 on steamships sailing from Halifax, N.S.

COLD STORAGE SUBSIDIES.

The administration of the Cold Storage Act, which provides for the payment of subsidies on cold storage warehouses erected for the use of the public, is assigned to this Branch. The examination of the plans and specifications which must accompany applications for a subsidy, together with the correspondence arising therefrom, involves considerable routine work of a more or less technical character, and the inspection of the warehouses on completion, and at least yearly during the period 15a—21.
over which the instalments of the subsidy are spread, necessitates extensive travelling.

There were eight new cold storage warehouses, under contract for subsidies, completed during the year at the following places, namely: Prince Rupert, B.C., Moosejaw, Sask., Regina, Sask., Brandon, Man., St. Thomas, Ont., Mitchell, Ont., Brantford, Ont., and Joliette, Que.

Other contracts have been entered into for the payment of subsidies on cold storage warehouses to be erected at Sault Ste. Marie, Ont., Hebertville, Que., Edmonton, Alta., and Halifax, N.S.

Applications are now under consideration from a number of places, including one for a large modern freezer, chiefly for the fish business, to replace the plant recently destroyed by fire at Port Hawkesbury, N.S.

THE COLD STORAGE INDUSTRY.

There is a tendency in some quarters to attribute the increased cost of living, in part at least, to the cold storage warehouse. I do not understand that it is the business of this Branch to defend the cold storage industry from criticism of any kind, either reasonable or unreasonable, but it may not be out of place to offer a few remarks on the subject. That the price of food has risen during the period in which the cold storage industry has been developed is undoubtedly true, but it is also true that prices have risen as much for articles that never go into cold storage as they have for those perishable food products for which cold storage is now a necessity if an adequate supply is to be available during the period of non-production. That the average yearly prices for foods of seasonal production are not any higher than they would be if no cold storage were available is, I believe, a statement which is quite capable of proof. Without the market which the cold storage warehouse affords for the surplus of foods over that which is required for immediate consumption during the period in which these foods are produced, their production would be strictly limited to the current demands and only for such quantities as could be marketed at a profit. Two very good illustrations as to the effect of cold storage on prices are furnished in the record of the produce market during the past six months. Take eggs for instance. The quantity of eggs placed in cold storage in the early part of the season of 1912 turned out to be in excess of the quantity required for winter consumption, partly on account of the mild weather which favoured the production of eggs during the winter months. As soon as it was realized that the market was over-supplied, the prices of eggs went so low as to cause actual loss to many holders and the consumer got the benefit, simply because too large a quantity was placed in storage, and stored eggs must be got rid of before the new crop is available. On the other hand, the quantity of butter in cold storage in Canada at the close of the manufacturing season of 1912 was insufficient to meet the consumptive demands during the winter months. The price naturally rose until it was possible to bring in butter from New Zealand and pay the duty thereon and still sell it at a profit. Some five million pounds of butter have been imported during the past five months to meet the shortage in the Canadian supply. It hardly requires any argument to prove that if there had been an additional ten million pounds or more of butter in cold storage in
Canada last fall, the price would never have been higher than the export basis, which would have been from 22 to 24 cents per pound, whereas the wholesale price during the past winter was from 30 to 31 cents per pound in Eastern Canada.

These two instances are sufficient answer to the absurd and exaggerated statements which are frequently made as to the supposedly enormous quantities of perishable food products held in cold storage. Such statements are made often by men who do not take the trouble to calculate the quantity of food which is required to feed a given number of people for a stated period, but the absurdity lies in the fact that the greater the quantity there is in storage the better chance there is for the consumer to secure his supplies at a reasonable cost, because after all is said, the law of supply and demand must rule.

With very rare exceptions, it would be the height of folly on the part of any owner of cold storage produce to carry it from one season into the period of the next season’s production. Instances have been given of meat having been in store two or three years and, no doubt, there have been cases of that kind, but there is always some explanation. No sane man would carry meat three years at a cost of about 12 cents a pound for storage alone for purposes of speculation. Suggestions have been made, on the grounds of public health, to fix a time limit for certain goods to be held in cold storage. The writer has never been able to see any justification for such a proposal for the reason that the condition of goods coming out of cold storage bears very little relation to the length of the storage period. It is a well known fact that eggs which are gathered during the cool weather of April or May and stored under proper conditions will turn out better during the following winter than eggs which are stored in July or August when the weather is warm and deterioration sets in much more rapidly. The same may be said of butter. Well-made early summer butter, if stored under proper temperatures, will frequently be fresher and sweeter in the month of February following than butter made in October or November. The condition of the goods when placed in store has more to do with their condition when removed than anything else. It very often happens that the owner of meats, dressed poultry and other goods only places them in cold storage when he thinks they are beginning to spoil. It is cases of this kind that have created a prejudice against cold storage goods with some people. For the protection of the industry, cold storage managers should be very careful as to the condition of the goods offered for storage, and to reject anything which shows signs of deterioration.

The writer believes that supervision and inspection of all cold storage warehouses with a view of securing proper sanitation of premises is all the government regulation of the cold storage industry that is needed in this country. The condition of goods in storage, or as removed therefrom, as far as public health is concerned, can be dealt with under existing municipal regulations for food inspection.
The following publications have been issued during the year:—

Bulletins.

No. 33. 'Cow Testing, with Some Notes on the Sampling and Testing of Milk.' (Supersedes No. 12.)
34. 'Modern Methods of Packing Apples and Pears.'
35. 'Small Cold Storages.'
36. 'Cold Storage for Creameries.' (Supersedes No. 10.)
37. 'The Island of Orleans Cheese.'
38. 'Co-operation and Fruit Growing.'

Circulars.
5. 'Good Reasons for Cow Testing.'
6. 'Creamery Cold Storage Bonuses.' (Supersedes No. 4.)
7. 'Some Notes Gleaned from the Work of the Dairy Record Centres in 1912.'

Special Reports.
'Report of the Third Dominion Conference of Dairy Experts.'
'Report of the Third Dominion Conference of Fruit Growers.'

Plans for Cheese Factories, Creameries, Farm Dairies, Ice Houses and Refrigerators.

Revised plans for cheese factories and creameries and some new plans for farm dairies, &c., have been prepared during the year, and blueprints on a working scale are now available for distribution as follows:—

No. 1.—Combined cheese factory and creamery, with cool curing room and butter storage. Capacity 25,000 pounds of milk daily.
2.—Creamery.
3.—Skimming station.
4.—Cheese factory with cool curing room.
5.—Small combined cheese factory and creamery, with cool curing room and butter storage.
6.—Small cheese factory with cool curing room.
7.—Small creamery.
8.—Creamery cold storage.
9.—Farm dairy with refrigerator on the circulation system.
10.—Farm dairy with refrigerator and ordinary ice house.
11.—Ice house with refrigerator and milk room.
12.—Small refrigerator circulation system.
13.—Small ice house with refrigerator.

Fruit Crop Reports.

A monthly Fruit Crop Report was issued from May to September (five numbers).
A large number of meetings have been addressed by the different officers attached to this Branch. Messrs. J. C. Chapais, J. N. Lemieux and I. Trudel have attended dairy, fruit and general agricultural meetings in the French speaking districts of Quebec and Nova Scotia; Messrs. A. McNeill, W. W. Moore, P. J. Carey, C. W. Baxter, Lt. Col. W. W. Brown, G. H. Vroom and R. G. L. Clarke of the Fruit Division have addressed many meetings of fruit growers in the different provinces; and Messrs. Geo. H. Barr, C. F. Whitley, Jos. Burgess, H. W. Coleman and others connected with the Dairy Division have performed similar service at dairy conventions and farmers' meetings.

The total number of employees in this Branch in both the inside and outside services in 1912-13, including temporary clerks and temporary fruit and cargo inspectors, was 147, being an increase of 53 over the previous year.

In the inside service at Ottawa there were 9 technical or semi-technical officers and 24 clerks, including stenographers.

The outside staff of this Branch numbered 114 persons, employed as follows:

Employed by the Year.

1 Assistant Dairy Commissioner (J. C. Chapais).
4 Dairy Experts.
2 Inspectors of Dairy Products.
5 District or Chief Fruit Inspectors.
7 Fruit Inspectors.
3 Special Fruit Inspectors (Customs officers).
1 Demonstrator in Fruit Packing.
1 Chief Cargo Inspector (at Montreal).
1 Cargo Inspector (Montreal and Portland).
1 Cargo Inspector (Halifax, N.S.).
1 Chief Cargo Inspector (in Great Britain).
4 Cargo Inspectors (at London, Liverpool, Glasgow and Bristol).
18 Dairy Recorders.
2 Stenographers.

Employed for Periods of Four to Seven Months every Year.

36 Temporary Fruit Inspectors.
10 Helpers to Fruit Inspectors.
9 Cargo Inspectors.
4 Iced Car Inspectors.
4 Assistants at Dairy Stations.

51

63
ACKNOWLEDGMENTS.

I am pleased to bear testimony to the faithful services rendered by the technical and clerical staff under my direction. The general record of the clerks in this Branch for punctuality and industry is good.

Mr. J. C. Chapais, Assistant Dairy Commissioner, has, as usual, spent practically the whole of his time in the French speaking districts of the Province of Quebec, where his services have been in constant demand as a lecturer on general agricultural as well as dairy and fruit subjects.

The work of the Chiefs of the Divisions, Messrs. W. W. Moore, Alex. McNeill and Geo. H. Barr, is too generally known to need much comment. I only wish to take this opportunity of expressing my sincere appreciation of their loyal and unselfish service.

The transfer of Messrs. J. N. Lemieux and Joseph Burgess to the Inside Service, after having been employed for ten years in the Outside Service, has added strength to the headquarters staff. Mr. Lemieux's thorough acquaintance with agricultural matters in Quebec and his knowledge of the French language make his services valuable in more ways than one. Mr. Burgess has been assigned chiefly to cold storage work, for which he is well qualified by experience.

I am indebted to the aforementioned officers, and to Mr. C. F. Whitley, who has charge of the compilation of the cow testing records, for the greater part of the work in preparing the appendices to this report.

The District or Chief Fruit Inspectors. Lt. Col. W. W. Brown, and Messrs. G. H. Vroom, C. W. Baxter, R. R. Waddle and R. G. L. Clarke, have by their tact, good judgment and energy helped very materially in giving effect to the reorganization of the fruit inspection services. The services of Mr. F. H. Grindley, B.S.A., as Assistant in the Fruit Division, have been very helpful during the year.

Mr. P. J. Carey in his work as packing and orchard demonstrator has proved to be the right man for that work.

I am indebted to Miss K. B. Robinson, whose grasp of the work of the Fruit Division enabled her to render me valuable personal assistance during the illness of Chief McNeill.

Mr. Wm. Macfarlane, Chief Cargo Inspector at Montreal, is always to be depended on.

The cargo inspectors in Great Britain, who are local men, have been diligent and apparently on the alert for anything of interest relating to the Canadian produce trade. They have furnished excellent reports respecting their work and observations.

I have the honour to be, Sir,

Your obedient servant,

J. A. RUDDICK,
Dairy and Cold Storage Commissioner.
APPENDIX I.

REPORT OF THE ASSISTANT DAIRY COMMISSIONER.

SAINT DENIS (en bas) COUNTY OF KAMOURASKA, P.Q., March 31, 1913.

Sir,—I beg leave to present my twenty-third report as Assistant Dairy Commissioner, which covers the period of twelve months between April 1, 1912, and March 31, 1913.

SUMMARY OF YEAR'S WORK.

With the exception of two trips made to Ottawa for conferences with the minister, and one undertaken to meet Mr. John Bright, Live Stock Commissioner, about Farmers' Institute meetings to be held in the Province of Quebec, I have devoted all my time to the Province of Quebec, and I have during the year made ninety-three visits in twenty-seven counties in eighty-one localities. I have delivered one hundred and eight lectures before fifteen thousand and eighty-five persons, of whom three hundred and ninety-seven were butter and cheese makers. The average attendance at those lectures was one hundred and forty persons. Of the eighty-one localities visited, I went for the first time to fourteen of them. I have travelled nine thousand and four hundred miles to perform my work.

I give here a list of the counties and localities I have visited, and where I have delivered lectures, with reference letters indicating the purpose of the meetings I have thus attended.

TABLE OF VISITS AND LECTURES.

<table>
<thead>
<tr>
<th>Counties</th>
<th>Localities</th>
<th>Visits</th>
<th>Lectures</th>
<th>Letters of Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa City</td>
<td>Ste. Rosalie</td>
<td>3</td>
<td>3</td>
<td>a, e</td>
</tr>
<tr>
<td>Bagot</td>
<td>Ste. Hubert de Spalding</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Beauce</td>
<td>St. Hubert de Spalding</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Beauharnois</td>
<td>New Richmond</td>
<td>1</td>
<td>1</td>
<td>c, f</td>
</tr>
<tr>
<td>Bonaventure</td>
<td>St. Alphonse de Caplan</td>
<td>1</td>
<td>1</td>
<td>c, f</td>
</tr>
<tr>
<td></td>
<td>St. Bonaventure</td>
<td>1</td>
<td>1</td>
<td>c, f</td>
</tr>
<tr>
<td></td>
<td>St. Charles de Caplan</td>
<td>1</td>
<td>1</td>
<td>c, f</td>
</tr>
<tr>
<td></td>
<td>St. Godfrey</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Jean l'Evangeliaste</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Omer</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Chicoutimi</td>
<td>Ste. Alphonse</td>
<td>1</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>Compton</td>
<td>Ste. Anne</td>
<td>2</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Chesham</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>East Angers</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>La Patrie</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Piopolis</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Leon</td>
<td>1</td>
<td>1</td>
<td>e</td>
</tr>
<tr>
<td>Counties.</td>
<td>Localities.</td>
<td>Visits</td>
<td>Lectures</td>
<td>Letters of Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Frontenac</td>
<td>Megantic</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Ste. Cécile de Whitton</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Jacques Cartier</td>
<td>Macdonald College</td>
<td>2</td>
<td>2</td>
<td>a, g</td>
</tr>
<tr>
<td></td>
<td>Macdonald College</td>
<td>2</td>
<td>2</td>
<td>a, e, g, c</td>
</tr>
<tr>
<td>Kamouraska</td>
<td>St. André</td>
<td>1</td>
<td>1</td>
<td>e, g</td>
</tr>
<tr>
<td></td>
<td>St. Denis</td>
<td>2</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Paéme</td>
<td>1</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>St. Paschal</td>
<td>1</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Ste. Anne de la Pocatière</td>
<td>3</td>
<td>3</td>
<td>a, b</td>
</tr>
<tr>
<td>Lake St. John</td>
<td>Normandin</td>
<td>1</td>
<td>2</td>
<td>e, g</td>
</tr>
<tr>
<td></td>
<td>Roberval</td>
<td>1</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>St. Jérôme</td>
<td>2</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>St. François de Sales</td>
<td>2</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>St. Roch des Aulnaies</td>
<td>1</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>St. Joseph de Lépages</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Octave de Metis</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Montmagny</td>
<td>Notre Dame du Rosaire</td>
<td>1</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Ste. Famille Isle d’Orléans</td>
<td>1</td>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Ste. Famille Isle d’Orléans</td>
<td>1</td>
<td>2</td>
<td>a, e</td>
</tr>
<tr>
<td>Quebec City</td>
<td>Quebec City</td>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>Quebec County</td>
<td>Sydney</td>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>Rimouski</td>
<td>Notre Dame du Sacré Coeur</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Pointe au Père</td>
<td>1</td>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>St. Anaclet</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Donat</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Gabriel</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Mathieu</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Simon</td>
<td>1</td>
<td>1</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>St. Valérien</td>
<td>1</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>Ste. Blandine</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>St. Hyacinthe</td>
<td>La Présentation</td>
<td>1</td>
<td>1</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>St. Charles</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Damien</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Denis</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Thomas d’Aquin</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Ste. Madeleine</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Shefford</td>
<td>Granby</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Roxton Falls</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Alphonse de Granby</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Joachim</td>
<td>1</td>
<td>1</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>St. Valérien</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Ste. Cécile de Milton</td>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Ste. Fudenticie</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Sherbrooke</td>
<td>Ascot Corner</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Terrebonne</td>
<td>St. Jérôme</td>
<td>2</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Ste. Thérèse</td>
<td>2</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Terrebonne</td>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>Two Mountains</td>
<td>La Trappe, Oka</td>
<td>2</td>
<td>1</td>
<td>a, g</td>
</tr>
<tr>
<td></td>
<td>St. Benoît</td>
<td>2</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>Vaudreuil</td>
<td>Rigaud</td>
<td>1</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>Wolfe</td>
<td>Desréali</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Garthby</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>St. Adolphe de Dudswell</td>
<td>1</td>
<td>1</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>St. Gérard</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Weedon</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>Wright</td>
<td>Bouchette</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Caueron</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Maniwaki</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Maniwaki</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Montcalfe</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Rivière Joseph</td>
<td>1</td>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Ste. Cécile de Masham</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
</tbody>
</table>
SESSIONAL PAPER No. 15a

Reference letters indicate—

(a) Federal and provincial meetings.
(b) County and district meetings.
(c) Farmers' clubs meetings.
(d) Parish meetings.
(e) English lectures.
(f) Factory inspections.
(g) Visits to colleges and schools.

The above table shows that I have attended twelve federal and provincial meetings, twentysix county and district meetings, fifty-seven farmers' club meetings and two parish meetings; that I have delivered eight lectures in English, made six factory inspections and delivered eleven lectures in colleges and schools.

PROVINCIAL MEETINGS.

The first of the provincial meetings which I attended during the last twelve months was the annual convention of the Province of Quebec Agricultural Missionaries, held at Oka on July 9 and 10. I delivered before that convention a lecture on 'French Technology in Dairying,' and another one on 'Means of Lessening the Cost of Living.' The second meeting which I attended was a horticultural meeting which took place in the Stadacona Exhibition Grounds during the Quebec Provincial Exhibition, held on August 28 and 29. I gave an address on 'Pruning and Spraying.' The third one was that of the Quebec Pomological Society, which held its summer meeting at Ste. Famille, Isle d'Orleans, Montmorency county, on September 18 and 19. At that convention I delivered in French and in English two lectures, one on 'Specialization of Fruit Growing in Eastern Quebec,' and one on 'Notes on Plums grown in J. C. Chapais' Orchard.' The fourth provincial meeting was the annual convention of the Dairymen's Association of the Province of Quebec, held at Terrebonne, Terrebonne county, on December 3 and 4, before which I delivered two lectures, one on 'The Law and Good Milk,' and one on 'Advantages of the Production of Milk in Winter.' The fifth provincial meeting was at Macdonald College, Jacques Cartier county, being the winter convention of the Quebec Pomological Society, on December 4 and 5, and before which I delivered one lecture on 'The Enemies of our 'Orchards,' in French and in English. The sixth and last provincial meeting I attended this year was the winter convention of the Quebec Society for the Protection of Plants, held at Macdonald College. I delivered a lecture there on 'The Blister Beetles.'

Besides these meetings, I also accepted an invitation to deliver two lectures before the students of the Oka Agricultural Institute, one on 'Social Order and Economy,' and one on 'Nobleness of the Farmer's Calling.' This was on February 23.

On October 22, I attended the inauguration of the Ste. Anne de la Pocatière School of Agriculture by the Honourable the Prime Minister of the Province of Quebec.

This completes the series of the provincial meetings which I attended during the last twelve months.

COUNTY AND DISTRICT MEETINGS.

I attended this year five county and district meetings. Three of them were held at Ste. Anne de la Pocatière, on July 23, August 22 and January 31, for the organization of a Farmers' Agricultural Co-operative Society in Kamouraska and L'Islet counties. I give a memorandum concerning that society, which should be the first of a good number of similar associations much needed amongst the Quebec farmers.
On July 28, 1912, Mr. G. A. Gigault, Provincial Deputy Minister of Agriculture, invited me to attend at the Ste. Anne de la Pocatière Agricultural School, a meeting convened for the organization of an agricultural co-operative society. Two lectures were delivered, one by Mr. Gigault and one by myself, before an assembly of 325 farmers, and 65 of them were enlisted after they had heard what had been said by the two lecturers on behalf of such associations.

On August 22, another meeting was called at the same place for the regular and effective organization of the society. After due convocation, the members present, 150 in number, having heard two more lectures from the two lecturers heard at the first meeting, proceeded to the election of the first directors of the new association.

Two were elected for Kamouraska county and three for L'Islet county.

After the election of the directors, who were unanimously chosen, the Rev. Abbe O. Martin, Director of the Ste. Anne de la Pocatière Agricultural School, was unanimously named president, and Mr. L. A. Dupuis, public notary, of Ste. Anne de la Pocatière, was appointed secretary and treasurer of the new association, of which the official name is 'La Société Coopérative de Kamouraska.'

At a subsequent meeting of the board of directors held a few days later at Ste. Anne de la Pocatière, which place has been chosen as the headquarters of the association, it was decided, as time was pressing, that the society would immediately proceed to the sale of the abundant crop of plums of the district, which would soon be ready to be put on the market and, moreover, would also open a temporary canning factory for the preserving of that part of the plum crop which would not find a ready sale on account of the accumulation of the fruit on the market. Mr. Louis Gagnon, of St. Pacôme, was engaged as temporary clerk to help the president and secretary during the rush of the work so as to give time to the directors to look for a permanent manager for the regular business of the society.

Three carloads of plums gathered in Kamouraska and L'Islet counties have been shipped, and ten thousand quarts of fruit have been canned at the temporary canning factory of the society.

The society bought a carload of 10,000 plum baskets of the capacity of 11 quarts each, and 8,000 boxes of the capacity of two gallons each, for the use of its members to pack their fruit. Boxes were supplied at four cents and baskets at five cents net.

Two hundred and fifteen farmers are now registered on the list of members of the society. Each member is a shareholder for one share of $10, to be paid in ten years at the rate of $1 a year. The society receives from the Quebec Department of Agriculture a grant of $500 for its organization and another grant of $500 for the opening of its canning factory.

A horticultural exhibition held at St. Roch des Aulnaies, L'Islet county, on September 24, open to the horticulturists and fruit growers of L'Islet, Kamouraska and Montmagny counties, which gave an excellent idea of the benefit of the co-operation above mentioned, gave me the occasion to go to the fourth district meeting I attended this year. I delivered a lecture there on 'Plum Culture below Quebec.' A fifth meeting, organized by the Kamouraska County Horticultural Society at St. Paschal on February 14, was the last county meeting attended. I delivered a lecture on 'The Importance of Horticulture as a Branch of Agriculture.'

Farmers' Institute Meetings.

During February and March of the present year, Mr. Alfred Gingras, of St. Césaire, Rouville county, and myself attended a series of Farmers' Institute meetings held in the following localities:—
SESSIONAL PAPER No. 15a

Counties.
Laval .. St. François de Sales.
Terrebonne Ste. Thérèse.
Deux Montagnes St. Bénigne.
Vaudreuil Rigaud.
Beauharnois Valleyfield.
Lake St. John St. Normandin.

Localities.
Chicoutimi Ste. Alphonse.

The above list shows that we visited seven counties and eleven localities. We held twenty meetings. At St. François de Sales and at Ste. Thérèse we were in company with Mr. Charles Mortureux, Department of Agriculture, Ottawa. Mr. Mortureux gave a lecture on 'Stables, their Sanitary Construction and Ventilation,' and another one on 'Corn Culture.' Mr. Gingras delivered one lecture on 'Ensilage and its Advantages for the Farmer,' a second one on 'Horse Breeding,' and a third one on 'Hog and Sheep Raising.' I myself delivered two lectures, one on 'The Raising, Selection and Care of the Dairy Herd,' and one on 'Weeds and their Eradication.' We met, while delivering that series of lectures, thirteen hundred and sixty-three farmers. These meetings took place between February 17 and March 11.

LECTURES BEFORE FARMERS' CLUBS.

I have, as usual, delivered many lectures before farmers' clubs in the Province of Quebec. My work in that connection was divided into seven series, including a total number of fifty-seven lectures delivered in fifty-six localities in the thirteen counties of Rimouski, Matane, Bonaventure, Kamouraska, Wright, Sherbrooke, Wolfe, Frontenac, Beauce, Compton, Bagot, St. Hyacinthe and Shefford.

The first series was held in Rimouski and Matane counties during the month of July and in the ten localities visited I delivered a lecture on 'The Amelioration of the Dairy Herd,' advocating very strongly the organization of cow testing associations among the farmers of these two counties.

The second series was held in Bonaventure county in September, a special report of which I append here.

Dairying in Bonaventure County.—In the year 1906, I had an opportunity of visiting four localities in Bonaventure county, and found that county well adapted for the production of good dairy products. Making a report of that trip, I wrote the following lines:

'In that section of the Province of Quebec the populace is divided into three classes, namely, farmers, woodsmen and fishermen, none of them deriving from their respective industries all the profit available. In my lectures, I endeavoured to show the great advantage to the farmers settled all along the shores of the St. Lawrence and Bay of Chaleur, in giving the first place to agriculture, so that it may be a source of mutual benefit between the farmers and those who follow the two other industries referred to. For example, the lumbering industry offers an outlet for the sale of hay, oats, potatoes, pork, &c. The other, the fishing industry, is a source of valuable manuring material for the improvement of the land. The offal of fish, seaweed, varech, &c., constitute very valuable fertilizers for the soil on which they are applied. Moreover, if the people understood how to connect these two sources of prosperity with the dairying industry, which is beginning to develop in that region, they would soon make it one of the richest sections of the province. The climate of that region is particularly well adapted for the production of good butter and cheese,
for it favours the growth of forage plants even during the most severe droughts. It is also specially favourable for the preservation of milk in good condition during the warmest period of summer, owing to the cool nights, which are one of the characteristic features of those localities.

This year (1912) I delivered a series of lectures in ten localities of that county, and I was glad to see that the farmers have turned their minds towards dairy husbandry. In 1906, I found two cheese factories, one at Maria and one at New Richmond, this last one being very poor. This year I found things in a much better condition throughout the county. So as to give a more complete idea of what is going on there respecting the dairy industry, I will first mention the few sterile efforts that have been made for its development, with no success to speak of, between the year 1894 and the present one. I found that cheese factories had been opened in a few localities, at St. Jules in 1894, at Port Daniel in 1897, at St. Bonaventure in 1899, at New Richmond in 1900, at St. Charles de Caplan in 1901, and that none of these establishments have fulfilled the hopes of their owners. Only one cheese factory, owned by Reverend Jacob Gagne at Maria in 1895, has survived of all those above mentioned.

But last year a wave of co-operative effort passed over the County of Bonaventure, and in four localities four co-operative societies having recruited their numbers amongst the farming community, have built and opened factories, three for butter and one for cheesemaking. Counting with those four the old cheese factory of Maria mentioned above, owned by Reverend Jacob Gagne, which this year has been changed into a butter factory, we then have in existence in 1912 four butter factories and one cheese factory in that county.

I give here a few notes gathered in making the inspection of those factories.

Maria: butter factory owned by Reverend J. Gagne; building 55 feet by 32; first opened as a cheese factory in 1895 and receiving then 1,500 pounds of milk; now a butter factory receiving 6,000 pounds of milk.

Rivière Caplan: butter factory, owned in co-operation by 55 farmers; building 45 feet by 26; opened this year and receiving 2,000 pounds of milk.

St. Charles de Caplan: butter factory, owned in co-operation by 70 farmers; building 45 feet by 26; opened this year and receiving 4,500 pounds of milk.

St. Alphonse de Caplan: cheese factory, owned in co-operation by 50 farmers; building 35 feet by 22; opened this year and receiving 2,000 pounds of milk.

St. Bonaventure: butter factory, owned in co-operation by 80 farmers; building, two storeys 55 feet by 25, opened in 1907 and receiving this year 5,600 pounds of milk.

The owners of the above mentioned factories congratulated themselves upon the result obtained from the organization of their enterprise. The money received from the proceeds of the present season was almost all that they had to buy the necessities of life with during the winter, for as it happened everywhere else in the Province of Quebec their grain crops were very poor, though their hay crop was an average one.

There are two other localities in Bonaventure county where it is to be hoped three new factories will be organized on a co-operative plan this year. One is the parish of St. Jean l'Evangéliste, where the western part of the locality keeps and feeds enough cows on the fine flats of the Rivière Nouvelle for the opening of a factory, and the eastern part together with the western part of the Parish of St. Omer could get enough milk from the cows of that section for another factory.

New Richmond is the other locality where I anticipate this year the opening of a new co-operative butter factory to take the place of the old cheesefactory opened there in 1900 and closed a few years ago. Everything is almost organized now to get it in operation in 1913.

Most of the farmers I have met in Bonaventure county are making plans to follow a system of rotation on their lands that will give them the means of raising
SESSIONAL PAPER No. 15a

and feeding more cows, and their farmers’ clubs are beginning to buy with the grants received from the government first-class bulls of the Ayrshire and Canadian dairy breeds of cattle to improve the standard of their common cows.

I delivered the third and fourth series of lectures before farmers’ clubs in Wright and Wolfe counties, eleven in all, during October and November, giving before those clubs lectures on the following subjects: ‘Amelioration of the Dairy Herd,’ ‘Care of Milk,’ ‘Economy in Agriculture,’ and ‘Weeds and their Eradication.’

The fifth, sixth and seventh series of lectures which I delivered before farmers’ clubs were given in Compton, Frontenac, Beauce, St. Hyacinthe and Shefford counties, having as a companion for those series Mr. L. P. Bernard, farmer, of Granby. We have travelled together through twenty localities, lecturing on the following topics: ‘Amelioration of the Dairy Herd,’ ‘Weeds and their Eradication,’ ‘Means of keeping the Boys on the Farm,’ ‘The Bacon Hog,’ and ‘The Making of Ensilage.’

LECTURES BEFORE PARISH MEETINGS.

Very few parishes in Quebec are now without an organized Farmers’ Club. I met two only this year, those of Point au Père, Rimouski county, and of Rivière Joseph, Wright county. Before the farmers of these localities, I showed the usefulness of these clubs and gave them the directions necessary to organize them.

FACTORY INSPECTION.

On account of a serious throat affection from which I suffered in the spring of 1912 at the season when I used to make factory inspections, I made only six in the course of the year. They were made following the mode already described in my previous reports.

VISITS TO SCHOOLS AND COLLEGES.

I visited this year the School of Agricultural Household Science of the Reverend Ursuline Sisters of Roberval, Lake St. John, where I delivered before the students one lecture on ‘Practical Economy of the Farmer’s Wife.’

I was invited to deliver two lectures as mentioned above in this report, before the students of Reverend Trappist Fathers’ Agricultural Institute of Oka.

I also delivered a lecture before the students of the Agricultural School of Ste. Anne de la Pocatière, Kamouraska county, on ‘The New York Plum Scale.’

THE CONGRESS OF THE FRENCH LANGUAGE, 1912.

In the week beginning June 23, 1912, a congress of the French language was held at Quebec. I had been invited to attend it, and was the only French-Canadian agriculturist asked to deliver a paper on ‘The Technical French Terminology of the Agricultural Industries.’ Having been duly authorized to accept this invitation, I prepared in June an elaborate essay on that matter and presented it before the congress on June 27.

OFFICE WORK.

I have had in my office during the last twelve months, to perform the same amount of work as during the preceding year, to answer my numerous correspondents. I have devoted much of my time to the preparation of many memoranda, lectures and papers for the agricultural press, for my own meetings, for special conventions and for various other purposes. I append here a list of some of these papers. Some of them were written in French, some in English and French. Those
in French are indicated by the letter 'F' following them; those in English and French by the letters 'E. & F.'

An Ideal Butter Factory—F.
Apropos of the Coming Arbour—F.
Corn or Roots—F.
Centrifugal Brise Mousse—F.
Epis glances (gleaned ears)—F.
The Trail of the Milk Cow—F.
Tomato Rot—F.
Dairy Chronicle—F.
Vitality of Seeds—F.
Actualities in the Butter Industry—F.
Fodder Plants for Land subject to Inundation—F.
Machines for Milking Cows—F.
Difficulties met in Autumn Churning—F.
Specialization of Fruit Culture in Eastern Quebec—E. & F.
Dairying in Bonaventure County—E. & F.
Kamouraska Plums—E. & F.
Soil Exhaustion—F.
Three Enemies of Our Orchards—E. & F.
Domestic Cheesemaking—F.
Advice concerning Seeds—F.
Advantages of Winter Dairy Practice—F.
Machines to dig Potatoes—F.
Influence of Food on the Fat in Milk—F.
Fishy Flavour in Butter.—F.
A Patriarchal Couple.—F.
The Island of Orleans Cheese—E. & F.
Technical French Terminology of Agricultural Industries—F.
Agricultural Progress at Lake St. John—F.
An Old Enemy of the Potato—E. & F.
A Glance at Dairying in Quebec—F.
Report of the Assistant Dairy Commissioner, 1912-13—E. & F.
Classification of Fruit Trees for the Washington Department of Agriculture—E.

CLOSING REMARKS.

One of the most interesting points of my work this year has been the part I have taken in the organization of an agricultural co-operative society in Kamouraska and L'Islet, two counties of eastern Quebec. Until about a score of years ago, little had been done along this line in eastern Quebec on account of difficulties, especially from climate; but now, science having helped us, varieties of fruit have been found that have encouraged fruit growing in localities where formerly, for want of knowledge, nothing was done. We find that, especially in plums and small fruits, there is a good deal of progress made. No doubt the example set by the Kamouraska Co-operative Society during the past year will bring further better results. That for the fruit industry, coupled with the educational efforts made for the introduction of cow testing associations in our dairy industry, will certainly prove two efficient sources of development of agricultural progress.

I have the honour to be, sir,
Your obedient servant,

J. C. CHAPAIS.
APPENDIX II.

REPORT OF W. W. MOORE, CHIEF, EXTENSION OF MARKETS DIVISION.

Sir,—I have the honour to present herewith the report of the Extension of Markets Division for the year ending March 31, 1913.

ORGANIZATION AND SCOPE OF THE DIVISION.

This Division was established in the year 1900, primarily for the purpose of locating and strengthening the weak spots in the transportation facilities for perishable produce between Canada and Great Britain, and to carry out this design it was necessary to establish an independent system of inspection that would reveal the conditions that were detrimental to the building up of an export trade in fine food products such as cheese, fruit, butter, &c. It was further intended that there should be more or less supervision of the loading and unloading of perishable cargo so that loss from careless or rough handling might be minimized. For the first three years two inspectors were employed at Montreal during the season of navigation and one each at the ports of Liverpool, London, Glasgow and Bristol. In 1903 it was decided that the results obtained were of sufficient importance to warrant the work being planned on a more comprehensive scale and placed on a permanent basis, and the Montreal staff was enlarged so as to cover the sailing of every steamer having food products on board. In the following year, the inspection and supervision of the special refrigerator car services for the carriage of butter, cheese, &c., to Montreal for export was transferred from the Cold Storage Division to the Markets Division in order that all the work carried on by the department for the improvement of transportation should be under the direction of one division. In succeeding years the scope of this inspection work has been gradually enlarged, so that it now covers Toronto, Montreal, Quebec, Halifax and Portland on this side of the Atlantic, and five ports in Great Britain as well, and at the same time its supervisory character has been strengthened. From the first it has been our policy to enlist the sympathy and co-operation of the railway and steamship companies rather than their antagonism, and on the whole our relations have been pleasant. Reforms in methods of handling food products at ports and better accommodation in steamships have been brought about without fuss or friction, and the conditions to-day under which perishable freight is transported from interior points in this country to the United Kingdom are a vast improvement over those existing ten years ago.

DIRECT RELATION OF CARGO INSPECTORS TO MARKET EXTENSION.

Assuming that Canadian food products are of fine quality when they leave the hands of the producer, it is obvious that the more nearly perfect their condition when they reach the consumer the greater will be the demand for them. Inspection services, therefore, that safeguard these products on route to the ultimate market are direct and important factors in market extension work.

EXPORT TRADE THE OBJECTIVE.

It is clear from what has already been said that this Division was organized solely for the purpose of removing difficulties that threatened the development of the export trade, and that it was not supposed to concern itself with the home trade.
except in an incidental manner. Within recent years, however, conditions have
signally changed. The rapid increase in urban population and the large immigra-
tion into our western provinces, where grain growing is the rule and mixed farming
the exception, has created such a home demand for food products that in many lines
of production our domestic trade is much more important than our export trade.
This shift in our agricultural commerce has not passed unnoticed by this Division,
and during the past few years marketing conditions in this country have been care-
fully studied and comparative prices of farm products in various markets compiled
for future reference.

THE MARKETING PROBLEM.

Investigations in both this country and the United States have shown that there
is unquestionably too great a spread between the price the farmer gets for much of
his produce and the price the consumer is obliged to pay. Various causes for this
condition have been advanced and many remedies suggested, but it is undoubted-
ly true that the lack of organization in the marketing end of the farming business has
been responsible for a good deal of the difficulty and that the formation of co-opera-
tive selling associations offers the most promising solution of this part of the problem.
I need hardly say that this Division is heartily in sympathy with the co-operative
idea in all its phases and hopes to see it grow rapidly during the next decade. Much,
however, will depend on the spirit animating those who are local leaders in this
movement as well as on wise organization and the maintenance of sound business
principles.

It has been suggested that current market prices of farm products should be
published regularly by a government department, and that forecasts of prices should
also be issued. Personally I do not consider such a scheme either practicable or
desirable. Broadly speaking, what seems to be needed is a more even distribution
of perishable produce, so as to avoid gluts, the most direct connection possible between
producer and consumer and, particularly in the case of apples, a nation-wide adver-
tising campaign that would increase consumption.

With regard to the first point, it is a fundamental fact that proper distribution
can only be managed from the growers’ end and it is there that the problem must
be attacked and the remedy applied.

With reference to the second point, there is no reason why considerable quanti-
ties of such produce as cream, butter, fruit, eggs, vegetables, &c., should not be sold
direct to the consumer by the producer if each were known to the other, and if a
parcels post is established in this country in the near future, as now seems probable,
it will prove a powerful factor in stimulating direct trading of this kind.

The third point mentioned—an advertising campaign—is sadly needed in the
apple industry. Further on under the heading ‘Future Markets for Canadian
Apples’ it is shown that the average yearly consumption of apples per head in
Canada is ridiculously small. Millions of dollars are spent by private firms and by
corporations in advertising the merits of their goods, but not a dollar is directly
expended to boost the sales of apples. If a manufacturer of patent medicines or
breakfast foods had an article to exploit possessing the dietary value of the apple,
he would not hesitate to spend one million dollars in various advertising schemes
before placing one package on the market.

CHEESE TRANSPORTATION.

In the early part of the summer of 1912 complaints were received by this depart-
ment from Montreal cheese merchants to the effect that the proportion of broken
boxes among the consignments of cheese they were receiving by rail from points in
SESSIONAL PAPER No. 15a

Quebec and eastern Ontario was much greater than usual, and inspectors, under the direction of this Division, were at once placed on duty at the railway terminals in Montreal in order to check the condition of the boxes as they were delivered from the cars. A travelling inspector was also sent out to investigate the manner in which cheese were handled and loaded at country shipping points. All carload shipments are loaded by the men who draw the cheese from the factories, and the inspectors found that the cause of probably 90 per cent of the breakage is due to the fact that in loading the cheese care is not taken to stow the boxes closely so that they cannot knock about or fall down in transit and especially during shunting operations. The inspectors reported that it was a common practice to pile the cheese high in each end of the car with a vacant space across the centre into which the boxes pitched at the first heavy jolt the car received. Wherever it was possible the inspectors reported the names and addresses of the shippers in whose lots considerable breakage was found, and letters were sent to them from this office urging more care in loading the cars. At our request both the Canadian Pacific and the Grand Trunk railways issued circulars to their agents instructing them, so far as their duties would permit, to supervise the loading of cheese. Under the system in vogue the men who haul the cheese from the factories to the railway stations are chiefly concerned to get rid of their loads as quickly as possible, and as a rule it appears to be nobody's business to see that the cheese are properly piled in the cars.

It is our intention, about the time the cheesemaking season of 1913 opens, to send an open letter to publications in the cheese-producing sections of eastern Ontario and Quebec, drawing attention to the broken condition of the boxes when received at Montreal last season, and asking that more attention be paid to loading at country stations.

PAPER BOXES FOR CHEESE NOT A SUCCESS.

Owing to the increased scarcity of suitable cheese box material and the high percentage of breakage in the present type of box, several attempts have been made to place paper boxes for cheese on the market, but as yet without much success. Last season a few lots of cheese were exported in boxes made from pulpwood, but the results were not satisfactory. Some of the defects were that the box was not strong enough to stand much vertical pressure, that it could not be trimmed down to suit an undersized cheese and that if it was exposed to moisture it became so soft that it would not stand handling. In fact, this kind of box was looked upon with so much disfavour by the exporters that some of them threatened to cut the price on any cheese shipped to them in paper boxes.

EXPORT OF PEACHES INCREASING.

For the season of 1912 the exportation of Canadian peaches to Great Britain has shown a very gratifying increase. The total quantities exported during the past three years have been as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910</td>
<td>8,743</td>
</tr>
<tr>
<td>1911</td>
<td>3,934</td>
</tr>
<tr>
<td>1912</td>
<td>8,443</td>
</tr>
</tbody>
</table>

In September this Division prepared and shipped 98 cases of Elberta peaches and 84 boxes of grapes for the Canadian exhibit in the Crystal Palace, London. The grapes consisted mainly of Campbell's Early and Niagaras, with a few Rogers Nos. 9 and 15. Both peaches and grapes reached London in good condition.

CAPACITY OF MARKET IN WESTERN CANADA FOR APPLES.

From reports received from Dominion fruit inspectors and by reference to the Canadian customs, it appears that 495,000 barrels of apples were marketed in the provinces of Manitoba, Saskatchewan and Alberta during the season of 1912. Of
this quantity Ontario supplied 238,000 barrels, British Columbia 75,000 barrels, Nova Scotia 18,000 barrels and the United States 164,000 barrels. We estimate that another 60,000 barrels of apples were marketed in northern and new Ontario, including Fort William, Port Arthur, Sault Ste. Marie, North Bay, Sudbury, the Cobalt district, &c., of which the proportion supplied by the United States would probably not exceed 10 per cent.

CARGO INSPECTORS AT CANADIAN PORTS.

During the summer and fall season of 1912 six cargo inspectors were employed at Montreal and one at Quebec. At Halifax one cargo inspector was employed after October first and a second inspector during the rush of the apple shipping season, between the middle of January and the end of March.

CARGO INSPECTOR AT PORTLAND, ME.

During the year an extension of our cargo inspection work was made by the sending of an inspector to Portland for the winter season. This is the first time that a Canadian cargo inspector has been employed at a United States port, and his presence proved very beneficial, especially in regard to shipments of Canadian cheese. After the close of the season of navigation in the St. Lawrence the bulk of the cheese exported from Canada is shipped by way of Portland, and the first reports received from our inspector indicated that the cheese were being improperly loaded in the cars at Montreal and, as a consequence, the boxes were found to be very seriously damaged when the car doors were opened at Portland. Vigorous representations were made by this office to the Freight Traffic Department of the Grand Trunk Railway, and as a result a man was delegated to superintend the loading of these cheese cars at Montreal. A very noticeable improvement was soon effected, and for the balance of the season the boxes arrived at Portland in good condition. During the first month when the percentage of breakage in each carload was high, letters were sent to the shippers notifying them of the condition of their consignments on arrival at Portland.

The presence of our inspector at Portland also had a good effect on the handling of Canadian apples and other perishable goods. Previously the longshoremen at that port had not been subject to a restraining influence of this character, and naturally their way of handling perishable cargo was more strenuous than at the port of Montreal where government cargo inspectors have been stationed for a number of years.

CARGO INSPECTORS IN GREAT BRITAIN.

As usual five cargo inspectors have been employed the past year in Great Britain covering the ports of Liverpool, Manchester, London, Glasgow and Bristol, and their annual reports, which will be found a few pages further on, contain a résumé of their work and first hand information of value respecting our export trade with Great Britain.

BUTTER TRANSPORTATION.

The customary special refrigerator car service for butter were in operation from May 13 to October 12, and three inspectors were employed at Montreal to report the condition of these cars, temperature of the butter, &c. A summary of the Montreal inspectors' reports gives a total tonnage of over twenty-one million pounds of butter in these cars, with the butter at an average temperature of 53 and one-half degrees.

A refrigerator car inspector was also stationed at Toronto to report the condition of the butter cars on arrival there, quantity of butter per car, icing, &c. His reports for the period from May 27 to October 12 cover 271 cars with 3,770,441 pounds of butter. The average temperature of the butter was 52 and one-half degrees.
USE OF SECOND-HAND BUTTER TUBS AND BOXES UNDESIRABLE.

A regrettable feature of the butter receipts at Montreal last season, particularly from districts served by the Canadian Northern Railway, was the increasing use of second-hand boxes and tubs for creamery as well as for dairy butter. This practice should be discouraged, as it is a pity to see a fine food product such as creamery butter put up in a package that looks anything but clean and inviting. Creamery-men who are using boxes or tubs that are old, stained and generally disreputable in appearance are following a mistaken and short-sighted policy.

OPENING OF THE ARGENTINE MARKET FOR CANADIAN APPLES.

As a result of correspondence exchanged during the summer with the Canadian Trade Commissioner at Buenos Aires, an order was placed by this Division with the United Fruit Companies of Nova Scotia, Limited, for a sample shipment of apples which went forward from Halifax via Liverpool the latter part of October. Unfortunately the consignment mislaid connection at Liverpool and was held there until the next direct steamer sailing two weeks later. The voyage from Liverpool to Buenos Aires occupied twenty-five days. The varieties comprised Kings, Ben Davis, Baldwins and Starks, packed both in barrels and boxes. The freight charges from Halifax to Liverpool in ordinary storage averaged about 60 cents per barrel and from Liverpool to Buenos Aires in cold storage about $6 per barrel. The apples were landed in Buenos Aires in good order and condition, and the Kings were reported to be the variety best suited to that market, owing principally to their size and fine colour: Ben Davis were given second place, while Baldwins were said to be rather small for that market. Starks were not liked because of their unattractive appearance.

In the Argentine the season for Canadian apples lasts from early autumn until about the first of the year, when the local fruit and apples from Tasmania begin to arrive. Canadian exporters could probably control that market for two or three months in the year provided they ship choice fruit, well packed in boxes. The market, of course, is a limited one with a capacity of from eighty to one hundred thousand boxes each year, and supplies are drawn from Tasmania, New Zealand, Spain, Italy and the United States. Retail prices in Buenos Aires range in our currency from 42 cents to 82.15 per dozen apples.

There is direct steamship connection between New York and Buenos Aires, and the freight rate is lower than from Liverpool, but it is very difficult to get cold storage space during October, November and December, as all the accommodation provided is usually booked long in advance. In addition to the lines between Liverpool and Buenos Aires steamers also sail regularly from the port of Southampton.

THERMOGRAPHS.

This department now owns and makes use of two hundred and ten thermographs, the majority of which will register continuously for fourteen days, although we have some that will record for seven days and others for thirty-five days. These self-recording thermometers are used principally with shipments of perishable goods loaded in steamers at Montreal and at Halifax; but during the 1912 fruit shipping season in British Columbia ten were used in cars carrying fruit from points in that province to market centres in the prairie provinces.

COMPARATIVE PRICES IN CANADIAN, UNITED STATES AND BRITISH MARKETS.

Again this year I present comparative wholesale quotations for various food products in the leading markets in Canada and the United States. Included will also be found comparative quotations for the principal varieties of apples not only
in Canadian and United States markets but in Liverpool, London and Glasgow as well. Prices for these three latter markets have been furnished by our inspectors resident there.

NOVA SCOTIA APPLE SALES, 1912-13.

The following statement shows the total quantity of apples shipped from the Province of Nova Scotia in the season of 1912-13, and the quantities sold in the local market:

(This table includes all shipments made during the season, including the month of April, 1913.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Halifax</td>
<td>London</td>
<td>426,763</td>
<td>374</td>
<td>5,064</td>
</tr>
<tr>
<td></td>
<td>Liverpool</td>
<td>188,884</td>
<td>1,549</td>
<td>1,386</td>
</tr>
<tr>
<td></td>
<td>Glasgow</td>
<td>47,812</td>
<td>24</td>
<td>3,823</td>
</tr>
<tr>
<td></td>
<td>Bristol</td>
<td>22,392</td>
<td></td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Manchester</td>
<td>29,092</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hamburg</td>
<td>34,118</td>
<td>326</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>Newfoundland</td>
<td>20,015</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>South Africa</td>
<td>2,604</td>
<td>1,499</td>
<td>13,272</td>
</tr>
<tr>
<td></td>
<td>Bermuda</td>
<td>3,620</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiff</td>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newcastle</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birmingham</td>
<td>785</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bradford</td>
<td>719</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sheffield</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sundsvall</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aberdeen</td>
<td>198</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copenhagen</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stockholm (Sweden)</td>
<td>525</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aarhus (Sweden)</td>
<td>759</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gottenburg</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antwerp</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buenos Aires</td>
<td>712</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swansea</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total from Port of Halifax</td>
<td>769,921</td>
<td>4,456</td>
<td>21,199</td>
</tr>
</tbody>
</table>

Equal to 989,091 barrels.

ST. JOHN SHIPMENTS.

According to the statement furnished by the Dominion Fruit Inspector for the Province of New Brunswick, the total shipments through the port of St. John during the winter season of 1912-13 amounted to 23,675 barrels and 3,292 boxes.

FUTURE MARKETS FOR CANADIAN APPLES.

The greatest market for apples to-day is found within the borders of our own country, and as time rolls on larger and larger quantities will be required to meet the demands of our home trade.
SESSIONAL PAPER No. 15a

Our second greatest apple market is found in the United Kingdom, where the product of the Canadian orchards is sold in friendly but strenuous competition with apples from the Homeland and the United States.

Other markets, some of which are only in the initial stage of development, are found in Germany and other parts of Europe, in the United States, Newfoundland, South Africa, the West Indies, Australasia, South America, &c., but for some years to come the main demand for our apples will come from the first two markets mentioned—Canada and Great Britain.

EXTENT OF THE BRITISH MARKET.

In the last nine years there has been practically no increase in the quantity of apples imported yearly into the United Kingdom. In 1904 the total importation was 3,771,781 hundred-weights, and in 1912 it was 3,581,947 hundred-weights. It is significant, however, that in the same period the imports of bananas almost doubled, jumping from 3,910,511 bunches to 6,078,567 bunches.

The lack of increase in the apple imports was not due to an augmented home supply as, so far as I can learn, the annual production of apples in Great Britain, apart from the usual crop fluctuations, has not varied much in the eight years in question. Taking into account the increase in population it is, therefore, apparent that the per capita consumption of apples in the United Kingdom has in reality declined since 1904, seeing that the actual quantity consumed each year has remained practically the same. According to my calculation the present consumption of apples in the United Kingdom, including those for cider and all other purposes, does not exceed one-half bushel per head, a rate which is unreasonably low in view of the recognized value of the apple as a wholesome food product. If the efforts that were used to advertise and push the sale of bananas in the British Isles were employed there on behalf of the apple, I have no doubt that the consumption of the latter could be increased fourfold.

That Canada is now the chief source of supply for imported apples is shown by the fact that in the period from September 1, 1911, to April 30, 1912, out of a total importation of 2,850,000 barrels, this country furnished 1,520,387, the United States 981,130 barrels, and other countries 348,483 barrels.

If consumption in the Old Country continues at the existing level, it is not likely that the total quantity of apples imported annually will show any material increase over present figures except in years when the home crop is more or less a failure, and it is obvious, therefore, that Canada can only acquire a larger proportion of that market at the expense of her principal competitor, the United States. In this competition the only advantage possessed by the United States is the size of her crop; in all other respects this country occupies the better position. In the States the growers can hardly hope to become organized as one body to the same extent that is possible in Canada, nor are they ever likely to have the benefit of one uniform law regulating grading and packing such as is now in force in Canada. In order to take full advantage of the situation, however, a greater measure of organization among Canadian growers is required, and happily the present tendency is strongly in that direction.

OUR DOMESTIC MARKET.

The consumption of apples in Canada also is much less than it should be. Assuming that in 1912 this country produced approximately fifteen million bushels of apples, good, bad and indifferent, and deducting from this 10 per cent for culls and waste, or say one and a half million bushels, and five million bushels for export, including fresh and dried apples, we still have eight and a half million bushels left to be marketed in Canada either in a raw state or dried, evaporated or canned. To this figure we must add 600,000 bushels to represent our imports of apples, making a
total of 9,100,000 bushels. Divide this by our population of 7 1/2 millions and we get a per capita consumption of 1 1/2 bushels. If the consumption could be increased to two bushels per head, surely a reasonable estimate, it would enlarge our home market 60 per cent and offer an outlet for an additional 5 1/2 million bushels. The same conditions obtain in the United States, where the quantity of apples consumed per head is probably slightly greater than in Canada.

POSSIBILITIES OF THREE BIG MARKETS.

The combined population of the United Kingdom, the United States and Canada is 143 millions, and if the yearly consumption of apples averaged two bushels for each individual, 286 million bushels would be needed to meet their wants. Last year’s apple crop in the three countries named probably did not exceed 153 million bushels at an outside estimate, and the increase in production in Canada and the United States, which is expected in the near future, would in these three markets alone be comfortably taken care of, especially as the increase in population in the three countries amounts to about one and a half million a year.

INCREASED PRODUCTION LOOKED FOR.

And all the signs point to a large increase in the production in the next few years. In the Northwestern States and in British Columbia there is said to be about 200,000 acres under apples, which produced last year about fifteen million bushels with only 8 per cent of the trees in bearing. It is thought by some that the Northwestern States will grow forty-five million bushels in 1918, and that the total crop of Canada and the United States in that year will reach 300 million bushels. In Nova Scotia there has been a noticeable expansion in the apple growing industry of late years, and predictions are freely made of a crop of nine million bushels from that section alone within five years.

The outlook, therefore, is for a period of readjustment of conditions and probable lower prices, which will undoubtedly bear heavily on districts in both Canada and the United States where the cost of production and marketing is high owing to unsuitable soil, inflated land values, distance from markets and undesirable varieties. The grower of low grade apples, wherever located, will also feel the pinch and will be obliged to improve the quality of his product or else go out of business.

The cheering feature of the situation is that even under the present non-aggressive selling methods there is hardly a reasonable limit to the quantity of No. 1 apples of the more attractive varieties that can be sold. Consumers are getting more particular every year, and it is the inferior grade of apples that causes sales to drag and prices for all grades to decline. It has been said of the western apple growers that they have grasped the truth 'that two good apples are worth more than two good apples with two poor ones thrown in.' One of the principal aims of the Canadian apple grower, therefore, should be to produce as high a percentage as possible of No. 1 fruit. But after he has succeeded in growing first-class fruit the grower still has the marketing problem ahead of him, and if this is to be solved satisfactorily there must be organization among the individual growers so as to achieve intelligent distribution. Under the present haphazard methods there is uneven distribution, resulting sometimes in a dearth of apples in some markets and a glut in others. Co-operative marketing holds out the brightest hope for an amelioration of these unfortunate conditions, and the wider this movement extends over the apple growing sections of Canada the more successful it will be.
SESSIONAL PAPER No. 15a

REPORTS OF CARGO INSPECTORS IN GREAT BRITAIN.

Following are the annual reports of the cargo inspectors employed under the direction of this Branch at Liverpool, Manchester, London, Glasgow and Bristol.

REPORT OF CHIEF CARGO INSPECTOR FOR GREAT BRITAIN (MR. A. W. GRINDLEY).

LIVERPOOL, March 31, 1913.

I have the honour to submit my report for the year ending March 31, 1913.

General Routine of Work.

The chief duty involved in connection with cargo inspection at this end is strict attention to the manner of stowage and discharge of cargoes so that a full report on each ship may be furnished to headquarters at Ottawa.

The cargo inspectors also make special reports referring to packing, marking, &c., in order that Canadian food products may reach the receivers in Great Britain in the best possible condition.

During the apple season the inspectors attend as many of the sales as possible, and include with their reports the prices realized for the various lots.

During the past year the work of the cargo inspectors has been carried on in a most satisfactory manner; all Canadian perishable food products having been carefully watched, and regular reports, giving specific details, have been made on the printed forms furnished, which were forwarded promptly to Ottawa.

The Fruit Trade.

There is a growing demand for the very best quality of apples by customers who are willing to pay the price. At present the demand for 'Fancy' grade apples is chiefly met in the United Kingdom by the western States; certain varieties from Nova Scotia, Ontario and Quebec have better quality but have the reputation of being second-rate, as they come packed in barrels or badly packed in boxes instead of being shipped in fancy box packages; the fruit packed in tiers and each apple wrapped in paper. Canadian boxed apples from British Columbia, Ontario, Quebec and Nova Scotia properly selected and packed command top prices, but the quantity arriving is so small as to be hardly noticeable.

In order to ensure success producers should form co-operative societies on proper lines. It was by means of co-operation, assisted by the government, that the agricultural resources of Denmark were revolutionized, and it is by means of co-operation, directed mainly by Sir Horace Plunkett, that Ireland is rapidly increasing her shipments to the various British markets of finest quality of butter, poultry, eggs and bacon.

The Australasian colonies have had considerable experience of the most profitable methods of marketing agricultural produce, and the general consensus of opinion is that, taking one year with another, consigning is the most profitable method. Consignments, however, should only be sent to the leading distributing ports of the United Kingdom, and care should be taken that these consignments are placed in the hands of experienced salesmen, or commission merchants, who are of good sound financial standing.

As a general rule direct shipments to provincial markets in the United Kingdom realize lower net returns than shipments sold at the leading distributing ports; if the merchants at other centres desire direct shipments the safer plan would be to let them compete for their requirements in Canada; and if Canadian producers form strong co-operative associations having control of large quantities of fine quality and reliable pack of apples, and the various kinds of agricultural produce, buyers will seek them out.
A good example of what can be accomplished by well managed agricultural co-operation is found in Denmark, where the price of Danish butter is fixed at Copenhagen instead of, as is usual, at the various wholesale markets where Danish butter is sold to the retail merchant.

Estimated Shipments of Tasmanian Apples, Season 1913.

Advance List of Steamers and Quantities.

<table>
<thead>
<tr>
<th>Loading Date</th>
<th>Steamer</th>
<th>Quantity</th>
<th>Probable date of arrival in London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 14</td>
<td>Orvieto</td>
<td>7,100</td>
<td>March 29.</td>
</tr>
<tr>
<td>n 28</td>
<td>Otway</td>
<td>6,674</td>
<td>April 12.</td>
</tr>
<tr>
<td>n 28</td>
<td>Afric.</td>
<td>35,000</td>
<td>April 17.</td>
</tr>
<tr>
<td>Mar. 7</td>
<td>Medina</td>
<td>43,000</td>
<td>April 19.</td>
</tr>
<tr>
<td>n 7</td>
<td>Melbourne</td>
<td>5,000</td>
<td>May 4.</td>
</tr>
<tr>
<td>n 11</td>
<td>Palma</td>
<td>55,250</td>
<td>April 28.</td>
</tr>
<tr>
<td>n 11</td>
<td>Otranto</td>
<td>14,580</td>
<td>May 8.</td>
</tr>
<tr>
<td>n 21</td>
<td>Suevic</td>
<td>40,000</td>
<td>May 18.</td>
</tr>
<tr>
<td>n 21</td>
<td>Adelaide</td>
<td>41,090</td>
<td>May 22.</td>
</tr>
<tr>
<td>n 21</td>
<td>Clan McArthur</td>
<td>6,528</td>
<td>July 10.</td>
</tr>
<tr>
<td>n 28</td>
<td>Osterley</td>
<td>29,100</td>
<td>July 17.</td>
</tr>
<tr>
<td>April 4</td>
<td>Mongolia</td>
<td>8,142</td>
<td>July 25.</td>
</tr>
<tr>
<td>n 11</td>
<td>Orama</td>
<td>50,000</td>
<td>May 28.</td>
</tr>
<tr>
<td>n 14</td>
<td>Wiltshire</td>
<td>47,700</td>
<td>June 5.</td>
</tr>
<tr>
<td>n 18</td>
<td>Persic</td>
<td>41,130</td>
<td>June 8.</td>
</tr>
<tr>
<td>n 24</td>
<td>Clan McEwen</td>
<td>8,164</td>
<td>July 8.</td>
</tr>
<tr>
<td>n 24</td>
<td>Orontea</td>
<td>452,563</td>
<td></td>
</tr>
</tbody>
</table>

Later advices from Hobart give a further 60-70,000 boxes to be shipped by Holt's Line, making a total for the season of approximately 522,000 boxes, including pears.

Peach Shipments, 1912.

Continued wet weather and the consequent lack of sunshine in Canada during the growing season caused peaches to arrive here lacking colour and flavour, so that from a commercial standpoint they were not as suitable for dessert purposes as shipments made during 1911. Consignments shipped by the Dominion Department of Agriculture for exhibition purposes gave satisfaction, as they were well packed, of large size, and 'stood up' well.

Peaches, if immature or green when gathered, never attain the fine flavour of a peach properly ripened on the tree.

Grape Shipments, 1912.

A grape shipment, also made by the Department of Agriculture, which arrived at Liverpool October 8, 1912, per ss. Mégantic, for exhibition at Crystal Palace, London, was ideal in every way for exhibition purposes, the style of packing being greatly admired.

Cheese.

The quality of Canadian cheese during the past year has been below the usual standard, and by the trade here this has been generally considered attributable to unfavourable conditions during the fall months of 1912, when the rainfall was excessive.
SESSIONAL PAPER No. 15a

The Weights of Canadian Cheese.

Complaints are made from time to time regarding the short weights of Canadian cheese, but no doubt the Royal Commission, appointed by the Honourable Martin Burrell, Minister of Agriculture, to investigate the weighing of cheese and butter, will make a report which will give satisfaction to both the buying and selling interests, and will place the matter of weights upon a better basis than it has been for a long period.

Stuffed Cheese.

There have been several cases where cheese upon being cut in retail shops have been found to contain in the centre, and placed in such a manner as to be beyond the reach of the usual cheese trier, a square piece of cheese, not worthless, but inferior to the bulk of the cheese. In each case I have transmitted full details to headquarters at Ottawa.

Transportation of Perishable Goods.

At the present time railway transportation is a live subject in the United Kingdom. Low open trucks with tarpaulin covers are still in common use where box trucks only should be used, and while the railway companies provide what they call refrigerator cars, they accept no responsibility for their efficient refrigeration, nor for the icing of them.

The National Fruit and Potato Associations are making energetic efforts to remedy the following grievances in regard to the transport of fruit and vegetables by rail:

(1) Revision of the railway classification for fruit and vegetables.
(2) The reduction of company's risk rates on the basis of owners' risk rates, plus a reasonable addition for insurance and more reasonable conditions under owners' risk.
(3) The removal of unreasonable delays in the carriage of perishable goods by railway companies.
(4) A more reasonable attitude with regard to claims for loss, pilferage, damage and delay.
(5) Provision of cheap rates (similar to excursion fares) in times of glut.
(6) Permission from the Board of Trade before railway companies may raise rates.
(7) The provision of a larger number of fruit trucks.

British transport authorities have to contend with an increase of carelessness on the part of the transport workers largely attributable to the labour unrest, and the disputes in the labour world have brought to the foreground the handling of goods by up-to-date mechanical appliances. It may prove that the more mechanical appliances are used at the various ports, &c., the less likely there will be dislocation of trade, not only of the port or railroad concerned, but of the United Kingdom, by lockouts or strikes.

The Port of Liverpool.

The port of Liverpool is under the control of the Mersey Docks and Harbour Board.

The dock estate has an area of 1,677½ acres, of which 690 acres are docks and basins. The quays are nearly 37 miles in length. Improvements regarding facilities for rapidly and cheaply handling large cargoes are continually being made. Arrangements have been made between the railway companies and the board whereby railway wagons can be placed alongside a considerable number of shipping berths and traffic transferred direct between ship and truck.
The foreign cattle trade is dealt with at the Birkenhead Foreign Animals' wharf where accommodation is provided for about 6,000 head of cattle and 16,000 sheep, with extensive chill rooms having a capacity of 3,380 carcasses and slaughter-house accommodation for 3,400 head of cattle and 3,000 sheep per day. These extensive lairages have splendid railway connections, but owing to the continued embargo on foreign cattle they have been practically deserted, until the outbreak of 'Foot and Mouth' disease in Ireland compelled Irish cattle to be landed at the Birkenhead Foreign Animals' wharf. This arrangement, although most suitable, may only prove to be temporary owing to the rivalry between local interests in the separate municipalities of Liverpool and Birkenhead. The Dock Board, however, who have the interests of the port only to serve, may be relied upon to administer the affairs of the wharf with that object, irrespective of the rivalry of other interests. Liverpool has plenty of new and well equipped cold storage warehouses outside of but near the dock estate, and leading contractors for cartage now provide insulated covered wagons for the carriage of frozen and chilled meats, &c., between ships, cold stores and railway depots, this being a decided improvement on the old method.

There are complaints regarding delay in handling traffic at the docks owing to congestion of goods at the quays and railway depots. This congestion to a certain extent is due to the construction of some of the dock sheds, which are old-fashioned one storey buildings. There is also a lack of up-to-date mechanical appliances for the expeditions loading and discharging of large steamers, and the existing lighting arrangements are most unsatisfactory for night work when compared to what is found at some other ports.

At the north end very extensive improvements are being made by the Mersey Docks and Harbour Board. The ‘Gladstone Dock’ at present nearing completion is only part of a scheme costing some £3,000,000 intended to meet the demand for vessels of increasing dimensions, the intention being that this dock should accommodate (both for dry dock and wet dock purposes) vessels 1,100 feet long (this giving a margin of 200 feet beyond the length of the largest vessel now afloat), with a sill depth of 40 feet at high water. The area of the Gladstone half-tide dock is 14½ acres.

The Gladstone Branch No. 1 will be 13 acres, and on its quay are to be erected double storey sheds having a total area of 77,610 square yards.

The Gladstone Branch No. 2 is to be 12½ acres, with double storey sheds on the quays, having a total area of 56,858-square yards.

The Dock Board have several eligible sites to let on long lease for the erection thereon of warehouses, works, &c. These sites vary from 1 to 120 acres and have extensive water frontages and railway connections. It can therefore readily be seen that although Liverpool docks, as a whole, are not so thoroughly equipped throughout with the most modern appliances for handling cargoes as some of the smaller and more modern ports of the Kingdom, the Mersey Docks and Harbour Board are in a quiet but practical manner keeping well in touch with the increased requirements of the port, and if desired are prepared to meet industrial bodies, such as the colonial governments, who may desire to erect or have erected for them depots for the reception, classification and distribution of all kinds of colonial produce, along the same lines as placed before the Port of London Authority and the Royal Dominions Commission last year.

The Port of Manchester.

The port of Manchester as regards age, when compared with other leading ports of the Kingdom, is only in its infancy, but owing to the go-ahead policy of the officials connected with the 'Manchester Ship Canal Company,' many of the older ports might to their own advantage make improvements along the up-to-date lines followed at this new but rapidly growing port.
The following is a statement of the toll-paying merchandise traffic and the receipts of the port for each of the nineteen years during which the Ship Canal has been open for traffic:

<table>
<thead>
<tr>
<th>Year</th>
<th>Sea-borne Traffic</th>
<th>Barge Traffic</th>
<th>Total</th>
<th>Receipts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tons.</td>
<td>Tons.</td>
<td>Tons.</td>
<td>£</td>
</tr>
<tr>
<td>1894</td>
<td>656,158</td>
<td>239,501</td>
<td>895,659</td>
<td>97,961</td>
</tr>
<tr>
<td>1895</td>
<td>1,067,443</td>
<td>271,123</td>
<td>1,338,565</td>
<td>137,474</td>
</tr>
<tr>
<td>1896</td>
<td>1,569,638</td>
<td>316,379</td>
<td>1,885,017</td>
<td>182,230</td>
</tr>
<tr>
<td>1897</td>
<td>1,700,479</td>
<td>365,339</td>
<td>2,065,815</td>
<td>204,644</td>
</tr>
<tr>
<td>1898</td>
<td>2,213,665</td>
<td>377,580</td>
<td>2,591,245</td>
<td>236,225</td>
</tr>
<tr>
<td>1899</td>
<td>2,429,108</td>
<td>348,940</td>
<td>2,778,048</td>
<td>264,775</td>
</tr>
<tr>
<td>1900</td>
<td>2,784,843</td>
<td>276,573</td>
<td>3,061,416</td>
<td>300,930</td>
</tr>
<tr>
<td>1901</td>
<td>2,884,833</td>
<td>287,560</td>
<td>3,172,393</td>
<td>329,617</td>
</tr>
<tr>
<td>1902</td>
<td>3,137,348</td>
<td>280,711</td>
<td>3,418,059</td>
<td>358,401</td>
</tr>
<tr>
<td>1903</td>
<td>3,554,636</td>
<td>292,259</td>
<td>3,846,895</td>
<td>397,026</td>
</tr>
<tr>
<td>1904</td>
<td>3,018,064</td>
<td>283,574</td>
<td>3,301,638</td>
<td>348,643</td>
</tr>
<tr>
<td>1905</td>
<td>3,065,110</td>
<td>260,244</td>
<td>3,325,354</td>
<td>410,242</td>
</tr>
<tr>
<td>1906</td>
<td>4,441,241</td>
<td>299,683</td>
<td>4,740,924</td>
<td>468,827</td>
</tr>
<tr>
<td>1907</td>
<td>4,927,784</td>
<td>282,975</td>
<td>5,210,759</td>
<td>535,085</td>
</tr>
<tr>
<td>1908</td>
<td>4,317,985</td>
<td>264,531</td>
<td>4,582,516</td>
<td>506,975</td>
</tr>
<tr>
<td>1909</td>
<td>4,290,765</td>
<td>272,430</td>
<td>4,563,195</td>
<td>534,039</td>
</tr>
<tr>
<td>1910</td>
<td>4,638,676</td>
<td>319,361</td>
<td>4,957,037</td>
<td>557,735</td>
</tr>
<tr>
<td>1911</td>
<td>4,844,670</td>
<td>323,142</td>
<td>5,167,812</td>
<td>580,841</td>
</tr>
<tr>
<td>1912</td>
<td>5,021,691</td>
<td>318,193</td>
<td>5,339,884</td>
<td>665,179</td>
</tr>
</tbody>
</table>

Printed matter inclosed with this report gives detailed information regarding the port, so I only draw your attention to the style of warehouses, several stores high, well lighted by electric light, and equipped with modern mechanical appliances for loading or discharging cargo direct to or from railway trucks, &c., and containing a splendid refrigerated sorting chamber.

A modern grain elevator, storage capacity of 1,500,000 bushels, and a second grain elevator of the same capacity is to be completed by April, 1914.

The Manchester Dock railways are 80 miles in extent and completely intersect the dock estate, and there is a splendid equipment of hydraulic, steam and electric cranes for loading and discharging cargo direct to or from warehouses or railway trucks to or from vessels alongside quay.

The Ship Canal Company have for disposal sites for works, depots, manufactures and warehouses.

Acknowledgments.

I again take this opportunity of thanking the officials of the various Canadian Government departments and shipping companies, as well as the members of the fruit and provision trades at the British ports where Canadian cargo inspectors are located, for useful help and information and for courteous treatment during the past year.

I beg to acknowledge the kindy co-operation of Mr. M. H. Matthews, Engineering Manager of Messrs. Rowson, Drew & Clydesdale, London, in supplying me with information and photographs connected with elevator conveyors for loading and discharging cargo.

This Branch lost, by resignation, a useful member of its staff during the year, in the person of Mr. Jas. A. Findlay, who acted as cargo inspector at the port of Glasgow for a period of over six years.

A. W. GRINDLEY.
I beg to submit the following report for the year 1912-13.

My reports cover the ports of Liverpool and Manchester, and during the past season the following Canadian food products have been landed at these two ports: Cheese, 498,465 boxes; bacon, 17,764 cases; eggs, 580 cases; frozen meats, 16,187 packages; frozen tripe, 3,209 bags; canned corn, 500 cases; canned apples, 12,318 cases; canned peaches, 100 cases; grapes, 84 cases; peaches, 1,903 crates; pears, 43 cases; apples, Ontario and Nova Scotian, 7,843 cases, 2,255 half barrels and 358,479 barrels; frozen poultry, 497 cases.

With the exception of frozen meats, tripe, canned apples and poultry, these figures show a big reduction compared with last season. We have had no butter, and only two small consignments of eggs.

I herewith give particulars of the various goods received, and show increase or decrease of each particular lot.

Cheese—Decrease, 50,083 boxes.

Though there has been some improvement in the stowing and handling of cheese this season, there is plenty of room for further improvement, for there are far too many boxes landing in rough condition. The cause of this is still the same: poor boxes, cheese badly fitted and the present day rush in landing. There was very little heated cheese this past summer, but there have been many complaints re cheese being cut and pilfered, and judging from those I have seen, this seems to occur as frequently at the ports of loading as here, for many of the cuts were not new. There have also been several complaints about cheese arriving without either shipper’s or factory mark on them, and as consignees will not take delivery of ‘No mark’ cheese, these are usually sold by the shipping company at a considerable reduction.

Eggs—Decrease, 2,936 cases.

The two small shipments landed in good order.

Bacon—Decrease, 11,067 cases.

With very few exceptions this landed in good order and condition; seeing that Canadian bacon is so well liked here it is remarkable that none goes direct to Manchester.

Frozen Meats—Increase, 2,763 packages.

There has been a decided improvement in the packing of frozen meats. The cases have generally been good, and though many of the crates have been rather frail, they were better than last year. The contents were in very good condition, and I did not see any rejected by the port health inspectors.

Frozen Tripe—Increase, 549 bags.

This landed in good order and condition.

Canned Corn and Peaches.

These landed in good order and were in every way satisfactory.

Canned Apples—Increase, 8,674 cases.

With the exception of one lot that was packed in cardboard boxes, these were in good order. As I reported at the time, these cardboard boxes are not strong enough for export purposes and when broken are difficult to cooper.
Grapes—Increase, 84 cases

These were of good quality, well packed and landed in splendid condition.

Peaches—Increase, 1,523 crates.

Peaches all landed perfectly sound and were well packed, but many of them were lacking in quality, being very short of colour.

Apples—Ontario and Nova Scotia.

These show a decrease in arrivals of 1,491 cases and 12,183 barrels. Though Ontario shipments have not been heavy, the condition has been good generally and the grading better than usual. I have never received fewer complaints re over-grading than during this season. The branding and the package have also been good. Except for two brands, which regularly showed frost, there has been very little to complain about on that score. The two brands referred to were those of the Better Fruit Distributing Company and the National Land and Produce Company, and the former’s apples had every appearance of having been kept at too low a temperature before shipping, for they were ‘dead’ and wasty on arrival.

Apples held up sound exceedingly well this season, but I am not certain that it is a wise policy to keep apples like Spies and Greenings back so late. They would probably do better if shipped earlier, and would certainly give more satisfaction. Every year about February there comes a great falling off in the demand for apples for cooking purposes, for the consumer, getting tired of apples, turns to forced rhubarb which is just coming on the market then.

There has been some improvement in the quantities of small lots of various varieties arriving this season due, no doubt, to the growing number of apple packing associations, but there are still far too many mixed lots. It would be greatly to the benefit of the Canadian shipper if some scheme could be devised to do away with most of these various lots and to put up the different varieties in lots of twenty or over.

Nova Scotia Apples.

This has been a very good season for Nova Scotian apples. They have been sound, well packed and, though Baldwins were rather small, of good quality. Fallawaters, Starks and G. Russets were exceptionally good. Two noticeable features about the Nova Scotia apple trade this season were the large number of No. 3’s shipped and the new method of branding them, such as ‘large,’ ‘extra large,’ &c. This new style of branding No. 3’s led to a lot of controversy at first, but buyers soon got used to it.

I do not think that the shipments of such large quantities of No. 3’s are either good for the shipper or for the trade here. When a big percentage of them only realize 5s. 6d. to 7s. per barrel, they must lose money, besides lowering the price of No. 1’s and No. 2’s. Buyers like to see a certain number of No. 3’s in all the straight lines for they believe then that the fruit has been well graded, but long lines of No. 3’s alone tend to lower the market. Except in an exceptionally scarce season I think it would be better to utilize most of this class of fruit at home if possible.

Re mixed lots—the same remarks apply to Nova Scotia packers as to Ontario packers.

Boxed Apples.

The quality of box apples has been good, but in many cases the packing has left a lot to be desired. In some shipments the box had a layer of paper round it but no apples papered. In other shipments neither box nor apples were papered. There is no doubt that the high-class box apple trade has come to stay, and the Canadian
packer ought to put up some fancy table fruit in the same style as those packed in Oregon. These are packed in boxes of about 40 pounds, every apple papered, the exact number of apples the box contains stamped on it (from 8s to 200), and the quality excellent. These have realized from 6s. 6d. to 9s. during the season, according to counts, and the trade is growing every year.

Prince Edward Island Apples.

Two small shipments from Charlottetown were received in Manchester, but they did not do very well. The quality was only fair and the packing rough, especially the boxes.

Poultry.

One consignment consisting of 497 cases of chickens was received and landed in good order and condition.

Acknowledgments.

I have again pleasure in stating that I have received every assistance and courtesy from the various steamship companies’ officials.

WM. CARTER.

REPORT OF THE LONDON CARGO INSPECTOR (MR. A. E. GRIFFITH).

LONDON, March 31, 1913.

I beg to submit the following report for the period in which I have been engaged in cargo inspection work, viz., since June 22, 1912.

The dock strike was in full swing when I started, and all consignments, during a period of twelve to thirteen weeks, suffered, both by delay in discharging and by the careless handling of the inexperienced dock workers who were taken on to replace the strikers. During this period the shipments of cheese were dealt with in a very unsatisfactory manner, and the breakage of boxes and general damage to the cheese itself became very serious. The failure of the strike did not tend to improve the spirit of the men on their return to work, and as a result for some weeks goods were roughly handled despite the close supervision of the authorities.

Cheese Boxes.

The percentage of broken boxes in cheese shipments has struck me as being unnecessarily heavy, and inquiries throughout the trade make it clear that this season it is higher than previously. The boxes from western Ontario, i.e., Ingersoll, Listowel, &c., always arrive here in the best condition, being made of stronger wood and the cheese well boxed. The fact that this is invariably the case proves the possibility of well boxed cheese being landed here in good condition. The boxes from the Province of Quebec and from the Brockville and Belleville sections are nothing like as good, and the increasing number of cut cheese arriving, apparently through pilferage on the passage, emphasizes the necessity of improving the boxing. The New Zealand crates being of heavier wood and bound with thick wire are landed almost free from breakage, and cheese cannot be damaged in any way, a fact which the trade is quick to appreciate.

Quality of Cheese and Weights.

The prevailing opinion here is that the cheese of the season of 1912 have been below the usual standard; that more moisture than usual has been left in the cheese, causing serious undevelopment of flavour and loss of weight, while many cheese have
Discharging Canadian Cheese at Liverpool with a patented elevator-conveyor system.
Discharging Canadian Cheese at Liverpool with a patented elevator-conveyor system.
SESSIONAL PAPER No. 15a

been shipped from the factories too green. As a consequence, partially, prices receded in October last and have never recovered as the goods were not of the quality which people could hold and hide their time for selling. With regard to the marked weights on the boxes, there appears to be an ever growing laxity, so much so that it has formed the subject for debate on the part of the Home and Foreign Produce Exchange here, and of other representative associations.

Stowage of Cheese and Methods of Discharge.

I have frequently pointed out to the responsible ships' officers the necessity of stowing cheese away from hay or grain, as the worst cases of sweaty and greasy cheese have generally been associated with this cause. The proportion of cheese discharged by the elevator-conveyor has been small—26,684 out of a total of (about) 770,000, the machine only having been worked on six occasions. Although this mechanical handling is not by any means perfect, there is no doubt that it minimizes the breakage of the cheese boxes, and arrangements should certainly be made to ensure a sufficient number of cheese being placed in one hold to warrant the working of the elevator-conveyor. As some time is taken in getting the machine in position, it is hardly considered worth while unless a minimum of about 4,000 cheese can be discharged for each fixing.

Bacon.

Bacon has come to hand generally in good condition, and considering the weight of the packages the cases have landed free from damage. Any broken are recoopered immediately on the quay sheds, but an additional iron band around the middle of these cases would be an improvement.

Apples.

The quality of the apples this season compares very favourably with that of previous years, and with the exception perhaps of Baldwins (which have been poor and spotty) all varieties have been good. The grading has been more severe and, as a result, the quality of No. 3's has shown an all round improvement. Of the Nova Scotia fruit the best have come from Kings and Hants counties, although some of the packing of the latter leaves room for great improvement; whilst little attention seems to have been paid to the packing by many growers in Digby and Lunenburg counties. Whilst attending the leading London apple sales during the season, I have been struck by the big margin between prices for well-packed bright fruit and poorly packed and consequently dull apples. To ensure the best prices on the London market, growers must face their barrels attractively, but honestly, and pack tightly, as only tight barrels make the full value. The acreage in England under apples is on the increase, and growers here are adopting all modern methods to market their fruit in attractive condition. The competition of the western United States to capture the apple market of London is now becoming a serious matter, and it is imperative that Canadian shippers should realize the necessity of landing their apples here tightly packed and in attractive condition and appearance. The Furness Line appear to have given special attention to the careful handling of these barrels, and by employing the same gangs of men they succeed in delivering the fruit to consignees with less damage than those companies receiving only irregular shipments.

Good Port Accommodation.

The accommodation which the Port of London Authority has at its disposal for the reception and storing of all kinds of produce is of a vast area and nothing is spared to keep the whole equipment abreast of present day requirements. At the Surrey Commercial Docks, where almost the whole of the Canadian cheese and apples
are landed, the cold storage warehouses are right alongside the quays, and all consignments are carefully and expeditiously handled.

For delivering the cheese to the merchants' vans, a kind of continuous travelling stairway is used which is very quick in delivery and helps to prevent breakage of boxes. At this dock also the grain warehouses are very extensive, and there is cold storage accommodation for the equivalent of 75,000 sheep.

Most of the frozen or chilled beef, mutton and lamb is discharged at the Royal Victoria and Albert docks, where the equipment for handling this produce is of the very latest type. All the main railway lines run right alongside the quay and the cold storage sheds can discharge produce right into the railway trucks. The accommodation here is equivalent to 552,000 sheep, and it is intended to extend to another 250,000. In discharging chilled beef a continuous band from the ship's side is met on the covered quay by an overhead runway, to which the beef is attached, and which connects either with the insulated railway covered trucks, the consignees' vans, or the cold storage sheds of the Port of London Authority. The arrangement is so well adjusted that one man can deliver six quarters, weighing from 160 to 200 pounds each, once they are attached to the runway. The cold storage machinery here has been altered from time to time to keep up to the latest improvements, and the general arrangements are such that shippers can rely upon their produce receiving the best and most expeditious treatment.

The West India dock also has large accommodation for cold storage, and whilst the machinery for handling goods is not quite so modern, everything is done to prevent delay in discharging cargoes. I find the stevedores and wharfingers fully alive to the necessity of providing machinery for loading and discharging ships, and the number of elevator-conveyors, &c., is on the increase.

I have to acknowledge the consideration and help at all times of the various officials of the Port of London Authority, and also of those connected with the shipping companies with whom I have come in contact, both at the docks and offices.

A. E. GRIFFITH.

REPORT OF THE GLASGOW CARGO INSPECTOR (MR. THOS. E. DAVIS).

GLASGOW, March 31, 1913.

I beg to present herewith my report for the year ending March 31, 1913, including a review of the progressive efforts of the department during the last decade.

Shipping.

For the past ten years I have had the opportunity of watching the changed methods of stowage and the general handling of imports, and it will interest many not conversant with the intricacies associated with ocean transit, to know that the improved facilities in regard to adequate ventilation, machinery for forced draught and refrigeration gives assurance for the placing of perishable commodities on the final markets in a sound condition. That this is true is borne out by the fact that the heating of cheese, &c., can now rarely be traced to bad stowage, whereas before these changes 25 per cent of the cheese landed from some vessels showed signs of heat, the result of imperfect ventilation and bad stowage, it being a common occurrence to find cheese completely covered with sacks of flour which were banked up close to the air shafts, rendering the ventilation of the hold impossible. It is, however, now pleasing to report that to-day the necessity of intelligent stowage, &c., is fully recognized by all parties, and that I have had no occasion to complain in this direction throughout the past season.
Progress, 1903–13.

As cargo inspector at the port of London, 1903 to June, 1912, and at Glasgow since 1912, I purpose giving a résumé of the work, and I have pleasure in recording that the progress made, advantageous to both shipper and merchant, has been admittedly due to the influence of the department at Ottawa.

At the port of London in 1903 it was the common practice to take butter from the ships' holds in nets and to dump same on quay in the same manner as ordinary solid freight, irrespective of weather, and it was in many instances warehoused indiscriminately with odorous cargo, or placed in river craft with no protection from heat or rain.

With specific grounds for complaint I reported a case of rough handling, and on representation from Ottawa, a drastic reform was at once made at the docks. I was met in the most friendly spirit by the company's officials, and as a result butter and cheese have since been landed on flat boards, warehoused separately and to the best advantage available.

A complete record of butter temperatures was also obtained and reported, and the consignees advised of their responsibilities as regards prompt removal. Failing to clear within the reasonable period of twenty-four hours (Sunday excepted), the butter was lodged in the Dock Company's cold stores at the merchant's expense.

At this time it was also my duty to trace the source responsible for the high percentage of heated cheese, and finding stowage of boxes against unprotected engine room bulkheads the chief cause, I reported same to Ottawa, with the result that all vessels of the steamship line had the bulkheads insulated, with satisfactory results.

At the commencement of the apple season, I had to complain again in respect to badly handled barrels, which was promptly remedied, and with extra ventilating shafts and fans placed in holds, heat damage is now rarely traced to the ship. Further, as a guard against plunder, the shipping companies now place watchers and coopers in each hatch during discharge of fruit.

As regards the carrying of commodities in cold chambers, a comparison of temperatures of butter when loaded at Montreal and when landed, indicated the degree of efficiency of the ship's refrigerating plant, which was further checked by the placing of thermographs, the charts on which gave faithful temperature readings throughout the voyage.

In 1905, the principal Canadian trading steamers took berths at the Surrey Commercial dock with up-to-date equipment for landing direct to cold stores, and with the latter facilities the chain of refrigeration, the principal aim of the department, was complete.

Glasgow.

During the summer, the principal steamers arrive from Montreal and bring Canadian freight from Boston, Portland, Halifax and St. John during the winter. There is also an occasional service from New York.

The vessels are of first-class carrying capacity, well ventilated and equipped with cold storage plant. In the discharge of produce, the respective shipping companies control freight with the same efficiency and supervision as in London, with this advantage—cargo here is not discharged over-side to river craft, a method of transportation entailing much extra handling and possible weather damage. The railway is another advantage not available at London. The track here being laid alongside the quay, provincial consignments can be placed direct on car; but allowing for this invaluable asset, unless perishables are taken up promptly, the dock company have no cold storage to offer.

Throughout the season under review, I have furnished reports respecting the condition in which each cargo was landed, removed thermograph records, and interviewed the importers on matters affecting the products forwarded, and by attending sales, have also been able to furnish the current prices of apples ex each steamer.
Dairy Produce.

Imports of various Canadian produce show a decided falling off—not a single package of butter, and but one consignment of eggs, being placed with merchants.

Canadian bacon gave every satisfaction, as did the cheese, no complaints of mixed curd or heat damage being reported.

In the matter of cheese boxes there remains much room for improvement, the high percentage of those broken being easily traced to misfitting boxes and cheese of extra weight.

Ontario Apples.

The varieties from the above province have easily held first place here, buyers attending from Edinburgh, Aberdeen and other Scottish centres, also from Newcastle, England.

The required standard pack and grade of the fruit has been creditably maintained throughout the season, and there is little to say that is not favourable—although the question of colour has not altogether been favourably commented on.

Nova Scotia Apples.

With ten seasons of inspection work behind me, I am confident that the pack and condition of apples from Nova Scotia have not heretofore reached the present standard, especially in the selection of first grade varieties.

In a letter dealing with the season's importations from Nova Scotia, one of the large importers here makes the following points:

'We would like you to bring to the attention of shippers that to put the shipping mark of the goods on the bottom of the barrels is entirely wrong. It leads to no end of trouble on this side. Why cannot they put this shipping mark on the face end of the barrel, along with the name of the packer, the same as every other country does? To find out whether we are getting the right or the wrong article we have got to examine both ends. Now when receivers are very busy taking in huge quantities there is no time for this double work, and there is no need for the shipping mark being on the bottom end. There is plenty of room on the face end. Then you have not only the shipping mark but you have the name of the pack beside you, and the whole thing can be seen at a glance.'

In another communication from an old-established firm the following interesting historical reference to early shipments of Nova Scotia apples occurs:

'Our firm was about the first to receive fruit shipped from Halifax. In the days we refer to ships were built in Nova Scotia and the rigging sent out-by the Blacks of Glasgow. The first shipments of fruit were dispatched to that firm, who, in turn, handed them over to us for disposal. Shortly after this a sailing vessel with 6,000 barrels arrived here with the owners on board. This cargo we stored and gradually disposed of, finding out by experience that for the varieties then prevailing (Russets and Nonpareils) London was able to obtain the best results. The grading and packing were not so well understood then as now, so that a barrel which was a little imperfect would realize better in the metropolis (where it would have immediate disposal and consumption would be effected rapidly) than in the northern markets, which were largely distributing centres. Everything is changed for the better now, and it is recognized that Liverpool and Glasgow are able to do as well and frequently very much better than the London market. surrounded as it is by districts which produce large quantities of competing English apples.'

Peaches.

Several shipments of peaches reached this market mainly by rail from southern ports. These were well received, and as the quality of the fruit becomes better known
the demand is sure to increase. That imported peaches have come to stay there is no doubt, and I think it is to the interest of the growers to further the business if possible.

Inspection and Sale Act.

I desire to place on record that the brokers and provision merchants appreciate the action of the Dominion Government in respect to contraventions of the above Act which covers the packing and marking of apples and the manufacture of dairy produce, and are unanimous as regards the good results of the several prosecutions.

The continued efforts that have been made by the department to secure for Canadian products a high character and a popular demand on the British markets is unstintingly recognized by all concerned.

THOS. E. DAVIS.

REPORT OF THE BRISTOL CARGO INSPECTOR (MR. H. E. SHALLIS).

Bristol, March 31, 1913.

Herewith please find my report for the past year.

Cheese.

Our supplies this year have been well maintained, having received about 387,000 boxes, a slight falling off of about 3,000 boxes from the previous year. In consequence of the heavy drought of 1911 the stocks at the commencement of last season were very low, and high prices ruled for early arrivals. As the demand continued good there was no accumulation of stocks, and prices were well maintained until near the close of the season. One noticeable feature of the past year was the almost total absence of heated and green cheese, and from all sides are comments of general improvement in this respect; but at the present time the quality of Canadian cheese in the market is rather below the standard, and this is regarded as attributable to unfavourable weather conditions during the fall months when the rainfall was excessive. We have fortunately been free the past year from labour troubles, but there have been two important matters with regard to the trade that have occupied the attention of the merchants here as well as at other ports (both old complaints), viz., the differences of weights of cheese against that marked on the boxes, and also the question of cheese boxes. The question of weights is a serious one, so many instances occurring where discrepancies of from two to ten pounds show themselves between the actual weight of the cheese and that stencilled on the box, after allowing for shrinkage, and always on the losing side to the buyer. As for the boxes, there is still no general improvement in their condition and there is, therefore, nothing to add to what has so often been said about them. It is suggested that Canada should adopt a similar type of package to that from New Zealand. The New Zealand crate is very good for transport purposes, in fact could not be beaten, but for all round purposes suitable for the trade I am of the opinion that so far as Bristol is concerned the Canadian type of box is better in every way if the same could be made stronger or protected in some way from getting broken, especially now that the average cheese is heavier than a few years back.

Butter.

The most noticeable feature the past year is the total absence of any shipments of butter to this port; for years past Bristol has held the premier position for this import from Canada. While making allowance for the great demand for home consumption owing to the influx of population and other contingencies of the trade, it
would be a great pity if this export from Canada was allowed to die out, for once lost it is hard to regain. Imports from New Zealand are increasing yearly, and by all reports the make is getting of better quality; also other countries are increasing their shipments. The past year the increased imports from other sources have made up for the stoppage of Canadian shipments.

A rather serious hit to the butter trade has shown itself in the increasing demand and use of margarine, and the development of this trade within the past two years has been remarkable. One of the chief reasons for this increasing use of margarine is the high price ruling for butter owing to reduced imports since the great drought of 1911, but another reason is the high merit of this substitute for butter. The following figures show the increase of imports of margarine into this country for the month of January the past three years:

<table>
<thead>
<tr>
<th>Year</th>
<th>Cwts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1911</td>
<td>68,027</td>
</tr>
<tr>
<td>1912</td>
<td>99,477</td>
</tr>
<tr>
<td>1913</td>
<td>110,362</td>
</tr>
</tbody>
</table>

Meats.

We have again shown an increase with this produce, our imports being about 4,300 boxes, with very regular shipments during the year. London continues to take the greater portion, but a quantity is withheld here and distributed to the surrounding provincial towns. The Canadian meat is much approved of here for its excellent quality and an increased trade would be welcomed. During the summer months (the mild cured continental bacon does not stand the hot weather well) there was a good demand for Canadian and United States bacon, consequently prices and demand increased and very good business resulted, but this fell off towards the end of the year.

Fruit.

In the month of October we received about 800 crates of Ontario peaches—an increase over the previous year. The fruit was carried in cold storage on the steamer and arrived here in splendid condition, large in size, fleshy and of good colour. On arrival the fruit was sent direct to London, and from reports received reached the market in like condition, realizing good prices.

Eggs.

None have arrived from Canada, our supplies being from Ireland and the continent.

Hay.

Very little has come to hand, our imports being small at any time as good supplies are at hand from the surrounding counties.

Apples.

We have again had a fairly good season, our imports totalling up to about 40,000 barrels, a large quantity of which were from Nova Scotia, but owing to the loss of the ss. Royal George our shipments are very much less than they would have been. With two or three exceptions this season’s shipments have been most satisfactory, with a general improvement all round in the grading. All kinds of varieties have come to hand, but Baldwins, Spies and Russets have been in biggest demand, and later Ben Davis. We have had an increased percentage of No. 3 grade, but this no doubt is through bringing the Nos. 1 and 2 grades up to a higher standard, so the No. 3 grade comprises not only apples of a small size but those which owing to some
blernish could not be graded higher. Good prices have been realized from time to time, Golden Russets No. 1 fetching up to twenty-three shillings and sixpence per barrel and Baldwins and Spies up to fifteen shillings. A great portion of our shipments as usual went through to South Wales, Cardiff chiefly, while those retained at Bristol were distributed to various towns. Reports from Cardiff speak well as to the general quality. Shipments from the United Fruit Company of Nova Scotia have come along in excellent condition, well packed and carefully graded, and if they continue along the same lines as they have started they may be assured of a ready demand and good prices.

Thermographs and Cold Storage.

Owing to the absence of butter shipments the cold storage on the steamers was not called for except in the case of the peach shipments, but as cheese, lard, meats and such goods were chiefly stowed in these chambers they were worked at cool air temperatures, thermographs being placed in same, as well as in other parts of the ships, and all showed good working results, the temperatures being well maintained. It may be well to mention that 165,000 cubic feet have recently been added to the cold storage equipment at Avonmouth, bringing the total capacity now up to 374,000 cubic feet for the accommodation of frozen meats, provisions and other perishable goods. These stores are divided into twenty compartments and the temperatures can be regulated to any degree required. Ships arriving with frozen meat cargoes go alongside the storage and discharge direct from the ship, the carcasses being placed in large canvas slings and lifted by hydraulic cranes to the storage doors. Butter and cheese are discharged in a similar manner except that they are placed on platform slings in order to prevent breakage. A further development is the building of a large ice factory and cold storage at Bristol, which should prove of great service, for it will enable merchants to have their meat loaded direct from the ship into refrigerator cars and sent to the storage at Bristol where it will be handy for their immediate requirements.

The facilities at the port of Avonmouth for rapid handling of produce are most efficient. In the old dock there are hydraulic cranes, a large grain store with elevator capable of raising 120 tons per hour, appliances for the rapid discharge of cargoes of oil and also for the quick handling of fruit cargoes, while the new dock is well equipped with electric cranes. Both docks have railway tracks alongside the ships so goods can be loaded direct from ship into the vans if needed. Grain in bulk is discharged in the new dock by two floating elevators, each capable of raising 100 tons per hour at full pressure. These elevators are of the latest design, driven by electricity and generating their own power, they can discharge either into barges alongside or on to the shore or (both at the same time) on to a travelling belt which conveys the grain to the granary. Bristol is a big distributing centre; several ships discharge at the old port, while others discharge at Avonmouth, and the one thing most needed is more storage room for grain, the lack of which at present will have to be considered and provision made for same.

The present year should prove of great interest to Bristol owing to the Royal Agricultural Show being held during the first week of July. It is to be hoped that it will be the means of bringing together people from all parts of the world, and so show them the many advantages that Bristol can lay claim to both as a shipping port and a distributing centre for all classes of traffic.

Acknowledgments.

I again tender my sincere thanks to shipping companies, dock officials and merchants for their ready help and information in the interests of the Canadian trade.

HORACE E. SHALLIS.
<table>
<thead>
<tr>
<th>Week</th>
<th>Boston</th>
<th>New York</th>
<th>Chicago</th>
<th>Halifax</th>
<th>Montreal</th>
<th>Toronto</th>
<th>Winnipeg</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wholesale Quotations for Cheese Each Week from April 3, 1912, to March 26, 1913

<table>
<thead>
<tr>
<th>Week</th>
<th>Boston</th>
<th>New York</th>
<th>Chicago</th>
<th>Halifax</th>
<th>Montreal</th>
<th>Toronto</th>
<th>Winnipeg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 3</td>
<td>19...</td>
<td>13 - 19½</td>
<td>18...</td>
<td>15½ - 15½</td>
<td>16½ - 17</td>
<td>17...</td>
<td>18...</td>
</tr>
<tr>
<td></td>
<td>10...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>17...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>24...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>May 1</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
<td>18...</td>
</tr>
<tr>
<td></td>
<td>8...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>15...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>22...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>29...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>June 5</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
<td>18...</td>
</tr>
<tr>
<td></td>
<td>12...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>19...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>26...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>July 3</td>
<td>20...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>10...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>17...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>24...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>31...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>Aug 7</td>
<td>14...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>21...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>28...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>Sept 4</td>
<td>11...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>16...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>19...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>October 2</td>
<td>25...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>21...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>28...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>November 6</td>
<td>13...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>16...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>29...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>December 1</td>
<td>27...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>11...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>18...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>25...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 2</td>
<td>13...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>16...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>19...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>22...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>29...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>February 5</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
<td>18...</td>
</tr>
<tr>
<td></td>
<td>12...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>19...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>26...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td>March 5</td>
<td>17½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
<td>18...</td>
</tr>
<tr>
<td></td>
<td>12...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>19...</td>
<td>19½...</td>
<td>17½...</td>
<td>17...</td>
<td>16...</td>
<td>16½...</td>
<td>17...</td>
</tr>
<tr>
<td></td>
<td>26...</td>
<td>17 - 17½</td>
<td>16 - 16½</td>
<td>13 - 14½</td>
<td>15 - 15½</td>
<td>12½ - 13½</td>
<td>14 - 15</td>
</tr>
<tr>
<td>Week</td>
<td>Boston</td>
<td>New York</td>
<td>Chicago</td>
<td>Halifax</td>
<td>Montreal</td>
<td>Toronto</td>
<td>Winnipeg</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>214-22</td>
<td>214-22</td>
<td>164-165</td>
<td>25-26</td>
<td>24-25</td>
<td>22-23</td>
<td>19-19</td>
</tr>
<tr>
<td>10</td>
<td>22-22</td>
<td>21-21</td>
<td>19-19</td>
<td>23-23</td>
<td>22-23</td>
<td>19-19</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-21</td>
<td>-21</td>
<td>18-18</td>
<td>22-22</td>
<td>23-23</td>
<td>21-21</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>20-20</td>
<td>20-20</td>
<td>18-18</td>
<td>23-23</td>
<td>22-22</td>
<td>20-20</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>20-20</td>
<td>20-20</td>
<td>17-17</td>
<td>21-21</td>
<td>23-23</td>
<td>22-22</td>
<td>20-20</td>
</tr>
<tr>
<td>15</td>
<td>14-14</td>
<td>14-14</td>
<td>17-17</td>
<td>21-21</td>
<td>23-23</td>
<td>22-22</td>
<td>20-20</td>
</tr>
<tr>
<td>22</td>
<td>13-13</td>
<td>13-13</td>
<td>16-16</td>
<td>20-20</td>
<td>22-22</td>
<td>21-21</td>
<td>20-20</td>
</tr>
<tr>
<td>29</td>
<td>12-12</td>
<td>12-12</td>
<td>15-15</td>
<td>20-20</td>
<td>21-21</td>
<td>20-20</td>
<td>20-20</td>
</tr>
<tr>
<td>18</td>
<td>10-10</td>
<td>10-10</td>
<td>13-13</td>
<td>18-18</td>
<td>19-19</td>
<td>18-18</td>
<td>19-19</td>
</tr>
<tr>
<td>25</td>
<td>9-9</td>
<td>9-9</td>
<td>12-12</td>
<td>17-17</td>
<td>18-18</td>
<td>17-17</td>
<td>19-19</td>
</tr>
<tr>
<td>31</td>
<td>23</td>
<td>23</td>
<td>10-10</td>
<td>15-15</td>
<td>14-14</td>
<td>14-14</td>
<td>19-19</td>
</tr>
<tr>
<td>Aug.</td>
<td>22</td>
<td>22</td>
<td>9-9</td>
<td>14-14</td>
<td>13-13</td>
<td>13-13</td>
<td>19-19</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>21</td>
<td>8-8</td>
<td>13-13</td>
<td>12-12</td>
<td>12-12</td>
<td>19-19</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>7-7</td>
<td>12-12</td>
<td>11-11</td>
<td>11-11</td>
<td>19-19</td>
</tr>
<tr>
<td>Sept.</td>
<td>19</td>
<td>19</td>
<td>6-6</td>
<td>11-11</td>
<td>10-10</td>
<td>10-10</td>
<td>19-19</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>5-5</td>
<td>10-10</td>
<td>9-9</td>
<td>9-9</td>
<td>19-19</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>4-4</td>
<td>9-9</td>
<td>8-8</td>
<td>8-8</td>
<td>19-19</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>24</td>
<td>3-3</td>
<td>8-8</td>
<td>7-7</td>
<td>7-7</td>
<td>19-19</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>23</td>
<td>2-2</td>
<td>7-7</td>
<td>6-6</td>
<td>6-6</td>
<td>19-19</td>
</tr>
<tr>
<td>Oct.</td>
<td>22</td>
<td>22</td>
<td>1-1</td>
<td>6-6</td>
<td>5-5</td>
<td>5-5</td>
<td>19-19</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>0-0</td>
<td>5-5</td>
<td>4-4</td>
<td>4-4</td>
<td>19-19</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>-1-1</td>
<td>4-4</td>
<td>3-3</td>
<td>3-3</td>
<td>19-19</td>
</tr>
<tr>
<td>Nov.</td>
<td>15</td>
<td>15</td>
<td>-2-2</td>
<td>3-3</td>
<td>2-2</td>
<td>2-2</td>
<td>19-19</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>-3-3</td>
<td>2-2</td>
<td>1-1</td>
<td>1-1</td>
<td>19-19</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>-4-4</td>
<td>1-1</td>
<td>0-0</td>
<td>0-0</td>
<td>19-19</td>
</tr>
<tr>
<td>Dec.</td>
<td>9</td>
<td>9</td>
<td>-5-5</td>
<td>0-0</td>
<td>-1-1</td>
<td>-1-1</td>
<td>19-19</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1-1</td>
<td>0-0</td>
<td>-2-2</td>
<td>-2-2</td>
<td>19-19</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>2-2</td>
<td>-3-3</td>
<td>-3-3</td>
<td>-3-3</td>
<td>19-19</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3-3</td>
<td>-4-4</td>
<td>-4-4</td>
<td>-4-4</td>
<td>19-19</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4-4</td>
<td>-5-5</td>
<td>-5-5</td>
<td>-5-5</td>
<td>19-19</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5-5</td>
<td>-6-6</td>
<td>-6-6</td>
<td>-6-6</td>
<td>19-19</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6-6</td>
<td>-7-7</td>
<td>-7-7</td>
<td>-7-7</td>
<td>19-19</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7-7</td>
<td>-8-8</td>
<td>-8-8</td>
<td>-8-8</td>
<td>19-19</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8-8</td>
<td>-9-9</td>
<td>-9-9</td>
<td>-9-9</td>
<td>19-19</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>25</td>
<td>25</td>
<td>24-24</td>
<td>30-30</td>
<td>31-31</td>
<td>32-32</td>
<td>33-33</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>24</td>
<td>23-23</td>
<td>30-30</td>
<td>31-31</td>
<td>32-32</td>
<td>33-33</td>
</tr>
<tr>
<td>15</td>
<td>23</td>
<td>23</td>
<td>22-22</td>
<td>29-29</td>
<td>30-30</td>
<td>31-31</td>
<td>32-32</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
<td>21-21</td>
<td>28-28</td>
<td>29-29</td>
<td>30-30</td>
<td>31-31</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>29</td>
<td>20-20</td>
<td>27-27</td>
<td>28-28</td>
<td>29-29</td>
<td>30-30</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>15</td>
<td>14-14</td>
<td>24-24</td>
<td>25-25</td>
<td>26-26</td>
<td>27-27</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>12</td>
<td>13-13</td>
<td>23-23</td>
<td>24-24</td>
<td>25-25</td>
<td>26-26</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>9</td>
<td>12-12</td>
<td>22-22</td>
<td>23-23</td>
<td>24-24</td>
<td>25-25</td>
</tr>
<tr>
<td>March</td>
<td>12</td>
<td>12</td>
<td>11-11</td>
<td>21-21</td>
<td>22-22</td>
<td>23-23</td>
<td>24-24</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10-10</td>
<td>20-20</td>
<td>21-21</td>
<td>22-22</td>
<td>23-23</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>9-9</td>
<td>19-19</td>
<td>18-18</td>
<td>19-19</td>
<td>20-20</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>8-8</td>
<td>18-18</td>
<td>17-17</td>
<td>18-18</td>
<td>19-19</td>
</tr>
<tr>
<td>26</td>
<td>18</td>
<td>18</td>
<td>7-7</td>
<td>17-17</td>
<td>16-16</td>
<td>17-17</td>
<td>18-18</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breakfast Bacon</td>
<td>Breakfast Bacon</td>
<td>Breakfast Bacon</td>
<td>Breakfast Bacon</td>
<td>Canadian Bacon Loaned (Landed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15 - 17</td>
<td>14 1/2 -</td>
<td>14 1/2 -</td>
<td>14 - 15</td>
<td>12.0 - 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15 - 17</td>
<td>16 1/2 -</td>
<td>14 1/2 -</td>
<td>14 - 15</td>
<td>13.0 - 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>15 - 17</td>
<td>16 1/2 -</td>
<td>14 1/2 -</td>
<td>14 - 15</td>
<td>14.1 - 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>15 - 17</td>
<td>16 1/2 -</td>
<td>14 1/2 -</td>
<td>14 - 15</td>
<td>14.3 - 14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15 - 17</td>
<td>17 -</td>
<td>14 1/2 -</td>
<td>14 - 15</td>
<td>14.5 - 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15 - 17</td>
<td>17 -</td>
<td>14 1/2 -</td>
<td>14 - 15</td>
<td>15.2 - 15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15 - 17</td>
<td>17 -</td>
<td>14 1/2 -</td>
<td>15 - 16</td>
<td>14.7 - 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>15 - 17</td>
<td>17 -</td>
<td>14 1/2 -</td>
<td>15 - 16</td>
<td>14.7 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>18 - 18</td>
<td>17 -</td>
<td>15 -</td>
<td>15 - 16</td>
<td>14.5 - 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18 - 18</td>
<td>17 -</td>
<td>15 -</td>
<td>15 - 16</td>
<td>14.3 - 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>15 - 16</td>
<td>13.9 - 14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>15 - 16</td>
<td>11.9 - 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>15 - 16</td>
<td>13.9 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18 - 18</td>
<td>17 -</td>
<td>15 -</td>
<td>16 - 17</td>
<td>16.0 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>18 - 18</td>
<td>17 -</td>
<td>15 -</td>
<td>16 - 17</td>
<td>15.9 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>18 - 18</td>
<td>17 -</td>
<td>15 -</td>
<td>16 - 17</td>
<td>15.2 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>14.7 - 15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>15.2 - 15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>15.9 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>15.6 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>16.0 - 16.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>16.7 - 16.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>16.9 - 16.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>18 - 18</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>14.7 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>18 - 18</td>
<td>19 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>14.7 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>19 - 19</td>
<td>19 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>15.4 - 15.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19 - 19</td>
<td>18 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>14.7 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>17 - 18</td>
<td>19 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>14.4 - 14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>17 - 18</td>
<td>19 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>14.3 - 14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>17 - 18</td>
<td>19 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>14.7 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>17 - 18</td>
<td>19 -</td>
<td>16 -</td>
<td>16 - 17</td>
<td>14.7 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>15 1/2 -</td>
<td>14.7 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>15 1/2 -</td>
<td>14.7 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>15 1/2 -</td>
<td>14.9 - 15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>15 1/2 -</td>
<td>15.3 - 15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>15 1/2 -</td>
<td>15.4 - 15.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>16 - 16</td>
<td>15.9 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>16 - 16</td>
<td>15.9 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>16 - 16</td>
<td>15.9 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>17 - 18</td>
<td>19 -</td>
<td>17 - 17</td>
<td>16 - 16</td>
<td>15.9 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>19 - 19</td>
<td>19 -</td>
<td>17 - 17</td>
<td>17 - 17</td>
<td>15.1 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19 - 19</td>
<td>19 -</td>
<td>17 - 17</td>
<td>17 - 17</td>
<td>15.1 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19 - 19</td>
<td>19 -</td>
<td>17 - 17</td>
<td>17 - 17</td>
<td>15.1 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>19 - 19</td>
<td>19 -</td>
<td>17 - 17</td>
<td>17 - 17</td>
<td>15.1 - 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19 - 19</td>
<td>19 -</td>
<td>17 - 17</td>
<td>17 - 17</td>
<td>15.1 - 16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEPARTMENT OF AtliUCULTURE

54

4

WlIOLIiSALH QUOTATIONS FOR DIIESSED BE^F (No. 1 CARCASS) EACH
1912, TO MARCH 26, 1913.

(From " Canadian Farm

Woek.

"

GEORGE

v.,

WEEK FROM

and " National Provisioner.")

A.

1914

APRIL

3,


<table>
<thead>
<tr>
<th>Week</th>
<th>Toronto</th>
<th>Montreal</th>
<th>Winnipeg</th>
<th>Chicago</th>
<th>Buffalo</th>
<th>New York</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 3</td>
<td>8.00 – 8.10</td>
<td>9.00 – 9.00</td>
<td>– 8.00</td>
<td>7.85 – 8.00</td>
<td>8.35 – 8.40</td>
<td>8.55 – 8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.30 – 8.50</td>
<td>8.75 – 9.00</td>
<td>7.90 – 8.05</td>
<td>7.05 – 7.10</td>
<td>8.25 – 8.35</td>
<td>8.55</td>
</tr>
<tr>
<td>May 1</td>
<td>8.70 – 8.90</td>
<td>9.00 – 9.25</td>
<td>9.00 – 9.25</td>
<td>8.70 – 8.90</td>
<td>8.50 – 8.60</td>
<td>8.50</td>
</tr>
<tr>
<td>"</td>
<td>8.50 – 8.70</td>
<td>9.40 – 9.60</td>
<td>8.75 – 9.00</td>
<td>7.90 – 8.05</td>
<td>8.30 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.25 – 8.50</td>
<td>9.00 – 9.25</td>
<td>8.70 – 8.90</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.35</td>
<td>8.55</td>
</tr>
<tr>
<td>June 5</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.25 – 8.50</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>July 3</td>
<td>8.60 – 8.80</td>
<td>9.25 – 9.50</td>
<td>9.00 – 9.25</td>
<td>8.70 – 8.90</td>
<td>8.50 – 8.60</td>
<td>8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>Aug. 7</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>Sept. 4</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>Oct. 2</td>
<td>8.70 – 8.90</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>Nov. 6</td>
<td>8.60 – 8.80</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>Dec. 4</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>"</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.50 – 8.75</td>
<td>7.90 – 8.05</td>
<td>8.25 – 8.40</td>
<td>8.60</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 5</td>
<td>8.75 – 8.90</td>
<td>9.25 – 9.50</td>
<td>8.00 – 8.25</td>
<td>7.45 – 7.50</td>
<td>8.00 – 8.10</td>
<td>7.95</td>
</tr>
<tr>
<td>"</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.00 – 8.25</td>
<td>7.40 – 7.50</td>
<td>8.00 – 8.10</td>
<td>7.95</td>
</tr>
<tr>
<td>March 5</td>
<td>8.50 – 8.70</td>
<td>9.00 – 9.25</td>
<td>8.00 – 8.25</td>
<td>7.40 – 7.50</td>
<td>8.00 – 8.10</td>
<td>7.95</td>
</tr>
<tr>
<td>Week</td>
<td>Toronto</td>
<td>Montreal</td>
<td>Winnipeg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Export Steers "Choice."</td>
<td>Butcher Steers "Prime."</td>
<td>Butcher Steers "Prime."</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>$</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 3</td>
<td>6.80-7.40</td>
<td>6.90-7.00</td>
<td>8.00-8.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 10</td>
<td>6.75-7.25</td>
<td>7.30-7.40</td>
<td>7.25-8.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 17</td>
<td>7.00-7.25</td>
<td>7.30-7.35</td>
<td>7.25-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 24</td>
<td>7.00-7.39</td>
<td>7.00-7.39</td>
<td>7.25-7.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 1</td>
<td>7.00-7.40</td>
<td>7.25-7.40</td>
<td>7.25-7.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 8</td>
<td>7.10-7.50</td>
<td>7.25-7.50</td>
<td>7.25-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 15</td>
<td>7.50-8.00</td>
<td>7.40-7.60</td>
<td>7.75-8.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 29</td>
<td>7.50-8.00</td>
<td>7.75-8.00</td>
<td>7.75-8.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 5</td>
<td>7.25-8.00</td>
<td>7.90-8.00</td>
<td>8.00-8.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 12</td>
<td>7.65-8.15</td>
<td>7.90-8.00</td>
<td>8.00-8.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 28</td>
<td>8.10-8.40</td>
<td>8.20-8.25</td>
<td>8.25-8.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 3</td>
<td>8.10-8.39</td>
<td>8.20-8.25</td>
<td>8.25-8.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 10</td>
<td>8.00-8.10</td>
<td>8.10-8.20</td>
<td>8.10-8.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 17</td>
<td>7.50-7.55</td>
<td>7.40-7.75</td>
<td>7.25-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 24</td>
<td>7.40-7.75</td>
<td>7.40-7.75</td>
<td>7.25-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug. 7</td>
<td>7.40-7.65</td>
<td>7.40-7.75</td>
<td>7.25-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 14</td>
<td>7.60-7.70</td>
<td>7.15-7.50</td>
<td>7.75-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 21</td>
<td>7.00-7.70</td>
<td>7.15-7.50</td>
<td>7.75-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 4</td>
<td>6.85-7.00</td>
<td>6.90-7.00</td>
<td>7.25-7.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 11</td>
<td>6.85-7.00</td>
<td>6.90-7.00</td>
<td>7.25-7.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 18</td>
<td>6.85-7.00</td>
<td>6.90-7.00</td>
<td>7.25-7.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 5</td>
<td>6.00-6.40</td>
<td></td>
<td>5.75-6.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 9</td>
<td>6.00-6.25</td>
<td></td>
<td>5.75-6.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 16</td>
<td>6.00-6.35</td>
<td></td>
<td>5.75-6.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 23</td>
<td>6.00-6.35</td>
<td></td>
<td>5.75-6.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 2</td>
<td>6.00-6.40</td>
<td>6.25-6.40</td>
<td>6.00-6.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 13</td>
<td>6.00-6.35</td>
<td>6.00-6.35</td>
<td>6.00-6.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 20</td>
<td>6.25-6.50</td>
<td>6.25-6.50</td>
<td>6.25-6.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 4</td>
<td>6.25-6.50</td>
<td>6.25-6.50</td>
<td>6.25-6.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 18</td>
<td>6.25-6.50</td>
<td>6.25-6.50</td>
<td>6.25-6.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 25</td>
<td>6.25-6.50</td>
<td>6.25-6.50</td>
<td>6.25-6.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 1</td>
<td>6.25-6.50</td>
<td>6.25-7.00</td>
<td>7.00-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 8</td>
<td>6.25-6.50</td>
<td>6.85-6.90</td>
<td>7.00-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 15</td>
<td>6.25-7.00</td>
<td>6.85-7.00</td>
<td>7.00-7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 22</td>
<td>6.75-7.00</td>
<td>7.10-7.20</td>
<td>6.50-7.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 5</td>
<td>7.00-7.10</td>
<td>7.00-7.10</td>
<td>6.50-7.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 12</td>
<td>6.90-7.00</td>
<td>7.00-7.10</td>
<td>6.50-7.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 19</td>
<td>6.90-7.00</td>
<td>7.00-7.10</td>
<td>6.50-7.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 5</td>
<td>6.85-6.90</td>
<td>7.35-7.50</td>
<td>7.00-7.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 12</td>
<td>7.00-7.30</td>
<td>7.35-7.50</td>
<td>7.00-7.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 19</td>
<td>6.90-7.00</td>
<td>7.25-7.50</td>
<td>7.00-7.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 26</td>
<td>6.75-6.90</td>
<td>7.00-7.25</td>
<td>7.00-7.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wholesale Quotations for Live Cattle Each Week from April 3, 1912, to March 26, 1913.

(From “Buffalo Commercial” and “National Provisioner.”)

<table>
<thead>
<tr>
<th>Week</th>
<th>Chicago, Steers Good to Prime</th>
<th>Chicago, Steers Fair to Good</th>
<th>Buffalo, Prime Steers</th>
<th>Buffalo, Shipping Steers</th>
<th>New York, Good to Choice Native Steers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 3</td>
<td>7.50 – 8.45</td>
<td>6.25 – 7.50</td>
<td>7.75 – 7.85</td>
<td>7.90 – 7.40</td>
<td>6.85 – 8.00</td>
</tr>
<tr>
<td>April 10</td>
<td>7.50 – 8.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 17</td>
<td>7.50 – 8.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 24</td>
<td>7.50 – 8.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 8</td>
<td>8.00 – 9.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 15</td>
<td>8.00 – 9.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 22</td>
<td>8.25 – 9.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 29</td>
<td>8.25 – 9.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 5</td>
<td>8.75 – 9.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 12</td>
<td>8.75 – 9.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 19</td>
<td>8.75 – 9.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 26</td>
<td>8.75 – 9.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 3</td>
<td>8.50 – 9.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 10</td>
<td>8.50 – 9.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 17</td>
<td>8.50 – 9.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 24</td>
<td>8.50 – 9.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug. 7</td>
<td>9.00 – 10.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug. 14</td>
<td>9.00 – 10.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug. 21</td>
<td>9.00 – 10.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 4</td>
<td>9.00 – 10.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 11</td>
<td>9.00 – 10.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 18</td>
<td>9.00 – 10.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 2</td>
<td>9.50 – 11.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 9</td>
<td>9.50 – 11.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 16</td>
<td>9.50 – 11.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 23</td>
<td>9.50 – 11.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 6</td>
<td>9.50 – 11.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 13</td>
<td>9.60 – 11.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 20</td>
<td>9.60 – 11.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 27</td>
<td>9.60 – 11.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 4</td>
<td>9.60 – 12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 11</td>
<td>9.60 – 12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 18</td>
<td>9.60 – 12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 25</td>
<td>9.60 – 12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 8</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 15</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 22</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 29</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 5</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 12</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 19</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 26</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 5</td>
<td>9.25 – 10.00</td>
<td>7.00 – 8.25</td>
<td>8.40 – 8.75</td>
<td>7.75 – 8.25</td>
<td>7.75 – 9.00</td>
</tr>
<tr>
<td>Mar. 12</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 19</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 26</td>
<td>9.25 – 10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wholesale Quotations for Cash Wheat Each Week from April 6, 1912, to March 29, 1913.

(Prices for first three markets taken from "Weekly Northwestern Miller," Liverpool prices from "Free Press," Winnipeg.)

<table>
<thead>
<tr>
<th>Week</th>
<th>Minneapolis</th>
<th>Chicago</th>
<th>Winnipeg</th>
<th>Liverpool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 1 Northern per bushel</td>
<td>No. 1 Northern per bushel</td>
<td>No. 1 Northern per bushel</td>
<td>No. 1 Northern (Manitoba) per bushel</td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 6</td>
<td>1.07</td>
<td>1/4</td>
<td>1.10</td>
<td>1/2</td>
</tr>
<tr>
<td>13</td>
<td>1.09</td>
<td>1/2</td>
<td>1.12</td>
<td>1/2</td>
</tr>
<tr>
<td>20</td>
<td>1.13</td>
<td>1/2</td>
<td>1.18</td>
<td>1/2</td>
</tr>
<tr>
<td>27</td>
<td>1.16</td>
<td>1/2</td>
<td>1.20</td>
<td>1/2</td>
</tr>
<tr>
<td>May 4</td>
<td>1.14</td>
<td>1/2</td>
<td>1.14</td>
<td>1/2</td>
</tr>
<tr>
<td>11</td>
<td>1.15</td>
<td>1/2</td>
<td>1.15</td>
<td>1/2</td>
</tr>
<tr>
<td>18</td>
<td>1.14</td>
<td>1/2</td>
<td>1.18</td>
<td>1/2</td>
</tr>
<tr>
<td>25</td>
<td>1.15</td>
<td>1/2</td>
<td>1.18</td>
<td>1/2</td>
</tr>
<tr>
<td>June 1</td>
<td>1.12</td>
<td>1/2</td>
<td>1.12</td>
<td>1/2</td>
</tr>
<tr>
<td>8</td>
<td>1.13</td>
<td>1/2</td>
<td>1.13</td>
<td>1/2</td>
</tr>
<tr>
<td>15</td>
<td>1.11</td>
<td>1/2</td>
<td>1.16</td>
<td>1/2</td>
</tr>
<tr>
<td>23</td>
<td>1.10</td>
<td>1/2</td>
<td>1.16</td>
<td>1/2</td>
</tr>
<tr>
<td>29</td>
<td>1.09</td>
<td>1/2</td>
<td>1.14</td>
<td>1/2</td>
</tr>
<tr>
<td>July 6</td>
<td>1.11</td>
<td>1/2</td>
<td>1.13</td>
<td>1/2</td>
</tr>
<tr>
<td>13</td>
<td>1.09</td>
<td>1/2</td>
<td>1.11</td>
<td>1/2</td>
</tr>
<tr>
<td>20</td>
<td>1.08</td>
<td>1/2</td>
<td>1.11</td>
<td>1/2</td>
</tr>
<tr>
<td>27</td>
<td>1.05</td>
<td>1/2</td>
<td>1.05</td>
<td>1/2</td>
</tr>
<tr>
<td>Aug. 3</td>
<td>1.07</td>
<td>1/2</td>
<td>1.08</td>
<td>1/2</td>
</tr>
<tr>
<td>10</td>
<td>1.03</td>
<td>1/2</td>
<td>1.04</td>
<td>1/2</td>
</tr>
<tr>
<td>17</td>
<td>1.05</td>
<td>1/2</td>
<td>1.05</td>
<td>1/2</td>
</tr>
<tr>
<td>24</td>
<td>0.96</td>
<td>1/2</td>
<td>1.04</td>
<td>1/2</td>
</tr>
<tr>
<td>31</td>
<td>0.97</td>
<td>1/2</td>
<td>0.97</td>
<td>1/2</td>
</tr>
<tr>
<td>Sep. 7</td>
<td>0.89</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>14</td>
<td>0.90</td>
<td>1/2</td>
<td>0.95</td>
<td>1/2</td>
</tr>
<tr>
<td>21</td>
<td>0.91</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>28</td>
<td>0.92</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>Oct. 5</td>
<td>0.88</td>
<td>1/2</td>
<td>0.92</td>
<td>1/2</td>
</tr>
<tr>
<td>12</td>
<td>0.90</td>
<td>1/2</td>
<td>0.93</td>
<td>1/2</td>
</tr>
<tr>
<td>19</td>
<td>0.88</td>
<td>1/2</td>
<td>0.93</td>
<td>1/2</td>
</tr>
<tr>
<td>26</td>
<td>0.88</td>
<td>1/2</td>
<td>0.93</td>
<td>1/2</td>
</tr>
<tr>
<td>Nov. 2</td>
<td>0.87</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>9</td>
<td>0.87</td>
<td>1/2</td>
<td>0.91</td>
<td>1/2</td>
</tr>
<tr>
<td>16</td>
<td>0.88</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>23</td>
<td>0.88</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>30</td>
<td>0.87</td>
<td>1/2</td>
<td>0.95</td>
<td>1/2</td>
</tr>
<tr>
<td>Dec. 7</td>
<td>0.89</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>13</td>
<td>0.89</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>21</td>
<td>0.89</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>28</td>
<td>0.89</td>
<td>1/2</td>
<td>0.94</td>
<td>1/2</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 4</td>
<td>0.88</td>
<td>1/2</td>
<td>0.89</td>
<td>1/2</td>
</tr>
<tr>
<td>11</td>
<td>0.89</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>18</td>
<td>0.88</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>Feb. 1</td>
<td>0.89</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>8</td>
<td>0.89</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>15</td>
<td>0.89</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>22</td>
<td>0.89</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>Mar. 1</td>
<td>0.89</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>8</td>
<td>0.89</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>15</td>
<td>0.89</td>
<td>1/2</td>
<td>0.90</td>
<td>1/2</td>
</tr>
<tr>
<td>22</td>
<td>0.89</td>
<td>1/2</td>
<td>0.89</td>
<td>1/2</td>
</tr>
<tr>
<td>Week</td>
<td>Minneapolis</td>
<td>Buffalo</td>
<td>Milwaukee</td>
<td>Toronto</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>"Best Malting" per bushel</td>
<td>"Best Malting" per bushel</td>
<td>"No. 2" per bushel</td>
<td>"No. 2" per bushel</td>
<td>"No. 3" per bushel</td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 6</td>
<td>$1.30</td>
<td>$1.26</td>
<td>$1.37</td>
<td>$1.39</td>
</tr>
<tr>
<td></td>
<td>$1.30</td>
<td>$1.27</td>
<td>$1.37</td>
<td>$1.38</td>
</tr>
<tr>
<td></td>
<td>$1.30</td>
<td>$1.25</td>
<td>$1.30</td>
<td>$1.38</td>
</tr>
<tr>
<td></td>
<td>$1.30</td>
<td>$1.22</td>
<td>$1.35</td>
<td>$1.38</td>
</tr>
<tr>
<td>May 4</td>
<td>$1.30</td>
<td>$1.24</td>
<td>$1.30</td>
<td>$1.35</td>
</tr>
<tr>
<td></td>
<td>$1.30</td>
<td>$1.24</td>
<td>$1.30</td>
<td>$1.32</td>
</tr>
<tr>
<td></td>
<td>$1.27</td>
<td>$1.21</td>
<td>$1.30</td>
<td>$1.28</td>
</tr>
<tr>
<td></td>
<td>$1.29</td>
<td>$1.16</td>
<td>$1.25</td>
<td>$1.25</td>
</tr>
<tr>
<td>June 1</td>
<td>$1.15</td>
<td>$1.15</td>
<td>$1.21</td>
<td>$1.23</td>
</tr>
<tr>
<td></td>
<td>$1.10</td>
<td>$1.14</td>
<td>$1.20</td>
<td>$1.21</td>
</tr>
<tr>
<td></td>
<td>$1.05</td>
<td>$1.06</td>
<td>$1.10</td>
<td>$1.10</td>
</tr>
<tr>
<td>July 6</td>
<td>$1.05</td>
<td>$1.06</td>
<td>$1.08</td>
<td>$1.10</td>
</tr>
<tr>
<td></td>
<td>$1.00</td>
<td>$1.00</td>
<td>$1.11</td>
<td>$1.11</td>
</tr>
<tr>
<td>Aug. 3</td>
<td>$0.65</td>
<td>$0.60</td>
<td>$0.70</td>
<td>$0.90</td>
</tr>
<tr>
<td></td>
<td>$0.55</td>
<td>$0.50</td>
<td>$0.75</td>
<td>$0.95</td>
</tr>
<tr>
<td>Sept. 7</td>
<td>$0.65</td>
<td>$0.65</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td></td>
<td>$0.65</td>
<td>$0.70</td>
<td>$0.75</td>
<td>$0.75</td>
</tr>
<tr>
<td>Oct. 5</td>
<td>$0.65</td>
<td>$0.65</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td></td>
<td>$0.65</td>
<td>$0.70</td>
<td>$0.75</td>
<td>$0.75</td>
</tr>
<tr>
<td>Nov. 2</td>
<td>$0.65</td>
<td>$0.65</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td></td>
<td>$0.70</td>
<td>$0.70</td>
<td>$0.75</td>
<td>$0.75</td>
</tr>
<tr>
<td>Dec. 4</td>
<td>$0.55</td>
<td>$0.50</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td></td>
<td>$0.50</td>
<td>$0.55</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 4</td>
<td>$0.55</td>
<td>$0.50</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td></td>
<td>$0.65</td>
<td>$0.65</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td>Feb. 3</td>
<td>$0.55</td>
<td>$0.50</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td></td>
<td>$0.50</td>
<td>$0.55</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td>Mar. 1</td>
<td>$0.55</td>
<td>$0.50</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
<tr>
<td></td>
<td>$0.50</td>
<td>$0.55</td>
<td>$0.70</td>
<td>$0.75</td>
</tr>
</tbody>
</table>

15a-5
WHOLESALE QUOTATIONS FOR SPRING WHEAT FLOUR, SECOND PATENT, IN SACKS, IN FIRST WEEK OF EACH MONTH FROM APRIL, 1912, TO MARCH, 1913.

("From Weekly Northwestern Miller.")

<table>
<thead>
<tr>
<th>Month</th>
<th>New York</th>
<th>Chicago</th>
<th>Montreal</th>
<th>Toronto</th>
<th>Winnipeg</th>
<th>London</th>
<th>Liverpool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New York</td>
<td>Chicago</td>
<td>Montreal</td>
<td>Toronto</td>
<td>Winnipeg</td>
<td>London</td>
<td>Liverpool</td>
</tr>
<tr>
<td>per 196 lbs.</td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>4.95 - 5.29</td>
<td>4.80 - 5.65</td>
<td>5.50 - 5.90</td>
<td>5.19 - 5.29</td>
<td>5.40 - 5.70</td>
<td>4.68 - 4.94</td>
<td>4.68 - 4.94</td>
</tr>
<tr>
<td>May</td>
<td>5.40 - 6.85</td>
<td>4.90 - 5.20</td>
<td>5.60 - 5.70</td>
<td>5.20 - 5.20</td>
<td>5.60 - 5.69</td>
<td>4.91 - 4.91</td>
<td>4.77 - 4.77</td>
</tr>
<tr>
<td>June</td>
<td>5.13 - 5.45</td>
<td>5.00 - 5.40</td>
<td>5.60 - 5.60</td>
<td>5.20 - 5.20</td>
<td>5.60 - 5.69</td>
<td>4.76 - 4.76</td>
<td>4.77 - 4.77</td>
</tr>
<tr>
<td>July</td>
<td>5.36 - 5.55</td>
<td>5.13 - 5.10</td>
<td>5.60 - 5.70</td>
<td>5.20 - 5.20</td>
<td>5.60 - 5.69</td>
<td>4.51 - 4.51</td>
<td>4.68 - 4.68</td>
</tr>
<tr>
<td>August</td>
<td>4.25 - 4.75</td>
<td>4.40 - 4.60</td>
<td>5.60 - 5.60</td>
<td>5.20 - 5.20</td>
<td>5.60 - 5.69</td>
<td>4.68 - 4.68</td>
<td>4.59 - 4.59</td>
</tr>
<tr>
<td>September</td>
<td>4.20 - 4.45</td>
<td>4.25 - 4.50</td>
<td>5.60 - 5.60</td>
<td>5.20 - 5.20</td>
<td>5.60 - 5.69</td>
<td>4.68 - 4.68</td>
<td>4.59 - 4.59</td>
</tr>
<tr>
<td>October</td>
<td>4.30 - 4.60</td>
<td>4.40 - 4.70</td>
<td>5.60 - 5.60</td>
<td>5.20 - 5.20</td>
<td>5.60 - 5.69</td>
<td>4.59 - 4.59</td>
<td>4.68 - 4.68</td>
</tr>
<tr>
<td>November</td>
<td>4.10 - 4.35</td>
<td>4.30 - 4.40</td>
<td>5.20 - 5.20</td>
<td>4.80 - 4.80</td>
<td>5.10 - 5.10</td>
<td>4.42 - 4.42</td>
<td>4.42 - 4.42</td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gravenstein

<table>
<thead>
<tr>
<th>Date</th>
<th>Halifax</th>
<th>Montreal</th>
<th>Toronto</th>
<th>Winnipeg</th>
<th>Boston</th>
<th>New York</th>
<th>Chicago</th>
<th>London (Canadian)</th>
<th>Liverpool (Canadian)</th>
<th>Glasgow (Canadian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td></td>
</tr>
<tr>
<td>Sept. 11</td>
<td>1 75 -</td>
<td>3 00 -</td>
<td>2 50 -</td>
<td>2 90 -</td>
<td>2 55 -</td>
<td>2 90 -</td>
<td>2 55 -</td>
<td>2 67 - 3 44</td>
<td>3 65 - 4 50</td>
<td>4 50 - 5 00</td>
</tr>
<tr>
<td>" 25</td>
<td>1 75 -</td>
<td>3 00 -</td>
<td>2 50 -</td>
<td>2 90 -</td>
<td>2 55 -</td>
<td>2 90 -</td>
<td>2 55 -</td>
<td>2 67 - 3 44</td>
<td>3 65 - 4 50</td>
<td>4 50 - 5 00</td>
</tr>
<tr>
<td>Oct. 9</td>
<td>1 75 -</td>
<td>3 50 -</td>
<td>2 60 -</td>
<td>2 75 -</td>
<td>2 67 -</td>
<td>2 67 -</td>
<td>2 67 -</td>
<td>4 13 -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 28</td>
<td>3 50 -</td>
<td>2 50 -</td>
<td>2 60 -</td>
<td>2 75 -</td>
<td>2 67 -</td>
<td>2 67 -</td>
<td>2 67 -</td>
<td>4 13 -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 6</td>
<td>3 50 -</td>
<td>2 50 -</td>
<td>2 60 -</td>
<td>2 75 -</td>
<td>2 67 -</td>
<td>2 67 -</td>
<td>2 67 -</td>
<td>4 13 -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fameuse

<table>
<thead>
<tr>
<th>Date</th>
<th>Halifax</th>
<th>Montreal</th>
<th>Toronto</th>
<th>Winnipeg</th>
<th>Boston</th>
<th>New York</th>
<th>Chicago</th>
<th>London (Canadian)</th>
<th>Liverpool (Canadian)</th>
<th>Glasgow (Canadian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1913</td>
<td></td>
</tr>
<tr>
<td>Sept. 1</td>
<td></td>
</tr>
<tr>
<td>" 25</td>
<td></td>
</tr>
<tr>
<td>Oct. 9</td>
<td></td>
<td>3 25 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 23</td>
<td>4 50 -</td>
<td>3 25 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 5</td>
<td>4 50 -</td>
<td>3 25 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 20</td>
<td>4 50 -</td>
<td>3 25 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 4</td>
<td>4 50 -</td>
<td>3 25 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 18</td>
<td>4 50 -</td>
<td>3 25 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 1</td>
<td></td>
</tr>
</tbody>
</table>

Greenings

<table>
<thead>
<tr>
<th>Date</th>
<th>Halifax</th>
<th>Montreal</th>
<th>Toronto</th>
<th>Winnipeg</th>
<th>Boston</th>
<th>New York</th>
<th>Chicago</th>
<th>London (Canadian)</th>
<th>Liverpool (Canadian)</th>
<th>Glasgow (Canadian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td></td>
</tr>
<tr>
<td>Sept. 11</td>
<td></td>
<td>2 75 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 25</td>
<td></td>
<td>2 75 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 9</td>
<td></td>
<td>3 75 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 23</td>
<td></td>
<td>3 75 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 5</td>
<td></td>
<td>3 75 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 20</td>
<td></td>
<td>3 75 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 4</td>
<td></td>
<td>1 50 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 18</td>
<td></td>
<td>1 50 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Halifax</td>
<td>Liverpool (Canadian)</td>
<td>London (Canadian)</td>
<td>Chicago</td>
<td>New York</td>
<td>Montreal</td>
<td>Toronto</td>
<td>Winnipeg</td>
<td>Boston</td>
<td>Kings</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Jan 15</td>
<td>1.00</td>
<td>3.00</td>
<td>3.75</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 29</td>
<td>1.00</td>
<td>3.00</td>
<td>3.75</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 26</td>
<td>1.00</td>
<td>3.00</td>
<td>3.75</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
</tr>
<tr>
<td>Sep. 11</td>
<td>3.50</td>
<td>3.50</td>
<td>3.75</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 20</td>
<td>3.50</td>
<td>3.50</td>
<td>3.75</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 29</td>
<td>3.50</td>
<td>3.50</td>
<td>3.75</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 18</td>
<td>3.50</td>
<td>3.50</td>
<td>3.75</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
</tr>
<tr>
<td>Jan. 15</td>
<td>3.50</td>
<td>3.50</td>
<td>3.75</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 29</td>
<td>3.50</td>
<td>3.50</td>
<td>3.75</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 26</td>
<td>3.50</td>
<td>3.50</td>
<td>3.75</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
</tr>
<tr>
<td>BALDWINS</td>
<td></td>
<td>S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Lisbon, Portuguese</td>
<td>Quebec City, Canadian</td>
<td>St. John, New Brunswick</td>
<td>Quebec City, American</td>
<td>Montreal</td>
<td>Toronto</td>
<td>Winnipeg</td>
<td>Chicago</td>
<td>New York</td>
<td>Boston</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Mar. 1</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Mar. 15</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Mar. 29</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Apr. 12</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Apr. 26</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>May 10</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>May 24</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Jun. 7</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Jun. 21</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Jul. 5</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Jul. 19</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Aug. 2</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Aug. 16</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Aug. 30</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Sep. 17</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Sep. 30</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Oct. 1</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Oct. 15</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Oct. 31</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Nov. 15</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Nov. 30</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Dec. 1</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Dec. 17</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Dec. 31</td>
<td>1.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>1912</td>
<td></td>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sept. 11</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 25</td>
<td>2.00</td>
<td>3.75</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 6</td>
<td>2.25</td>
<td>1.25 - 1.50</td>
<td>1.25 - 1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 20</td>
<td>3.75</td>
<td>2.25</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 4</td>
<td>4.00</td>
<td>1.25 - 1.50</td>
<td>1.25 - 1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 18</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 1</td>
<td>2.75 - 4.00</td>
<td>1.25 - 1.50</td>
<td>1.25 - 1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 15</td>
<td>2.75 - 4.25</td>
<td>3.00</td>
<td>3.00 - 4.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 29</td>
<td>3.00 - 4.25</td>
<td>3.00 - 4.25</td>
<td>3.00 - 4.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 12</td>
<td>3.00 - 4.50</td>
<td>3.25</td>
<td>3.25 - 4.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 12</td>
<td>5.00 - 5.25</td>
<td>3.75</td>
<td>3.75 - 5.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Respectfully submitted,

W. W. Moore,

Chief, Markets Division.
APPENDIX III.

REPORT OF A. McNEILL, CHIEF, FRUIT DIVISION.

Sir,—I have the honour to present herewith the report of the Fruit Division for the year ending March 31, 1913.

THE STAFF.

A large increase in the number of inspectors during the season 1912-13 enabled a distribution of the staff in districts of workable size. Up to this year the inspectors had, indeed, been assigned to districts, but the districts were so large that complete supervision was impossible. For the purposes of inspection this season, the country was divided into five districts. Each district had a chief inspector in charge of the inspectors in the subdivisions as noted below:

District 1, Maritime Provinces.

G. H. Vroom, Chief Inspector.

Halifax.................................. A. S. Alcorn.
 W. C. Healy.
 Stuart Dimock.
 Geo. Akins.
 W. E. Anderson.
 A. T. Morse.
 Wm. Bishop.
 F. B. Westcott.
 C. M. Williams.
 S. L. Peters.

Annapolis Valley........................ Wm. McCullough.
 Wallace McQuoid.
 Wm. Armour.

Prince Edward Island.................... F. T. Curley.
 J. A. Jones.

New Brunswick........................... Byron Honsberger.

District 2, Quebec and Eastern Ontario

W. W. Brown, Chief Inspector.

Quebec City................................ E. Bedard.
 F. T. Curley.
 J. A. Jones.

Lake Ontario Counties.................... Wm. McCullough.
 Wallace McQuoid.
 Wm. Armour.

Ottawa Valley........................... C. H. Snow.

District 3, Western Ontario

R. R. Waddle, Chief Inspector.

Toronto.................................. W. G. Smith.
 F. L. Gabel.

Hamilton to St. Catharines................ Byron Honsberger.

St. Catharines to Niagara................ Byron Honsberger.

* At the close of navigation, the Montreal staff is moved to Lake Ontario points.
Almost since the inception of the Act, special attention has been given to box packing. This was systematized during the past season by placing it in charge of Mr. P. J. Carey, who was chief fruit inspector for Western Ontario until September 1, last. Mr. Carey’s large experience in the packing of fruit and his ability as a speaker made him particularly valuable as an instructor. In order to unify the box packing methods throughout the Dominion, Mr. Carey was sent out to British Columbia, and visited a number of the box packing schools being held under the auspices of the Provincial Department of Agriculture in March.

I regret to have to record the death of Mr. Geo. Graff, temporary inspector at Regina, while engaged on active duty. His death occurred, October 6, after a short illness (typhoid fever). Arrangements were made by which the work at Regina was carried on by Inspector J. W. Clement.

Mr. D. M. Robertson, for a number of years permanent fruit inspector in British Columbia, resigned from the staff at the end of the active fruit season.
Inspection Statistics

The following table gives comparative statements of the number of lots inspected, and the number of packages inspected for the seasons 1908-09, 1909-10, 1910-11, 1911-12 and 1912-13:

<table>
<thead>
<tr>
<th>Variety</th>
<th>1908-09</th>
<th></th>
<th>1909-10</th>
<th></th>
<th>1910-11</th>
<th></th>
<th>1911-12</th>
<th></th>
<th>1912-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Lots.</td>
<td>No. of pkgs.</td>
</tr>
<tr>
<td>Apples.</td>
<td>5,940</td>
<td>682,657</td>
<td>4,736</td>
<td>859,572</td>
<td>4,347</td>
<td>359,768</td>
<td>4,137</td>
<td>364,182</td>
<td>4,036</td>
<td>364,130</td>
</tr>
<tr>
<td>Pears.</td>
<td>248</td>
<td>100,792</td>
<td>202</td>
<td>157,930</td>
<td>187</td>
<td>148,554</td>
<td>171</td>
<td>17,551</td>
<td>167</td>
<td>16,249</td>
</tr>
<tr>
<td>Peaches.</td>
<td>88</td>
<td>54,150</td>
<td>71</td>
<td>41,452</td>
<td>64</td>
<td>35,680</td>
<td>51</td>
<td>2,269</td>
<td>56</td>
<td>6,570</td>
</tr>
<tr>
<td>Plums.</td>
<td>91</td>
<td>114,975</td>
<td>88</td>
<td>60,248</td>
<td>70</td>
<td>50,143</td>
<td>60</td>
<td>4,872</td>
<td>56</td>
<td>50,575</td>
</tr>
<tr>
<td>Tomatoes.</td>
<td>54</td>
<td>16,505</td>
<td>53</td>
<td>63,884</td>
<td>56</td>
<td>50,143</td>
<td>56</td>
<td>4,872</td>
<td>56</td>
<td>50,575</td>
</tr>
<tr>
<td>Small fruits.</td>
<td>863</td>
<td>1,184,651</td>
<td>739</td>
<td>1,145</td>
<td>71</td>
<td>12,495</td>
<td>61</td>
<td>481</td>
<td>61</td>
<td>481</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variety</th>
<th>1909-10</th>
<th></th>
<th>1910-11</th>
<th></th>
<th>1911-12</th>
<th></th>
<th>1912-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Lots.</td>
<td>No. of pkgs.</td>
</tr>
<tr>
<td>Apples.</td>
<td>7,736</td>
<td>859,572</td>
<td>4,736</td>
<td>859,572</td>
<td>4,347</td>
<td>359,768</td>
<td>4,137</td>
<td>364,182</td>
</tr>
<tr>
<td>Pears.</td>
<td>902</td>
<td>157,930</td>
<td>71</td>
<td>41,452</td>
<td>64</td>
<td>35,680</td>
<td>51</td>
<td>2,269</td>
</tr>
<tr>
<td>Peaches.</td>
<td>248</td>
<td>41,452</td>
<td>71</td>
<td>41,452</td>
<td>64</td>
<td>35,680</td>
<td>51</td>
<td>2,269</td>
</tr>
<tr>
<td>Plums.</td>
<td>244</td>
<td>63,884</td>
<td>53</td>
<td>12,495</td>
<td>53</td>
<td>12,495</td>
<td>48</td>
<td>481</td>
</tr>
<tr>
<td>Tomatoes.</td>
<td>143</td>
<td>50,143</td>
<td>71</td>
<td>41,452</td>
<td>64</td>
<td>35,680</td>
<td>51</td>
<td>2,269</td>
</tr>
<tr>
<td>Small fruits.</td>
<td>11</td>
<td>12,495</td>
<td>56</td>
<td>50,575</td>
<td>56</td>
<td>50,575</td>
<td>56</td>
<td>481</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variety</th>
<th>1911-12</th>
<th></th>
<th>1912-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Lots.</td>
<td>No. of pkgs.</td>
<td>No. of Lots.</td>
<td>No. of pkgs.</td>
</tr>
<tr>
<td>Apples.</td>
<td>13,548</td>
<td>1,085,300</td>
<td>10,896</td>
<td>85,706</td>
</tr>
<tr>
<td>Pears.</td>
<td>1,235</td>
<td>162,249</td>
<td>10,173</td>
<td>2,655</td>
</tr>
<tr>
<td>Peaches.</td>
<td>389</td>
<td>33,292</td>
<td>2,655</td>
<td>2,655</td>
</tr>
<tr>
<td>Plums.</td>
<td>38</td>
<td>31,006</td>
<td>2,655</td>
<td>2,655</td>
</tr>
<tr>
<td>Tomatoes.</td>
<td>368</td>
<td>88,894</td>
<td>2,655</td>
<td>2,655</td>
</tr>
<tr>
<td>Small fruits.</td>
<td>56</td>
<td>48,550</td>
<td>2,655</td>
<td>2,655</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variety</th>
<th>1912-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Lots.</td>
<td>No. of pkgs.</td>
</tr>
<tr>
<td></td>
<td>Inspected.</td>
<td>Inspected.</td>
</tr>
<tr>
<td>Apples.</td>
<td>13,457</td>
<td>1,321,440</td>
</tr>
<tr>
<td>Crab apples.</td>
<td>1,099</td>
<td>193,968</td>
</tr>
<tr>
<td>Pears.</td>
<td>119</td>
<td>16,249</td>
</tr>
<tr>
<td>Peaches.</td>
<td>62</td>
<td>12,186</td>
</tr>
<tr>
<td>Plums.</td>
<td>17</td>
<td>1,325</td>
</tr>
<tr>
<td>Tomatoes.</td>
<td>22</td>
<td>30,356</td>
</tr>
<tr>
<td>Small fruits.</td>
<td>65</td>
<td>23,592</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variety</th>
<th>1912-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Lots.</td>
<td>No. of pkgs.</td>
</tr>
<tr>
<td></td>
<td>Inspected.</td>
<td>Inspected.</td>
</tr>
<tr>
<td>Apples.</td>
<td>1,187</td>
<td>2,261,559</td>
</tr>
</tbody>
</table>
The following is a list of those who have been convicted, during the season 1912-13, of violation of the Inspection and Sale Act, Part IX:

Nova Scotia—

Percy D. Vee Baker
R. H. Banks
C. R. Bill
R. Blyth
W. T. Borden
J. Bowby
J. H. Bowles
H. Burke
N. E. Caldwell
Carl Church
O. G. Cogswell
Andrew Coldwell
Wallace Eldridge
C. S. Fitch
W. Frank
John Frasher
O. N. Fullerton
F. L. Gyspedge
H. Gormley
V. E. Griffin
S. W. Kidston
E. R. Lunn
J. A. McDonald
A. C. Murphy
E. C. Palmer
P. D. Phinney
B. O. Rockwell
E. T. Rockwell
H. N. Rockwell
Rooney Bros.
G. Spence
H. A. Spence
R. S. Spicer
T. H. Walker
E. B. Woodward
A. S. Woolaver

Quebec—

Geo. R. Clarke
D. Daignault
Geo. Desparas
J. T. Goodfellow
W. E. Lefebvre

Ontario—

J. A. Brouse
D. Cantelon
J. X. Clendinnin
R. Collacott
J. & H. Coyle
John Coyle & Co.
Wilbert Davey
J. L. Denike
Durham Fruit Growers' Association
Foster & Cole
French & Stein
H. Gregory
H. F. Grimmond
Frank Huff
J. P. Hughes
George Innis
Kidd & Sinclair
M. Laughlin
H. Maloof & Co.
Jas. Marchen & Co.
Sam. Marchen & A. Badgley
Norman Martin

Malvern Square.
Waterville.
Biltown.
Lakeville.
Tupperville.
North Tremont.
Brooklyn Station.
Windsor.
Grand Pré.
Falmouth.
Port Williams.
Gaspereaux.
Avon Valley.
Wolfville.
Falmouth.
Centre Granville.
Hantsport.
Gaspereaux.
Windsor.
Port Williams.
St. Croix.
Berwick.
Kingston.
Lakeville.
Newport.
Roxham.
Henrysburg Centre.
Chateauguay.
Woodlands.
Starnesborough.
Ottawa.
Clinton.
Murray.
Bovmanville.
Colborne.
Precious Corners.
Crissy.
Port Hope.
Bowmanville.
Chatham.
South Gower.
Port Milford.
Westlake.
Picton.
Peterborough.
Mount Brydges.
Mountain.
Ottawa.
Tweed.
Port Hope.
Ontario—Continued.

G. H. McCullough .. Brighton.
G. N. McKenzie .. Waupoos.
J. C. Norsworthy .. Ingersoll.
Oshawa Fruit Growers' Association Oshawa.
Gen. Palmer ... Port Hope
Wm. Peck .. Murray.
W. W. Peck .. Albury.
W. H. Phillips ... Frankford (two convictions.
P. Shannon .. Halton.
M. Sprung ... Mountain View.
E. L. Sutherland .. Embro.
John Thompson ... South Bay.
W. H. Usborne .. Bowmanville.
Jas. Vair ... Harrie.
Herman Weese ... Rednersville.

Saskatchewan—
Early Fruit Company .. Saskatoon.
Northern Fruit Company ...

Alberta—
Brown Fruit Company ... Edmonton.
Good Company .. Lethbridge.
McPherson Fruit Company
Plunkett & Savage ..
Plunkett & Savage ..
Royal Fruit Company ...
Stoddard Fruit Company ...
W. Wilkins ...

British Columbia—
Vernon Fruit Company .. Vernon.

MEETINGS.

As in former years, the permanent inspectors were able, after the close of the active fruit season, to spend some time attending meetings of fruit growers and assisting at fall fairs and exhibitions.

Members of the staff assisted at meetings as follows:

Prince Edward Island ... 42
Nova Scotia .. 48
New Brunswick ... 70
Quebec ... 11
Ontario ... 35
British Columbia ..

SPECIAL SERIES OF MEETINGS IN NOVA SCOTIA.

Toward the end of June, I went down to Nova Scotia and in conjunction with Mr. A. E. McMahon, attended a series of meetings, held under the auspices of the United Fruit Companies, Limited, of Nova Scotia, as follows:

Berwick .. June 25
Centre Clarence .. " 26
Bridgetown ... " 26
Lawrencetown ... " 27
Paradise ... " 27
Kingston ... " 28
Aylesford ... " 28
Port Williams .. July 2
Wolfville .. " 3
Falmouth .. " 3
The subject that was uppermost in the minds of the fruit growers was the completion of the organization of a central selling association for the local co-operative societies of Hants, Annapolis and Kings. This association has since been incorporated as the United Fruit Companies, Limited, of Nova Scotia.

The fruit growers of the valley, through their local associations, had a practical demonstration of the value of co-operation. They had, also, ample opportunity for noting the weak points of isolated associations, but the remedy was not quite clear. Private interests were strongly opposed to any closer organization. Men with large capital found that the local associations served a very useful purpose in their business by collecting large quantities of well packed fruit in convenient lots to suit their needs, and they were able and willing to pay an advanced price for this fruit, and had there been no other consideration than simply the immediate sale of fruit, it is probable that the organization would have gone no further. The promoters of the central association, however, had larger views in mind. They felt that to leave the associations as they were, even though they were dealt with fairly by the men who controlled the buying at the present time, offered no security for others not so scrupulous who might at any time appear upon the scene.

There was also the consideration that no one of the associations had a sufficiently large amount of fruit to impress a distant market. It was felt that there was room for expansion in the markets of the Northwest. It was also argued that there were certain abuses in the trade in Great Britain that might be corrected, and the preliminary to any work looking to the improvement of the industry was the organization of as many fruit growers as possible into the central association. They had further schemes in mind, too, namely, the development of distributive co-operation whereby orchard and other staple supplies might be bought in wholesale quantities, not only at a lower price but so as to effect many economies.

It is needless to say that there was much opposition to almost every phase of the business. Private dealers attended the meetings and pointed out the advantages of the present organization and system of doing business. The timid among the fruit growers dreaded branching out into anything new, and were inclined to perpetuate the existing condition of things, with the improvements made by the local associations. There were also those who honestly doubted the ability of a single organization to handle so large a quantity of fruit as the entire output of the valley.

From the fact that Mr. McMahon had been intimately associated with the tentative organization of the previous year, that had handled something like 400,000 barrels of apples, I was relieved of the necessity of making any particular local references on what had been done in Nova Scotia, and confined myself exclusively to the general principles that had been worked out in other places and were distinctly applicable to the conditions in Nova Scotia. I was able to quote from the experience of the California Fruit Exchange, showing that there was no safety in a fruit selling association that did not control the fruit from the time it left the orchard until it was in the hands of the consumer. There was, also, the undeniable argument that the difficulties of selling diminished rather than increased with the quantity of fruit to be handled. I pointed out, also, by numerous instances not only in the fruit industry but in other lines, that the day was coming when there would be need for special advertising in the old markets and the exploiting of new markets, and that work of this kind would never be carried on unless the expense of it could be placed upon the whole body of fruit growers, a thing that was impossible without a central association.

One view of co-operative membership appeared to be very persistent in the valley, namely, that which enabled a member to join an association, at the same time retaining practical control, so far as selling was concerned, of his fruit. I most emphatically opposed this idea and pointed out, by numerous examples in the history of co-operative selling associations, that this view could not for a moment be entertained. If the central association was to perform its duties with success, it must have abso-
lute control of the fruit of its members, and I strongly recommended that a clause be placed in the by-laws making it obligatory on all members to assign the selling of all their fruit to their associations.

Mr. McMahon was able, in a very practical way, to give illustrations of the advantages of a central association. Perhaps one of the most telling incidents was in connection with the purchase of fertilizer. The sales of fertilizer in Nova Scotia amount to an enormous sum in the aggregate. Practically all the larger fertilizer companies of eastern America maintain agents throughout the valley. It is understood, of course, that the cost of keeping these agents must be added to the price of fertilizer. In order to economize, therefore, the central association attempted to deal directly with the principals in the purchase of fertilizer. The manager first made overtures to the agents, but did not receive the encouragement in the matter of price that he thought he deserved. He then proceeded to Boston, the headquarters of most of the fertilizer companies doing business in the valley. On his arrival, he visited manager after manager, but all had the same story to tell: they could not sell fertilizer to him except through their accredited agents in the valley. He was finally compelled to go to New York before he could find a company that would sell to him. He then made a purchase of 2,000 tons upon which, after all expenses were paid, there was a saving of $3 per ton.

The sequel of this incident in the business of 1911 culminated just before the series of meetings we were attending. When the manager of the central association was making arrangements for the season of 1912, he received numerous telegrams from the principals of the Boston fertilizer companies intimating that they would be glad to meet him at any time and place he designated. The attitude of the fertilizer companies had been completely changed; but no such result would have been obtained had it not been for the power of the central association. Unorganized fruit growers would have had no chance against the organized forces of the fertilizer companies.

This and several other similar incidents served to convince practically all the associations in the valley that a central organization was a necessity.

While in Nova Scotia I was able to spend a day, June 21, at the Agricultural College, Truro, and addressed a meeting attended by a train-load of excursionists from the fruit sections of the province. I spoke particularly with reference to the infestation of the San José Scale, noting the necessity for stamping it out while yet in the incipient stage. I was able to call attention to the experience of Ontario in this connection. Some time was also spent in drawing attention to the desirability of introducing mixed farming, with orcharding as the main feature.

Better Farming Special.

Last year Mr. Carey devoted considerable time to assisting in connection with the ‘Better Farming Train’ equipped by the Ontario Department of Agriculture. This year the New Brunswick Government equipped a similar train and asked that our fruit inspector for the province, Mr. S. L. Peters, accompany the train in order to assist in the work. Meetings were addressed at the following places:

Harvey Station,
Welford,
West St. John,
St. George,
Roix Road,
Moore's Mills,
McAdam Junction,
Debec Junction,
Hartland.
Bath,

Edmundston,
Grand Falls,
Aroostock Junction,
Millville,
Keswick,
Durham,
Boiestown,
Blackville,
Millerton,
Memramcook.
In his report in connection with this work, Inspector Peters writes:—

'The great desire manifested by visitors to learn everything in connection with successful fruit growing, was the best possible evidence of the interest this industry has awakened in New Brunswick. Everybody seemed anxious to grow apples, and the entire staff of the 'Better Farming Special' was none too large to answer the inquiries made by visitors. It is certainly safe to say that much valuable information was imparted during our stay at each place. During our tour, fifty-five places were visited, with lectures at each place. The total attendance at these meetings was 28,215. The experiment proved an entire success, and its repetition would be gladly welcomed by the people.'

ORCHARD MEETINGS—QUEBEC.

A series of orchard meetings was arranged at the following places in Quebec, Inspector F. L. Dery giving timely instruction in pruning, grafting, spraying and general orchard culture:—

<table>
<thead>
<tr>
<th>Place</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Bruno</td>
<td>April 29</td>
</tr>
<tr>
<td>Laprairie</td>
<td>" 30</td>
</tr>
<tr>
<td>St. Remi</td>
<td>" 1</td>
</tr>
<tr>
<td>St. Michel</td>
<td>" 2</td>
</tr>
<tr>
<td>Sherrington</td>
<td>" 3</td>
</tr>
<tr>
<td>St. Joseph du Lac</td>
<td>" 6</td>
</tr>
<tr>
<td>Ste. Scholastique</td>
<td>" 7</td>
</tr>
<tr>
<td>St. Augustin</td>
<td>" 8</td>
</tr>
<tr>
<td>Ste. Thérèse</td>
<td>" 9</td>
</tr>
<tr>
<td>St. Jerome</td>
<td>" 10</td>
</tr>
</tbody>
</table>

THE WORK OF THE INSPECTORS BY PROVINCES.

Perhaps a better view of the work of the staff may be obtained by making extracts from the reports of the different inspectorial districts. There is usually some special feature in each that makes this arrangement desirable.

PRINCE EDWARD ISLAND.

In the spring of 1912, Mr. C. M. Williams was appointed on the permanent staff and detailed for work in Prince Edward Island. Being a graduate of Macdonald College, Mr. Williams was well fitted to conduct fruit demonstrations during the intervals when his duties as inspector were not pressing, and in other ways to assist
in promoting the fruit industry of the Island. During the summer months, he visited orchards upon the Island and addressed a number of meetings, giving demonstrations in the preparation of the ordinary spray mixtures, such as the Bordeaux and lime sulphur. This work was done after consultation with the Provincial Commissioner and Provincial Secretary for Agriculture. Mr. Williams' personal visits were much appreciated, and no doubt will result in increased care for the orchards and the planting of new orchards for which the Island is eminently fitted.

Mr. Williams was also able to assist in the work of the P. E. I. Co-operative Fruit Company and, at his suggestion, co-operative spraying was done in the neighbourhood of Montague, Kensington and Margate. The orchardists were charged 25 cents per hour and 2 cents per gallon for the spray mixture, and were also expected to assist in the work and board the men engaged in the operation.

Quite late in the spring three orchards were selected as demonstration orchards. Later, however, it was found that only two of these, that of Mr. Alexander, Cardigan, and Mr. Schurman, Central Bedeque, were suitable for the purpose. Owing to the lateness of the season, of course nothing could be done but prepare the orchards for this season.

During July and August, Mr. Williams visited strawberry growers, noting the varieties and systems of cultivation. The climate and soil of the Island is admirably suited for strawberry growing.

When the harvesting of large fruits commenced, Mr. Williams visited orchards, giving instructions in packing in barrels and boxes and, in co-operation with the local department, assisted in finding a market for the early apples particularly. This work was quite successful.

In October the packing centres were confined to Charlottetown, Montague and Kensington. It was advertised that Mr. Williams would be at these places Mondays, Wednesdays and Fridays, respectively, to give instructions regarding the grading and packing of apples in barrels and boxes and the marking of packages as required by the Inspection and Sale Act. This work was carried to the extent of packing a considerable quantity of fruit for market, but the success of it was questionable, owing to the difficulty of securing fruit that had not been severely injured in the handling between the orchard and the packing house.

With reference to the inspection work, it may be noted that in the early part of the season the inspection had to do with early fruit that was being exported or sent to the mining towns of Nova Scotia. That there is a marked improvement in the quality and packing of this fruit is perfectly true, yet according to Mr. Williams' report there is still room for great improvement, although there were no convictions for violation of the Inspection and Sale Act in Prince Edward Island. The faults of the fruit are those of a district new to the business; the fruit is sometimes overripe, nearly always poorly graded and quite frequently improperly packed. When the shipments from the Island arrived in the Old Country they were sold in competition with the choicest apples from other parts of Canada and from the United States, and consequently brought a much lower price than the quality of the fruit deserved had it been properly treated. The Prince Edward Island Co-operative Fruit Company is a potent factor for improvement in all lines of fruit growing. As the quantity of fruit becomes larger and the individual interests are sufficient to enlist more attention, it is not too much to say that Prince Edward Island will find her fruit growing industry an exceedingly valuable asset.

Mr. Williams assisted in judging fruit exhibits at Summerside, Charlottetown and Georgetown. He held twelve demonstration apple packing meetings: three at Charlottetown, five at Montague and four at Kensington; and was able to attend and address general fruit meetings at the following points: Murray Harbour, Hopefield, Cardigan, Brudenell, Brooklyn, Lower Montague, Eldon, Pinette, Belle River, Wood Islands, Scetichfort, Savage Harbour, St. Margarets, Rollo Bay, Souris, Summerside, Elmira, Mount Albion, Cornwall, Searletown, Murray River, Georgetown, Tra-
The enforcement of Part IX. of the Inspection and Sale Act in Nova Scotia is in charge of Mr. G. H. Vroom. Several unusual features presented themselves this year. The season of 1912 was exactly the opposite with reference to temperature and precipitation to that of 1911, and many people were induced, by their experience of 1911, to relax vigilance in the matter of spraying. As the season actually developed, the conditions could not have been more favourable for fungous diseases and insect pests. Consequently, while the crop was large, the quality was very much below the average. In his report, Mr. Vroom notes that at least 50 per cent of the crop was fit to grade only No. 3. Continuing he says: 'The apples were never so well packed in Nova Scotia as they were this season, and this condition of affairs is responsible for such a large quantity of No. 3's being shipped. I suppose 300,000 barrels of No. 3 Nova Scotian apples, have found their way into the markets during the past season. These would probably net to the grower, at the most, an average of 25 cents. and my opinion is that if 100,000 of the best had been put upon the market, and the remaining 200,000 fed to stock, it would have been just as well for the country and the apple industry generally.'

The staff under Mr. Vroom's control was placed to the best advantage so as to have all parts of the Annapolis Valley covered and at the same time leave a sufficient force on the docks at Halifax to examine fruit being loaded on board ship. It was soon discovered that the work of the men in the valley was largely educational. Fortunately the co-operative associations were fairly well established and contributed materially to the very careful grading which was the feature of the year in Nova Scotia.

Mr. Vroom reports that the railway and steamship companies have handled the fruit with care, and that the thermograph records showed uniform and safe temperatures while crossing the ocean.

Mr. Vroom spent some time during the summer working under the direction of the Entomological Division of the Experimental Farms Branch. He inspected upwards of 200,000 trees, shrubs and bushes imported from Germany, France, England, Ireland and the United States.

Mr. Vroom also reports upon the labour problem, always a serious question in the apple districts on account of the large amount of extra work during the packing season. He says: 'At present little packing is done in the orchards. All available help is concentrated on getting the fruit off the trees and into the fruit houses, where it is packed for market. Nova Scotia is fortunate in having several sources upon which to draw for this large extra amount of labour. Men and boys and, in some cases, women and girls, come from the outside sections where apples are not grown; fishermen from the south shore are available, and a large number of men from the city of Halifax can be secured. The matter of securing help is organized by the United Fruit Companies, Limited, of Nova Scotia, so that it practically forms a labour exchange at this season for the whole valley. The wages paid average $1.75 per day and board for men, and from $1 to $1.50 for women and boys.'

Mr. Vroom also reports that the supply of cooper stock this year in Nova Scotia is fairly ample and that, unless an unusual crop should develop, no shortage of barrels will be experienced.

Mr. Vroom was able to judge fruit at exhibitions at Sydney, Bridgetown and Bear River, and addressed twenty-three different fruit meetings during the year.

15a—6
New Brunswick.

The permanent inspector in New Brunswick, Mr. S. L. Peters, is able to give considerable time to educational work without at all neglecting his inspection duties. The excellent conditions in New Brunswick for apple growing have been recognized for some time. Progress, however, has been slow. During the past year, Mr. Peters has attended a large number of orchard meetings, giving demonstrations in all lines of orchard culture, placing particular emphasis upon spraying. As noted elsewhere, his work in connection with the 'Better Farming Special' was much appreciated.

Quebec.

The Province of Quebec does not present any special problems with reference to inspection. Though the number of inspectors employed in the province, notably at Quebec and Montreal, is large, they are not of course engaged with the products of the province to any great extent. Apple growing in Quebec has been for many years practically at a standstill, if not, indeed, actually declining. The old Fameuse orchards that perhaps did as much as anything else to make the province famous for its fruit, are rapidly disappearing, and new orchards are not being planted in any great numbers to take their place. The small fruit industry, according to the reports of our fruit crop correspondents, is not increasing. Scarcity of labour and poor transportation facilities are the alleged reasons for this.

During the shipping season an inspector is stationed in the city of Quebec and has an opportunity, not only of examining the apples going on board ship for export, but of doing much valuable work among the fruit merchants of the city. He also is able to visit some of the large towns in the vicinity.

Mr. F. L. Dery, a permanent inspector, with headquarters at Montreal, is also able to visit the towns and cities of the province, endeavouring particularly to see the large stocks of apples imported from the other provinces for winter use.

Ontario.

The variety of soil and climate and consequently of fruit production renders the inspection work somewhat more complicated than in the other provinces. Mr. W. W. Brown has charge of the work in the important apple district north of Lake Ontario. During the fall he also directs the work at Montreal and details the staff for duty on the docks. At the close of navigation the Montreal inspectors, with the exception of Mr. Dery, who is permanently located there, are moved to points along the north shore of Lake Ontario, where large lots of apples are stored to be repacked during the winter months. A decided improvement has taken place in the work both in the orchards and in the warehouses. The inspectors report a better class of labour and a much more intelligent appreciation of the value of the Inspection and Sale Act. There are a large number of evaporators and canning factories in the district, using apples as well as other fruits.

Mr. R. R. Waddle has charge of the staff of inspectors covering Ontario west of Toronto. The Georgian Bay district, like the district north of Lake Ontario, is devoted almost exclusively to winter apples, though not so large in extent. In addition, plum growing is quite a feature. An inspector is located in this district during the fruit season, with headquarters at Meaford.

The Niagara district is devoted almost exclusively to small fruits and tender tree fruits. It has been found necessary to give considerable attention to small fruits. Close oversight is also kept of the size of packages inasmuch as many of the larger box factories are located in the neighbourhood. The large quantity of fruit shipped from almost every station makes examinations at the shipping point very convenient, and a large proportion of the work is done in this way.
SESSIONAL PAPER No. 15a

Western Ontario is an apple growing district, with a comparatively small output of tender fruits in the south. The inspectors report a decline in the apple industry, except in a few localities.

Prairie Provinces.

District 4 (Manitoba, Saskatchewan and Alberta) presents a somewhat different problem in the enforcement of the Inspection and Sale Act from any of the other districts. In the other districts, for the most part, the inspectors are engaged in examining fruit at the point of production or near it or on its way to market, and there are few complications of any sort. In the case of the Prairie provinces, things are reversed. The fruit is being examined at the point of consumption. Little fruit is produced within the district, and the products of all the fruit producing provinces are met here with importations from the United States. The Act did not make specific provision for the marking of foreign fruit. This and the problem of the time limit since the packing was done, provide a wide range for the discretion of the inspectors. The inspection is likely to be still further complicated by the claims and counter claims between buyers and sellers, which must, if they come to court, be settled by civil suit, and in which it is desirable that the inspectors should take no part.

Mr. C. W. Baxter was placed in charge of the work in this district, and proceeded to Winnipeg early in July. Taking all things into consideration, it was decided that Winnipeg would furnish the best headquarters from which the work could be directed. Mr. Baxter, who was thoroughly familiar with the fruit trade in eastern Canada, took occasion, soon after his arrival in the Northwest, to visit the fruit sections of British Columbia, where he had an opportunity of meeting many of the fruit growers, which contributed no doubt to a better knowledge of the mode of enforcing the Inspection and Sale Act. The difference in the size, colour and general appearance of the same varieties grown in the different provinces introduces a feature difficult to cope with. It is satisfactory to note, however, that these difficulties were for the most part overcome. Mr. Baxter had charge of nine inspectors who were placed in subdistricts, having headquarters as follows:

- Winnipeg, Medicine Hat, Lethbridge, Calgary, Edmonton.
- Winnipeg district, Regina, Saskatoon.

These districts were allocated, not strictly upon municipal or provincial boundaries, but rather by the convenience with which the different small cities and towns could be reached from the subdistrict headquarters. Even with these subdivisions, the territory covered by each inspector was too large to permit of frequent visits. In this connection, Mr. Baxter says in his report:

'It is not necessary, however, to cover these districts very often, owing to the manner in which the fruit is sold and distributed. In the case of small fruits, it can all be seen at central points, with the exception of a few places outside where carloads are placed and distributed. The conditions in regard to apples are altogether different, almost every town being used as a distributing point, so that when this fruit is moving freely inspectors must necessarily cover considerable ground. The city of Winnipeg, with its large population and as the central distributing point for the prairies, requires a resident inspector, making it necessary to have another inspector for the district about Winnipeg, south to Port Francis and Boisserain, west to Portage la Prairie, north to Dauphin and east to Keewatin and Kenora. Conditions somewhat similar to those of Winnipeg exist in Calgary, recognized by the Pacific Coast fruit growers as the chief distributing point for the middle west.

15a—6}
Here the resident inspector devotes all his time to city work during the rush season, the district work during this time being assigned to the Lethbridge and Edmonton temporary inspectors.

The fruit of British Columbia this season was marketed almost exclusively in Alberta and Saskatchewan. Owing to the enormous crop of fruit in the Pacific coast, United States and the very large crop in British Columbia, conditions presented themselves that were quite different from those of any other year, and there was much misunderstanding of actual conditions, especially among the growers of British Columbia. It was deemed advisable, therefore, that Mr. Baxter, having had the experience of practically the whole shipping season in the markets of the Northwest, should attend the annual meeting of the British Columbia Fruit Growers' Association in Victoria, January 5, 6 and 7. He addressed the Association on the Inspection and Sale Act, Part IX, as it affects British Columbia fruit in the prairie markets, and explained the serious difficulties that presented themselves. There was considerable discussion of the administration of the Act, resulting from want of appreciation of the actual conditions. Mr. Baxter did much to explain these misunderstandings, and to point out where the real difficulties of the fruit growers lay.

The main misunderstanding was with reference to the marking of imported fruit, for which no specific provisions had been made in the original Fruit Marks Act nor in the codification under the Inspection and Sale Act. The difficulty had been met in former years and was met practically last year by insisting upon the importers of fruit placing their name and address upon the package, thus becoming responsible for the proper grading and marking of the fruit. There was, of course, no distinct provision in the law for this, but it had the force of law from the fact that section 321 of the Act makes it an offence to sell fruit that is not properly marked, so that the merchants were held under that clause, and this arrangement worked satisfactorily for several years. The following circular has been issued, from time to time for several years, to the merchants and importers of the prairie provinces:—

DEPARTMENT OF AGRICULTURE.

BRANCH OF THE DAIRY AND COLD STORAGE COMMISSIONER.

TO FRUIT IMPORTERS AND COMMISSION MERCHANTS.

'Importers of fruit are again warned that the Inspection and Sale Act, referring to the grading and packing of fruit and the size of fruit packages, will be strictly enforced.

'Importers of foreign fruit will be held strictly responsible for the packing, the size and marking of fruit packages.

'It is required that there shall be upon every closed package of imported fruit, the name and address of the importer, the variety of the fruit and its grade (section 320).

'The importer will be held responsible, also, in the case of violation of section 321.

'Copies of the Inspection and Sale Act, Part IX (The Fruit Marks Act) may be had, free, on application to the Fruit Division, Ottawa.

'J. A. Ruddick,

'Commissioner.'

'A. McNeill,

'Chief, Fruit Division.'

The misunderstanding originated largely, no doubt, from the fact that this notice was not sent to the fruit growers although it was published in the newspapers. The average fruit grower, therefore, presumed that there was no provision for the marking and inspection of imported fruit. That no misunderstanding of this sort may arise in future, it is extremely desirable that an amendment be incorporated in
the Inspection and Sale Act, making it obligatory that importers mark and grade the fruit, taking the place of the original packers.

In 1911, Nova Scotia sent considerable fruit to the Northwest. It was the first time Nova Scotian fruit growers had met the competition of British Columbia and the States of Washington and Oregon, and it left the question as to whether Nova Scotia could compete successfully or not in some doubt. In 1912 a much smaller quantity of Nova Scotian fruit reached the Northwest markets for several reasons, the chief of which was that the returns from the sales of 1911 had not been altogether satisfactory. A second reason was that the Nova Scotia shippers did not have fruit enough of the brand required by this market. Sufficient fruit arrived, however, to be a feature on the market, and it was in keeping, therefore, that Mr. Baxter should be asked to attend the annual meeting of the Nova Scotia Fruit Growers' Association, Middleton, January 28, 29 and 30, where he gave an address on 'Nova Scotian Apples in the Prairie Provinces.' In the course of his remarks, Mr. Baxter said:

'Shipments during the past year were much fewer than in 1911, due no doubt to the prevalence of scab, particularly on the Gravensteins. This led to some serious misunderstandings. The cancelling of orders for Gravensteins was taken by the merchants in Manitoba to mean a breach of contract for the purpose of securing a higher price elsewhere. This, however, was not the case, as results showed. The failure to fulfil the contracts was unfortunate, yet the action of the shippers is to be commended. The growers had contracted to sell a high quality of fruit such as they usually had. This high grade of fruit was not to be had in Nova Scotia in 1912 at any price and, therefore, nothing remained for the grower but to cancel the order or fill it with inferior fruit which, of course, would not have been satisfactory to the buyers. The Gravenstein is exceedingly popular in all parts of the Northwest. Though it does not come in quite so early in Nova Scotia as it does in Ontario, the texture of the fruit is much firmer and it reaches the market in better condition from Nova Scotia than from Ontario. The quantity, too, grown in Nova Scotia is sufficient to establish a special trade. Its quality is high, higher indeed than any other dessert apple at its particular season. For the Gravenstein, however, the box is the only package, and the adoption of the box would probably be the means of opening up a market for this apple in all parts of Saskatchewan and parts of Eastern Alberta, in which two provinces the box is preferred.'

Mr. Baxter spoke most favourably, as noted above, with reference to the reception of the Gravenstein, and predicted that if it was properly placed on the markets of the Northwest it would probably rival any apple, with the possible exception of the Ontario Snow, as an early dessert apple.

He reports further that his suggestions with regard to Nova Scotian apples in the markets of the Northwest were acquiesced in most heartily and, indeed, in his criticisms of the trade during the season he simply voiced the opinions that had been expressed by the better growers and the co-operative associations themselves. The difficulties were largely those of grading and varieties. Mr. Baxter incidentally reported that he found in Nova Scotia the greatest optimism with reference to the future of the apple industry in that province.

I make the following further extract from Mr. Baxter's report, covering as it does many points not touched on elsewhere:

'The Province of Alberta, being situated nearer the point of production, naturally receives the greater part of the fruit grown in British Columbia, a small portion being sold in Saskatchewan and Manitoba. Calgary is recognized as the central distributing point for British Columbia fruit. In noting the distribution of British Columbia fruit during the past season, we find there has been a tendency with most shippers to overstock this centre and the nearby towns. It is stated that there were 125 carloads of fruit on the track in Calgary at one time, which necessarily depressed the market.'
Frequent rumours were heard of discrimination on the part of the wholesale fruit merchants in the prairies against the British Columbia fruit, but investigation showed that there was no truth in these rumours. On inquiry as to why such large quantities of imported fruit were coming in, the following reasons, purely business ones, were given: Lower prices and prompt delivery to Canadian merchants; fewer varieties in cars; fruit better packed and more pounds to the package.

With few exceptions, British Columbia plums and peaches were packed very loosely and the packages contained fewer pounds than those from the United States, which is a consideration with the consumer and retailer, who disposes of them in small quantities. Owing to the very large crop of peaches produced on the southern Pacific coast, prices were low compared with other years, and housekeepers were induced to buy their canning fruit early. When British Columbia fruit appeared upon the market, difficulty was experienced in marketing them owing to the fact that her clingstone varieties came in competition with the freestones from Washington and Oregon. Again, owing probably to inadequate marketing facilities, a large quantity of British Columbia peaches were picked very green and, when offered to the trade, did not present an inviting appearance.

Rumours to the effect that low grade imported apples were being dumped upon the markets of the Northwest in large quantities were unfounded: in fact, it is admitted that the grading of apples this year was higher than in previous years, due, possibly, to the extraordinarily large crop. Some British Columbia growers, taking the same view, raised their grades and by doing so established a reputation, and will undoubtedly reap good results in future business.

In connection with Ontario fruit in the prairie markets, Mr. Baxter reports:—

The marketing of Ontario peaches, plums, pears, currants and tomatoes has been confined practically to the Province of Manitoba and especially to the city of Winnipeg. These fruits, when properly handled at the shipping point, arrive in good condition. Some shipments of early tomatoes arrived in poor condition, due largely to excessive rains and unfavourable climatic conditions while growing. Later shipments, however, arrived in good condition and found ready sales at good prices, especially when put up in the six quart basket. It is a great mistake to put tomatoes in a basket larger than this as the great weight in the larger package results in loss in the lower layers.

The shipment of early peaches of the clingstone type, such as the Triumph, should be discouraged, because if picked while immature the fruit rots before it is ripe enough to market, and if allowed to mature on the trees it will not stand up during such a long journey.

Many of the early varieties of apples, which were shipped in barrels, were fit only for the cider or vinegar factory and could result only in loss to the shipper. Grapes were received in large quantities and, in the main, arrived in good condition. Greater care should be taken in the loading of the cars. Frequently we found cars loaded from end to end with no space whatever in the centre.

The quantity of apples shipped into the Prairie provinces this season was much greater than in any other year, and the season being favourable for shipping, practically no loss from frost was reported. Owing to the lack of uniformity and reliability of the pack of apples received in these markets in the past, greater difficulty was experienced in marketing to advantage individual packs. Associations which had established a reputation for high grading and reliability were given the preference and undoubtedly received a price from 50 cents to $1.25 per barrel higher than independent packers. Considerable over-pressing was noted.

There is no variety of apple which, if properly packed, will bring a higher price in the markets of the Northwest than the Snow. Unfortunately the past season's crop, owing to scab, was a sad disappointment and resulted in heavy losses all round. This variety should never be packed in barrels.
It has been the practice in the past to ship Duchess to the West picked when about half mature and without colour and packed in barrels. This is a great mistake and serious losses have resulted. If the Duchess were thinned on the trees, three or more pickings made of the fruit, and then properly packed in boxes, the returns would undoubtedly be more satisfactory.

In looking into the distribution of Ontario apples in this market, we find comparatively few were sold in the provinces of Saskatchewan and Alberta. Undoubtedly the demand for apples of the higher grades of dessert varieties, packed in boxes, has been established in these provinces, and in order to regain this market it will be absolutely necessary to conform to the requirements, both as to quality and package.

Mr. Baxter also gives the following figures which indicate the quantity of apples received into the prairie provinces during the past season:

<table>
<thead>
<tr>
<th>Province</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nova Scotia</td>
<td>18,000</td>
</tr>
<tr>
<td>" Ontario</td>
<td>238,000</td>
</tr>
<tr>
<td>" British Columbia</td>
<td>225,000</td>
</tr>
<tr>
<td>" United States</td>
<td>492,000</td>
</tr>
</tbody>
</table>

These figures emphasize a point which I have mentioned before, namely, that this market is highly in favour of the box package. Last year the total number of boxes received in the Northwest was 717,000, and of barrels 256,000. It is also to be noted that 492,000 boxes were imported from the United States. This importation at the present time is necessary, perhaps, in order to supply the demand for high-class fruit, but with the area of bearing orchards increasing in British Columbia year by year and with a continual improvement in the quality of fruit imported from the eastern provinces, the demand for fruit from the United States should be reduced almost to the minimum so that this western trade will be wholly supplied by home grown fruit.

British Columbia.

The fruit growing districts of British Columbia are widely separated, rendering the former arrangement of inspection by one officer quite inadequate. Mr. R. G. L. Clarke was appointed chief inspector for the province, with two temporary inspectors, one located on the Island of Vancouver and the other with headquarters convenient for work in the Okanagan Valley. This arrangement is quite satisfactory.

The Fruit Crop Report was published regularly the 15th of May, June, July, August and September, and contained the prospects, at the date of issue, of the fruit crop as compiled from the reports of some two thousand correspondents. Below is given the chief facts in connection with the fruit crop of 1912:

The winter of 1911-12 was favourable to fruit crops generally. The weather, though cold, did little harm to fruit buds. In fact the thinning out of the peach buds in the Niagara district was counted later an absolute advantage. The spring of 1912 was considerably later than usual, perhaps two weeks later in the southern part of the Dominion and one week in the northern districts. The dry hot season of 1911 affected the stand for small fruits very materially, and many acres of strawberries had set so poorly that they might be considered a total failure. Those plantations, however, that succeeded in getting a fair start in 1911 came through the winter excellently and gave large crops. The heavy covering of snow protected the strawberries and probably also the raspberries. On account of the very low temperature in January and February, 1912, it was anticipated that the raspberry canes would be badly injured, and this was the case in a few exposed positions, but speaking generally the crop was not seriously hurt. The acreage of all kinds of small fruits was much less than usual.
Cherries in 1912 set for a large crop and if weather conditions had been favourable no doubt they would have formed a feature of the year. Unfortunately wet weather set in just about ripening time both in British Columbia and in eastern Canada, with the result that there were very heavy losses. A large part of the British Columbia crop of early cherries was altogether too soft for shipment and the growers were obliged to take a lower price at the canning factory. The later sweet cherries, however, fared somewhat better.

In eastern Canada the early cherries, though too soft for successful shipment, were much better than the late cherries. In nearly all plantations having late cherries incipient rot could be found while the fruit was still on the trees.

The peach crop proved to be much larger than was expected. The crop in western Ontario was not large per tree, but the increased acreage more than made up for any deficiency in the smaller crop per tree, and the needs of the market were well supplied. It was noticeable last year that the competition among canners for peaches was fairly keen. Though the aggregate of the crop was large, the peach growers did not realize the profits that might have been anticipated. The prices in most markets were abnormally low. The reason for this was the bad condition in which the fruit arrived. During the peach season rain fell almost every day, so that the fruit was soft and at no time in a good condition for shipping. Only fruit that had received the greatest care arrived at the point of consumption in a marketable condition.

The plum crop was much above the average but suffered like peaches and cherries from unfavourable weather conditions, and very poor returns were made in the majority of cases. Of course fruit shipped on consignment and in large packages and without refrigeration suffered most. The British Columbia crop was very large, as was also the crop of the neighbouring States to the south. The result was low prices. There is little or no organization among the plum growers, and undoubtedly the returns were materially affected by indiscreet marketing.

The pear crop appears to be decreasing in practically all parts of Canada except British Columbia. The fruit harvested was not sufficient when properly distributed to supply the home markets. Although the exports are exceedingly irregular from year to year, the general trend for the last ten years has been downward. There was a distinct shortage in the local markets in 1912, and it is quite probable that the whole Canadian crop could have been used in Canada at even higher prices than were realized for export. No part of North America is better suited for pear growing than the milder portions of the Canadian apple districts.

The apple season of 1912 was remarkable for the reason that nowhere could it be said that there was an extraordinary crop but everywhere there was a fair crop, with the result that the aggregate of fruit was large. In Ontario, though the conditions with regard to fungous diseases were not so bad as in Nova Scotia, they were altogether too prevalent. British Columbia was favoured with more normal weather conditions and sent out a fair proportion of clean fruit. The total production for Canada was undoubtedly larger than for 1911. This, however, will not account for the fact that prices for the whole season were low, though the prices for good fruit both at the beginning and towards the end of the season might almost be regarded as high. There were, however, very few apples offered for sale in large quantities early in the season, except by co-operative societies. Later, when the crop of individual growers was accumulated in the hands of private buyers, it became evident that prices would have to fall to bring the apples into consumption with sufficient rapidity to dispose of the crop.

The disturbing feature in the marketing of apples, preventing proper distribution and unsettling prices, was the unorganized growers of Ontario and British Columbia. Sales had been made early, particularly in the Northwest, at moderately high figures. These markets were later invaded by large quantities from small
SESSIONAL PAPER No. 15a

dealers or from individual growers sending on consignment. The natural result of course followed, that the prices of all apples took the prices of the apples sent on consignment, and many who had bought outright in the earlier part of the season found themselves loaded with stock that they could not dispose of profitably under those conditions. Indeed, much of this stock was held until February and March, and then failed to realize much more than the price paid for the apples in October.

Another interesting feature of the industry was the changed attitude of the large English apple receivers. It had been the practice in former years to send out large sums of money to agents in Canada, with which to pay an advance on all apples shipped to these firms. In 1912 this practice was not followed, and as a consequence many local buyers who had bought in former years, using the money of these Old Country firms, were not able to do business. Growers, not organized into co-operative associations and depending upon these local buyers, found themselves without a market, and large quantities of fruit, especially in Western Ontario, rotted under the trees. The organized growers of Lambton county, for instance, realized $2 and over for their winter varieties, while the unorganized growers in many cases failed to make a sale at all. Attention was called in the September fruit crop report to the fact that such a condition was likely to occur.

It cannot be said, however, that the fact that a large quantity of apples went to waste in the season of 1912 indicates an over-production. On the contrary, it indicates merely a want of proper distribution and a proper system of marketing. Had the growers in the districts where the apples went to waste been organized into co-operative associations, no matter how imperfectly, there would have been no difficulty in marketing their apples at a fair price. There were many towns and villages in Ontario, and probably in all other provinces, in which there was a decided shortage of apples, certainly after the rush of fall apples and early winters were consumed. It is a hopeful sign, however, to note that the number of co-operative associations in Ontario is increasing rapidly.

On the whole it cannot be said that apple growing received any serious setback last year, but certainly the day of the small individual grower is past, and it will only be occasionally that his orchard will pay.

In Nova Scotia the season was remarkable for the prevalence of scab, induced, of course, by the almost incessant rains. The total precipitation was not extraordinary. The difficulty came rather from the number of days which were cloudy and upon which rain fell, keeping the apple trees nearly always in a moist atmosphere, inducing fungous diseases to an extraordinary extent. The well informed correspondents claim that less than 40 per cent of the apples would pack No. 1 for the season of 1912. It is only proper to note here that all well sprayed orchards had clean fruit.

It is gratifying to note that, notwithstanding the prevalence of fungous diseases, little or no adverse criticism was made of Nova Scotian apples in Great Britain. On the contrary, reports from Glasgow and other points where Nova Scotian fruit had not formerly been in favour, were exceedingly favourable. There appeared to be very few apples that went to waste, although an extraordinary number of No. 3's were placed upon the market. Indeed the quantity of No. 3's placed upon the English market formed a feature of the apple trade of Nova Scotia, and no finer compliment could be paid to the efficiency of co-operative methods than the fact that so many No. 3's could be disposed of. The apples classed as No. 3's were usually fairly well grown and ranked No. 3 mainly from the fact that they were affected with scab. The season in Nova Scotia was quite satisfactory financially to the apple growers.

A marked feature of the Canadian apple trade of 1912 was the appearance of a large quantity of British Columbia fruit, competing with fruit from eastern Canada and from the United States in Alberta and Saskatchewan. Owing to the want of proper organization in British Columbia, the marketing of the fruit cannot be said
to have been done skilfully. There was an almost equal lack of organization in the four States—Washington, Oregon, Montana and Idaho—each of which had a large crop per tree. In these four States, as in British Columbia, the local associations in former years had been able to dispose of their fruit without difficulty, but this system of marketing broke down entirely under the stress of large quantities of fruit. The net result was that both British Columbia and these contiguous States pushed their fruit into the larger centres of Alberta and Saskatchewan without discrimination. Calgary is, of course, a large distributing centre, but even Calgary could not stand the immense quantities of fruit forced upon the wholesale merchants without giving them opportunities to place it to advantage.

This was particularly unfortunate in the case of British Columbia, because a large number of the orchards were bearing their first crop of apples, and the prices realized were by no means up to expectations. It may be noted here, however, that though prices were low, they were by no means slaughter prices, gauged by the average over a series of years in eastern Canada. Until this year British Columbia people had the advantage of a local market, accustomed to high prices and practically free from competition, and it was only this year that they have really competed with outside growers. It is not extraordinary, therefore, that many of the growers should have somewhat exaggerated notions of the standard price of apples. Eastern growers have for several years been receiving good prices for their fruit, running from $1.25 to $1.50 per barrel, counted upon the tree. This, however, is above the normal. Usually in counting standard prices the price is put at $1 per barrel on the tree. The stage ‘on the tree’ is chosen inasmuch as it does away with complications in the price of labour for picking and packing and the price of packages. Such prices as these would hardly be acceptable to the western grower.

It is hoped, however, that the British Columbia growers will be more thoroughly organized next year, and it is of equal importance to the Canadian apple growers that the growers of the northwest United States be thoroughly organized.

The year 1912 in the apple industry is one that is likely to give apple growers pause. The increasing production, the insufficiency of the present methods of marketing, and the imperfections of transportation facilities, introduce questions that must be faced squarely or serious disaster is likely to result. If things are allowed to drift as they have, for instance, in the northwest States, and to a certain extent in British Columbia, there is sure to be a day of reckoning. If, on the other hand, the growers carefully plan for these probabilities, as in the case of the Province of Nova Scotia, there is no reason to fear for the future of the apple industry.

The year 1908 may be marked in a general way to note an appreciation in the price of apples in Canada, and high prices were the rule to the grower until 1912. There is every probability that 1912 would have noted a serious depreciation in the price of apples in eastern Canada had it not been for the co-operative associations. As it was, the great mass of growers who did not belong to selling associations received somewhat below $1 a barrel on the trees, and in many cases, as noted elsewhere, nothing for their apples. It appears evident, therefore, that apple growers must face a period of somewhat lower prices. The number of new orchards coming into bearing and the better care that is given to the older orchards, will very greatly increase the amount of fruit that will enter consumption. Very heavy planting has been made in all the better apple growing districts of Canada for a number of years, and competition will be decidedly increased as a consequence. The market, it is true, is enlarging very rapidly in Canada and the United States. Not so, however, in our largest market, Great Britain. The quantity of apples imported there has remained stationary for nearly ten years, and is not likely to be increased very largely in the near future. The great hope, therefore, of the Canadian apple growers lies in thorough organization—the development of the home market and a reduction in the cost of production.
CO-OPERATIVE MOVEMENT IN CANADA IN 1912.

It has been my privilege to note from year to year the progress of the co-operative movement among fruit growers in Canada. The number of associations has increased with each season and the opposition with which they were at first received has to a large extent been overcome. The battle is not yet won, of course, and much remains to be done to complete the organization. Nevertheless, 1912 has been a year of vindication of this method of selling fruit, and shows conclusively that those who have persistently advocated co-operative methods are completely justified. Co-operative selling associations, as has been noted frequently, began in Ontario, but their progress was slow. The first associations with co-operative features date back to 1890 or earlier. The first associations were formed only in those districts that were scarcely worth the attention of the itinerant apple buyer. Many large growers, a few years ago, scouted the idea that they had anything to gain from co-operative methods. This was particularly true of the apple district north of Lake Ontario. Nevertheless, this district is now becoming fairly well organized, though there are still many orchards the apples of which are not yet included in any co-operative association. It must be admitted, too, that many of the associations failed to do all that was anticipated and some of them have disbanded permanently. It is notable, however, that even those associations that have disbanded left an impression, and in many places, after an association had been out of business a few years, a new association has been organized upon better lines, showing that though the organization was imperfect there was still enough good in it to encourage a new formation, and in most cases these second organizations are working successfully. They have learned by experience. The number of associations in Ontario has also gradually increased. In 1905 only 10 societies were reported; in 1907, 23 reported; in 1911, 40 reported; in 1912 there were in Ontario 55 associations in successful operation. Such results show that the movement has come to stay. The associations have been severely tested and have not been found wanting. Nevertheless, they are not realizing the full benefits of co-operative selling from the fact that there has not been co-operation among the different associations. They have succeeded in the picking and packing of their fruit; they have most undoubtedly, too, sold to greater advantage than would otherwise have been possible, still there has been strong competition among the different societies, and frequently many of the evils that were formerly attributed to individuals are finding expression in the dealings of the associations. The competition between Mr. A and Mr. B is neither better nor worse than between associations 1 and 2 except in so far as the managers of the associations 1 and 2 may be more intelligent and shrewder business men than Mr. A and Mr. B, individual growers. The great need, therefore, in Ontario at the present time is a central selling association that will take charge of all the associations for sale purposes. There are many difficulties in the way of accomplishing this, but these difficulties are not so great but that we may hope for a solution and that very soon.

In Nova Scotia conditions are much better. Indeed, Nova Scotia may serve as a model for the organization of other provinces. Many attempts were made in former years to organize a shipping association that would embrace all the growers of the Annapolis and Cornwallis valleys. Such schemes were never successful. Finally it became apparent to the more thoughtful of the growers that the real solution lay in the formation of the small local associations, working at first quite independently of each other; and this method of organization was followed. For several years the number of these associations grew slowly. But even this partial organization showed such excellent results that the number finally amounted in 1910 to about 25. In 1911 a union of many of these associations was effected. The organization of the central association, however, was not a permanent one. Many of the associations doubted the possibility of the central association doing the work required of it. The season of 1911 was an abnormal one in Nova Scotia. The crop was exceedingly
heavy per tree and many new orchards were coming into bearing. The result was that the production of the province was in the neighbourhood of a million and a half barrels, over a million of which were exported or shipped to long distance markets. This was nearly twice the usual production, and completely upset all calculations of former years. Arrangements for picking were quite inadequate. Packages had not been ordered for the unexpectedly large crop. Under the ordinary system of selling, all the usual markets would have been seriously glutted, and it is doubtful whether with the old method of managing the business the transportation facilities would have been at all adequate. The co-operative associations, however, saved the situation. They provided in a wholesale way for labour. Packages were secured not without difficulty, but still in sufficient quantities. Extra ships were chartered and much better use was made of the ordinary facilities than could be made by private dealers, and as a result the apple growers of Nova Scotia secured not only the full quantity of this extraordinary crop, but also prices that were extremely satisfactory. It was the best apple year that Nova Scotia had ever known.

Encouraged by these successes, the United Fruit Companies, Limited, of Nova Scotia, as the association is called, secured incorporation by a special Act of the local legislature. Organization was necessarily not perfect for the season 1912, but though in all probability they did not handle quite one-half of the fruit of the valley, it is freely predicted that for 1913 they will handle 75 per cent. The following table gives the prices which have been obtained for some of their principal varieties:

<table>
<thead>
<tr>
<th>No. 1</th>
<th>No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravenstein</td>
<td>$2.07</td>
</tr>
<tr>
<td>Dudley</td>
<td>2.25</td>
</tr>
<tr>
<td>Emperor</td>
<td>1.95</td>
</tr>
<tr>
<td>Wolf River</td>
<td>2.11</td>
</tr>
<tr>
<td>Duchess</td>
<td>2.05</td>
</tr>
<tr>
<td>Wealthy</td>
<td>2.12</td>
</tr>
</tbody>
</table>

A notable feature of Nova Scotian co-operation is the extraordinary quantity of supplies which the United Fruit Companies are buying for their patrons. In this distributive work they do not attempt anything like regular store-keeping, but they make use of their warehouse for the purpose of distributing staple commodities such as flour, feed, seed and fertilizers.

The whole tone of the apple growing public in Nova Scotia is optimistic. The orchardists are satisfied with their returns and are looking hopefully to the future. They are not unconscious of the developments that are taking place in every part of Canada and in the United States, but many of the largest growers claim that they are able to stand a further reduction in price per barrel and still make an excellent profit on the business.

The hope of the Quebec fruit grower is in co-operation. Though many parts of the province are eminently suited for fruit growing the industry has not progressed of late years. Legislation has been enacted, however, that renders it easy for selling associations to organize.

Perhaps the most noteworthy feature in Quebec horticulture this year was the organization of the Co-operative Association of Kamouraska. Its organization is noteworthy, not alone because of the success that has attended its initial efforts, but because of the object lesson it furnishes of how co-operative methods may meet a critical situation.

In many portions of the counties of Kamouraska and L'Islet there has been in past years, due entirely to lack of organization, a very great waste of plums, the greater part of which were the Blue Damson and Reine Claude Montmorency varieties. Thousands of pounds of these fruits were allowed to rot upon the ground for want of a market to consume them or a factory to can them.
SESSIONAL PAPER No. 15a

Early in the season of 1912, under the leadership of the Provincial Department of Agriculture, a series of meetings was held which resulted in the election of officers for the Co-operative Association of Kamouraska. Plans were immediately made for the disposition of the crop of plums, which was then reaching maturity. Three carloads of plums were shipped in baskets to the Montreal market. Unfortunately the market was at the time glutted, and as there had been no time to make advance arrangements for the sale of the fruit, the prices received were not satisfactory. Without further delay steps were taken to equip a canning factory and the services of an expert canner were employed to supervise this work. The fruit proved to be in good condition, and ten thousand quarts of fruit of excellent quality were put up and sold at very satisfactory prices. In coming years, since there will always be ample time for preparations to be made for the handling of this immense crop, greater success may confidently be expected to attend the efforts of those who have been connected with this important enterprise. An organization such as this, solving as it does a difficulty which has for many years confronted the fruit farmers of Quebec, is a credit to the principles of co-operation. Those who were associated with its inception have every reason to be proud of their foresight and business acumen. It definitely marks out the proper course to pursue for other districts in Quebec equally well suited for fruit growing.

The fruit growers of British Columbia should be easily organized. Composed as they are mostly of enterprising and educated men from the older provinces and from England, one would naturally expect them to more easily unite for mutual benefit. Until recently, however, the lack of large numbers in any one place has militated against co-operation. The large crop of 1912 found the fruit growers with many local organizations, all tinted more or less with the ordinary competitive methods. It was impossible to secure any union among these various private or quasi-co-operative concerns. As a result the fruit went on the markets of the Northwest irregular in grading and without regulation as to quantity to any particular market. There was also no organization to properly investigate markets, and while certain markets in the Northwest were supplied with British Columbia fruit equally desirable markets within the province were being supplied with imported fruit. The conditions all impressed the necessity for organization among fruit growers. Strong efforts are now being made to properly organize the province upon purely co-operative lines in anticipation of the increasing crops in years to come.

NO. 3 GRADE.

The peculiar conditions in the Nova Scotian apple crop during the past year developed a feature with reference to the marking of grades, which indicates a growing tendency toward higher grading and more clearly defined grades and grade marks. Grade No. 1 appears to be fairly satisfactory. Fruit growers, however, are not at all unanimous with reference to grade No. 2. The fruit growers of Nova Scotia at their last annual meeting were practically unanimous in requiring a better class of fruit for the No. 2 grade than the definition calls for. This is partly the result of the various sources of education in the culture of better fruit, but perhaps more particularly the influence of the co-operative associations who controlled a large percentage of the crop and who decided to pack No. 2 much higher in grade than the Act called for. This threw a large quantity of fruit, which was usually graded No. 2, into the No. 3 grade, but as the No. 3 grade has no downward limit, it is lawful for a man to mark anything in the shape of an apple No. 3 grade, even if it is the veriest cull. Owing to the prevalence of scab there was a very large quantity of No. 3 apples that had good value for cooking purposes and for certain classes of retail trade. In order to distinguish these apples of a fairly good cooking quality, many of which might have been included in a No. 2 grade, the packers added some descriptive phrase to the grade mark No. 3. Once the packers started this practice there was no way of
regulating it, and every packer used the phrase that seemed to him best for this particular purpose. Occasionally packers used phrases upon apples of a most inferior quality, and yet there was no breach of the law, inasmuch as the phrase did not imply any other grade than No. 3. The cargo inspectors of this department have reported from different ports in Great Britain that fully a dozen different phrases, such as 'No. 3 ordinary,' 'No. 3 spotted,' 'No. 3 large,' were used in addition to the simple grade mark 'No. 3.' This caused great confusion and not a few protests from British merchants. The intention of this paragraph is to report facts simply. It is quite possible that similar conditions may not arise soon in the future.

PACKAGES.

The last revision of the Inspection and Sale Act with reference to packages was in 1906. Packages that were then little used and comparatively unimportant, have now appeared in large quantities upon the local markets, and a necessity for new packages has arisen to meet the demands of the long distance trade in the Northwest, the growth of the last few years. The confusion that formerly existed with reference to barrels and boxes is showing itself in the variety and style of these packages, for which no provision was made in the law. Progressive shipper's have noted the necessity for standardization. It is pointed out that there is no proper package for pears, and that a great variety of sizes and shapes are being used in the local market. A package for cherries and a long distance shipping box for peaches are much needed. Tomatoes are also becoming an important fruit for long distance shipments, both from Ontario and from British Columbia.

All these facts point to the advisability of taking up, in the near future, the subject of uniform packages for small fruits and tender fruits, as well as for apples and pears.

A. McNEILL,

Chief, Fruit Division.
APPENDIX IV.

FINCH AND BROME DAIRY STATIONS.

FINCH.

Reference was made in the last annual report of this Branch to the purchase of two small cheese factories at Finch, Ontario, with the object of establishing a model combined cheese factory and creamery and experimental dairy station in that locality. The erection of the new building was begun as soon as weather conditions permitted in the spring but it was not ready for occupation until August 23. The manufacture of cheese was carried on in the old factories until that date and continued in the new building until November 20. The station has been operated as a winter creamery since the close of the cheesemaking season.

The quantity of milk received from April, 1912, to March 31, 1913, was 2,223,033 pounds, which yielded 186,903 pounds of cheese and 9,869 pounds of butter. The cheese and butter were sold in the open market, that matter being left in the hands of the patrons, who appointed their own salesman. The rate for manufacturing in the old cheese factories had been for several years 1½ cents per pound, but after the new station was opened it was raised to 1½ cents per pound, with the unanimous consent of the patrons. Justification for this increase, notwithstanding the lesser expense of running one factory compared with two for the same patronage, was advanced on two grounds: First, because the old rate is entirely too low for a factory of that size in view of the increasing cost of labour and supplies, and secondly, because the manufacturer who makes provision for the cool curing of cheese and the pasteurization of whey, as has been done at Finch, is entitled to some recompense.

The Building.

The ground plan of the new factory, which is reproduced with this report (see page 90), shows the general layout of the rooms and the arrangement of the equipment. The rooms are so arranged that the cheesemaking department is not used in the winter months when buttermaking is carried on. The walls of the building are constructed of hollow cement blocks, with the requisite insulation of lumber, damp-proof paper and mill shavings for the ice chamber, curing room and refrigerator.

There is no floor in the ice chamber. A system of tile drain, connected with the sewer, is laid on the surface of the earth to carry off the water from the melting ice. On top of the tile there is a permanent layer of 10 inches of cinders, covered with loose boards. Before the ice was put in about 10 inches of mill shavings were laid on top of the cinders. The shavings are to be renewed every year. The floor in the refrigerator is insulated with 3 inches of cork board laid on 4 inches of concrete and covered with a wearing surface of 1 inch of cement. All the other floors are of concrete finished with a hard smooth wearing surface.

The partitions are constructed of smooth faced hollow cement blocks. The inside surfaces of the cement block walls and partitions in the cheesemaking room have been covered with white and grey enamel paint, giving a very sanitary and permanent finish. There was some doubt from the first as to whether a hollow cement block would be warm enough for the walls of a winter creamery, and after the experience of last winter it seems advisable to add some insulation on the inside of the walls. It is proposed to erect a 2-inch hollow tile inside the cement blocks and plaster the surface with cement and finish with enamel paint.

The roof is covered with metallic shingles, and with a concrete smokestack the risk of fire is reduced to a minimum.
FINCH DAIRY STATION.
Figure 1.—Finch Dairy Station

Figure 2.—New Zealand cheese crated for shipment.
The Equipment.

The cheesemaking equipment consists of the usual vats and presses as found in all eastern Ontario factories. Three of the vats are of the wooden frame type and one is a steel frame. One cheese vat is placed in the creamery room, where it serves as a milk receiving vat during the winter season and can be used when required for cheesemaking purposes. Power agitators are attached to each vat. A small unincapitated room, which is marked on the plan as a ‘cheese drying room,’ is fitted with cheese shelves. The cheese are allowed to remain in this room for a few hours after being removed from the hoops in order that the surfaces may become thoroughly dried. If the cheese have wet surfaces when placed in a cool curing room there is a strong tendency to mould.

The milk, cream and butter are handled in the creamery department with the following apparatus, all on one level. A sanitary, rotary milk pump lifts the milk from the receiving vat through sanitary pipes and fittings to a ’B. & W.’ heater, from which it flows to two cream separators, one ‘DeLaval’ and one ‘Simplex.’ The cream is carried direct from the separator to a ‘Wizard’ cream ripener, where it is first pasteurized and then cooled as required. A ‘Success’ churn completes the creamery machinery. It is intended to add different types of heaters and pasteurizers and also another style of cream vat or ripener.

The whey and skimmilk are handled in the following manner. A basin was constructed in the cement floor, into which the gutter, as shown in the plan, empties. The suction from a large sanitary rotary pump is connected with this basin and the skimmilk or whey, as the case may be, is lifted to a steel tank in the upper story over the boiler room. The pump is large enough to handle the whey when three vats are being ‘run off’ at the same time. In the bottom of the basin mentioned there are two outlets consisting of cesspools with bell traps, one connecting with the septic tank and the other to the drain direct. Either or both of these outlets can be closed at will. Provision is made for pasteurizing both the skimmilk and whey. A separate tank is provided for buttermilk. The whey and skimmilk are delivered to the patrons through two ‘Eclipse’ measuring machines. This equipment enables the creamery to handle 20,000 to 30,000 pounds of milk and deliver the pasteurized skimmilk back to the patrons on the same day without unnecessary delay. The tanks are then thoroughly washed before the next day’s milk is received. A cement platform, provided with drains, has been constructed under the skimmilk and whey deliveries to prevent the nuisance and fly breeding ground too often found in such places.

As the station is situated in the village of Finch, in a flat clay country, it was necessary to make some special provision for drainage. A septic tank is placed just outside the building, into which all drainage except clean cooling water is directed. The effluent from the septic tank is carried to the drain which passes through the main street of the village. It is too early yet to report on the work of the septic tank.

A provision was made in this building, which should be in every factory, and that is for a shower bath for the use of the employees. A small corner off the engine room with water and steam pipe connections makes the matter a very simple one.

There has been no attempt to make a show place of this dairy station (see Plate II), but rather to use such construction and material as can be copied by any person who wishes to erect a sanitary building of permanent construction suitable for summer or winter work. The contract price for the building, cement block smoke-stack, and concrete platform under whey delivery was $6,000.

Full working plans and specifications for the Finch Dairy Station are being published in bulletin form.

Brome.

Mention was also made in the last report of the purchase of a creamery at Brome, Quebec. Tenders were called for the erection of a new building early in the season, 15a—7
Brome Creamery.
but none were received that could be accepted. Further tenders being called for
later on, a contract was entered into and the building was completed and ready for
occupation on December 13, 1912.

The manufacture of butter was carried on from March 27 to December 13 in the
old creamery. The Brome Creamery is operated on the dual system, receiving both
milk and cream. There was received from March 27, 1912, to April 14, 1913, 1,067,204
pounds of milk and 49,434 pounds of cream, from which was manufactured 66,243
pounds of butter.

The old rate for manufacturing at Brome was 2½ cents per pound for patrons
who delivered milk and 2 cents for those who delivered cream. The rate is to be
raised this spring a quarter of a cent a pound for milk patrons and half a cent for
cream patrons.

Arrangements have been made to erect two skimming stations in adjacent terri-
tory, and it is expected that the quantity of butter manufactured during the next
twelve months will be more than double that of last year.

The Building.

The new building at Brome (Plate I) is of wood construction with concrete
foundations and floors. The foundations rise 6 inches above the floor, thus providing
a cement base for the wooden walls. As is shown in the accompanying plan (page 92)
the building includes a refrigerator on the circulation system. The insulated ice
chamber, which is large enough to hold a season's supply of ice, is connected with the
butter storage room by openings in the partition which promote a circulation of air
over the ice and through the storage room, giving a constant temperature, without
attention, of about 40 degrees.

A septic tank is also provided to handle the drainage from the creamery.

The building, complete with septic tank and brick smokestack, was erected by
contract at a cost of $4,000.

The full working plans and specifications are being published in pamphlet form
for general distribution.

The Equipment.

The equipment at Brome is for buttermaking purposes only, and consists of a
'B. & W.' heater, a 'Simplex' separator, a 'Wizard' cream ripener and pasteurizer
and a 'Success' churn. Other types of apparatus will be installed as experimental
work is undertaken and to demonstrate the advantages or disadvantages of the
various methods of handling milk and cream. As both milk and cream are received
at Brome there will be an opportunity to compare the whole milk with the cream
gathering system in various ways, and to determine the apparatus most suitable for
the two systems.

A skimmilk tank is placed in the attic, where there is no trouble from frost
during the winter months. The skimmilk is delivered to the patrons through an
'Eclipse' measuring machine. The practice is to deliver the pasteurized skimmilk to
the patrons as soon as separated, so that there is none carried over from day to day.
Buttermilk is handled in a separate tank.

As at Finch, there has been no attempt to create a show place in the ordinary
sense of the term, although we expect to demonstrate that it is possible to operate a
creamery without creating the slightest nuisance and to make the building itself and
surroundings more or less attractive. The grounds around the building will be
planted with trees and the vacant places seeded with grass to be kept like a lawn
around a private house. The site adjoins the fair grounds of the Brome Agricultural
Society in the village of Brome.

GEO. H. BARR,
Chief, Dairy Division.
APPENDIX V.

COW TESTING ASSOCIATIONS AND DAIRY RECORD CENTRES.

GENERAL.

The year 1912 saw a continuation of the work of the cow testing associations and a further extension of the 'Dairy Record Centre' plan. Records were received of 16,076 cows owned by 1,418 dairymen. Milk record forms have also been supplied to scores of men who keep account of each cow's production privately, not sending their records to this office. Dealers in dairy supplies state that there is a large demand for hand milk-testing machines far in excess of the demand two years ago; this is another indication of the appreciation of cow testing by dairy farmers.

The form for keeping feed records is also in good demand, indicating more discrimination in feeding. It is believed that the general adoption of a 'feed unit' system would be very helpful to most farmers.

Many men who commenced with weighing only three days per month are now weighing daily. This is a natural growth of interest and it pays well; for in general it may be said that the men who take daily weights have no poor cows.

One dairying association in Prince Edward Island, realizing the importance of cow testing association work as a means of improving local conditions, is offering cash prizes to patrons for the production of fat per cow. One rule of the competition is framed to shut out the larger patron, aiming at interesting immediately the indifferent patron.

A perfectly modest claim is that cow testing is the most important dairy work in Canada to-day.

It stands as true now as ever before that millions of dollars of extra, additional profit from the present number of cows are available as a reward for systematic weighing and sampling.

INCREASES IN YIELD PER COW.

As one would naturally expect, most gratifying increases in the yield per cow continue to be made by men who profit by what cow testing has to teach.

It is a noteworthy fact that some of the largest gains are made by those who are weighing each milking.

Forms for keeping daily weights are supplied free on application to the Dairy Division.

Such instances as a yield of 6,400 pounds of milk per cow increased to 11,000 per cow in four years would only be possible where there is a definite record of production of each cow to guide the owner.

One herd near Cornwall, Ont., shows the first year an average of 3,700 pounds of milk per cow from a herd of 10 cows, increased the next year to 5,236 pounds from a herd of 11, including four heifers, then the third year an average of 6,982 pounds testing 3.6 from the same 11, fed better and cared for better. This is an increase of 89 per cent.

Note that the first year's test in this case showed the farmer's judgment absolutely astray; two cows that were thought to be extra good were actually the poorest.

A quick increase at Wooler, Ont., shows the first year 8 cows averaging 5,327 pounds of milk, the next year 10 cows with 7,640 pounds of milk, then the third year 13 cows with 8,307 pounds of milk.

In a herd at St. Hyacinthe, Que., in 1911, the average yield of 8 cows was 4,545 pounds of milk. In 1912 the herd of 8 cows averaged 5,791 pounds of milk, an
increase of 1,246 pounds of milk, or 27 per cent of an increase just in one year. The testing of 1911 showed that two cows were poor, so they were beefed; two others were bought and the owner gave the herd better care. Part of this increase in yield may be attributable to the more favourable season in 1912 for milk production.

Another herd at St. Hyacinthe in 1911 averaged 5,413 pounds of milk from 7 cows. In 1912, 9 cows averaged 6,303 pounds, showing an increase of 890 pounds, or 16 per cent in one year. Three cows in this herd are only 3-year-olds, the lowest yield of the three was 5,292 pounds of milk. The owner has a good pure bred sire and thoroughly believes in cow testing.

A third herd at St. Hyacinthe averaged in 1911, 3,882 pounds of milk from 8 cows. In 1912 the average of 8 cows was 5,708 pounds, or an increase of 2,026 pounds of milk or 55 per cent in one year.

Cow testing pays such a remarkable return on the original investment that it must appeal forcibly to any man giving the subject five minutes serious thought.

To invest $3 and clear $300 per year is surely an alluring proposition. Yet that is what confronts a man who owns 20 cows. Whole districts, not isolated herds, are showing this rate of progress; for an additional 1,500 pounds of milk per cow inside three years (and often more than this) has been attained in the aggregate, and is almost assured to any man who has not before taken up cow testing; cow testing does certainly pay, and pays well.

TABLE 1.—SOME SAMPLES OF INCREASES MADE THROUGH COW TESTING.

<table>
<thead>
<tr>
<th>Herds in the Province of</th>
<th>No. of Cows in herd</th>
<th>Present Yield.</th>
<th>Increase per Cow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
<td>10</td>
<td>6,770</td>
<td>258</td>
</tr>
<tr>
<td>Quebec</td>
<td>24</td>
<td>7,565</td>
<td>290</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>7</td>
<td>5,857</td>
<td>294</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>9</td>
<td>5,692</td>
<td>225</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>11</td>
<td>9,188</td>
<td>317</td>
</tr>
<tr>
<td>British Columbia</td>
<td>6</td>
<td>6,586</td>
<td>229</td>
</tr>
</tbody>
</table>

These increases would probably never have been made unless the owners of the herds had commenced cow testing.

A large number of instances of similar and even greater increases in yield have been already published.

TABLE 2.—POSSIBLE INCREASES.

Showing the additional income that might easily be obtained by any dairyman owning 20 cows, by any factory of 500 cows and by all the owners of the present number of cows in the Dominion, if, as already accomplished in several districts, the cows produced only an extra 1,500 pounds of milk each, testing 3-5 per cent of fat, and valuing fat at 30 cents per pound.

<table>
<thead>
<tr>
<th>Herd, 20 Cows.</th>
<th>Factory, 500 Cows.</th>
<th>The Dominion, 2,899,100 Cows.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30,000 lb. milk.</td>
<td>750,000 lb. milk.</td>
<td>4,335,150,000 lb. milk.</td>
</tr>
<tr>
<td>1,650 lb. fat.</td>
<td>26,250 lb. fat.</td>
<td>151,730,250 lb. fat.</td>
</tr>
<tr>
<td>Value $315 00</td>
<td>Value $7,875 00</td>
<td>Value $45,519,675 00</td>
</tr>
</tbody>
</table>

The yield of the 1912 report is not considered a typical year.
The creation of this extra wealth, this substantial sum of forty-five and a half million dollars, is not only possible but is comparatively easy. The $315 in the table is the return that almost any dairyman may expect on a time expenditure of only about ten minutes per cow per month, and a small cash investment of about $3 for scales and sample bottles. Not many investments hold out similar inducements.

SOME POOR RECORDS.

It is occasionally remarked that if the average production per cow in Canada is only about 3,500 pounds of milk, then, seeing that we know of many excellent records, there must be some very poor cows somewhere. One man in Ontario who has just completed his first year of cow testing has an average yield from his 10 cows of only 1,993 pounds of milk and 69 pounds of fat. The ages of the cows are 6, 9, 5, 5, 5, 4, 9, 3, 3 and 4. The highest yield is from a 3-year-old and is 3,079 pounds of milk and 104 pounds of fat. We confidently expect to see this herd average at least doubled during the next four years; probably nothing but cow testing would provide the incentive to improve.

Another herd in Ontario contains two poor cows, a 7-year-old pure bred gives only 2,345 pounds of milk and 123 pounds of fat.

In more than one district are found herds of from 6 to 16 cows where the average yield of milk per cow for the whole year is only from 140 to 165 pounds of fat, and the average test is only 2.9 per cent of fat.

This is a strong argument in favour of paying for milk by the test at cheese factories.

SOME GOOD RECORDS.

An average yield from 6 cows of 9,481 pounds of milk and 359 pounds of fat is one of the good records that cow testing has assisted in compassing. This is the more encouraging because of the highly promising yields from the young stock. Two 2-year-olds in this herd yield 7,770 and 7,515 pounds of milk, and 261 and 264 pounds of fat; and two 3-year-olds give 8,860 and 10,045 pounds of milk, and 310 and 337 pounds of fat.

A herd of 12 cows in Prince Edward Island with an average yield of 9,015 pounds of milk, 3.6 test, and 325 pounds of fat, furnishes another record of great interest. Again the good yields of the heifers help the general average, for included in the herd are three 2-year-olds and three 3-year-olds.

A most promising record in Ontario is that of 9,521 pounds of milk, 3.2 test, and 308 pounds of fat, from a herd of 23 cows, including three 3-year-old.

There are a few cows on the register giving during their best months as high as 2,100 and 2,600 pounds of milk, and 62 and 75 pounds of fat in 30 days. Such records as 11,100 pounds of milk and 355 pounds of fat in seven months indicate what respect we should give to the unselfish cow, and what care should be bestowed on the possessor of an organization capable of producing such a quantity of pure food.

Two herds at Perth show how widely different are the attainments of some farmers and some cows. (Is the difference in yield an indication of more intelligent farming?) One man with four grades has a total production of 40,646 pounds of milk, a neighbour keeps ten cows and gets from them only 36,180 pounds.

It is desired again to call attention to the terrific waste incurred when handling this poor type of cows. One should consider time, feed, energy, capital invested, &c. Looking at all the records received from Ontario herds a moderate computation is that sixteen cows are now being kept to produce as much milk as ten should. Then this thought occurs, if Canadian dairymen kept the kind composing the above herd of ten cows, then to supply the present yearly production of milk, instead of keeping the present number of 2,890,100 cows, our dairymen would be saddled with the gigantic task of feeding, milking, caring for and investing in two and a half times as many, or 7,225,250 cows.
SESSIONAL PAPER No. 15a

On the other hand, the present labour can be considerably lightened, the feed bill can be cut down, and the enjoyment of life can be bound up, as better cows are bred to replace those unworthy a place in a modern, really productive herd.

INCOMPLETE RECORDS.

It is desired again to call attention to the importance of keeping records for the full lactation period of each cow so as to make sure of total production. Often the weight of milk given after the factories close makes a very considerable difference in the credit due to many cows, because some are so much more persistent milkers.

As in previous reports, many good records cannot be included because, after a few months, record keeping has been unfortunately discontinued.

Cows yielding 6,900 and 9,090 pounds of milk in six or seven months are therefore omitted.

CONTRASTS.

From a general survey of the records it is possible to make comparisons that are interesting and valuable to every dairy farmer.

There are strange contrasts in production to be noted as regards the yield of milk and fat in different herds, districts and provinces: the breed and age of cows and the average test of the herd; but most important of all to the milk producer is the contrast between individual cows in his own stable. Keeping the figures in his herd record book as supplied free by the Dairy Division, he is in a position to study the individual records and lay plans for speedily bringing the herd up to a high level of profitable production.

A few instances of these contrasts will be of interest.

CONTRASTS BETWEEN INDIVIDUAL COWS IN THE SAME HERD.

In a herd at Penobsquis, N.B., a 6-year-old grade Jersey gives 7,165 pounds of milk, and a 5-year-old grade Jersey gives only 4,155 pounds. Here is a difference of 3,010 pounds of milk.

In a herd at Cowichan, B.C., a 6-year-old grade Jersey gives 7,710 pounds of milk and 368 pounds of fat, while a 5-year-old grade Holstein gives 11,030 pounds of milk and 385 pounds of fat.

In another herd at Cowichan, B.C., an 8-year-old grade Ayrshire gives 5,060 pounds of milk and 213 pounds of fat, and a 5-year-old grade Holstein gives 9,490 pounds of milk and 351 pounds of fat: this is a difference of 3,830 pounds of milk.

Two pure bred Jerseys in a British Columbia herd afford a marked contrast: a 9-year-old gives 10,345 pounds of milk and 513 pounds of fat, and an 8-year-old gives only 4,690 pounds of milk and 227 pounds of fat, a difference of 2,650 pounds of fat.

In a herd at Dunk River, P.E.I., a 6-year-old grade gives 9,411 pounds of milk and 372 pounds of fat, and a 4-year-old grade gives only 2,931 pounds of milk and 108 pounds of fat.

In the above five examples the contrasted pairs freshened within a few days of each other.

Some Quebec herds also show great differences in individual yield. At Coulombe in a herd where a 10-year-old gives 7,465 pounds of milk and 255 pounds of fat, a 12-year-old gives 3,070 pounds of milk and 142 pounds of fat. This is a difference of 4,399 pounds of milk.

At Ayer's Cliff two 6-year-olds are in sharp contrast, one giving 7,431 pounds of milk and 287 pounds of fat, the other only 3,318 pounds of milk and 137 pounds of fat. Here is a difference of 150 pounds of fat.

In a St. Hyacinthe herd a 2-year-old shows up infinitely better than a 9-year-old, the heifer giving 6,020 pounds of milk and 236 pounds of fat, while the mature cow
produces only 3,472 pounds of milk and 142 pounds of fat. This is a difference in yield of 2,548 pounds of milk in favour of the young animal.

At Ste. Rosalie there is a difference of 4,000 pounds of milk between two cows, a 9-year-old giving 8,490 pounds of milk, a 5-year-old only 4,490 pounds. The yields of fat are 325 and 190 pounds.

In Ontario herds there are many contrasts equally striking. At Embro a 3-year-old gives 4,850 pounds of milk in eight months, and a cow 13 years old gives 11,461 pounds in twelve months and is still milking. Both are grade Holsteins, and differ by 6,602 pounds of milk.

In a herd at A-cme a 6-year-old gives 3,920 pounds of milk and 122 pounds of fat, and a 4-year-old gives 10,685 pounds of milk and 329 pounds of fat. This is a difference of 6,765 pounds of milk.

At Oxford Mills is a herd where a 4-year-old gives 5,040 pounds of milk, and a cow 11 years old gives 10,528 pounds.

Such examples as are cited above show what extraordinary variations in yield are to be found in herds all over the Dominion.

When it is considered that these differences in yield, placing the value of milk at $1 per 100 pounds and fat at 30 cents per pound, amount to a difference of as much as $66 between the earning capacity of two cows owned by the same man, then there is irresistible proof of the need for systematic cow testing. Indeed, in the fourth herd noted above, the difference in gross income between the two Jerseys in British Columbia is not only $66 but actually $85.50.

It seems more important than ever to lay great stress on this fact: no mere reckoning of the average production of the herd brings out the necessary information; the successful dairyman invariably studies individuality, then acts intelligently.

CONTRASTS BETWEEN DISTRICTS IN THE SAME PROVINCE.

In the month of July, 28 cows at Summerside, P.E.I., average 623 pounds of milk and 20-7 pounds of fat, and 60 cows at North Tryon, P.E.I., average 156 pounds of milk and 6-6 pounds of fat more, or an average yield of 779 pounds of milk and 27-3 pounds of fat. In Quebec in July, the extremes are 470 pounds of milk and 17-2 pounds of fat at St. Paschal; and 830 pounds of milk and 29-7 pounds of fat at Dalhousie Station. The extra yield is thus 360 pounds of milk and 12-5 pounds of fat per cow. In Ontario, also in July, the lowest yield is 558 pounds of milk and 19-6 pounds of fat at Point Abino from 33 cows, and the highest is 1,062 pounds of milk and 33-8 pounds of fat from 31 cows at Cloverdale. The difference is 504 pounds of milk and 14-2 pounds of fat per cow. Had the 33 cows been as heavy producers as the 31 they would have given an extra weight of milk of 16,632 pounds.

All these wide, irregular variations in yield are smoothed and rounded off in the average production for July of 691 pounds of milk and 24-2 pounds of fat. Similar differences may be found every month.

CONTRASTS BETWEEN AGES OF COWS.

At Mitchellville, Ont., a herd contains a 16-year-old giving 4,990 pounds of milk and 196 pounds of fat, and a 2-year-old giving 2,950 pounds of milk and 110 pounds of fat. In a herd at the Islands, B.C., a 2-year-old gives 5,160 pounds of milk and 254 pounds of fat, and a 9-year-old gives 12,070 pounds of milk and 557 pounds of fat. Another 9-year-old in an Ontario herd gives only 3,678 pounds of milk and 110 pounds of fat. She is named 'Pet'; probably she is kept because she is a pet, for she could hardly be ranked as a paying proposition. The oldest cow on the register is an 18-year-old, giving only 1,080 pounds of milk, perhaps another 'pet.'
CONTRASTS IN LENGTH OF MILKING PERIOD.

Many cows are on record milking for 14 and 15 months; one at Emerald, P.E.I., a 10-year-old Jersey, is still milking at the rate of 350 pounds of milk and 17.5 pounds of fat per month, having milked continuously for 26 months, giving in that time 12,057 pounds of milk and 538 pounds of fat.

On the other hand a great many cows are dry after milking only 3, 4 or 6 months, giving only from 750 to 1,850 pounds of milk in that time.

CONTRASTS BETWEEN PROVINCES.

In table 18 will be found contrasts in yield each month. For instance, in June the average yield per cow is five pounds of fat more in British Columbia than in Nova Scotia. In May the cows in Ontario average 295 pounds of milk more than those in New Brunswick.

What some Farmers say about Cow Testing.

From Lanark County, Ont., comes this statement:—

'We all knew in a general way that some of our cows give much more milk than others, but I am quite sure that none of us realized the difference was anything like so large as it has proven to be. Our best cow gave 7,150 pounds of milk and our poorest cow gave 4,208 pounds, a difference of one and a half tons, which is easily $30.

'As my cows get exactly the same feed in winter and the same pasture in summer, any one can see at once the great importance of cow testing to raise up the milk production without one cent of increase in the cost.

'Another point is we know now just what our cows are doing for us; before, we only gave them credit for milk sold to the factory; our best cow paid us $80, which is far in excess of what we ever expected her to make.

'The milk fed to our calves must be just such as we get from our cows, so that we should be as much interested in the quality as in the quantity; we had no way of knowing the difference in quality till we tested each cow separately and found great differences.'

'I find it very much more interesting dairying when keeping records, as well as being able to know which cow to get rid of. I wish there were more in this district keeping records as it is a good guide when you want to get new stock or young calves.'—(From Cassburn, Ont.)

'We have been weighing our milk now for three years and find it very beneficial. Please send more sheets for daily weights; we would not like to keep cows if we had to stop weighing the milk.'—(From Holten, Ont.)

'I never seem to miss the time spent weighing daily, and in any case the benefits more than offset all the time taken.'—(From Hallerton, Ont.)

'I have been weighing now for one year and find that I have such poor cows in the herd that I am ashamed to send in the figures. I promise you that the unmistakable eye-opener which I have received this year will result in a much happier return next year.'—(From Iona, Ont.)

And another man near Stratford, Ont., who with a herd of ten cows, including one farrow and three 2-year-old heifers, has an average of 9,333 pounds of milk, writes:

'I certainly feel well pleased with the idea of weighing the milk at every milking. A person takes more interest in his dairy work when he knows just what his cows are doing every day. I also believe we should keep an account of the feed they consume.'
TABLE 3.—ILLUSTRATING DIFFERENCES IN PROFIT PER COW. A STUDY OF INDIVIDUALITY IN A PETERBOROUGH HERD.

Every dairy farmer needs to check up in the same way the yield, feed cost and profit of each cow he keeps.

<table>
<thead>
<tr>
<th>Cow No.</th>
<th>Total Yield</th>
<th>Cost of Feed</th>
<th>Feed cost of Milk per 100 lb.</th>
<th>Feed cost of Fat per pound</th>
<th>Profit per Cow with milk at $1 per 100 lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milk lb.</td>
<td>Fat lb.</td>
<td>$ c.</td>
<td>c.</td>
<td>$ cts.</td>
</tr>
<tr>
<td>1</td>
<td>5,920</td>
<td>203.8</td>
<td>31.06</td>
<td>52.4</td>
<td>15.0</td>
</tr>
<tr>
<td>2</td>
<td>5,360</td>
<td>206.3</td>
<td>31.06</td>
<td>58.0</td>
<td>15.6</td>
</tr>
<tr>
<td>3</td>
<td>5,740</td>
<td>167.3</td>
<td>31.06</td>
<td>54.1</td>
<td>16.5</td>
</tr>
<tr>
<td>4</td>
<td>4,900</td>
<td>174.1</td>
<td>31.06</td>
<td>63.3</td>
<td>17.8</td>
</tr>
<tr>
<td>5</td>
<td>3,975</td>
<td>129.8</td>
<td>31.06</td>
<td>78.1</td>
<td>23.9</td>
</tr>
<tr>
<td>6</td>
<td>3,353</td>
<td>128.4</td>
<td>31.06</td>
<td>93.4</td>
<td>24.1</td>
</tr>
<tr>
<td>7</td>
<td>2,689</td>
<td>89.3</td>
<td>31.06</td>
<td>115.0</td>
<td>31.7</td>
</tr>
<tr>
<td>Average</td>
<td>4,558</td>
<td>160.0</td>
<td>31.06</td>
<td>73.4</td>
<td>21.0</td>
</tr>
</tbody>
</table>

This table shows very clearly and unmistakably the great variation found in an average dairy herd with regard to (1) the individual yield of milk and fat per cow, (2) the feed cost of milk and fat, and (3) the profit per cow over cost of feed.

The average yield per cow is 4,558 pounds of milk, which might be considered fairly satisfactory unless one inquires what composes the total and average. Between the highest yield of 5,920 pounds and the lowest of only 2,689 pounds there is a difference of 3,230 pounds. That should emphasize most strongly the utter folly of remaining content with a knowledge of the herd 'average' and not giving due credit where credit is due. Could one expect to build up a good herd by retaining cows Nos. 5, 6 and 7? Would they do better if fed and cared for better?

Cows Nos. 2 and 7 with a difference of 2,660 pounds of milk in their yield are both grade Ayrshires, eight years old. On one there is a clear profit of $22.44, while the other fails to yield enough milk to pay the cost of her feed, and incurs a loss of $4.16.

Even without considering this poorest cow, the next lowest yield is from cow No. 6, producing milk at a feed cost of 93 cents per 100 pounds, or 41 cents more than cow No. 1. Cow No. 4 gives about 1,000 pounds more milk than cow No. 5, but she makes nine dollars more profit.

As the milk yield of cow No. 6 is much more than half the yield of cow No. 1, it might be expected she would give at least half as much profit, but she does not; for as a matter of fact cow No. 1 makes as much profit as twelve cows like No. 6.
TABLE 4.—EXAMPLES OF THE ADVANTAGES OF TESTING FOR FAT AS A GUIDE TO BREEDING.

<table>
<thead>
<tr>
<th>Cow No.</th>
<th>Age of Cow</th>
<th>Production.</th>
<th>Value of Milk at 81 per 100 lb.</th>
<th>Difference</th>
<th>Value of Fat at 25c. per lb.</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Milk.</td>
<td>Fat.</td>
<td></td>
<td>$ cts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb.</td>
<td>%</td>
<td></td>
<td>$ cts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb.</td>
<td></td>
<td></td>
<td>$ cts.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>8,895</td>
<td>2:6</td>
<td></td>
<td>98 95</td>
<td>12 85</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8,610</td>
<td>5:4</td>
<td></td>
<td>86 10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7,270</td>
<td>3:9</td>
<td></td>
<td>72 70</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7,255</td>
<td>4:9</td>
<td></td>
<td>72 65</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5,770</td>
<td>3:4</td>
<td></td>
<td>57 70</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5,680</td>
<td>3:7</td>
<td></td>
<td>56 60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>5,883</td>
<td>4:0</td>
<td></td>
<td>55 85</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>5,575</td>
<td>3:4</td>
<td></td>
<td>55 75</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>6,505</td>
<td>3:5</td>
<td></td>
<td>65 65</td>
<td>1 80</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>6,325</td>
<td>3:3</td>
<td></td>
<td>63 25</td>
<td></td>
</tr>
</tbody>
</table>

It will be noticed in the above table that each pair of cows gives practically the same weight of milk. These contrasts are designed to show that, useful as that knowledge is, the additional information given by the test for fat is invaluable in the selection of cows for building up a profitable herd.

Taking cows Nos. 9 and 10, for example, one might be inclined to retain No. 9, if milk only were considered, though her gross product is worth only $1.50 more than that of No. 10; but with No. 10's milk testing a little higher, her production of fat is worth $18.53 more.

The contrast between the first two cows is considerably greater, amounting to $44.58.

TABLE 5.—SUMMARY OF AVERAGE YIELDS OF HERDS FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF ONTARIO, 1912.

<table>
<thead>
<tr>
<th>Full Period of Lactation</th>
<th>No. of Associations</th>
<th>No. of Herds</th>
<th>No. of Cows</th>
<th>Average Yield.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milk.</td>
<td>Test.</td>
<td>Fat.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lb.</td>
<td>lb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weights and Tests........</td>
<td>91</td>
<td>483</td>
<td>4,852</td>
<td>5,856</td>
</tr>
<tr>
<td>Weights only.............</td>
<td>8</td>
<td>13</td>
<td>156</td>
<td>7,214</td>
</tr>
<tr>
<td>Total....................</td>
<td>99</td>
<td>496</td>
<td>5,908</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6.—COMPARISONS OF AVERAGE YIELDS OF HERDS RECORDED FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF ONTARIO, 1912.

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Name of Association</th>
<th>No. of Herds</th>
<th>No. of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milk</td>
</tr>
<tr>
<td>Eastern Ontario—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brockville</td>
<td>Mitchellville</td>
<td>12</td>
<td>188</td>
<td>6,639</td>
</tr>
<tr>
<td></td>
<td>Escott</td>
<td>2</td>
<td>47</td>
<td>5,194</td>
</tr>
<tr>
<td></td>
<td>Mallorytown</td>
<td>10</td>
<td>156</td>
<td>5,649</td>
</tr>
<tr>
<td></td>
<td>Port Hope</td>
<td>2</td>
<td>11</td>
<td>5,570</td>
</tr>
<tr>
<td></td>
<td>River Bank</td>
<td>1</td>
<td>11</td>
<td>4,994</td>
</tr>
<tr>
<td></td>
<td>Prescott</td>
<td>2</td>
<td>39</td>
<td>7,361</td>
</tr>
<tr>
<td></td>
<td>Spencerville</td>
<td>2</td>
<td>32</td>
<td>4,856</td>
</tr>
<tr>
<td></td>
<td>Acton's Corners</td>
<td>2</td>
<td>15</td>
<td>5,550</td>
</tr>
<tr>
<td></td>
<td>Bishop's Mills</td>
<td>4</td>
<td>54</td>
<td>6,280</td>
</tr>
<tr>
<td></td>
<td>Barretts Rapids</td>
<td>2</td>
<td>9</td>
<td>5,871</td>
</tr>
<tr>
<td></td>
<td>East Oxford</td>
<td>2</td>
<td>23</td>
<td>5,900</td>
</tr>
<tr>
<td></td>
<td>Farmers Union</td>
<td>12</td>
<td>83</td>
<td>6,151</td>
</tr>
<tr>
<td></td>
<td>Hutchins Corners</td>
<td>1</td>
<td>10</td>
<td>6,042</td>
</tr>
<tr>
<td></td>
<td>Millars Corners</td>
<td>1</td>
<td>16</td>
<td>4,081</td>
</tr>
<tr>
<td></td>
<td>Oxford Mills</td>
<td>6</td>
<td>55</td>
<td>5,408</td>
</tr>
<tr>
<td></td>
<td>South Gower</td>
<td>1</td>
<td>14</td>
<td>4,105</td>
</tr>
<tr>
<td>Hastings, N.R.</td>
<td>Acorne</td>
<td>5</td>
<td>45</td>
<td>7,524</td>
</tr>
<tr>
<td></td>
<td>Frankford</td>
<td>6</td>
<td>65</td>
<td>4,941</td>
</tr>
<tr>
<td></td>
<td>Rodger</td>
<td>9</td>
<td>85</td>
<td>5,724</td>
</tr>
<tr>
<td></td>
<td>Sidney Town Hall</td>
<td>7</td>
<td>81</td>
<td>7,349</td>
</tr>
<tr>
<td></td>
<td>Wooler</td>
<td>8</td>
<td>63</td>
<td>6,029</td>
</tr>
<tr>
<td></td>
<td>Wooler (weights)</td>
<td>1</td>
<td>8</td>
<td>6,557</td>
</tr>
<tr>
<td>Kingston</td>
<td>Arrigean</td>
<td>1</td>
<td>13</td>
<td>8,565</td>
</tr>
<tr>
<td></td>
<td>Cataraqu</td>
<td>1</td>
<td>17</td>
<td>8,550</td>
</tr>
<tr>
<td></td>
<td>Eastern Dairy Sack</td>
<td>7</td>
<td>97</td>
<td>5,735</td>
</tr>
<tr>
<td></td>
<td>Huntingdon</td>
<td>7</td>
<td>79</td>
<td>5,902</td>
</tr>
<tr>
<td></td>
<td>Keenan</td>
<td>3</td>
<td>41</td>
<td>5,736</td>
</tr>
<tr>
<td></td>
<td>Pine Hill</td>
<td>2</td>
<td>26</td>
<td>5,804</td>
</tr>
<tr>
<td></td>
<td>Parham</td>
<td>1</td>
<td>6</td>
<td>4,948</td>
</tr>
<tr>
<td></td>
<td>Sydenham</td>
<td>3</td>
<td>46</td>
<td>6,015</td>
</tr>
<tr>
<td></td>
<td>Wagaraville</td>
<td>2</td>
<td>19</td>
<td>5,775</td>
</tr>
<tr>
<td></td>
<td>Bathurst Mutual</td>
<td>9</td>
<td>89</td>
<td>5,143</td>
</tr>
<tr>
<td></td>
<td>Balderston</td>
<td>6</td>
<td>48</td>
<td>6,245</td>
</tr>
<tr>
<td></td>
<td>Carleton Place</td>
<td>2</td>
<td>21</td>
<td>5,856</td>
</tr>
<tr>
<td></td>
<td>Drummond</td>
<td>1</td>
<td>6</td>
<td>4,940</td>
</tr>
<tr>
<td></td>
<td>Fallbrook</td>
<td>3</td>
<td>31</td>
<td>6,279</td>
</tr>
<tr>
<td></td>
<td>Ferry Road</td>
<td>2</td>
<td>29</td>
<td>6,997</td>
</tr>
<tr>
<td></td>
<td>Harper</td>
<td>3</td>
<td>25</td>
<td>7,908</td>
</tr>
<tr>
<td></td>
<td>Innsdale</td>
<td>4</td>
<td>57</td>
<td>5,266</td>
</tr>
<tr>
<td></td>
<td>Lanark</td>
<td>4</td>
<td>38</td>
<td>6,399</td>
</tr>
<tr>
<td></td>
<td>Scotch Line</td>
<td>6</td>
<td>63</td>
<td>5,005</td>
</tr>
<tr>
<td></td>
<td>Scotch Line (weights)</td>
<td>2</td>
<td>20</td>
<td>5,145</td>
</tr>
<tr>
<td></td>
<td>Tayside</td>
<td>3</td>
<td>39</td>
<td>5,834</td>
</tr>
<tr>
<td></td>
<td>Tayside (weights)</td>
<td>1</td>
<td>17</td>
<td>6,435</td>
</tr>
<tr>
<td></td>
<td>Smith's Falls (weights)</td>
<td>1</td>
<td>11</td>
<td>9,159</td>
</tr>
<tr>
<td>Peterborough</td>
<td>Unionhall</td>
<td>6</td>
<td>63</td>
<td>7,875</td>
</tr>
<tr>
<td></td>
<td>Watson's Corners</td>
<td>7</td>
<td>45</td>
<td>5,267</td>
</tr>
<tr>
<td></td>
<td>Pine Grove</td>
<td>1</td>
<td>2</td>
<td>4,859</td>
</tr>
<tr>
<td></td>
<td>Westwood</td>
<td>1</td>
<td>6</td>
<td>4,812</td>
</tr>
<tr>
<td></td>
<td>Central Smith</td>
<td>4</td>
<td>51</td>
<td>8,485</td>
</tr>
<tr>
<td></td>
<td>Ennismore</td>
<td>4</td>
<td>37</td>
<td>5,901</td>
</tr>
<tr>
<td></td>
<td>Keene</td>
<td>12</td>
<td>99</td>
<td>5,610</td>
</tr>
<tr>
<td></td>
<td>Norwood</td>
<td>11</td>
<td>67</td>
<td>6,285</td>
</tr>
<tr>
<td></td>
<td>Peterboro</td>
<td>21</td>
<td>172</td>
<td>5,724</td>
</tr>
<tr>
<td></td>
<td>Peterboro (weights)</td>
<td>1</td>
<td>7</td>
<td>7,116</td>
</tr>
<tr>
<td></td>
<td>Shearer</td>
<td>16</td>
<td>122</td>
<td>5,655</td>
</tr>
<tr>
<td></td>
<td>Trewern</td>
<td>8</td>
<td>79</td>
<td>5,356</td>
</tr>
<tr>
<td></td>
<td>Dunamoy</td>
<td>5</td>
<td>70</td>
<td>5,835</td>
</tr>
<tr>
<td></td>
<td>Dalhousie</td>
<td>1</td>
<td>16</td>
<td>4,384</td>
</tr>
<tr>
<td></td>
<td>Avonmore</td>
<td>9</td>
<td>106</td>
<td>5,653</td>
</tr>
<tr>
<td></td>
<td>Boundary</td>
<td>6</td>
<td>74</td>
<td>4,444</td>
</tr>
<tr>
<td></td>
<td>Cloverdale</td>
<td>3</td>
<td>37</td>
<td>5,464</td>
</tr>
<tr>
<td></td>
<td>Duff's Corners</td>
<td>6</td>
<td>75</td>
<td>5,289</td>
</tr>
<tr>
<td></td>
<td>Gravel Hill</td>
<td>5</td>
<td>68</td>
<td>6,049</td>
</tr>
<tr>
<td></td>
<td>Lunenburg</td>
<td>11</td>
<td>121</td>
<td>5,222</td>
</tr>
</tbody>
</table>
TABLE 6.—COMPARISONS OF AVERAGE YIELDS OF HERDS RECORDED FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF ONTARIO, 1912—Continued.

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Name of Association</th>
<th>No. of Herds</th>
<th>No. of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milk.</td>
</tr>
<tr>
<td>Western Ontario—</td>
<td>Brant</td>
<td></td>
<td></td>
<td>5,735</td>
</tr>
<tr>
<td></td>
<td>St. George</td>
<td>2</td>
<td>24</td>
<td>5,882</td>
</tr>
<tr>
<td></td>
<td>Paramount</td>
<td>4</td>
<td>19</td>
<td>6,208</td>
</tr>
<tr>
<td></td>
<td>Corinth</td>
<td>1</td>
<td>7</td>
<td>5,066</td>
</tr>
<tr>
<td></td>
<td>Mapleton (weights)</td>
<td>1</td>
<td>12</td>
<td>9,980</td>
</tr>
<tr>
<td></td>
<td>Dunnville</td>
<td>3</td>
<td>21</td>
<td>5,947</td>
</tr>
<tr>
<td></td>
<td>Hagaraville</td>
<td>13</td>
<td>84</td>
<td>5,930</td>
</tr>
<tr>
<td></td>
<td>Selkirk</td>
<td>5</td>
<td>26</td>
<td>4,852</td>
</tr>
<tr>
<td></td>
<td>Haldimand</td>
<td>1</td>
<td>10</td>
<td>6,883</td>
</tr>
<tr>
<td></td>
<td>Forest</td>
<td>2</td>
<td>13</td>
<td>5,741</td>
</tr>
<tr>
<td></td>
<td>White Oak</td>
<td>1</td>
<td>8</td>
<td>5,527</td>
</tr>
<tr>
<td></td>
<td>Cassel</td>
<td>3</td>
<td>43</td>
<td>7,644</td>
</tr>
<tr>
<td></td>
<td>German Union</td>
<td>6</td>
<td>51</td>
<td>5,747</td>
</tr>
<tr>
<td></td>
<td>Innerkip</td>
<td>3</td>
<td>38</td>
<td>8,418</td>
</tr>
<tr>
<td></td>
<td>North Oxford (weights)</td>
<td>1</td>
<td>14</td>
<td>6,988</td>
</tr>
<tr>
<td></td>
<td>Uniondale</td>
<td>3</td>
<td>26</td>
<td>5,100</td>
</tr>
<tr>
<td></td>
<td>Tavistock</td>
<td>8</td>
<td>63</td>
<td>6,073</td>
</tr>
<tr>
<td></td>
<td>Avonbank</td>
<td>5</td>
<td>52</td>
<td>5,935</td>
</tr>
<tr>
<td></td>
<td>Elma</td>
<td>25</td>
<td>304</td>
<td>5,570</td>
</tr>
<tr>
<td></td>
<td>Elma and Mornington</td>
<td>4</td>
<td>36</td>
<td>6,528</td>
</tr>
<tr>
<td></td>
<td>Newry</td>
<td>7</td>
<td>65</td>
<td>4,640</td>
</tr>
<tr>
<td></td>
<td>Elmbank</td>
<td>11</td>
<td>140</td>
<td>5,905</td>
</tr>
<tr>
<td></td>
<td>Silver Corners</td>
<td>5</td>
<td>65</td>
<td>6,454</td>
</tr>
<tr>
<td></td>
<td>Trowbridge</td>
<td>5</td>
<td>53</td>
<td>4,904</td>
</tr>
<tr>
<td></td>
<td>Wallace</td>
<td>8</td>
<td>78</td>
<td>5,261</td>
</tr>
<tr>
<td></td>
<td>Black Creek</td>
<td>5</td>
<td>41</td>
<td>8,194</td>
</tr>
<tr>
<td></td>
<td>Black Creek (weights)</td>
<td>3</td>
<td>32</td>
<td>8,255</td>
</tr>
<tr>
<td></td>
<td>Bertie</td>
<td>7</td>
<td>40</td>
<td>5,550</td>
</tr>
<tr>
<td></td>
<td>Point Abino</td>
<td>6</td>
<td>22</td>
<td>4,962</td>
</tr>
<tr>
<td></td>
<td>Guelph</td>
<td>19</td>
<td>141</td>
<td>5,723</td>
</tr>
<tr>
<td></td>
<td>East and West Oxford</td>
<td>5</td>
<td>65</td>
<td>5,334</td>
</tr>
<tr>
<td></td>
<td>Milton (weights)</td>
<td>1</td>
<td>28</td>
<td>4,469</td>
</tr>
<tr>
<td></td>
<td>Hickson</td>
<td>1</td>
<td>17</td>
<td>6,205</td>
</tr>
<tr>
<td></td>
<td>Spring Creek</td>
<td>2</td>
<td>31</td>
<td>9,369</td>
</tr>
<tr>
<td></td>
<td>Virtue</td>
<td>6</td>
<td>55</td>
<td>5,140</td>
</tr>
</tbody>
</table>

Note.—This table, and the similar table for each province, contains only a partial list of all the cows recorded during any one month. A great many more records were received but could not be included in this table of total yields because they were records of only four or five months’ production. Records should be kept of each cow for the full milking period.

The Associations at Black Creek, Innerkip and Uniondale are of interest because when adding three herds together they each average over 8,000 pounds of milk per cow, in strong contrast to the averages of only 4,348 and 3,623 pounds of milk per cow at Finch and River Bank.

The herd at Mapleton, 12 cows with an average of 9,980 pounds of milk, is noteworthy.

Three herds of 10 cows each in the associations at German Union, Guelph and Black Creek have a total production, respectively, of 41,625, 76,558, and 93,331 pounds of milk. The third man therefore makes $517 more than the first man with the same number of cows.

A herd of some interest is one at Innerkip, where 16 grade cows, including four 3-year-olds, average 7,477 pounds of milk, 3-3 test, and 246 pounds of fat. With the
exception of one yield of 195 pounds, each cow gives over 200 pounds of fat, and one goes as high as 306 pounds.

A herd at Prescott has the very satisfactory average from 24 cows of 6,769 pounds of milk, 3.3 test, and 226 pounds of fat. The lowest yield in this case is 4,782 pounds of milk. Another herd at Prescott is well to the front with an average from 15 grades of 8,306 pounds of milk, 3.3 test, and 276 pounds of fat. The range per cow in this herd is from 212 to 369 pounds of fat per cow.

Such yields make one wonder why a dairyman who is keeping only three or four cows should remain content with handling the kind that averages only 3,453 pounds of milk and 119 pounds of fat, especially when in his neighbouring association at Bertie a herd of four grade cows average 383 pounds of fat. The poorest cow in this herd is one 14 years old, giving 6,770 pounds of milk and 243 pounds of fat. The average of the herd would be considerably higher if this one fairly good cow were not considered, for the other three cows give 406, 443 and 449 pounds of fat each.

A good herd at Uniondale has an average from 13 grades of 9,133 pounds of milk, 3.6 test, and 328 pounds of fat. The lowest yield is 5,172 pounds of milk and 244 pounds of fat from a 3-year-old.

One herd of 12 grades at Avonmore, where one may expect considerable improvement, has an average yield of 3,833 pounds of milk, 3.6 test, and 140 pounds of fat. With the exception of two heifers, 2 and 3 years old, the ages run from 4 to 12. The owner of the 12 cows at Mapleton obtained from his herd a total of 119,764 pounds of milk; this Avonmore lot of 12 cows produced only 46,003 pounds. Would not the extra 36 tons of milk be worth having?

In a herd at Cassel a 5-year-old grade gives 4,600 pounds of milk, while a 4-year-old gives 13,100 pounds. With milk worth $1 per 100 pounds this indicates a difference in the gross income per cow, as also noticed between two cows in a herd in British Columbia, of eighty-five dollars.

TABLE 7—SUMMARY OF AVERAGE YIELDS OF HERDS FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF QUEBEC, 1912.

<table>
<thead>
<tr>
<th>No. of Associations</th>
<th>No. of Herds</th>
<th>No. of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Milk. Test. Fat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lb.</td>
</tr>
<tr>
<td>Weights and Tests</td>
<td>59</td>
<td>220</td>
<td>3,043</td>
</tr>
<tr>
<td>Weights only</td>
<td>4</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>63</td>
<td>324</td>
<td>3,083</td>
</tr>
</tbody>
</table>
TABLE 8—COMPARISONS OF AVERAGE YIELDS OF HERDS RECORDED FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF QUEBEC, 1912.

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Name of Association</th>
<th>No. of Herds.</th>
<th>No. of Cows</th>
<th>Average Yield</th>
<th>Milk.</th>
<th>Test.</th>
<th>Fat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beauce</td>
<td>Coulombe</td>
<td>7</td>
<td>72</td>
<td>3,880</td>
<td>4.0</td>
<td>158.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Come</td>
<td>5</td>
<td>53</td>
<td>3,457</td>
<td>4.0</td>
<td>140.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Evariste</td>
<td>1</td>
<td>11</td>
<td>2,688</td>
<td>3.7</td>
<td>79.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. George</td>
<td>1</td>
<td>5</td>
<td>3,650</td>
<td>3.8</td>
<td>142.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Lucier</td>
<td>4</td>
<td>37</td>
<td>3,401</td>
<td>4.1</td>
<td>141.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Martin</td>
<td>4</td>
<td>26</td>
<td>2,933</td>
<td>3.9</td>
<td>115.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Sauveur</td>
<td>12</td>
<td>93</td>
<td>3,154</td>
<td>4.0</td>
<td>135.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Victor</td>
<td>3</td>
<td>22</td>
<td>3,297</td>
<td>3.7</td>
<td>124.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Zacharie</td>
<td>2</td>
<td>21</td>
<td>4,158</td>
<td>3.6</td>
<td>156.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cap St. Gabriel</td>
<td>2</td>
<td>23</td>
<td>5,388</td>
<td>4.1</td>
<td>219.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Damien</td>
<td>4</td>
<td>40</td>
<td>3,388</td>
<td>4.2</td>
<td>144.9</td>
<td></td>
</tr>
<tr>
<td>Bagot</td>
<td>Upton</td>
<td>12</td>
<td>12</td>
<td>4,120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronte</td>
<td>1</td>
<td>18</td>
<td>3,798</td>
<td>3.6</td>
<td>139.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowleton</td>
<td>4</td>
<td>53</td>
<td>3,837</td>
<td>3.8</td>
<td>148.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sutton</td>
<td>2</td>
<td>23</td>
<td>3,819</td>
<td>4.5</td>
<td>174.5</td>
<td></td>
</tr>
<tr>
<td>Champlain</td>
<td>Poir's Residence</td>
<td>2</td>
<td>20</td>
<td>5,051</td>
<td>3.8</td>
<td>195.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Anne de la Pe</td>
<td>12</td>
<td>131</td>
<td>4,618</td>
<td>3.9</td>
<td>180.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weights only.</td>
<td>1</td>
<td>13</td>
<td>4,773</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Geneviève</td>
<td>5</td>
<td>49</td>
<td>5,014</td>
<td>4.0</td>
<td>186.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Prosper</td>
<td>15</td>
<td>139</td>
<td>4,747</td>
<td>4.0</td>
<td>191.3</td>
<td></td>
</tr>
<tr>
<td>Chateauguay</td>
<td>Compton</td>
<td>2</td>
<td>26</td>
<td>5,588</td>
<td>3.9</td>
<td>138.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milan</td>
<td>5</td>
<td>22</td>
<td>4,117</td>
<td>3.6</td>
<td>148.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Malo d'Auckland</td>
<td>3</td>
<td>21</td>
<td>4,035</td>
<td>3.8</td>
<td>155.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Bernard</td>
<td>1</td>
<td>12</td>
<td>4,651</td>
<td>3.9</td>
<td>161.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Claire</td>
<td>6</td>
<td>54</td>
<td>3,193</td>
<td>3.8</td>
<td>121.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Edouard de Framp</td>
<td>12</td>
<td>69</td>
<td>2,894</td>
<td>3.6</td>
<td>109.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Héndine</td>
<td>7</td>
<td>47</td>
<td>3,151</td>
<td>3.9</td>
<td>110.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Isidore</td>
<td>10</td>
<td>70</td>
<td>3,480</td>
<td>4.0</td>
<td>149.9</td>
<td></td>
</tr>
<tr>
<td>Drummond</td>
<td>Drummondville</td>
<td>4</td>
<td>31</td>
<td>3,563</td>
<td>3.8</td>
<td>138.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avellin du St. Isid</td>
<td>4</td>
<td>38</td>
<td>4,213</td>
<td>3.9</td>
<td>157.7</td>
<td></td>
</tr>
<tr>
<td>Kamouraska</td>
<td>St. Alexandre</td>
<td>2</td>
<td>16</td>
<td>3,421</td>
<td>4.2</td>
<td>140.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Paschal</td>
<td>2</td>
<td>16</td>
<td>2,759</td>
<td>3.8</td>
<td>107.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kamouraska</td>
<td>3</td>
<td>24</td>
<td>2,837</td>
<td>4.0</td>
<td>117.0</td>
<td></td>
</tr>
<tr>
<td>Labelle</td>
<td>St. Andre Avellin</td>
<td>1</td>
<td>5</td>
<td>3,216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L'Islet</td>
<td>Village des Avinax</td>
<td>1</td>
<td>11</td>
<td>2,980</td>
<td>3.4</td>
<td>102.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Emélie</td>
<td>12</td>
<td>83</td>
<td>3,912</td>
<td>4.1</td>
<td>163.0</td>
<td></td>
</tr>
<tr>
<td>Lotbiniere</td>
<td>Cowanville</td>
<td>4</td>
<td>64</td>
<td>5,511</td>
<td>4.2</td>
<td>231.4</td>
<td></td>
</tr>
<tr>
<td>Mississquoi</td>
<td>Dairy Valley</td>
<td>1</td>
<td>7</td>
<td>3,854</td>
<td>3.5</td>
<td>190.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. D. de Stanbridge</td>
<td>1</td>
<td>9</td>
<td>3,457</td>
<td>3.8</td>
<td>131.8</td>
<td></td>
</tr>
<tr>
<td>Montmorency</td>
<td>Ste. Joasbre</td>
<td>3</td>
<td>63</td>
<td>3,465</td>
<td>3.9</td>
<td>132.2</td>
<td></td>
</tr>
<tr>
<td>Richmond</td>
<td>St. Camille</td>
<td>1</td>
<td>7</td>
<td>4,038</td>
<td>3.9</td>
<td>161.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Richmond and M.</td>
<td>2</td>
<td>24</td>
<td>5,902</td>
<td>3.8</td>
<td>224.3</td>
<td></td>
</tr>
<tr>
<td>St. Hyacinthe</td>
<td>Grand Rang</td>
<td>9</td>
<td>83</td>
<td>4,364</td>
<td>4.0</td>
<td>177.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Point du Jour</td>
<td>7</td>
<td>50</td>
<td>3,999</td>
<td>4.0</td>
<td>163.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dairy School</td>
<td>11</td>
<td>152</td>
<td>5,110</td>
<td>4.0</td>
<td>264.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Hyanc, le Confes.</td>
<td>4</td>
<td>39</td>
<td>5,650</td>
<td>3.9</td>
<td>225.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ste. Rosalie</td>
<td>3</td>
<td>30</td>
<td>5,324</td>
<td>4.0</td>
<td>216.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. François</td>
<td>17</td>
<td>142</td>
<td>4,846</td>
<td>3.9</td>
<td>193.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Thomas d'Aquin</td>
<td>6</td>
<td>53</td>
<td>4,557</td>
<td>4.1</td>
<td>206.5</td>
<td></td>
</tr>
<tr>
<td>Soulanges</td>
<td>Alpha</td>
<td>1</td>
<td>8</td>
<td>4,573</td>
<td>3.7</td>
<td>160.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dixville</td>
<td>1</td>
<td>6</td>
<td>3,657</td>
<td>3.7</td>
<td>138.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North Hatley</td>
<td>3</td>
<td>41</td>
<td>4,142</td>
<td>4.0</td>
<td>156.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Herméneigide</td>
<td>2</td>
<td>23</td>
<td>3,458</td>
<td>3.9</td>
<td>137.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ayer's Ciff</td>
<td>12</td>
<td>123</td>
<td>4,539</td>
<td>3.9</td>
<td>179.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barnston</td>
<td>8</td>
<td>117</td>
<td>4,677</td>
<td>3.8</td>
<td>169.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fairfax</td>
<td>6</td>
<td>93</td>
<td>4,186</td>
<td>3.5</td>
<td>160.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatley</td>
<td>12</td>
<td>98</td>
<td>5,000</td>
<td>3.7</td>
<td>180.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ways Mills</td>
<td>11</td>
<td>133</td>
<td>4,136</td>
<td>4.1</td>
<td>170.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Thomas</td>
<td>7</td>
<td>36</td>
<td>2,907</td>
<td>4.0</td>
<td>120.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waterloo</td>
<td>6</td>
<td>80</td>
<td>4,078</td>
<td>4.2</td>
<td>172.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Shefford</td>
<td>12</td>
<td>189</td>
<td>3,785</td>
<td>3.9</td>
<td>149.9</td>
<td></td>
</tr>
</tbody>
</table>

See Note at foot of Table 6.
TABLE 9.—SUMMARY OF AVERAGE YIELDS OF HERDS FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF NOVA SCOTIA, 1912.

<table>
<thead>
<tr>
<th>Full Period of Lactation</th>
<th>Number of Associations</th>
<th>Number of Herds</th>
<th>Number of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lb. of Milk</td>
</tr>
<tr>
<td>Weights and tests........</td>
<td>6</td>
<td>27</td>
<td>143</td>
<td>4,777</td>
</tr>
</tbody>
</table>

TABLE 10.—COMPARISONS OF AVERAGE YIELDS OF HERDS FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF NOVA SCOTIA, 1912.

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Name of Association</th>
<th>No. of Herds</th>
<th>No. of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lb.</td>
<td>Test</td>
</tr>
<tr>
<td>Colchester.............</td>
<td>Brookfield...........</td>
<td>4</td>
<td>28</td>
<td>5,221</td>
</tr>
<tr>
<td></td>
<td>Tatamagouche........</td>
<td>1</td>
<td>8</td>
<td>4,801</td>
</tr>
<tr>
<td>Kings..................</td>
<td>Berwick..............</td>
<td>5</td>
<td>21</td>
<td>3,008</td>
</tr>
<tr>
<td>Pictou................</td>
<td>Salt Springs.........</td>
<td>2</td>
<td>5</td>
<td>3,149</td>
</tr>
<tr>
<td></td>
<td>Scotsburn............</td>
<td>7</td>
<td>45</td>
<td>5,074</td>
</tr>
<tr>
<td>Yarmouth...............</td>
<td>Yarmouth.............</td>
<td>8</td>
<td>36</td>
<td>5,313</td>
</tr>
</tbody>
</table>

TABLE 11.—SUMMARY OF AVERAGE YIELDS OF HERDS FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF NEW BRUNSWICK, 1912.

<table>
<thead>
<tr>
<th>Full Period of Lactation</th>
<th>Number of Associations</th>
<th>Number of Herds</th>
<th>Number of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lb. of Milk</td>
</tr>
<tr>
<td>Weights and Tests........</td>
<td>7</td>
<td>20</td>
<td>175</td>
<td>4,637</td>
</tr>
<tr>
<td>Weights only.............</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>5,953</td>
</tr>
</tbody>
</table>
TABLE 12.—COMPARISONS OF AVERAGE YIELDS OF HERDS RECORDED FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF NEW BRUNSWICK, 1912.

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Name of Association</th>
<th>No. of Herds</th>
<th>No. of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milk</td>
</tr>
<tr>
<td>Kings and Albert</td>
<td>Carsonville</td>
<td>2</td>
<td>26</td>
<td>3,018</td>
</tr>
<tr>
<td></td>
<td>Clifton</td>
<td>2</td>
<td>3</td>
<td>3,790</td>
</tr>
<tr>
<td></td>
<td>Hampton</td>
<td>2</td>
<td>33</td>
<td>5,223</td>
</tr>
<tr>
<td></td>
<td>Penobsquis</td>
<td>5</td>
<td>49</td>
<td>3,834</td>
</tr>
<tr>
<td></td>
<td>Smiths' Creek</td>
<td>2</td>
<td>11</td>
<td>2,817</td>
</tr>
<tr>
<td></td>
<td>Victoria Mills</td>
<td>5</td>
<td>40</td>
<td>4,046</td>
</tr>
<tr>
<td>Sunbury and Queens</td>
<td>Welsford</td>
<td>2</td>
<td>13</td>
<td>4,892</td>
</tr>
<tr>
<td>Westmorland</td>
<td>Salisbury (weights only)</td>
<td>1</td>
<td>7</td>
<td>5,953</td>
</tr>
</tbody>
</table>

Notice the range in yield in this table, from 2,817 to 5,953 as the herd average of pounds of milk per cow, and from 130 to 253 pounds of fat per cow.

TABLE 13—SUMMARY OF AVERAGE YIELDS OF HERDS FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF PRINCE EDWARD ISLAND, 1912.

<table>
<thead>
<tr>
<th>Full Period of Lactation</th>
<th>No. of Associations</th>
<th>No. of Herds</th>
<th>No. of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milk</td>
</tr>
<tr>
<td>Weights and tests</td>
<td>13</td>
<td>80</td>
<td>506</td>
<td>5,029</td>
</tr>
</tbody>
</table>

TABLE 14—COMPARISONS OF AVERAGE YIELDS OF HERDS RECORDED FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF PRINCE EDWARD ISLAND, 1912.

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Name of Association</th>
<th>No. of Herds</th>
<th>No. of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milk</td>
</tr>
<tr>
<td>Prince</td>
<td>Central Lot 16</td>
<td>1</td>
<td>7</td>
<td>3,833</td>
</tr>
<tr>
<td></td>
<td>Dunk River</td>
<td>16</td>
<td>129</td>
<td>4,627</td>
</tr>
<tr>
<td></td>
<td>Hamilton</td>
<td>7</td>
<td>42</td>
<td>4,088</td>
</tr>
<tr>
<td></td>
<td>Kensington</td>
<td>15</td>
<td>99</td>
<td>4,665</td>
</tr>
<tr>
<td></td>
<td>Kinkora</td>
<td>8</td>
<td>39</td>
<td>4,109</td>
</tr>
<tr>
<td></td>
<td>North Tryon</td>
<td>8</td>
<td>39</td>
<td>5,115</td>
</tr>
<tr>
<td></td>
<td>Crapaud</td>
<td>10</td>
<td>45</td>
<td>7,263</td>
</tr>
<tr>
<td></td>
<td>Emerald</td>
<td>5</td>
<td>35</td>
<td>5,027</td>
</tr>
<tr>
<td></td>
<td>Hazel Brook</td>
<td>1</td>
<td>6</td>
<td>4,317</td>
</tr>
<tr>
<td></td>
<td>Marshfield</td>
<td>6</td>
<td>21</td>
<td>5,929</td>
</tr>
<tr>
<td></td>
<td>New Glasgow</td>
<td>1</td>
<td>3</td>
<td>4,613</td>
</tr>
<tr>
<td></td>
<td>Park Corner</td>
<td>6</td>
<td>51</td>
<td>5,137</td>
</tr>
<tr>
<td></td>
<td>Stanley Bridge</td>
<td>1</td>
<td>12</td>
<td>4,331</td>
</tr>
</tbody>
</table>

15a—8
The average herd yields in this table vary from 3,383 pounds of milk and 138 pounds of fat to 7,263 pounds of milk and 270 pounds of fat per cow. As the average cost of feed per cow is estimated at $27.57, the variation in profit over cost of feed runs from $10.76 to $45.06 per cow. In other words, on the average each one of the 45 cows at Crapaud makes as much net profit as four of the kind in the first herd tabled.

TABLE 15—SUMMARY OF AVERAGE YIELDS OF HERDS FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF BRITISH COLUMBIA, 1912.

<table>
<thead>
<tr>
<th>Full Period of Lactation</th>
<th>No. of Associations</th>
<th>No. of Herds.</th>
<th>No. of Cows.</th>
<th>Average Yield.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milk.</td>
</tr>
<tr>
<td>Weights and tests</td>
<td>5</td>
<td>29</td>
<td>238</td>
<td>lb.</td>
</tr>
</tbody>
</table>

TABLE 16—COMPARISONS OF AVERAGE YIELDS OF HERDS RECORDED FOR THE FULL PERIOD OF LACTATION IN THE PROVINCE OF BRITISH COLUMBIA, 1912.

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Name of Association</th>
<th>No. of Herds.</th>
<th>No. of Cows.</th>
<th>Average Yield.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milk.</td>
</tr>
<tr>
<td>Nanaimo</td>
<td>Cowichan</td>
<td>16</td>
<td>136</td>
<td>5,995</td>
</tr>
<tr>
<td></td>
<td>Nanaimo</td>
<td>5</td>
<td>35</td>
<td>6,574</td>
</tr>
<tr>
<td>New Westminster</td>
<td>Chilliwack</td>
<td>1</td>
<td>6</td>
<td>9,451</td>
</tr>
<tr>
<td>Islands</td>
<td>The Islands</td>
<td>4</td>
<td>25</td>
<td>7,451</td>
</tr>
</tbody>
</table>

TABLE 17—INDIVIDUAL HERDS, 1912.

<table>
<thead>
<tr>
<th>Full Period of Lactation</th>
<th>No. of Herds.</th>
<th>No. of Cows.</th>
<th>Average Yield.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Milk.</td>
</tr>
<tr>
<td>Weights and tests</td>
<td>4</td>
<td>38</td>
<td>4,097</td>
</tr>
<tr>
<td>Weights only</td>
<td>14</td>
<td>172</td>
<td>6,084</td>
</tr>
</tbody>
</table>

See Note at foot of Table 6.
TABLE 18.—SUMMARY OF AVERAGE MONTHLY YIELDS, 1912.

<table>
<thead>
<tr>
<th>Month and Province</th>
<th>Total Number of Herds</th>
<th>Total Number of Cows</th>
<th>Milk</th>
<th>Test</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>23</td>
<td>114</td>
<td>549</td>
<td>4:7</td>
<td>26:0</td>
</tr>
<tr>
<td>British Columbia</td>
<td>35</td>
<td>302</td>
<td>597</td>
<td>4:3</td>
<td>25:1</td>
</tr>
<tr>
<td>Quebec</td>
<td>27</td>
<td>246</td>
<td>533</td>
<td>4:9</td>
<td>22:0</td>
</tr>
<tr>
<td>Ontario</td>
<td>111</td>
<td>626</td>
<td>563</td>
<td>3:7</td>
<td>21:4</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>23</td>
<td>118</td>
<td>572</td>
<td>3:3</td>
<td>21:3</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>7</td>
<td>61</td>
<td>405</td>
<td>5:0</td>
<td>20:5</td>
</tr>
<tr>
<td>General average yield</td>
<td>226</td>
<td>1,467</td>
<td>558</td>
<td>4:0</td>
<td>22:5</td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>22</td>
<td>123</td>
<td>572</td>
<td>4:5</td>
<td>26:0</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>25</td>
<td>108</td>
<td>690</td>
<td>3:6</td>
<td>25:0</td>
</tr>
<tr>
<td>British Columbia</td>
<td>32</td>
<td>280</td>
<td>578</td>
<td>4:3</td>
<td>24:9</td>
</tr>
<tr>
<td>Quebec</td>
<td>32</td>
<td>231</td>
<td>635</td>
<td>3:8</td>
<td>24:7</td>
</tr>
<tr>
<td>Ontario</td>
<td>120</td>
<td>592</td>
<td>674</td>
<td>3:6</td>
<td>24:4</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>7</td>
<td>63</td>
<td>436</td>
<td>5:0</td>
<td>22:0</td>
</tr>
<tr>
<td>General average yield</td>
<td>238</td>
<td>1,397</td>
<td>633</td>
<td>3:9</td>
<td>24:6</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>33</td>
<td>313</td>
<td>655</td>
<td>4:2</td>
<td>27:4</td>
</tr>
<tr>
<td>Ontario</td>
<td>163</td>
<td>771</td>
<td>745</td>
<td>3:4</td>
<td>25:8</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>29</td>
<td>159</td>
<td>582</td>
<td>4:4</td>
<td>25:7</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>26</td>
<td>116</td>
<td>696</td>
<td>3:7</td>
<td>25:7</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>9</td>
<td>68</td>
<td>512</td>
<td>4:7</td>
<td>24:2</td>
</tr>
<tr>
<td>Quebec</td>
<td>81</td>
<td>527</td>
<td>636</td>
<td>3:7</td>
<td>23:8</td>
</tr>
<tr>
<td>General average yield</td>
<td>343</td>
<td>1,945</td>
<td>677</td>
<td>3:6</td>
<td>25:7</td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>35</td>
<td>284</td>
<td>788</td>
<td>4:1</td>
<td>31:9</td>
</tr>
<tr>
<td>Ontario</td>
<td>333</td>
<td>2,103</td>
<td>749</td>
<td>3:2</td>
<td>24:5</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>9</td>
<td>177</td>
<td>511</td>
<td>4:8</td>
<td>24:3</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>33</td>
<td>178</td>
<td>550</td>
<td>4:3</td>
<td>23:7</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>31</td>
<td>146</td>
<td>617</td>
<td>3:7</td>
<td>22:6</td>
</tr>
<tr>
<td>Quebec</td>
<td>202</td>
<td>1,512</td>
<td>926</td>
<td>3:6</td>
<td>21:8</td>
</tr>
<tr>
<td>General average yield</td>
<td>643</td>
<td>4,495</td>
<td>689</td>
<td>3:6</td>
<td>23:9</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>33</td>
<td>339</td>
<td>838</td>
<td>4:0</td>
<td>33:5</td>
</tr>
<tr>
<td>Ontario</td>
<td>535</td>
<td>4,535</td>
<td>839</td>
<td>3:3</td>
<td>27:7</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>32</td>
<td>296</td>
<td>606</td>
<td>4:1</td>
<td>25:3</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>14</td>
<td>136</td>
<td>544</td>
<td>4:3</td>
<td>23:8</td>
</tr>
<tr>
<td>Quebec</td>
<td>454</td>
<td>3,827</td>
<td>621</td>
<td>3:8</td>
<td>23:6</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>47</td>
<td>288</td>
<td>607</td>
<td>3:6</td>
<td>21:8</td>
</tr>
<tr>
<td>General average yield</td>
<td>1,115</td>
<td>9,262</td>
<td>734</td>
<td>3:5</td>
<td>25:9</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>30</td>
<td>250</td>
<td>754</td>
<td>4:0</td>
<td>30:1</td>
</tr>
<tr>
<td>Ontario</td>
<td>565</td>
<td>5,610</td>
<td>915</td>
<td>3:2</td>
<td>29:8</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>98</td>
<td>646</td>
<td>704</td>
<td>3:7</td>
<td>24:9</td>
</tr>
<tr>
<td>Quebec</td>
<td>505</td>
<td>4,593</td>
<td>679</td>
<td>3:8</td>
<td>25:0</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>23</td>
<td>224</td>
<td>648</td>
<td>3:9</td>
<td>23:8</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>36</td>
<td>240</td>
<td>587</td>
<td>4:3</td>
<td>25:1</td>
</tr>
<tr>
<td>General average yield</td>
<td>1,257</td>
<td>11,890</td>
<td>794</td>
<td>3:5</td>
<td>27:9</td>
</tr>
<tr>
<td>General average, weights only</td>
<td>47</td>
<td>496</td>
<td>889</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 18—SUMMARY OF AVERAGE MONTHLY YIELDS—Continued.

<table>
<thead>
<tr>
<th>Month and Province</th>
<th>Total Number of Herds</th>
<th>Total Number of Cows</th>
<th>Average Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Milk</td>
</tr>
<tr>
<td>July—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>27</td>
<td>206</td>
<td>664</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>99</td>
<td>692</td>
<td>711</td>
</tr>
<tr>
<td>Ontario</td>
<td>565</td>
<td>5,847</td>
<td>772</td>
</tr>
<tr>
<td>Quebec</td>
<td>472</td>
<td>4,657</td>
<td>602</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>29</td>
<td>309</td>
<td>565</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>30</td>
<td>191</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>1,222</td>
<td>11,912</td>
<td>691</td>
</tr>
<tr>
<td>General average yield</td>
<td>42</td>
<td></td>
<td>713</td>
</tr>
<tr>
<td>General average, weights only</td>
<td>42</td>
<td></td>
<td>713</td>
</tr>
<tr>
<td>August—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>30</td>
<td>283</td>
<td>629</td>
</tr>
<tr>
<td>Ontario</td>
<td>532</td>
<td>5,567</td>
<td>728</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>90</td>
<td>624</td>
<td>648</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>29</td>
<td>177</td>
<td>476</td>
</tr>
<tr>
<td>Quebec</td>
<td>432</td>
<td>4,253</td>
<td>524</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>29</td>
<td>305</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>1,112</td>
<td>11,209</td>
<td>651</td>
</tr>
<tr>
<td>General average yield</td>
<td>43</td>
<td></td>
<td>712</td>
</tr>
<tr>
<td>General average, weights only</td>
<td>43</td>
<td></td>
<td>712</td>
</tr>
<tr>
<td>September—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>28</td>
<td>288</td>
<td>624</td>
</tr>
<tr>
<td>Ontario</td>
<td>516</td>
<td>5,348</td>
<td>685</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>85</td>
<td>592</td>
<td>620</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>28</td>
<td>147</td>
<td>460</td>
</tr>
<tr>
<td>Quebec</td>
<td>353</td>
<td>3,507</td>
<td>471</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>28</td>
<td>232</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>1,038</td>
<td>10,634</td>
<td>596</td>
</tr>
<tr>
<td>General average yield</td>
<td>40</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>General average, weights only</td>
<td>40</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>October—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>30</td>
<td>226</td>
<td>588</td>
</tr>
<tr>
<td>Ontario</td>
<td>461</td>
<td>4,752</td>
<td>591</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>68</td>
<td>468</td>
<td>542</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>24</td>
<td>235</td>
<td>450</td>
</tr>
<tr>
<td>Quebec</td>
<td>261</td>
<td>2,947</td>
<td>412</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>29</td>
<td>231</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>873</td>
<td>8,389</td>
<td>526</td>
</tr>
<tr>
<td>General average yield</td>
<td>40</td>
<td></td>
<td>560</td>
</tr>
<tr>
<td>General average, weights only</td>
<td>40</td>
<td></td>
<td>560</td>
</tr>
<tr>
<td>November—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>29</td>
<td>207</td>
<td>555</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>27</td>
<td>144</td>
<td>427</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>25</td>
<td>206</td>
<td>436</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>58</td>
<td>357</td>
<td>457</td>
</tr>
<tr>
<td>Ontario</td>
<td>359</td>
<td>3,324</td>
<td>410</td>
</tr>
<tr>
<td>Quebec</td>
<td>164</td>
<td>1,565</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>662</td>
<td>5,833</td>
<td>411</td>
</tr>
<tr>
<td>General average yield</td>
<td>35</td>
<td></td>
<td>490</td>
</tr>
<tr>
<td>General average, weights only</td>
<td>35</td>
<td></td>
<td>490</td>
</tr>
<tr>
<td>December—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>26</td>
<td>190</td>
<td>562</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>24</td>
<td>238</td>
<td>500</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>24</td>
<td>176</td>
<td>489</td>
</tr>
<tr>
<td>Ontario</td>
<td>162</td>
<td>1,693</td>
<td>428</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>40</td>
<td>236</td>
<td>395</td>
</tr>
<tr>
<td>Quebec</td>
<td>101</td>
<td>852</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>441</td>
<td>3,315</td>
<td>414</td>
</tr>
<tr>
<td>General average yield</td>
<td>42</td>
<td></td>
<td>414</td>
</tr>
<tr>
<td>General average, weights only</td>
<td>42</td>
<td></td>
<td>414</td>
</tr>
</tbody>
</table>
This table is arranged by provinces with the highest yield of fat per cow given first each month. It will be noticed that British Columbia is at the head of the list ten times out of twelve. Ontario has the lowest average test each month. These average monthly yields correspond fairly closely with those for 1911.

The total number of records of individual cows made during the year was 5,375 for weights only, and 81,168 for weights and tests, a total of 86,543; this is a substantial increase over the 70,196 records of the previous year.

PERCENTAGE OF FAT.

<table>
<thead>
<tr>
<th>Province</th>
<th>Total Number of Tests</th>
<th>Total Pounds of Milk</th>
<th>Total Pounds of Fat</th>
<th>Average Per Cent of Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
<td>40,813</td>
<td>29,674,600</td>
<td>933,103:2</td>
<td>3:41</td>
</tr>
<tr>
<td>Quebec</td>
<td>28,884</td>
<td>15,887,615</td>
<td>620,178:1</td>
<td>3:96</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>4,264</td>
<td>2,728,259</td>
<td>162,142:4</td>
<td>3:74</td>
</tr>
<tr>
<td>British Columbia</td>
<td>3,079</td>
<td>2,635,348</td>
<td>83,247:8</td>
<td>4:18</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>2,108</td>
<td>1,622,247</td>
<td>44,776:9</td>
<td>4:23</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>1,913</td>
<td>1,616,115</td>
<td>44,879:7</td>
<td>4:41</td>
</tr>
</tbody>
</table>

These average tests correspond very closely with those in 1911.

During 1912 the number of cows tested each month in the Dominion varied from 1,397 in February to 11,912 in July, with a total of 81,168 tests of individual cows for fat during the year. The totals of the monthly yields were 51,792,593 pounds of milk and 1,899,323:8 pounds of fat, thus indicating an average fat content of 3:66 per cent.
<table>
<thead>
<tr>
<th>Month</th>
<th>Number of Cons.</th>
<th>Average Total Fat Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1,666</td>
<td>3.8</td>
</tr>
<tr>
<td>February</td>
<td>1,682</td>
<td>3.8</td>
</tr>
<tr>
<td>March</td>
<td>1,683</td>
<td>3.8</td>
</tr>
<tr>
<td>April</td>
<td>1,682</td>
<td>3.8</td>
</tr>
<tr>
<td>May</td>
<td>1,661</td>
<td>3.8</td>
</tr>
<tr>
<td>June</td>
<td>1,657</td>
<td>3.8</td>
</tr>
<tr>
<td>July</td>
<td>1,660</td>
<td>3.8</td>
</tr>
<tr>
<td>August</td>
<td>1,682</td>
<td>3.8</td>
</tr>
<tr>
<td>September</td>
<td>1,676</td>
<td>3.8</td>
</tr>
<tr>
<td>October</td>
<td>1,682</td>
<td>3.8</td>
</tr>
<tr>
<td>November</td>
<td>1,682</td>
<td>3.8</td>
</tr>
<tr>
<td>December</td>
<td>1,682</td>
<td>3.8</td>
</tr>
</tbody>
</table>
SESSIONAL PAPER No. 15a

DAIRY RECORD CENTRES.

GENERAL.

Besides looking primarily after the broad question of cow testing, each Recorder of a Dairy Record Centre collects notes on various details connected with the system of dairy farming practised in his district, both from the men who are engaged in cow testing as well as from other farmers. By this means information is gathered as to what definite steps a dairyman is taking in building up a good herd, what type of sire is used, what discrimination is exercised in feeding according to the varying individual production of milk and fat, what condition the cow stables are kept in, and so on. Some results of these inquiries, or ‘dairy census’ as it may be termed, are tabulated below; others, naturally, are personal matters in which the recorders act in an advisory capacity.

These records become of increasing value as this special dairy information is collected from more herds and more cows in more localities. It will be noted that 8,200 cows in 676 herds in 13 Centres are reported on below, as compared with 3,183 cows in 331 herds in 5 Centres last year.

The recorders state that better work is being done, far more careful and exact records are kept, and a general disposition evinced to improve existing conditions and methods, by those dairymen who have been cow testing for one year and have started their second year. Many have proved to be not so indifferent about the matter as at first thought; some, for instance, who had not sent in milk records and had not replied to letters, it was found on visiting had voluntarily commenced to keep daily weights, not simply three days per month. They realize that the information is useful.

Factories deserve good support from patrons. Some herds average only 2,500 pounds of milk per cow for the factory season. Some herds are actually below 2,000 pounds. A moment’s reflection shows this is hardly giving the factory a square deal. Operation under such conditions means a high cost of maintenance, a large ‘overhead’ expense, so that the onus of lowering the cost of making per pound and rendering the factory business successful, lies on the fairly good cow that produces 5,000 or 6,000 pounds during the factory season. Some patrons send 7,000 pounds per cow to the factory.

In the County of Lanark, the recorder, in co-operation with the district representative of the Ontario Department of Agriculture, conducted a special agricultural and educational exhibit at the county fall fairs. A display was made in a tent at eight places for thirteen days.

THE NEED FOR PURE BRED DAIRY SIRES.

The outstanding need of several of the districts reported on is the use of the thoroughly good pure bred dairy sire. For instance, at the St. Prosper, Que., Dairy Record Centre, only 13 out of 41 herds are reported as having a pure bred sire. Even then the pure bred sire is only a one-year-old as a rule, and the grade sire is seldom even a high grade. At St. Hyacinthe, Que., again, only 19 out of 112 herds have a pure bred sire. Farmers realize well enough that it would be to their advantage, but seem either to lack the ready money for such an investment, or some one to take the initiative in active co-operation for the purchase of the superior animal.

The matter has frequently been referred to both by correspondence and conversation. Once more let us urge farmers to club together and buy the very best dairy sire obtainable. Co-operation could not be put to better ends, farmers’ clubs might well take up this matter, and most decidedly members of cow testing associations should, above all men, now be in a position to see clearly the need and the advantages of definite instead of haphazard herd-building.
Fifteen or twenty men in any district, having decided on the breed advisable, can co-operate and buy three or more pure bred sires not related. These may be placed in different sections of the community, under the best care. In two years, or when their heifers are old enough to breed, the sires may be exchanged from one section to another. After another two years, change again. Thus if there are three sires purchased they may be used for six years with this system of exchange without any necessity of in-breeding, if there are five sires, ten years.

Could any plan be more simple or more well worth trying?

The extra value of introducing the pure bred influence is worth at least $12 per cow per year.

In two contrasted herds the actual yields are, from a herd of 10 cows only 3,327 pounds of milk per cow, in the other herd of 10 cows a yield of 7,647 pounds per cow. In the first case there is the deleterious influence of the common or 'scrub' sire; the second herd is headed by a pure bred and gets better care. It is believed such contrasts are common.

The advantages of this system of community or co-operative breeding are very numerous.
<table>
<thead>
<tr>
<th>Dairy Record Centre</th>
<th>Total Number of Herds</th>
<th>Total Number of Cows</th>
<th>Average Yield per Cow</th>
<th>Average Yield per Acre cultivated including Pasture</th>
<th>Average number of Cows kept per 100 Acres</th>
<th>Average Feed Cost of 100 lb. Milk</th>
<th>Average Cash Receipts per Cow with Milk at $1 per 100 lb.</th>
<th>Average Cost of Feed per Cow</th>
<th>Average Profit per Cow over Cost of Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avonmore, Ont.</td>
<td>19</td>
<td>261</td>
<td>5,121</td>
<td>748</td>
<td>14</td>
<td>72</td>
<td>51 21</td>
<td>37 10</td>
<td>14 11</td>
</tr>
<tr>
<td>Farmers' Union, Ont.</td>
<td>50</td>
<td>554</td>
<td>5,230</td>
<td>473</td>
<td>9</td>
<td>67</td>
<td>52 30</td>
<td>35 00</td>
<td>17 30</td>
</tr>
<tr>
<td>Frankford, Ont.</td>
<td>47</td>
<td>514</td>
<td>5,830</td>
<td>449</td>
<td>7</td>
<td>63</td>
<td>58 50</td>
<td>30 80</td>
<td>27 70</td>
</tr>
<tr>
<td>Kingston, Ont.</td>
<td>29</td>
<td>471</td>
<td>5,575</td>
<td>595</td>
<td>10</td>
<td>65</td>
<td>55 75</td>
<td>36 83</td>
<td>18 92</td>
</tr>
<tr>
<td>Mallorytown, Ont.</td>
<td>44</td>
<td>861</td>
<td>5,129</td>
<td>683</td>
<td>13</td>
<td>62</td>
<td>51 29</td>
<td>33 10</td>
<td>19 19</td>
</tr>
<tr>
<td>Perth, Ont.</td>
<td>25</td>
<td>331</td>
<td>5,511</td>
<td>550</td>
<td>10</td>
<td>63</td>
<td>55 11</td>
<td>34 75</td>
<td>20 36</td>
</tr>
<tr>
<td>Peterborough, Ont.</td>
<td>29</td>
<td>222</td>
<td>5,915</td>
<td>393</td>
<td>7</td>
<td>63</td>
<td>59 15</td>
<td>37 44</td>
<td>21 71</td>
</tr>
<tr>
<td>Listowel, Ont.</td>
<td>98</td>
<td>1,235</td>
<td>5,127</td>
<td>603</td>
<td>11</td>
<td>63</td>
<td>51 27</td>
<td>37 12</td>
<td>14 15</td>
</tr>
<tr>
<td>Woodstock, Ont.</td>
<td>61</td>
<td>738</td>
<td>6,162</td>
<td>716</td>
<td>11</td>
<td>65</td>
<td>61 92</td>
<td>40 41</td>
<td>21 51</td>
</tr>
<tr>
<td>St. Hyacinthe, Que.</td>
<td>112</td>
<td>1,628</td>
<td>173</td>
<td>362</td>
<td>8</td>
<td>69</td>
<td>51 90</td>
<td>39 21</td>
<td>21 69</td>
</tr>
<tr>
<td>St. Prosper, Que.</td>
<td>57</td>
<td>668</td>
<td>163</td>
<td>260</td>
<td>6</td>
<td>74</td>
<td>48 90</td>
<td>36 23</td>
<td>18 67</td>
</tr>
<tr>
<td>Ways Mills, Que.</td>
<td>61</td>
<td>927</td>
<td>135</td>
<td>350</td>
<td>10</td>
<td>96</td>
<td>39 90</td>
<td>32 37</td>
<td>7 53</td>
</tr>
<tr>
<td>Kensington, P. E. Island</td>
<td>44</td>
<td>372</td>
<td>177</td>
<td>339</td>
<td>7</td>
<td>63</td>
<td>53 10</td>
<td>27 57</td>
<td>25 73</td>
</tr>
<tr>
<td>Totals and General average</td>
<td>676</td>
<td>8,290</td>
<td>4,036</td>
<td>472</td>
<td>9</td>
<td>68</td>
<td>49 36</td>
<td>33 86</td>
<td>15 50</td>
</tr>
</tbody>
</table>

The Dairy Record Centre results in Quebec and Prince Edward Island have been calculated on the basis of yield of fat per cow, because the milk averages a higher test than that in Ontario, see table 19. Had the results per cow in Ontario been calculated in fat and not in milk, the profit would be within $1 of that shown: in the other two provinces the fat basis calculation shows $7.78 additional profit per cow over the milk basis of calculation.
TABLE 22.—DAIRY RECORD CENTRES, 1912.

Contrasts per Herd in (1) Average Yield of Milk per Cow and per Acre (2) Average Feed Cost per Cow and per 100 pounds of Milk, (3) Profit per Cow over Cost of Feed.

<table>
<thead>
<tr>
<th>Dairy Record Centre</th>
<th>lb. of Milk Produced per Acre of Land Cultivated including Pasture</th>
<th>Feed Cost of 100 lb. of Milk</th>
<th>Cash Receipts per Cow with Milk at $1 per 100 lb.</th>
<th>Cost of Feed per Cow</th>
<th>Profit (or Loss) per Cow above Cost of Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avonmore, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,300</td>
<td>83</td>
<td>67.96</td>
<td>45.00</td>
<td>26.16</td>
</tr>
<tr>
<td>Lowest</td>
<td>484</td>
<td>69</td>
<td>39.81</td>
<td>28.00</td>
<td>4.91</td>
</tr>
<tr>
<td>Average</td>
<td>748</td>
<td>72</td>
<td>51.21</td>
<td>37.10</td>
<td>14.11</td>
</tr>
<tr>
<td>Farmers' Union, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,176</td>
<td>88</td>
<td>84.74</td>
<td>54.25</td>
<td>42.95</td>
</tr>
<tr>
<td>Lowest</td>
<td>107</td>
<td>44</td>
<td>33.27</td>
<td>28.00</td>
<td>5.27</td>
</tr>
<tr>
<td>Average</td>
<td>473</td>
<td>67</td>
<td>52.39</td>
<td>35.00</td>
<td>17.39</td>
</tr>
<tr>
<td>Frankford, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,123</td>
<td>94</td>
<td>115.75</td>
<td>57.95</td>
<td>57.80</td>
</tr>
<tr>
<td>Lowest</td>
<td>170</td>
<td>32</td>
<td>36.24</td>
<td>13.50</td>
<td>22.74</td>
</tr>
<tr>
<td>Average</td>
<td>449</td>
<td>52</td>
<td>53.50</td>
<td>30.80</td>
<td>22.70</td>
</tr>
<tr>
<td>Kingston, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>948</td>
<td>88</td>
<td>76.43</td>
<td>47.15</td>
<td>29.28</td>
</tr>
<tr>
<td>Lowest</td>
<td>191</td>
<td>49</td>
<td>40.29</td>
<td>24.75</td>
<td>16.54</td>
</tr>
<tr>
<td>Average</td>
<td>595</td>
<td>66</td>
<td>50.75</td>
<td>36.83</td>
<td>13.92</td>
</tr>
<tr>
<td>Malahaytown, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,546</td>
<td>101</td>
<td>72.21</td>
<td>44.10</td>
<td>28.11</td>
</tr>
<tr>
<td>Lowest</td>
<td>383</td>
<td>41</td>
<td>34.02</td>
<td>24.31</td>
<td>9.71</td>
</tr>
<tr>
<td>Average</td>
<td>633</td>
<td>62</td>
<td>51.29</td>
<td>32.19</td>
<td>19.19</td>
</tr>
<tr>
<td>Perth, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,239</td>
<td>87</td>
<td>83.81</td>
<td>54.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Lowest</td>
<td>147</td>
<td>50</td>
<td>35.60</td>
<td>27.19</td>
<td>8.41</td>
</tr>
<tr>
<td>Average</td>
<td>599</td>
<td>63</td>
<td>50.11</td>
<td>34.75</td>
<td>15.36</td>
</tr>
<tr>
<td>Peterborough, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>633</td>
<td>92</td>
<td>88.84</td>
<td>52.75</td>
<td>36.09</td>
</tr>
<tr>
<td>Lowest</td>
<td>93</td>
<td>48</td>
<td>36.31</td>
<td>27.70</td>
<td>8.61</td>
</tr>
<tr>
<td>Average</td>
<td>393</td>
<td>63</td>
<td>59.15</td>
<td>37.44</td>
<td>21.71</td>
</tr>
<tr>
<td>Listowel, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,312</td>
<td>108</td>
<td>84.04</td>
<td>53.30</td>
<td>41.74</td>
</tr>
<tr>
<td>Lowest</td>
<td>123</td>
<td>51</td>
<td>32.38</td>
<td>25.68</td>
<td>6.70</td>
</tr>
<tr>
<td>Average</td>
<td>603</td>
<td>62</td>
<td>51.27</td>
<td>37.12</td>
<td>14.15</td>
</tr>
<tr>
<td>Woodstock, Ont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,723</td>
<td>17</td>
<td>115.00</td>
<td>55.00</td>
<td>60.00</td>
</tr>
<tr>
<td>Lowest</td>
<td>315</td>
<td>48</td>
<td>29.55</td>
<td>27.50</td>
<td>2.05</td>
</tr>
<tr>
<td>Average</td>
<td>716</td>
<td>65</td>
<td>61.92</td>
<td>49.41</td>
<td>21.51</td>
</tr>
<tr>
<td>Average for Ontario</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>579</td>
<td>65</td>
<td>54.63</td>
<td>35.76</td>
<td>18.87</td>
</tr>
<tr>
<td>St. Hyacinthe, Que.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,280</td>
<td>90</td>
<td>81.87</td>
<td>52.00</td>
<td>29.87</td>
</tr>
<tr>
<td>Lowest</td>
<td>136</td>
<td>45</td>
<td>31.84</td>
<td>22.00</td>
<td>9.84</td>
</tr>
<tr>
<td>Average</td>
<td>362</td>
<td>69</td>
<td>48.48</td>
<td>30.21</td>
<td>18.27</td>
</tr>
<tr>
<td>St. Prosper, Que.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>810</td>
<td>106</td>
<td>62.19</td>
<td>44.38</td>
<td>27.82</td>
</tr>
<tr>
<td>Lowest</td>
<td>119</td>
<td>53</td>
<td>23.35</td>
<td>22.76</td>
<td>0.59</td>
</tr>
<tr>
<td>Average</td>
<td>269</td>
<td>74</td>
<td>40.33</td>
<td>30.28</td>
<td>10.06</td>
</tr>
<tr>
<td>Ways Mills, Que.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>1,425</td>
<td>156</td>
<td>54.60</td>
<td>44.00</td>
<td>20.60</td>
</tr>
<tr>
<td>Lowest</td>
<td>62</td>
<td>60</td>
<td>26.40</td>
<td>26.00</td>
<td>0.40</td>
</tr>
<tr>
<td>Average</td>
<td>350</td>
<td>96</td>
<td>39.90</td>
<td>32.37</td>
<td>7.53</td>
</tr>
<tr>
<td>Average for Quebec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>53</td>
<td>39.30</td>
<td>30.98</td>
<td>8.32</td>
</tr>
<tr>
<td>Kensington, P.E.I.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest</td>
<td>742</td>
<td>89</td>
<td>63.82</td>
<td>42.41</td>
<td>21.41</td>
</tr>
<tr>
<td>Lowest</td>
<td>164</td>
<td>39</td>
<td>33.03</td>
<td>16.18</td>
<td>16.82</td>
</tr>
<tr>
<td>Average</td>
<td>330</td>
<td>53</td>
<td>46.50</td>
<td>27.57</td>
<td>18.93</td>
</tr>
</tbody>
</table>

* Loss.
The columns of this table reveal some very extraordinary contrasts. At Woodstock the highest yield of milk per acre of land cultivated, including pasture, is 1,728 pounds; at Listowel and Perth the yields are also high, but the best recorded at Peterborough is only 633 pounds. There are several herds averaging over 1,000 pounds of milk per acre, from which figure the yield drops to as low as only 98 pounds.

Then regarding the feed cost of 100 pounds of milk, still remembering that these are averages of whole herds and not of single cows, it is seen that 80 cents, 90 cents and $1 is a recurring price; but 50 cents, 40 cents and even 32 cents per 100 pounds is also the cost given.

With milk valued at the old round price of $1 per 100 pounds, it is seen that some herds average up pretty well, $70 and $80 and $115.75 received per cow; but note in the same column the receipts dropping as low as $39 and $33 per cow.

The cost of feed per cow varying from $13.50 up to $57.95 for the average of the herd again shows two remarkable extremes. Some details are given below.

And when examining the average profit made per cow, it is noticed that even disregarding those herds that seem to be kept at a loss, the variation is from $3 up to $57.80. Four separate districts average $7, $14, $21 and $28 profit.

Dairymen may well inquire if such variations are normal, or if they indicate any room for change of methods. Comparing their business of milk manufacture with that of making crockery, or simple agricultural implements, or boots, would it be reasonable to find manufacturers of such or any other class of articles in common use discovering such wide variations in cost and profit?

In this table several remarkable contrasts of herd production will be noticed. The number of cows included in the average may be found in table 21. It is not always the case, of course, that the same herd is referred to in each column; the herd with the highest feed cost per cow does not always make the most profit. However, at Farmers' Union, Ont., for example, the herd producing milk at a feed cost of 44 cents per 100 is the same herd that makes the profit of $42.95 per cow for each of 10 cows. The feed consists of 1 ton of hay, $10; 1 ton oat straw, $3.50; 3 tons ensilage, $6; straw, $2; 540 pounds meal, $7.02; pasture, $5; total, $33.52 per cow. This, deducted from the average yield of milk, 7,047 pounds at $1 per 100 pounds, leaves $42.95 profit. The herd producing milk to the value of $84.74 is also the same one costing $34.25 per cow to feed, leaving a profit of $50.49 per cow. The feed in this case consists of 1 1/2 tons clover hay, $12; straw, $1; green oats, $2.50; 5 tons ensilage, $12; 1,500 pounds meal, $21.75; pasture, $5; total, $34.25. This herd produces milk at 64 cents per 100 and is one in which some attention is paid to feeding each cow according to her yield.

In the same Centre another herd of 10 cows averages only 3,327 pounds of milk per cow: at a feed cost of $28, the profit is only $5.27 per cow, milk costs 84 cents per 100. The feed is 1 ton hay, $10; 1 ton straw, $4; 2 tons ensilage, $6; meal, $3; pasture, $5; total, $28. The cows are low grades and might respond to better feeding and breeding.

Comparing these two items of profit, $5.27 and $12.95 per cow, it is seen that one man is keeping eight cows to make as much profit as one cow makes for the other man.

It is believed by the recorders at the various Dairy Record Centres that in not a few instances the farmers are estimating the cost of feed entirely too low. It is difficult to see the advantage of trying to blind one's self to the fact that the herd is not as profitable either as it is made out to be or as it should be. If feed costs nearer to $40 per cow than $27 or $28, as given, even after attention has been drawn to it, no one is any the better off though the profit may appear larger: in fact the owner who persists in stating the lower cost is really the only one who suffers, for he evidently attempts to delude himself. Why not face the issue squarely?
Mr. Freeman Brown, Recorder in the Farmers' Union section, has the following interesting observations to make:—

'Many men are greatly surprised at the difference in profit per cow. For instance, one herd shows a total profit from 16 cows above the cost of feed of $414.50, or an average of $25.87 per cow. But six of those cows made a total profit of $288.54 and the other ten only $126.03. Again, two of the ten cows made only $8.52, while two of the six made a total profit of $117.37. The best cow gave $62.25 clear profit and the poorest gave only 65 cents.

'A point worth noting is that often the higher the cost of feed per cow the greater is the profit. Many farmers are not liberal enough with the feed when the cow is dry, hence she is too thin and in too poor condition to commence her duty at the pail.

'Some prominent men state as soon as milk is paid for according to fat at the factory they will go in for the test. The present pooling system is a drawback.

'A pleasing feature of the work is the interest shown by the boys on the farm; they will make better dairymen.

'One man states he is so satisfied with the system that if he really had not the time to look after so many cows he would rather sell two than discontinue keeping records.

'One dairy farmer after a few tests was convinced the plan is good because he found the cow whose milk he had selected for table use was actually the poorest in fat.

'Many a man has had to change his opinion as to the respective merits of his cows. Some cows intended for beef have proved the best producers of butter fat.'

Mr. J. B. Lowery, Recorder at the Frankford Centre, makes this important remark: 'The farmer who feeds most liberally and has a silo makes the most profit.'

In explanation of the very low cost of feed per cow in some cases at the Perth, Ont., Dairy Record Centre, it may be stated that some men feed no grain whatever, and have an abundance of cheap bulky feed, wild hay, which costs only the cutting.

In other cases, however, it would seem probable that the farmers are making too low an estimate altogether. It is difficult to see what good end is attained by misreading the actual merit of the cows.

Mr. C. J. Cooke, Recorder at Kensington, P.E.I., writes: 'Lots of farmers have told me they do not think it possible to keep a cow for twelve months for less than $30 and have her give anything like good results, but when it comes to keeping records they are inclined to figure in favour of the cow. Probably the man who estimates $37.66 as the cost of feed per cow producing 6,144 pounds of milk and 235 pounds of fat has struck it nearer than many others.'

Nearly every stable visited in this Centre is reported in good condition as to light, cleanliness and ventilation. One or two are designated 'a model cow stable.'

Mr. F. J. Wilkinson, the Recorder at the Ways Mills, Que., Dairy Record Centre, states:—

'The subject which seems to me to be of great importance and which is perhaps the greatest hindrance to progress in dairying, is the fact that so many farmers have at the head of their herds a bull bred from an inferior milking strain of cows. In many cases he may be a pure bred, yet the results are far from satisfactory. The cheapest is generally the most expensive in the end.'

Mr. Wilkinson also states that far more care can profitably be paid to the running of hand cream separators. One farmer complained his cows were not doing well, but on examination into the low return per cow it was found that the skim milk from the separator tested 1.5 per cent of fat.

'At a recent meeting of the Ways Mills farmers' club it was decided to buy a pure bred Ayrshire bull. Arrangements are also completed for a milking competition at the county fair this fall, with good cash prizes offered by local men.
SESSIONAL PAPER No. 15a

Interest in dairying in this section is thus seen to be increasing, for two years ago it would have been almost impossible to have put through either of these two arrangements.

In the Dairy Record Centre at Kingston, Ont., three records are of special interest. The first two are with reference to the actual, not estimated, cost of feed; the figures being $45 per cow for a herd of 22, and $47.15 per cow for a herd of 18 cows. This is still another indication that apparently most of the men visited by our recorders are apt to undervalue the cost of feed. These two items are among the highest costs at Kingston, where the average is only $36.88 per cow.

The other item is the fact that a herd of 18 cows averaging 5,601 pounds of milk at a feed cost of $27.50 per cow produces milk at a feed cost of 49 cents per 100 pounds. Mr. H. B. Smith, Recorder, states that the owner is a man of good judgment; he had a good crop of corn and wintered his cows on corn, roots, straw, and two tons of concentrates. The average cost at Kingston is 66 cents per 100 pounds of milk.

At Frankford, Ont., one man with 8 grade cows has an average of 6,113 pounds of milk per cow. This is produced at a feed cost of $27.37, giving the substantial profit of $36.75 per cow. This man bought no feed, and gives the total feed consumed as pasture, $84; hay, $60; cornstalks, $50; straw, $25; total, $219.

With another herd at Frankford, Ont., the clear profit of $57.50 per cow is made with the herd of 6 cows, costing $57.95 per cow. The average of 3 profit per cow is from a herd of 7 cows producing 4,557 pounds of milk at a feed cost of $42.57. The feed consists of pasture, $1.25 per month; 7 tons of hay, $70; grain, $112.50; roots, $10.50; straw and cornstalks, $10.50.

The feed cost of only $13.50 per cow is given as pasture, $6; roots, $2.40; straw, $5.10; on which the cows produced an average of 3,933 pounds of milk.

At Mallorytown the profit of $42.21 per cow results from 7,221 pounds of milk produced at a feed cost of $30. The apparent loss of 48 cents per cow is from 3,402 pounds of milk produced at $34.50. The low cost of $24.31 for feed is the average for 21 cows consuming 31$ tons hay; $315; 12 tons straw, $45; 10 tons cornstalks, $30; only 28 bushels oats, $12.60; pasture, $105; total, $510.60.

At Perth, Ont., the profit of $34.90 per cow is made with 19 cows producing 7,190 pounds of milk, at a feed cost of $37 per cow and 51 cents per 100. The milk costing 87 cents per 100 pounds is the average of 7 cows producing 3,500 pounds at a feed cost of $31.50, leaving $4.40 profit per cow. The feed that costs $27.10 per cow is given as roots, $5.30; bran, $2.87; oat hash, $1.56; clover, $3.75; alfalfa, 25 cents; cornstalks, $5.62; wild hay, $2.75; straw, $2; pasture $3. This is fed to 6 cows, producing 5,331 pounds of milk at 50 cents per 100 pounds and an average profit of $26.21 per cow.

At Woodstock, Ont., the yield of 1,728 pounds of milk per acre is from 5 grades averaging 6,911 each, or 34,556 pounds, produced on 20 acres. Two herds average $55 as the cost of feed per cow, one, of 23 cows, producing 8,173 pounds of milk at a cost of 68 cents per 100 pounds; the other herd of 25 cows produces milk at 55 cents per 100 pounds. In this case the 25 cows have the splendid average of 11,500 pounds of milk, and $60 clear profit. The feed is reported as pasture, $9 per cow; ensilage, $8; hay, $10; roots, $8; chop, $20; total, $55.

The feed cost of only $27.50 per cow is for 7 cows given hay, $3; corn fodder, $0.50; chop, $3; roots, $5; straw, $4; pasture, $6. This feed produces only 3,022 pounds of milk per cow, at a feed cost of 91 cents per 100 pounds, leaving $2.72 profit per cow.

At St. Prosper, Que., the highest average herd production is 6,219 pounds of milk per cow at a feed cost of 53 cents per 100 pounds, or $33.07 per cow, resulting in $29.12 net profit. The feed for the 6 cows is given as hay, $73; straw, $24; roots, $7.50; grain, $23.25; salt, 70 cents; pasture, $70; total, $198.45.
The highest cost of feed is for a herd of 13 grades, the details being: 25 tons hay, $250; 5 tons straw, $15; pasture, $195; roots, $45; grain, $72. This feed, valued at $44.38, produces an average of 5,327 pounds of milk per cow at a cost of 85 cents per 100 pounds giving $2.89 profit per cow.

The poor showing of $1.86 loss per cow is with a herd of 10 grades producing only 2,799 pounds of milk each, with feed estimated at $29.85 per cow, consisting of 15 tons hay, $127.50; 12 tons straw, $36; pasture, $120; 1,000 pounds grain, $15; total, $298.50.

Two items at Peterborough are of value. One man with a herd of 11 cows, averaging 7,171 pounds of milk at a feed cost of $37.14 per cow, produced milk at a feed cost of 51.7 cents per 100 pounds, and fat at a feed cost of 14.8 cents per pound. These figures are both lower than the average at this Centre and are actual records, not simply estimates of feed. In January the cows were fed roots, straw and a meal mixture of oats, barley and wheat. In February the cows getting feed to the value of $6.28 consumed 10 pounds of meal (mixed as above) per day, valued at $30 per ton, 25 pounds of roots at $6, and 20 pounds of straw at $2.50 per ton. In March they got 10 pounds of roots, 5 pounds of alfalfa hay, and a little cotton seed meal added to the meal mixture. This cost $7.08 per month. The April menu was alfalfa, hay, straw and meal at a cost of $9.19. In May they were on pasture for ten days, getting hay and less meal; cost, $4.09. Succeeding months' pasture is valued at $1.

For another herd at Peterborough the figures are: 10 grade Shorthorns and Holsteins average 7,280 pounds of milk and 247 pounds of fat an actual (not estimated) feed cost of $35.47 per cow, making milk cost of 48.7 cents per 100 pounds, and fat 14.3 cents per pound.

No official 'report' can convey a sense of the supreme satisfaction and delight that such men experience in dairying with such profitable cows. Dairy records have helped them to achieve these results.

ST. HYACINTHE, QUE.

In all the seven branches of the St. Hyacinthe Dairy Record Centre the average yield of 529 cows in 54 herds is 4,774 pounds of milk, 4.0 test, and 193 pounds of fat. The average cost of feed per cow is $32.83, making the average feed cost of one pound of fat, 17 cents.

The highest average cost of fat in any one branch is with the 145 cows at the Dairy School, where it is 20.1 cents per pound; the lowest is at St. François, with 138 cows, where it costs 15.3 cents per pound. In one herd at the Dairy School fat cost 30 cents per pound; in one herd at Point du Jour, 4 cows yielding 224 pounds of fat at a feed cost of $25 per cow, produce fat at a feed cost of 11.1 cents per pound.

The highest average yield of fat per cow is 301 pounds in a herd of 10 cows at St. Hyacinthe le Confesseur. The lowest is 132 pounds, in a herd of 10 cows at Point du Jour.

The highest average yield of milk is in the same herd at St. Hyacinthe le Confesseur, amounting to 8,187 pounds per cow; the lowest is in a herd of 6 cows at Ste. Rosalie, only 3,278 pounds per cow.

With milk valued at $1 per 100 pounds, this indicates a difference in income of $49.00 per cow.

In the branch at St. Thomas d’Aquin two herds produce fat at a feed cost of 16 cents per pound; one man with 7 cows obtains 242 pounds of fat per cow; the other with 10 cows obtains only 153 pounds per cow. The 7 cows produce 169 pounds of fat more than the 10 cows.
Another herd of 10 cows in this branch average 6,747 pounds of milk and 283 pounds of fat at a feed cost of $38 per cow, making the feed cost of one pound only 13.4 cents.

It pays to keep good cows and to feed them well. Out of 529 cows whose records were kept at this point, 147 give less than 4,000 pounds of milk. Of these 147 cows, 70 are 2 and 3-year-olds, the remaining 77 being from 4 to 16 years old. Leaving out the 2-year-olds, 19 per cent of the 529 cows give less than 4,000 pounds of milk. It will be interesting here to refer to the 1909 report, where it is stated that in British Columbia 38 out of 64 two-year-old heifers gave yields ranging from 4,000 to 10,000 pounds of milk. A good heifer may reasonably be expected to give 4,500 pounds of milk and 200 pounds of fat.

Mr. A. Hamel, Recorder at St. Hyacinthe, has prepared the two following interesting tables.

TABLE 23—SHOWING CONTRASTS BETWEEN TWO GROUPS OF SIX HERDS EACH IN THE ST. HYACINTHE DAIRY RECORD CENTRE.

First Group of 58 Cows in Six Herds.

<table>
<thead>
<tr>
<th>Herd No.</th>
<th>Number of Cows in herd.</th>
<th>Total Yield.</th>
<th>Averages Cost of Feed per cow.</th>
<th>Total Cost of Feed.</th>
<th>Total Value of Fat at 30 cts. per lb.</th>
<th>Feed Cost of 1 lb. of Fat.</th>
<th>Total Profit above Cost of Feed.</th>
<th>Feed Cost of 1 lb. Milk.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Milk.</td>
<td>Fat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.........</td>
<td>15</td>
<td>53,196</td>
<td>2,123.0</td>
<td>27.75</td>
<td>416.25</td>
<td>636.90</td>
<td>19.7</td>
<td>220.65</td>
</tr>
<tr>
<td>2.........</td>
<td>10</td>
<td>33,139</td>
<td>1,321.8</td>
<td>23.00</td>
<td>230.00</td>
<td>396.54</td>
<td>17.4</td>
<td>166.54</td>
</tr>
<tr>
<td>3.........</td>
<td>11</td>
<td>40,660</td>
<td>1,663.3</td>
<td>24.00</td>
<td>264.00</td>
<td>500.49</td>
<td>15.9</td>
<td>236.49</td>
</tr>
<tr>
<td>4.........</td>
<td>10</td>
<td>38,155</td>
<td>1,359.1</td>
<td>24.50</td>
<td>245.00</td>
<td>459.05</td>
<td>16.0</td>
<td>214.03</td>
</tr>
<tr>
<td>5.........</td>
<td>6</td>
<td>29,530</td>
<td>875.2</td>
<td>21.00</td>
<td>144.00</td>
<td>262.56</td>
<td>15.6</td>
<td>118.56</td>
</tr>
<tr>
<td>6.........</td>
<td>6</td>
<td>19,672</td>
<td>821.0</td>
<td>24.00</td>
<td>144.00</td>
<td>246.30</td>
<td>17.5</td>
<td>162.30</td>
</tr>
<tr>
<td>Totals</td>
<td>58</td>
<td>265,352</td>
<td>8,339.4</td>
<td>24.88</td>
<td>1,443.25</td>
<td>2,501.82</td>
<td>17.3</td>
<td>1,058.57</td>
</tr>
<tr>
<td>Averages</td>
<td></td>
<td>3,540</td>
<td>145.8</td>
<td></td>
<td></td>
<td>48.15</td>
<td></td>
<td>18.25</td>
</tr>
</tbody>
</table>

Second Group of 58 Cows in Six Herds.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Total Yield.</th>
<th>Averages Cost of Feed per cow.</th>
<th>Total Cost of Feed.</th>
<th>Total Value of Fat at 30 cts. per lb.</th>
<th>Feed Cost of 1 lb. of Fat.</th>
<th>Total Profit above Cost of Feed.</th>
<th>Feed Cost of 1 lb. Milk.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Milk.</td>
<td>Fat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.........</td>
<td>8</td>
<td>49,453</td>
<td>1,934.8</td>
<td>36.00</td>
<td>258.00</td>
<td>580.44</td>
<td>14.8</td>
<td>292.44</td>
</tr>
<tr>
<td>8.........</td>
<td>9</td>
<td>56,374</td>
<td>2,360.7</td>
<td>38.00</td>
<td>342.00</td>
<td>708.21</td>
<td>14.5</td>
<td>336.21</td>
</tr>
<tr>
<td>9.........</td>
<td>8</td>
<td>54,608</td>
<td>2,381.2</td>
<td>40.00</td>
<td>320.00</td>
<td>699.36</td>
<td>13.6</td>
<td>379.36</td>
</tr>
<tr>
<td>10.......</td>
<td>7</td>
<td>41,575</td>
<td>1,786.8</td>
<td>38.00</td>
<td>266.00</td>
<td>536.04</td>
<td>14.9</td>
<td>270.04</td>
</tr>
<tr>
<td>11.......</td>
<td>10</td>
<td>81,875</td>
<td>3,015.1</td>
<td>52.00</td>
<td>720.00</td>
<td>904.55</td>
<td>17.2</td>
<td>354.55</td>
</tr>
<tr>
<td>12.......</td>
<td>16</td>
<td>95,654</td>
<td>3,917.3</td>
<td>36.80</td>
<td>588.80</td>
<td>1,173.19</td>
<td>15.0</td>
<td>586.39</td>
</tr>
<tr>
<td>Totals</td>
<td>58</td>
<td>379,919</td>
<td>15,345.9</td>
<td>2,324.80</td>
<td>4,603.77</td>
<td>2,278.97</td>
<td></td>
<td>2,521.80</td>
</tr>
<tr>
<td>Averages</td>
<td></td>
<td>6,550</td>
<td>264.6</td>
<td>40.88</td>
<td>79.37</td>
<td>91.57</td>
<td>15.1</td>
<td>39.29</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>174.36</td>
<td>7,006.5</td>
<td>15.20</td>
<td>81.55</td>
<td>2,101.95</td>
<td>2.2</td>
<td>1,220.49</td>
</tr>
</tbody>
</table>

From this table it will be seen that the owners of the second group of six herds receive from the 58 cows an additional 174,567 pounds of milk and an additional 7,066 pounds of fat, the extra cash value of the fat being $2,101.95. Even though the second lot of 58 cows consume an additional value of feed of $881.55 they make extra profit above the first lot by the sum of $1,220.40.

It will also be noticed that the second lot of cows produce milk and fat at a
cheaper rate per pound. Compare the total yields of milk and fat from 10 cows in herds 2 and 11.

The cost of feed per cow in the second group averages $40.08, as compared with $24.88 in the first group. In view of the $1,220.40 extra profit, could better argument be wanted in favour of liberal feeding?

The first group of six herds belong to men who have paid little or no attention to breeding from a good dairy sire, being content with a grade, and a poor grade at that. The cows have not received enough good feed to produce milk abundantly, even if they were naturally good milkers or had good ancestry.

The second group of men have been trying to improve. Four of them have pure bred sires, and the other two have high grade sires. These men keep records in an interested way, not simply putting down figures in the blind hope that the use of a lead pencil will cause milk to flow. If a cow does not give a good yield she is given to the butcher, but she first gets the opportunity to 'make good' by being fed well.

TABLE 24—CONTRASTS BETWEEN THE BEST AND THE POOREST HERD IN THE ST. HYACINTHE, QUE., DAIRY RECORD CENTRE.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>6,970</td>
<td>3.4</td>
<td>240.3</td>
<td>21.7</td>
<td>10</td>
<td>4,176</td>
<td>4.1</td>
<td>171.1</td>
<td>13.5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10,930</td>
<td>3.7</td>
<td>403.2</td>
<td>12.9</td>
<td>8</td>
<td>3,635</td>
<td>4.3</td>
<td>154.6</td>
<td>14.8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6,175</td>
<td>3.7</td>
<td>227.7</td>
<td>22.8</td>
<td>2</td>
<td>2,525</td>
<td>4.0</td>
<td>109.0</td>
<td>23.0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6,289</td>
<td>3.6</td>
<td>223.9</td>
<td>23.2</td>
<td>10</td>
<td>4,886</td>
<td>3.9</td>
<td>173.6</td>
<td>13.3</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6,580</td>
<td>3.8</td>
<td>309.1</td>
<td>14.4</td>
<td>9</td>
<td>5,925</td>
<td>3.9</td>
<td>163.2</td>
<td>22.3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7,855</td>
<td>3.7</td>
<td>292.0</td>
<td>17.8</td>
<td>4</td>
<td>2,678</td>
<td>3.7</td>
<td>98.4</td>
<td>23.4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10,280</td>
<td>3.5</td>
<td>359.8</td>
<td>14.4</td>
<td>3</td>
<td>2,064</td>
<td>3.5</td>
<td>72.3</td>
<td>31.9</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9,120</td>
<td>3.5</td>
<td>323.8</td>
<td>16.0</td>
<td>4</td>
<td>2,730</td>
<td>4.5</td>
<td>122.8</td>
<td>18.7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>81,875</td>
<td>3.7</td>
<td>3,015.1</td>
<td>17.2</td>
<td>Total</td>
<td>33,130</td>
<td>4.0</td>
<td>1,321.8</td>
<td>17.4</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>8,187</td>
<td>3.7</td>
<td>301.5</td>
<td>17.2</td>
<td>Average</td>
<td>3,313</td>
<td>4.0</td>
<td>132.1</td>
<td>17.4</td>
</tr>
</tbody>
</table>

Feed—

<table>
<thead>
<tr>
<th>Feed</th>
<th>A.</th>
<th>B.</th>
<th>A.</th>
<th>B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture</td>
<td>$12.00</td>
<td>$8.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hay</td>
<td>$12.00</td>
<td>$8.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straw</td>
<td>$3.00</td>
<td>$4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn fodder</td>
<td>$2.00</td>
<td>$3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meal</td>
<td>$23.00</td>
<td>$15.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$52.00</td>
<td>$33.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Value of Fat at 30c. per lb.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Herd A.</td>
<td>81,875</td>
<td>3,015.1</td>
<td>$96.50</td>
<td>$520.00</td>
</tr>
<tr>
<td>Herd B.</td>
<td>33,139</td>
<td>1,321.8</td>
<td>$396.54</td>
<td>$230.00</td>
</tr>
<tr>
<td>Difference</td>
<td>48,736</td>
<td>1,693.3</td>
<td>$507.96</td>
<td>$290.00</td>
</tr>
</tbody>
</table>

This table indicates a vast difference in the efficiency of two modern dairy herds. Both owners keep ten cows, and produce one pound of fat at virtually the same cost.
But the cows in herd A average much more than twice as much milk and fat as those in herd B. One cow in herd A, No. 2, produces 403 pounds of fat, which is fifteen pounds more than the total fat produced by four cows, Nos. 4, 6, 8 and 9, in herd B.

It will be observed that the owner of herd A with the same number of cows as in herd B, not only made $507.96 extra cash income, but gave his cows $290 worth more feed, and still had $217.96 more clear profit.

In the Dairy Record Centre work at Listowel, Ont., the contrast between two herds is so striking that special attention should be given to it.

Leaving out of consideration the fact that apparently one herd of 12 cows was unfortunately kept at a loss of $2.74 per cow, the two extremes of profit over cost of feed stand for one herd at $41.67 per cow and for another herd at only 33 cents per cow. This means that each one of the cows in the first herd made as much profit as 126 of the poor cows in the second herd.

In one case there was an investment of $339 in feed and a profit of $333.36 with 8 cows; in the other case there was an investment of $602 in feed and a total profit above that sum of only $4.62 with 14 cows.

Stated in another way, in order to obtain one thousand dollars profit, one man need keep only 24 cows, the other man would be confronted with the superhuman task of handling 3,030 cows.

Could stronger argument possibly be wanted in favour of knowing that one is keeping only profitable cows?

CHAS. F. WHITLEY.
APPENDIX VI

CREAMERY COLD STORAGE BONUSES.

There were 84 applications for creamery cold storage bonuses received during the year. Of this number 53 were approved and received the bonus. In the other 31 cases, the conditions were not fulfilled, or the cold storage was not erected.

For particulars of the creamery cold storage bonus, see Circular No. 6 for the conditions under which the bonus is paid and Bulletin No. 36 for plans which are recommended.

QUEBEC.

<table>
<thead>
<tr>
<th>Owner</th>
<th>P. O. Address</th>
<th>County</th>
<th>Amount paid</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. W. Winter</td>
<td>Ormstown</td>
<td>Chateauguay</td>
<td>100 00</td>
</tr>
<tr>
<td>Frs. Robichaud</td>
<td>St. Damien de Brandon</td>
<td>Berthier</td>
<td>100 00</td>
</tr>
<tr>
<td>Ed. Leblanc</td>
<td>River Caplin</td>
<td>Bonaventure</td>
<td>100 00</td>
</tr>
<tr>
<td>R. Pelletier</td>
<td>Ste. Anne des Monts</td>
<td>Gaspé</td>
<td>100 00</td>
</tr>
<tr>
<td>H. Dubois</td>
<td>Lorrainville</td>
<td>Timiskaming</td>
<td>100 00</td>
</tr>
<tr>
<td>Malo Lapalme</td>
<td>St. Basile le Grand</td>
<td>Champlain</td>
<td>100 00</td>
</tr>
<tr>
<td>L. Desaulniers</td>
<td>Louisville</td>
<td>Mackinonge</td>
<td>100 00</td>
</tr>
<tr>
<td>P. Rancourt</td>
<td>Rancourt</td>
<td>Frontenac</td>
<td>100 00</td>
</tr>
<tr>
<td>J. O. Caron</td>
<td>St. Georges</td>
<td>Beauce</td>
<td>100 00</td>
</tr>
<tr>
<td>Enchilde Planteau</td>
<td>Rapide de l'Orignal</td>
<td>Labelle</td>
<td>100 00</td>
</tr>
<tr>
<td>Ulric Olivier</td>
<td>St. Thomas</td>
<td>Joliette</td>
<td>100 00</td>
</tr>
<tr>
<td>J. H. Gagnon, Sec.</td>
<td>St. Pacome</td>
<td>Kamouraska</td>
<td>100 00</td>
</tr>
<tr>
<td>Scaplin Croteau</td>
<td>Poitou</td>
<td>Lotbinière</td>
<td>100 00</td>
</tr>
<tr>
<td>Hubert Jean</td>
<td>St. Evariste</td>
<td>Frontenac</td>
<td>100 00</td>
</tr>
<tr>
<td>Denis Larivière</td>
<td>Ste. Marie de Blandford</td>
<td>Nicolet</td>
<td>100 00</td>
</tr>
<tr>
<td>J. Michon, Pres.</td>
<td>Salvaix</td>
<td>St. Hyacinthe</td>
<td>100 00</td>
</tr>
<tr>
<td>Xenophon Borgerou</td>
<td>Methot's Mills</td>
<td>Lotbinière</td>
<td>100 00</td>
</tr>
<tr>
<td>Arthur Paris</td>
<td>Parisville</td>
<td>Berthier</td>
<td>100 00</td>
</tr>
<tr>
<td>J. R. Coutu</td>
<td>St. Gabriel de Brandon</td>
<td>Deux Montagnes</td>
<td>100 00</td>
</tr>
<tr>
<td>J. N. Dion</td>
<td>St. Canut</td>
<td>Beauce</td>
<td>100 00</td>
</tr>
<tr>
<td>Fulbert Garneau</td>
<td>Bolduc</td>
<td>St. John's and Iverville</td>
<td>100 00</td>
</tr>
<tr>
<td>Benjamin & Ménard</td>
<td>Menardville</td>
<td>Joliette</td>
<td>100 00</td>
</tr>
<tr>
<td>Anselme Planteau</td>
<td>St. Félix de Valois</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles Laroche</td>
<td>L'Acadie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joseph Rochelain</td>
<td>St. Didace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. A. Lapierre</td>
<td>Bramptonville</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev. J. de Champlain</td>
<td>St. Charles de Caplan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. H. Héroux, gérant</td>
<td>Terrebonne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philéas Kérouack</td>
<td>St. Eugène</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eleusippe Lapointe</td>
<td>Leeds Village</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ONTARIO.

<table>
<thead>
<tr>
<th>Owner</th>
<th>P. O. Address</th>
<th>County</th>
<th>Amount paid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singleton & McKenny</td>
<td>Coblen</td>
<td>Renfrew, N.R.</td>
<td>55 00</td>
</tr>
<tr>
<td>W. J. Goodwin</td>
<td>Bismark</td>
<td>Lincoln</td>
<td>91 50</td>
</tr>
<tr>
<td>Robt. Snell</td>
<td>Norwich</td>
<td>Oxford, S.R.</td>
<td>75 00</td>
</tr>
<tr>
<td>Salem Dairy Produce Co.</td>
<td>Salem</td>
<td>Wellington, S.R.</td>
<td>100 00</td>
</tr>
<tr>
<td>W. A. Metcalfe</td>
<td>Chatham</td>
<td>Kent, W.R.</td>
<td>10 00</td>
</tr>
<tr>
<td>Keeve Dairy Co., Ltd.</td>
<td>Keene</td>
<td>Peterborough, N.R.</td>
<td>100 00</td>
</tr>
</tbody>
</table>
REPORT OF THE DAIRY AND COLD STORAGE COMMISSIONER

SESSIONAL PAPER No. 15a

A LIST OF THE CREAMERIES THAT RECEIVED THE BONUS IN 1912-13—Continued.

ONTARIO—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Harry Stansell</td>
<td>Kinglake</td>
<td>Norfolk</td>
<td>$45 00</td>
</tr>
<tr>
<td>T. C. Windatt</td>
<td>Yeaverton</td>
<td>Ontario, N.R.</td>
<td>90 25</td>
</tr>
<tr>
<td>A. H. Campbell</td>
<td>Harwood</td>
<td>Carleton</td>
<td>100 00</td>
</tr>
<tr>
<td>Harrgrave & Wilson</td>
<td>Delhi</td>
<td>Norfolk</td>
<td>100 00</td>
</tr>
<tr>
<td>The Lambton Creamery Co.</td>
<td>Petrolia</td>
<td>Lambton, E.R.</td>
<td>100 00</td>
</tr>
<tr>
<td>J. H. Herron</td>
<td>Norwich</td>
<td>Oxford, S.R.</td>
<td>55 50</td>
</tr>
<tr>
<td>Irving & Loggie</td>
<td>Paisley</td>
<td>Bruce, S.R.</td>
<td>100 00</td>
</tr>
<tr>
<td>Walkerton Egg & Dairy Co., Ltd.</td>
<td>Walkerton</td>
<td>Bruce, S.R.</td>
<td>100 00</td>
</tr>
<tr>
<td>M. A. Treleavan</td>
<td>Palmerston</td>
<td>Wellington, N.R.</td>
<td>100 00</td>
</tr>
</tbody>
</table>

NOVA SCOTIA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R. B. McLennan</td>
<td>Brookfield</td>
<td>Colchester</td>
<td>100 00</td>
</tr>
<tr>
<td>F. E. Porter, Sec.</td>
<td>Dayton</td>
<td>Yarmouth</td>
<td>100 00</td>
</tr>
</tbody>
</table>

ALBERTA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Skalleberg & Co.</td>
<td>Meeting Creek</td>
<td>Township 43</td>
<td>100 00</td>
</tr>
<tr>
<td>Duvernay Creamery</td>
<td>Duvernay</td>
<td>Edmonton</td>
<td>100 00</td>
</tr>
<tr>
<td>W. W. McGregor</td>
<td>Daysland</td>
<td>Strathcona</td>
<td>100 00</td>
</tr>
</tbody>
</table>

SASKATCHEWAN.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominion Dairy Produce Co.</td>
<td>Regina</td>
<td>Regina</td>
<td>100 00</td>
</tr>
</tbody>
</table>

SUMMARY.

596 Creameries have received the full bonus of $100 $50,000 00
145 " " a bonus of $75 10,875 00
139 " " " $50 6,350 00
15 " " " for special refrigerators 1,035 75

893 $69,460 75
APPENDIX VII.
SUBSIDIES FOR PUBLIC COLD STORAGE WAREHOUSES.

CONTRACTS IN 1912-13.

Contracts have been entered into during the year with the following firms:—

<table>
<thead>
<tr>
<th>Name</th>
<th>Total Refrigerated Space</th>
<th>Cost</th>
<th>Total Subsidy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The New Brunswick Cold Storage Co., St. John, N.B.</td>
<td>74,000 cu. ft.</td>
<td>$167,000</td>
<td>$50,100</td>
</tr>
<tr>
<td>Scott & Hogg, Peterborough, Ont.</td>
<td>90,000 cu. ft.</td>
<td>$115,000</td>
<td>$3,000</td>
</tr>
<tr>
<td>The Halifax Cold Storage Co., Port Hawkesbury, N.S.</td>
<td>75,000 cu. ft.</td>
<td>$38,000</td>
<td>$9,115</td>
</tr>
<tr>
<td>Cold Storage, Ltd., Woodstock, N.B.</td>
<td>35,161 sq.</td>
<td>$25,577</td>
<td>$7,673</td>
</tr>
<tr>
<td>The J. D. Moore Co., St. Mary's, Ont.</td>
<td>105,000 cu. ft.</td>
<td>$36,019</td>
<td>$10,805</td>
</tr>
<tr>
<td>Lemon Bros., Owen Sound, Ont.</td>
<td>33,600 cu. ft.</td>
<td>$20,000</td>
<td>$6,000</td>
</tr>
<tr>
<td>The Chatham Fruit Growers' Association, Chatham, Ont.</td>
<td>50,000 cu. ft.</td>
<td>$15,000</td>
<td>$4,500</td>
</tr>
<tr>
<td>The Palmerston Cold Storage Co., Palmerston, Ont.</td>
<td>109,084 cu. ft.</td>
<td>$35,000</td>
<td>$10,500</td>
</tr>
<tr>
<td>Davis & Fraser, Charlottetown, P.E.I.</td>
<td>130,000 cu. ft.</td>
<td>$59,000</td>
<td>$15,000</td>
</tr>
<tr>
<td>The B. Wilson Co., Victoria, B.C.</td>
<td>64,000 cu. ft.</td>
<td>$75,000</td>
<td>$22,500</td>
</tr>
<tr>
<td>The Trenton Cooperative Mills, Ltd., Trenton, Ont.</td>
<td>106,416 cu. ft.</td>
<td>$50,919</td>
<td>$15,275</td>
</tr>
<tr>
<td>The Dominion Fish and Fruit Co., Quebec, P.Q.</td>
<td>225,000 cu. ft.</td>
<td>$222,843</td>
<td>$66,832</td>
</tr>
<tr>
<td>The Lockeport Cold Storage Co., Lockeport, N.S.</td>
<td>50,590 cu. ft.</td>
<td>$60,000</td>
<td>$18,000</td>
</tr>
<tr>
<td>St. Lawrence Produce Co., Brockville, Ont.</td>
<td>106,000 cu. ft.</td>
<td>$32,000</td>
<td>$15,600</td>
</tr>
<tr>
<td>Flavelles, Ltd., Lindsay, Ont.</td>
<td>131,510 cu. ft.</td>
<td>$53,000</td>
<td>$15,900</td>
</tr>
<tr>
<td>Gurns, Ltd., Harriston, Ont.</td>
<td>57,069 cu. ft.</td>
<td>$40,000</td>
<td>$12,000</td>
</tr>
<tr>
<td>Campbell & Hamilton, Calgary, Alta.</td>
<td>111,650 cu. ft.</td>
<td>$75,000</td>
<td>$22,500</td>
</tr>
<tr>
<td>The St. Thomas Cold Storage Co., St. Thomas, Ont.</td>
<td>174,141 cu. ft.</td>
<td>$123,700</td>
<td>$37,110</td>
</tr>
<tr>
<td>The Brandon Creamery and Supply Co., Brandon, Man.</td>
<td>37,700 cu. ft.</td>
<td>$3,000</td>
<td>$9,000</td>
</tr>
<tr>
<td>O'Keefe & Drew Abattoir Co., Chatham, Ont.</td>
<td>144,300 cu. ft.</td>
<td>$65,000</td>
<td>$19,500</td>
</tr>
<tr>
<td>The Canadian Fish and Cold Storage Co., Prince Rupert, B.C.</td>
<td>781,000 cu. ft.</td>
<td>$345,000</td>
<td>$105,500</td>
</tr>
<tr>
<td>Moose Jaw Cold Storage Co., Moose Jaw, Sask.</td>
<td>189,764 cu. ft.</td>
<td>$90,000</td>
<td>$27,000</td>
</tr>
<tr>
<td>J. H. Sansregret, Joliette, Que.</td>
<td>23,394 cu. ft.</td>
<td>$24,444</td>
<td>$6,733</td>
</tr>
<tr>
<td>City Cold Storage Co., Regina, Sask.</td>
<td>100,672 cu. ft.</td>
<td>$50,000</td>
<td>$15,000</td>
</tr>
<tr>
<td>The Brantford Cold Storage Co., Brantford, Ont.</td>
<td>36,000 cu. ft.</td>
<td>$29,000</td>
<td>$8,880</td>
</tr>
<tr>
<td>The Whyte Packing Co., Mitchell, Ont.</td>
<td>30,000 cu. ft.</td>
<td>$21,000</td>
<td>$6,300</td>
</tr>
</tbody>
</table>

Total: 1,800,000 cu. ft. $540,200 98

Applications are now (March 31, 1913) under consideration from several other firms in different parts of the country. The Acadia Cold Storage Co., of Halifax, N.S., and Scott, Ashton & Co., Morrisburg, Ont., received contracts in 1910-11, but in neither case have they been able to proceed with the erection of the warehouses. The contract with the Acadia Cold Storage Co. has been extended to allow sufficient time for completion of the warehouse. A contract entered into in 1911-12 with Mooers & Bidwell, Saskatoon, Sask., has been allowed to lapse by the contractor, and nothing further has been done towards erecting a cold storage warehouse in that city.

The following is a complete list of the public cold storage warehouses erected under contracts for subsidies since the Cold Storage Act was passed in 1907, and which are now in operation:
COLD STORAGE AT PRINCE RUPERT, B.C.

The most important addition to the list of cold storage warehouses, completed during the year, is the one erected at Prince Rupert, B.C., by the Canadian Fish and Cold Storage Co. This warehouse with 781,000 cubic feet of refrigerated space, is constructed of reinforced concrete throughout and insulated with a 3-inch tile and 5 inches of cork board. The floors are covered with mastic asphalt. It is expected that a large business will be done through this warehouse in the handling of fresh fish, as soon as the Grand Trunk Pacific railway is opened.

THE GRAVITY BRINE SYSTEM.

A number of the more recently erected warehouses in Ontario are equipped with the gravity brine system. This type of warehouse is used chiefly for the storing of eggs, dressed poultry, butter and cheese, which are produced in the locality. In places where a supply of natural ice is available at a reasonable cost, the system is giving good satisfaction and especially for the storage of eggs.
APPENDIX VIII.

SOME STATISTICS OF THE EXPORT TRADE IN DAIRY PRODUCE.

TOTAL EXPORTS OF CHEESE AND BUTTER IN FISCAL YEARS 1889 TO 1913 INCLUSIVE.

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years ended June 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>18,585,262</td>
<td>3,058,069</td>
</tr>
<tr>
<td>1890</td>
<td>13,155,756</td>
<td>340,131</td>
</tr>
<tr>
<td>1891</td>
<td>7,765,191</td>
<td>602,175</td>
</tr>
<tr>
<td>1892</td>
<td>5,766,636</td>
<td>1,066,618</td>
</tr>
<tr>
<td>1893</td>
<td>7,038,013</td>
<td>1,095,000</td>
</tr>
<tr>
<td>1894</td>
<td>5,534,621</td>
<td>972,476</td>
</tr>
<tr>
<td>1895</td>
<td>3,656,258</td>
<td>1,052,089</td>
</tr>
<tr>
<td>1896</td>
<td>5,889,241</td>
<td>2,099,173</td>
</tr>
<tr>
<td>1897</td>
<td>11,433,151</td>
<td>2,046,868</td>
</tr>
<tr>
<td>1898</td>
<td>11,253,787</td>
<td>3,789,172</td>
</tr>
<tr>
<td>1899</td>
<td>20,130,193</td>
<td>2,308,734</td>
</tr>
<tr>
<td>1900</td>
<td>25,101,737</td>
<td>5,122,156</td>
</tr>
<tr>
<td>1901</td>
<td>16,335,528</td>
<td>3,225,683</td>
</tr>
<tr>
<td>1902</td>
<td>27,769,758</td>
<td>5,600,541</td>
</tr>
<tr>
<td>1903</td>
<td>54,124,944</td>
<td>6,954,618</td>
</tr>
<tr>
<td>1904</td>
<td>24,569,001</td>
<td>4,743,155</td>
</tr>
<tr>
<td>1905</td>
<td>31,754,303</td>
<td>5,930,329</td>
</tr>
<tr>
<td>1906</td>
<td>31,031,525</td>
<td>7,075,539</td>
</tr>
<tr>
<td>Years ended Mar. 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1907 (9 months)</td>
<td>18,678,506</td>
<td>4,011,609</td>
</tr>
<tr>
<td>1908</td>
<td>4,786,954</td>
<td>1,068,703</td>
</tr>
<tr>
<td>1909</td>
<td>6,320,355</td>
<td>1,521,436</td>
</tr>
<tr>
<td>1910</td>
<td>4,615,580</td>
<td>1,019,274</td>
</tr>
<tr>
<td>1911</td>
<td>3,143,652</td>
<td>743,288</td>
</tr>
<tr>
<td>1912</td>
<td>8,344,402</td>
<td>2,977,916</td>
</tr>
<tr>
<td>1913</td>
<td>828,323</td>
<td>225,578</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years ended June 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1880</td>
<td>49,368,678</td>
<td>3,893,356</td>
</tr>
<tr>
<td>1890</td>
<td>91,267,817</td>
<td>9,372,212</td>
</tr>
<tr>
<td>1891</td>
<td>106,262,110</td>
<td>9,505,800</td>
</tr>
<tr>
<td>1892</td>
<td>118,270,022</td>
<td>11,655,412</td>
</tr>
<tr>
<td>1893</td>
<td>133,916,365</td>
<td>13,407,470</td>
</tr>
<tr>
<td>1894</td>
<td>154,977,480</td>
<td>15,488,191</td>
</tr>
<tr>
<td>1895</td>
<td>146,004,650</td>
<td>14,253,002</td>
</tr>
<tr>
<td>1896</td>
<td>164,081,123</td>
<td>13,856,571</td>
</tr>
<tr>
<td>1897</td>
<td>164,239,699</td>
<td>14,675,239</td>
</tr>
<tr>
<td>1898</td>
<td>196,763,323</td>
<td>17,573,763</td>
</tr>
<tr>
<td>1899</td>
<td>159,827,839</td>
<td>16,776,765</td>
</tr>
<tr>
<td>1900</td>
<td>185,984,439</td>
<td>19,586,324</td>
</tr>
<tr>
<td>1901</td>
<td>195,928,397</td>
<td>20,696,951</td>
</tr>
<tr>
<td>1902</td>
<td>200,916,401</td>
<td>19,985,281</td>
</tr>
<tr>
<td>1903</td>
<td>222,099,925</td>
<td>24,712,943</td>
</tr>
<tr>
<td>1904</td>
<td>233,968,716</td>
<td>24,184,566</td>
</tr>
<tr>
<td>1905</td>
<td>215,733,259</td>
<td>20,308,500</td>
</tr>
<tr>
<td>1906</td>
<td>215,831,543</td>
<td>24,433,169</td>
</tr>
<tr>
<td>Years ended Mar. 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1907 (9 months)</td>
<td>178,141,567</td>
<td>22,006,584</td>
</tr>
<tr>
<td>1908</td>
<td>159,710,463</td>
<td>22,887,297</td>
</tr>
<tr>
<td>1909</td>
<td>164,920,139</td>
<td>20,381,666</td>
</tr>
<tr>
<td>1910</td>
<td>180,859,886</td>
<td>21,097,092</td>
</tr>
<tr>
<td>1911</td>
<td>151,593,724</td>
<td>20,738,507</td>
</tr>
<tr>
<td>1912</td>
<td>163,450,684</td>
<td>20,888,818</td>
</tr>
<tr>
<td>1913</td>
<td>155,216,392</td>
<td>20,697,144</td>
</tr>
</tbody>
</table>

DETAILED EXPORTS OF DAIRY PRODUCTS FOR YEAR ENDED MARCH 31, 1913.

<table>
<thead>
<tr>
<th>To all Countries.</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese</td>
<td>155,216,392</td>
<td>20,697,144</td>
</tr>
<tr>
<td>Butter</td>
<td>828,323</td>
<td>225,578</td>
</tr>
<tr>
<td>Cream</td>
<td>820,360</td>
<td>751,123</td>
</tr>
<tr>
<td>Condensed milk</td>
<td>335,849</td>
<td>23,554</td>
</tr>
<tr>
<td>Casein</td>
<td>349,983</td>
<td>15,342</td>
</tr>
<tr>
<td>Fresh milk</td>
<td>7,839</td>
<td>1,412</td>
</tr>
<tr>
<td>Total value.</td>
<td></td>
<td>21,714,153</td>
</tr>
</tbody>
</table>
Comparative Value of Detailed Exports for Years Ended March 31, 1909, 1910, 1911, 1912 and 1913.

<table>
<thead>
<tr>
<th></th>
<th>1913</th>
<th>1912</th>
<th>1911</th>
<th>1910</th>
<th>1909</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese</td>
<td>20,697,144</td>
<td>20,888,818</td>
<td>20,739,507</td>
<td>21,607,692</td>
<td>20,384,666</td>
</tr>
<tr>
<td>Butter</td>
<td>223,578</td>
<td>201,7916</td>
<td>744,288</td>
<td>1,010,272</td>
<td>1,521,436</td>
</tr>
<tr>
<td>Condensed milk</td>
<td>75,554</td>
<td>365,678</td>
<td>469,466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh milk</td>
<td>1,412</td>
<td>975</td>
<td>4,276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cream</td>
<td>751,123</td>
<td>792,687</td>
<td>1,714,528</td>
<td>1,714,528</td>
<td>541,372</td>
</tr>
<tr>
<td>Casein</td>
<td>15,342</td>
<td>38,392</td>
<td>37,609</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21,714,153</td>
<td>24,104,376</td>
<td>23,790,014</td>
<td>23,159,386</td>
<td>21,906,622</td>
</tr>
</tbody>
</table>

Exports to United States.

Values of Dairy Products Exported to the United States during the Years ended March 31, 1908, 1909, 1910, 1911, 1912 and 1913.

<table>
<thead>
<tr>
<th></th>
<th>1913</th>
<th>1912</th>
<th>1911</th>
<th>1910</th>
<th>1909</th>
<th>1908</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese</td>
<td>41,366</td>
<td>31,653</td>
<td>36,034</td>
<td>23,965</td>
<td>19,428</td>
<td>17,732</td>
</tr>
<tr>
<td>Butter</td>
<td>75,192</td>
<td>103,819</td>
<td>91,313</td>
<td>199,854</td>
<td>18,246</td>
<td>38,869</td>
</tr>
<tr>
<td>Cream</td>
<td>751,123</td>
<td>792,595</td>
<td>1,714,528</td>
<td></td>
<td>220,446</td>
<td>8,256</td>
</tr>
<tr>
<td>Condensed milk</td>
<td>5,107</td>
<td>3,983</td>
<td>11,474</td>
<td></td>
<td></td>
<td>2,737</td>
</tr>
<tr>
<td>Casein</td>
<td>15,342</td>
<td>38,592</td>
<td>37,069</td>
<td>290,446</td>
<td>8,256</td>
<td></td>
</tr>
<tr>
<td>Fresh milk</td>
<td>1,412</td>
<td>975</td>
<td>3,267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>889,542</td>
<td>971,327</td>
<td>1,893,615</td>
<td>445,295</td>
<td>45,830</td>
<td>59,368</td>
</tr>
</tbody>
</table>

Down to the beginning of the fiscal year 1911, the exports of fresh milk, cream, condensed milk and casein were included under one head in the Trade and Navigation returns.
STATEMENT OF EXPORTS OF CHEESE BY COUNTRIES IN FISCAL YEARS 1903 TO 1913 INCLUSIVE.

(Year ended June 30, 1903 to 1906, and years ended March 31, to 1913.)

<table>
<thead>
<tr>
<th>To</th>
<th>1903</th>
<th>1904</th>
<th>1905</th>
<th>1906</th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
<th>1913</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td>Great Britain</td>
<td>24,620,004</td>
<td>24,901,004</td>
<td>20,174,211</td>
<td>21,309,908</td>
<td>21,909,878</td>
<td>22,763,736</td>
<td>26,263,166</td>
<td>21,481,566</td>
<td>20,577,542</td>
<td>20,733,064</td>
<td>20,457,195</td>
</tr>
<tr>
<td>Australia</td>
<td>6,015</td>
<td>6,247</td>
<td>5,411</td>
<td>5,569</td>
<td>243</td>
<td>325</td>
<td>225</td>
<td>171</td>
<td>88</td>
<td>58</td>
<td>448</td>
</tr>
<tr>
<td>British Africa</td>
<td>2,395</td>
<td>3,239</td>
<td>10,361</td>
<td>13,633</td>
<td>18,231</td>
<td>16,468</td>
<td>12,164</td>
<td>16,435</td>
<td>22,601</td>
<td>26,872</td>
<td>28,100</td>
</tr>
<tr>
<td>B. W. Indies</td>
<td>44,654</td>
<td>34,253</td>
<td>36,176</td>
<td>25,959</td>
<td>13,666</td>
<td>27,583</td>
<td>26,940</td>
<td>24,055</td>
<td>25,844</td>
<td>26,250</td>
<td>24,104</td>
</tr>
<tr>
<td>B. E. Indies</td>
<td>40</td>
<td>315</td>
<td>62</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Guiana</td>
<td>2,165</td>
<td>1,393</td>
<td>2,571</td>
<td>3,860</td>
<td>3,143</td>
<td>6,228</td>
<td>4,452</td>
<td>5,232</td>
<td>4,747</td>
<td>7,872</td>
<td>6,975</td>
</tr>
<tr>
<td>Other British Possessions</td>
<td>453</td>
<td>216</td>
<td>1,079</td>
<td>1,026</td>
<td>1,011</td>
<td>1,011</td>
<td>1,157</td>
<td>1,632</td>
<td>1,393</td>
<td>1,393</td>
<td>1,393</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>161</td>
<td>1,353</td>
<td>1,624</td>
<td>1,765</td>
<td>1,690</td>
<td>1,362</td>
<td>54</td>
<td>467</td>
<td>385</td>
<td>385</td>
<td>385</td>
</tr>
<tr>
<td>New Zealand</td>
<td>988</td>
<td>1,039</td>
<td>1,642</td>
<td>1,756</td>
<td>1,690</td>
<td>1,362</td>
<td>54</td>
<td>467</td>
<td>385</td>
<td>385</td>
<td>385</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>21,341</td>
<td>21,751</td>
<td>33,171</td>
<td>30,992</td>
<td>37,748</td>
<td>35,792</td>
<td>41,163</td>
<td>39,912</td>
<td>44,435</td>
<td>63,900</td>
<td>63,900</td>
</tr>
<tr>
<td>Belgium</td>
<td>45</td>
<td>22</td>
<td>287</td>
<td>2,080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>343</td>
<td>310</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>1,731</td>
<td>1,899</td>
<td>2,013</td>
<td>2,196</td>
<td>2,296</td>
<td>1,572</td>
<td>568</td>
<td>1,302</td>
<td>1,302</td>
<td>1,302</td>
<td>1,302</td>
</tr>
<tr>
<td>Danish West Indies</td>
<td>2,057</td>
<td>1,386</td>
<td>2,946</td>
<td>2,656</td>
<td>1,568</td>
<td>1,985</td>
<td>1,985</td>
<td>2,453</td>
<td>2,148</td>
<td>2,701</td>
<td>2,416</td>
</tr>
<tr>
<td>France</td>
<td>44</td>
<td>706</td>
<td>7,285</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>1,076</td>
<td>1,009</td>
<td>779</td>
<td>775</td>
<td>1,071</td>
<td>1,444</td>
<td>2,200</td>
<td>1,208</td>
<td>2,700</td>
<td>1,419</td>
<td>2,392</td>
</tr>
<tr>
<td>Philippine Islands</td>
<td>280</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Pierre</td>
<td>129</td>
<td>350</td>
<td>341</td>
<td>873</td>
<td>318</td>
<td>190</td>
<td>364</td>
<td>311</td>
<td>338</td>
<td>271</td>
<td>390</td>
</tr>
<tr>
<td>United States</td>
<td>7,779</td>
<td>5,386</td>
<td>14,182</td>
<td>16,682</td>
<td>6,900</td>
<td>17,752</td>
<td>19,428</td>
<td>23,956</td>
<td>36,064</td>
<td>31,653</td>
<td>41,966</td>
</tr>
<tr>
<td>Dutch West Indies</td>
<td></td>
</tr>
<tr>
<td>Norway and Sweden</td>
<td>104</td>
<td>394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>170</td>
<td>364</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bermuda</td>
<td></td>
</tr>
<tr>
<td>Dutch Guiana</td>
<td>13</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>159</td>
<td>329</td>
<td>1,594</td>
<td>630</td>
<td>168</td>
<td>499</td>
<td>108</td>
<td>72</td>
<td>56</td>
<td>55</td>
<td>26</td>
</tr>
<tr>
<td>French West Indies</td>
<td>7</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central America</td>
<td></td>
</tr>
<tr>
<td>Holland</td>
<td></td>
</tr>
<tr>
<td>U.S. of Colombia</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Other countries</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>24,772,904</td>
<td>24,184,566</td>
<td>20,590,500</td>
<td>21,433,169</td>
<td>22,887,237</td>
<td>22,884,666</td>
<td>22,887,237</td>
<td>20,874,666</td>
<td>20,739,506</td>
<td>20,888,818</td>
<td>20,697,144</td>
</tr>
</tbody>
</table>
Statement of Exports of Butter by Countries in Fiscal Years 1903 to 1913 Inclusive.

(Year ended June 30, 1903, to 1906; years ended March 31, 1907 to 1913.)

<table>
<thead>
<tr>
<th>To</th>
<th>1903</th>
<th>1904</th>
<th>1905</th>
<th>1906</th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
<th>1913</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td>Great Britain</td>
<td>6,554,014</td>
<td>4,409,774</td>
<td>5,568,966</td>
<td>6,802,000</td>
<td>3,809,925</td>
<td>823,761</td>
<td>1,273,484</td>
<td>587,493</td>
<td>401,621</td>
<td>1,769,510</td>
<td>173</td>
</tr>
<tr>
<td>British West Indies</td>
<td>112,988</td>
<td>127,700</td>
<td>80,323</td>
<td>87,685</td>
<td>59,313</td>
<td>85,371</td>
<td>95,570</td>
<td>76,826</td>
<td>70,414</td>
<td>54,365</td>
<td>26,691</td>
</tr>
<tr>
<td>British Guiana</td>
<td>7,655</td>
<td>6,412</td>
<td>8,929</td>
<td>11,654</td>
<td>8,113</td>
<td>12,801</td>
<td>7,711</td>
<td>9,497</td>
<td>10,682</td>
<td>4,865</td>
<td>1,772</td>
</tr>
<tr>
<td>Other British Possessions</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>69,017</td>
<td>82,122</td>
<td>82,387</td>
<td>48,283</td>
<td>55,516</td>
<td>54,952</td>
<td>56,074</td>
<td>77,198</td>
<td>76,691</td>
<td>62,913</td>
<td>233</td>
</tr>
<tr>
<td>China</td>
<td>141</td>
<td>1,763</td>
<td>562</td>
<td>761</td>
<td>5,041</td>
<td>1,319</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>202</td>
<td>766</td>
<td>638</td>
<td>295</td>
<td>1,031</td>
<td>720</td>
<td>969</td>
<td>229</td>
<td>983</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Danish West Indies</td>
<td>6,077</td>
<td>2,868</td>
<td>4,475</td>
<td>4,560</td>
<td>3,664</td>
<td>4,039</td>
<td>4,148</td>
<td>4,697</td>
<td>1,438</td>
<td>2,155</td>
<td></td>
</tr>
<tr>
<td>French West Indies</td>
<td>1,639</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>13</td>
<td>23,641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Hayti</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>1,516</td>
<td>6,027</td>
<td>6,148</td>
<td>5,673</td>
<td>9,662</td>
<td>4,285</td>
<td>5,019</td>
<td>1,068</td>
<td>816</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>St. Pierre</td>
<td>28,655</td>
<td>26,639</td>
<td>21,827</td>
<td>17,668</td>
<td>17,615</td>
<td>18,479</td>
<td>14,749</td>
<td>14,036</td>
<td>18,560</td>
<td>8,216</td>
<td>12,561</td>
</tr>
<tr>
<td>United States</td>
<td>10,225</td>
<td>6,497</td>
<td>70,580</td>
<td>33,966</td>
<td>3,589</td>
<td>38,849</td>
<td>18,246</td>
<td>193,534</td>
<td>91,313</td>
<td>13,819</td>
<td>75,192</td>
</tr>
<tr>
<td>British Africa</td>
<td>133,958</td>
<td>16,417</td>
<td>4,914</td>
<td>2,656</td>
<td>265</td>
<td>22,458</td>
<td>1,873</td>
<td>10,169</td>
<td>2,596</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Mexico</td>
<td>4,989</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>2,686</td>
<td></td>
</tr>
<tr>
<td>Dutch West Indies</td>
<td>1,175</td>
<td>2,992</td>
<td>200</td>
<td>1,747</td>
<td>2,145</td>
<td>1,105</td>
<td>832</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Colambia</td>
<td>6,187</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>30,132</td>
<td>47,043</td>
<td>38,900</td>
<td>33,177</td>
<td>14,273</td>
<td>43,658</td>
<td>54,405</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>13</td>
<td>14,440</td>
<td>4,133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Domingo</td>
<td>1,351</td>
<td>8,179</td>
<td>13,680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holland</td>
<td>6,210</td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>390</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>686</td>
<td>1,062</td>
<td>3,431</td>
<td>3,922</td>
<td>4,148</td>
<td>7,671</td>
<td>2,500</td>
<td>3,417</td>
<td>3,284</td>
<td></td>
<td>2,809</td>
</tr>
<tr>
<td>Central America</td>
<td>15</td>
<td>304</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corea</td>
<td>186</td>
<td>50</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch Guiana</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>189</td>
<td>1,658</td>
<td>1,901</td>
<td>1,571</td>
<td>4,239</td>
<td>7,820</td>
<td>13,881</td>
<td>10,000</td>
<td></td>
<td></td>
<td>5,420</td>
</tr>
<tr>
<td>Porto Rico</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Panama</td>
<td>239</td>
<td>7,820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria-Hungary</td>
<td></td>
</tr>
<tr>
<td>Alaska</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>6,954,618</td>
<td>4,724,155</td>
<td>5,930,379</td>
<td>7,075,539</td>
<td>4,911,699</td>
<td>1,608,703</td>
<td>1,521,436</td>
<td>1,010,274</td>
<td>741,288</td>
<td>2,077,916</td>
<td>223,578</td>
</tr>
</tbody>
</table>

Report of the Dairy and Cold Storage Commissioner

Sessional Paper No. 153
CHEESE IMPORTS INTO THE UNITED KINGDOM, FROM BRITISH TRADE RETURNS, YEARS ENDED DECEMBER 31.

<table>
<thead>
<tr>
<th>From</th>
<th>1905</th>
<th>1906</th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>1,858,767</td>
<td>1,925,833</td>
<td>1,698,847</td>
<td>1,541,502</td>
<td>1,566,546</td>
<td>1,607,064</td>
<td>1,473,275</td>
<td>1,352,570</td>
</tr>
<tr>
<td>United States</td>
<td>175,336</td>
<td>233,445</td>
<td>114,500</td>
<td>105,555</td>
<td>54,617</td>
<td>38,247</td>
<td>150,321</td>
<td>21,237</td>
</tr>
<tr>
<td>Netherlands</td>
<td>214,033</td>
<td>229,411</td>
<td>241,551</td>
<td>279,401</td>
<td>285,329</td>
<td>231,832</td>
<td>267,017</td>
<td>268,286</td>
</tr>
<tr>
<td>New Zealand</td>
<td>78,626</td>
<td>126,216</td>
<td>192,301</td>
<td>264,905</td>
<td>368,531</td>
<td>453,785</td>
<td>267,845</td>
<td>543,927</td>
</tr>
<tr>
<td>Other countries.</td>
<td>114,900</td>
<td>123,957</td>
<td>125,254</td>
<td>114,633</td>
<td>115,067</td>
<td>129,427</td>
<td>118,964</td>
<td>122,799</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>1905</th>
<th>1906</th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>75·1</td>
<td>73·0</td>
<td>71·7</td>
<td>66·8</td>
<td>65·5</td>
<td>65·5</td>
<td>62·7</td>
<td>58·6</td>
</tr>
<tr>
<td>United States</td>
<td>7·2</td>
<td>8·8</td>
<td>8·6</td>
<td>6·6</td>
<td>6·6</td>
<td>6·6</td>
<td>6·6</td>
<td>6·0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>8·7</td>
<td>8·7</td>
<td>10·2</td>
<td>12·1</td>
<td>12·1</td>
<td>9·4</td>
<td>9·4</td>
<td>11·6</td>
</tr>
<tr>
<td>New Zealand</td>
<td>3·2</td>
<td>4·8</td>
<td>8·1</td>
<td>11·5</td>
<td>15·4</td>
<td>18·5</td>
<td>16·9</td>
<td>23·6</td>
</tr>
<tr>
<td>Other countries.</td>
<td>4·8</td>
<td>4·8</td>
<td>5·2</td>
<td>5·0</td>
<td>4·8</td>
<td>5·0</td>
<td>5·1</td>
<td>5·3</td>
</tr>
<tr>
<td>Total</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
</tr>
</tbody>
</table>

BUTTER IMPORTS INTO THE UNITED KINGDOM FROM BRITISH TRADE RETURNS, YEARS ENDED DECEMBER 31.

<table>
<thead>
<tr>
<th>From</th>
<th>1905</th>
<th>1906</th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
<th>1910</th>
<th>1911</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>461,149</td>
<td>696,549</td>
<td>657,649</td>
<td>639,118</td>
<td>601,712</td>
<td>584,049</td>
<td>638,284</td>
</tr>
<tr>
<td>Sweden</td>
<td>488,299</td>
<td>182,803</td>
<td>226,740</td>
<td>238,929</td>
<td>312,142</td>
<td>345,584</td>
<td>300,357</td>
</tr>
<tr>
<td>Denmark</td>
<td>1,630,563</td>
<td>1,675,761</td>
<td>1,818,811</td>
<td>1,857,103</td>
<td>1,764,027</td>
<td>1,726,091</td>
<td>1,707,178</td>
</tr>
<tr>
<td>Germany</td>
<td>5,732</td>
<td>10,701</td>
<td>7,297</td>
<td>3,195</td>
<td>2,965</td>
<td>3,481</td>
<td>3,755</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2,569,897</td>
<td>195,306</td>
<td>168,496</td>
<td>244,356</td>
<td>145,567</td>
<td>154,337</td>
<td>104,655</td>
</tr>
<tr>
<td>France</td>
<td>348,442</td>
<td>319,401</td>
<td>281,306</td>
<td>294,612</td>
<td>413,866</td>
<td>366,349</td>
<td>171,080</td>
</tr>
<tr>
<td>United States</td>
<td>85,874</td>
<td>157,312</td>
<td>1,063</td>
<td>39,540</td>
<td>603</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Australia</td>
<td>452,299</td>
<td>545,827</td>
<td>598,836</td>
<td>409,106</td>
<td>344,619</td>
<td>639,503</td>
<td>78,398</td>
</tr>
<tr>
<td>New Zealand</td>
<td>300,418</td>
<td>311,672</td>
<td>313,833</td>
<td>221,395</td>
<td>278,281</td>
<td>302,671</td>
<td>276,446</td>
</tr>
<tr>
<td>Canada</td>
<td>292,177</td>
<td>190,566</td>
<td>34,753</td>
<td>47,877</td>
<td>22,522</td>
<td>16,006</td>
<td>61,364</td>
</tr>
<tr>
<td>Other countries.</td>
<td>176,741</td>
<td>140,398</td>
<td>101,192</td>
<td>115,590</td>
<td>133,999</td>
<td>131,129</td>
<td>83,966</td>
</tr>
<tr>
<td>Total</td>
<td>4,417,866</td>
<td>4,337,258</td>
<td>4,210,156</td>
<td>4,210,821</td>
<td>4,062,833</td>
<td>4,325,599</td>
<td>4,302,692</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>1905</th>
<th>1906</th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>11·1</td>
<td>14·1</td>
<td>15·6</td>
<td>15·2</td>
<td>11·8</td>
<td>13·5</td>
<td>14·8</td>
<td>17·1</td>
</tr>
<tr>
<td>Sweden</td>
<td>4·5</td>
<td>4·2</td>
<td>5·4</td>
<td>5·7</td>
<td>7·7</td>
<td>7·9</td>
<td>8·4</td>
<td>8·4</td>
</tr>
<tr>
<td>Denmark</td>
<td>39·3</td>
<td>38·6</td>
<td>43·2</td>
<td>44·1</td>
<td>44·3</td>
<td>39·9</td>
<td>39·7</td>
<td>40·4</td>
</tr>
<tr>
<td>Germany</td>
<td>0·3</td>
<td>0·2</td>
<td>0·2</td>
<td>0·1</td>
<td>0·7</td>
<td>0·0</td>
<td>0·0</td>
<td>0·0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5·1</td>
<td>4·5</td>
<td>4·9</td>
<td>5·8</td>
<td>7·7</td>
<td>8·4</td>
<td>9·0</td>
<td>9·0</td>
</tr>
<tr>
<td>France</td>
<td>8·4</td>
<td>7·1</td>
<td>6·7</td>
<td>9·7</td>
<td>10·1</td>
<td>8·4</td>
<td>4·9</td>
<td>6·1</td>
</tr>
<tr>
<td>United States</td>
<td>2·0</td>
<td>3·6</td>
<td>0·63</td>
<td>0·9</td>
<td>0·9</td>
<td>0·0</td>
<td>0·0</td>
<td>0·0</td>
</tr>
<tr>
<td>Australia</td>
<td>16·8</td>
<td>12·5</td>
<td>14·2</td>
<td>9·5</td>
<td>9·5</td>
<td>14·7</td>
<td>20·3</td>
<td>13·6</td>
</tr>
<tr>
<td>New Zealand</td>
<td>7·5</td>
<td>7·2</td>
<td>7·5</td>
<td>5·3</td>
<td>6·9</td>
<td>8·3</td>
<td>6·4</td>
<td>8·7</td>
</tr>
<tr>
<td>Canada</td>
<td>7·0</td>
<td>4·4</td>
<td>0·8</td>
<td>1·1</td>
<td>0·6</td>
<td>0·3</td>
<td>1·4</td>
<td>0·0</td>
</tr>
<tr>
<td>Other countries.</td>
<td>4·2</td>
<td>3·5</td>
<td>2·4</td>
<td>2·6</td>
<td>3·3</td>
<td>3·0</td>
<td>2·1</td>
<td>2·9</td>
</tr>
<tr>
<td>Total</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
<td>100·0</td>
</tr>
</tbody>
</table>

N.B. — 1912 figures unrevisepd.
IMPORTS OF DAIRY PRODUCE, FOR CONSUMPTION IN CANADA, DURING THE YEARS ENDED MARCH 31.

<table>
<thead>
<tr>
<th></th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
<th>1913</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbs.</td>
<td>Lbs.</td>
<td>Lbs.</td>
<td>Lbs.</td>
<td></td>
</tr>
<tr>
<td>Cheese</td>
<td>945,896</td>
<td>1,186,279</td>
<td>2,426,317</td>
<td>1,495,758</td>
</tr>
<tr>
<td>Butter</td>
<td>687,454</td>
<td>1,328,792</td>
<td>3,987,332</td>
<td>7,989,269</td>
</tr>
<tr>
<td>Condensed milk</td>
<td>264,297</td>
<td>193,672</td>
<td>138,427</td>
<td>261,565</td>
</tr>
</tbody>
</table>

IMPORTS OF BUTTER BY COUNTRIES, YEARS ENDED MARCH 31.

<table>
<thead>
<tr>
<th>Country</th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
<th>1913</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbs.</td>
<td>Lbs.</td>
<td>Lbs.</td>
<td>Lbs.</td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td>45,837</td>
<td>90,562</td>
<td>811,550</td>
<td>767,131</td>
</tr>
<tr>
<td>Australia</td>
<td>547,149</td>
<td>429,966</td>
<td>104,449</td>
<td>98,112</td>
</tr>
<tr>
<td>New Zealand</td>
<td>21,840</td>
<td>489,359</td>
<td>2,121,862</td>
<td>6,018,022</td>
</tr>
<tr>
<td>Turkey</td>
<td>240</td>
<td>167</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>67,568</td>
<td>307,187</td>
<td>946,695</td>
<td>1,100,431</td>
</tr>
<tr>
<td>Other countries</td>
<td>4,820</td>
<td>2,611</td>
<td>2,620</td>
<td>5,573</td>
</tr>
<tr>
<td>Totals</td>
<td>687,454</td>
<td>1,328,792</td>
<td>3,987,332</td>
<td>7,989,269</td>
</tr>
</tbody>
</table>
DEPARTMENT OF AGRICULTURE
CANADA

REPORT

OF THE

VETERINARY DIRECTOR GENERAL

(F. TORRANCE, B.A., D.V.S.)

FOR THE YEAR ENDING MARCH 31, 1913

PRINTED BY ORDER OF PARLIAMENT

OTTAWA
PRINTED BY C. H. PARMELEE, PRINTER TO THE KING'S MOST EXCELLENT MAJESTY
1913

[No. 15b—1914.]
REPORT
OF THE
VETERINARY DIRECTOR GENERAL.

Sir,—I have the honour to present my report as Veterinary Director General for the year ending March 31, 1913.

During the interval between my appointment on August 1, 1912, and the resignation of my predecessor, Dr. Rutherford, on April 1, 1912, the Health of Animals Branch was in charge of Dr. G. Hilton, as Acting Veterinary Director General, whose report is printed herewith.

On assuming office, I found the work of the Branch carried on in a very efficient manner, the various employees performing their duties satisfactorily, and a spirit of loyalty and earnestness pervading the service. This state of affairs is continuing at the present time and I take the opportunity of thanking the other members of the service for their hearty co-operation with me in the work of the Branch, and would especially mention Dr. Hilton, Chief Veterinary Inspector, and Dr. Barnes, Chief Meat Inspector.

The offices of Veterinary Director General and Live Stock Commissioner were combined under my predecessor, and I assumed control of both branches until December 1, 1913, when the offices were separated and Mr. John Bright was appointed Live Stock Commissioner. During the brief period I occupied the dual position, I was ably assisted by Mr. H. S. Arkell, Assistant Live Stock Commissioner, to whom, as well as the other members of the Live Stock Branch, I desire to offer my thanks.

The work of the Branch in the Contagious Diseases Division shows satisfactory progress to have been made in control work in the great majority of the diseases we have undertaken to control. Glanders, mange, rabies and dourine are markedly less prevalent than in previous years. Hog cholera shows an increase, the cause of which is discussed elsewhere. Tuberculosis of cattle is practically unchanged, no systematic efforts at control having yet been attempted, but valuable information has been acquired which should be useful in making plans for the future. Detailed statements of each of the diseases follow.

GLANDERS.

The policy of slaughter, with compensation, of all reactors to the malien test, with careful supervision of all contact animals, inaugurated by my predecessor, is giving further evidence of success. Outbreaks in Canada have been fewer in number than in the preceding year, and in the province of Saskatchewan, which formerly had more cases than all the rest of the Dominion, there is a diminution from 722, in 1912, to 428, in 1913. Alberta shows a considerable increase from 50, in 1912, to 152, in 1913. This is probably due to the same causes that have occasioned the former prevalence of the disease in the sister province, and may be expected to reach a

15b—14
maximum and decline. In other parts of Canada there has been almost uniformly a decline. The following are the statistics for the disease:

Statistics.

DOMINION.

<table>
<thead>
<tr>
<th>Killed on inspection</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>“ at 1st test.</td>
<td>554</td>
</tr>
<tr>
<td>“ at 2nd test.</td>
<td>70</td>
</tr>
<tr>
<td>“ 3rd test.</td>
<td>7</td>
</tr>
<tr>
<td>“ 4th test.</td>
<td>1</td>
</tr>
</tbody>
</table>

Total (valued at $90,407.50, at a cost of $60,271.65) ... 638

209 showed clinical symptoms.
22,829 horses were tested with mallein, of which 632 reacted and were destroyed. Of the 632 reactors, 203 showed clinical symptoms of glanders at or during the test.
245 horses are under control for retest.
Of the above 638 horses slaughtered, 4 were killed, without compensation, as being diseased when imported into Canada.

PRINCE EDWARD ISLAND.

1 horse was tested and proved to be healthy.

NOVA SCOTIA.

26 horses were tested and proved to be healthy.

NEW BRUNSWICK.

10 horses killed at first test, valued at $1,300, at a cost of $866.65.
2 showed clinical symptoms.
205 horses were tested with mallein, of which 10 reacted and were destroyed. Of the 10 reactors 2 showed clinical symptoms of glanders at or during the test.
No horses are under control for retest.
Of the 10 horses slaughtered—

2 were in the electoral district of Kent.
8 were in the electoral district of Sunbury and Queens.

QUEBEC.

<table>
<thead>
<tr>
<th>Killed on inspection</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>“ at 1st test.</td>
<td>14</td>
</tr>
<tr>
<td>“ at 2nd test.</td>
<td>1</td>
</tr>
</tbody>
</table>

Total (valued at $2,392.50, at a cost of $1,595) ... 17

10 showed clinical symptoms.
691 horses were tested with mallein, of which 15 reacted and were destroyed. Of the 15 reactors, 8 showed clinical symptoms of glanders at or during the test.
No horses are under control for retest.
HEALTH OF ANIMALS

SESSIONAL PAPER No. 15b

Of the 17 horses slaughtered—

<table>
<thead>
<tr>
<th>District</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labelle, Quebec</td>
<td>6</td>
</tr>
<tr>
<td>Joliette</td>
<td>6</td>
</tr>
<tr>
<td>Two Mountains</td>
<td>1</td>
</tr>
<tr>
<td>Maisonneuve</td>
<td>1</td>
</tr>
<tr>
<td>Drummond</td>
<td>1</td>
</tr>
<tr>
<td>Terrebonne</td>
<td>1</td>
</tr>
</tbody>
</table>

Ontario.

Killed at 1st test, 7, valued at $1,050, at a cost of $700.

5 showed clinical symptoms.

1,036 horses were tested with mallein, of which 7 reacted and were destroyed.

Of the 7 reactors, 5 showed clinical symptoms of glanders at or during the test.

4 horses are under control for retest.

Of the 7 horses slaughtered—

<table>
<thead>
<tr>
<th>District</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algoma, Hastings</td>
<td>3</td>
</tr>
<tr>
<td>Russell, Nipissing</td>
<td>1</td>
</tr>
<tr>
<td>Lennox and Addington</td>
<td>1</td>
</tr>
</tbody>
</table>

Manitoba.

Killed at 1st test 18

" 2nd test 5

" 4th test 1

Total (valued at $3,045, at a cost of $2,030) 24

1 showed clinical symptoms.

3,185 horses were tested with mallein, of which 24 reacted and were destroyed.

Of the 24 reactors, 1 showed clinical symptoms of glanders at or during the test.

No horses are under control for retest.

Of the 24 horses slaughtered—

<table>
<thead>
<tr>
<th>District</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Souris, Macdonald</td>
<td>14</td>
</tr>
<tr>
<td>Dauphin</td>
<td>8</td>
</tr>
<tr>
<td>Provencher</td>
<td>1</td>
</tr>
</tbody>
</table>

Saskatchewan.

Killed on inspection 3

" at 1st test 364

" at 2nd test 54

" at 3rd test 7

Total (valued at $61,425, at a cost of $40,950) 428

141 showed clinical symptoms.

11,417 horses were tested with mallein, of which 425 reacted and were destroyed.

Of the 425 reactors, 138 showed clinical symptoms of glanders at or during the test.
144 horses are under control for retest.
Of the 428 horses slaughtered—

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regina</td>
<td>91</td>
</tr>
<tr>
<td>Battleford</td>
<td>73</td>
</tr>
<tr>
<td>Humboldt</td>
<td>75</td>
</tr>
<tr>
<td>Moosejaw</td>
<td>45</td>
</tr>
<tr>
<td>Mackenzie</td>
<td>34</td>
</tr>
<tr>
<td>Saskatoon</td>
<td>14</td>
</tr>
<tr>
<td>Assiniboia</td>
<td>22</td>
</tr>
<tr>
<td>Prince Albert</td>
<td>4</td>
</tr>
<tr>
<td>Qu'Appelle</td>
<td>20</td>
</tr>
</tbody>
</table>

ALBERTA.

Killed on inspection: 1
" at 1st test: 141
" at 2nd test: 10

Total (valued at $21,195, at a cost of $14,130): 152

51 showed clinical symptoms.
4,302 horses were tested with mallein, of which 151 reacted and were destroyed.

Of the 151 reactors, 50 showed clinical symptoms of glanders at or during the test.

97 horses are under control for retest.

Of the 152 horses slaughtered—

<table>
<thead>
<tr>
<th>Electoral District</th>
<th>Horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macleod</td>
<td>2</td>
</tr>
<tr>
<td>Red Deer</td>
<td>63</td>
</tr>
<tr>
<td>Medicine Hat</td>
<td>83</td>
</tr>
<tr>
<td>Calgary</td>
<td>2</td>
</tr>
<tr>
<td>Edmonton</td>
<td>1 was</td>
</tr>
<tr>
<td>Victoria</td>
<td>1 "</td>
</tr>
</tbody>
</table>

BRITISH COLUMBIA.

1,963 horses were tested with mallein, all of which proved to be healthy.

YUKON TERRITORY.

2 horses were tested with mallein and proved to be healthy.

UNORGANIZED TERRITORY.

1 horse was tested for 3rd time and passed as healthy.

HOG CHOLERA.

The increase in hog cholera during the past year, amounting to practically double that of the previous year, while not alarming, is sufficient to occasion careful inquiry as to its cause. This has been done with every outbreak, and it has been found that, with a few exceptions, the probable source of infection has been uncooked bits of pork rind, &c., which have been eaten by hogs fed on garbage.

Hogs have been scarce in Canada during the past year. Pork has been high, and, in consequence, large quantities of pork, hams and bacon have been imported from
SESSIONAL PAPER No. 15b

the United States. Hog cholera has been, at the same time, much more prevalent there than usual; the ‘worst in twenty years,’ I was told by one of the state veterinarians.

Numbers of hogs in the incubative stage of the disease are slaughtered and their carcasses passed for human consumption. There seems to be no valid reason for condemning this practice from the standpoint of human hygiene, as such pork has apparently no bad effect on the human consumer. This pork, however, seems easily to convey infection to live hogs, unless it has previously been cooked. The processes of pickling and smoking do not appear to kill the infection.

It is to be hoped that, with an increased production of Canadian pork, there will be less imported, and consequently a lessening of the chances of hog cholera infection.

As a result of inquiries into the use of artificial immunity as a means of control of this disease, I arrived at the conclusion that the method is unsuited to our conditions in Canada, and if permitted would expose our herds to a possible new source of infection—the immune carrier of the virus. I therefore recommended that the method should be prohibited in Canada and, in consequence, the following Order in Council was passed:—

"The use of Hog Cholera serum, or virus, being considered a source of danger, the importation, manufacture, sale or use of such serum or virus is prohibited."

STATISTICS.

In the Dominion, 8,466 hogs, valued at $73,179.46, were destroyed as diseased, at a cost of $52,785.94 in compensation.

NEW BRUNSWICK.

One outbreak of hog cholera occurred in New Brunswick, in which 26 hogs, valued at $408, were destroyed at Fairvale, at a cost of $271.99 in compensation.

One owner’s premises were also quarantined on suspicion, involving the control of 58 hogs.

One hog, valued at $8, was destroyed for purposes of examination, but no evidence of hog cholera was found.

ONTARIO.

Two hundred and twenty-four outbreaks of hog cholera occurred in Ontario, in which 4,851 hogs, valued at $41,947.50, were destroyed in the undermentioned districts, at a cost of $27,964.95 in compensation.

Forty-six premises were also quarantined on suspicion, involving the control of 419 hogs.

Two hogs, valued at $24, were destroyed for purposes of examination, but no evidence of hog cholera was found.

<table>
<thead>
<tr>
<th>District</th>
<th>No. of Outbreaks</th>
<th>Hogs Destroyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essex, N.R.</td>
<td>142</td>
<td>2,683</td>
</tr>
<tr>
<td>“ S.R.</td>
<td>21</td>
<td>531</td>
</tr>
<tr>
<td>Welland.</td>
<td>7</td>
<td>85</td>
</tr>
<tr>
<td>Thunder Bay and Rainy River</td>
<td>54</td>
<td>1,372</td>
</tr>
<tr>
<td>Total</td>
<td>224</td>
<td>4,851</td>
</tr>
</tbody>
</table>
Fifteen outbreaks of hog cholera occurred in Manitoba, in which 249 hogs, valued at $2,524, were destroyed in the undermentioned districts, at a cost of $1,682.66 in compensation.

Fifteen premises were also quarantined on suspicion, involving the control of 256 hogs.

Five hogs, valued at $43 were destroyed for purposes of examination, but no evidence of hog cholera was found.

<table>
<thead>
<tr>
<th>District</th>
<th>No. of Outbreaks</th>
<th>Hogs Destroyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winnipeg</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Provencher</td>
<td>4</td>
<td>154</td>
</tr>
<tr>
<td>Selkirk</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Macdonald</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Lisgar</td>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>249</td>
</tr>
</tbody>
</table>

SASKATCHEWAN.

Eighty-five outbreaks of hog cholera occurred in Saskatchewan, in which 1,414 hogs, valued at $12,700.55, were destroyed in the undermentioned districts, at a cost of $8,467 in compensation.

Sixty-three premises were also quarantined on suspicion, involving the control of 563 hogs.

Two hogs, valued at $11, were destroyed for purposes of examination, but no evidence of hog cholera was found.

<table>
<thead>
<tr>
<th>District</th>
<th>No. of Outbreaks</th>
<th>Hogs Destroyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regina</td>
<td>13</td>
<td>269</td>
</tr>
<tr>
<td>Moosejaw</td>
<td>52</td>
<td>884</td>
</tr>
<tr>
<td>Saskatoon</td>
<td>17</td>
<td>216</td>
</tr>
<tr>
<td>Prince Albert</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>85</td>
<td>1,414</td>
</tr>
</tbody>
</table>

ALBERTA.

Thirteen outbreaks of hog cholera occurred in Alberta, in which 343 hogs, valued at $4,377.25, were destroyed in the undermentioned districts, at a cost of $2,918.15 in compensation.

Ten premises were also quarantined on suspicion, involving the control of 543 hogs.

One hog, valued at $15, was destroyed for purposes of examination, but no evidence of hog cholera was found.

<table>
<thead>
<tr>
<th>District</th>
<th>No. of Outbreaks</th>
<th>Hogs Destroyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calgary</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Medicine Hat.</td>
<td>9</td>
<td>291</td>
</tr>
<tr>
<td>Macleod</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>343</td>
</tr>
</tbody>
</table>
BRITISH COLUMBIA.

One hundred and eleven outbreaks of hog cholera occurred in British Columbia, in which 1,583 hogs, valued at $17,222.16, were destroyed in the undermentioned districts, at a cost of $11,481.19 in compensation.

Ninety-three premises were also quarantined on suspicion, involving the control of 1,200 hogs.

One hog, valued at $8, was destroyed for purposes of examination, but no evidence of hog cholera was found.

<table>
<thead>
<tr>
<th>District</th>
<th>No. of Outbreaks</th>
<th>Hogs Destroyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancouver</td>
<td>2</td>
<td>61</td>
</tr>
<tr>
<td>Huntingdon</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>Comox-Atlin</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>Yale-Cariboo</td>
<td>21</td>
<td>425</td>
</tr>
<tr>
<td>Victoria</td>
<td>10</td>
<td>81</td>
</tr>
<tr>
<td>New Westminster</td>
<td>20</td>
<td>367</td>
</tr>
<tr>
<td>Nanaimo</td>
<td>34</td>
<td>376</td>
</tr>
<tr>
<td>Kootenay</td>
<td>13</td>
<td>154</td>
</tr>
<tr>
<td>Total</td>
<td>111</td>
<td>1,583</td>
</tr>
</tbody>
</table>

TUBERCULOSIS.

No marked advance has characterized the relation of the department to this disease during the past year. Information has been accumulated which will be of use in forming plans for its control, a task which should soon be undertaken. Public opinion is gaining strength in favour of more stringent measures for its control and, in my opinion, a moderate, fair and reasonable regulation would meet with comparatively little opposition.

Many other countries have recently adopted new regulations dealing with tuberculosis, and the result of the operation of these laws is being carefully observed with a view to the adoption of whatever line of control is proving successful and suited to Canadian conditions.

An increased demand for testing of herds is an indication of the public awakening to the injury the disease is inflicting on the farming community, and it is gratifying to note a larger number of stock breeders voluntarily placing their herds under the control of the department for the elimination of the disease.

In response to a request from the Government of British Columbia, the department has undertaken to test free of charge, all pure-bred cattle purchased in other provinces of Canada and imported into British Columbia. This may appear, at first sight, as a discrimination between one province and another, but consideration of the facts will show that special reasons exist which justify this action.

British Columbia has for some years been actively endeavouring to control bovine tuberculosis within her borders, and maintains a staff of veterinary inspectors to test the herds and eliminate the diseased animals, for which compensation is paid.

Much progress had been made along this line when it was found that sometimes the disease was introduced in animals purchased in other provinces for the improvement of stock. When such animals were destroyed the province was asked to pay compensation, and it appeared unfair that the British Columbia funds should be used to pay for a diseased animal which originated in another province. A request was made that the Dominion authority should assist British Columbia by preventing
diseased cattle from crossing the border, and after careful inquiry into all the circumstances, the request was granted and the following Order in Council passed:

"No common carrier shall receive for shipment or carry into the Province of British Columbia, any registered pure bred cattle, unless the same are accompanied by a certificate signed by an inspector setting forth that within thirty days prior to the date of shipment they have been submitted to and have passed the tuberculin test."

Under this arrangement there have been tested, up to the present, 186 head, of which 3 reacted.

Statistics.

698 cattle were tested on being imported into Canada, 5 of which reacted, 4 were classed as suspicious and 689 proved healthy.
1,082 cattle were tested for export, 11 of which reacted, 8 were classed as suspicious, and 1,063 proved healthy.
3,839 cattle were tested by private practitioners with tuberculin supplied by this Branch, 151 of which reacted, 84 were classed as suspicious, and 3,604 proved healthy.
1,254 cattle were tested, some for shipment to different provinces of the Dominion, and others in herds under the supervision of this department, 23 of which reacted, 18 were classed as suspicious, and 1,214 proved healthy.
All reactors were permanently earmarked by a veterinary inspector, in cases where the owner did not voluntarily destroy them.

MANGE IN CATTLE.

This disease is gradually diminishing. We still have certain areas in Saskatchewan, Alberta and British Columbia under quarantine, but there are indications that it will be possible largely to reduce the area in the near future.

Statistics.

<table>
<thead>
<tr>
<th>Province</th>
<th>Outbreaks</th>
<th>Animals affected</th>
<th>Animals quarantined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
<td>1</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>34</td>
<td>1,192</td>
<td>16,162</td>
</tr>
<tr>
<td>Alberta</td>
<td>137</td>
<td>2,122</td>
<td>63,513</td>
</tr>
<tr>
<td>British Columbia</td>
<td>172</td>
<td>3,821</td>
<td>82,677</td>
</tr>
</tbody>
</table>

50,143 cattle were inspected on being presented for shipment from the quarantined areas in Saskatchewan, Alberta, and British Columbia.
81,770 cattle were inspected in Winnipeg, on arrival from points west thereof.
MANGE IN HORSES.

A great reduction will be noticed in the figures for this year, compared with the previous one.

Statistics.

<table>
<thead>
<tr>
<th>Province</th>
<th>Outbreaks</th>
<th>Animals affected</th>
<th>Animals quarantined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quebec</td>
<td>14</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>Ontario</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Manitoba</td>
<td>2</td>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>32</td>
<td>89</td>
<td>226</td>
</tr>
<tr>
<td>Alberta</td>
<td>2</td>
<td>7</td>
<td>401</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>126</td>
<td>712</td>
</tr>
</tbody>
</table>

10,821 horses and 79 mules were inspected on being presented for shipment from the quarantined area in Alberta and Saskatchewan.

SHEEP SCAB.

Apart from a single outbreak in a remote part of Manitoba, and an isolated case in Quebec, Canada was free from sheep scab during the past year.

Statistics.

In Quebec, 27 sheep on two premises were quarantined, being suspected of sheep scab, distributed as follows:

District

<table>
<thead>
<tr>
<th></th>
<th>Quarantined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Rivers and St. Maurice</td>
<td>10</td>
</tr>
<tr>
<td>Terrebonne</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
</tr>
</tbody>
</table>

In Manitoba, 62 animals on six premises in the district of Selkirk were found to be affected with sheep scab.

In accordance with the Quarantine Regulations, 67,891 sheep, imported into Canada for other purposes than immediate slaughter, were quarantined for the prescribed period of thirty days.

DOURINE.

Considerable progress has been made in dealing with this disease. The methods of diagnosis elaborated by Dr. A. Watson are being applied to the animals in quarantine, as suspects, with good results. Those found free from infection are released, and affected ones destroyed, resulting in a great reduction in the number quarantined. There is a good prospect that the disease will be entirely eradicated.

Statistics.

Eighteen animals, valued at $3,145, were slaughtered as being affected with this disease, at a cost of $2,096.68, distributed as follows:
<table>
<thead>
<tr>
<th>District—</th>
<th>Suspected and quarantined</th>
<th>Slaughtered.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assiniboia</td>
<td>23</td>
<td>..</td>
</tr>
<tr>
<td>Battleford</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>Qu’Appelle</td>
<td>3</td>
<td>..</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>District—</th>
<th>Suspected and quarantined</th>
<th>Slaughtered.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine Hat</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>Macleod</td>
<td>113</td>
<td>8</td>
</tr>
<tr>
<td>Victoria</td>
<td>10</td>
<td>..</td>
</tr>
<tr>
<td>Red Deer</td>
<td>7</td>
<td>..</td>
</tr>
<tr>
<td>Calgary</td>
<td>1</td>
<td>..</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

ANTHRAX.

A few outbreaks of this disease have been dealt with in the provinces of Quebec and Ontario, the rest of Canada being free from it. The policy of preventive vaccination with vaccine prepared at our laboratory has been followed with good results.

Statistics.

The following outbreaks were reported and dealt with during the year:

<table>
<thead>
<tr>
<th>Province—</th>
<th>Animals Outbreaks. quarantined.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quebec</td>
<td>2</td>
</tr>
<tr>
<td>Ontario</td>
<td>1</td>
</tr>
<tr>
<td>British Columbia</td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Four hundred and seven doses of Anthrax vaccine were sent out by the Biological Laboratory of the Branch.

BLACK QUARTER, OR ‘BLACKLEG.’

Judging by the number of doses of Blackleg vaccine distributed from this office, this disease must be widespread in Canada, but as it is not dealt with under the Animal Contagious Diseases Act, there are no statistics regarding it.

Preventive inoculation with our vaccine has been followed by satisfactory results in the vast majority of cases.

Twelve thousand, four hundred and forty-eight doses of vaccine were sold to owners during the year.
Rabies.

Rabies has prevailed to a limited extent in Ontario and Alberta, the rest of Canada remaining free from infection. Prompt measures were taken to limit the disease to the localities where it was detected, and were crowned with success. We may, however, from time to time, expect fresh outbreaks of the disease. The long boundary between Canada and the United States, and the possibility that wild animals, such as coyotes and wolves, may become infected and carry the disease, render it unlikely that we can remain long without infection.

Unnecessary anxiety is sometimes caused by the ill-conditioned haste with which a suspicious dog is made away with. Dogs occasionally show symptoms which, to the inexperienced, give rise to the cry of 'mad dog,' when in reality it may only be suffering from an epileptic fit, or some other non-contagious malady. In suspicious cases, the dog should be securely chained and locked up in a room where no other animal can come near him. If he is really affected with rabies the distinctive symptoms will soon develop. If he is not, he will likely regain his normal condition in a short time. In every case where a dog is destroyed as rabid, the head should be cut off, packed in ice and sent by express to the Pathologist, Health of Animals Branch, Ottawa, and an accurate diagnosis will be made.

This procedure will enable persons who have been bitten by the animal to know whether it is necessary for them to take the Pasteur treatment or not.

Statistics.

In Ontario, 112 premises were quarantined on account of the prevalence of rabies in the adjacent districts, distributed as follows:

<table>
<thead>
<tr>
<th>District</th>
<th>Premises Quarantined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essex</td>
<td>27</td>
</tr>
<tr>
<td>Perth</td>
<td>2</td>
</tr>
<tr>
<td>York</td>
<td>27</td>
</tr>
<tr>
<td>Welland</td>
<td>9</td>
</tr>
<tr>
<td>Brant</td>
<td>7</td>
</tr>
<tr>
<td>Huron</td>
<td>6</td>
</tr>
<tr>
<td>Middlesex</td>
<td>4</td>
</tr>
<tr>
<td>Oxford</td>
<td>13</td>
</tr>
<tr>
<td>Kent</td>
<td>2</td>
</tr>
<tr>
<td>Simcoe</td>
<td>1</td>
</tr>
<tr>
<td>Elgin</td>
<td>12</td>
</tr>
<tr>
<td>Lambton</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>112</td>
</tr>
</tbody>
</table>

In Alberta, 41 premises were quarantined on account of the prevalence of rabies in the adjacent districts, distributed as follows:

<table>
<thead>
<tr>
<th>District</th>
<th>Premises Quarantined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edmonton</td>
<td>1</td>
</tr>
<tr>
<td>Victoria</td>
<td>32</td>
</tr>
<tr>
<td>Medicine Hat.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>41</td>
</tr>
</tbody>
</table>
RED WATER.

The investigations begun some years ago by this Branch have been continued throughout the year by Dr. S. Hadwen, whose report will be found appended hereto.

SWAMP FEVER.

This disease continues to find victims among the horses of the west, especially in the three prairie provinces. Investigations have revealed the fact that the disease can be conveyed from one horse to another by inoculation with filtered blood. This shows that the causal agent is ultra-microscopic, so that there is little chance of detecting it unless some improvement in microscopes adds greatly to their power.

Experiments show that the disease, when communicated artificially, has a tendency to become milder with successive inoculations until it practically runs out. Natural infection shows no such tendency, and it is, therefore, supposed that some insect carrier is necessary to propagate the disease and preserve its virulence. This idea is further supported by the fact that the prevalence of the disease is greatest during the season of insect activity.

Work has been instituted at the Lethbridge laboratory, under the direction of Dr. A. Watson, with the object of ascertaining, if possible, what the insect carrier is, and also of finding some method for the rapid diagnosis of the disease.

CONTAGIOUS ABORTION.

Frequent inquiries from breeders for information from this department as to the nature, cause and treatment of this disease led me to issue a leaflet which gives a brief account of the present state of knowledge on the subject. It is, however, being very widely investigated at the present time, and new facts are coming to light which may considerably modify the views hitherto held. There is one thing certain, that the disease is very widespread and responsible for a very considerable loss to breeders.

Some investigation work was begun under my direction by Dr. T. C. Evans, of the Biological Laboratory, but has not progressed far enough to make a report at present.

Previous to my appointment, I had the opportunity of seeing what was being done in England with regard to the disease, and presented to you a special report on the subject, which is printed herewith.

BIOLOGICAL LABORATORIES.

The Biological Laboratory, Ottawa, under the charge of Dr. C. H. Higgins, has continued to furnish the tuberculin, mallein and other products necessary to the control of contagious diseases of animals, and, in addition, has been engaged in some research work. This latter has been somewhat limited, owing to the other duties of the staff and the inadequate facilities for more extended work. A synopsis of this will be found in Dr. Higgins' report.

The necessity for better facilities in connection with laboratory work in the west rendered it advisable to provide a better building for the purpose. A solid brick building was therefore erected on the quarantine grounds at Lethbridge, where Dr. A. Watson has been doing excellent work for some years. This has been well equipped with the necessary apparatus, and has already demonstrated its usefulness in enabling us to more promptly diagnose and eradicate dourine. It also provides facilities for the investigation of diseases of animals peculiar to the west, such as swamp fever, and should be of great value to the country.
At Agassiz, B.C., a small laboratory is maintained in connection with the Experimental Farm. This is in charge of Dr. S. Hadwen, who has been chiefly engaged in the study of Red Water in cattle, but who has found time for other research work of value.

QUARANTINE STATIONS.

No additions have been made to the number of quarantine stations, but some necessary improvements have been made at stations where additional accommodation was urgently needed. Stables were erected at Coutts, Alberta, and at Windsor, Ont., and a piggery at Emerson, Man., the two latter of concrete construction.

The question of improving the quarantine station at Lévis, Que., has been taken up, and the recommendation of my predecessor carefully considered. It appears to be impossible to operate the present quarantine without having cattle and sheep driven to it along a public highway from the wharf where they are landed. This exposes them to chance contact with other animals, en route, and under certain circumstances would be dangerous to our live stock interests. I am, therefore, strongly of opinion that a new ground should be obtained with access to a railway by which the animals to be quarantined could be carried from the landing place.

IMPORT TESTING.

Twelve thousand one hundred and fifty-nine (12,159) horses were tested on arrival from the United States and allowed to proceed to their destinations.

<table>
<thead>
<tr>
<th>Entered at</th>
<th>No. Entered at</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlottetown, P.E.I</td>
<td>Toronto,</td>
<td>2</td>
</tr>
<tr>
<td>Halifax, N.S.</td>
<td>Brockville,</td>
<td>24</td>
</tr>
<tr>
<td>Yarmouth</td>
<td>Rainy River</td>
<td>14</td>
</tr>
<tr>
<td>St. John, N.B.</td>
<td>Ottawa</td>
<td>1</td>
</tr>
<tr>
<td>Woodstock</td>
<td>Emerson, Man.</td>
<td>1693</td>
</tr>
<tr>
<td>Florenceville</td>
<td>Snowflake</td>
<td>17</td>
</tr>
<tr>
<td>Debec Junction</td>
<td>Bannerman</td>
<td>117</td>
</tr>
<tr>
<td>Grand Falls</td>
<td>Guelph</td>
<td>564</td>
</tr>
<tr>
<td>Arroostook Junction</td>
<td>Winnipeg</td>
<td>10</td>
</tr>
<tr>
<td>St. Stephen</td>
<td>Wood Mountain, Sask.</td>
<td>911</td>
</tr>
<tr>
<td>McAdam Junction</td>
<td>Willow Creek</td>
<td>1445</td>
</tr>
<tr>
<td>St. Leonards</td>
<td>Big Muddy</td>
<td>286</td>
</tr>
<tr>
<td>Edmundston</td>
<td>Weyburn</td>
<td>27</td>
</tr>
<tr>
<td>Sherbrooke, Que.</td>
<td>North Portal</td>
<td>1907</td>
</tr>
<tr>
<td>St. Armand</td>
<td>Marienthal</td>
<td>248</td>
</tr>
<tr>
<td>Montreal</td>
<td>Swift Current</td>
<td>35</td>
</tr>
<tr>
<td>St. Johns</td>
<td>Maple Creek</td>
<td>4</td>
</tr>
<tr>
<td>Comin's Mills</td>
<td>Saskatchewan, general</td>
<td>6</td>
</tr>
<tr>
<td>Abercorn</td>
<td>Contta, Alta</td>
<td>914</td>
</tr>
<tr>
<td>Beebe Junction</td>
<td>Twin Lakes</td>
<td>521</td>
</tr>
<tr>
<td>Sorel.</td>
<td>Pendant d'Oreille</td>
<td>75</td>
</tr>
<tr>
<td>Lake Megantic</td>
<td>Lethbridge</td>
<td>10</td>
</tr>
<tr>
<td>Coaticook</td>
<td>Edmonton</td>
<td>1</td>
</tr>
<tr>
<td>Beaucastle</td>
<td>Gateway, B.C.</td>
<td>179</td>
</tr>
<tr>
<td>Athelstan</td>
<td>Grand Forks</td>
<td>198</td>
</tr>
<tr>
<td>Dundee</td>
<td>Huntington</td>
<td>219</td>
</tr>
<tr>
<td>Lacolle Junction</td>
<td>Vancouver</td>
<td>21</td>
</tr>
<tr>
<td>Highwater</td>
<td>Muncaster</td>
<td>74</td>
</tr>
<tr>
<td>St. Agnes de Dundee</td>
<td>New Westminster</td>
<td>2</td>
</tr>
<tr>
<td>Noyan Junction</td>
<td>Victoria</td>
<td>27</td>
</tr>
<tr>
<td>Bridgeburg, Ont.</td>
<td>Kingsgate</td>
<td>351</td>
</tr>
<tr>
<td>Windsor</td>
<td>Bridgesville</td>
<td>117</td>
</tr>
<tr>
<td>Port Arthur</td>
<td>Rykerts</td>
<td>24</td>
</tr>
<tr>
<td>Kingston</td>
<td>Rossland</td>
<td>52</td>
</tr>
<tr>
<td>Morrisburg</td>
<td>Miramichi</td>
<td>146</td>
</tr>
<tr>
<td>Sarnia</td>
<td>Osoyoos</td>
<td>298</td>
</tr>
<tr>
<td>Port Frances</td>
<td>Keremeos</td>
<td>118</td>
</tr>
<tr>
<td>Sault Ste. Marie</td>
<td>Nelson</td>
<td>48</td>
</tr>
<tr>
<td>Prescott</td>
<td>White Rock</td>
<td>86</td>
</tr>
<tr>
<td>Cornwall</td>
<td>White Horse, Y.T.</td>
<td>1</td>
</tr>
<tr>
<td>Niagara Falls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>Horses</td>
<td>Mules</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Charlottetown, P.E.I.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Halifax, N.S.</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>Sydney, N.S.</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Yarmouth, N.S.</td>
<td>41</td>
<td>2</td>
</tr>
<tr>
<td>St. John, N.B.</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>St. Stephen, N.B.</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>McAdam Jet., N.B.</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>Debec Jet., N.B.</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Woodstock, N.B.</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Florenceville, N.B.</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Aroostook Jet., N.B.</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Grand Falls, N.B.</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>St. Leonards, N.B.</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Edmundston, N.B.</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>"Quebec, Que.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Comins Mills, Que.</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Lake Megantic, Que.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beaucelle, Que.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Coaticook, Que.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Beech, Que.</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>Sherbrooke, Que.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Highwater, Que.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Abercorn, Que.</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>St. Armand, Que.</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Llewellin Jet., Que.</td>
<td>231</td>
<td>3</td>
</tr>
<tr>
<td>Noyan Junction, Que.</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>St. Johns, Que.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Athelstan, Que.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dundee, Que.</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>St. Agnes de Dundee, Que.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Quebec General</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cornwall, Ont.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Prescott, Ont.</td>
<td>630</td>
<td>1</td>
</tr>
<tr>
<td>Morrisburg, Ont.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Brockville, Ont.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kingston, Ont.</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Cobourg, Ont.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toronto, Ont.</td>
<td>58</td>
<td>1</td>
</tr>
<tr>
<td>a Niagara Falls, Ont.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tidehead, Ont.</td>
<td>1,066</td>
<td>12</td>
</tr>
<tr>
<td>Windsor, Ont.</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Sarnia, Ont.</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>Sainte Marie, Ont.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Port Arthur, Ont.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>River, Ont.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Port Frances, Ont.</td>
<td>321</td>
<td>30</td>
</tr>
<tr>
<td>Ontario General</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Emerson, Man</td>
<td>8,173</td>
<td>1,662</td>
</tr>
<tr>
<td>Gretna, Man</td>
<td>2,113</td>
<td>234</td>
</tr>
<tr>
<td>Snowflake, Man</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>Bannerman, Man</td>
<td>226</td>
<td>24</td>
</tr>
<tr>
<td>Manitoba General</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>North Portal, Sask.</td>
<td>10,992</td>
<td>659</td>
</tr>
<tr>
<td>Marienthal, Sask.</td>
<td>432</td>
<td>29</td>
</tr>
<tr>
<td>Wood Mountain, Sask.</td>
<td>1,290</td>
<td>15</td>
</tr>
<tr>
<td>Big Muddy, Sask.</td>
<td>1,305</td>
<td>8</td>
</tr>
<tr>
<td>Willow Creek, Sask.</td>
<td>1,690</td>
<td>9</td>
</tr>
<tr>
<td>Saskatchewan General</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Pendant d'Oreille, Alta.</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>Comets, Alta.</td>
<td>2,080</td>
<td>45</td>
</tr>
<tr>
<td>Twin Lakes, Alta.</td>
<td>584</td>
<td>2</td>
</tr>
<tr>
<td>Alberta General</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Gateway, B.C.</td>
<td>802</td>
<td>37</td>
</tr>
<tr>
<td>Kingsgate, B.C.</td>
<td>2,947</td>
<td>124</td>
</tr>
<tr>
<td>Neon, B.C.</td>
<td>39</td>
<td>7</td>
</tr>
<tr>
<td>Rykerts, B.C.</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>Rossland, B.C</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>Grand Forks, B.C.</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>Midway, B.C.</td>
<td>197</td>
<td>6</td>
</tr>
</tbody>
</table>
IMPORT INSPECTIONS FROM UNITED STATES AND NEWFOUNDLAND—Con.

<table>
<thead>
<tr>
<th>Port</th>
<th>Horses</th>
<th>Mules</th>
<th>Cattle</th>
<th>Sheep</th>
<th>Swine</th>
<th>Goats</th>
<th>Asses</th>
<th>Buffalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycaster, B.C.</td>
<td>80</td>
<td>1</td>
<td>34</td>
<td>808</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridgewater, B.C.</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keremeos, B.C.</td>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osoyoos, B.C.</td>
<td>357</td>
<td>63</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huntingdon, B.C.</td>
<td>1,289</td>
<td>14</td>
<td>171</td>
<td>280</td>
<td>9</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Westminster, B.C.</td>
<td>2</td>
<td></td>
<td>2</td>
<td>20</td>
<td></td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Rock, B.C.</td>
<td>1,239</td>
<td>53</td>
<td>113</td>
<td>26,296</td>
<td>4</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Vancouver, B.C.</td>
<td>657</td>
<td>31</td>
<td>11</td>
<td>32,015</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victoria, B.C.</td>
<td>374</td>
<td>9</td>
<td>10</td>
<td>5,573</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Horse, Y.T</td>
<td>137</td>
<td>4</td>
<td>786</td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>43,154</td>
<td>2,571</td>
<td>14,795</td>
<td>224,115</td>
<td>102</td>
<td>249</td>
<td>17</td>
<td>29</td>
</tr>
</tbody>
</table>

a 11 camels, 2 yak, 1 zebra, 1 deer, *6* reindeer.

IMPORT INSPECTIONS FROM EUROPE AND ELSEWHERE.

<table>
<thead>
<tr>
<th>Port</th>
<th>Horses</th>
<th>Cattle</th>
<th>Sheep</th>
<th>Mules</th>
<th>Swine</th>
<th>Goats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halifax</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sydney</td>
<td>411</td>
<td>1</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>St. John</td>
<td>17</td>
<td>93</td>
<td>54</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Quebec</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sherbrooke</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lacolle Jet.</td>
<td>1,730</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Montreal</td>
<td>20</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Bridgeburg</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>2,245</td>
<td>106</td>
<td>85</td>
<td>3</td>
<td>29</td>
<td>6</td>
</tr>
</tbody>
</table>

*From Bermuda. †1 mule from West Indies.

PURE BRED IMPORTS.

Horses.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Great Britain</th>
<th>United States</th>
<th>Elsewhere</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgian</td>
<td>7</td>
<td>25</td>
<td>99</td>
<td>131</td>
</tr>
<tr>
<td>Clydesdale</td>
<td>1,201</td>
<td>6</td>
<td>1,207</td>
<td></td>
</tr>
<tr>
<td>French Coach</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>German Coach</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hackney</td>
<td>21</td>
<td>21</td>
<td>42</td>
<td>335</td>
</tr>
<tr>
<td>Percheron</td>
<td>534</td>
<td>145</td>
<td>190</td>
<td>3534</td>
</tr>
<tr>
<td>Pony</td>
<td>72</td>
<td>13</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Shire</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Standard Bred.</td>
<td>13</td>
<td>8</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Suffolk.</td>
<td>1</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Shetland</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Thoroughbred</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Trottingbred</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Yorkshire Coach</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 1,873 | 364 | 291 | 2,528
Cattle

<table>
<thead>
<tr>
<th>Breed</th>
<th>Great Britain</th>
<th>United States</th>
<th>Elsewhere</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polled Angus</td>
<td>1</td>
<td>5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Ayrshire</td>
<td>77</td>
<td>4</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Guernsey</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Hereford</td>
<td>58</td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>Holstein</td>
<td>66</td>
<td>12</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Jersey</td>
<td>14</td>
<td>9</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Red Polled</td>
<td>2</td>
<td>16</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Shorthorn</td>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>202</td>
<td>12</td>
<td>308</td>
</tr>
</tbody>
</table>

Sheep

<table>
<thead>
<tr>
<th>Breed</th>
<th>Great Britain</th>
<th>United States</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorset</td>
<td></td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Leicester</td>
<td>12</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Shropshire</td>
<td>42</td>
<td>5</td>
<td>47</td>
</tr>
<tr>
<td>Southdown</td>
<td>51</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>Suffolk</td>
<td></td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Cheviot</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rambouillet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>85</td>
<td>58</td>
<td>143</td>
</tr>
</tbody>
</table>

Swine

<table>
<thead>
<tr>
<th>Breed</th>
<th>Great Britain</th>
<th>United States</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkshire</td>
<td>11</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Chester White</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Duroc Jersey</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Poland China</td>
<td>18</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Yorkshire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>26</td>
<td>55</td>
</tr>
</tbody>
</table>
DISEASED IMPORTS—(GLANDERS).

<table>
<thead>
<tr>
<th>Port</th>
<th>No. of Horses in Infected Shipment</th>
<th>No. of Shipments</th>
<th>No. of Horses Diseased</th>
<th>Country of Origin</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Stephen, N.B.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>U. States</td>
<td>Returned</td>
</tr>
<tr>
<td>Woodstock, N.B.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Aroostook Jet., N.B.</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>St. Leonards, N.B.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Morrisburg, Ont.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>"Emerson, Man</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Gretna, Man</td>
<td>26</td>
<td>4</td>
<td>4</td>
<td></td>
<td>1 destroyed</td>
</tr>
<tr>
<td>Snowflake, Man</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Bannerman, Man</td>
<td>22</td>
<td>5</td>
<td>5</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>‡North Portal, Sask.</td>
<td>266</td>
<td>43</td>
<td>49</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>‡Marienthal, Sask.</td>
<td>73</td>
<td>9</td>
<td>13</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Wood Mountain, Sask.</td>
<td>117</td>
<td>13</td>
<td>20</td>
<td></td>
<td>4 destroyed</td>
</tr>
<tr>
<td>Big Muddy, Sask.</td>
<td>37</td>
<td>6</td>
<td>6</td>
<td></td>
<td>16 returned</td>
</tr>
<tr>
<td>Sask. General</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2 destroyed</td>
</tr>
<tr>
<td>Pendant d'Oreille, Alta</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Coutts, Alta</td>
<td>55</td>
<td>6</td>
<td>7</td>
<td></td>
<td>6 destroyed</td>
</tr>
<tr>
<td>Kingsgate, B. C.</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td></td>
<td>11 returned</td>
</tr>
<tr>
<td>Rossland, B. C.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Grand Forks, B. C.</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Mynester, B. C.</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Bridesville, B. C.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Osyoos, B. C.</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Huntington, B. C.</td>
<td>15</td>
<td>4</td>
<td>6</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>White Rock, B. C.</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td></td>
<td>Returned</td>
</tr>
<tr>
<td>Vancouver, B. C.</td>
<td>13</td>
<td>1</td>
<td>4</td>
<td></td>
<td>Returned</td>
</tr>
</tbody>
</table>

| Total | 703 | 115 | 145 | | |

* 23 horses rejected for mange. 1 cow rejected for tuberculosis.
+ 1 cow rejected for tuberculosis.
‡ 2 horses rejected for mange.
ANIMALS INSPECTED FOR EXPORT.

<table>
<thead>
<tr>
<th>Port</th>
<th>Horses</th>
<th>Mules</th>
<th>Cattle</th>
<th>Sheep</th>
<th>Swine</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. John to Great Britain</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montreal</td>
<td>148</td>
<td>6,107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspected at Montreal for shipment to Great Britain via Boston</td>
<td></td>
<td>10,335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. John to South Africa</td>
<td></td>
<td></td>
<td></td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>Montreal</td>
<td>23</td>
<td>222</td>
<td>20</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Halifax to Bermuda</td>
<td>25</td>
<td>222</td>
<td>20</td>
<td>46</td>
<td>13</td>
</tr>
<tr>
<td>" St. Pierre and Miquelon</td>
<td></td>
<td>7</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>" Newfoundland</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Jamaica</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>" Antigua</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Trinidad</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>" South Africa</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sydney to St. Pierre and Miquelon</td>
<td>2</td>
<td>29</td>
<td>65</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Toronto to Bermuda</td>
<td></td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montreal to France</td>
<td></td>
<td>284</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toronto to Belgium</td>
<td></td>
<td>410</td>
<td></td>
<td>569</td>
<td></td>
</tr>
<tr>
<td>Montreal to New Zealand</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Charlottetown to Newfoundland</td>
<td>25</td>
<td>834</td>
<td>663</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Summerside</td>
<td></td>
<td>179</td>
<td>235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayfield</td>
<td>21</td>
<td>159</td>
<td>28</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mulgrave</td>
<td>35</td>
<td>741</td>
<td>395</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Sydney</td>
<td>230</td>
<td>921</td>
<td>946</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Halifax to United States</td>
<td>3</td>
<td>2,125</td>
<td>341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toronto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niagara Falls to Great Britain via United States</td>
<td>498</td>
<td>17</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspected at Montreal for shipment to Italy via Boston</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>518</td>
<td>271</td>
<td>24,431</td>
<td>2,736</td>
<td>431</td>
</tr>
</tbody>
</table>

EXPORT ANIMALS REJECTED AT THE FOLLOWING PORTS.

<table>
<thead>
<tr>
<th>Port</th>
<th>Horses</th>
<th>Mules</th>
<th>Cattle</th>
<th>Sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sydney</td>
<td>2</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>St. John</td>
<td>1</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Montreal</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toronto</td>
<td></td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>1</td>
<td>105</td>
<td>20</td>
</tr>
</tbody>
</table>

Of the above, 6 cattle at Montreal and 44 at Toronto, were rejected for Actinomycosis. The rest of the animals were suffering from lameness or injuries received during transportation, with the exception of the two horses which were affected with influenza, and no contagious or infectious disease was found.

STAFF.

Several changes have taken place in the personnel of the staff, the increase of work necessitating the appointment of additional inspectors, and the filling of places rendered vacant by deaths and resignations.
HEALTH OF ANIMALS

SESSIONAL PAPER No. 15b

Appointments.

Veterinary Inspectors—
T. Babe, V.S.
H. L. Bissonnette, V.S.
D. R. Bone, V.S.
C. Brind, V.S.
F. C. Brown, V.S.
R. B. Coutts, V.S.
H. W. Cowan, V.S.
I. E. Croken, V.S.
A. E. Dennis, V.S.
P. A. Gough, V.S.
A. E. Knapp, V.S.

Inspectors—
E. S. Clifford.
G. Cousins.
H. B. Currie.
J. W. Dafoe.
W. Dempster.
A. Duck.
G. English.
W. Johnstone.

Clerk (outside)—
Miss M. R. Camsusa.

Veterinary Inspectors—
C. Maconachie, V.S.
W. H. Marriott, V.S.
G. C. McCoy, V.S.
A. A. Moodie, V.S.
W. Nicholls, V.S.
J. Simpson, V.S.
A. T. Sissons, B.V.Sc.
R. T. Skelton, V.S.
H. N. Thompson, V.S.
C. E. Waddy, M.R.C.V.S.
R. Waddy, M.R.C.V.S.

Inspectors—
J. King.
F. C. Lawrence.
S. H. McCulloch.
S. Riendeau.
N. Rothwell.
B. A. St. John.
W. Trevenon.
H. M. Williams.

Transfers.

Deaths.

G. W. Jemison, V.S.
A. Sparrow.

Resignations.

Veterinary Inspectors—
G. W. Bell, V.S.
G. R. Brewster, V.S.
J. Dickinson, V.S.
A. Dufrasne, V.S.
J. B. Harrington, V.S.
A. E. Knapp, V.S.
D. H. McChesney, V.S.
W. J. Moon, V.S.

Inspectors—
M. Ashbee.
R. Blackwood.
E. S. Clifford.
H. B. Garlough.
J. Ellis.

Veterinary Inspectors—
A. A. Kington.
N. P. Olsen, V.S.
R. T. Skelton, V.S.
H. N. Thompson, V.S.
R. Waddy, M.R.C.V.S.
R. Riddell, V.S.

Inspectors—
F. C. Lawrence.
D. Layland.
J. McLean.
J. B. Miller.
T. Morgan.
H. M. Williams.

Services Dispensed with.

Veterinary Inspectors—
H. S. McFatridge, V.S.

Inspectors—
T. H. Jones.

Inspectors—
J. E. Wilson.
MEAT INSPECTION.

This division, under the supervision of Dr. Robert Barnes, Chief Meat Inspector, whose report is published herewith, has been actively engaged in the inspection of all meat and meat products prepared in the establishments under inspection, as well as in the inspection of canning factories. A high standard of excellence has been aimed at, and it is gratifying to state that, almost without exception, the packers and canners have co-operated in the endeavour to attain this object.

The high price of meat in Canada has stimulated the trade in imported meats, both fresh and canned, which have come into our ports in larger quantities than ever before. Large quantities of mutton have been imported from New Zealand and Australia, and canned beef from the Argentine Republic and Uruguay. An inquiry is now under way to ascertain the extent and value of the inspection of these foods in the countries exporting them, and it may be necessary to amend our laws so that we may have a proper control over them to ensure their wholesomeness.

FRUIT, VEGETABLES AND CONDENSED MILK.

Constant supervision of the factories where these foods are canned has resulted in a steady improvement, not only in the buildings, but in the cleanliness and care with which these products are prepared.

There is still room for improvement, especially in the evaporating of apples, this work being done in so many small establishments that frequent inspection is difficult.

Appointments.

Veterinary Inspectors—
C. S. Anderson, V.S.
J. E. Bennett, D.V.S.
O. Brunet, V.S.
A. H. Carley, V.S.
F. A. Daigneault, M.V.
J. Dickinson, V.S.
W. R. Kincaid, V.S.

Veterinary Inspectors—
W. D. MacCormack, V.S.
N. E. McEwen, B.V.Sc.
W. J. Pedden, V.S.
W. Tennant, V.S.
J. L. Trudeau, M.V.
G. Whitehead, B.V. Sc.

Lay Inspectors—
E. C. Church.
C. H. Johnston.
F. MacCabe.

Lay Inspectors—
W. McCabe.
G. E. Walsh.
E. E. White.

Canning Inspectors—
F. W. Baumgartner (Milk.)
J. Breault (temporary.)
A. E. Calnan

Canning Inspectors—
F. W. Gray (temporary.)
H. St. J. Switzer.

Clerk (outside)—
J. McCarthy.

Transfers.

T. Babe, V.S. (to Contagious Diseases Division.)
W. H. Marriott, V.S.
D. R. Bone, V.S.
Deaths.
J. Edgecombe.

Resignations.
Veterinary Inspectors—
C. W. J. Haworth, V.S.

Lay Inspector—
A. E. Calnan.

Veterinary Inspectors—
W. J. Moon, V.S.

Prolonged Leave of Absence.
J. G. Hood, M.V.
R. E. Murray, V.S.

M. W. Everett.
J. N. Pringle, M.R.C.V.S.

Dismissals.
E. C. Church.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Place</th>
<th>Inspectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fowler's Canadian Co., Ltd.</td>
<td>Hamilton</td>
<td>C. J. Johannes, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. A. Morin, D.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. E. A. Duhamel, M.V.</td>
</tr>
<tr>
<td>2B</td>
<td>Matthews-Laing, Limited</td>
<td>Brantford</td>
<td>W. Kime, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. G. Davidson, V.S.</td>
</tr>
<tr>
<td>2C</td>
<td>Matthews-Laing, Limited</td>
<td>Peterborough</td>
<td>W. A. Henderson, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wm. Tennant, V.S.</td>
</tr>
<tr>
<td>10</td>
<td>F. W. Fearman Co., Ltd.</td>
<td>Hamilton</td>
<td>A. C. Ramsay, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. R. Kineaid, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H. Garrett, B.V.S.</td>
</tr>
<tr>
<td>11</td>
<td>Ingersoll Packing Co., Ltd.</td>
<td>Ingersoll</td>
<td>R. D. Orr, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. L. Wallace, B.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. O. Guertin, M.V.</td>
</tr>
<tr>
<td>13</td>
<td>Whyte Packing Company, Ltd.</td>
<td>Stratford</td>
<td>T. M. Pine, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. W. Beach, D.V.S.</td>
</tr>
<tr>
<td>14</td>
<td>Collingwood Packing Co</td>
<td>Collingwood</td>
<td>W. R. Bell, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. H. Carley, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. McCabe</td>
</tr>
<tr>
<td>17</td>
<td>Jones Packing & Provision Co</td>
<td>Smiths Falls</td>
<td>J. B. White, V.S.</td>
</tr>
<tr>
<td>31</td>
<td>O'Keefe & Drew Abattoir Co</td>
<td>Chatham</td>
<td>J. R. Thompson, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. R. Monroe, V.S.</td>
</tr>
<tr>
<td>2E</td>
<td>Matthews-Laing, Limited</td>
<td>Toronto</td>
<td>A. R. Torrie, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. H. Richards, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. H. Cook, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. C. Brownridge, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. Brown</td>
</tr>
<tr>
<td>4A</td>
<td>Wm. Davies Co., Ltd.</td>
<td>Toronto</td>
<td>F. H. S. Lowrey, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N. E. McEwen, B.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. A. Belanger, M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H. C. Leslie, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. J. Pedden, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. Howard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. J. Kelly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. J. Blaine</td>
</tr>
<tr>
<td>7</td>
<td>Harris Abattoir Co</td>
<td>Toronto</td>
<td>A. C. Walker, B.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. A. Irvine, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. A. McNally, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. S. Cain, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. Kingston</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. E. White</td>
</tr>
<tr>
<td>9</td>
<td>Gunns Limited</td>
<td>Toronto</td>
<td>D. C. Tennent, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. R. Farewell, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. W. R. Macfarlane, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. D. MacCormack, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. A. Hodgins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Hunter</td>
</tr>
<tr>
<td>18C</td>
<td>Swift Canadian Co., Ltd</td>
<td>Toronto</td>
<td>J. H. George, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. L. Wingate, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. Lawson, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. E. Morse, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. R. Songhurst</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Cox</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Brittain</td>
</tr>
<tr>
<td>28</td>
<td>W. Wight & Co</td>
<td>Toronto</td>
<td>J. E. Bennett, D.V.S.</td>
</tr>
<tr>
<td>2A</td>
<td>Matthews-Laing, Limited</td>
<td>Hull</td>
<td>W. Moynihan, B.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. C. Tanner, B.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Langevin, M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Terrence</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Place</td>
<td>Inspectors</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>2D</td>
<td>Matthews-Laing, Limited</td>
<td>Montreal</td>
<td>C. E. Edgett, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Acting).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M. H. Milton, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. J. Demers, M.D., M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. A. Daigleault, M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. R. Young.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. McDonald.</td>
</tr>
<tr>
<td>4B</td>
<td>Wm. Davies Co., Ltd.</td>
<td>Montreal</td>
<td>J. W. Symes, D.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. H. Weaver, B.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. N. L. Couture, M. V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O. Brunet, M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. E. Walsh.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. Maccabee.</td>
</tr>
<tr>
<td>22</td>
<td>Montreal Union Abattoir</td>
<td>Montreal</td>
<td>E. G. Lemieux, M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. A. Walsh, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. E. Doreme, M. V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. R. Monroe, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. Jaques, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Dufresne, M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Beaudoin.</td>
</tr>
<tr>
<td>24</td>
<td>Wm. Clark</td>
<td>Montreal</td>
<td>A. R. Douglas, D.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Lallemend.</td>
</tr>
<tr>
<td>25</td>
<td>Montreal Abattoirs Limited</td>
<td>Point St. Charles</td>
<td>W. H. James, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. D. Bancroft, D.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. D. Boast, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. F. Campy, M. V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N. D. Reid, M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. Benoit.</td>
</tr>
<tr>
<td>47</td>
<td>Société S.P.A.</td>
<td>Montreal</td>
<td>H. Macey.</td>
</tr>
<tr>
<td>18</td>
<td>Swift Canadian Co., Ltd.</td>
<td>Winnipeg</td>
<td>J. D. Ross, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W. A. Hilliard, D.V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H. J. Elliott, M.D.V.</td>
</tr>
<tr>
<td>19</td>
<td>Gordon, Ironside & Fares</td>
<td>Winnipeg</td>
<td>F. C. Jones, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. L. Trudeau, M.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. Whitehead, B.V.S.</td>
</tr>
<tr>
<td>20</td>
<td>Gallagher, Holman & Lafrance</td>
<td>Winnipeg</td>
<td>A. R. Walsh, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. C. Bishop, M.D.V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H. Colebourn, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. H. Johnston.</td>
</tr>
<tr>
<td>21</td>
<td>Western Packing Co.</td>
<td>Winnipeg</td>
<td>J. R. N. Harrison, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. B. Dellert, V.S.</td>
</tr>
<tr>
<td>18B</td>
<td>Swift Canadian Co., Ltd.</td>
<td>Edmonton</td>
<td>J. R. English, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Hobbs, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. H. Tupling, B.V.S.</td>
</tr>
<tr>
<td>23</td>
<td>P. Burns & Co., Ltd.</td>
<td>Calgary</td>
<td>I. Christian, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H. Pomfret, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. G. McClelland.</td>
</tr>
<tr>
<td>19B</td>
<td>Gordon, Ironside & Fares</td>
<td>Moosejaw</td>
<td>J. W. Purdy, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. G. Bright, B.V.S.</td>
</tr>
<tr>
<td>50</td>
<td>Davis & Fraser</td>
<td>Charlottetown</td>
<td>A. C. Landie, V.S.</td>
</tr>
<tr>
<td>23B</td>
<td>P. Burns & Co., Ltd.</td>
<td>Vancouver</td>
<td>E. A. Bruce, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. S. Anderson, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Dickinson, B.V.S.</td>
</tr>
</tbody>
</table>
THE FOLLOWING ESTABLISHMENTS HAVE BEEN UNDER INSPECTION TEMPORARILY BETWEEN APRIL 1st, 1914, AND MARCH 31st, 1913.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Place</th>
<th>Inspectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>P. E. I. Railway</td>
<td>Kensington, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Sussex Packing Co</td>
<td>Sussex, N.B.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>New Brunswick Cold Storage</td>
<td>St. John</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>W. A. Leard</td>
<td>Charlottetown</td>
<td></td>
</tr>
<tr>
<td>36B</td>
<td>W. A. Leard</td>
<td>Summerside, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Railway Freight Shed</td>
<td>York, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Railway Freight Shed</td>
<td>Cape Traverse, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Aylmer Canning Co</td>
<td>Aylmer, Out</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>P. E. I. Railway</td>
<td>Bradalbne, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>P. E. I. Railway</td>
<td>Montague, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Steam Navigation Co</td>
<td>Charlottetown</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>R. E. Mutch & Co.</td>
<td>Charlottetown</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Heber Hartlen</td>
<td>Halifax, N.S.</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>J. H. Myrick & Co.</td>
<td>Tignish, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Halifax Cold Storage</td>
<td>Halifax, N.S.</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>J. P. Tanton & Co.</td>
<td>Summerside, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>P. MacNutt & Son</td>
<td>Malpeque, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>John R. Doucette</td>
<td>Waterford, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Fred. Magee</td>
<td>Port Elgin, N.B.</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>W. S. Fraser</td>
<td>Peter's Road, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>J. A. Leaman & Co.</td>
<td>Halifax, N.S.</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Fred. Bennett</td>
<td>Stanley Bridge, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>P. C. Gallant</td>
<td>Summerside, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Thos. Butler</td>
<td>Murray River, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>John Munn</td>
<td>Murray River, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>A. Bowles</td>
<td>Murray River, P.E.I.</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Delhi Canning Co</td>
<td>Delhi, Ont</td>
<td>R. Barnes, V.S.</td>
</tr>
<tr>
<td></td>
<td>Chief, Meat Inspection Division</td>
<td></td>
<td>H. H. Ross, V.S.</td>
</tr>
<tr>
<td></td>
<td>Travelling Inspector</td>
<td></td>
<td>C. S. McGillivray</td>
</tr>
<tr>
<td></td>
<td>Chief Canning Inspector</td>
<td></td>
<td>W. A. D. Graham</td>
</tr>
<tr>
<td></td>
<td>Canning Inspectors</td>
<td></td>
<td>A. Bowlby</td>
</tr>
<tr>
<td></td>
<td>Inspector of Condensed Milk Factories</td>
<td></td>
<td>H. St. J. Switzer</td>
</tr>
<tr>
<td></td>
<td>In charge of Toronto</td>
<td></td>
<td>F. W. Baumgartner</td>
</tr>
<tr>
<td></td>
<td>In charge of Montreal</td>
<td></td>
<td>L. A. Willson, V.S.</td>
</tr>
<tr>
<td></td>
<td>In charge of Winnipeg</td>
<td></td>
<td>M. J. Kellam, V.S.</td>
</tr>
<tr>
<td></td>
<td>In charge of Prince Edward Island</td>
<td></td>
<td>C. D. McGillivray, M.D.V.</td>
</tr>
<tr>
<td></td>
<td>Special duty in west (temporary)</td>
<td></td>
<td>W. H. Pethick, V.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. Fisher, V.S.</td>
</tr>
<tr>
<td>Diseases</td>
<td>Cattle</td>
<td>Sheep</td>
<td>Swine</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Carcases</td>
<td>Portions</td>
<td>Lbs</td>
</tr>
<tr>
<td>Abscess</td>
<td>14</td>
<td>20,879</td>
<td>54</td>
</tr>
<tr>
<td>Actinomycosis</td>
<td>12</td>
<td>8,370</td>
<td></td>
</tr>
<tr>
<td>Adhesions</td>
<td></td>
<td>2,571</td>
<td></td>
</tr>
<tr>
<td>Atrophy</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Angiomatosis</td>
<td></td>
<td>982</td>
<td></td>
</tr>
<tr>
<td>Bruises</td>
<td>137</td>
<td>14,738</td>
<td>39</td>
</tr>
<tr>
<td>Cripples</td>
<td>3</td>
<td>87</td>
<td>1</td>
</tr>
<tr>
<td>Cysticercus Bovis</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cysticercus Teniacollis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestion</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>15</td>
<td>2,059</td>
<td></td>
</tr>
<tr>
<td>Decomposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirty</td>
<td>25</td>
<td>53,392</td>
<td></td>
</tr>
<tr>
<td>Emaciation</td>
<td>84</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Enteritis</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Emphysema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hernia</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydratemia</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydramic cachexia</td>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Hypertrophy</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vag albumin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immaturity</td>
<td>884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improper bleeding</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Inflammation</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icterus</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metritis</td>
<td>19</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Mucoid degeneration</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammitis</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Melanosis</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Necrosis</td>
<td>3</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Necrosis</td>
<td>16</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Nepritis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parturbation</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Parasites</td>
<td>1</td>
<td>43,125</td>
<td></td>
</tr>
<tr>
<td>Pericarditis</td>
<td>29</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Peritonitis</td>
<td>25</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pleuritis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>12</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Pyaemia or septicaemia</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexual smell</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin disease</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sarcoma</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequestrum</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septic infection</td>
<td>17</td>
<td>16,691</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>2,030</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Tumours</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ureaemia</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td>17</td>
<td>49</td>
<td>13</td>
</tr>
<tr>
<td>Damaged by fire</td>
<td></td>
<td>5,256,761</td>
<td>7,950</td>
</tr>
<tr>
<td>Total</td>
<td>3,780</td>
<td>167,947</td>
<td>5,445,270</td>
</tr>
<tr>
<td>Found dead</td>
<td>55</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>
The following summary shows the results of post-mortem inspections of cattle, sheep and swine from April 1, 1912, to March 31, 1913:

<table>
<thead>
<tr>
<th>Cattle marked 'Canada Approved'</th>
<th>446,610</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcasses of cattle 'Condemned'</td>
<td>3,780</td>
</tr>
<tr>
<td>Percentage of cattle 'Condemned'</td>
<td>0.84</td>
</tr>
<tr>
<td>Portions of cattle 'Condemned'</td>
<td>107,947</td>
</tr>
<tr>
<td>Sheep marked 'Canada Approved'</td>
<td>455,362</td>
</tr>
<tr>
<td>Carcasses of sheep 'Condemned'</td>
<td>385</td>
</tr>
<tr>
<td>Percentage of sheep 'Condemned'</td>
<td>0.08</td>
</tr>
<tr>
<td>Portions of sheep 'Condemned'</td>
<td>85,251</td>
</tr>
<tr>
<td>Swine marked 'Canada Approved'</td>
<td>1,694,648</td>
</tr>
<tr>
<td>Carcasses of swine 'Condemned'</td>
<td>3,093</td>
</tr>
<tr>
<td>Percentage of swine 'Condemned'</td>
<td>0.19</td>
</tr>
<tr>
<td>Portions of swine 'Condemned'</td>
<td>431,184</td>
</tr>
<tr>
<td>Total number of carcasses 'Passed'</td>
<td>2,556,520</td>
</tr>
<tr>
<td>Percentage of carcasses 'Condemned'</td>
<td>0.29</td>
</tr>
<tr>
<td>Total number of portions 'Condemned'</td>
<td>624,382</td>
</tr>
</tbody>
</table>

In addition to the animals slaughtered at inspected establishments, the following amounts of dressed and cured meats and lard, &c., were received during the fiscal year from the United States and Australasia:

<table>
<thead>
<tr>
<th></th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>326,871</td>
</tr>
<tr>
<td>Mutton</td>
<td>411,048</td>
</tr>
<tr>
<td>Pork</td>
<td>10,607,107</td>
</tr>
<tr>
<td>Lard</td>
<td>5,812,102</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>2,936,901</td>
</tr>
</tbody>
</table>

During the course of re-inspection, the following meats were condemned:

<table>
<thead>
<tr>
<th>Sourcing</th>
<th>Cattle</th>
<th>Sheep</th>
<th>Swine</th>
<th>Poultry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sour</td>
<td>133,197</td>
<td>6,197</td>
<td>78,290</td>
<td></td>
</tr>
<tr>
<td>Dirty</td>
<td>53,262</td>
<td>335</td>
<td>992</td>
<td></td>
</tr>
<tr>
<td>Bruised</td>
<td>10</td>
<td>2,050</td>
<td>1,218</td>
<td>2,314</td>
</tr>
<tr>
<td>Decomposed</td>
<td>5,256,761</td>
<td>1,218</td>
<td>156,875</td>
<td></td>
</tr>
<tr>
<td>Damaged by fire</td>
<td>31</td>
<td></td>
<td>1,464</td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td>5,445,270</td>
<td>7,950</td>
<td>95,555</td>
<td>152,339</td>
</tr>
</tbody>
</table>

Total amount condemned on re-inspection, 5,701,114 pounds.

PUBLICATIONS.

During the year the following bulletins were published:

'**HOG CHOLERA** BULLETIN (ILLUSTRATED).'

This is a brief account of the disease, written in plain language for the use of farmers, and is intended to put them on their guard against this highly communicable disease, and to tell them what to do in case its presence is suspected. Our inspectors distribute these pamphlets among the farmers in the neighbourhood of an outbreak.

'**THE WARBLE FLY**,' BY DR. S. HADWEN.

A scientific report on an investigation into the life-history of the parasite and an inquiry into its economic importance in relation to the leather trade.
A leaflet issued for the purpose of giving to farmers and stockmen, sound, useful information on the subject.

During the period since August 1, when I assumed office, I have endeavoured to keep in close touch with the various interests concerned with the department and have attended various meetings of veterinary associations, cattle breeders, dairymen and others, and have given addresses on bovine tuberculosis, &c. This has required my absence from my office for various periods when the work has been efficiently carried on by Dr. G. Hilton.

MEETINGS ATTENDED.

American Veterinary Medical Association, at Indianapolis, Ind.
Association of Live Stock Sanitary Boards, Chicago, Ill.
Eastern Dairymen's Convention, Kingston, Ont.
Dominion Cattle Breeders' Annual Meeting, Toronto, Ont.
Shorthorn Breeders' Annual Meeting, Toronto, Ont.
Manitoba Veterinary Association, Winnipeg, Man.
Saskatchewan Live Stock Convention, Regina, Sask.

I have the honour to be, sir,
Your obedient servant,

F. TORRANCE,
Veterinary Director General.

Honourable Martin Burrell,
Minister of Agriculture,
Ottawa.
APPENDIX No. 1.

(G. Hilton, V.S., Chief Veterinary Inspector).

OTTAWA, ONT., March 31, 1913.

The Veterinary Director General,
Ottawa, Ont.

Sir,—I beg to submit herewith my annual report for the year ending March 31, 1913.

The resignation of Dr. Rutherford, which took effect on March 31, 1912, necessitated my assuming charge of this branch until you took up active duty in this office in September.

During this period a few changes were made in the clerical staff. A stenographer was transferred at her own request to another branch, one clerk resigned and another was appointed. It was also necessary to engage, for temporary duty, a stenographer while some of the permanent staff were absent on statutory leave.

In the Outside Service five resignations were accepted, two veterinary field inspectors, one meat inspector and two car and yard inspectors. The branch also lost the services of a meat inspector and a car and yard inspector through death.

The annual examinations for veterinarians were held at the usual points throughout the country in the month of April, and a number of the successful candidates were appointed inspectors and assigned for duty where their services were most needed. Two additional lay inspectors were also appointed under the Meat and Canned Foods Act, and three canning inspectors were given temporary employment during the canning season.

In order to intelligently inspect the condensed milk factories, arrangements were made by Dr. Rutherford, while in office, to procure an expert from Switzerland, and when that gentleman arrived from that country in May he was duly appointed an inspector and commenced his duties immediately.

It was further necessary to engage three car inspectors to fill the vacancies caused through one death and two resignations.

Following our previous custom, inspectors have been transferred from one division to another whenever occasion demanded, and they have also been sent from province to province as the exigencies of the service required.

The maintenance of stock yards and cars in a sanitary condition is a highly important factor in the control and eradication of contagious diseases, and it was therefore found advisable to employ two travelling car and yard inspectors in the western provinces, the territory which was formerly covered by one man being divided into two districts. An inspector was then placed in charge of each district, with headquarters at Portage la Prairie and Calgary. This change has permitted the inspectors to pay closer attention to the numerous stock yards, and has also enabled these officers to supervise more effectively the work of the stationary car inspectors.

You will observe from the statistics that the officers of this branch in both divisions have been busily engaged in dealing with the many problems which have confronted them, and that there has been good cause for their activity.

Owing to difficulties arising in the province of Saskatchewan, it was found advisable on several occasions to detail for special duty in that province experienced officers from outside points.

Outbreaks of hog cholera were dealt with in Manitoba, Alberta, British Columbia, Ontario, and an isolated one in New Brunswick, the most serious occurring in the Thunder Bay district, western Ontario, and in the province of British Columbia.
SESSIONAL PAPER No. 15b

HEALTH OF ANIMALS

Fortunately, this disease has not been prevalent in Alberta and Manitoba, although prompt and thorough measures had to be taken on several occasions to prevent further losses from this cause. Most of these outbreaks have had their origin on premises where raw garbage had been fed, which points suspiciously to the garbage as the source of infection.

The outbreak in New Brunswick (the first one dealt with in Canadian hogs in that province) was very thoroughly investigated. The Chief Travelling Inspector personally supervised this work, and every effort was made to locate the source of infection. After most searching inquiry, all ordinary channels, through which infection is carried, were eliminated. It was found, however, that the feed had been changed from grain to hotel garbage, and that the outbreak followed a few weeks later. Fortunately, the infected premises were well isolated, and the disease, although of an exceedingly virulent type, was promptly stamped out without any extension of the outbreak.

Many other more serious outbreaks have been dealt with under similar circumstances, and it is quite apparent that until the hog raiser realizes the necessity of thoroughly cooking refuse of this sort, or, better still, of feeding more wholesome food stuffs, there will be a constant danger from this source. A campaign of education has consequently been followed by the inspectors, who have, as occasion presented, instructed owners carefully regarding the regulations and the financial risk involved in feeding this material.

There is no doubt that the forfeiture clause of the regulations will have a deterring effect if rigidly enforced, but, unfortunately, infection introduced into a district by this means is too frequently carried to other premises before active steps can be taken.

It is quite evident, in view of the slaughter and compensation policy of this branch, that suitable measures must be taken with individuals, who, after adequate warning, persist in feeding raw garbage.

The policy previously followed has been observed in regard to tuberculosis. A large number of export and import animals have been tested with tuberculin by the officers of this branch, while the cattle comprising the herds which have been placed under our supervision for the elimination of this disease have been given very careful attention, and have been submitted to tuberculin as often as circumstances warranted.

Although a few more herds have been added to the list, it is quite evident that cattle owners, as a whole, are not as yet anxious to officially ascertain the true condition of their herds in this respect. Many communications have been written to stockmen, giving full information regarding this malady, and the International Tuberculosis Commission pamphlet has been liberally and widely distributed. They have also been repeatedly and frequently advised that the department was anxious to assist them in every possible way to eradicate tuberculosis from their herds and maintain them free from this disease. Few, however, have taken advantage of this opportunity, which is more surprising when it is considered that no charge is made for this work, and that the department at present only insists upon the earmarking of reactors, and their prompt isolation from the healthy herd.

Tuberculin has been promptly forwarded, free of charge, to veterinarians upon receipt of requests from cattle owners; all reactors have been permanently earmarked by our officers, and full information and advice given the owners with reference to effective measures in dealing with affected herds.

While the individual stockman has not shown any great interest in this matter, municipal authorities are apparently commencing to realize the importance and necessity of providing for their people milk obtained from non-reacting tuberculin tested cattle. This has been evidenced by the fact that an increased number of applications have been received from them for tuberculin for this purpose. Even this
rational and commendable action of the municipalities has met with opposition, but, fortunately, this has not in any way influenced those bodies. It will therefore appear that until the public demand milk and other food products only from non-tuberculous animals, the producers will not interest themselves to any great extent in the matter, unless they are compelled to do so by legislative measures.

Rabies fortunately has not been met with to any great extent; it has, however, caused some anxiety in Ontario, principally in urban districts, and, with the exception of a small outbreak in Alberta, has not been seen in any other part of the Dominion.

In Ontario, individual cases have continued to occur; these have been confirmed by microscopical examination of suitable specimens and by animal inoculation. It is very probable, in view of the regularity of their occurrence, that they originated from previous cases. When the peculiarities of this disease are considered, this is possible, in spite of the fact that a searching investigation is made in each case.

The origin of the Alberta outbreak was not definitely placed, but, in view of the existing conditions in that province, it is evident that an infected dog must have been introduced. Very strict measures were adopted in dealing with all exposed animals, and the outbreak was quickly controlled and duly suppressed.

Outbreaks of glanders have occurred persistently in Saskatchewan and Alberta; a few have been dealt with in Manitoba, while in Ontario only one case has been detected. This disease also existed to a limited extent in New Brunswick and Quebec, each case being eventually traced to the outbreak of the previous year in the former province, but it was not possible to accurately determine the origin of each one in Quebec. The affected animals had changed owners frequently, and were in nearly every instance finally traced to the logging camps. All possible contacts were located and effectively dealt with. In view, however, of the impracticability of isolating all these cases under the existing conditions in the bush, all reasonable measures were taken to ascertain the condition of the horses in the camps. It will, however, be necessary to give special attention to these animals as opportunity offers.

The situation in Saskatchewan, after many years of energetic, concentrated action, is assuming a much more favourable aspect, and while the statistics do not show a marked decrease in the number of horses destroyed, the many clinical cases formerly met with are now less frequently seen.

The horse owners in this province, due largely to past experience, are now taking a keen interest in this work and are commencing to isolate suspected cases and report them promptly to the department. The many difficulties experienced by our officers in the past, due to the prejudice and suspicion of horse owners, are now gradually disappearing. Practical observation of mallein testing and its satisfactory results have gained for the department the confidence of the horse owners, so much so that opposition is now seldom met with.

This province has been practically covered, and there are few, if any, districts in it where investigations have not been made. It is therefore reasonable to assume that, with the hearty co-operation of the horse owners, and the strict enforcement of the policy of this branch, cases of glanders will be rarely met with in the near future.

In Alberta, the outbreaks have been more numerous than in previous years. This is probably due, partly to the fact that it has been possible to give more attention to this particular work, and to the marked advancement of agricultural pursuits. The force in Alberta has in previous years been so busily engaged in controlling cattle mange on the range that the investigation of glanders has been limited to reported cases. As, however, these did not indicate that the disease was at all prevalent, there was, in view of the circumstances, no justification for further action.

It is generally recognized that horses bred and reared on the range, with their well-known tendency to keep together in their own particular bunches, are less liable to spread infection than horses bred and reared in a more domestic state under faulty sanitary conditions; and also that this disease does not so frequently become
acute in the former animals as in the latter. The rapid changes which have taken place in recent years through the agricultural development of this province, are doubtless largely responsible for the dissemination of this disease, and there is also evidence to show that the construction camps play an important part in its distribution.

The increased demand for horses, with their increased values, the advent of the settler, and the curtailing of ranching, have resulted in the marketing of all available saleable stock. In view of these facts it is not surprising to find an increase in the outbreaks of this malady in this province. By the concentration of energetic action, however, there is every prospect of obtaining the same satisfactory results in the near future which have followed the enforcement of the policy of this branch in the other provinces.

There has been a decrease in the number of cases of dourine in the provinces of Alberta and Saskatchewan, and although several reported outbreaks have been investigated in other provinces, no cases have been discovered in any other part of the Dominion.

The work of the officers specially entrusted to deal with this malady has been of a very high order, and excellent progress has been made.

The extremely insidious nature of this malady has necessitated exercising the utmost caution, and consequently many valuable breeding animals have been held in quarantine for long periods, resulting in heavy losses to their owners. It is, however, gratifying to find that by exercising tact and good judgment, the inspectors have been able to enforce stringent regulations with very little irritation.

The progress which has been made is largely due to Dr. Watson's excellent work in serum diagnosis, conducted under trying and difficult circumstances. The untiring efforts of the inspectors to forward him numerous samples of serum in suitable condition taken from suspected animals is also worthy of mention. This method of diagnosis has proven very accurate in locating dormant cases, and has enabled the inspectors to deal with them with much more promptness and despatch than was formerly possible. Much time has therefore been saved, and the inconvenience and annoyance necessarily caused by holding suspects under observation for long periods has been removed. Many suspected districts have been satisfactorily dealt with, and there is every reason to expect the most sanguine results during the coming year.

Horse mange fortunately is not prevalent and has only been found in the provinces of Quebec, Saskatchewan and Alberta. In the latter province, only a few cases have been detected, while in Quebec and Saskatchewan the outbreaks have been limited and less frequent than during the previous year.

More or less difficulty is always experienced in dealing with this malady, and the recurrence of the disease on premises previously dealt with is not uncommon. It has therefore been found necessary to supervise the treatment of the animals and the disinfection of all contact matter. This disease is now under good control, and any outbreaks which may arise can be promptly dealt with.

Cattle mange still exists in Alberta and Saskatchewan, and the infected territory in the Kamloops district in British Columbia is rapidly assuming a normal aspect, so much so that it is very probable the restrictions can be safely removed in the near future.

A number of cattle owners strongly objected to treating their herds, and at times a great deal of irritation resulted. This was due to the fact that the quarantined limits extended into localities where the disease was not definitely determined, an essential procedure in quarantining big tracts of land. The rough nature of the country made it impracticable to closely define the infected area, and consequently it was necessary to take advantage of natural boundaries, which no doubt included many farms on which the disease did not exist. This, however, cannot be avoided even on the open
prairies; and as it was desired to prevent undue hardships, special steps were taken to include the least possible margin of uninfected territory as far as safety would permit.

With this end in view the situation was very carefully considered by Dr. Tolmie, the Chief Inspector in the province, who personally visited the area on many occasions, and familiarized himself with the actual conditions in the territory involved. Later events have clearly shown that this officer exercised good judgment in recommending its boundaries, as it has not been necessary to increase the area, the disease having been controlled without infecting new territory. Great credit is due him, and the officers working under his direction, for the faithful and capable performance of their duties under very adverse circumstances.

The eradication of this malady in this area has been a difficult problem, especially so when it is considered that the cattle owners were unfamiliar with the disease and with the necessary methods for its control. Vats had to be constructed at the owners' expense, and special instructions had to be given to ensure that they were suitably erected. The mountainous and woody nature of the country made it frequently impossible to gather cattle for dipping purposes; this resulted in frequent delays. When this was accomplished, great difficulty was experienced in keeping the cattle isolated during the required intervals between the first and second dippings.

In view of these conditions it is only natural that opposition was at times encountered, and a special effort was made to deal justly with these people. The majority of whom doubtless appreciate the fact that the action of the inspectors was prompted only by the very best motives.

In Saskatchewan, there has been a marked decrease in the number of cases, while in Alberta good progress has been made. Dr. Hargrave, with the assistance of his capable staff, has continued to direct the operations in the area in both these provinces in a very satisfactory and able manner. There are now many localities in this territory which are free from this disease, but in view of the open country it has not been considered safe to curtail the boundaries of this area. A special effort is, however, being made to warrant such action, and directly this is possible more rapid progress will be made. Sufficient range riders have been employed throughout the year to keep in as close touch as practicable with the cattle in this territory, and any suspected cases, and their contacts, have been promptly quarantined for official treatment as soon as weather conditions permitted. This procedure has been very much more popular with the owners than the older policy of compulsory treatment of all cattle in the area, and has lessened irritation very materially.

The effective treatment of these animals is attended by many difficulties, which can only be adequately appreciated by those familiar with range conditions. It is, therefore, gratifying to find that the majority of the stockmen are alive to the situation, and are assisting our officers in their honest endeavours to eradicate this disease.

The staff of veterinary inspectors, whose duty is limited to the inspection of stock shipments, has been considerably increased, and as these officers are located at all the principal shipping points, no unnecessary delay should be experienced by the shipper in obtaining their services. A few complaints have been received in this connection, but upon investigation it has been shown that the shipper was to blame, as he had neglected to give reasonable notice of his intention to ship.

Only one suspected case of sheep scab has been discovered throughout the Dominion during this period. This case was detected on premises where the disease had been dealt with last year in the province of Quebec. Everything possible has been done in the way of tracing up and subjecting to treatment all sheep known or suspected to have been in contact with this animal, but no further cases have been discovered.
Two small outbreaks of anthrax have been investigated in old infected districts, one in the province of Quebec, the other in Ontario. Only a few animals succumbed; their carcasses, with all contaminated matter, were carefully burned under official supervision, and vaccination of exposed stock advised.

The owners of infected farms, and those of adjacent ones, fully appreciate the security obtained by this protective measure, as they procure the vaccine manufactured at the Biological Laboratory at regular intervals.

More serious losses from this dreaded highly malignant disease have no doubt been prevented by the constant intelligent immunization of animals in infected localities.

Black-quarter is not officially dealt with under the provisions of the Animal Contagious Diseases Act, but a protective vaccine is manufactured in cord form at our Biological Laboratory, which is supplied to stockmen at cost price throughout the Dominion. In order to facilitate prompt delivery, a fresh supply of this vaccine is kept constantly on hand at Victoria, Vancouver, Kamloops, Medicine Hat, Regina and Winnipeg, and the eastern provinces are supplied direct from headquarters. Judging from the sale of this vaccine, the disease is well distributed throughout the country, but as vaccination is constantly practised in districts where it has previously occurred, it is not possible to form a safe opinion regarding the number and extent of actual outbreaks.

A very virulent type of this malady is, however, known to occur in British Columbia, which apparently requires the preparation of a vaccine from the special strain of organism accountable for these exceedingly acute cases. Arrangements have therefore been made to obtain suitable material for this purpose, and directly this is received by the Pathologist here, steps will be taken to manufacture a product that will adequately immunize the young stock exposed to this form of infection.

The Biological Laboratory staff have been busily engaged in the manufacture of mallein and tuberculin, the preparation of anthrax and blackleg vaccines, and the examination of the numerous specimens received for diagnostic purposes. Experiments have also been conducted with a view to increasing our knowledge regarding black-head in turkeys, a disease which has caused very serious losses in certain districts, and in some localities has made it almost impossible to raise these birds.

The examination of specimens, forwarded by the Meat Inspectors, has also increased the work of this staff. It was found advisable to engage a stenographer early in the year, as much valuable time was taken up in writing reports. This officer's services are, however, also utilized in many other ways, enabling Dr. Higgins, the officer in charge, to devote his attention more fully to the work of the laboratory than was formerly possible.

Important researches have been made at the Research Laboratory at Lethbridge by Dr. Watson, and at Agassiz by Dr. Hadwen. This work has been of inestimable value to the branch, and will doubtless prove of still greater value as better facilities are provided.

A modern building has recently been completed at Lethbridge, where it was very much needed, owing to the exhaustive work of Dr. Watson in the elaboration of serological methods of diagnosis for dourine, previously referred to. In addition to this work, which has received preference, owing to the existence of dourine in Saskatchewan and Alberta, investigations have been made of loco-disease, swamp fever, glanders, contagious abortion in mares, coital exanthema, and hog cholera. Microscopic examinations of specimens forwarded for diagnosis have also received attention.

Dr. Hadwen's work has, owing to the peculiarities of the province in which he is working, been conducted on different lines. His attention has been chiefly directed to investigation and research into suspected piroplasmic infections. Experiments
have been conducted, as far as practicable with the available facilities, in a very
capable manner. A special effort has been made to ascertain facts regarding the his-
tory, life cycles and peculiarities of ticks, necessitating careful persistent search for
these well-known obligatory parasites. They have been collected and identified, and
sufficient progress has been made to definitely determine that red water in cattle
in British Columbia is not of piroplasmic origin.

Some valuable work has also been done on the biology of the warble fly, and a
bulletin on this subject published for distribution, upon your direction.

Many other matters have received attention, obscure cases in the field have been
investigated, and specimens examined for diagnostic purposes.

The variety and number of problems requiring the services of a trained veteri-
ary pathologist, which have frequently arisen, show very conclusively the wisdom
of establishing a laboratory at Agassiz, B.C. It is very probable that it may be neces-
sary to increase the facilities for this work in the near future.

The United States have taken the greatest number of our export cattle. There
has been a marked decrease in the exportations to Great Britain, an increased num-
ber have been shipped to South Africa, and a limited number to New Zealand. There
have also been two consignments exported to France, one to Holland and another to
Italy. A few have been shipped to Bermuda and a considerable number to New-
foundland. The inspection of the majority of these animals has been made by the
officers specially entrusted with this work at Montreal, Toronto, Niagara Falls,
Bridgeburg, St. John, Sydney and Halifax.

Close attention has been given to the inspection of railway cars and yards, and
a special effort made to maintain them in a good sanitary state.

The travelling car and yard inspectors have practically inspected all the yards
in the Dominion, and the officers stationed at the points designated by Ministerial
Order 37, report that the majority of the incoming cars are found in a satisfactory
condition. The railway companies are giving them every assistance in the perform-
ance of their duties.

The enforcement of this order has automatically resulted in these cars receiving
constant attention, and has improved this service very materially.

The Hochelaga stock yards, which have been in use for many years, have been
closed recently by the company, and the trade transferred to the East End cattle
market. The facilities at the latter point are adequate and modern. Extensive
improvements have been made by the Union Stock Yards Co., in Toronto, new sheds
have been erected, the yards largely increased and supplied with the most modern
equipment. The excellent conditions existing in these yards have very largely
increased the trade at this point. The West End cattle market is limiting its accom-
modation by the erection of a municipal abattoir on its premises.

Improvements have been made in nearly all the important stock yards through-
out the country, those at Fort William and North Bay deserving special mention.

A small stock yard has recently been built at Muskoka, which permits the rail-
way company to observe the 28-hour unloading law in east or west-bound stock.
The improvement in the condition of these large yards is largely due to Inspector
Cooke’s persistent attention.

Two quarantine stables have been erected during this period, one at Windsor,
Ont., the other at Coutts, Alta., and a suitable site has been obtained at Niagara
Falls on which to build, when this is considered necessary.

Upon advice being received from Great Britain, in the latter part of June, that
foot and mouth disease had again broken out in that country, special protective
measures were promptly enforced. The permits which had been issued for importa-
tions of ruminants and swine were cancelled, with the exception of those for ship-
ments actually en route. The importation of hay, straw, fodder, feed stuffs or litter
accompanying horses from the British Isles, as well as from the continent, was
absolutely prohibited. The inspectors stationed at the Atlantic seaports were fully alive to the dangers of the situation and exercised the greatest vigilance in the performance of their duties, with very satisfactory results.

Since your arrival here my duties have been confined to the office, with the exception of a short visit to Charlottetown in the month of September.

I have the honour to be, sir,

Your obedient servant,

GEORGE HILTON.

Chief Veterinary Inspector.
APPENDIX No. 2.

(R. Barnes, V.S., Chief, Meat Inspection Division.)

Ottawa, March 31, 1913.

The Veterinary Director General,
Ottawa.

Sir,—I have the honour to submit my annual report for the year ending March 31, 1913.

From the beginning of the year to the time of your acceptance of the position of Veterinary Director General, my duties were confined principally to the office. It was deemed advisable, however, for me to make a few short trips to points in Ontario and Quebec, not altogether for the purpose of adjusting any differences which had arisen between our officers and the managements of establishments under inspection, but rather to investigate and come personally in touch with actual conditions in order that they might be better understood and dealt with in a manner which would be fair and just to the different interests concerned.

Early in April, the annual examinations were conducted by members of the staff at different points throughout the Dominion, where fifty-one candidates presented themselves, of whom forty-five were successful in obtaining the number of marks required to become eligible for appointment as inspectors under the Meat and Canned Foods Act. The percentage of those successful is much larger than in previous years. This is in no way due to any particular difference in the questions set for the examination, but rather to the advance in the method of teaching veterinary medicine and surgery in our colleges. This is especially noticeable in connection with the subject of meat inspection, the lecturer on this branch of education in the Ontario Veterinary College being an inspector of this division.

During the year, the staff was increased by seventeen veterinary inspectors and four lay inspectors. These additions were necessitated on account of transfers to the Diseases Division, resignations, dismissals and a gradual strengthening of the staff in order that the work might be more effectively carried on without an undue strain on the inspectors who, in the past, have been called on to perform an excessive amount of work. This, if continued, physically unfit them and is more or less certain to check their energy and enthusiasm without which their work, owing to the nature of the duties and the environment during its performance, would soon tend to become of a perfunctory nature.

While the total number of animals slaughtered under inspection, 2,513,778, shows a slight decrease as compared with the previous year, the condemnation for disease more particularly for tuberculosis, is on the increase.

Cattle and calves slaughtered show an increase of 10 per cent, due to the continued high prices and the wholesale slaughter of calves. This is to be regretted, since, with our already short supply of beef animals, the killing of so many calves (which at best furnish only a poor meat food) will further deplete the supply in years to come. In compiling statistics in connection with calf slaughter, some interesting facts are revealed. In Montreal, for a period of three months during the calf season, the ratio of calves killed as compared with beef cattle was one and one-fifth to one; in Toronto, one calf to seven cattle; in Winnipeg, one to seventeen cattle.

Economists, agriculturists and live stock men have been engaged for some time endeavouring to evolve some means whereby the supply of meat-food animals may be increased in order that even our home consumption may be met, but up to the
SESSIONAL PAPER No. 15b

present no definite feasible plan has been presented. Both legislation and education along this line have been suggested, yet it would appear that the producers will necessarily require to be shown that the production of meat-food animals will return a reasonably fair, and a surer profit than is obtained through other channels of agriculture and live stock enterprise.

Sheep killings show an increase of 79,210, or twenty-one per cent over the previous year. While this may be due to an increased production, it must not be forgotten that prices for this class of animal were fairly attractive and may have had the effect of bringing to the markets many animals which would otherwise have remained in the breeding flocks of the country. The slaughter in the different provinces was as follows:—

<table>
<thead>
<tr>
<th>Province</th>
<th>Slaughter (animals)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Quebec</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Maritime Provinces</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>Manitoba</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Western Provinces</td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

The increased slaughter in Western Canada was in some measure due to the importation, for immediate slaughter, of large numbers of animals from the western and middle states.

Hog killings show a decrease of thirteen per cent. This is confined to Eastern Canada. Manitoba and the west show an increase of, approximately, forty-five per cent, which will no doubt continue and show still greater gains, as the necessity for mixed farming is becoming more apparent.

The possibilities of Western Canada in the production of meat-food animals can scarcely be over-estimated. Its acres of finest natural grasses and the enormous quantities of cheap grains, if utilized in the growing and finishing of cattle, sheep and hogs, would undoubtedly be a source of considerable revenue to the agriculturist, and at the same time be a means whereby our rapidly increasing population might obtain a supply of home-grown meat foods.

The canning of poultry in Canada, fostered by the Meat and Canned Foods Act, has grown during the last four years by leaps and bounds. This trade has now become well established, more particularly in Ontario and the Maritime Provinces.

Our exports of meat and meat products for the year total 45,114,367 pounds, being almost 30,000,000 pounds less than the previous year.

The imports into inspected establishments show a large increase:—

<table>
<thead>
<tr>
<th>Product</th>
<th>Imports (pounds)</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>Mutton</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Pork</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Lard</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

The Customs returns state that there were imported into Canada during the year, 49,347,961 pounds of meat and meat foods. These amounts, when set against our exports, show that during the past fiscal year Canada did not produce a sufficient amount of meat foods for home consumption. To the imports might also be added the importation of 229,000 head of sheep for immediate slaughter. While this is an unfortunate condition, it does not follow that the consumption of meat foods will continue to exceed production. The tremendous increase in our population, the great majority of whom are settling on farms in the west, will in a few years undoubtedly become producers, when we will again take our place as exporters of large quantities of meats and meat-food products. In the meantime, however, it would appear that the present scarcity and prevalent high prices will continue.
Judging from the returns forwarded by our inspectors, the condemnations for different causes are greater than those of the previous year.

The necessity for a rigid inspection of meat-food animals is apparent when, in establishments under inspection, there were condemned as diseased and unfit for human food, 7,258 carcases and 624,382 portions; yet the number slaughtered in these establishments represents only about fifty per cent of the total kill in the Dominion. The animals brought to inspected plants are selected and apparently healthy, the managements knowing well that to slaughter an animal affected with disease means its condemnation and loss, yet, in spite of the care exercised by their buyers, diseases found on postmortem were responsible for the destruction of the number of carcases and portions above mentioned.

The conditions surrounding the slaughter, and the healthfulness of the meat obtained from the other fifty per cent of animals, slaughtered without inspection or supervision of any kind, may be imagined when it comprises animals refused by packers as suspicious, as well as those showing unmistakable ante-mortem evidences of disease, together with its quota of those, the healthfulness of which can only be decided by a careful post-mortem examination conducted by a qualified and trained veterinary meat inspector.

It is to be regretted that Boards of Health have been so long neglectful of this matter, although there are no doubt many difficulties to overcome in establishing a proper system of local and municipal meat inspection. It must come, however, but until municipal bodies bestir themselves, so long will a great percentage of the meat-eating people be served with unclean and unsound meat foods which cannot be other than a menace to health.

I am glad to know that it is your intention shortly to put into operation a measure for the control and possible eradication of tuberculosis. The loss due to this disease is enormous. It is known that of the carcases which are condemned, fifty-five per cent of the cattle and seventy per cent of the hogs are destroyed for this cause, while of the condemned portions twenty per cent from cattle and ninety per cent from hogs are affected with this disease.

The condemnations for pneumonia comprised 98 cattle, 36 sheep and 153 hogs. These occurred principally during the hot weather. In many cases this is due to careless and improper handling, more particularly in the case of swine, where they are crowded into wagons and cars and drenched with cold water. I am convinced that by the exercise of reasonable care this could be prevented to a very large extent, and the waste of a large quantity of valuable meat food thus be obviated.

Condemnation for parasitic infection is considerable, principally due to Cysticeri (tape worm), 137 cattle and 145 hogs being destroyed for this cause during the last twelve months. It is worthy of note that nearly all the carcases affected with this parasite come from the prairie provinces. This may, to a great extent, be attributed to the habit of the Indians and early settlers of eating meat in a partially cooked or even raw condition, and to the lack of sanitary conveniences, the rains washing the segments of the mature worm on to the pastures where they are eaten by the cattle and hogs, thus completing its natural cycle. The advance in the mode of living, together with inspection, will no doubt in time lessen to a very great extent, if not totally eliminate, this cause of loss.

I wish to draw your attention to the losses due to bruises, cripples and animals found dead. There does not appear to me to be sufficient care exercised in the transportation of animals, as in many cases the cars are overcrowded to such an extent as to cause the death of dozens of prime animals. This overcrowding is possibly due to an attempt on the part of the shipper to reduce freight charges per head, but the bruising and crippling of animals cannot be attributed to that cause. The lack of judgment on the part of train crews, and the abuse of live stock in the loading and unloading of cars should be given serious consideration.
SESSIONAL PAPER No. 15b

During the year, some disastrous fires occurred in establishments under inspection. The plant of the Tillsonburg Packing Company was entirely destroyed, and has not, up to the present, been rebuilt. The West End plant of the Montreal Abattoirs, Limited, suffered considerable loss, 135,886 pounds of meat being destroyed. Repairs to the building were made immediately, and operations continued as usual. The establishment of P. Burns & Co., at Calgary, was almost wiped out, the only parts left being the killing floors. Owing to the complete destruction of the cold storage, some 5,120,875 pounds of meat and 150,875 pounds of poultry were either completely destroyed or rendered unfit for food purposes. Temporary cold storage buildings were erected, and in a remarkably short time the business, even under this severe handicap, assumed its normal volume. A modern packing plant is now in course of construction.

In January last, by your permission, I spent some time at the packing houses in Chicago for the purpose of studying inspection as carried on by the United States officers. Through the kindness and courtesy of Dr. Bennett and his assistant, Dr. Seigmond, I was enabled to get in close touch with their work and to familiarize myself with its details. While there is little difference between the actual inspection for diseased conditions as carried on by the Bureau officers and that of our inspectors, I found that, owing to the magnitude of some of the plants and the apparently large expenditure of money in their construction, satisfactory sanitary conditions are more easily maintained than in the majority of our Canadian establishments. I may say, however, that the plants in this country will compare very favourably with those in the United States of similar size and date of building. Without going into further details, much valuable information was obtained during my trip, which, when applied as far as practicable, will tend to improve our service.

Your officers have, with but few exceptions, given loyal support during the past year, and have performed faithfully their many and arduous duties. Some minor differences have arisen between inspectors and managements of establishments, all of which have been amicably adjusted.

The work of Travelling Inspector Ross, whose duties are necessarily many and varied, has been performed in a manner creditable to himself and to the branch.

CANNED FRUITS, VEGETABLES AND CONDENSED MILK.

The inspection of factories engaged in this trade has been carried on in a very satisfactory manner.

Owing to the development of the canning industry and the erection of a large number of new factories, the staff of permanent inspectors were unable to properly supervise the work. It therefore became necessary to recommend that additional help be obtained, and the Minister, after full consideration, authorized the employment of three temporary inspectors, their services being utilized for a period of six months during the busy season. The wisdom of these appointments is apparent by the work performed.

The sanitary conditions of the factories engaged in preparing this class of food were, with a single exception, well maintained. In that particular case it became necessary to threaten somewhat harsh measures, which had the desired effect.

The pack was rather light, and comparatively high prices were obtained. These conditions do not tend to improvement in the product, as it increases the tendency to the use of an inferior quality of raw material. In order that this practice may not continue until it checks the demand for these wholesome and convenient foods, I am of the opinion that it will soon become necessary to establish standards of quality in order that the purchaser may be reasonably sure by the label as to the quality of the contents of the can.
A special inspector for condensed milk factories was engaged and, judging from his reports, this trade is in a flourishing condition and is carried on under modern sanitary requirements.

While there is considerable improvement shown in connection with the manufacture of evaporated apples, the conditions under which this product is manufactured are, with a few exceptions, unsatisfactory. This branch, through its officers, has been endeavouring to educate the proprietors of these factories to produce a better product under sanitary conditions, and although some progress has been made, there remains much to be accomplished.

The work of the different inspectors engaged in this work has been satisfactory, and the Chief Inspector, Mr. C. S. McGillivray, by his energy and good judgment, rendered valuable service during the year.

I have the honour to be, sir,
Your obedient servant,

ROBT. BARNES,
Chief, Meat Inspection Division.
APPENDIX No. 3.

(A. E. Moore, D.V.S., Chief Travelling Inspector).

The Veterinary Director General,
Ottawa.

Sir,—I have the honour to submit to you my annual report for the year ending March 31, 1913.

From April 13 to July 2 I was engaged continually in this office, taking Dr. Hilton’s work during the time that he was Acting Veterinary Director-General. From this date until your appointment as Veterinary Director-General, I was also engaged in the office when my outside duties were not urgent.

On July 2 I left Ottawa for Saskatchewan arriving at Regina on the 5th inst. The purpose of my visit was to familiarize myself with the work being done in the province, more especially with reference to glanders. In discussing the subject with Inspector Tamblyn some important changes in the mode of dealing with glanders were made, which greatly simplified the work and enabled the inspectors to attend more promptly to urgent cases. Other matters pertaining to the provincial work were also settled.

I also visited other parts of the province and personally interviewed many of the inspectors at their work, after which I left for Ottawa and arrived on July 20.

From time to time during the year I have visited nearly all the inspection ports and quarantine stations in Eastern Canada for the purpose of interviewing and instructing the different officers with reference to their duties.

GLANDERS.

The total number of horses destroyed for glanders in the eastern provinces this year was thirty-four, an increase of four over last year. In every case, however, they were found in districts where glanders had been dealt with in previous years, and originated, no doubt, from some incipient cases which were not then discovered. Owing to the insidious nature of the disease, and the utter impossibility of always being able to trace all the contact cases, it is almost too much to hope that we will not occasionally find isolated outbreaks from these old infected districts where the disease has been prevalent for years. However, I am satisfied that by persistent efforts we will in time entirely stamp out this dreaded malady.

The following is a synopsis of horses destroyed in the eastern provinces this year:—

<table>
<thead>
<tr>
<th>Province</th>
<th>Horses Destroyed</th>
<th>Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
<td>7 horses</td>
<td>$ 700</td>
</tr>
<tr>
<td>Quebec</td>
<td>17 horses</td>
<td>$ 1,585</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>10 horses</td>
<td>$ 866.65</td>
</tr>
</tbody>
</table>

I have personally tested with mallein eleven suspected horses on six different premises, five of these reacted. These diseased horses were all contacts, being part of the New Brunswick outbreak over which I had personal supervision. I also examined clinically other reported cases which were found to be suffering from either nasal gleet, heaves or diseased teeth.
TUBERCULOSIS.

I have tested, on nine different premises, 401 cattle, fifteen of which reacted. These cattle are under the special supervision of this branch.

I also tested six cattle for export to South Africa, all of which proved healthy. Four reacting cattle were earmarked by me; these cattle were tested by local veterinarians supplied with tuberculin from this branch.

HOG CHOLERA.

This troublesome disease has again caused quite heavy losses during the past year. The two most serious outbreaks, in Eastern Canada, occurred in the counties of Essex and Kent. The Essex outbreak originated first in garbage-fed hogs and later it was suspected that infection might also have come from Michigan, as the disease was very prevalent in that state this year.

The Kent outbreak traces directly from an imported sow from the State of Ohio. Although this sow was kept in quarantine for the usual period, she was without doubt a chronic case and in this way a carrier of the infection. She was accompanied by a small pig which died on its arrival at the quarantine. At that time the sow was very unthrifty looking, but gained in flesh and was considered quite healthy when released. Soon after she arrived at her destination in Kent county she gave birth to a litter of pigs, all of which eventually died of hog cholera; following this, the other hogs on the farm took sick and most of them were dead by the time the inspector was notified. From this place the disease spread from farm to farm until it covered quite a large area and was very virulent in character. This outbreak was finally stamped out through the persistent efforts of Inspector Rowe.

I visited these infected districts on two different occasions and remained through the month of November until we got the outbreak pretty well under control. In the outbreaks. Inspectors Perdue, Rowe and Jones did good work.

In October, Inspector Frink, of St. John, New Brunswick reported suspected hog cholera at a farm near St. John, and requested that I go down to make an examination. On investigation I found the disease to be hog cholera. This was the first outbreak ever reported in the province of New Brunswick. The infection was traced to garbage-fed hogs. Fortunately, there were no contacts, and no further cases have since developed.

I investigated several reports of suspected hog cholera in different parts of the country, but found the conditions due to digestive derangements.

SHEEP SCAB.

No positive cases of scabies in sheep were seen by me this year. One flock near Montreal, however, was quarantined on suspicion and will be officially dipped as a precautionary measure. Two flocks were also quarantined by Inspector Vigneau, near Three Rivers; none of them were positive cases.

MANGE IN HORSES.

Quite an extensive outbreak of mange in horses was discovered during the latter part of the winter, in the southern part of Carleton county. These cases are now being dealt with in the usual manner, under my direction.
RABIES.

During my stay at Windsor in November I investigated several cases of rabies in dogs, which were properly dealt with in accordance with the regulations.

INSPECTING IMPORT HORSES.

During the year I tested fourteen horses imported from the United States. They were entered on six different dates.

DIPPING EXPORT SHEEP.

I have supervised, during the year, the dipping of twenty-nine sheep intended for export to the United States.

I have the honour to be, sir,
Your obedient servant,

A. E. MOORE.
Chief Travelling Inspector.
APPENDIX No. 4.

(C. D. McElhaney, M.D.V., Inspector in Charge of Manitoba).

WINNIPEG, MAN., March 31, 1913.

The Veterinary Director General,
Ottawa.

Sir—I have the honour to submit herewith report for the year ending March 31, 1913, in connection with the Health of Animals Branch for the province of Manitoba.

During this period the services of your officers have been fully occupied in consistently carrying out the various requirements of the Animal Contagious Diseases Act, and the regulations made thereunder, relating to quarantine and the control of disease, as well also as the Meat and Canned Foods Act and the regulations relating thereto.

The operations of the branch here may therefore be conveniently considered under these three divisions, viz:—

Diseases of Animals Control Division.
Animal Quarantine Division.
Meat Inspection Division.

DISEASES OF ANIMALS CONTROL DIVISION.

The work in connection with this Division has obviously consisted chiefly in dealing with the control and eradication of such diseases as are scheduled under the Contagious Diseases of Animals Act, together with the enforcement of the various regulations and Ministerial Orders relating thereto. Investigations have also been made from time to time of such other diseases and conditions affecting animals, as appeared to be deserving of attention and consideration.

The diseases dealt with under this division by the officers of this branch were glanders, hog cholera, mange of horses, mange of cattle, sheep scab, suspected dourine, tuberculosis and black leg.

GLANDERS.

The control and eradication of this disease is, I am pleased to state, still being marked by steady progress and satisfactory results. A decrease in the number of outbreaks and animals affected and destroyed, over the preceding year, is noticeable.
Glanders Statistics for Manitoba.

Summary showing total number of horses and mules tested and destroyed during the year, by the various inspectors here:

Horses and mules submitted to test—
- First test: 663
- Second test: 196
- Third test: 8
- Fourth test: 1

Horses and mules destroyed for glanders—
- First test: 13
- Second test: 8
- Third test: None
- Fourth test: 1

Total destroyed: 22

Of this number one was a clinical case.
Total compensation allowed, $2,030, being an average of $92.27 per animal.

Import horses tested at destination—
- First test: 317
- Second test: 12
- Destroyed for glanders without compensation: 2

Export horses to the United States tested—
- First test: 13

All of which proved negative to the test.

HOG CHOLERA.

This serious affection of swine has manifested itself during the past year in certain parts of the province of Manitoba, as well as in the western part of Ontario, particularly in the districts tributary to Rainy River and Fort Frances.

The investigations of your officers indicate that the feeding of uncooked kitchen refuse and garbage, containing pork or pork products, is responsible for the occurrence of the disease in urban and suburban districts. In fact the occurrence of hog cholera in urban and suburban districts and the non-appearance of the disease in the rural districts, has shown a striking connection between such outbreaks and the feeding of swine upon uncooked kitchen refuse and garbage, obtained from hotels and restaurants, and containing portions of pork and pork products of imported origin, and points strongly to such material being a medium conveying infection and starting fresh outbreaks, the inference being that such meats and products had been prepared from infected hogs.

HOG CHOLERA STATISTICS FOR MANITOBA.

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of premises inspected</td>
<td>175</td>
</tr>
<tr>
<td>" swine inspected</td>
<td>2,574</td>
</tr>
<tr>
<td>" premises quarantined</td>
<td>31</td>
</tr>
<tr>
<td>" on which the disease was found to exist</td>
<td>15</td>
</tr>
<tr>
<td>" diseased and contact animals destroyed</td>
<td>249</td>
</tr>
<tr>
<td>" animals destroyed for post-mortem examination</td>
<td>6</td>
</tr>
<tr>
<td>Total compensation allowed</td>
<td>$1,711.32</td>
</tr>
</tbody>
</table>
In connection with the outbreaks in the districts of Rainy River, Fort Frances and Kenora, in western Ontario, dealt with by officers of this branch, the following number of animals and premises were dealt with:

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of premises inspected.</td>
<td>160</td>
</tr>
<tr>
<td>" swine inspected.</td>
<td>916</td>
</tr>
<tr>
<td>" premises quarantined.</td>
<td>35</td>
</tr>
<tr>
<td>" " on which the disease was found to exist.</td>
<td>17</td>
</tr>
<tr>
<td>" diseased and contact animals destroyed.</td>
<td>128</td>
</tr>
<tr>
<td>Total compensation allowed.</td>
<td>$741.99</td>
</tr>
</tbody>
</table>

All of the premises inspected were re-visited at intervals covering a period of three months, and special attention was directed towards having the premises upon which diseased animals had been kept cleansed and disinfected in a satisfactory manner.

MANGE OF HORSES.

This disease has only been found to a slight extent during the past year. The affected and contact animals were placed under quarantine and satisfactorily treated under the supervision of an inspector, with the mange preparation recommended by the department, and the thorough cleansing and disinfection of the premises strictly enforced.

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of horses inspected for mange.</td>
<td>58</td>
</tr>
<tr>
<td>" affected and contact animals quarantined for</td>
<td>42</td>
</tr>
<tr>
<td>treatment</td>
<td></td>
</tr>
</tbody>
</table>

MANGE OF CATTLE.

This disease was not found affecting cattle originating in Manitoba, but was detected among cattle inspected at the stockyards at Winnipeg, coming from the mange-infected area in the province of Alberta.

In accordance with the requirements of the mange regulations, all cattle originating west of Winnipeg are unloaded and inspected at Winnipeg, and cattle destined for points east of Winnipeg are only allowed to proceed after being carefully inspected and accompanied by an inspector's health certificate. During the past year, a considerable number of cattle have also been shipped from Winnipeg to points in the western provinces of Alberta and British Columbia. These cattle were dealt with in a similar manner to those going to eastern points, and were only permitted to go forward after having been duly inspected, and accompanied by an inspector's health certificate. Cattle showing manifestations of mange are not allowed to go forward, but are detained here and are allowed to be removed from the yards under an inspector's certificate for immediate slaughter only.

During the past year the following number of cattle were inspected at the Winnipeg stockyards:

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destined to points east of Winnipeg.</td>
<td>7,415</td>
</tr>
<tr>
<td>" " west</td>
<td>3,015</td>
</tr>
<tr>
<td>For local consumption at Winnipeg.</td>
<td>71,340</td>
</tr>
<tr>
<td>Total cattle inspected</td>
<td>81,770</td>
</tr>
</tbody>
</table>

Of this number, 75 were found to be affected with mange.

SHEEP SCAB.

In accordance with the requirements of Ministerial Order No. 40, we inspected for scab, 40,714 sheep imported from the United States intended for immediate slaughter.
Scab was found affecting several small flocks of sheep adjacent to the city of Winnipeg, the origin of which was traced to contact with sheep imported from the United States. The affected and contact animals were placed under strict quarantine and dipped twice under the supervision of an inspector, in the lime and sulphur dip approved by the department. The premises were likewise thoroughly cleansed and disinfected under the supervision of an inspector.

<table>
<thead>
<tr>
<th>Number of sheep inspected</th>
<th>219</th>
</tr>
</thead>
<tbody>
<tr>
<td>" diseased and contact animals quarantined for treatment</td>
<td>62</td>
</tr>
</tbody>
</table>

DOURINE.

This disease has not been detected in this province. A stallion, in the district of Cartwright, was reported as suspicious of dourine, and was placed under quarantine. This stallion was carefully examined by Inspector Watson, of Lethbridge, Inspector Still and myself and was found to be free from the disease.

TUBERCULOSIS.

During the past year we have submitted to the tuberculin test twenty-one cattle intended for export to the United States, all of which proved to be healthy, also one pure-bred heifer imported from the United States for exhibition purposes and subsequently disposed of for breeding purposes, which likewise proved negative to the test.

We have also submitted fifty-eight cattle, which are under the control and supervision of the department, to the tuberculin test, one of which reacted and was permanently earmarked.

There were also tested by practising veterinarians, with tuberculin furnished by the department, 124 cattle. Of this number twelve reacted to the test, nine of which were officially earmarked in accordance with the regulations, the other three being destroyed by the owners.

BLACK-LEG.

This disease is still reported from time to time from certain sections of the province, in which it appears to be more or less indigenous. When the true nature of the disease is established, owners are advised to resort to protective inoculation, or vaccination, of susceptible animals, together with their removal from infected pastures and the proper disposal of the carcasses of animals which have died from the disease.

During the past year we have supplied 246 doses of black-leg vaccine to owners for vaccination purposes.

INSPECTION OF LIVE STOCK CARS AND YARDS.

In accordance with the requirements of Ministerial Order No. 37, an inspector is kept stationed at the Winnipeg stockyards to supervise the cleansing and disinfection of empty stock cars arriving at, or passing through, Winnipeg, unless bearing evidence of having been previously treated.

This work is conducted at the yards of the Canadian Pacific and Canadian Northern Railway Companies.

Number of cars inspected at the Canadian Pacific stockyards	3,480
" Canadian Northern "	1,110
Total cars inspected	**4,590**

15b—4
The stockyards at Winnipeg, and elsewhere throughout the province, have also been inspected at regular intervals by Inspector St. John, Inspector of Live Stock Cars and Yards, and were cleansed and disinfected, from time to time, as appeared necessary. This periodical inspection of stockyards throughout the province has had a marked effect and brought about a great improvement in the condition of the stockyards throughout the province.

ANIMAL QUARANTINE DIVISION.

The work of this division has consisted in the enforcement and carrying out of the requirements of the regulations relating to Animal Quarantine.

The animal quarantine stations and inspection ports in Manitoba are located at Emerson, Gretna, Bannerman and Snowflake.

EMERSON QUARANTINE STATIONS.

This station is located at Emerson on the international boundary line at the point where the Canadian Northern and Canadian Pacific lines of railway and their American connections intersect. The officer in charge at this point is Inspector B. A. Bescoy. Besides the inspector in charge, a caretaker is also maintained at this point, whose services are made use of in assisting the inspector and in keeping the yards and stables in good repair and cleanly condition.

The yards and stables are cleansed and disinfected with limewash and carbolic acid from time to time as required.

The equipment and accommodation at this point consists of a fenced enclosure 205 feet in length by 100 feet wide. There is stable accommodation for 100 head of horses and cattle and a covered-in shed. The stable is well lighted and ventilated.

There was also erected during the past year a building, or piggery, for the detention of pigs while undergoing the required period of quarantine. The dimensions of this building are 32 feet by 16 feet, and the construction is of concrete throughout, so that it can be easily cleansed and disinfected.

A quantity of gravel was also placed in the yards during the past year, to ensure the ground being in a dry condition.

During the past year there has been presented for entry and inspection the following number of animals:

- Horses .. 8,173
- Mules ... 1,062
- Cattle .. 1,854
- Sheep ... 14,479
- Goats ... 2
- Swine .. 23
- Fees collected $2,020.16

GRETN A QUARANTINE STATION.

This station is located at Gretna on the international boundary line, and is conveniently situated between the Canadian Pacific railway and the Midland branch of the Great Northern railway, each of which lines has a branch spur running to the quarantine station.

The officer in charge at this station is Inspector J. A. Stevenson. Besides the inspector in charge there is maintained a caretaker, whose services are made use of in a capacity similar to that of the caretaker at Emerson.

The equipment at this station consists of a substantially fenced enclosure 140 feet in length by 120 feet wide; stable, 100 feet by 30 feet, providing accommodation for forty-five animals, which is well lighted and ventilated.
The yards and stable are kept in a good state of repair and are thoroughly cleansed and disinfected with limewash and carbolic acid, from time to time, as required.

During the past year there has been presented for entry and inspection the following number of animals:

<table>
<thead>
<tr>
<th>Animals</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses</td>
<td>2,113</td>
</tr>
<tr>
<td>Mules</td>
<td>234</td>
</tr>
<tr>
<td>Cattle</td>
<td>291</td>
</tr>
<tr>
<td>Sheep</td>
<td>9,930</td>
</tr>
<tr>
<td>Goats</td>
<td>1</td>
</tr>
<tr>
<td>Swine</td>
<td>1</td>
</tr>
<tr>
<td>Fees collected</td>
<td>$830.81</td>
</tr>
</tbody>
</table>

BANNERM AN QUARANTINE STATION.

This station is situated on the B.S. & H.B. branch of the Great Northern railway at Bannerman, which is distant from the international boundary line about 3½ miles.

The inspector in charge at this station is Inspector F. J. Braund. The equipment consists of a fenced enclosure, 140 feet in length by 120 feet wide; stable, 100 feet by 30 feet, providing accommodation for about forty-five animals. The stable is well lighted and well ventilated.

During the past year, office accommodation has been provided for the inspector in charge at this point.

There has been presented for entry and inspection, during the past year, the following number of animals:

<table>
<thead>
<tr>
<th>Animals</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses</td>
<td>226</td>
</tr>
<tr>
<td>Mules</td>
<td>24</td>
</tr>
<tr>
<td>Cattle</td>
<td>81</td>
</tr>
<tr>
<td>Sheep</td>
<td>Nil</td>
</tr>
<tr>
<td>Goats</td>
<td>7</td>
</tr>
<tr>
<td>Swine</td>
<td>Nil</td>
</tr>
<tr>
<td>Fees collected</td>
<td>$85.77</td>
</tr>
</tbody>
</table>

SNOWFLAKE INSPECTION PORT.

Snowflake, which is an inspection port only, is located on the Snowflake branch of the Canadian Pacific railway, distant about three miles from the international boundary line. The department has a stable rented at this point, which provides accommodation for about twenty-five animals, and, up to the present, this has been sufficient for requirements.

The officer in charge at this port is Inspector J. C. Bonnett. During the past year there has been presented for entry and inspection the following number of animals:

<table>
<thead>
<tr>
<th>Animals</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses</td>
<td>89</td>
</tr>
<tr>
<td>Mules</td>
<td>2</td>
</tr>
<tr>
<td>Cattle</td>
<td>49</td>
</tr>
<tr>
<td>Sheep</td>
<td>Nil</td>
</tr>
<tr>
<td>Goats</td>
<td>Nil</td>
</tr>
<tr>
<td>Swine</td>
<td>Nil</td>
</tr>
<tr>
<td>Fees collected</td>
<td>$5.00</td>
</tr>
</tbody>
</table>
There were also inspected at Winnipeg, by Inspector Little, eleven horses which had been smuggled into Canada and seized by the Customs officials. These horses were submitted to the mallein test, and fees amounting to $8.25 collected thereon.

Summary showing total number of animals presented for entry and inspection, and submitted to the mallein and tuberculin tests at the various ports of entry in Manitoba:

<table>
<thead>
<tr>
<th>Animals</th>
<th>Number</th>
<th>Fees collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses and mules inspected</td>
<td>11,934</td>
<td>$2,929.99</td>
</tr>
<tr>
<td>" submitted to a first mallein test</td>
<td>2,146</td>
<td></td>
</tr>
<tr>
<td>" second mallein test</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>" which reacted and were refused entry</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cattle inspected</td>
<td>2,275</td>
<td></td>
</tr>
<tr>
<td>" submitted to the tuberculin test</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>" which reacted to the test and were refused entry</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sheep inspected</td>
<td>24,409</td>
<td></td>
</tr>
<tr>
<td>Goats</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Swine</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Fees collected</td>
<td></td>
<td>$2,929.99</td>
</tr>
</tbody>
</table>

EXAMINATION OF THOROUGHBRED STALLIONS.

During the past year, we have, on instructions received from you, made an examination for soundness of the following thoroughbred stallions standing for service in the province:

'Vance Guard,' No. 166, the property of the Canadian National Bureau of Breeding, in charge of R. C. Cochran, Oak River, Man.

'Ruby Bird,' No. 52977, the property of Jas. Dillon, Brandon.

'Kid,' No. 315, the property of the Canadian National Bureau of Breeding, in charge of H. Flett, Binscarth.

'Crawford,' No. 355, the property of the Canadian National Bureau of Breeding, in charge of Thos. Morris & Sons, Rosewood.

'Loricate,' No. 284, the property of the Canadian National Bureau of Breeding, in charge of Mr. Walter Scott, Elphinstone.

'Brown Tony,' No. 403, the property of the Canadian National Bureau of Breeding, in charge of George Ferguson, Cartwright.

'Oraculum,' No. 137, the property of the Canadian National Bureau of Breeding, in charge of Baron de la Rue, du Cann, St. Rose du Lac.

'Stage Pirate,' No. 457, the property of the Canadian National Bureau of Breeding, in charge of W. D. Staples, Treherne.

'Lafe,' No. 488, the property of Wm. Berry, Shellmouth.

'Goddard,' No. 522, the property of F. H. H. Lowe, Ninette.

MEAT INSPECTION DIVISION.

The work in connection with this division has consisted in the carrying out of the various requirements of the Meat and Canned Foods Act, and the regulations relating thereto.

There are coming within the operations of the Act, and under inspection, at Winnipeg, four establishments, viz:—

The Swift Canadian Co., Ltd., known as Establishment No. 18.

Messrs. Gordon, Ironsides & Fares, known as Establishment No. 19.

Messrs. Gallagher, Holman & LaFrance, known as Establishment No. 20.

The Western Packing Co., known as Establishment No. 21.
At each of these establishments a sufficient number of veterinary inspectors has been maintained to carry out the actual work of technical inspection of all animals both before and after slaughter. During the past year a staff of twelve veterinary inspectors and three lay inspectors have been actively engaged in the carrying out of this work.

A close supervision is also exercised over the further preparation of meat and meat-food products, and the proper labelling thereof.

All of which is respectfully submitted.

I have the honour to be, sir,

Your obedient servant.

C. D. McGILVRAY,

Inspector.
APPENDIX No. 5.

The Veterinary Director General, Ottawa.

Sir,—I have the honour to submit herewith my annual report for the fiscal year ending March 31, 1913, for the province of Saskatchewan.

The work performed by the officers of the Health of Animals Branch of the Department of Agriculture, is as follows:

GLANDERS.

I am pleased to state that our work in connection with this disease during the past year has been encouraging to a great extent. The decrease in the number of animals tested and those destroyed over the preceding year, is, as you will note, most marked, and from the present situation it appears to me that this malady will continue to keep decreasing, as I firmly believe that we now have this insidious disease under control, which condition is due to the arduous work of the officers under my supervision. Such conditions as above stated, will not only be appreciated by this department, but by all those interested in the live stock industry.

Serious outbreaks of glanders made their appearance in the districts of Strasbourg, Govan and Rouleau. I personally made several trips into these districts for the purpose of supervising the work with the view of bringing the testing to an early conclusion. From all reports, I feel satisfied that this disease does not now exist to any great extent in any of the districts above mentioned.

The total number of animals submitted to mallein throughout the province is as follows:

<table>
<thead>
<tr>
<th>Horses</th>
<th>Mules</th>
<th>Asses</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,478</td>
<td>187</td>
<td>2</td>
</tr>
</tbody>
</table>

Out of the above, the following animals were tested at the different boundary ports:

<table>
<thead>
<tr>
<th>Boundary Port</th>
<th>Horses</th>
<th>Mules</th>
<th>Asses</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Portal</td>
<td>1,652</td>
<td>77</td>
<td>2</td>
</tr>
<tr>
<td>Big Muddy</td>
<td>204</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Marienthal</td>
<td>240</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Willow Creek</td>
<td>1,441</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Wood Mountain</td>
<td>915</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Five hundred and thirteen (513) of the total number of animals tested, reacted, and were dealt with as follows:

<table>
<thead>
<tr>
<th>Boundary Port</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Portal</td>
<td>49 rejected and returned to U. S. A.</td>
</tr>
<tr>
<td>Big Muddy</td>
<td>6</td>
</tr>
<tr>
<td>Marienthal</td>
<td>13</td>
</tr>
<tr>
<td>Wood Mountain</td>
<td>20</td>
</tr>
</tbody>
</table>

Four hundred and twenty-six (426) native horses were destroyed: 362, 1st test; 34, 2nd test; 7, 3rd test; 3 on inspection.
SESSIONAL PAPER No. 15b

One hundred and forty-one (141) of the total number of animals destroyed exhibited clinical symptoms.
Total value of horses destroyed, $61,605.
Total compensation for horses destroyed, $40,950.
Two (2) horses, valued at $150, were destroyed without compensation.

HOG CHOLERA.

In connection with hog cholera, I would say that the officers of this branch dealt with a number of outbreaks in the districts of Regina, Saskatoon, Rosthern, Moose-jaw, Keeler, Brownlee, Elbow, Tuxford, Marquis and Strassburg.

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of swine inspected</td>
<td>7,564</td>
<td></td>
</tr>
<tr>
<td>Total number of diseased and contact swine destroyed</td>
<td>1,416</td>
<td></td>
</tr>
<tr>
<td>Valuation</td>
<td></td>
<td>$12,711.55</td>
</tr>
<tr>
<td>Compensation</td>
<td></td>
<td>8,476.33</td>
</tr>
</tbody>
</table>

I have come to the conclusion that, generally speaking, the average farmer fails to grasp the importance of sanitation in the raising of hogs. As a rule, the hog is given the filthiest outhouse for cover, which I may state is seldom cleaned. Apart from the surroundings being detestable, this animal’s food is taken from barrels that are never washed, reeking with abomination, and which often contain swill of the most putrid kind. In short, it will be noted that the hog is condemned to become a scavenger for the hotel, kitchen and slaughter house. This animal seems to be given whatever is considered unfit for human food, instead of being fed fresh, sound and wholesome food, and housed in buildings containing dry, warm bedding, with plenty of light, pure air and few hogs to the pen. These last-mentioned points have appealed to me during the past year as being most essential from a preventive point of view. Prevention, so to speak, is the great cure in this particular malady. The policy employed in the eradication of this disease in the Dominion, is, I firmly believe, a wise one, as the control of hog cholera by serum immunization is, from the experience of other countries, not a very profitable one, neither is it a sound argument, especially when it has been proven that the immune hog will transmit the disease to non-immune animals, and likewise the immune hog will transmit the disease to its offspring. Therefore, under the present system employed in the Dominion, i.e., the destruction of all diseased and contact animals, marked success has shown itself. I can safely say that it was only through such drastic measures that hog cholera was prevented from spreading to a much greater extent, as from all reports, while the disease is not entirely eradicated, it is confined to very few districts. The existing conditions, therefore, as far as this disease is concerned in this province, may be said to be very satisfactory. However, hog cholera is not to be entirely eradicated if we wait for the owners to report that such a disease has broken out among their hogs. I am of the opinion that tri-monthly inspection of swine in infected districts, under certain precautions, should be instituted, as well as the withholding of compensation in cases of neglect to report, and systematically training the farmer in the raising and caring of swine.

I would also point out that from my observation the so-called immune hog is a source of danger to the swine raiser in any particular vicinity, and therefore I would suggest as a preventive measure, the prohibiting of such animals from entering Canada from the United States, and thus cut off the source of infection through this particular channel.

A thorough disinfection of infected premises has been strictly enforced wherever hog cholera existed in this province during the past year. I may state that I personally dealt with a number of serious outbreaks of this disease during the fiscal year just past.
HORSE MANGE.

Horse mange appears to be well under control, and while no serious outbreaks have occurred, the officers of this branch were from time to time called upon to deal with a few isolated cases. The following will show the amount of work performed in connection with this disease: Fifty-nine (59) premises visited; 377 horses, 4 foals and 2 mules inspected; 154 horses on inspection proved healthy; 226 horses, 4 foals and 2 mules were quarantined on thirty-eight (38) premises. Of these, 89 horses, 1 foal and 2 mules, were reported as affected. Apart from the foregoing, numerous inspections were made by our officers for the purpose of supervising the re-dressing of diseased and contact animals, and to see that all contact matter had been properly cleansed and disinfected in accordance with the mange regulations of this department.

BLACK QUARTER.

This malady still continues to increase in different parts of the province. The number of applications received at this office for black-leg vaccine is ipso facto evidence of this. The reason of this dissemination is no doubt due to the farmers not taking the necessary precautions in disposing of carcasses of animals affected with the disease. While all information possible from a preventive point of view has been given to stock owners, the number of doses of vaccine furnished from this office continues to increase year after year.

Total number of doses of black-leg vaccine sold during the
past year.. 2,992
Instruments... 35
Needles... 3
Value... $167.85

RABIES.

This disease was reported to exist in the city of Saskatoon, and was investigated by Inspector Cameron, with negative results.

TUBERCULOSIS.

This office has been called upon to supply tuberculin to a number of private practitioners by owners of stock who wished to have their cattle tested for tuberculosis. One hundred and forty (140) cattle were submitted to the first test under the above heading, while thirty (30) head, tested in the first instance by private practitioners, were retested by the officers of this department, out of which nine (9) reacted and were ear-marked.

Under the heading of official testing, I may state that thirty-three (33) cattle were tested at the Experimental Farm at Indian Head, all of which proved healthy. Eleven (11) head of export cattle were tested with negative results, while the total number of import cattle tested was one hundred and twenty-six (126), one of which reacted and was rejected.

SHEEP SCAB.

Sheep scab did not make its appearance in this province during the past year. The officers of this branch, however, superintended the shipping of 18,365 sheep imported for immediate slaughter, which animals were allowed to proceed from Big Muddy on September 23 and October 2, 1912, to Pangman for shipment to Gordon, Ironsides and Fares Abattoir, at Winnipeg, Man.
SESSIONAL PAPER No. 15b

There were also during the year, 885 import sheep permitted to proceed to destination from ports of entry under special license. These animals were subsequently released upon reinspection, and the termination of the required quarantine period of thirty days.

INSPECTION OF STOCK YARDS AND STOCK CARS.

This branch of the work has been given a great deal of attention during the past year, and I am pleased to state that the officials of the Canadian Pacific railway, as well as other lines of railway in this province, have given our officers every assistance in carrying out the regulations of this department in every respect, both in the dis-infection of stock yards as well as stock cars. This is supported by the fact that nearly double the number of cars were disinfected by the Canadian Pacific railway at Moosejaw during the past fiscal year. I may point out that special attention has been paid by our officer, Inspector Yake, at Moosejaw, to hog cars coming from hog-infected areas.

Total number of stock cars cleansed and disinfected at Moosejaw during the fiscal year ending March 31, 1913, one thousand three hundred and fifty-four (1,354).

FIELD OFFICERS’ MOVEMENTS.

The following officers were added permanently to the Saskatchewan staff during the past year:—Thos. Babe, C. E. Waddy, Chas. Brind.

Inspector J. H. Shonyo was employed in the province from January 8, 1913, to March 28, 1913, after which he returned to Winnipeg, his permanent headquarters. Inspectors Macintosh and W. L. Hawke, were transferred to Manitoba and Alberta respectively, while Inspectors Olsen, Dufresne and Thompson, resigned their appointments. Inspector J. A. Stevenson reported at Regina from Winnipeg on October 10, for temporary duty in the hog cholera infected area. This officer returned to his permanent headquarters on the 30th of that month, his services being no longer required in that particular line of work. Inspector Tennant who was transferred for temporary duty in this province to assist in the glanders-infected areas, returned to Ontario on August 24, 1912, his services being no longer required in that respect. Inspector C. E. Waddy reported for duty in this province on September 2, while Inspector Beaudry was transferred to Quebec on August 30, 1912.

The services of Mr. Ernest Brews are still retained in the Regina Office, as well as those of Miss Creswell, in the capacity of stenographer.

BOUNDARY INSPECTION WORK.

In connection with boundary work in this province, I beg to state that the personnel of the different ports in Saskatchewan, as far as veterinary inspectors are concerned, remains the same as at the close of last year. It is very evident, however, that numerous changes will have to be made in this respect in the very near future. Officers will have to be procured for the new ports which are to be opened on the Regina boundary branch of the Grand Trunk Pacific railway, as well as the new port which is to be opened between Wood Mountain and Willow Creek.

During the year I visited the ports of North Portal, Marienthal, and Big Muddy, for the purpose of ascertaining the quarantine requirements at these points and discussing matters in general with the officers relative to stock importation.
NORTH PORTAL QUARANTINE STATION.

The following figures show the number of animals presented for entry and inspection at the port of North Portal during the past fiscal year:

<table>
<thead>
<tr>
<th>Animal</th>
<th>Present for Entry</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses</td>
<td>10,992</td>
<td></td>
</tr>
<tr>
<td>Mules</td>
<td>659</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>7,435</td>
<td></td>
</tr>
<tr>
<td>Buffalo</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sheep</td>
<td>861</td>
<td></td>
</tr>
<tr>
<td>Goats</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Swine</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Asses</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Fees</td>
<td>$2,979.20</td>
<td></td>
</tr>
</tbody>
</table>

Horses—
- Tested: 1,652
- Retested: 301
- Third test: 21
- Reactors: 49
- B.A.I: 9,257

Mules—
- Tested: 77
- Retested: 10
- Third test: 5
- B.A.I: 582

Asses—
- Tested: 2
- B.A.I: 15

Cattle—
- Tested (1 rejected): 119

MARIENTHAL (INSPECTION PORT.)

The following figures show the number of animals presented for entry and inspection at the port of Marienthal during the past fiscal year:

<table>
<thead>
<tr>
<th>Animal</th>
<th>Present for Entry</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>Mules</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Fees</td>
<td>$257</td>
<td></td>
</tr>
</tbody>
</table>

Horses tested—
- First: 240
- Second: 81
- Reactors: 13
- B.A.I: 14

Mules tested—
- First: 16
- Second: 1

Five horses and 2 mules rejected for mange.

Cattle tested: 3
The following figures show the number of animals presented for entry at the port of Willow Creek during the past fiscal year:

<table>
<thead>
<tr>
<th>Animals</th>
<th>Present for Entry</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses</td>
<td>1,660</td>
<td>0</td>
</tr>
<tr>
<td>Mules</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Cattle</td>
<td>2,140</td>
<td>0</td>
</tr>
<tr>
<td>Sheep</td>
<td>5,893</td>
<td>0</td>
</tr>
</tbody>
</table>

Horses tested:
- First test: 1,441
- B. A. I.: 216
- Reactors: Nil.

Mules tested:
- First test: 7
- B. A. I.: 2

The following figures show the number of animals presented for entry and inspection at the port of Big Muddy during the past fiscal year:

<table>
<thead>
<tr>
<th>Animals</th>
<th>Present for Entry</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses</td>
<td>1,305</td>
<td>815.10</td>
</tr>
<tr>
<td>Mules</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Cattle</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Sheep</td>
<td>18,365</td>
<td>0</td>
</tr>
</tbody>
</table>

Horses tested:
- First test: 204
- Second test: 27
- Reactors: 6
- B. A. I.: 277

Mules tested:
- First test: 2

The following figures show the number of animals presented for entry and inspection at the port of Wood Mountain during the past fiscal year:

<table>
<thead>
<tr>
<th>Animals</th>
<th>Present for Entry</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses</td>
<td>1,290</td>
<td>471.65</td>
</tr>
<tr>
<td>Mules</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Cattle</td>
<td>86</td>
<td>0</td>
</tr>
</tbody>
</table>

Horses tested:
- First test: 915
- Second test: 127
- Reactors: 20
- B. A. I.: 88

Cattle tested: 4

Mules tested:
- First test: 3
The following is a summary showing the total number of animals presented for entry and inspection at the various quarantine and inspection ports in the province of Saskatchewan:

<table>
<thead>
<tr>
<th>Animal</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses and mules inspected</td>
<td>16,440</td>
</tr>
<tr>
<td>Foals inspected</td>
<td>409</td>
</tr>
<tr>
<td>Cattle</td>
<td>9,856</td>
</tr>
<tr>
<td>Calves</td>
<td>526</td>
</tr>
<tr>
<td>Sheep</td>
<td>25,119</td>
</tr>
<tr>
<td>Swine</td>
<td>20</td>
</tr>
<tr>
<td>Asses</td>
<td>17</td>
</tr>
<tr>
<td>Goats</td>
<td>12</td>
</tr>
<tr>
<td>Buffalo</td>
<td>3</td>
</tr>
<tr>
<td>Total amount of fees collected</td>
<td>$5,458.21</td>
</tr>
</tbody>
</table>

I have the honour to be, sir,

Your obedient servant,

D. S. TAMBLYN,

Inspector.
APPENDIX No. 6.

(J. C. Hargrave, D.V.S., Inspector in Charge of Alberta.)

MEDICINE HAT, March 31, 1913.

The Veterinary Director General,
Ottawa.

Sir,—I have the honour to submit herewith my report for the year ending March 31, 1913, in connection with the Health of Animals Branch for the province of Alberta and such parts of British Columbia and Saskatchewan in which a portion of the work is under my supervision.

Efforts, as in the past, have been made towards the eradication of the various diseases that have existed in previous years, and, while in no case successful, and leaving much to be desired, yet I feel I am justified in saying progress has been made that will compare most favourably with past years.

DOURINE.

That the number of animals slaughtered for this disease can be reported as less than last year is very gratifying, and, although the outbreaks dealt with last year in both Saskatchewan and Alberta have not as yet been cleared up, yet I can assure you, and with considerable confidence, that all existing quarantines will be removed within the next four months. Such reports as have previously been made regarding the insidious nature of the disease are only too true, as is evidenced by the fact that even after remaining under observation for a period of a year or more, no symptoms are evidenced, and it is only with the assistance of a laboratory test that infected animals are detected. It is quite probable, therefore, that of such animals as now remain in quarantine, that we expect to deal with within the next four months, some will react, necessitating their destruction.

The value of this method of detection cannot be over-estimated and will, I think, prove the wisdom of the department in allowing Dr. Watson the opportunity afforded him last season in furthering his studies of laboratory methods in the diagnosis of this disease. I shall, however, leave to him further remarks relative to such laboratory tests, although I cannot refrain from drawing attention to the capable manner in which he has carried on this portion of the work which is proving of great assistance in the eradication of this disease.

STATISTICS OF ALBERTA.

Number of animals quarantined ... 160
" " slaughtered (including 2 registered animals) 10
Value ... $1,810.00
Compensation .. $1,206.66

STATISTICS FOR SASKATCHEWAN.

Number of animals in quarantine ... 48
" " slaughtered (including 1 registered animal) 8
Value ... $1,335.00
Compensation .. $90.00
GLANDERS.

Attention was directed in my last report to the possible existence of this disease within the province to a greater extent than the statistics would indicate. The figures herewith appended verify that statement, as I have to report the slaughter of a much larger number than last year, the major portion of which was found in two outbreaks. Of these two outbreaks one was among the horses of construction outfits and the other outbreak was in the territory lying adjacent to the Saskatchewan boundary. In this latter outbreak, no doubt the source of infection extended from the adjoining province, and the possible source of infection in the first-named outbreak was undoubtedly contacts that were overlooked in dealing with an outbreak some eight or more years ago in the central western portion of this province.

STATISTICS FOR ALBERTA.

Native horses tested once 2,566
" twice .. 476
" thrice ... 131
" four times ... 50
" slaughtered on inspection 1
" on first test 141
" on second test 9
Value .. $21,195
Compensation .. $14,129.96
Number of horses presenting clinical symptoms 51
Import horses tested once 83
" twice ... 39
" slaughtered on second test 1

In addition to the above there were 2 native horses tested in Saskatchewan.

MANGE.

Mange among horses was found on two premises only, necessitating the quarantining of 40 head, of which number 7 only showed evidence of the disease.

The disease among cattle was found to exist to a lesser extent than last year, as the appended figures would show.

There are numerous smaller districts within the area covered by the Special Mange Order that are now free from the disease but which, owing to their situation, cannot be removed from that area.

STATISTICS FOR ALBERTA.

Number of premises quarantined 183
" cattle quarantined 63,513
" dipped once ... 85,132
" dipped twice ... 82,462
" hand treated ... 715

STATISTICS FOR SASKATCHEWAN.

Number of premises quarantined 45
" cattle quarantined 16,162
" dipped once ... 14,563
" " twice ... 13,925

There were inspected for shipment to points outside the province:

Cattle .. 50,143
Horses .. 10,821
Mules .. 79
TUBERCULOSIS.

During the year there were submitted to the tuberculin test by your inspectors, 74 head of cattle. There were also tested by private practitioners 100 head of cattle with tuberculin supplied by the department.

Reactors, 2, which were ear-marked in accordance with the regulations.

BLACK QUARTER.

This disease continues to make its appearance in various parts of the province; owners being advised as to vaccination and the proper disposal of carcasses.

There have been supplied to stockmen 4,170 doses of vaccine.

RABIES.

No further evidence of the outbreak dealt with last year in the Red Deer district has come to hand. We have, however, dealt with one outbreak in the northeast portion of the province, necessitating the quarantining of 32 premises. The exact source of infection in this outbreak was not clearly demonstrated. A suspected outbreak was also dealt with in the southern portion of the province, and as a preventive, eight (8) premises were quarantined for a time, but no losses were reported, and further investigation resulted in the removal of the restrictions.

HOG CHOLERA AND SWINE PLAGUE.

I again have to report the continuance of this disease, the source of infection in nearly every outbreak being found to be the feeding of uncooked garbage, although in one district it was introduced by hogs imported from Ontario.

Number of premises on which disease was found... 13
 " diseased and in contact hogs destroyed... 343
Value.. $4,377.25
Compensation... 2,918.15

In addition to the above, 37 hogs were slaughtered and found fit for consumption.

BOUNDARY STATIONS.

PENDANT D'OREILLE.

Entries at this port:--

<table>
<thead>
<tr>
<th>Animals</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horses (colts 13)</td>
<td>95</td>
</tr>
<tr>
<td>Mules</td>
<td>1</td>
</tr>
<tr>
<td>Cattle (1 calf)</td>
<td>6</td>
</tr>
<tr>
<td>Sheep (3,057 lambs)</td>
<td>11,847</td>
</tr>
<tr>
<td>Goats</td>
<td>6</td>
</tr>
<tr>
<td>Fees collected</td>
<td>$267.81</td>
</tr>
</tbody>
</table>

Number of horses rejected and returned to the United States (1 reactor, 3 contacts) 4

COUTTS.

Improvements consisting of stable, yards and unloading pens were installed at this port during the year, that now afford better facilities for importers and settlers.
Entries at this port:
Horses (135 colts) .. 2,080
Mules .. 45
Cattle (97 calves) 344
Sheep (4,176 lambs) $5,586
Swine .. 6
Goats .. 4
Fees ... $2,590.40
Number of animals reacted 7
Contact .. 48

TWIN LAKES.

Entries at this port:
Horses (51 colts) .. 584
Mules .. 2
Fees ... $305.50
Number of reactors Nil.

GATEWAY.

Entries at this port:
Horses (51 colts) .. 802
Mules .. 37
Cattle (1 calf) .. 12
Fees ... $387
Number of reactors Nil.

KINGS Gate.

Entries at this port:
Horses (114 colts) 2,947
Mules .. 134
Cattle ... 186
Sheep ... 461
Swine .. 2
Buffalo ... 10
Fees ... $967.52
Number of reactors 1
Contacts ... 10

Respectfully submitted,

I have the honour to be, sir,

Your obedient servant,

J. C. HARGRAVE,

Chief Inspector for Alberta.
APPENDIX No. 7.

(S. F. Tolmie, V.S., Inspector in Charge of British Columbia).

The Veterinary Director General, Ottawa.

Sir,—I have the honour to submit a report covering the work of the Health of Animals Branch in British Columbia during the year ending March 31, 1913.

Boundary inspection was carried on at the fourteen inspection ports from Rykerts on the east to Victoria on the west; 5,133 horses and 50 colts, 622 cattle and 69 calves, 212 mules, 72,112 sheep, 191 goats, and 10 swine were inspected when entering Canada. Of this number, 24 horses reacted on test and were returned to the United States; $4,847.79 in fees were collected; 19 animals were inspected for export.

All the inspection ports on the boundary are now provided with accommodation for live stock with the exception of Rykerts, where stabling has been provided for and will be completed during the coming year.

Six native horses were tested for glanders. No reactors were found.

Hog cholera has been much more prevalent this year than for many years, and in many instances the infection appeared to be attributable to the consumption of raw kitchen refuse. Your inspectors have warned swine owners on every possible occasion regarding the danger of infection from this source. There were 111 outbreaks dealt with during the year; 1,584 hogs were destroyed; the sum of $11,487.19 was paid in compensation.

The publication of a bulletin by your branch dealing with this disease, should have a very beneficial effect in furnishing swine growers with full information regarding the best methods for the prevention and eradication of a disease that has caused considerable loss in this province.

A farm to farm inspection for hog cholera has been carried on during the year in those districts where a number of hogs were kept, with the result that several incipient outbreaks were discovered, and heavy loss prevented.

A thorough inspection of the cattle in the area quarantined for mange has been made, and a recommendation for raising the quarantine was forwarded to you with the result that an Order in Council was issued March 21, removing the quarantine.

A total of 5,364 cattle were dipped twice; 261 cattle were dipped once, and 345 cattle were hand treated during the year.

Blackleg has caused stockmen some loss in certain districts, but where blackleg vaccine has been promptly and carefully used the losses have been much reduced.

I am pleased to say that neither dourine, scab, nor rabies exist in this province.

The cleansing and disinfection of stock cars has been carefully conducted. This work is better organized than ever before and a much improved service is the result; 3,144 cars were cleansed and disinfected under Government supervision.

The visit of Mr. C. H. L. Sharman, of the Health of Animals Branch, Ottawa, to the coast during August and September, for the purpose of reorganizing the work in the offices of the branch, had a very beneficial effect and resulted in the work of your inspectors being greatly facilitated.

The publication of the bulletin on infectious abortion, by the Health of Animals Branch, will be much appreciated by stock owners, as it will disseminate valuable information regarding a disease that is a serious source of loss, especially in dairy districts.
I addressed several meetings of stock owners on subjects pertaining to the work of this branch during the year.

The services of First Assistant Pathologist Hadwen have been found very valuable in carrying on investigations of reported animal diseases of an obscure nature.

With the completion of several new transcontinental railway lines across this province in the near future, and the consequent development of large new areas, the work of your representatives in this province will be increased in the near future.

I have the honour to be, sir,

Your obedient servant,

S. F. TOLMIE,

Inspector.
APPENDIX No. 8.

The Veterinary Director General,
Ottawa.

Sir,—I have the honour to transmit this, my annual report as Pathologist to the Department for the year just ended.

The technical staff of the laboratory is similar to that of last year and consists, besides myself, of Doctors Evans, Reid, and Wickware, all of whom have been on duty during the entire year. The lay assistants have, as formerly, comprised Mr. Fee, the caretaker, Mr. Alfred Abrahama, temporarily attached, and, in addition, Mr. David Paquette, clerk.

During the year I have undertaken experimental studies which, in the main, have had in view the improvement of the laboratory routine. While these studies have occupied a considerable amount of time, their details will more naturally appear in connection with special subjects, some of which are included in this report.

Recently, certain experiments have been undertaken with a view of determining the manner of absorption of metallic mercury when injected intramuscularly or subcutaneously in a finely divided suspension. These experiments have proven very interesting and instructive but for the present have been deferred, other more pressing matters requiring my attention. I may mention, however, that a five hundred grammes guinea pig tolerates the introduction of nine grammes of finely divided mercury and that this is completely absorbed in six weeks leaving behind an induration and thickening of the tissues at the site of inoculation.

I was permitted to attend the forty-ninth annual meeting of the American Veterinary Medical Association, held at Indianapolis, where I had charge of the programme for the section on Sanitary Science and Police, and have again been asked to assume a similar responsibility for the fiftieth annual meeting. In this section I presented a paper on anthrax vaccines outlining the method used by us in their disbursement.

In September, I attended the meeting of the Canadian Public Health Association, at Toronto, acting as secretary of the laboratory section. At the conclusion of the work of the section, I was asked to assume the responsibilities of convener of this section for the next meeting, which is to be held in Regina.

Prior to and during the absence of Dr. Evans on military duty, as an officer in the Canadian Army Veterinary Corps, he conducted experiments with a view to preventing the disability from strangles of horses used for annual training in the 8th Brigade, Canadian Field Artillery, to which unit he was attached. The details of this have been specially communicated to you and need no further mention here.

More recently, at your suggestion, he has undertaken work in connection with contagious abortion in cattle. In February, he prepared a paper on anaesthetics which was presented at the annual meeting of the Central Canada Veterinary Association.

Dr. Reid was absent from duty early in the year for the purpose of giving a course of lectures in the French language to the veterinary students of Laval University. He was assisted in this work by specimens forwarded from this laboratory for demonstration purposes. During his employment here at the routine work, he drew attention to a fact we have not heretofore noted in the literature, namely, that in the examination of blood from cases of suspected black-leg, a peculiar charac-

March 31, 1913.
teristic odour was given off when drying smears on slides. This technical detail is now adopted as one of our routine methods. He has also been employed in special glanders work which will be referred to later.

Dr. Wickware has done some very important work in connection with various problems assigned to him during the year. He summarized his work on rabies in a paper read at the last annual meeting of the Central Canada Veterinary Association. One finding of his that has not been previously recorded is the fact that in many cases of gastro-enteritis in fowls there is a small microscopic tapeworm of three segments, concerning which more details will be given under poultry diseases.

During the year some attention has been given to ordinary research, but with the increase of the usual routine, systematic investigations have been practically out of the question. In the period under consideration we have dealt with 1,399 series of specimens, as compared with 729 series for the year preceding.

As formerly, the specimens dealt with have covered a wide range of conditions, and in the majority of instances were supplied by the Meat Inspection Division of the branch. These specimens from the Meat Inspection Division as a rule are for the purpose of enabling a positive diagnosis, where there is an uncertainty as to the condition, for the guidance of meat inspectors.

The much needed addition to our laboratory building is still anticipated and, when available, will render possible a much more satisfactory systematization of the work we are from time to time called upon to conduct.

Special attention will be given in this report to certain of our findings in connection with poultry disorders, as the literature is so meagre and the desire so great for data which will assist in checking losses from preventable causes.

To enable a ready reference to various features of our work, I will detail these under subject headings.

BIOLOGICAL PRODUCTS.

The manufacture of these products has been continued without interruption throughout the year, and the details in connection therewith are as follows:

MALLEIN.

The disbursements of mallein for the past five years have been as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>1908-09</th>
<th>1909-10</th>
<th>1910-11</th>
<th>1911-12</th>
<th>1912-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>3,861</td>
<td>2,905</td>
<td>9,041</td>
<td>295</td>
<td>2,438</td>
</tr>
<tr>
<td>May</td>
<td>3,140</td>
<td>3,525</td>
<td>3,815</td>
<td>2,910</td>
<td>4,117</td>
</tr>
<tr>
<td>June</td>
<td>2,702</td>
<td>1,449</td>
<td>4,289</td>
<td>4,555</td>
<td>2,201</td>
</tr>
<tr>
<td>July</td>
<td>3,009</td>
<td>2,191</td>
<td>4,655</td>
<td>7,205</td>
<td>4,254</td>
</tr>
<tr>
<td>August</td>
<td>2,347</td>
<td>1,660</td>
<td>2,720</td>
<td>3,735</td>
<td>1,890</td>
</tr>
<tr>
<td>September</td>
<td>2,200</td>
<td>2,700</td>
<td>2,320</td>
<td>3,435</td>
<td>2,305</td>
</tr>
<tr>
<td>October</td>
<td>1,935</td>
<td>2,670</td>
<td>3,605</td>
<td>4,295</td>
<td>1,934</td>
</tr>
<tr>
<td>November</td>
<td>2,367</td>
<td>2,850</td>
<td>3,281</td>
<td>3,175</td>
<td>2,286</td>
</tr>
<tr>
<td>December</td>
<td>1,120</td>
<td>1,085</td>
<td>1,290</td>
<td>800</td>
<td>1,234</td>
</tr>
<tr>
<td>January</td>
<td>905</td>
<td>1,760</td>
<td>2,405</td>
<td>4,660</td>
<td>2,339</td>
</tr>
<tr>
<td>February</td>
<td>1,290</td>
<td>2,290</td>
<td>2,640</td>
<td>3,360</td>
<td>3,001</td>
</tr>
<tr>
<td>March</td>
<td>7,460</td>
<td>7,950</td>
<td>10,030</td>
<td>8,015</td>
<td>8,045</td>
</tr>
</tbody>
</table>

| Total | 32,815 | 32,996 | 50,112 | 47,880 | 37,276 |

It will be noted that there is a slight falling off in the disbursements of mallein, this, however, is undoubtedly due to the disappearance of glanders in various parts of the country.
HEALTH OF ANIMALS

SESSIONAL PAPER No. 15b

Special mallein for the ophthalmic reaction has been prepared in very limited quantities.

TUBERCULIN.

The disbursements of tuberculin for the past five years are as follows:

<table>
<thead>
<tr>
<th>Month</th>
<th>1908-09</th>
<th>1909-10</th>
<th>1910-11</th>
<th>1911-12</th>
<th>1912-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>878</td>
<td>648</td>
<td>654</td>
<td>673</td>
<td>1,022</td>
</tr>
<tr>
<td>May</td>
<td>829</td>
<td>418</td>
<td>1,178</td>
<td>810</td>
<td>1,196</td>
</tr>
<tr>
<td>June</td>
<td>992</td>
<td>456</td>
<td>568</td>
<td>505</td>
<td>629</td>
</tr>
<tr>
<td>July</td>
<td>1,190</td>
<td>887</td>
<td>432</td>
<td>645</td>
<td>770</td>
</tr>
<tr>
<td>August</td>
<td>323</td>
<td>760</td>
<td>544</td>
<td>185</td>
<td>958</td>
</tr>
<tr>
<td>September</td>
<td>214</td>
<td>335</td>
<td>632</td>
<td>477</td>
<td>549</td>
</tr>
<tr>
<td>October</td>
<td>458</td>
<td>474</td>
<td>381</td>
<td>632</td>
<td>1,410</td>
</tr>
<tr>
<td>November</td>
<td>826</td>
<td>561</td>
<td>891</td>
<td>1,310</td>
<td>1,773</td>
</tr>
<tr>
<td>December</td>
<td>807</td>
<td>488</td>
<td>621</td>
<td>430</td>
<td>1,420</td>
</tr>
<tr>
<td>January</td>
<td>322</td>
<td>282</td>
<td>1,087</td>
<td>899</td>
<td>1,332</td>
</tr>
<tr>
<td>February</td>
<td>257</td>
<td>634</td>
<td>561</td>
<td>420</td>
<td>761</td>
</tr>
<tr>
<td>March</td>
<td>1,035</td>
<td>617</td>
<td>797</td>
<td>957</td>
<td>1,622</td>
</tr>
<tr>
<td></td>
<td>8,061</td>
<td>6,600</td>
<td>8,256</td>
<td>7,963</td>
<td>13,260</td>
</tr>
</tbody>
</table>

Special tuberculin for the intra-dermal testing of cattle has been prepared in limited quantities.

BLACK-LEG VACCINE.

Black-leg vaccine has been disbursed as formerly, and our disbursements for the past five years are as follows:

<table>
<thead>
<tr>
<th>Month</th>
<th>1908-09</th>
<th>1909-10</th>
<th>1910-11</th>
<th>1911-12</th>
<th>1912-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>2,815</td>
<td>1,330</td>
<td>843</td>
<td>2,076</td>
<td>2,440</td>
</tr>
<tr>
<td>May</td>
<td>1,177</td>
<td>1,114</td>
<td>2,013</td>
<td>836</td>
<td>2,478</td>
</tr>
<tr>
<td>June</td>
<td>601</td>
<td>1,714</td>
<td>2,866</td>
<td>468</td>
<td>4,966</td>
</tr>
<tr>
<td>July</td>
<td>572</td>
<td>1,007</td>
<td>678</td>
<td>416</td>
<td>1,203</td>
</tr>
<tr>
<td>August</td>
<td>550</td>
<td>310</td>
<td>427</td>
<td>1,023</td>
<td>1,922</td>
</tr>
<tr>
<td>September</td>
<td>734</td>
<td>899</td>
<td>569</td>
<td>1,328</td>
<td>658</td>
</tr>
<tr>
<td>October</td>
<td>260</td>
<td>300</td>
<td>4,094</td>
<td>1,019</td>
<td>1,885</td>
</tr>
<tr>
<td>November</td>
<td>218</td>
<td>788</td>
<td>1,801</td>
<td>568</td>
<td>405</td>
</tr>
<tr>
<td>December</td>
<td>410</td>
<td>380</td>
<td>345</td>
<td>463</td>
<td>950</td>
</tr>
<tr>
<td>January</td>
<td>35</td>
<td>136</td>
<td>147</td>
<td>55</td>
<td>241</td>
</tr>
<tr>
<td>February</td>
<td>429</td>
<td>4,761</td>
<td>380</td>
<td>188</td>
<td>1,240</td>
</tr>
<tr>
<td>March</td>
<td>902</td>
<td>730</td>
<td>3,106</td>
<td>1,885</td>
<td>3,475</td>
</tr>
<tr>
<td></td>
<td>8,064</td>
<td>13,469</td>
<td>17,264</td>
<td>9,510</td>
<td>12,448</td>
</tr>
</tbody>
</table>

ANTHRAX VACCINE.

The disbursements of anthrax vaccine during the year have been considerably smaller than during the year immediately preceding. This, however, is naturally to be expected owing to the irregular appearance of outbreaks of this disease.
The disbursements for the past five years have been as follows:

<table>
<thead>
<tr>
<th></th>
<th>1908-09</th>
<th>1909-10</th>
<th>1910-11</th>
<th>1911-12</th>
<th>1912-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td></td>
<td>88</td>
<td>21</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td>70</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td>112</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>July</td>
<td>265</td>
<td>47</td>
<td>36</td>
<td>412</td>
<td>116</td>
</tr>
<tr>
<td>August</td>
<td>75</td>
<td>40</td>
<td></td>
<td>40</td>
<td>57</td>
</tr>
<tr>
<td>September</td>
<td>10</td>
<td>62</td>
<td></td>
<td>240</td>
<td>52</td>
</tr>
<tr>
<td>October</td>
<td>43</td>
<td>17</td>
<td>32</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>December</td>
<td>10</td>
<td></td>
<td></td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>February</td>
<td>36</td>
<td>70</td>
<td>95</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>464</td>
<td>386</td>
<td>254</td>
<td>1,356</td>
<td>407</td>
</tr>
</tbody>
</table>

GLANDERS.

As I have heretofore mentioned, Dr. Reid has conducted quite a series of experiments with the newer methods of diagnosing glanders. The major portion of this work was the diagnosis through the fixation of the complement.

At the outset some difficulty was experienced in the proper sensitization of the rabbits used. This having been overcome, he experienced but little trouble. The use of this method in a number of obscure cases led to a confirmation of the results obtained with mallein by the inspectors in the field. As a routine method we hold, as formerly, that notwithstanding its accuracy when carefully and conscientiously conducted, it will not lend itself to a routine application under existing conditions, principally on account of the time involved and the loss of that most important factor from the inspector's viewpoint, the clinical evidence of a reaction.

The time spent in mastering its details has not been lost, as this method will be applicable to other disorders for which present diagnostic procedures are uncertain.

We are planning to use this method in connection with problems confronting us with other diseases during the coming year.

We believe that the subcutaneous injection of a potent mallein is the best method of determining the presence or absence of glanders in a suspected horse.

GELATIN.

As formerly, we have examined a large number of gelatins which it was desired to use with the jellied food products at the various packing houses under the Meat and Canned Foods Act.

We are using the standard method of examination, original with us and reported in our last annual report, and in connection with which some slight modifications have been made to meet special conditions. This seems the most reasonable method of examination, and has been favourably commented on by Dr. Amyot, Provincial Bacteriologist, and others who have studied its details.

WATER EXAMINATIONS.

As reported last year, we are still supervising the sterilizing machines installed in the various Government buildings. This work now occupies a considerable amount of time owing to the fact that a number of buildings have been added to those reported on last year.
The raw water has shown evidence of sewage contamination, excepting at intervals, and the degree of contamination has varied at different times.

The safe drinking water supply known to have passed through the sterilizing machines has never shown evidence of sewage contamination. Further details in connection with our water work can add but little to this report and therefore are not included.

TUBERCULOSIS.

During the year, some minor experimental work has been conducted with this disease of a very interesting character. Some of this consisted in the examination of material supplied by the Hospital for Sick Children, in Toronto, to determine whether the disease originated from a human or a bovine source. Our aim was to determine whether or not the bovine type of infection was common in these cases.

In the material with which our experiments were conducted we have not found evidence of any but a human infection.

The differentiation of types is, however, a somewhat tedious procedure, and requires a considerable length of time for its full accomplishment. I anticipate that we will be able to proceed with this work further for the purpose of securing definite statistics.

The necessary time involved is considerable and can only be spared from our routine work at irregular intervals.

In this connection, Orth has recently (Berlin Medical Society, February 19, 1913) drawn attention to the great danger of infecting humans with material of bovine origin.

POULTRY DISEASES.

We have devoted considerable time to the disorders of poultry, not only during the current year, but for a number of years past. It is not possible in this report to enter into all of the details connected with this work. We will, however, consider such conditions as have impressed us as being unusual.

GASTRO-ENTERITIS.

There is no disorder among fowls more frequently observed by us than gastro-enteritis, or an inflammation of the mucous membrane of the gizzard and intestines. At the autopsy on an infected bird attention is at once drawn to the thickening of the intestinal walls. If cut open and allowed to remain in luke warm water for a few minutes, what appear to be short hairs are observed projecting from the mucous or inside surface. Closer examination reveals these hairy processes to be the villi or projections from the mucous membrane greatly enlarged and inflamed. This inflammatory condition we have found to be due to a number of causes, the most common among which are, the use of an unsuitable food, and parasites. Where the food is unsuitable, a close inquiry reveals that the birds have been fed on soft or sloppy food, with little or no hard grain. The digestive apparatus is not designed to take care of food of such a character, therefore the system is overtaxed by the introduction of too concentrated and too easily digested food material, the result being that the normal function of the digestive organs is interfered with, and an inflammatory condition results.

We have found that this can be most easily corrected, in the majority of cases, by a fasting of the birds for forty-eight hours, and during this period allowing nothing save water to which has been added muriatic acid (Acid Mur. dil. B.P.) in the proportion of a teaspoonful to the quart. At the conclusion of the forty-eight hours, whole grain is given sparingly, and at the end of a week the birds may be allowed their usual full diet.
Dr. Wickware has found in a considerable number of cases that there was associated with this gastro-enteritis a very minute tape worm of but three segments, the whole being, in the largest specimens, less than a millimetre in length. No attempt has been made to identify this species, as material has been available at irregular intervals only, and the usual treatment which we have above recorded for gastro-enteritis proves effective in carrying the birds through the acute attack.

Many times the disorder which we have considered under the general heading of gastro-enteritis has been looked upon by those interested as fowl cholera, but the absence of any specific infective agent which could be associated with the disorder has proven that this is not the case.

TUBERCULOSIS IN POULTRY.

During the year, material from fifteen outbreaks of tuberculosis in poultry has been received. These outbreaks have been principally in Ontario, but material from one was received from the province of Manitoba. No systematic effort, however, has been made to determine the distribution of this disease in Canada, and, therefore, the data we have secured only indicate definite outbreaks which were causing serious losses.

During the year, we conducted experiments with a view of determining the possibility of transmitting tuberculosis through the eggs laid by tuberculous fowls. For these transmission experiments we secured a flock of tuberculous fowls, quartered them in special quarters, hatching the eggs in an incubator.

When sufficient eggs had accumulated to fill the small incubator secured for the purpose (one of sixty egg capacity) the fowls from which they had been obtained were autopsied. Prior to autopsy, however, they were tested with tuberculin prepared from an organism of the avian type, with negative results. Negative results also followed the use of a special tuberculin intra-ocularly (dropped in the eye) and intro-dermally (injected into the skin).

Ten of the fowls above referred to, were affected with tuberculosis in various stages, while one failed to show lesions. The principal organs affected were the livers and spleens, the other organs did not show lesions, save in one instance. In this hen a chronic tubercular peritonitis had developed, with adhesions. Small pedunculated tuberculous nodules adhered to the outer coat of the intestines. Ascitic fluid was present, and emaciation marked.

The transmission experiments were not of as conclusive a nature as we desired, owing principally to the fact that the incubator which we were using did not give satisfactory results. Nine chicks only were secured from sixty eggs, of which over eighty per cent proved to be fertile. This machine later failed to give satisfactory results with eggs from another source.

Some of the chicks were autopsied at intervals throughout the year, the last being destroyed on the 30th instant. In none of these chicks were we able to detect lesions of tuberculosis.

These negative findings, however, do not prove that tuberculosis may not be transmitted in this manner, for, at the autopsy of the fowls providing us with the eggs used in this connection, lesions were present in over 90 per cent, and in no instance were they of special character. At the autopsies, Dr. Wickware did not find evidence of tuberculosis involving the ovaries or the oviduct.

We hope that circumstances will again permit our taking up a similar series of experiments for the purpose of checking the results herein recorded.

ENTERO-HEPATITIS.

This affection of turkeys has again engaged our attention and while we have nothing of a startling nature to offer we have made some progress in our knowledge of the disease.
SESSIONAL PAPER No. 15b

Our serious investigations on entero-hepatitis or black-head were commenced in the spring of 1912, immediately the plant for the purpose was available. This plant, which is the best we have been able to devise under the circumstances, consists of four turkey shelters, each having approximately an acre of land connected therewith, isolated by suitable deadlines.

As the season was well advanced when this plant was available, we secured a flock of young turkeys which were, to the best of our knowledge, free from infection. Of these, we have lost four from entero-hepatitis and one from a tapeworm infestation.

From our observations, we have come to the conclusion that birds once affected may, and frequently do, become chronic carriers of the disease. In this way the disease is carried over from one season to the next in the body of the bird. We do not consider that this is the only means of conveying the infection, as we have observed the disease in birds other than the turkey, namely, the common fowl.

Experience has demonstrated very forcibly that entero-hepatitis may make its appearance where everything points to the common fowl as the source of the infection, and the fact that they may contract the disease is evidence, not only of the possibility but the probability that the infection is conveyed through them as hosts.

Our work during the season has further demonstrated that the rearing of poult under such conditions as will enable the immediate removal of an infected individual and the disinfection of the house in which they are quartered, assists in reducing the danger of communicating the disease to others in the flock. We have found it possible to keep turkeys on a much smaller range than has ordinarily been considered necessary for their well-being. Whether it is desirable or advisable to restrict their range is not a feature of our experiments, but a necessity, and is here mentioned to indicate one of the difficulties which must necessarily accompany any experimental study with this disease.

By making a full use of the knowledge and experience which we have already gained, I anticipate that our work during the coming year will prove of a much more satisfactory nature.

We have no better medicinal treatment to offer than the use of hydrochloric acid in the drinking water. While we are aware that the use of this agent will not always result in carrying an affected bird over the acute attack, it does exert a beneficial effect.

It is desirable that experimental use be made of other medicinal agents, and we anticipated being able to secure some data during the season just closed. However, the natural recovery of the birds secured for this purpose without recourse to special therapeutic measures delayed our work in this regard for another year.

Apart from the regular duties connected with the work of the laboratory, I have prepared detailed plans, blue prints, and specifications from which buildings have been erected for the uses of the branch at various points.

With the general increase in all branches of the work of the laboratory, new equipment has been added as actually required. Owing to the limited space available in our present building, it has not been possible to find room for certain pieces of apparatus that would greatly facilitate and improve many phases of our work.

With your intimate knowledge of our necessities and the hearty cooperation already manifested in improving the conditions under which our work is conducted, I am sure that provision will be made to meet such requirements as may from time to time be presented.

I have the honour to be, sir,
Your obedient servant,

CHAS. H. HIGGINS,
Pathologist.
APPENDIX No. 9.

(Seymour Hadwen, D.V.Sci., Pathologist in charge Veterinary Research Laboratory, Agassiz, B.C.)

The Veterinary Director General,
Ottawa.

Sir,—I have the honour to submit my annual report for the year ending March 31, 1913. I am pleased to report progress in the work of Hæmaturia at Agassiz. Though the cause of the disease is still unknown, yet I feel that an advance has been made. The laboratory and barns erected last year prove to be most satisfactory.

The first and most important point to settle with regard to Hæmaturia was to decide if it was contagious or not; in all the field observations I have made (see report of 1911), there seems to be no direct evidence of its being contagious. The only argument favouring contagion was that more cases of the disease were to be found on one farm than another.

To prove or disprove this theory, a number of calves have been kept in contact with diseased cattle, and attempts have been made to infect them, first, by blood inoculation, secondly, by ingestion, thirdly, by inoculating urine, fourthly, by introducing portions of a diseased animal’s bladder into that of a healthy one, also by siphoning urine from a diseased animal’s bladder into that of a healthy one.

Up to now, none of these means have been successful. Calves have been killed at three and six months’ interval and no definite lesions have been found. At the present time, seven calves and two healthy cows are being experimented on, and by autumn they will have been under experiment for a year. The total number of animals which have been exposed to infection numbers seventeen.

The protocols relating to cows 35 and 42 are given in full to illustrate the chronic nature of the disease and to show the course the affection usually runs. A number of observations which have been made on the urine are given, showing the amounts voided by healthy and diseased animals and the percentage of blood lost in the twenty-four hours.

By kind permission of Mr. H. L. Keegan, Assistant Superintendent at Agassiz, I append an article of his which embodies some of my own observations on the amount of urine a cow voids in the twenty-four hours. Strange though it may seem, I could find no accurate data referring to this in the veterinary literature I had at my disposal, and for this reason was obliged to collect the urine for a period of twenty-four hours in order to make accurate determinations of the blood lost for that period.

During the year, a number of specimens have been sent in for diagnosis by the various inspectors and in my spare time, as heretofore, I have continued my observations on blood-sucking insects. A bulletin was prepared and published on Warble Flies, also an article on Dermacentor variabilis was published in ‘Parasitology.’ I would recommend that this article be reprinted with this report. A short life-history of Dermacentor Venustus is given, and a new tick is recorded for Canada, i.e., Ornithodoras megini.

In conclusion, I desire to thank you for the kind interest and help you have shown in the work, and to record my appreciation for the way in which Superintendent Moore, at Agassiz, has assisted me.

I have the honour to be, sir,

Your obedient servant,

SEYMOUR HADWEN.
HEALTH OF ANIMALS

SESSIONAL PAPER No. 15b

PROTOCOL COW No. 35.

Cow 9 years old; locality, Mount Lehman, B.C.

<table>
<thead>
<tr>
<th>DATE</th>
<th>NOTES ON CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 2 5, 1910—Hæmaturia reported.</td>
<td></td>
</tr>
<tr>
<td>26, 1910—Hæmaturia observed in morning.</td>
<td></td>
</tr>
<tr>
<td>Dec. 19, 1910—Urine slightly tinged at end of urination.</td>
<td></td>
</tr>
<tr>
<td>27, 1910—Calcium Lactate oz. powders once a day.</td>
<td></td>
</tr>
<tr>
<td>29, 1910—Hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>Jan. 8, 1911—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>16, 1911—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>29, 1911—Hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>Feb. 2, 1911—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>5, 1911—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>6, 1911—Last few drops of urine tinged.</td>
<td></td>
</tr>
<tr>
<td>9, 1911—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>9-23, 1911—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>March 1-17, 1911—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>17, 1911—Given Calcium Lactate 4 powders 2 dram doses.</td>
<td></td>
</tr>
<tr>
<td>27, 1911—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>April 30, 1911—Cow turned out on low land (where no red water has been found) since beginning of the month, is doing well.</td>
<td></td>
</tr>
<tr>
<td>May 4, 1911—Looks well. Blood examined, poikilocytosis only.</td>
<td></td>
</tr>
<tr>
<td>14, 1911—Cow brought back to high land.</td>
<td></td>
</tr>
<tr>
<td>16, 1911—Hæmaturia slight, cow calved a few days ago.</td>
<td></td>
</tr>
<tr>
<td>Feb. 20, 1912—Cow purchased for $30. In fair condition, has been passing red water at intervals, and is due to calve in June.</td>
<td></td>
</tr>
<tr>
<td>21, 1912—Cow driven six miles by road. Passed a large quantity of red water soon after starting and continued to do so at intervals while being driven.</td>
<td></td>
</tr>
<tr>
<td>March 6, 1912—Urine getting lighter every day. Cow kept tied up.</td>
<td></td>
</tr>
<tr>
<td>17, 1912—Urine clear.</td>
<td></td>
</tr>
<tr>
<td>21, 1912—Turned out for first time.</td>
<td></td>
</tr>
<tr>
<td>22-31, 1912—Urine clear, is picking up in flesh fast.</td>
<td></td>
</tr>
<tr>
<td>April 1, 1912—Weight, 890 pounds.</td>
<td></td>
</tr>
<tr>
<td>April 5, 1912—Hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>10, 1912—Slight hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>16, 1912—Hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>17, 1912—Hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>27-30, 1912—Slight Hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>May 1, 1912—Hæmaturia. Weight 1,050 pounds. Cow picked up well all month, despite hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>12-14, 1912—Hæmaturia.</td>
<td></td>
</tr>
<tr>
<td>15, 1912— "</td>
<td></td>
</tr>
<tr>
<td>16, 1912— "</td>
<td></td>
</tr>
<tr>
<td>17, 1912— "</td>
<td></td>
</tr>
<tr>
<td>19-20, 1912— "</td>
<td></td>
</tr>
<tr>
<td>20, 1912— "</td>
<td></td>
</tr>
<tr>
<td>21, 1912— "</td>
<td></td>
</tr>
<tr>
<td>22, 1912— "</td>
<td></td>
</tr>
<tr>
<td>23-31, 1912— "</td>
<td></td>
</tr>
<tr>
<td>June 1, 1912—Weight 1,030.</td>
<td></td>
</tr>
<tr>
<td>2 5, 1912—Urine dark red.</td>
<td></td>
</tr>
<tr>
<td>5, 1912—Urine contains 1.3 per cent blood solids.</td>
<td></td>
</tr>
<tr>
<td>7, 1912—Urine contains trace of blood solids.</td>
<td></td>
</tr>
<tr>
<td>13, 1912— "</td>
<td></td>
</tr>
<tr>
<td>14, 1912— "</td>
<td></td>
</tr>
<tr>
<td>15, 1912— "</td>
<td></td>
</tr>
<tr>
<td>16, 1912— "</td>
<td></td>
</tr>
<tr>
<td>17, 1912— "</td>
<td></td>
</tr>
<tr>
<td>21, 1912— "</td>
<td></td>
</tr>
<tr>
<td>23, 1912—Urine contains .25 per cent blood solids.</td>
<td></td>
</tr>
<tr>
<td>25, 1912— " .75 " "</td>
<td></td>
</tr>
<tr>
<td>28, 1912— " .25 " "</td>
<td></td>
</tr>
<tr>
<td>29, 1912— " .75 " "</td>
<td></td>
</tr>
</tbody>
</table>

This cow calved on June 6; she has milked well all month, but has lost flesh.
July 1.—Cow weighs 887 pounds.
Total urine passed in twenty-four hours by cow No. 35, started at 6 p.m., July 11, 1911, and finished at 6 p.m., July 12, 1911:

<table>
<thead>
<tr>
<th>Time</th>
<th>Volume (c.c.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.15 p.m.</td>
<td>1,200</td>
</tr>
<tr>
<td>9.20 a.m.</td>
<td>1,675</td>
</tr>
<tr>
<td>11.22 p.m.</td>
<td>1,180</td>
</tr>
<tr>
<td>2.00 a.m.</td>
<td>900</td>
</tr>
<tr>
<td>4.45 a.m.</td>
<td>1,500</td>
</tr>
<tr>
<td>7.55 p.m.</td>
<td>400 (flow missed)</td>
</tr>
<tr>
<td>10.20 a.m.</td>
<td>1,100</td>
</tr>
<tr>
<td>12.00 noon</td>
<td>730</td>
</tr>
<tr>
<td>2.40 p.m.</td>
<td>1,450</td>
</tr>
<tr>
<td>5.35 a.m.</td>
<td>1,280</td>
</tr>
</tbody>
</table>

Total 10,776 c.c. computed.

10,210 c.c. actual measurement at end of experiment.

565 c.c. lost by evaporation, etc.

Sample taken of total urine contains 2.75 per cent of blood solids plus precipitates in urine = 280-775 c.c. of solids = 1,101-784 c.c. of actual blood.

In order to get this result, 5 c.c. of blood was drawn from the jugular and mixed with 5 c.c. of urine, the result being that 1.275 c.c. of solids were thrown down, equalizing 25.5 per cent of solids in this cow's blood.

Speed of centrifuge between 1,500 to 2,000 revolutions per minute.

July

<table>
<thead>
<tr>
<th>Date</th>
<th>Hematuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1912-1.25 per cent blood solids in urine.</td>
</tr>
<tr>
<td>2</td>
<td>1912-Trace blood solids in urine.</td>
</tr>
<tr>
<td>3</td>
<td>1912-1 per cent blood solids in urine.</td>
</tr>
<tr>
<td>5</td>
<td>1912-1 per cent</td>
</tr>
<tr>
<td>6</td>
<td>1912-1 per cent</td>
</tr>
<tr>
<td>9</td>
<td>1912-0-5 per cent</td>
</tr>
<tr>
<td>11, 12</td>
<td>1912-2.25 per cent</td>
</tr>
<tr>
<td>13</td>
<td>1912-0-25 per cent</td>
</tr>
<tr>
<td>14</td>
<td>1912-26 per cent blood solids in urine.</td>
</tr>
<tr>
<td>25</td>
<td>1912-75</td>
</tr>
<tr>
<td>26-31</td>
<td>1912-Slight hematuria.</td>
</tr>
</tbody>
</table>

Aug.

<table>
<thead>
<tr>
<th>Date</th>
<th>Hematuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1912-Weight, 850 pounds.</td>
</tr>
<tr>
<td>2-25</td>
<td>1912-Trace blood solids in urine.</td>
</tr>
<tr>
<td>27</td>
<td>1912-Urine gellatinous, coagulates on standing.</td>
</tr>
<tr>
<td>3</td>
<td>1912-Urine coagulates on standing.</td>
</tr>
<tr>
<td>3-11</td>
<td>1912</td>
</tr>
<tr>
<td>11-18</td>
<td>1912-Hematuria constant.</td>
</tr>
<tr>
<td>18</td>
<td>1912-Hematuria 1.5 per cent.</td>
</tr>
<tr>
<td>18-30</td>
<td>1912-Hematuria.</td>
</tr>
<tr>
<td>30</td>
<td>1912-1s being given two dram doses of Ferri Phos. twice a day.</td>
</tr>
</tbody>
</table>

Sept.

<table>
<thead>
<tr>
<th>Date</th>
<th>Hematuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1912-Weight, 667 pounds.</td>
</tr>
<tr>
<td>2</td>
<td>1912-Urine 1 per cent blood solid.</td>
</tr>
<tr>
<td>3</td>
<td>1912-Urine coagulates in gutter.</td>
</tr>
<tr>
<td>4</td>
<td>1912-Urine 75 per cent blood solid. Blood takes 11 minutes to coagulate.</td>
</tr>
</tbody>
</table>

Oct.

<table>
<thead>
<tr>
<th>Date</th>
<th>Hematuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1912-Weight, 667 pounds.</td>
</tr>
<tr>
<td>2</td>
<td>1912-Urine 1 per cent blood solid.</td>
</tr>
<tr>
<td>3</td>
<td>1912-Urine coagulates in gutter.</td>
</tr>
<tr>
<td>4</td>
<td>1912-Urine 75 per cent blood solid. Blood takes 11 minutes to coagulate.</td>
</tr>
</tbody>
</table>

Note.—This blood took much longer to coagulate on previous tests. It has been observed in previous cases that the blood of moribund animals though thinner has increased in clotting property.

<table>
<thead>
<tr>
<th>Date</th>
<th>Hematuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1912-Urine coagulates in gutter. Blood solids ½ per cent.</td>
</tr>
<tr>
<td>26</td>
<td>1912-Blood solids ½ per cent.</td>
</tr>
</tbody>
</table>
| 30 | 1912-

The amount of blood solids in the urine does not correspond with the amount of blood being lost, as it is very poor in R.B.C. More evidence of the increased clotting property of the blood is shown by the fact that clots were passed from Oct. 16th to 14th, and from 17th to 25th. The clots were very light coloured and at times the urine was found coagulated in the gutter. The urine was also pale, denoting a great decrease in R.B.C. The cow's condition during the month was very bad, although she ate sparingly throughout.

Nov.

<table>
<thead>
<tr>
<th>Date</th>
<th>Hematuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-15</td>
<td>1912-Passed clots daily.</td>
</tr>
</tbody>
</table>
| 11 | 1912-2 per cent of blood solids, plus clots. Blood count on same day shows:—

Mononuclear 50.8 per cent.

Polynuclear 43

Eosinophiles, 6.2

Hyphlocytes, polychromasia, and punctate degeneration, also a few nucleated R.B.C.

This count shows that pus contamination was not present and that cocci did not gain entrance to the bladder or kidneys.

Examination of the urine showed a few bacteria, but no cocci.
November 15, 1912. The cow was shot on November 15, being in a moribund condition.

Marked emaciation.

Liver, 14 pound, yellow and degenerate looking.
Spleen; 14 ounce, small.
Heart; studded with degenerate areas.
Lungs; practically normal, a little emphysema at apices.
KIDneys; normal.
Bladder; studded with petichiae and small papillomata.
Glands; normal, with the exception of those from the lumber region which had a pink pigmented appearance.

Microscopical findings.—

Liver; cells vaculated degenerated and pigmented.
A few clumps of bacilli found.
Spleen; a few bacilli.
Heart; sarcocystis.
Kidneys; apparently normal.
Bladder; succars contained numerous degenerated cells.

Treatment.—The treatment of this cow was not seriously undertaken; she was simply well-fed, and got a few doses of Ferri Phos. The urine from this cow was given to calves mixed with their milk in an attempt to transmit the disease. The cow emaciated rapidly during the last ten weeks of her life. On Sept. 1 her weight was 800 pounds.

Oct. 1, Weight, 667 pounds.
Oct. 31, Weight 685 pounds.
At death, estimated at 600 pounds.

PROTOCOL COW No. 42.

Cow 12 years old; locality, Mount Lehman, B.C.

Date.

Feb. 21, 1912—Cow has had haematuria on and off since the summer.
March 30, 1912—Cow going down hill fast, blood poikilocytosis blue and punctate cells.
April 27, 1912—Cow turned out; is reported to be holding her own.
Feb. 20, 1912—Purchased for $75. Owner says cow has not passed red water since autumn. She has just calved—although in poor flesh is milking well.

Feb. 20—Mar. 31, 1912—Cow improving on good feed, milks well, and shows no signs of haematuria; is giving on an average 30 pounds per day. (Twelve powders.) One powder given once a day of Ferri Phos. and Nux Vomica.

April 1, 1912—Weight, 860 pounds.

May 1, 1912—Weight, 855 pounds. Cow picking up and is milking fairly well.

June 1, 1912—Weight, 880 pounds.

July 1-31, 1912—Urine clear all month.

Aug. 1, 1912—Weight, 937 pounds.

Sept. 1, 1912—Weight, 950 pounds.

Oct. 1, 1912—Weight, 925 pounds.
1-13, 1912—Urine clear.
14-18, 1912—Cow off her feed, not feeling well.
22, 1912—Slight haematuria.
23-26, 1912—Urine clear.
26, 1912—Urine slightly tinged in the evening.
26-31, 1912—Remained clear.

Average quantity of milk per diem for October, 15 pounds.
31, 1913—Weight, 570 pounds.

Nov. 1, 1912—Urine clear.
2, 1912—Urine tinged.
3-4, 1912—Red.
5, 1912—Tinged.
5-13, 1912—Slightly tinged.
14, 1912—Passed small clot.
15-28, 1912—Urine increasing in colour.
28, 1912—1½ per cent blood solids in urine.
29-30, 1912—Urine red.

Average percentage of milk for month, 12 pounds.
1, 1912—Urine very red.
2, 1912—Urine contains 2 per cent and 2½ per cent blood solids in the morning and afternoon respectively.
3, 1912—....1½ per cent and 2½ per cent respectively.
5, 1912—....Few small clots passed. Coagulates on barn floor.
PROTOCOL COW No. 42.—Continued.

Dec. 6, 1912—Urine red. Urine contains 1.5 per cent and 1.2 per cent of blood solids in morning and afternoon respectively.

7-12, 1912—better colour...

10, 1912—Started giving Ferri Phosphate powders twice a day.

13, 1912—Urine red. Urine contains 1.2 per cent blood solids.

13-17, 1912—Commenced milking only once daily.

18, 1912—Urine contains 2.2 per cent, 1 per cent and 1.5 per cent of blood solids at three consecutive urinations.

19, 1912—Urine contains 1.2 per cent blood solids.

20, 1912—1.2

21, 1912—1.0

22, 1912—Blood count—
Polyincleuses, 18,625 per cent.....
Mononucleules, 50.975
Eosinophiles, 30.3
Mast-cells, 0.1
Poikilocytosis, Punctate degeneration 900 counted.

23-27, 1912—Haematuria.

28, 1912—Urine contains 1 per cent blood solids.

30, 1912—Test for clotting properties of blood, 11 a.m., 30 min. to clot.

31, 1912—Blood solids 1.4 per cent.

31, 1912—1.5

This cow averaged 81 pounds of milk per day all month.

Jan. 1, 1913—

2, 1913—Urine contains 1.4 per cent blood solids.

3, 1913—

4, 1913—1.8

5-7, 1913—At 11.00 a.m. urine contains 1.1 per cent solids.

8, 1913—

11, 1913—Blood count—
Polyincleuses, 39.2 per cent......
Mononucleules, 31.0
Eosinophiles, 27.8
Mast-cells, 2.0
Poikilocytosis, Polychromasia. Punctate degeneration 500 counted.

13, 1913—Contains 1.8 per cent solids.

14, 1913—2.5

20, 1913—At 9 a.m. urine contains 1.1 per cent solids.

4 p.m. 1.5

6 p.m. 1.0

21, 1913—Experiment with pot. chlorate.

Started giving 16 gram doses, t. i. d., 6 powders being given in all.

At 3 p.m. urine contains 1.5 per cent solids.

22, 1913—5 p.m. 2.1

23, 1913—3 p.m. 1.8

24, 1913—12 a.m. 2.3

25, 1913—4 p.m. 2.2

5 p.m. 1.8

27, 1913—10 a.m. 1.8

28, 1913—10 a.m. 1.4

29, 1913—9 a.m. 1.8

Feb. 1, 1913—9 a.m. 1.8

3, 1913—11 a.m. 1.1

This cow averaged 72 pounds of milk per day all month.

Feb. 4, 1913—Urine contained 1.9 per cent blood solids.

5, 1913—1.1

6, 1913—1.2

7, 1913—1.8

8, 1913—1.8

Experiment—5 c.c. of clear urine, and 5 c.c. of jugular blood were mixed together and centrifuged; the reading was 23 per cent of blood solids thrown down, therefore, if her urine contains 1.8 per cent of blood solids and she passes 8880 c.c. of urine during the 24 hours (amount passed in test last summer) she is losing 650 c.c. of blood in the 24 hours. The solids, other than R. B. C., are not taken into account, being in small amount.
SESSIONAL PAPER No. 15b

PROTOCOL COW No. 42.—Continued.

Feb. 10, 1913—Urine contained .8 per cent blood solids.
14, 1913—Blood count.—

<table>
<thead>
<tr>
<th>Type of Cells</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mononuclears</td>
<td>41.7</td>
</tr>
<tr>
<td>Polynuclears</td>
<td>26.57</td>
</tr>
<tr>
<td>Eosinophiles</td>
<td>30.86</td>
</tr>
</tbody>
</table>

700 counted.

Poikilocytosis, a few punctate cells and nucleated Reds and slight Polychromasia.
Weight of cow, 850 pounds. Thus the cow has only lost 80 pounds since December.
She has been well fed and has been getting plenty of bran and roots, and
phosphate of iron daily, to make up for this loss.

11-27, 1913—Urine absolutely clear.

11-27-28, 1913—A slight trace of blood in urine. This day the cow was turned out and took a large
amount of exercise which no doubt is the cause of the reappearance of blood in
the urine.

This cow gave on an average 6.5 pounds of milk per day. At the end of the month
Ferri Phosphate was discontinued.

March 1, 1913—Trace of r.b.c. in urine.
2, 1913— " " " "
3, 1913— " " " "
4, 1913—Urine clear.
5, 1913—Urine clear; weight, 910 pounds.
6-12, 1913—Trace of r.b.c. in urine; from March 1-12 cow gave average of 4.5 pounds of milk
a day.
12, 1913—2 per cent of blood solids in urine. Cow dry.
14-18, 1913—Trace of r.b.c. in urine.
19, 1913—22 per cent of blood solids in urine.
20-31, 1913—Urine tinged at times.

NOTES ON THE OCCURRENCE OF PETICHILE OR SPOTS ON THE
MUCOUS MEMBRANES OF NORMAL BLADDERS.

In all the works I have seen on Haematuria, the authors mention pin point
haemorrhagic spots under the mucous membranes of the bladder, Moussu and Roger
in particular. When I killed five of the experimental calves last summer I was at
once struck by what I thought then were abnormal spots on the mucous membranes,
and for this reason repeated the experiments of feeding and injecting urine from
cases of Haematuria into healthy calves.

In the first experiment the calves had been experimented on for three months.
In the month of February I killed three more animals which had been under experi-
ment for more than double this period and found that the spots were no larger than
those noticed in the first experiment. I therefore concluded that they must be of
normal occurrence. To prove this, I secured six bladders from Alberta cattle (where
Haematuria is unknown), and found these spots to a greater or less extent in all.
I also found similar spots in the bladders of pigs and sheep.

I am unable to explain exactly what these spots are, but seeing that the bladder
is plentifully supplied with blood vessels, and that it is an organ which is subject to
great distention and contraction, it seems natural that there must be some provision
for this in the arrangement of the arteries and veins. I have not been able to find
any mention of this in any literature dealing with the circulation of the bladder.

To sum up, I have no hesitation in saying that these spots are of normal occur-
rence and have nothing to do with Haematuria.
NOTES ON THE LIFE-HISTORY OF DERMACEUTOR VENUSTUS (BANKS).

June 25, 1912—Gorged larvae collected off squirrel at Merritt, B.C.
July 18, 1912—1 nymph hatched. } 23 days.
" 18—20, 1912—5 nymphs hatched. } 23 days.
" 22, 1912—6 nymphs put on rabbit.
" 27, 1912—2 gorged nymphs fell off.
" 29, 1912—1 gorged nymph. } 5 days.
Aug. 29, 1912—1 female hatched.
" 29, 1912—1 male and 1 female breaking through the skin. } 32 days.
July 6, 1912—Gorged females collected by Dr. Thomson at Keremeos, B.C. } 8 days.
" 14, 1912—Oviposition began.
Aug. 21, 1912—Larvae hatched—36 days.
Sept. 24, 1912—Larvae put onto rabbit.
" 28, 1912—Larvae came off gorged (167)—4 days.
Nov. 5, 1912—Nymphs hatched (10) first—38 days.
" 22, 1912—Nymphs put on rabbit. (46)
" 28, 1912—1 nymph came off gorged.
" 29, 1912— " " } 7 days.
" 30, 1912— " "
Feb. 20, 1913—1 female found dead.
" 27, 1913—1 male hatched. } 90 days. These ticks were kept in a cold room.
Mar. 4, 1913—1 male hatched.

OVIPOSITION—DERMACEUTOR VENUSTUS.

July 15, 1912—51 eggs laid.
" 15—16, 1912—479 eggs laid.

From 12.30 noon to 3.20 p.m. 66 eggs were laid, which equals 2.5 minutes per egg.
From 5.15 p.m. to 12 noon on the following day a female laid 474 eggs, which equals 2.3 minutes per egg.

ORNITHODORUS MEGNNINI.

This tick was collected by Dr. A. Watson, at Lethbridge, Alta., on jack rabbits on October 2, 1912. This finding is of some importance as there seem to be no records of this variety ever having been taken on this host. It also indicates that the tick has become established in Alberta.

Dr. Hargrave, of Medicine Hat, informed me that some years ago a shipment of cattle from the south was stopped at the international boundary, and that some of these ticks were discovered in their ears. As far as I know this is the only time the tick has ever been seen before in Canada. Dr. Watson made a careful search on the cattle in the locality in which he found the ticks, but without result.

In answer to an inquiry as to where the ticks were located, he informed me that they were found on the muzzle, and not in the ears. This is also, as far as I am aware, an observation which has not hitherto been recorded, as according to other observers they are invariably found in the ears of cattle and horses, and occasionally in man.

I am indebted to Professor Nuttal, F.R.S., for confirming the determination I had made, also for determination of Demacentors.

S. HADWEN.
APPENDIX No. 10.

(E. A. Watson, V.S., Pathologist in Charge.)

VETERINARY RESEARCH LABORATORY,
LETHBRIDGE, ALBERTA, March 31, 1913.

The Veterinary Director General,
Ottawa.

Sir,—I have the honour to submit herewith my report for the year ending March 31, 1913.

During this period I have been chiefly engaged in:—

I. Laboratory work and field investigation in connection with outbreaks of Dourine or Maladie du Coit.
II. Preliminary studies and experiments with swamp-fever.
III. The erection and fitting out of the Veterinary Research Laboratory on which I beg to state as follows:—

I.—DOURINE.

Field investigations of suspected outbreaks of dourine have taken me into various districts in the provinces of Alberta, Saskatchewan and Manitoba. Some of the suspected animals were found to be suffering from coital exanthema and in other instances, abortion and influenza complications had aroused suspicions of a possible dourine infection. But since employing the practical serological methods of diagnosis at this laboratory, the existence or non-existence of dourine can usually be safely and quickly determined with a specimen of blood serum taken from the suspected animal, and much time and expense have been saved in so doing.

The disputed and obscure outbreak of dourine occurring at Unity, Saskatchewan, an investigation of which I commenced in March 1912, and continued at intervals during April, May, June and July, is worthy of special mention as it proved to be an unusual type of the disease, differing in many respects from such as we have experienced in Alberta, and being of especial interest as the first outbreak of dourine in Canada in which serological methods of diagnosis were brought into practical effect and to play a very important part in determining the existence of latent infections or immune dourine carriers.

In this outbreak a symptomatic diagnosis of dourine was made by Dr. Hargrave as early as January, 1912. The infections were apparently mild ones and easily tolerated, for, a few weeks later, veterinary inspectors who were called in to make a re-examination were unable to agree on the diagnosis and were unable to detect any definite signs of the malady. Still, two months later, at my own first examination, no appreciable advance in the course of the disease could be ascertained. In fact, according to the statements made by the other inspectors who had seen the animals before, the animals were, for the most part, in rather better condition and showed less sign of infection than at the earlier examination. I noted some edematous infiltrations of the tissues usually involved in dourine lesions in several mares and a suspicious condition of the stallion concerned, but the evidence presented, and the conflicting history of the cases, did not permit of my arriving at a conclusion. Microscopical search for trypanosomes in various preparations of the edematous

15b—6
fluids was negative. Jugular blood from the stallion and one of the most likely mares was drawn and brought to the laboratory, and serological tests carried out on my return to Lethbridge. The serum in each case gave a positive dourine reaction—agglutinating dourine trypanosomes in serum dilutions down to 1 in 2,000, showing also an increased serum-globulin content by the precipitation reaction with the acetic acid test. Later on, more of the suspected mares were tested by the serum method, and a number were found to react positively. Some of the animals involved died during the course of the investigation—undoubtedly due to dourine; others developed typical dourine paralysis before they were finally disposed of. In microscopical preparations taken from one mare, I found the actual cause of the disease, namely *Trypanosoma equiperdum*.

The earlier diagnosis made by Dr. Hargrave on symptomatic grounds was, therefore, borne out by the positive serum reactions obtained during the latent periods of infection, and the reliability of the serum tests confirmed, in turn, by subsequent relapses and breaking down of the affected animals and the finding of the specific trypanosomes in one of them.

Subjoined is Table I, giving a brief synopsis of the history, clinical data, microscopical examinations and serum tests of the infecting stallion 'Florus' and a few of the covered mares that first came under observation. The stallion's no doubt became infected during the covering season of 1910. The history of this animal and the resulting outbreak is remarkable on account of the difficulties experienced in diagnosis and the long periods of latency and apparent health. In the case of the stallion, the infection took about one and a half years to develop into a definable malady, and in several of the mares it remained inactive during the period of gestation, but underwent a rapid development following parturition and during the subsequent period of physiological changes. Experience is showing that it is about this time that latent dourine may become very active and, obviously, very dangerous to contact animals. The history of this outbreak should impress one with the necessity of most careful and guarded observations on abnormal conditions among breeding horses, especially on the paralytic conditions and oedematosous filling of the tissues neighbouring on the generative organs which, as in the above cases, may be the chief manifestations of the disease.
<table>
<thead>
<tr>
<th>Animal</th>
<th>March 17, 1912</th>
<th>Micro. exam. for trypanosomes</th>
<th>Serum Test</th>
<th>May 10, 1912</th>
<th>Micro. exam. for trypanosomes</th>
<th>Serum Test</th>
<th>July 18, 1912</th>
<th>Micro. exam. for trypanosomes</th>
<th>Serum Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Annie (L.W.), brown mare; 5 years old, 1910 and 1911.</td>
<td>Normal health and condition.</td>
<td>+ + +</td>
<td>Traces of oedematous filling mammary region.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note.—The sera of 103 horses involved in this outbreak have been tested, and of this number, 14 have positively reacted to dourine. July 15, 1913. (E. A. W.)
ON THE SERUM-DIAGNOSIS OF DOURINE.

I append herewith a paper, which I read at the annual meeting of the American Veterinary Medical Association, on the serum reactions and serum diagnosis of dourine, and which I request may be taken as a part of this report. In this paper I have described the different methods of testing the serum of infected and suspected animals, and have dwelt upon the value and reliability of the various reactions in connection with establishing a diagnosis. I promised to submit full details and figures in regard to the tests made when writing this annual report, but as we are now in the midst of a long series of tests of quarantined contacts and suspects, and are obtaining some very important data therefrom, I think it advisable to wait until these additional figures can be compiled and included in a full and comprehensive statement.

A very great amount of laboratory routine work is necessitated in carrying out these tests on a large number of animals; in fact, this work is, at present, occupying the whole of our time. Virulent strains of dourine have to be maintained in laboratory animals and the preparation of the various reagents is a delicate and tedious process. During the year, 455 laboratory animals have been used in the preparation of trypanosome antigen and in carrying on the strains; also three horses have been artificially infected to replace the three horses that succumbed to the disease and to furnish the necessary control dourine sera, which, with control normal sera, has to be included with every series of tests.

As, early in this work, we were receiving a number of spoilt or contaminated specimens of blood, it was decided to furnish inspectors with vials, needles and attachments prepared at this laboratory and sent out in a sterile condition and ready for use. The directions and precautions that I have advised in connection with sending blood for a serological test read as follows:

Directions in taking blood for Serum Test.

Vials, needles and attachments are supplied by the laboratory, sterilized and ready for use. When not at hand, obtain a one or two-ounce vial or small bottle, wash and clean thoroughly, boil, and dry in a hot oven. The cork should be soaked in a carbolized solution, flamed or dried in an oven and inserted into the bottle while the latter is hot, and immediately on removing from oven. Thoroughly boil a large size injection or aspirating needle, preferably with a short length of rubber tubing attached, and a strong pair of scissors. Clip the hair from side of neck over the jugular vein and sponge the surface with carbolized water. Swell the vein cording the neck fairly tight, and with the scissors nick through the skin over the swollen vein. Spread open the incision and insert needle and when blood is flowing freely remove cork from vial—being careful that the cork is not in contact with an unsterilized surface during the operation—pinch the rubber tubing to stop blood flow, insert the nozzle into vial and fill almost to the level of cork. A vial should be filled quickly with freely flowing blood, not in driplets or it will coagulate too quickly and there will be no clear serum expressed. After filling and sealing, leave vial in an upright position for fifteen or twenty minutes. If left over night, keep in as cool a place as possible. Carefully number and record each vial for identification and forward by registered mail to the Veterinary Research Laboratory, Lethbridge, Alta.

It is advisable to take the temperature of the animal before blood-letting, and record same on covering report. If the animal shows fever or a rise of more than two degrees above normal, defer taking blood until the temperature has dropped.

By employing the serum test I have been able to diagnose infections with dourine in animals located at Unity, Sask., Vulcan, Alta., and Brant, Alta., and, by the negative reactions obtained with the sera of animals reported from Windsor, Ont., Cartwright, Man., Marienthal, Sask., Cardston, Alta., and from other points, eliminate the suspicions under which the animals rested.
Between the years 1906 and 1912, in the course of my experiments on dourine, I made many efforts to transmit *trypanosoma equiperdum* from the horse to laboratory animals. Dogs, tame and wild rabbits, wild mice and gophers were inoculated time and again without success, seventy-seven of these animals proving quite resistant. I then attempted the infection of white rats with a trypanosome strain which, after ten passages through young foals, showed a very high degree of virulence for horses. Over fifty rats in all were inoculated, but with scarcely any success, for, although several rats were apparently carriers, the blood of one proving infective for a horse, I was unable to carry it on in rats by subinoculations. In November, 1912, I examined a mare at Brant, Alta., showing edematous swellings typical of dourine. This mare was taken to the laboratory and her serum tested with an antigen prepared from a European strain of trypanosomes—that of 'Beschäleusche.' The serum was found to agglutinate these trypanosomes in dilutions to 1 in 2,000. At this time, successive crops of plaques made their appearance on the mare, and in the fluids of them trypanosomes could be found with ease. From this source white mice were at last successfully infected, although the first passage was obtained only after many failures, as may be seen in the appended table II, detailing the inoculations made. After the first passage was made, there was not the least difficulty in carrying on the strain.

Table II.—Showing inoculations and results of attempts to transmit horse dourine to white mice and rats.

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Animals</th>
<th>Date</th>
<th>Material inoculated</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-26</td>
<td>White mice</td>
<td>Nov. 16, 1912</td>
<td>Trypanosomes from mare No. 165.</td>
<td></td>
</tr>
<tr>
<td>27-34</td>
<td>"</td>
<td>17</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Horse</td>
<td>17</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>35-38</td>
<td>White mice</td>
<td>21</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>39-45</td>
<td>"</td>
<td>22</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>46-47</td>
<td>"</td>
<td>22</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Horse</td>
<td>22</td>
<td>Jugular blood</td>
<td>+ Nov. 21.</td>
</tr>
<tr>
<td>48-60</td>
<td>White mice</td>
<td>23</td>
<td>Trypanosomes</td>
<td>+ Dec. 12.</td>
</tr>
<tr>
<td>51-58</td>
<td>"</td>
<td>23</td>
<td>Trypanosomes</td>
<td></td>
</tr>
<tr>
<td>59-62</td>
<td>"</td>
<td>27</td>
<td>Blood of mice Nos. 1—5</td>
<td></td>
</tr>
<tr>
<td>63-66</td>
<td>"</td>
<td>29</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>67-70</td>
<td>"</td>
<td>30</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>71-72</td>
<td>"</td>
<td>Dec. 6</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>79-85</td>
<td>"</td>
<td>6</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>76-78</td>
<td>"</td>
<td>12</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>79-83</td>
<td>"</td>
<td>14</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>"</td>
<td>14</td>
<td>"</td>
<td>+ Dec. 17.</td>
</tr>
</tbody>
</table>

* + = Successful infection, trypanosomes in blood.

— = Negative, trypanosomes absent.

NOTE.—Mouse No. 84 was the first small animal successfully infected.

All of the surviving mice and rats, of Nos. 1-83, were, subsequent to December 17, reinoculated with trypanosomes that had passed through mouse No. 84, and every animal was then successfully infected. The blood was very rich in trypanosomes, and death occurred usually on the fourth day in mice and on the fifth day in rats. The strain has further increased in virulence and now kills rats in less than three days and mice in about forty-eight hours. Guinea-pigs and rabbits undergo a chronic and relapsing infection, guinea pigs dying in about three weeks and rabbits in about six weeks. The increased virulence of this strain for horses is more striking. Nos.
3 and 21, as shown in table II, were infected with trypanosomes obtained from mare No. 165, but up to date they remain in fair health and condition, there are no discernible symptoms, and the parasites were recovered from these animals only upon two occasions; but horse No. 30, inoculated with trypanosomes from a rat, February 14, 1913, died of dourine in six weeks, the blood, drawn from any part of the body showing numerous trypanosomes during nearly the whole period, the infection being very heavy for a week to ten days before death. Further, horse No 150, immune to repeated inoculations of trypanosomes from naturally infected horses, 1910-1912, showed a heavy infection after inoculation with the rat trypanosomes on February 14, 1913, and is now dying. Finally, two dogs that licked at the carcass of horse No. 30, at the post-mortem examination, became infected with dourine and died in about six weeks.

II.—PRELIMINARY STUDIES AND EXPERIMENTS WITH SWAMP-FEVER

In September last you desired me to undertake some research work in connection with swamp fever of horses, especially along the line of establishing a laboratory method of diagnosis by which an early recognition of the disease could be made, thereby marking an important advance in the direction of control, clinical methods being of little avail until the disease has made considerable progress, and, in the case of non-clinical carriers, quite useless.

While attending the annual meeting of the American Veterinary Medical Association in August last—and I take the opportunity of thanking you for extending me the privilege—I was enabled to discuss with you, Dr. Van Es, of Fargo, North Dakota, and other authorities on swamp fever, the question of etiology and diagnosis.

On Dr. Van Es’s kind invitation, I returned with him to his laboratory at Fargo, where he and his collaborators interested me very greatly with the records of many years of research work and their latest views on the etiology and diagnosis of swamp fever. Dr. Van Es was also kind enough to give me a strain of swamp fever blood, which I brought with me to Lethbridge and injected into experimental horses. The result is a relapsing type of fever in each of the experimental subjects, but the infection is a mild one, producing no symptomatic conditions outside of a rare period of fever, the animals remaining in very fair general health as non-anaemic, non-clinical carriers.

Desirous of having a more virulent strain, in its natural condition and direct from a field case, I took the matter up with Dr. J. C. Hargrave, and as a result, Inspector P. Talbot sent me a vial of blood taken from a suspected swamp fever mare, Onoway district, Alberta, west of Edmonton. Inspector Talbot’s report on the mare contains the following: ‘— — — fair condition; temperature, 102 F.; pulse, 45, but weak and wiry; respirations, normal; dull, peculiar look of the eye. On exertion, noticeable swaying in the animal’s walk, weak over loins, getting her feet tangled as if she had not the proper use of them,’ and in regard to appetite the owner stated that ‘she was eating everything in sight.’ Inoculation experiments with this blood showed it to be very virulent, the resulting infection in the first horse injected being of a very acute type, and death occurring in twenty-three days after two very violent exacerbations. At the next passage, to a gelding, infection was equally acute, ending fatally in eighteen days, but from then on only a chronic type has ensued in two mares, a gelding and a foal. These animals survive and are recovering health and condition and appear analogous to the non-clinical carriers of the Fargo strain.

Other investigators have had a similar experience—the loss of virulence of swamp fever strains after carrying them along by blood inoculations in horses. This is suggestive that an insect intermediary is, in nature, a possible vector of swamp fever virus, and necessary for its maintained virulence.
SESSIONAL PAPER No. 15b

I hope to have an opportunity of studying the disease in its natural environment, this coming summer, and to pay special attention to any likely insect host and transmitter.

In regard to methods of diagnosis, probably little can be done until the nature of the virus is better known. Swamp fever serum does not react to trypanosome antigen, and as trypanosome reactions are more or less included in one group reaction it appears safe to exclude swamp-fever from the trypanosome diseases. The serum globulin content of swamp fever serum is markedly increased, such sera reacting similarly to dourine sera with the acetic acid method.

I am continuing research work along the lines indicated, and as soon as sufficient data are on hand will submit a detailed report.

III.—THE NEW LABORATORY FOR VETERINARY RESEARCH.

As the little wooden building in which our laboratory work had been carried out for five years past, had become quite inadequate for continued research and serological testing, I recommended the erection of a small laboratory on modern lines and drew up and submitted for your approval plans of such a building. On October 18 and 19, you yourself visited Lethbridge and this station, looked over the site and sanctioned this much-needed improvement. Excavation work was started at the end of October, and the building completed by the end of January. The building is thirty feet in length by twenty-six feet in width and consists of a basement and ground floor, with a flat roof. It is of brick and concrete construction and is finished inside and out in a pleasing and satisfactory manner. The basement is divided into four rooms, the largest of which is occupied by an engine, machinery and dry heating furnace. In the other basement rooms are installed a high-power centrifuge, shaking apparatus, acetylene gas generator and lavatory fixtures. Also, a small photographic dark room has been fitted up. The ground floor is divided into three rooms—an office, the laboratory proper and a sterilizing room leading out of it. A Kewanee pneumatic tank system supplies water to every part of the building. This tank is placed in the basement, where it is secure against frost or freezing; the water is forced into it against air pressure, which forces the water to the different outlets under a pressure of between twenty to sixty pounds according to the amount of water in the tank. Gasoline power is used to run the pump, centrifuge machine and shaking apparatus. This is not the steadiest or most desirable power for a laboratory, but it was the best obtainable under present conditions. I hope it will be possible, in the near future, to connect with an electric plant at one of the nearby collieries, and to have the great advantage of electric power and light.

I append a photograph of the interior of the laboratory work room, also a small view of the building and surroundings.

I appreciate the increased facilities and improved conditions for veterinary research and control work afforded me by this new laboratory, and beg to thank you for all your kindly interest and encouragement in the several investigations under way.

I have the honour to be, sir,
Your obedient servant,

E. A. WATSON,
Pathologist in Charge.
APPENDIX No. 11.

SPECIAL REPORT ON CONTAGIOUS ABORTION.

(F. Torrance, B.A., D.V.S.)

The Honourable Martin Burrell,
Minister of Agriculture,
Ottawa.

Winnipeg, Man., July 10, 1912.

Sir,—In accordance with your instructions to investigate the disease of cattle known as Contagious or Epizootic Abortion, I left Winnipeg for England on April 17, arriving in London on the 29th.

Soon after, I called at the office of the Canadian High Commissioner and presented my letter of introduction to Lord Strathcona, whom I did not see, but whose secretary, Mr. W. L. Griffith, did everything possible to facilitate my work. Mr. Griffith introduced me to Sir Thomas Elliott, Secretary of the Board of Agriculture and Fisheries, and through him I was enabled to meet Mr. Stewart Stockman and his assistants who have conducted the investigation into the disease in question. Unfortunately, Mr. Stockman was absent on my arrival in London, being engaged investigating a disease of sheep in the north of England and I had to wait two weeks before he returned. He then asked me to visit the laboratories at Alperton, near London, where investigations are made, and experiments carried on, in connection with any disease of animals receiving the attention of his department.

Through the courtesy of Mr. Stockman I was enabled to spend much time at Alperton, and witnessed the methods used in the diagnosis of the disease and for the manufacture of the agent used in the production of immunity, besides learning other matters in connection with the disease.

I found all the officials very obliging and eager to do everything possible to assist me in my work, and I desire to thank them all, especially Sir Thomas Elliott and Mr. Stewart Stockman for the kindness they have shown me.

I have the honour to submit the following report:—

Contagious or epizootic abortion is a disease affecting cows, mares, sheep and swine, causing the premature birth of the young.

Its economic importance can hardly be over-estimated, and among stockmen it is looked upon as one of the most serious risks in the business. Dairymen are often heavy losers from the disease, for the affected cow not only loses her calf, but fails to produce the normal quantity of milk, and often remains a non-breeder for a considerable length of time.

In the horse-breeding industry, the losses from abortion are very considerable, widely distributed, and recur from year to year with varying severity. Both in horses and cattle, abortion is often ascribed to various causes, such as errors in feeding, exposure to inclement weather, exhaustion from over-work, excitement and direct injury, but in the opinion of those best qualified to judge, these various causes are trivial as compared with contagion. In all classes of farm stock, contagious abortion is alarmingly prevalent, and any method of controlling or limiting its ravages would be a great boon to the agriculturist.

The usual mode in which the disease is disseminated is through the introduction of an infected female into the herd. This may be an apparently healthy cow, in calf, or perhaps recently calved. Such a cow becomes a distributor of the contagion from
the time she calves until the uterus finally cleanses itself, perhaps several months later. The foetal membranes (afterbirth) and the fluids discharged from the uterus contain vast quantities of the germs of the disease. Food soiled by these fluids may, and often does, convey the disease to healthy animals, which in their turn abort, and still further spread the infection. Infection through the mouth is now regarded as the most frequent channel. The genital passage may also give entrance to the germs, though infection is not carried by the bull to any great extent. This is contrary to the recently accepted view. The bull was regarded as one of the chief disseminators of the disease, but recent investigations have shown it to be unlikely that the bull does more than rarely convey the disease. The mouth is the most frequent channel, and infected food the carrier.

Abortion has been known to stockmen for a long time, but the idea that it may be caused by contagion is modern, and the proof of this quite recent. That abortion might be contagious was suspected over a hundred years ago. Experiments to prove it were not, however, attempted until 1878, when Lehnert produced abortion in cows by putting the discharges and foetal membranes from aborting cows into the vagina. Similar experiments were performed by other investigators, but although successful in transmitting the disease they did not discover the cause.

Professor Bang, of Copenhagen, took up the question at this stage, and, in 1897, published the results of his investigation. He announced the discovery of a micro-organism, since named the 'bacillus of Bang,' which was found in the uterus of the pregnant cow, beneath the foetal membranes. This bacillus could be cultivated outside the animal body, and when injected beneath the skin of another pregnant animal, caused it to abort.

In the year 1905 the Board of Agriculture and Fisheries of Great Britain appointed a committee to inquire into epizootic abortion. This committee took the evidence of a large number of persons as to the extent to which the disease prevailed in Great Britain, and, through its veterinary officers, conducted an investigation into the nature of the disease. Mr. Stewart Stockman, M.R.C.V.S., Chief Veterinary Advisor to the Board of Agriculture, conducted this investigation, and through his kindness, and that of Sir John McFadyen, Principal of the Royal Veterinary College, the writer was given every opportunity of learning their methods and hearing their results.

The cause of the disease was ascertained to be the same in England as in Denmark, namely, the 'bacillus of Bang.' This was found in the uterus of the first cow examined, as well as in a large number of others. The characteristics of this micro-organism from a bacteriological standpoint need not be stated here. They will be found in the report of Mr. Stockman. It is sufficient to say that the bacillus is found between the foetal membranes and the uterus, sometimes in the foetal stomach, but never as yet in the foetal fluids. Apparently it produces abortion by gradually weakening or breaking down the connection between the foetus and the uterus, so that the latter is no longer able to furnish the necessary nutrition to the foetus; it dies, and is expelled.

The importance of the discovery of the cause lies in the fact that this is the first step in planning scientific methods for the diagnosis and control of the disease.

The diagnosis of contagious abortion has hitherto been a matter of great uncertainty. The infected cow often shows no premonitory symptoms, and the act of abortion itself may be the first indication of anything amiss. This has nothing about it to indicate that it differs from those ordinary cases of sporadic abortion which occur from time to time from various causes, such as accident and disease, and its contagious nature is suspected only when other cows in the herd have also 'slipped' their calves.

Cows that have aborted are sometimes dishonestly offered for sale, accompanied by a live calf which the buyer innocently thinks belongs to the cow, and this may
introduce the disease to a healthy herd. A reliable method of diagnosis is therefore highly desirable.

Very good work along this line has already been done by Mr. Stockman. Experiments have been made to ascertain whether infected cows would react to a preparation made from the 'bacillus of Bang', in the same way as a tuberculous cow reacts to an injection of tuberculin. A fluid was prepared from a pure culture of the bacillus in a manner similar to the preparation of tuberculin. This fluid, called abortin, was tried on a number of cows, and, in many cases, a reaction was produced. The results lacked uniformity, however, and another method was tried.

This method is based on the fact that the blood serum of an infected animal has a peculiar effect upon a pure culture of the organism causing the infection. When the serum and the culture are mixed together in certain proportions, the organisms are drawn together into clumps, or agglutinated, and the test is known as the agglutination test.

Applying this method for the detection of contagious abortion, it is found that the serum of an infected cow has a distinct effect, not seen when the serum of a non-infected animal is used. A large number of experiments have already been made with this method, and it appears probable that it is sufficiently reliable to be of great practical use. Further experiments are necessary before its value can be properly estimated. Should it prove accurate it will enable the stock-owner to protect himself against the purchase of an infected cow by having her submitted to this test, and the field veterinarian can verify his diagnosis by sending a sample of the blood to be tested at the laboratory. These tests are now being made extensively, and, when a sufficient number have been concluded, the results will be published and should prove extremely valuable.

The immunizing of cattle against abortion is another phase of the question which has been taken up and in which much progress has already been made. It is now possible to immunize a heifer, so that subsequent infection has no effect upon her. No successful method has been found of dealing with the pregnant female. The immunizing of heifers is, however, a most valuable discovery, and may, in the future, lead to extensions for other classes of stock.

Immunity is produced by injecting, subcutaneously, an emulsion of the living bacilli, two or three months before the heifer is to be served. The injection produces no bad effect in the heifer, and her subsequent pregnancy is normal in every respect. A demand has already arisen among the stock-owners of Great Britain for the immunizing of heifers and in the laboratory large quantities of culture were prepared for this purpose.

No attempt has hitherto been made to investigate the contagious abortion of mares; but it has been ascertained that it is not caused by the same bacillus as cattle abortion. An investigation of this kind is very necessary, but from the valuable nature of the live stock to be dealt with, would be very expensive and require a heavy outlay.

At the present I would recommend that steps be taken:—

1. To disseminate information on the subject among farmers and others, such as is contained in Leaflet No. 108 of the Board of Agriculture and Fisheries, copy of which is appended.

2. To ascertain, through the officers of the department, whether the disease in Canada is the same as in England.

3. To provide material for the immunizing of heifers when the demand arises.

4. To train some, at least, of the veterinary officers of the department in making the agglutination test.

Appended hereto are some technical notes on the bacteriology of the bacillus, the agglutination test, and the production of immunity:—
NOTES ON THE BACTERIOLOGY OF CONTAGIOUS ABORTION.

The bacillus of cattle abortion (Bang's bacillus) is a small micro-organism, measuring from 1 to 2 microns in length, and 0.5 to 0.7 in width. It stains readily with the aniline dyes and is negative to Gram. It is non-motile. Under the microscope it appears at first sight more like a coccus than a bacillus, but a little observation discloses that it is longer in one diameter than the other. In smears from the infected uterus and in preparation cultures, containing serum, the bacilli are frequently seen in groups or masses, this tendency to congregate being one of the characteristics of the organism.

Natural habitat.—When the infected uterus is opened, with the usual precautions against accidental contamination, the bacilli are found in pure culture in the fluid lying between the uterine mucosa and the surface of the placenta. This fluid, or exudate, is more abundant about the cotyledons, is generally of a light brownish yellow colour, and may cover the entire area of the chorion. Sometimes the fluid is of a dark brown colour. The consistence of the fluid varies from that of fluid pus to a tough glutinous nature. The bacillus is also found in scrapings from the surface of the cotyledons. The stomach of the foetus frequently contains the bacillus in pure culture, 43 to 52 per cent (Stockman), but is rarely found in other parts of the foetus, and never in the fluids of the foetal membranes.

Artificial Culture.—Some difficulty has been experienced by different observers in getting the bacillus of cattle abortion to grow on artificial media. Some have advised exhausting the oxygen in a sealed jar containing the culture; others found it necessary to cultivate in a rarified atmosphere. Stockman has found it easy to cultivate on both solid and liquid media, under ordinary conditions, provided the tubes are incubated for ten days or more, the usual period not being enough.

It is unnecessary here to describe the behavior of the bacillus under all the various conditions that have been experimented with. They can be found in the report of the Epizootic Abortion Committee. Suffice it to say that after many experiments it has been found that the best medium for its growth is 'agar-glycerine-broth.' Make a potato broth, as if making beef broth, add the usual amount of beef extract and peptone, clear, add 1 per cent agar, 1 per cent glycrrine and 1 per cent glucose, clear, bottle and sterilize. Cultures in this give a good growth when incubated at 95 to 100 degrees Fahr. The first growth takes place in this medium in a layer just beneath the surface. Later it spreads over the surface as a dirty gray layer.

Potato.—Cultures on potato may be obtained by planting from cultures on other media. Planting direct from the exudate is unsatisfactory. The growth is slow, appearing at first as a honey dew and gradually changing to a deep chocolate colour, greatly resembling a culture of the glanders bacillus.

Physical requirements.—The most suitable temperatures for growing the cultures are between 30 and 37 degrees C.

Agglutination Test.

This test is based on the fact that the blood serum of an infected cow has a specific effect upon a culture of the bacillus of abortion when they are mixed together in a certain proportion.

A large number of observations must necessarily be made before the reliability of this method of diagnosis can be estimated with accuracy, but from the number which have already been done it is justifiable to predict that it will be found sufficiently accurate to be of great practical value.

The technique is as follows: A series of test tubes is prepared, each containing 21/2 c.c. of liquid culture of the bacillus of abortion. The serum to be tested is
diluted with a measured quantity of normal salt solution and \(\frac{1}{10} \) c.c. is added to each tube, varying the amount of dilution with each of the series so that they contain different dilutions in each, beginning with 1 in 25. The next is 1 in 50; the next 1 in 100, then 1 in 150, and so on through the whole series up to a dilution of 1 in 1,000. After twelve hours, the tubes are examined, and the effect of the serum is readily seen. The culture used should be fresh, about three days old, and uniformly opaque. If necessary, it should be shaken with glass beads. As a precaution against accidental contamination, \(\frac{1}{2} \) per cent of carbolic acid may be added.

Fixation of the complement test.—This is another method of diagnosis, based on the same primary fact, the relation of the blood serum of the infected animal to a pure culture of the bacillus. This method has been worked out on a considerable scale at the University of Wisconsin Agricultural Experiment Station, and appears to be reliable. It is a very complicated test, however, and cannot be made use of except by highly trained observers, equipped with laboratory facilities, and, on that account, is likely to be limited in its usefulness.

Artificial Immunity.

Heifers are rendered immune to subsequent infection by injecting them with a pure culture of the bacillus of abortion two or three months before they are bred to the bull. The technique is as follows: A culture is made on agar-glycerine-broth, in an eight-ounce flat bottle which is laid on its side and incubated at 95 degrees to 100 degrees Fahr. When ripe, the culture is washed off from the surface of the agar by adding 10 to 20 c.c. of sterile water, and shaking. The water containing the microbes is then injected beneath the skin of the heifer with a hypodermic syringe. No bad results follow, and the heifer may afterwards be exposed to infection without inducing abortion. This method is now being used in England to a considerable extent and the results, so far, are good.

I have the honour to be, sir,
Your obedient servant,

F. TORRANCE.
APPENDIX No. 12.

(H. L. Keegan, Assistant Superintendent, Experimental Farm, Agassiz, B.C.)

INVESTIGATIONS INTO THE VOIDINGS OF DAIRY CATTLE AND THEIR NITROGEN VALUE.

The Veterinary Director General,
Ottawa.

The object of these investigations with dairy cows was to determine the following points:—
1. The quantity and number of liquid voidings passed daily (24 hours).
2. The amount of solid voidings passed daily.
3. The amount of water consumed and excreted daily.
4. The amount of nitrogen consumed and excreted daily.
5. The amount of nitrogen in 1,000 pounds of fresh excrement.
6. The nitrogen value of manure from one cow annually.

The actual test was from December 14, 1912 to December 20, a period of 6 days. Three cows from the college dairy herd were used, two Holsteins and one Ayrshire.

Table showing the weights of the cows, taken every 10 days since October 5.

<table>
<thead>
<tr>
<th>Date</th>
<th>Cow No. 157 (Ayr.)</th>
<th>Cow No. 119 (Hol.)</th>
<th>Cow No. 120 (Hol.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lbs.</td>
<td>Lbs.</td>
<td>Lbs.</td>
</tr>
<tr>
<td>October 5</td>
<td>860</td>
<td>1,185</td>
<td>1,285</td>
</tr>
<tr>
<td>October 25</td>
<td>875</td>
<td>1,212</td>
<td>1,275</td>
</tr>
<tr>
<td>November 14</td>
<td>850</td>
<td>1,212</td>
<td>1,245</td>
</tr>
<tr>
<td>December 4</td>
<td>925</td>
<td>1,190</td>
<td>1,290</td>
</tr>
<tr>
<td>December 14</td>
<td>865</td>
<td>1,215</td>
<td>1,235</td>
</tr>
<tr>
<td>December 20</td>
<td>870</td>
<td>1,206</td>
<td>1,225</td>
</tr>
</tbody>
</table>

From the foregoing table it can be seen that they were all running on without much loss or gain. All had, however, reacted to the tuberculin test, and No. 119, though not actually sick, still was not in the best possible condition; the second day of the test she had a slight rise of temperature and loss of appetite. The other two were apparently vigorous, hearty cows.

They were kept in the stable with the rest of the herd, separated from them by one stall being vacant. One stall was also left vacant between each cow. Box manangers were put in to prevent them eating each other's food, and to facilitate the collection of waste material.
DEPARTMENT OF AGRICULTURE

4 GEORGE V., A. 1914

Temperatures of the stable during test. Fahrenheit.

<table>
<thead>
<tr>
<th>Date</th>
<th>6.30 a.m.</th>
<th>11.00 a.m.</th>
<th>5.00 p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>December, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 15</td>
<td>52</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>" 16</td>
<td>55</td>
<td>49.5</td>
<td>51</td>
</tr>
<tr>
<td>" 17</td>
<td>47</td>
<td>46</td>
<td>42.5</td>
</tr>
<tr>
<td>" 18</td>
<td>52.5</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>" 19</td>
<td>50</td>
<td>49.5</td>
<td>50</td>
</tr>
<tr>
<td>" 20</td>
<td>51.5</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

All the cows in this stable had been accustomed to having water before them always, in basins, but from November 19, that is twenty days previous to this test, the supply in the basins was cut off and the cows watered from pails twice a day, and given all they would drink.

They were fed, watered, and milked at the usual times, so there was no change in this respect. They were never allowed out of the stable and, in fact, were living under exactly similar conditions as the rest of the herd. The utmost care and quietness was exercised throughout the test to avoid any undue nervousness, and to keep the cows in their normal condition.

For a considerable period previous to the test the cows had been getting a regular weighed ration; the following shows the feed fed and the approximate amounts and proportions:

- Hay ... 20 to 24 pounds.
- Mangels ... 30 to 40 "
- Dried brewer’s grains ... 6 to 8 "
- Linseed meal, old process .. 1 "

Their feed and water was weighed carefully and anything left over was weighed and recorded. In this way the exact amount of feed and water consumed daily for the six days was determined.

The excrement was collected on alternate days, starting at 10.45 a.m., December 15, and finishing 10.45 a.m. the following day. This time comes just after the cows have been fed, watered, and groomed and are ready to lie down until the afternoon.

Stanchions are used in this stable, and the floor is of cement, with boards (1-inch x 10-inch) for the cows to stand on.

In order to keep the voidings free from straw, chaff and dust, all bedding was previously removed and the boards swept clean.

The solid excrement fell into specially constructed galvanized iron pans, which fitted into the gutters behind each cow. These pans were five feet long, and had a flap projecting 10 inches under the boards upon which the cows stood, and another flap behind to prevent any loss of droppings through splashing; otherwise they fitted snugly into the cement gutters and were water-tight.

Each solid voiding was scraped with a hoe to one end of the pan and covered with cheese cloth to prevent evaporation. At the end of every day the contents of each pan were thoroughly mixed, weighed and a sample taken.

The liquid voidings were taken the same days as the solid, each flow was caught in a pail and measured in a 1,000 e. c. graduated cylinder, and the time taken; twenty per cent of each flow was saved in covered pails, keeping each cow’s separate. At the end of the day all were thoroughly mixed and samples taken. All samples were kept in tightly-corked glass bottles or sealers.
FIRST TEST DAY.

Liquid voidings for 24 hours.—

Cow No. 157.—Ayrshire. Weight, 865 pounds.

<table>
<thead>
<tr>
<th>Time</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1560</td>
<td>c.c.</td>
</tr>
<tr>
<td>920</td>
<td>"</td>
</tr>
<tr>
<td>1715</td>
<td>"</td>
</tr>
<tr>
<td>1630</td>
<td>"</td>
</tr>
<tr>
<td>1320</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>8745 c.c., computed.</td>
</tr>
<tr>
<td></td>
<td>8610 " actual measurement.</td>
</tr>
</tbody>
</table>

Cow No. 119.—Holstein. Weight, 1215 pounds.

<table>
<thead>
<tr>
<th>Time</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1570</td>
<td>c.c.</td>
</tr>
<tr>
<td>1120</td>
<td>"</td>
</tr>
<tr>
<td>1400</td>
<td>"</td>
</tr>
<tr>
<td>975</td>
<td>"</td>
</tr>
<tr>
<td>5150</td>
<td>"</td>
</tr>
<tr>
<td>1285</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>11800 c.c., computed.</td>
</tr>
<tr>
<td></td>
<td>11720 " actual measurement.</td>
</tr>
</tbody>
</table>

Cow No. 120.—Holstein. Weight, 1235 pounds.

<table>
<thead>
<tr>
<th>Time</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>c.c.</td>
</tr>
<tr>
<td>1580</td>
<td>c.c.</td>
</tr>
<tr>
<td>6750</td>
<td>c.c.</td>
</tr>
<tr>
<td>2185</td>
<td>c.c.</td>
</tr>
<tr>
<td></td>
<td>12285 c.c., computed.</td>
</tr>
<tr>
<td></td>
<td>12160 " actual measurement.</td>
</tr>
</tbody>
</table>

SECOND TEST DAY.

Showing quantity and time of voidings (24 hours).—

Cow No. 157.—Ayrshire.—

<table>
<thead>
<tr>
<th>Time</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.45 a.m.</td>
<td>1260 c.c.</td>
</tr>
<tr>
<td>2.20 p.m.</td>
<td>1370 "</td>
</tr>
<tr>
<td>4.40 p.m.</td>
<td>1620 "</td>
</tr>
<tr>
<td>6.35 p.m.</td>
<td>1110 "</td>
</tr>
<tr>
<td>12.40 a.m.</td>
<td>1530 "</td>
</tr>
<tr>
<td>5.30 a.m.</td>
<td>1770 "</td>
</tr>
<tr>
<td>8.38 a.m.</td>
<td>960 "</td>
</tr>
<tr>
<td></td>
<td>8960 c.c., computed.</td>
</tr>
<tr>
<td></td>
<td>8810 " actual measurement.</td>
</tr>
</tbody>
</table>

Cow No. 119.—Holstein.—

<table>
<thead>
<tr>
<th>Time</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.05 p.m.</td>
<td>2310 c.c.</td>
</tr>
<tr>
<td>5.33 a.m.</td>
<td>6150 "</td>
</tr>
<tr>
<td>8.20 a.m.</td>
<td>1490 "</td>
</tr>
<tr>
<td></td>
<td>9950 c.c., computed.</td>
</tr>
<tr>
<td></td>
<td>9910 " actual measurement.</td>
</tr>
</tbody>
</table>

Cow No. 120.—Holstein.—

<table>
<thead>
<tr>
<th>Time</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14 p.m.</td>
<td>1550 c.c.</td>
</tr>
<tr>
<td>4.10 p.m.</td>
<td>1320 "</td>
</tr>
<tr>
<td>5.45 p.m.</td>
<td>6875 "</td>
</tr>
<tr>
<td>8.40 a.m.</td>
<td>1420 "</td>
</tr>
<tr>
<td></td>
<td>11555 c.c., computed.</td>
</tr>
<tr>
<td></td>
<td>11450 " actual measurement.</td>
</tr>
</tbody>
</table>
THIRD DAY TEST.

Showing time and quantity of voidings (24 hours).—

Cow No. 157.—Ayrshire.—

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.48 a.m.</td>
<td>1176 c.c.</td>
</tr>
<tr>
<td>1.03 p.m.</td>
<td>975 "</td>
</tr>
<tr>
<td>3.35</td>
<td>1240 "</td>
</tr>
<tr>
<td>6.25</td>
<td>1160 "</td>
</tr>
<tr>
<td>11.35</td>
<td>2490 "</td>
</tr>
<tr>
<td>5.12 a.m.</td>
<td>2450 "</td>
</tr>
<tr>
<td>7.25</td>
<td>960 "</td>
</tr>
<tr>
<td>9.40 a.m.</td>
<td>850 "</td>
</tr>
</tbody>
</table>

11125 c.c., computed.
11150 " actual measurement.

Cow No. 119.—Holstein.—

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20 p.m.</td>
<td>2025 c.c.</td>
</tr>
<tr>
<td>5.38 p.m.</td>
<td>1770 "</td>
</tr>
<tr>
<td>5.52 a.m.</td>
<td>4850 "</td>
</tr>
<tr>
<td>8.51 a.m.</td>
<td>1610 "</td>
</tr>
<tr>
<td>10.15 a.m.</td>
<td>1830 "</td>
</tr>
</tbody>
</table>

12965 c.c., computed.
11950 " actual measurement.

Cow No. 120.—Holstein.—

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.21 p.m.</td>
<td>1775 c.c.</td>
</tr>
<tr>
<td>3.50 p.m.</td>
<td>1210 "</td>
</tr>
<tr>
<td>2.15 a.m.</td>
<td>7100 "</td>
</tr>
<tr>
<td>6.46 a.m.</td>
<td>2700 "</td>
</tr>
<tr>
<td>10.05 a.m.</td>
<td>1840 "</td>
</tr>
</tbody>
</table>

14625 c.c. computed.
14555 " actual measurement.

VOIDINGS of cows per day (24 hours).

<table>
<thead>
<tr>
<th>Day</th>
<th>Animal</th>
<th>Solid excrement.</th>
<th>Urine</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Lbs.</td>
<td>Lbs.</td>
<td>Lbs.</td>
</tr>
<tr>
<td>1st day</td>
<td>157</td>
<td>52 5</td>
<td>19 28</td>
<td>71 78</td>
</tr>
<tr>
<td>2nd day</td>
<td>157</td>
<td>46 25</td>
<td>19 76</td>
<td>66 01</td>
</tr>
<tr>
<td>3rd day</td>
<td>157</td>
<td>59 75</td>
<td>21 8</td>
<td>80 55</td>
</tr>
<tr>
<td>1st day</td>
<td>119</td>
<td>71 5</td>
<td>28 03</td>
<td>99 53</td>
</tr>
<tr>
<td>2nd day</td>
<td>119</td>
<td>41 5</td>
<td>21 94</td>
<td>63 44</td>
</tr>
<tr>
<td>3rd day</td>
<td>119</td>
<td>65 5</td>
<td>26 65</td>
<td>92 15</td>
</tr>
<tr>
<td>1st day</td>
<td>120</td>
<td>77 0</td>
<td>27 09</td>
<td>104 09</td>
</tr>
<tr>
<td>2nd day</td>
<td>120</td>
<td>82 25</td>
<td>28 5</td>
<td>110 75</td>
</tr>
<tr>
<td>3rd day</td>
<td>120</td>
<td>78 5</td>
<td>32 25</td>
<td>110 75</td>
</tr>
</tbody>
</table>

The following result is from the performance of cows No. 157 and No. 120. The record of No. 119 is discarded from this table owing to her irregularity on the second and third days.

Average number and quantity of liquid voidings passed daily by a 1,000 pound cow.

<table>
<thead>
<tr>
<th>Animal</th>
<th>Number of voidings</th>
<th>Amount of each flow</th>
<th>Total for day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>6</td>
<td>4'3</td>
<td>24'2</td>
</tr>
</tbody>
</table>
SESSIONAL PAPER No. 15b

From the same data we have found the average amount of solid excrement voided daily by a 1,000 pound cow to be 57.8 pounds.

The individual samples taken daily were all tested in duplicate, first for water and then for nitrogen. The nitrogen determinations were done by the Kjeldhal process. The liquid samples for these analyses were carefully mixed before a portion was taken for testing, and the solid samples were treated with the quartering system, i.e., mixing, quartering and discarding the opposite quarters repeatedly until the material is reduced to a working amount.

The results of these analyses will be seen in the following table:

COMPOSITION of excrement voided daily by cows.

<table>
<thead>
<tr>
<th>Animal No.</th>
<th>Day.</th>
<th>Excrement</th>
<th>Water %</th>
<th>Nitrogen %</th>
</tr>
</thead>
<tbody>
<tr>
<td>157.</td>
<td>1st day</td>
<td>Liquid</td>
<td>92.1</td>
<td>1.65</td>
</tr>
<tr>
<td>119.</td>
<td>2nd day</td>
<td>Liquid</td>
<td>94.1</td>
<td>1.43</td>
</tr>
<tr>
<td>120.</td>
<td>3rd day</td>
<td>Liquid</td>
<td>93.8</td>
<td>1.04</td>
</tr>
<tr>
<td>118.</td>
<td>Solid</td>
<td></td>
<td>83.9</td>
<td>1.48</td>
</tr>
<tr>
<td>120.</td>
<td>Solid</td>
<td></td>
<td>83.2</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Analysis of composite samples of milk, taken during the seven days of test.

<table>
<thead>
<tr>
<th>Animal No.</th>
<th>Fat %</th>
<th>Solids %</th>
<th>Water %</th>
<th>Nitrogen %</th>
</tr>
</thead>
<tbody>
<tr>
<td>157.</td>
<td>3.6</td>
<td>9.1</td>
<td>90.9</td>
<td>0.576</td>
</tr>
<tr>
<td>119.</td>
<td>3.4</td>
<td>8.9</td>
<td>91.1</td>
<td>0.576</td>
</tr>
<tr>
<td>120.</td>
<td>3.0</td>
<td>8.2</td>
<td>91.8</td>
<td>0.576</td>
</tr>
</tbody>
</table>
The following table of analyses of foods used is taken from Professor W. A. Henry's Table of Average Percentage Composition of American Feeding Stuffs.

<table>
<thead>
<tr>
<th>Feeding Stuffs</th>
<th>Water (Per cent)</th>
<th>Ash (Per cent)</th>
<th>Crude protein (Per cent)</th>
<th>Carbohydrates</th>
<th>Fat (Per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangel</td>
<td>90.9</td>
<td>10.1</td>
<td>1.4</td>
<td>0.9</td>
<td>5.5</td>
</tr>
<tr>
<td>Linseed Meal (Old process)</td>
<td>9.8</td>
<td>5.5</td>
<td>39.9</td>
<td>7.3</td>
<td>35.7</td>
</tr>
<tr>
<td>D. Brewers' Grains</td>
<td>8.7</td>
<td>3.7</td>
<td>25.0</td>
<td>13.6</td>
<td>42.3</td>
</tr>
<tr>
<td>Hay</td>
<td>10.4</td>
<td>7.1</td>
<td>7.7</td>
<td>29.5</td>
<td>42.3</td>
</tr>
</tbody>
</table>

The crude protein is obtained by multiplying the nitrogen content by 6.25 since about 16 per cent of nitrogen is protein ($100\div16=6.25$).

Table showing amount of water consumed and excreted daily by each cow for 3 days.

<table>
<thead>
<tr>
<th>Animal</th>
<th>Consumed, including water in feed (Lbs.)</th>
<th>Obtained in milk (Lbs.)</th>
<th>Voided in solid excrement (Lbs.)</th>
<th>Voided in liquid excrement (Lbs.)</th>
<th>Total in all excrement (Lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 157</td>
<td>81.47</td>
<td>23.63</td>
<td>43.89</td>
<td>17.75</td>
<td>85.27</td>
</tr>
<tr>
<td>" 157</td>
<td>76.97</td>
<td>23.63</td>
<td>37.89</td>
<td>18.96</td>
<td>80.92</td>
</tr>
<tr>
<td>" 157</td>
<td>82.97</td>
<td>23.72</td>
<td>43.65</td>
<td>23.25</td>
<td>86.62</td>
</tr>
<tr>
<td>" 119</td>
<td>116.046</td>
<td>35.7</td>
<td>61.13</td>
<td>24.28</td>
<td>120.11</td>
</tr>
<tr>
<td>" 119</td>
<td>93.902</td>
<td>26.41</td>
<td>34.73</td>
<td>19.33</td>
<td>81.47</td>
</tr>
<tr>
<td>" 119</td>
<td>121.598</td>
<td>34.61</td>
<td>54.49</td>
<td>25.23</td>
<td>114.33</td>
</tr>
<tr>
<td>" 120</td>
<td>143.65</td>
<td>47.73</td>
<td>63.44</td>
<td>25.03</td>
<td>136.20</td>
</tr>
<tr>
<td>" 120</td>
<td>147.65</td>
<td>47.73</td>
<td>69.83</td>
<td>23.81</td>
<td>141.57</td>
</tr>
<tr>
<td>" 120</td>
<td>153.65</td>
<td>47.73</td>
<td>67.35</td>
<td>30.18</td>
<td>145.26</td>
</tr>
</tbody>
</table>

Cows No. 157 and No. 119 show a loss of water, but on the intervening days of the test they consumed considerably more.

No. 120 retained from 6 to 8 pounds daily, and allowing for evaporation through the skin and the slight decrease in her consumption on the alternate days she would about even up the intake and output. On the whole, it can be assumed that the water excreted is about equal to the water consumed.
HEALTH OF ANIMALS

SESSIONAL PAPER No. 15b

Table showing amount of nitrogen consumed daily by each cow, and the nitrogen collected in the excrements (for three days).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 137</td>
<td>611</td>
<td>144</td>
<td>117</td>
<td>175</td>
<td>436</td>
</tr>
<tr>
<td>No. 157</td>
<td>611</td>
<td>149</td>
<td>111</td>
<td>225</td>
<td>485</td>
</tr>
<tr>
<td>No. 119</td>
<td>750</td>
<td>213</td>
<td>232</td>
<td>303</td>
<td>748</td>
</tr>
<tr>
<td>No. 119</td>
<td>603</td>
<td>176</td>
<td>172</td>
<td>282</td>
<td>448</td>
</tr>
<tr>
<td>No. 119</td>
<td>750</td>
<td>218</td>
<td>174</td>
<td>305</td>
<td>767</td>
</tr>
<tr>
<td>No. 120</td>
<td>763</td>
<td>299</td>
<td>227</td>
<td>282</td>
<td>508</td>
</tr>
<tr>
<td>No. 120</td>
<td>763</td>
<td>299</td>
<td>223</td>
<td>314</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>763</td>
<td>299</td>
<td>228</td>
<td>370</td>
<td>577</td>
</tr>
</tbody>
</table>

Discarding the record of No. 119 for the second day, 38.58 per cent of nitrogen exerted was in the milk.

No. 157 retained 335 pounds nitrogen in the body and shows an increase in weight of 5 pounds.

No. 119 lost 10 pounds weight during the test, dropped in production of milk; her performance was too irregular to be valuable.

No. 120 exerted 220 pounds more nitrogen in three days than she consumed, due to the decreased quantity of feed given her; while she kept up her production of milk with a loss of body weight of 10 pounds.

The following table shows clearly the relative values of liquid and solid manure. In considering this table the kind of feed used should be noticed, as no doubt it materially affects the amounts of the constituents, though probably not to such an extent their relative proportions.

Amount of water and nitrogen in 1,000 pounds of fresh excrement.

<table>
<thead>
<tr>
<th>Animal</th>
<th>IN SOLID VOIDINGS.</th>
<th>IN LIQUID VOIDINGS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lbs. Lbs.</td>
<td>Lbs. Lbs.</td>
</tr>
<tr>
<td>Cow</td>
<td>898.4 2.66</td>
<td>933.4 11.75</td>
</tr>
</tbody>
</table>

Amount of manure voided yearly by a 1,000 pound cow and its nitrogen value.

<table>
<thead>
<tr>
<th>Animal</th>
<th>SOLID VOIDINGS.</th>
<th>LIQUID VOIDINGS.</th>
<th>Total Nitrogen.</th>
<th>Value per Year.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>211.26.5 56.19</td>
<td>8836 103.82</td>
<td>169.01</td>
<td>28.80</td>
</tr>
</tbody>
</table>
The above table was compiled from the performance of cows No. 157 and No. 120. The record of No. 119 was discarded from this table. The last column, showing the commercial nitrogen value of the manure is obtained by giving the price of 18 cents per pound to nitrogen.

Through the kindness of S. Hadwen, D.V.Sc., Pathologist, Health of Animals Branch, Agassiz, I can give the results of a one day (24 hours) experiment he conducted at Agassiz, B.C., and which I had the opportunity of witnessing.

<table>
<thead>
<tr>
<th>Cow No. 1—Shorthorn G.—Weight, 1065 pounds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>7.15 p.m.</td>
</tr>
<tr>
<td>9.20 p.m.</td>
</tr>
<tr>
<td>11.42 p.m.</td>
</tr>
<tr>
<td>2.50 a.m.</td>
</tr>
<tr>
<td>4.45 a.m.</td>
</tr>
<tr>
<td>6.55 a.m.</td>
</tr>
<tr>
<td>10.30 a.m.</td>
</tr>
<tr>
<td>12.00 noon</td>
</tr>
<tr>
<td>2.40 p.m.</td>
</tr>
<tr>
<td>5.35 p.m.</td>
</tr>
</tbody>
</table>

10775 c.c., computed.
10210 " actual measurement.

<table>
<thead>
<tr>
<th>Cow No. 2—Jersey G.—Weight, 840 pounds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>7.40 p.m.</td>
</tr>
<tr>
<td>9.10 p.m.</td>
</tr>
<tr>
<td>11.30 p.m.</td>
</tr>
<tr>
<td>5.30 a.m.</td>
</tr>
<tr>
<td>7.25 a.m.</td>
</tr>
<tr>
<td>10.55 a.m.</td>
</tr>
<tr>
<td>1.10 p.m.</td>
</tr>
<tr>
<td>4.50 p.m.</td>
</tr>
<tr>
<td>5.45 p.m.</td>
</tr>
</tbody>
</table>

6563 c.c., computed.
6500 " actual measurement.

<table>
<thead>
<tr>
<th>Cow No. 3—Ayrshire G.—Weight, 1015 pounds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>9.10 p.m.</td>
</tr>
<tr>
<td>12.00 midnight</td>
</tr>
<tr>
<td>5.35 a.m.</td>
</tr>
<tr>
<td>7.55 a.m.</td>
</tr>
<tr>
<td>11.45 a.m.</td>
</tr>
<tr>
<td>4.45 p.m.</td>
</tr>
</tbody>
</table>

8880 c.c., computed.
8310 " actual measurement.

<table>
<thead>
<tr>
<th>Cow No. 4—Jersey.—Weight, 870 pounds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>8.45 p.m.</td>
</tr>
<tr>
<td>1.50 a.m.</td>
</tr>
<tr>
<td>5.15 a.m.</td>
</tr>
<tr>
<td>8.05 a.m.</td>
</tr>
<tr>
<td>12.05 p.m.</td>
</tr>
<tr>
<td>4.20 p.m.</td>
</tr>
</tbody>
</table>

6730 c.c., computed.
6220 " actual measurement.
This experiment was started at 6 p.m. one day and finished at 6 p.m. the next day. The cows were fed on a liberal allowance of hay, mangels and bran, with all the water they would drink. These cows were all treated for Hematuria (red water) and the irritation in the bladder set up by this disease no doubt caused them to urinate more frequently than if they had been in a healthy condition. Nevertheless, these figures are interesting as they help us to realize how often and how much a cow does urinate in a day.
APPENDIX No. 13.

THE SERUM REACTIONS AND SERUM DIAGNOSIS OF DOURINE. *

By E. A. Watson, V.S., Pathologist in Charge, Veterinary Research Laboratory, Lethbridge, Alberta.

Numerous efforts have and are being made to diagnose trypanosome infections by serologic methods of determining the presence of specific antibodies in the blood of the patient or animal. Several of the methods in vogue are based upon the phenomena of complement fixation or deviation which, when applied to syphilis, glanders and certain other diseases has been found in the hands of many workers to be an eminently successful test. In its application to trypanosome infections, however, literature records many disappointing results, some workers experiencing variable, not constant or non-specific reactions; but in other hands the test has been found reliable and is considered as a diagnostic aid of highest value. The discrepancy in results is doubtless due in a great measure to the different technical procedures employed by the different workers, or even to a varying or faulty technique of the individual worker, also to the use of antigens of varying qualities and consistency.

The specificity of complement fixation phenomena is dependent upon a combination of antibody and antigen of specific origin, the antibody being present in the serum of the infected patient and the antigen one of the reagents specially prepared for the test and added to the serum with the other reagents in definite quantity. One of the chief difficulties encountered in applying the test has been in finding a suitable antigen and various methods are employed in the obtaining and preparation of it; it can be extracted from the organs and tissues of infected animals and in various ways but a more satisfactory method is to extract it from the specific organism itself. It is to be hoped that a standard mode of procedure may soon be established and a uniform technique determined and rigidly adhered to by practical workers, otherwise confusing or seemingly contradictory results will continue to be recorded.

Serum reactions that appear to the writer of unquestionable value in the diagnosis of dourine are obtained by:—

First.—The complement fixation test.
Second.—An agglutination test.
Third.—A precipitin test.
Fourth.—The acetic test.

These will be considered separately.

THE COMPLEMENT FIXATION TEST.

Complement fixation as applied to dourine is similar to complement fixation tests in general, the principal difference being in the preparation of one of the reagents, namely—antigen.

To obtain antigen the blood of five, ten or more rats at the height of infection, that is to say, when the blood is swarming with trypanosomes, but before the animals

*Contribution to the report of Committee on Diseases, American Veterinary Medical Association, 1912.
have become stupified or appear in a dying condition, is collected in one or more sterile bottles containing glass pearls and at once defibrinated. The blood is then pipetted into narrow tubes (about three-eighths of an inch in diameter), centrifuged and when the serum has become quite clear it is pipetted off, the white layers—the trypanosomes—removed from each tube into a fresh tube, with as few red corpuscles as possible. To this is added salt solution in which the trypanosomes are well shaken and again centrifuged. This process is repeated five or six times with fresh salt solution or as often as is necessary to obtain the trypanosomes absolutely free from blood or serum. When this stage is reached the trypanosome emulsion is added to salt solution in the proportion of one in ten and with sterile glass pearls is placed in a shaking apparatus for two or three days, when it is filtered through a Berkefeld, the filtrate constituting the antigen. Instead of filtering the liquid may be centrifugalized until the supernatant fluid can be taken away quite clear, but as a rule filtering is advisable.

The other reagents in the test are prepared in the usual way, fresh guinea pig's serum furnishing the complement, the serum of rabbits sensitized to sheep's blood corpuscles the hemolytic amboceptor, washed sheep's blood the corpuscle suspension, and dourine horse-serum the antibody. After titration of the amboceptor, complement and antigen the final determinative test may be undertaken as in the following table (supposing, for instance, the preliminary tests have shown that 1 to 2,500 is the proper dilution of amboceptor, 0.4 cubic centimeter the required amount of diluted complement, and 0.05 cubic centimeter of antigen).

FINAL DETERMINATION TEST.

Positive Control:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.05</td>
<td>1.0</td>
<td>0.4</td>
<td>1.55</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(2)</td>
<td>0.05</td>
<td>0.5</td>
<td>0.4</td>
<td>2.05</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(3)</td>
<td>0.05</td>
<td>0.1</td>
<td>0.4</td>
<td>2.45</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Negative Controls:

<table>
<thead>
<tr>
<th>Tube No.</th>
<th>Dourine-antigen: (x) 1:0</th>
<th>Dourine serum: (y) 1:0</th>
<th>Complement: 0.4</th>
<th>Salt solution: 1.55</th>
<th>Amboceptor: 1:55</th>
<th>Sheep’s Corpuscles: 1:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>0.05</td>
<td>1.0</td>
<td>0.4</td>
<td>1.55</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(5)</td>
<td>0.05</td>
<td>1.0</td>
<td>0.4</td>
<td>1.55</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(6)</td>
<td>0.05</td>
<td>1.0</td>
<td>0.4</td>
<td>1.55</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Antigen Control:

<table>
<thead>
<tr>
<th>Tube No.</th>
<th>Dourine serum: 1:0</th>
<th>Complement: 0.4</th>
<th>Salt solution: 1.60</th>
<th>Amboceptor: 1:0</th>
<th>Sheep’s Corpuscles: 1:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)</td>
<td>0.10</td>
<td>0.4</td>
<td>2.50</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Without Antigen:

<table>
<thead>
<tr>
<th>Tube No.</th>
<th>Dourine serum: 1:0</th>
<th>Complement: 0.4</th>
<th>Salt solution: 2.60</th>
<th>Amboceptor: 1:0</th>
<th>Sheep’s Corpuscles: 1:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td></td>
<td>0.4</td>
<td>2.60</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(9)</td>
<td></td>
<td>0.4</td>
<td>2.60</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(10)</td>
<td></td>
<td>0.4</td>
<td>3.00</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(11)</td>
<td></td>
<td>0.4</td>
<td>3.00</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(12)</td>
<td></td>
<td>0.4</td>
<td>4.00</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

1 hour in thermostat.

2 hours in thermostat.
The result is fixation of complement in the positive control (1, 2 and 3), hemolysis in the negative controls, antigen controls and control without antigen and antibody (4 to 9), and no reaction in remaining controls in which the hemolytic system is incomplete (10, 11 and 12).

With each sample of the serum to be tested for antibodies three tubes are prepared as with the positive control, the reactions compared and a diagnosis made accordingly.

AGGLUTINATION TEST.

In the previous test the presence of antibody is determined by the indirect method of combining it with antigen in order to fix or deviate the complement and prevent the otherwise normal and visible phenomena of hemolysis. In the agglutination test as applied to dourine the antibody is determined by the direct method of combining it with antigen so as to cause the visible phenomena of agglutination, which, in the absence of antibody and under normal conditions would not take place. The latter test is very much simpler than the former in its application, requiring in addition to the serum to be tested only one reagent but, nevertheless, the utmost care and precision in the details of performance. The all important reagent is the antigen, which is prepared as already described for complement fixation excepting that a homogeneous emulsion of trypanosomes is used instead of the filtrate. Essential to success is the proper condition of this emulsion; if it is found, as is sometimes the case, that there is any spontaneous or auto-agglutination of the trypanosomes in the salt solution, which may be the result of taking the blood from the rats at too late a stage of infection and when the rats are in a more or less moribund condition, to delays in the course of its preparation, improper preservation, contamination, &c., the emulsion should be discarded as worthless. It is possible to preserve the trypanosomes in salt solution by storing on ice or by the addition of a small quantity of formaldehyde for a considerable time and still find it suitable for the agglutination test but it is advisable, whenever possible, to use a fresh emulsion and without a preservative.

In making the test one employs positive and negative controls which with the sera to be tested are treated exactly alike. Stock dilutions of each serum are made in the proportion of 1 to 20, 1 to 50, 1 to 100 and 1 to 1,000 in normal salt solution, and from these a series of eleven dilutions are prepared in small narrow test tubes, each tube to contain one cubic centimeter of serum diluted as follows: 1 to 20, 1 to 50, 1 to 100, 1 to 200, 1 to 400, 1 to 800, 1 to 1,000, 1 to 2,000, 1 to 4,000, 1 to 8,000 and 1 to 10,000. A twelfth tube containing one cubic centimeter of salt solution only is added to the series. Unless the trypanosome emulsion has been just previously prepared it should be centrifuged, fresh salt solution substituted and the mixture thoroughly shaken to obtain the required homogeneous consistency. About two drops of the emulsion is then added to each tube of each series, after which each tube is separately well shaken commencing with the twelfth tube and following up to the first tube in each series; the whole are then placed in the thermostat for one to two hours at thirty-seven degrees centigrade or longer and the reactions or changes noted at half hour intervals.

The dourine or antibody—containing sera will agglutinate the trypanosomes in serum dilutions up to 1 to 2,000, 1 to 4,000, 1 to 8,000, 1 to 10,000 and even in higher dilutions when strong in antibody; the reaction may be taken as positive when agglutination occurs in dilutions to 1 to 1,000; normal and non-specific sera will agglutinate not at all or only in the lesser dilutions of 1 to 20, or 1 to 50, perhaps very rarely at 1 to 100. The control tube containing only trypanosome emulsion and salt solution should of course be free from clumping otherwise there have been errors in preparation and the test must be repeated over again.
SESSIONAL PAPER No. 15b

PRECIPITIN TEST.

The precipitin test, like the agglutination test, is a direct means of determining the presence of a specific antibody. Applied to dourine in the manner following it requires only two reagents—serum and antigen. For antigen trypanosomes prepared as for the agglutination test, are then placed with glass pearls in a flask and set in the shaking apparatus for two to three days. This fluid is then centrifuged, removed from the sediment and passed through a fine Berkefeld filter. Only an extract of trypanosomes obtained absolutely clear is of value for this precipitin test.

Five tenths of one cubic centimeter of the clear antigen is placed in each of a series of tubes and to each is then added an equal amount of the different sera to be tested—specific, normal and the unknown or suspected sera.—The serum is added to each tube by means of a fine capillary pipette the point of which is passed through the antigen fluid to rest upon the bottom of the tube and the serum then slowly released so as to push up the antigen fluid without mixing with it.

If the serum contains the antibody a thin white ring appears at the point of junction of serum and antigen in from ten to fifteen minutes or earlier.

The test is still more delicate if three tubes be taken for each serum, to tube one adding five-tenths of one cubic centimeter of pure serum, to tube two the same quantity of diluted serum 1:5, and to tube three serum diluted 1:10. In such dilutions the white ring is never shown by any but dourine sera and the reaction is quite specific.

The condition of the test is that both antigen and serum must be clear and fresh.

THE ACETIC ACID TEST.

This last is purely a chemical and quantitative test for the determination of an increased globulin content of blood-serum. Noguchi*, in studying the serum reactions of syphilis, observed that the globulin fraction of the blood serum and cerebrospinal fluid is increased in syphilitic conditions, and the increase of the globulin and the appearance of the antibody are often found associated together. He states further, that in the early stages of primary syphilis, when the presence of the antibody may not be detectable, the globulin content is seen already to be increased. He has worked out a test for syphilis using butyric acid as precipitant for globulin.

I have applied the butyric acid test for syphilis to dourine in a large number of cases and with many controls, later substituting acetic acid as the precipitant and devising the method described as follows:

A centrifugal tube graduated to ten cubic centimeters is taken for each serum to be tested and for each known positive and negative control. One cubic centimeter of clear serum is placed in each tube and nine cubic centimeters of a half-saturated solution of ammonium sulphate added; each tube is then shaken and allowed to stand for one hour when they are placed in the centrifugal machine and centrifuged until the supernatant fluid has quite cleared and the globulin content is precipitated in a firm mass at the bottom. As much as possible of the upper fluid is then removed without disturbing the precipitate, to which is then added salt solution to make up the original volume of ten cubic centimeters in each tube, forming clear solutions of globulins.

In making the test each globulin solution is very carefully pipetted into five small test tubes in the following exact quantities:

<table>
<thead>
<tr>
<th>Tube</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>1.75</td>
</tr>
<tr>
<td>Two</td>
<td>1.50</td>
</tr>
<tr>
<td>Three</td>
<td>1.25</td>
</tr>
<tr>
<td>Four</td>
<td>1.00</td>
</tr>
<tr>
<td>Five</td>
<td>0.75</td>
</tr>
</tbody>
</table>

*The serum diagnosis of syphilis and the butyric acid test. H. Noguchi, 1910.
To each of these is added sufficient salt solution to make up, when one cubic centimeter of ten per cent acetic acid has been further added, a total amount of three cubic centimeters in each tube. When each series of tubes has been prepared alike and shaken up they are placed in the thermostat at thirty-seven degrees centigrade to thirty-nine degrees centigrade for two to three hours; they may then be removed and the reactions read.

Normal sera will give at most a slight opalescence in tube one and, possibly, a very faint bluish tinge in tube two, the remainder staying clear even after several days. Dourine sera in a few hours will give a very marked cloudiness, which gradually becomes opaque, turbid, flocculent and finally precipitates after twenty-four hours or longer to the bottom, leaving a clear fluid above.

If more concentrated solutions are employed the reactions will occur quicker and more intensely but the differentiation is scarcely as clearly defined. The intensity of the reaction is in direct proportion to the amount of globulin present, constituting a positive or negative reaction—the former if in tube one there is turbidity or flocculence, the latter if it remains clear or is but slightly opalescent. A normal globulin content of blood serum does not give a positive acetic acid reaction. In very early stages of dourine the globulin content is increased and gives a positive reaction. A horse whose blood serum was negative to the test at the time of inoculation with dourine gave a positive reaction after fifteen days. Dourine horses give the reaction in any stage of the disease but in such cases as make a complete recovery the reaction gradually becomes less until, after many months, it is negative.

The acetic acid test is not an absolutely specific one for dourine, any more than the butyric acid test is specific for syphilis, but it probably has an even higher value in veterinary practice than the latter test in human diagnosis, for in horses we are scarcely likely to meet with any infection or pathologic condition other than dourine that will cause a positive reaction, though should we meet with such rare cases they could probably be differentiated according to the known history or clinical symptoms.

I have applied the test to cases of coital exanthema, glands, influenza, fistulous withers and in a single case of swamp fever; only in the latter was a positive reaction obtained, the serum from this case was then used in the agglutination test for dourine and found quite negative. Perhaps the greatest value of the acetic acid test is in a negative reaction as excluding dourine infection, for in no case of dourine of known history has the reaction been other than positive. For the present, however, it seems advisable that when the acetic acid test is positive diagnosis should be controlled by one of the other tests.

The diagnosis of dourine is a matter of extreme importance and, so long as it is dependent upon clinical manifestations of the disease, one of extreme difficulty and uncertainty, and, in many cases, impossible to arrive at.

In February, 1907, at Lethbridge, Alberta, the parasite of dourine—Trypanosoma equiperdum—was discovered for the first time on the American continent (by Watson and Gallivan) and a strain isolated and subsequently maintained up to this date by passing it from horse to horse by experimental inoculation. The large number of horses used in carrying on this strain in addition to many other animals found naturally infected, furnished excellent material for the study of the disease throughout the whole length of its chronic course and latent stages and, at the same time, the opportunity for the serologic investigation encouraged by Dr. Rutherford in the hope of determining a specific means of diagnosing latent dourine.

Again and again during the past five years while carrying on the experimental study of dourine at the Quarantine Station, Lethbridge, as well as in various outbreaks dealt with in the field, have I obtained proof that infections are not infrequently tolerated after a short period of unrecognized activity and further propagated by non-clinical carriers who have quickly acquired a resistance or a degree of immunity that may remain unbroken for a very lengthy period; furthermore, that
dourine antibodies are present in determinable quantities in the very early stages of infection of horses as well as in the later stages, and that the serum diagnosis of dourine is possible, practicable and reliable. Recently while working in the veterinary laboratories in Berlin on the complement fixation, agglutination and precipitin tests as employed by Professor Zwick and Dr. Winkler I was able to select dourine sera of Bulgarian infected horses and horses infected with the East Prussian strain, these sera being handed to me among other normal and non-specific sera. I was also able to again identify them by the acetic acid test with which the German workers were not familiar.

In western Canada we are now examining suspected dourine cases by the serologic method when a symptomatic diagnosis cannot be made; every month fresh proof is being obtained of the great value and reliability of these means of determining the existence of an infection by the positive serum reaction or in excluding infection by the negative reaction. Already there are cases on record in which a positive reaction to the serum tests during a suspected latent infection has been confirmed months later by the development of clinical symptoms and by the finding of the specific trypanosome in the reacting animal.

Time and space will not permit me to give in this brief paper the figures and details of the many cases studied by serologic methods; these, however, will be submitted to the Veterinary Director General of Canada for publication in his next Annual Report.

In conclusion I would say that the serum reactions of dourine as briefly outlined above have now become an important factor in the diagnosis and control of the disease in Western Canada and the outlook for stamping out infection is much more promising than it has ever been before.

I am indebted to Dr. F. Torrance, Veterinary Director General, for permission to present this paper at this meeting.

DISCUSSION.

Dr. Knowles: I do not think it is profitable to attempt to discuss such a highly technical paper as that which Dr. Watson has given us, but I would like to state my appreciation of the work which he has done. It places the control of this disease on a very different footing. The clinical symptoms of this disease are often so obscure as to offer almost insuperable difficulties and obstacles in the way of successful diagnosis and treatment, but as the doctor has now called our attention to a new means of diagnosis it promises to help very materially in its control. I trust in the course of some years we will be able to eradicate this serious malady of the horse.

A Member: Mr. Chairman, Dr. Watson has spoken about these various methods of diagnosis, and I would like to ask at what time he succeeded in evolving these various methods of diagnosis. A man ought to have the credit of being first in a certain field of discovery, but it usually transpires that there are a number who are carrying on investigations in the same line, and it often comes to be a question of date as to when certain discoveries have been made. Dr. Watson has placed on the records by this paper a record of his investigations, but it may be that at the same time that this paper is being presented here other workers in the same field are publishing papers along the same line, and are getting the credit for them, and I would like to know for the benefit of the profession at about what date he worked these different methods out, so that any claim to any superiority to which he is entitled for his work in point of time may be understood.

The Chairman: If there are no others I will ask Dr. Watson to close the discussion.
Dr. Watson: In answer to the question as to the date and period in which these tests were worked out I would say that I think I mentioned in my paper that the work has been in progress for five years past, commencing in fact, shortly after I first succeeded in isolating and transmitting a strain of *Trypanosoma equiperdum*, in February, 1907. Observing in some of the horses inoculated with this strain a marked tolerance and, in several cases, a rapidly acquired immunity to infection I began a long series of experiments with dourine sera ascertaining the presence of specific antibodies, agglutinins and precipitins. I believe this to be the first attempt made at the serum diagnosis of dourine of horses. This experimental work was pursued for three to four years and in the period of 1910-11 I devised and worked out the acetic acid test (based on Noguchi's butyric acid test for syphilis) for the serum-globulin content of dourine sera. Owing to frequent interruptions in the work from the necessity of having to promptly deal with and control field outbreaks of the disease, the practical results of serum diagnosis and the formulating of reliable and constant methods have been slow in forthcoming. At first, as it always appears to the inexperienced worker, the technique involved in the serologic test appeared too difficult and complicated to be put to a practical use, besides which, other investigators were publishing from time to time unfavourable accounts of the serum diagnosis of trypanosome diseases. In 1911, however, several German workers, notably Zwick, Winkler and Lange solved the chief difficulty, namely, the preparation of a reliable antigen. Last winter I worked with Zwick and Winkler in Berlin, studying their technique with my own, and found their method of preparing trypanosomes for antigen—as described in this paper—superior to any other, and having adopted it on my return to Canada in March, 1912, I have since employed it in a large number of tests with very satisfactory results.
INDEX.

REPORT OF THE VETERINARY DIRECTOR GENERAL.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortion, Contagious</td>
<td>11</td>
</tr>
<tr>
<td>Special Report on, by F. Torrance</td>
<td>88-92</td>
</tr>
<tr>
<td>Alberta, Report of Veterinary Inspector in Charge</td>
<td>61-64</td>
</tr>
<tr>
<td>Anthrax</td>
<td>12</td>
</tr>
<tr>
<td>Anthrax Statistics</td>
<td>12</td>
</tr>
<tr>
<td>Anthrax Vaccine</td>
<td>12</td>
</tr>
<tr>
<td>Barnes, Dr. R. Report of</td>
<td>38-42</td>
</tr>
<tr>
<td>Biological Laboratories</td>
<td>11-87</td>
</tr>
<tr>
<td>Blackquarter</td>
<td>12</td>
</tr>
<tr>
<td>Blackquarter Vaccine Statistics</td>
<td>12</td>
</tr>
<tr>
<td>British Columbia, Report of Veterinary Inspector in Charge</td>
<td>65-66</td>
</tr>
<tr>
<td>Cattle Mange</td>
<td>10</td>
</tr>
<tr>
<td>Cattle Mange Statistics</td>
<td>10</td>
</tr>
<tr>
<td>Condensed Milk, Fruit and Vegetables</td>
<td>22</td>
</tr>
<tr>
<td>Contagious Abortion</td>
<td>11</td>
</tr>
<tr>
<td>Dairy Cattle, Voidings of, Special Report by H. L. Keegan</td>
<td>35-101</td>
</tr>
<tr>
<td>Diseased Import Statistics</td>
<td>19</td>
</tr>
<tr>
<td>Diseases found at Establishments under Inspection</td>
<td>27-28</td>
</tr>
<tr>
<td>Dourine</td>
<td>11</td>
</tr>
<tr>
<td>Dourine, Report on, by E. A. Watson</td>
<td>81-86</td>
</tr>
<tr>
<td>Dourine, Serum Reactions and Serum Diagnosis, Special Report on, by E. A. Watson</td>
<td>102-108</td>
</tr>
<tr>
<td>Dourine Statistics</td>
<td>11-12</td>
</tr>
<tr>
<td>Establishments under Inspection, Meat Inspection</td>
<td>24-26</td>
</tr>
<tr>
<td>Export Inspection Statistics</td>
<td>20</td>
</tr>
<tr>
<td>Export Rejection Statistics</td>
<td>29</td>
</tr>
<tr>
<td>Fruit, Vegetables and Condensed Milk</td>
<td>22</td>
</tr>
<tr>
<td>Gelatin</td>
<td>79</td>
</tr>
<tr>
<td>General</td>
<td>3</td>
</tr>
<tr>
<td>Glanders</td>
<td>3-70</td>
</tr>
<tr>
<td>Glanders Statistics</td>
<td>4-6</td>
</tr>
<tr>
<td>Haematuria, Report on by S. Hadwen, D.V.S.</td>
<td>79</td>
</tr>
<tr>
<td>Hargrave, J. C., Report of</td>
<td>61-64</td>
</tr>
<tr>
<td>Hog Cholera</td>
<td>6</td>
</tr>
<tr>
<td>Hog Cholera Statistics</td>
<td>7-9</td>
</tr>
<tr>
<td>Horse Mange</td>
<td>11</td>
</tr>
<tr>
<td>Horse Mange Statistics</td>
<td>11</td>
</tr>
<tr>
<td>Import Inspection Statistics</td>
<td>16-17</td>
</tr>
<tr>
<td>Import Pure Bred Statistics</td>
<td>17-18</td>
</tr>
<tr>
<td>Import Rejection Statistics</td>
<td>19</td>
</tr>
<tr>
<td>Import Testing Statistics</td>
<td>15</td>
</tr>
<tr>
<td>Mange in Cattle</td>
<td>19</td>
</tr>
<tr>
<td>Mange in Cattle Statistics</td>
<td>19</td>
</tr>
<tr>
<td>Mange in Horses</td>
<td>11</td>
</tr>
<tr>
<td>Mange in Horses Statistics</td>
<td>11</td>
</tr>
<tr>
<td>Manitoba, Report of Veterinary Inspector in Charge</td>
<td>46-55</td>
</tr>
<tr>
<td>Meat Inspection, Diseases found at Establishments under Inspection</td>
<td>27-28</td>
</tr>
<tr>
<td>Meat Inspection, Establishments under Inspection</td>
<td>24-26</td>
</tr>
<tr>
<td>Meat Inspection, Staff</td>
<td>22-23</td>
</tr>
</tbody>
</table>
Moore, A. E., Report of Poultry Diseases .. 43-45
Publications ... 71-73
Pure Bred Import Statistics .. 28-29
Quarantine Stations .. 17-18
Rabies ... 15
Rabies Statistics ... 13
Red Water ... 12

Report of G. Hilton, Chief Veterinary Inspector 74-79

R. Barnes, Chief Meat Inspection ... 30-37
A. E. Moore, Chief Travelling Inspector 38-42
C. D. McGillvray, Insp. in Charge, Manitoba 43-45
D. Tamblyn, Inspector in Charge, Saskatchewan 45-53
J. C. Hargrave, Inspector in Charge, Alberta 54-60
S. Tolmie, Inspector in Charge, British Columbia 61-64
C. H. Higgins, Pathologist, Ottawa 65-66
S. Hadwen, Pathologist, Agassiz, B.C 67-73
A. E. Watson, Pathologist, Lethbridge, Alta 74-80

Saskatchewan, Report of Veterinary Inspector in Charge 81-87

Sheep Scab ... 11
Sheep Scab Statistics .. 11

Special Report on Contagious Abortion by F. Torrance 88-92
Special Report on Voidings of Cattle by H. L. Keegan 93-101
Special Report on Serum Reactions and Serum Diagnosis 102-108

Staff .. 20-21

Staff, Meat Inspection .. 22-23

Statistics re Anthrax ... 12

Anthrax Vaccine ... 12
Blackquarter ... 12
Diseased Imports .. 19
Dourine .. 11-12
Export Inspection .. 20
Export Rejection ... 20

Glanders ... 4-6
Hog Cholera ... 6-9

Import Inspection .. 16-17
Import Rejection ... 19
Import Pure Bred .. 17-18
Import Tests ... 19
Mange in Cattle .. 10
Mange in Horses ... 11
Meat Inspection ... 27-28

Rabies ... 13
Sheep Scab ... 11

Tuberculosis ... 10

Stock Cars ... 30

Swamp Fever ... 14
Swamp Fever, Special Report on, by E. A. Watson, V.S 86-87

Tamblyn, D. S., Report of .. 54-60
Tolmie, S. F., Report of .. 80

Tuberculosis ... 9-71

Tuberculosis Statistics .. 10

Vegetables, Fruit and Condensed Milk 22

Voidings of Dairy Cattle, Special Report by H. L. Keegan 83-101

Water Examinations ... 70-71

Watson, E. A., Report of .. 81-87
ILLUSTRATIONS
HÆMATURIA

BLADDER OF COW NO. 35

Photo—S. Hadwen
Cow No. 35 just before death.
Redwater.
Part of Perennial Borders, Central Farm, Ottawa.

Photo by Frank T. Shutt.
APPENDIX TO THE REPORT OF THE MINISTER OF AGRICULTURE

EXPERIMENTAL FARMS

REPORTS

OF THE

DIRECTOR

DOMINION FIELD HUSBANDMAN, (Acting)

CHEMIST (Ass't. Director)

HORTICULTURIST

CEREALIST

BOTANIST

ENTOMOLOGIST

ANIMAL HUSBANDMAN

AGROSTOLOGIST

PULTRY HUSBANDMAN

TOBACCO HUSBANDMAN

SUPT. EXPERIMENTAL STATION, Charlottetown, P.E.I.

FARM, Nappan, N.S.

STATION, Kentville, N.S.

STATION, Fredericton, N.B.

STATION, Ste. Anne de la Pocatiere, Que.

STATION, Cap Rouge, Que.

FARM, Brandon, Man.

INDIAN HEAD, Sask.

STATION, Rosthern, Sask.

LAFAYETTE, Sask.

LACOMBE, Alta.

FARM, Agassiz, B.C.

J. H. GRISDALE, B. Agr.

J. H. GRISDALE, B. Agr.

FRANK T. SHUTT, M.A.

W. T. MACOUN.

C. E. SAUNDERS, Ph. D.

H. T. GUSSOW.

C. GORDON HEWITT, D.Sc.

E. S. ARCHIBALD, B.A., B.S.A.

M. O. MALTE, Ph.D.

A. G. GILBERT

F. CHARLAM.

J. A. CLARK, B.S.A.

R. ROBERTSON

W. S. BLAIR.

W. W. HUBBARD.

JOS. BEGIN.

GUS. A. LANGELIER

W. C. MCKILLCAN, B.S.A.

ANGUS MACKAY

WM. A. MUNRO, B.A., B.S.A.

R. E. EVEREST, B.S.A.

W. H. FAIRFIELD, M.S.

G. H. HUTTON, B.S.A.

P. H. MOORE, B.S.A.

FOR THE YEAR ENDING MARCH 31, 1913.

PRINTED BY ORDER OF PARLIAMENT

PRINTED BY C. H. PARMELEE, PRINTER TO THE KING’S MOST EXCELLENT MAJESTY

1914

[No. 16—1914.]
APPENDIX

TO THE

REPORT OF THE MINISTER OF AGRICULTURE

ON

EXPERIMENTAL FARMS

Ottawa, March 31, 1913.

Sir,—I have the honour to submit herewith, for your approval, the twenty-sixth annual report of the work carried on at the several Dominion Experimental Farms and Stations.

As will be noted, the matter in this report is arranged in a different way to that which has obtained in former years.

Section A contains my report as Director, in which are incorporated accounts of the preliminary work on the new Experimental Stations at Invermere and at Sidney, British Columbia, as well as a résumé of the results obtained on the Sub-stations at Grouard, Grande Prairie, Athabaska Landing and Fort Vermilion, in Alberta, and at Kamloops and Salmon Arm, in British Columbia.

This is followed by synopsis of the work in the various Divisions on the Central Farm and at the branch Farms and Stations, with general notes on some of the features of the year's operations. For the preparation of these, I am indebted to the chief officers of the Divisions here, and to the Superintendents of the branches.

The section is concluded by brief reports from the Superintendents of several of the newer Stations, where experimental work has not yet been so well established as to permit of a detailed account of the year's work.

Section B contains detailed reports on the various lines of experimental work under way throughout the Dominion Experimental Farms system during the year. These have been prepared by the Dominion officers having supervision of such work on the Central and branch Farms in collaboration with the Superintendents of the latter.

The detailed report on Poultry Husbandry at the Central Farm is very brief this year. The synopsis included in Section A was prepared only in part by Mr. A. G. Gilbert. Mr. Gilbert was sick during a great part of the year, hence the experimental work carried on here was small, and the report thereon, with the few statistics which make up the Ottawa part of the detailed report under the above heading, has been put into shape by Mr. V. Fortier, Assistant Poultry Husbandman.

Section A, which provides a concise, yet comprehensive, account of the work, is designed especially for those desirous of obtaining general information as to what is being done on the Experimental Farms system.

Section B is intended more immediately to aid the farmer in the various details of his work.

It is hoped that this new arrangement, which groups together the year's work along any one line, will prove more convenient and useful to the farming community than the former system, whereby such work was recorded in widely separated portions of the report.

I have the honour to be, Sir,

Your obedient servant.

J. H. GRISDALE.

Director, Dominion Experimental Farms.

To the Honourable

The Minister of Agriculture,

Ottawa.
CONTENTS

SECTION A.

DIRECTOR'S REPORT—J. H. GRISDALE, B. Agr.
Including general notes, Reports from New Stations and Substations, and
Synopsis of work of various divisions and at Branch Farms and Stations.

SECTION B.

Prepared by

FIELD HUSBANDRY, Report from—
Ottawa, Ont. O. C. White, B.S.A. 113-130
Charlottetown, P.E.I. J. A. Clark, B.S.A. 131-133
Napan, N.S. R. Robertson. 134-136
Cape Rouge, Que. G. A. Langelier. 137-139
Brandon, Man. W. C. McKillican, B.S.A. 140-141
Indian Head, Sask. Angus Mackay. 142-175
Rosthern, Sask. W. A. Munro, B.A., B.S.A. 176-182
Scott, Sask. R. E. Everest, B.S.A. 183-189
Lethbridge, Alta. W. H. Fairfield, M.S. 190-209
Lacombe, Alta. G. H. Hutton, B.S.A. 210-218

CHEMISTRY, Report from—
Ottawa, Ont. Frank T. Shutt, M.A. 221-275

Horticulture, Report from—
Ottawa, Ont. W. T. Macoun. 279-306
Charlottetown, P.E.I. J. A. Clark, B.S.A. 307-313
Napan, N.S. R. Robertson. 314-320
Kentville, N.S. W. S. Blair. 321-326
Cap Rouge, Que. G. A. Langelier. 328-335
Brandon, Man. W. C. McKillican, B.S.A. 336-346
Indian Head, Sask. Angus Mackay. 347-353
Rosthern, Sask. W. A. Munro, B.A., B.S.A. 354-364
Scott, Sask. R. E. Everest, B.S.A. 365-389
Lethbridge, Alta. W. H. Fairfield, M.S. 370-379
Lacombe, Alta. G. H. Hutton, B.S.A. 380-390
Agassiz, B.C. P. H. Moore, B.S.A. 391-396

Substations at—
Salmon Arm, B.C. 397-398
Fort Vermilion, Alta. 399-405
Grouard, Alta. 406-407
Athabaska Landing, Alta. 408
Forts Smith, Resolution and Providence, Alta. 409-410

CEREAL BREEDING AND VARIETY TESTING, Report from—
Ottawa, Ont. Chas. E. Saunders, Ph.D. 413-428
Charlottetown, P.E.I. J. A. Clark, B.S.A. 429-432
Napan, N.S. R. Robertson. 433-435
Cap Rouge, Que. G. A. Langelier. 436-438
Brandon, Man. W. C. McKillican, B.S.A. 439-445
Indian Head, Sask. Angus Mackay. 446-449
Rosthern, Sask. W. A. Munro, B.A., B.S.A. 450-452
CEREBAL BREEDING AND VARIETY TESTING, Report from—Concluded.
Scott, Sask. .. R. E. Everest, B.S.A. 453-455
Lethbridge, Alta. W. H. Fairfield, M.S. 456-464
Lacombe, Alta. .. G. H. Hutton, B.S.A. 465-468
Agassiz, B.C. ... P. H. Moore, B.S.A. 471-473

Substations at—
Grouard, Alta. .. 478
Fort Vermillion, Alta. 469-470

BOTANY, Report from—
Ottawa, Ont. .. H. T. G"issow 477-498

ENTOMOLOGY, Report from—
Ottawa, Ont. .. C. Gordon Hewitt, D. Sc. 501-518

ANIMAL HUSBANDRY—
(1.) Beef Cattle, Report from—
Ottawa, Ont. .. E. S. Archibald, B.A., B.S.A. 523-526
Charlottetown, P.E.I. J. A. Clark, B.S.A. 527-530
Kentville, N.S. ... W. S. Blair 531
Napan, N.S. .. R. Robertson 532-533
Brandon, Man. ... W. C. McKillican, B.S.A. 533-536
Indian Head, Sask. Angus Mackay 538
Lacombe, Alta. ... G. H. Hutton, B.S.A. 539-540
Lethbridge, Alta. W. H. Fairfield, M.S. 541-542

(2.) Dairy Cattle and Dairying, Report from—
Ottawa, Ont. .. E. S. Archibald, B.A., B.S.A. 543-562
Charlottetown, P.E.I. J. A. Clark, B.S.A. 563
Napan, N.S. .. R. Robertson 564-565
Cap Rouge, Que G. A. Langelier 565-567
Brandon, Man. ... W. C. McKillican, B.S.A. 570-571
Lacombe, Alta. ... G. H. Hutton, B.S.A. 572
Agassiz, B.C. ... P. H. Moore, B.S.A. 574-577

(3.) Horses, Report from—
Ottawa, Ont. .. E. S. Archibald, B.A., B.S.A. 578-579
Charlottetown, P.E.I. J. A. Clark, B.S.A. 580
Napan, N.S. .. R. Robertson 581
Cap Rouge, Que G. A. Langelier 582-584
Brandon, Man. ... W. C. McKillican, B.S.A. 585
Lacombe, Alta. ... G. H. Hutton, B.S.A. 586
Agassiz, B.C. ... P. H. Moore, B.S.A. 587

(4.) Sheep, Report from—
Ottawa, Ont. .. E. S. Archibald, B.A., B.S.A. 588-589
Charlottetown, P.E.I. J. A. Clark, B.S.A. 590-594
Napan, N.S. .. R. Robertson 595-596
Brandon, Man. ... W. C. McKillican, B.S.A. 597
Lethbridge, Alta. W. H. Fairfield, M.S. 598-600
Agassiz, B.C. ... P. H. Moore, B.S.A. 601

(5.) Swine, Report from—
Ottawa, Ont. .. E. S. Archibald, B.A., B.S.A. 602-607
Napan, N.S. .. R. Robertson 608
Brandon, Man. ... W. C. McKillican, B.S.A. 609
Lacombe, Alta. ... G. H. Hutton, B.S.A. 610
Agassiz, B.C. ... P. H. Moore, B.S.A. 611-613
CONTENTS

SESSIONAL PAPER No. 16

Prepared by

<table>
<thead>
<tr>
<th>Prepared by</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa, Ont.</td>
<td>617-624</td>
</tr>
<tr>
<td>Charlottetown, P.E.I.</td>
<td>625-632</td>
</tr>
<tr>
<td>Napan, N.S.</td>
<td>633-635</td>
</tr>
<tr>
<td>Cap Rouge, Que.</td>
<td>636-643</td>
</tr>
<tr>
<td>Brandon, Man.</td>
<td>644-649</td>
</tr>
<tr>
<td>Indian Head, Sask.</td>
<td>650-652</td>
</tr>
<tr>
<td>Roethern, Sask.</td>
<td>653-654</td>
</tr>
<tr>
<td>Scott, Sask.</td>
<td>655-662</td>
</tr>
<tr>
<td>Lethbridge, Alta.</td>
<td>663-664</td>
</tr>
<tr>
<td>Lacombe, Alta.</td>
<td>665-668</td>
</tr>
<tr>
<td>Substations at—</td>
<td>668-669</td>
</tr>
<tr>
<td>Fort Vermilion, Alta.</td>
<td></td>
</tr>
</tbody>
</table>

Poultry Husbandry, Report from—

Ottawa, Ont.	673-678
Lacombe, Alta.	679
Agassiz, B.C.	680

Special Articles—

The Preservation of Eggs.	681-682
Black-head in Turkeys.	683-686
Tuberculosis in Poultry.	687-689

Tobacco Husbandry, Report from—

Ottawa, Ont.	693-694
St. Jacques de l'Achigan, Que.	694-695
Farnham, Que.	695-696
Harrow, Ont.	697-698
ANNUAL REPORT OF THE EXPERIMENTAL FARMS
FOR THE YEAR ENDING MARCH 31, 1913

REPORT OF THE DIRECTOR
J. H. GRISDALE, B.Agr.

NOTES ON THE SEASON'S CROPS.

The figures given in the following tables are taken from the Census and Statistics Monthly, issued by the Department of Trade and Commerce.

The total area under field crops in the Dominion in 1912 was 32,449,000 acres, a decrease of 494,674 acres from the total for 1911. This was due to the smaller area in hay and clover, which was 426,000 acres less than in 1911. In other crops there were slight increases in area.

The total value of all field crops grown last year, calculated at local market prices, is set at $511,951,000, while, in 1911, the return was $565,711,600, calculated on the same basis, a decrease of $53,760,600.

This was caused by both lower yield and lower values in many cases.

The tables below give the results in more detail.

Comparison of Yields and Prices obtained for the years 1911-12.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Average Yield Per Acre</th>
<th>Average Price Per Bushel</th>
<th>Total Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1911</td>
<td>1912</td>
<td>1911</td>
</tr>
<tr>
<td></td>
<td>Bush</td>
<td>Bush</td>
<td>$</td>
</tr>
<tr>
<td>Fall wheat</td>
<td>22.19</td>
<td>20.99</td>
<td>825</td>
</tr>
<tr>
<td>Spring wheat</td>
<td>20.63</td>
<td>20.37</td>
<td>.611</td>
</tr>
<tr>
<td>Oats</td>
<td>37.76</td>
<td>39.25</td>
<td>.364</td>
</tr>
<tr>
<td>Barley</td>
<td>28.94</td>
<td>31.10</td>
<td>.566</td>
</tr>
<tr>
<td>Rye</td>
<td>18.89</td>
<td>19.06</td>
<td>.774</td>
</tr>
<tr>
<td>Peas</td>
<td>15.50</td>
<td>15.94</td>
<td>1.955</td>
</tr>
<tr>
<td>Buckwheat</td>
<td>22.69</td>
<td>26.34</td>
<td>.641</td>
</tr>
<tr>
<td>Mixed grain</td>
<td>29.78</td>
<td>34.38</td>
<td>.607</td>
</tr>
<tr>
<td>Flax</td>
<td>11.41</td>
<td>12.92</td>
<td>1.507</td>
</tr>
<tr>
<td>Beans</td>
<td>19.06</td>
<td>17.40</td>
<td>1.920</td>
</tr>
<tr>
<td>Corn for husking</td>
<td>59.39</td>
<td>56.58</td>
<td>.648</td>
</tr>
<tr>
<td>Potatoes</td>
<td>143.82</td>
<td>172.19</td>
<td>.60</td>
</tr>
<tr>
<td>Turnips, etc</td>
<td>373.32</td>
<td>402.51</td>
<td>.23</td>
</tr>
<tr>
<td>Hay and clover</td>
<td>1.61</td>
<td>1.47</td>
<td>11.55</td>
</tr>
<tr>
<td>Fodder corn</td>
<td>9.92</td>
<td>10.26</td>
<td>4.84</td>
</tr>
<tr>
<td>Sugar beets</td>
<td>8.66</td>
<td>10.74</td>
<td>6.28</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>2.24</td>
<td>2.79</td>
<td>9.86</td>
</tr>
</tbody>
</table>
Comparison of Eastern Canada Prairie Provinces and British Columbia as to Yields and Prices obtained.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Eastern Provinces</th>
<th>Western Provinces</th>
<th>British Columbia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Yields per</td>
<td>Average Yields per</td>
<td>Average Yields per</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>1911. 1912.</td>
<td>1911. 1912.</td>
<td>1911. 1912.</td>
<td>1911. 1912.</td>
</tr>
<tr>
<td>Fall Wheat</td>
<td>20.95 20.63</td>
<td>872 82</td>
<td>24.95 21.87</td>
</tr>
<tr>
<td>Spring Wheat</td>
<td>17.95 18.33</td>
<td>1.00 .97</td>
<td>20.73 20.97</td>
</tr>
<tr>
<td>Oats</td>
<td>28.88 32.56</td>
<td>473 .49</td>
<td>46.64 44.90</td>
</tr>
<tr>
<td>Barley</td>
<td>29.87 27.97</td>
<td>112 .69</td>
<td>31.50 32.56</td>
</tr>
<tr>
<td>Peas</td>
<td>18.81 18.38</td>
<td>1.516</td>
<td>22.30 23.56</td>
</tr>
<tr>
<td>Rye</td>
<td>17.47 16.74</td>
<td>.84 11.30</td>
<td>29.50 29.92</td>
</tr>
<tr>
<td>Flax</td>
<td>13.57 9.66</td>
<td>1.67 1.69</td>
<td>11.40 10.76</td>
</tr>
<tr>
<td>Potatoes</td>
<td>134.7 222.12</td>
<td>436 .418</td>
<td>210.63 271.63</td>
</tr>
<tr>
<td>Turnips</td>
<td>384.2 377.78</td>
<td>216 .27</td>
<td>299.4 306.55</td>
</tr>
<tr>
<td>Hay and Clover</td>
<td>Tons 1 Tons 1 ton</td>
<td>Per Tons Per ton</td>
<td>Tons 1 Tons 1 ton</td>
</tr>
<tr>
<td>Sugar Beets</td>
<td>8 1.64 1.44</td>
<td>22 1.00 2.00</td>
<td>8 1.00 2.00</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>2 22 10</td>
<td>2.00 5.00</td>
<td>2 2.00 5.00</td>
</tr>
</tbody>
</table>
TABLE of Meteorological Observations taken at the Central Experimental Farm, Ottawa, from April 1, 1912, to March 31, 1913, giving maximum, minimum, and mean temperature for each month, with date of occurrence, also, the rainfall, snowfall, and total precipitation.

<table>
<thead>
<tr>
<th>Month</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Range</th>
<th>Mean</th>
<th>Highest</th>
<th>Date</th>
<th>Lowest</th>
<th>Date</th>
<th>Rainfall</th>
<th>Date</th>
<th>Snowfall</th>
<th>Date</th>
<th>Total Precipitation</th>
<th>Date</th>
<th>Precipitation in 24 hours</th>
<th>Date</th>
<th>Heaviest in 24 hours</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>49.20</td>
<td>28.05</td>
<td>20.25</td>
<td>39.07</td>
<td>67.015th</td>
<td>7th</td>
<td>2.60</td>
<td>2.00</td>
<td>2.00</td>
<td>6th</td>
<td>13.068</td>
<td>7th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>64.46</td>
<td>46.02</td>
<td>18.56</td>
<td>82.25</td>
<td>95.828th</td>
<td>5th</td>
<td>5.15</td>
<td>5.13</td>
<td>17.144</td>
<td>24th</td>
<td>14.042</td>
<td>6th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>73.68</td>
<td>49.58</td>
<td>24.09</td>
<td>61.62</td>
<td>88.424th</td>
<td>3rd</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>6th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>81.17</td>
<td>56.94</td>
<td>24.19</td>
<td>60.05</td>
<td>93.87th</td>
<td>7th</td>
<td>3.89</td>
<td>3.89</td>
<td>13.083</td>
<td>15-16th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>71.89</td>
<td>53.20</td>
<td>18.85</td>
<td>62.04</td>
<td>81.814th</td>
<td>4th</td>
<td>4.94</td>
<td>4.94</td>
<td>19.185</td>
<td>25th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>56.16</td>
<td>39.27</td>
<td>16.04</td>
<td>38.01</td>
<td>60.07th</td>
<td>9th</td>
<td>4.01</td>
<td>4.01</td>
<td>20.062</td>
<td>19th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>73.89</td>
<td>59.47</td>
<td>14.41</td>
<td>82.75</td>
<td>90.60</td>
<td>6th</td>
<td>2.47</td>
<td>2.47</td>
<td>13.066</td>
<td>6th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>46.89</td>
<td>27.96</td>
<td>12.93</td>
<td>34.42</td>
<td>58.46th</td>
<td>6th</td>
<td>2.59</td>
<td>2.59</td>
<td>13.010</td>
<td>25th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>39.85</td>
<td>14.47</td>
<td>15.37</td>
<td>22.63</td>
<td>50.06th</td>
<td>6th</td>
<td>1.17</td>
<td>1.17</td>
<td>17.021</td>
<td>19th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>29.05</td>
<td>12.16</td>
<td>17.49</td>
<td>20.06</td>
<td>42.031st</td>
<td>8th</td>
<td>2.17</td>
<td>2.17</td>
<td>21.032</td>
<td>3rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>21.02</td>
<td>0.19</td>
<td>19.83</td>
<td>10.60</td>
<td>37.821st</td>
<td>18th</td>
<td>2.20</td>
<td>2.20</td>
<td>13.060</td>
<td>6th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>34.99</td>
<td>17.38</td>
<td>17.60</td>
<td>26.18</td>
<td>58.824th</td>
<td>8th</td>
<td>32.54</td>
<td>32.54</td>
<td>106.50</td>
<td>43.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rain or snow fell on 192 days during the 12 months.
Heaviest rainfall in 24 hours, 1.44 inches, on May 24.
Heaviest snowfall in 24 hours, 21.60 inches, on November 23.
The highest temperature during the 12 months was 85.8, on July 7.
The lowest temperature during the 12 months was −18.6, on February 25.
During the growing season, rain fell on 13 days in April, 17 days in May, 11 days in June, 13 days in July, 19 days in August, and 20 days in September.
April, July, and November show the lowest number of days with precipitation, viz., 13 each.
Total precipitation during the 12 months, 43.18 inches, as compared with 29.95 inches during 1911-12.
Rainfall, Snowfall, and Total Precipitation from 1890 to 1914; also, the average annual amount that has fallen.

<table>
<thead>
<tr>
<th>Year</th>
<th>Rainfall</th>
<th>Snowfall</th>
<th>Total Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
<td>Inches</td>
<td>Inches</td>
</tr>
<tr>
<td>1890</td>
<td>21.73</td>
<td>64.85</td>
<td>31.52</td>
</tr>
<tr>
<td>1891</td>
<td>30.19</td>
<td>73.50</td>
<td>37.69</td>
</tr>
<tr>
<td>1892</td>
<td>23.75</td>
<td>68.60</td>
<td>33.72</td>
</tr>
<tr>
<td>1893</td>
<td>31.79</td>
<td>72.50</td>
<td>35.64</td>
</tr>
<tr>
<td>1894</td>
<td>25.05</td>
<td>71.50</td>
<td>32.90</td>
</tr>
<tr>
<td>1895</td>
<td>27.61</td>
<td>87.50</td>
<td>35.76</td>
</tr>
<tr>
<td>1896</td>
<td>31.55</td>
<td>90.75</td>
<td>32.30</td>
</tr>
<tr>
<td>1897</td>
<td>24.18</td>
<td>89.00</td>
<td>33.18</td>
</tr>
<tr>
<td>1898</td>
<td>24.75</td>
<td>112.25</td>
<td>36.00</td>
</tr>
<tr>
<td>1899</td>
<td>33.86</td>
<td>77.25</td>
<td>41.13</td>
</tr>
<tr>
<td>1900</td>
<td>26.48</td>
<td>107.40</td>
<td>34.88</td>
</tr>
<tr>
<td>1901</td>
<td>39.21</td>
<td>97.50</td>
<td>36.91</td>
</tr>
<tr>
<td>1902</td>
<td>25.94</td>
<td>101.75</td>
<td>36.10</td>
</tr>
<tr>
<td>1903</td>
<td>26.43</td>
<td>85.00</td>
<td>34.92</td>
</tr>
<tr>
<td>1904</td>
<td>28.28</td>
<td>108.75</td>
<td>39.09</td>
</tr>
<tr>
<td>1905</td>
<td>28.71</td>
<td>87.25</td>
<td>32.42</td>
</tr>
<tr>
<td>1906-07</td>
<td>1.90</td>
<td>2.50</td>
<td>4.40</td>
</tr>
<tr>
<td>1907-08</td>
<td>21.73</td>
<td>72.50</td>
<td>34.04</td>
</tr>
<tr>
<td>1908-09</td>
<td>24.70</td>
<td>134.75</td>
<td>38.18</td>
</tr>
<tr>
<td>1909-10</td>
<td>22.15</td>
<td>107.00</td>
<td>32.91</td>
</tr>
<tr>
<td>1910-11</td>
<td>28.40</td>
<td>61.25</td>
<td>34.51</td>
</tr>
<tr>
<td>1911-12</td>
<td>18.94</td>
<td>88.25</td>
<td>32.72</td>
</tr>
<tr>
<td>1912-13</td>
<td>20.12</td>
<td>98.50</td>
<td>29.95</td>
</tr>
<tr>
<td></td>
<td>32.34</td>
<td>106.50</td>
<td>43.18</td>
</tr>
<tr>
<td>Total for 23 years and 3 months.</td>
<td>506.95</td>
<td>2135.25</td>
<td>860.51</td>
</tr>
<tr>
<td>Average for 23 years.</td>
<td>25.91</td>
<td>92.83</td>
<td>35.20</td>
</tr>
</tbody>
</table>

Record of Sunshine at the Central Experimental Farm, Ottawa, from April 1, 1912, to March 31, 1913.

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>Number of days with Sunshine.</th>
<th>Number of days without Sunshine.</th>
<th>Total hours Sunshine.</th>
<th>Average Sunshine per day.</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>26</td>
<td>4</td>
<td>234.6</td>
<td>7.82</td>
</tr>
<tr>
<td>May</td>
<td>25</td>
<td>6</td>
<td>204.3</td>
<td>6.99</td>
</tr>
<tr>
<td>June</td>
<td>29</td>
<td>1</td>
<td>308.6</td>
<td>10.28</td>
</tr>
<tr>
<td>July</td>
<td>30</td>
<td>1</td>
<td>312.5</td>
<td>10.43</td>
</tr>
<tr>
<td>August</td>
<td>30</td>
<td>1</td>
<td>178.8</td>
<td>5.76</td>
</tr>
<tr>
<td>September</td>
<td>22</td>
<td>8</td>
<td>102.1</td>
<td>3.40</td>
</tr>
<tr>
<td>October</td>
<td>26</td>
<td>5</td>
<td>173.0</td>
<td>5.98</td>
</tr>
<tr>
<td>November</td>
<td>20</td>
<td>10</td>
<td>83.8</td>
<td>2.79</td>
</tr>
<tr>
<td>December</td>
<td>17</td>
<td>14</td>
<td>66.2</td>
<td>2.13</td>
</tr>
<tr>
<td>January</td>
<td>21</td>
<td>10</td>
<td>94.4</td>
<td>3.04</td>
</tr>
<tr>
<td>February</td>
<td>26</td>
<td>2</td>
<td>124.2</td>
<td>4.38</td>
</tr>
<tr>
<td>March</td>
<td>20</td>
<td>11</td>
<td>107.7</td>
<td>3.47</td>
</tr>
</tbody>
</table>

WILLIAM T. ELLIS, Observer.
EXPERIMENTS

Feeding

Legislation

In addition to the Annual Report of the Experimental Farms, there were issued, during the year ending March 31, 1913, the following:—

A Guide to the Dominion Experimental Farms and Stations. This was brought out in several editions, one covering the whole Experimental Farm system, and the others dealing with the Maritime Provinces, Quebec, Ontario, the Prairie Provinces and British Columbia, respectively. A description of each Experimental Farm is given, with an account of the work being taken up at each. The book is profusely illustrated with maps and plates, and is intended to serve both as a guide to visitors to the Farms and as an acceptable form of reply to inquiries as to the lines of work being carried on.

In the regular series of bulletins, No. 72, on Milk Production in Canada, was prepared by the writer of this report.

In it, an effort has been made to cover the ground of dairying, dairy breeds, the breeding and feeding of dairy cattle, diseases of dairy cattle, buildings, and dairy farming in general, in as complete a manner as possible within the limits of a bulletin. Special attention has been given to treating the subject in a practical manner and to presenting it in an easily understood form.

In the second series, there have been issued:—

Bulletin No. 10, on the Large Larch Sawfly, by the Dominion Entomologist. Dr. C. G. Hewitt. This bulletin gives the results of the author’s work and observations on this destructive insect.

Bulletin No. 11, entitled ‘Legislation to prevent the Introduction and Spread of Insects, Pests and Diseases Destructive to Vegetation, with Regulations regarding the Importation of Vegetation into Canada.’ This publication, issued by the Dominion Entomologist, gives the legislation and regulations, with latest amendments, along the lines stated in the title.

No. 12, on ‘Feeding for Beef in Alberta,’ by G. H. Hutton, B.S.A., Superintendent of the Experimental Station at Lacombe, Alta., gives the results of a series of tests in steer feeding at the Lacombe Station.

No. 13, on ‘Experiments in Steer-Feeding in Manitoba,’ by W. S. McKillican, B.S.A., Superintendent of the Experimental Farm at Brandon, Manitoba, gives the results of steer-feeding experiments at the Experimental Farm there. In both these bulletins the possibility of profitable steer-feeding is demonstrated.

No. 14, on ‘Corn Growing in Manitoba’ by W. S. McKillican, B.S.A., was prepared with a view to making the growing of Indian corn for ensilage more popular and widespread in Manitoba. The results of experiments in this line on the Brandon Farm are given, suitable varieties are named, and correct cultural methods suggested.

Of pamphlets, three have been issued, all by the Dominion Horticulturist, Mr. W. T. Macoun:—

No. 9, Hardy Rose Culture in Canada; No. 10, Tomato Culture; and No. 11 on Cabbage and Cauliflower Culture.

Of circulars, three were issued by the Division of Botany:—

No. 1, Potato Canker imported into Canada; No 2, The Orange Hawk-weed; No. 3, Potato Canker.

Nos. 1 and 2 are coloured cards, with descriptive matter, designed to hang up in post offices, schools, etc. No 3 gives a fuller description of the disease illustrated in No. 1.

Two entomological circulars were issued: No. 1, by J. M. Swaine, M.Sc., on Tent Caterpillars, giving the life-history of this insect, and discussing methods for its control; and No. 2, by Arthur Gibson, on Flea Beetles and their Control.
CORRESPONDENCE.

The correspondence of the Experimental Farm system, as listed below, may be divided into letters of administrative and of technical character, the former having to do with the conduct of the Farms themselves, and the latter, which comprises most of the correspondence with the public, being made up principally of replies to inquiries on all classes of subjects relating to agriculture. It is not only a great advantage to Canadian farmers to have an institution such as the Dominion Experimental Farms to which they can refer their difficulties, but the letters received from them are also, on the other hand, a great aid to the Experimental Farm officers in keeping in touch with the farmer.

The various officers of the Central and Branch Farms are at all times glad to receive communications from those desiring information on subjects related to agriculture in its many phases.

The number of letters received and sent from the different Divisions of the Central Farm and from the Branch Farms and Stations is shown in the following table:

<table>
<thead>
<tr>
<th>Division</th>
<th>Letters Received</th>
<th>Letters Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director's Office</td>
<td>20,642</td>
<td>12,072</td>
</tr>
<tr>
<td>Animal Husbandry</td>
<td>1,354</td>
<td>2,143</td>
</tr>
<tr>
<td>Field Husbandry</td>
<td>358</td>
<td>1,089</td>
</tr>
<tr>
<td>Horticultrist</td>
<td>5,820</td>
<td>6,336</td>
</tr>
<tr>
<td>Cerealist</td>
<td>13,430</td>
<td>3,977</td>
</tr>
<tr>
<td>Chemist</td>
<td>2,736</td>
<td>2,658</td>
</tr>
<tr>
<td>Entomologist</td>
<td>5,105</td>
<td>6,938</td>
</tr>
<tr>
<td>Botanist</td>
<td>2,107</td>
<td>2,51</td>
</tr>
<tr>
<td>Agrostologist</td>
<td>188</td>
<td>296</td>
</tr>
<tr>
<td>Poultry Division</td>
<td>4,833</td>
<td>6,463</td>
</tr>
<tr>
<td>French Correspondent</td>
<td>7,886</td>
<td>5,615</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>16,565</td>
<td>4,919</td>
</tr>
<tr>
<td>Totals</td>
<td>81,624</td>
<td>54,151</td>
</tr>
</tbody>
</table>

REPORTS, BULLETINS AND CIRCULARS.

Reports and bulletins mailed. 16,475
Circulars re distribution Seed Grain 29,003
REPORT OF THE DIRECTOR

SESSIONAL PAPER No. 16

BRANCH FARMS AND STATIONS.

<table>
<thead>
<tr>
<th>Farm or Station</th>
<th>Letters Received</th>
<th>Letters Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlottetown</td>
<td>1,116</td>
<td>1,242</td>
</tr>
<tr>
<td>Fredericton</td>
<td>964</td>
<td>1,121</td>
</tr>
<tr>
<td>Nappan</td>
<td>3,221</td>
<td>3,518</td>
</tr>
<tr>
<td>Kentville</td>
<td>2,216</td>
<td>2,461</td>
</tr>
<tr>
<td>Ste. Anne de la Pocatière</td>
<td>256</td>
<td>191</td>
</tr>
<tr>
<td>Cap Rouge</td>
<td>1,701</td>
<td>2,027</td>
</tr>
<tr>
<td>Brandon</td>
<td>3,460</td>
<td>3,378</td>
</tr>
<tr>
<td>Indian Head</td>
<td>13,391</td>
<td>15,212</td>
</tr>
<tr>
<td>Rosthern</td>
<td>1,813</td>
<td>1,921</td>
</tr>
<tr>
<td>Scott</td>
<td>668</td>
<td>642</td>
</tr>
<tr>
<td>Lethbridge</td>
<td>2,975</td>
<td>3,137</td>
</tr>
<tr>
<td>Lacombe</td>
<td>4,304</td>
<td>3,821</td>
</tr>
<tr>
<td>Agassiz</td>
<td>3,150</td>
<td>3,373</td>
</tr>
<tr>
<td>Totals</td>
<td>39,947</td>
<td>40,050</td>
</tr>
</tbody>
</table>

These totals for the Branch Farms and Stations are exclusive of reports, bulletins and circulars sent out.

By adding the figures for the Central and Branch Farms, the total number of letters received is seen to be 120,971 and of those sent, 94,201.

SEED DISTRIBUTION.

The annual distribution of samples of seed grain and potatoes was carried on. All applications for grain were filled from Ottawa, as well as most of those for potatoes, coming from Ontario and Quebec. The details of the distribution from Ottawa are given further down, where mention is made of this and other work of the Dominion Cerealist, to whose charge it is entrusted. In addition to the seed sent from Ottawa, amounting in all to 8,276 samples, there were distributed from the Branch Farms and Stations, 5,224 samples, as follows:

<table>
<thead>
<tr>
<th>Farm or Station</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlottetown</td>
<td>28</td>
</tr>
<tr>
<td>Nappan</td>
<td>484</td>
</tr>
<tr>
<td>Brandon</td>
<td>367</td>
</tr>
<tr>
<td>Indian Head</td>
<td>2,788</td>
</tr>
<tr>
<td>Lethbridge</td>
<td>280</td>
</tr>
<tr>
<td>Lacombe</td>
<td>858</td>
</tr>
<tr>
<td>Rosthern</td>
<td>176</td>
</tr>
<tr>
<td>Agassiz</td>
<td>243</td>
</tr>
</tbody>
</table>

5,224

There was, in addition, a large distribution of inoculated soil for growth of alfalfa, made especially from the Western Farms, as well as a distribution of sweet corn from the Cap Rouge Station to applicants in Quebec, and of tree seeds, etc., from the Prairie farms.

After supplying the grain required for this distribution, the remainder, after keeping what was required for seed next year, was sold in lots of from two to six bushels.
NEW BUILDINGS.

An extension to the Chemical Laboratory on the Central Farm was practically completed this year. The increased work of this Division made such an extension most necessary, and will enable it to take up lines of work heretofore unattempted owing to lack of laboratory room.

A cow barn, to accommodate twenty-four milch cows, was also built. It is constructed with a view to experimental work in feeding and pure milk production. Arrangements are also made for research into the comparative digestibility of feeds.

On the Branch Farms and Stations, the heaviest building operations took place on the Experimental Station at Kentville, N.S., the Experimental Farm at Indian Head, Sask., and the Experimental Station at Lacombe, Alta. On several of the other Farms and Stations buildings were erected also, as mentioned further on in this report.

NEW DIVISIONS FORMED.

It was decided this year to subdivide the work heretofore carried on by the Dominion Agriculturist. This step was made necessary by the rapid expansion of the work, rendering it impossible for any one officer to do justice to all the different lines of experiment.

Two Divisions have been formed as a result, those of Animal Husbandry and of Field Husbandry.

A third Division, that of Forage Plants, was also formed during the year. The officer at the head of this Division is known as the Dominion Agrostologist, and has to do with the study of forage plants and roots, with a view to the breeding of new varieties, as well as the testing of sorts now known. Work is being carried on at Ottawa and, to some extent, at the various Branch Farms. The Division will work in conjunction with the Divisions of Animal Husbandry and of Field Husbandry, as to the practical testing of varieties produced.

For the past year, the work of the Division of Field Husbandry has been carried on by Mr. O. C. White, B.S.A., under my supervision.

During the year, the Tobacco Division, which heretofore had been a separate branch of the Department, became a part of the Experimental Farms system, its chief officer, Mr. F. X. Charlan, remaining in charge. In addition to the experimental work carried on by this Division on the Central Farm at Ottawa, branch Tobacco Stations are established at Harrow, in Ontario, and at Farnham and at St. Jacques de l'Achigan, in Quebec.

ADDITIONS TO AND CHANGES IN THE STAFF.

In June, 1912, Mr. E. S. Archibald, B.A., B.S.A., was appointed Dominion Animal Husbandman.

He was born at Yarmouth, N.S., May 12, 1885, and received his primary education at Yarmouth Public School and Yarmouth Academy. He entered Acadia University in 1901 from which he took his Arts degree in 1905. He also graduated from the Nova Scotia Horticultural School in the same year, and from Nova Scotia Agricultural College in 1906. He received his degree of Bachelor of Scientific Agriculture from the Ontario Agricultural College, in the year 1908. During the summers of 1904 to 1908 he worked on several of the largest stock farms in the Maritime Provinces and Ontario, in the capacity of assistant husbandman, herdsman and farm foreman. In the fall of 1908, he accepted the position of Instructor of Agriculture and Experimentalist at the Nova Scotia Agricultural College. He was raised to the position of Professor of Agriculture and Farm Superintendent at the Nova Scotia Agricultural College, in the year 1910. In June, 1912, he resigned his position in Nova Scotia to accept the
SESSIONAL PAPER No. 16

position of Dominion Animal Husbandman on the Central Experimental Farm, Ottawa.

Dr. M. O. Malte, Dominion Agrostologist, was born in Southern Sweden in 1850. After attending Preparatory School and Collegiate Institute, he passed examinations for entrance into the University of Lund, in Southern Sweden, in 1898.

After having been graduated a Bachelor of Science and, later, Licentiate of Science (corresponding to Master of Arts), he defended successfully before the Faculty of the University of Lund a thesis in botany for the degree of Doctor of Philosophy, in 1910.

While studying at the university, he was, during a number of years, engaged as assistant at the Botanical Gardens connected with the university. During three consecutive summers, 1904-7, he was engaged as assistant at the Plant Breeding Station of Svalöf, Sweden, working with grasses and clovers.

During the two years immediately preceding his coming to Canada he was engaged as a teacher in Natural Science at the Collegiate Institute of Kristianstad, in Southern Sweden.

Since October, 1910, he has been connected with the Dominion Department of Agriculture, Ottawa, at first with the Seed Branch of this department and later, since May, 1912, with the Central Experimental Farm.

He has published the following scientific bulletins and pamphlets: First, Physiological investigation on the cell-enclosures in the orchidaceous plants (German); second, Epilobium hirsutum x Montanum, a new hybrid (Swedish); third, Alchemilla pratensis, in Sweden (Swedish); fourth, the Construction of the Nucleus in the family of Euphorbiaceae (Swedish); fifth, Embryological and Cytological Investigations on Mercurialis annua (Swedish); sixth, Seed Types in Forage Plants (Washington).

During the time he was connected with the Seed Branch he was engaged in writing in co-operation with Mr. Geo. H. Clark, Seed Commissioner, a book on 'Fodder and Pasture Plants', which is now being printed.

During the winter just passed, the former Poultry Manager, Mr. A. G. Gilbert, found that his health would no longer permit him to take that active part in poultry work incident to the position which he had held, as officer in charge of the Poultry Division, since the organization of the Dominion Experimental Farms, in 1886.

While surrendering his onerous duties as chief to his successor, Mr. F. E. Elford, he has consented to remain on the staff of the Poultry Division, acting in an advisory and consultative capacity, a position in which his wide experience will prove of the greatest value.

Mr. Gilbert may justly lay claim to being a pioneer in the poultry business, as that term is now understood. Previous to his appointment as Poultry Manager, in 1886, he conducted a profitable poultry farm near Ottawa, and it was, no doubt, owing to his marked success therein, that he first received that position in the Government service he has since so ably held.

In addition to carrying on experimental work along many lines, Mr. Gilbert's services have yearly been in great demand as a lecturer on poultry topics, and there is, perhaps, no speaker on that subject more widely or more favourably known throughout Eastern Canada.

Mr. F. C. Elford, lately appointed Dominion Poultry Husbandman, was born in Waterloo county, Ont., in 1871. Two years later, he accompanied his parents to Holmesville, Huron county, living with them on the farm. From 1877 to 1887, he went to the public school there, and from the latter date, until 1891, attended the Clinton High School.

During the years 1893-4 and 1896-7, he attended the Ontario Agricultural College at Guelph, specializing in poultry work, and afterwards taking special work with Professor L. G. Jarvis.
Outside of the time spent at school and college, he worked on the farm and took an interest in Farmers' Institute work, being secretary of the West Huron Farmers' Institute for five years, and speaking for several winters on the Institute staff.

From 1900 to 1903, he managed a Dominion Poultry Station for the Department of Agriculture, and in the latter year, upon the resignation of Mr. F. C. Hare, he took charge of the Poultry Division, Live Stock Branch, under Professor J. W. Robertson. After remaining here two years, he resigned to take the management of the Poultry Department at Macdonald College, under Dr. Robertson.

Nearly seven years were spent at Macdonald, until, in January, 1912, he took up work with the Cyphers Incubator Co., of Buffalo, N.Y. After six months, he left Buffalo to take the management of the Canadian Incubator Co., Toronto, and while filling this position was appointed Dominion Poultry Husbandman. This is a newly-created office, whose incumbent is in charge of poultry breeding and feeding operations at the Central Experimental Farm, as well as at the different branch Farms of the Dominion Experimental Farms system, throughout which it is proposed to do very considerable poultry work in the future.

Mr. W. S. Blair, Superintendent of the Experimental Station, Kentville, N.S., was born at Onslow, Colchester county, Nova Scotia, August 24, 1873. After his early training in the country school, one winter was spent at the Ontario Business College, Belleville, Ont. This was followed by two years at Mount Allison Academy, taking, in addition to the regular course of studies, chemistry, physics, botany and geology. Two years were spent at the Nova Scotia Horticultural School, Wolfville, N.S., from which a diploma was granted. When attending the horticultural school, special studies were taken in the natural sciences at Acadia College.

He was appointed Horticulturist, Maritime Experimental Farm, Napan, N.S., in 1897, which position he resigned, in 1905, to take charge of the Horticultural Department at Macdonald College, P.Q., which department he had the management of until he resigned in June, 1912, to assume the duties of Superintendent of the Experimental Station for the Annapolis Valley at Kentville.

On April 10, 1907, he received the appointment from McGill University of Assistant Professor of Horticulture at Macdonald College. On October 5, 1909, by order of the Board of Governors of McGill University, he was appointed Professor of Horticulture at Macdonald College, with a seat on the Faculty of Agriculture.

He was appointed Superintendent of the Kentville Experimental Station, June, 1912.

Mr. Joseph Bégin, appointed to the position of Superintendent of the Experimental Station at Ste. Anne de la Pocatière, Que., was born in 1870 in the parish of St. Jean Chrysostome, where he received his education up to the age of fourteen, after which he took the 'Landry' popular course in agriculture in vogue at that time. After working a year on his father's farm, he entered the nurseries of Caron and Dusseau, of St. Henri, to obtain a practical knowledge of horticulture and arboriculture. In 1885, he went to the Canadian West, where he held positions with the Hudson Bay Company and with the Canadian Pacific Railway Company.

Returning to Quebec in 1895, he bought 90 arpents of land, part unbroken and the remainder in a very poor state of cultivation. This, the St. Isidore Farm, was classed fifth in 1908 in the Good Farm competition of the county. He was the first, if not the only one, to practise scientific dairying in the parish, and to adopt and follow regular rotations. With poultry, he has studied systems of artificial incubation and also the problems connected with the construction of sanitary, comfortable and cheap poultry houses.

Mr. W. W. Hubbard was appointed to the office of Superintendent of the Experimental Station at Fredericton, N.B., on the 1st of October, 1912.
He was born in 1866 and brought up on a farm on the St. John river, at Burton, Sunbury county. At the age of fifteen, he matriculated into the Agricultural College at Guelph, Ontario, where he graduated as a Live Stock Specialist, in April, 1884. He then returned to New Brunswick and joined with his father in conducting the farm at Burton.

He was for many years secretary of the Farmers' and Dairymen's Association of New Brunswick. During this time he was engaged by the Government of Canada as a dairy specialist and was for some years in charge of the Experimental Stations at Kingsclear and Sussex, N.B., and organized local dairy associations throughout the province, under the direction of Dr. James W. Robertson, then Dairy Commissioner for Canada. He was also actively interested in many other matters having to do with advanced agriculture, during the period from his graduation to 1908.

After the provincial elections of 1908, which resulted in the accession of the Hazen Government to power, a Royal Commission was appointed by that Government to make a thorough inquiry into the agricultural conditions and possibilities of New Brunswick, and Mr. Hubbard was chosen one of its members, and its secretary. He also acted as official reporter of the legislature for New Brunswick for the sessions of 1908-9.

Shortly after the report of the Agricultural Commission was presented to the Government, in 1909, Mr. Hubbard was appointed Secretary for Agriculture for the province, holding the rank of deputy head of the department, and in that capacity assisted in giving effect to some of the recommendations of the Agricultural Commission, through which the number of agricultural societies in the province has been more than doubled, the horticultural branch organized, the poultry industry encouraged, and much work done for the improvement of live stock and agricultural education generally.

He resigned from his position of Secretary for Agriculture to accept his present appointment.

Mr. G. B. Rothwell, Assistant Dominion Animal Husbandman, was born at Ottawa, in 1884. His early training was received at Ottawa Public Schools, Collegiate Institute, and at his father's dairy farm near Ottawa. In 1901, he entered the Ontario Agricultural College, taking the Agricultural and Live Stock option, and graduating in 1903. He then returned to his home, becoming identified with extensive dairy interests there. Mr. Rothwell was appointed to his present position in 1912.

Mr. F. L. Sladen, Assistant Entomologist for Agriculture, was born in England, in 1876, and has been engaged in bee-keeping since boyhood. He has conducted apiaries with a view to honey production on a large scale, and has done valuable work in bee improvement, having succeeded in producing a breed of great value for crossing.

In addition to a booklet on the bumble-bee, published at the age of sixteen, he is the author of Queen-rearing in England, published in 1905. This work describes the methods employed in breeding the new bee referred to above.

In 1912, he brought out an extensive work on the bumble-bee, covering the results of many years' investigations.

In 1910, he made a tour in Canada and the United States, visiting prominent bee-keepers. He has made several important discoveries in the morphology and physiology of the honey-bee.

He has been employed by the Indian government to select and ship to India different varieties of the honey-bee, and by the Canterbury Agricultural and Pastoral Association of New Zealand, to select and ship to that Dominion new species of bumble-bees.

Mr. Sladen's training in entomology, as well as apiculture, opens a large field of usefulness to him in Canada.
Mr. J. M. Robinson, Assistant to the Superintendent of the Experimental Station, Kentville, N.S., was born in Berwick, N.S., in 1886. Until he was eighteen years old his time was divided between working on his father's farm and attending the Public and High Schools at Berwick. After leaving school, at eighteen, he was engaged in farming until twenty-two.

In the fall of 1908, he entered the Nova Scotia Agricultural College, at Truro, N.S., and in the following year continued his studies in agriculture at Macdonald College. In 1912, he graduated from the latter with the degree of B.S.A. Upon graduation he was appointed to his present position.

Mr. Milton J. Tinline, Assistant Superintendent at the Experimental Farm, Brandon, Man., was born in York county, Ontario. In 1890, his father moved to Elkhorn, Man., where the son received his Public and High School education. After leaving school, he had charge of his father's farm at Elkhorn until the autumn of 1906, when he entered the Manitoba Agricultural College, graduating with the pioneer class, in 1911. The following summer he held the position of foreman on the College farm, and during the winter had charge of their seed-testing laboratory. In the spring of 1912, he was appointed to his present position, in which he has special charge of the Cultural Investigation work.

Mr. Robert Whiteman, Assistant to the Superintendent of the Experimental Farm at Indian Head, Sask., was born and brought up near Russell, Man. At the age of twenty-two, he entered the Manitoba Agricultural College, graduating in the spring of 1912. During his college course he did considerable work for the provincial governments, attending fairs, and lecturing at Institute meetings. In the spring of 1912, he was appointed to his present position.

In September, 1912, Mr. H. Sirrett, B.S.A., Assistant to the Dominion Cerealist, resigned that position to join the staff of the Canadian Countryman. The resulting vacancy was filled by the appointment of Mr. Robert Newton, B.S.A.

Mr. R. Newton was born at Montreal, Que., in 1889. His early education was obtained in the Public and High Schools of that city.

The years 1903-8 were spent in practical farm work at Plaisance, Que. In 1908 he entered upon the four years' agricultural course at Macdonald College. While at this institution he spent two summers engaged in cereal work under the direction of Prof. L. S. Klinek, and specialized in cereal husbandry in his fourth year.

After graduating in 1912, he was appointed district representative for Macdonald College in Pontiaé County, Que., from which position he came to the Central Experimental Farm in March, 1913.

In December of last year, Mr. T. G. Bunting, B.S.A., Assistant to the Dominion Horticulturist, accepted the position of Professor of Horticulture at Macdonald College, in succession to Professor W. S. Blair, now Superintendent of the Experimental Station at Kentville, N.S.

NEW STATIONS.

An Experimental Station for the province of New Brunswick was established at Fredericton, in September, 1912.

It is situated about three miles below the city, fronting on the river St. John, and is crossed by the Canadian Pacific and the St. John Valley railroads.

The Station farm is made up of several properties, and is some 450 acres in extent. About one hundred acres of this had been in crop, the remainder of it being unbroken, and much of it uncleared. During the autumn and winter, considerable clearing and draining have been done.

About twenty acres were ploughed, and horses and some implements purchased. There are no buildings suitable for an Experimental Station on the property, but it is hoped to erect several of those required during the coming year.
JOURNEYS MADE.

During the year, I visited the various branch Experimental Farms and Stations, and a number of the Substations. In some cases, where new Farms were being established, it was necessary to make several visits in connection with the general organization, the installation of new officers or the laying out of the farms in question.

In addition to the various above-mentioned visits of inspection, many other trips were undertaken during the year, probably the most important being (1), a trip to Fort George, B.C., made by automobile and steamer from Ashcroft over the Caribou trail to Soda creek, thence by steamer, as a usual thing, but in this case all the way by automobile, on the first one to enter Fort George. Several addresses were delivered on the fair grounds, and judging done of agricultural products and live stock of various kinds, as entered for competition at the first annual fair of the Fort George Agricultural Association, to attend which the trip had been undertaken.

While in the Fort George district, advantage was taken of the opportunity to make a number of excursions east and west of the Fraser river, and along the Nechako. In practically every direction, crops being grown by settlers, most of whom had been in the country but a few years, bore witness to the wonderful fertility of the soil and the suitability of the climate to the production of grasses, vegetables, cereals and small fruits and to live stock farming. Some most remarkable crops of oats, potatoes and hay were inspected, and live stock of all kinds seemed to be doing exceedingly well.

(2) A trip to Pullman, Washington, U.S.A., to look into land clearing methods, as practised by the Washington State Experiment Station staff at various points in the more heavily-wooded areas of the state, was also made. Clearing conditions there closely resemble those which obtain in many parts of British Columbia.

MEETINGS.

My duties as Director do not permit of my attending very many meetings as a speaker on agricultural or other subjects. I did, however, during the year speak at a number of points, among which might be mentioned the Maritime Fat Stock and Poultry Show, Amherst, N.S.; Fort George Agricultural Exhibition, Fort George, B.C.; Quebec Dairymens’ Convention, Terrebonne, Que.; Ontario Entomological Society Meeting, Ottawa, Ont.; Eastern Ontario Dairymens’ Convention, Kingston, Ont.; Eastern Ontario Fat Stock and Poultry Show, Ottawa, Ont.; Live Stock Association Meetings, Toronto, Ont.; Quebec Live Stock Association Meetings, Montreal, Que.; Manitoba Fat Stock Show, Brandon; Quebec Seed Growers’ Association, Quebec, Que.; Moosejaw Canadian Club; New Brunswick Farmers’ Association, Fredericton, N.B.; and several Farmers’ Clubs in different provinces.

REPORTS OF EXPERIMENTS AT FORT SMITH, RESOLUTION AND PROVIDENCE, MACKENZIE DISTRICT.

Owing to the very poor success in the experimental work at the above points last year, it was thought advisable to discontinue tests at them for the present. However, the Fathers in charge of the Missions at these Forts have reported on their work for the season of 1912. The results, as a whole, are more encouraging than those of 1911, especially at Forts Resolution and Providence.

FORT SMITH.

At Fort Smith the season was a bad one in every respect. The snow had completely disappeared by April 20, but the land could not be worked before May 8.
the 9th and 10th some grain was sown, and vegetable seeds, such as White Flat Strap-leaf turnip, swedes, Half-long Chantonnay and French Horn carrots, Early Blood-red and Egyptian-Red beets, and Red Welsh field onions; Alas'a, Cleveland's First and Best, McLean's Advance and Gregory's Surprise peas; also, cabbage, radishes and lettuce.

On May 11, Banner and Siberian oats were sown, and also different varieties of wheat, rye and barley.

On the 17th there was a light snow fall, followed by a frost (26 degrees). This was followed by a drought, lasting throughout June, which did a great deal of injury. In July, hail fell, and this was followed by a frost. In August, there was frost again, which was especially injurious to the potato crop.

In brief, this has been the second consecutive year quite unfavourable for crops. It is thought, however, that better results will be obtained as more clearing is done. The nearness of the woods retains the moisture, so that, at the least fall in temperature, there is a frost. Every year, near the woods, there is frost, while in the clear space near the river, there is none. The land in the latter locality is not good, however, being very sandy and will only produce a crop when well manured.

In the garden near the house, in a sandy soil, turnips were grown weighing up to 8 pounds each; carrots did well, many weighing 1½ pounds each; beets up to 3 pounds, but a large proportion had too many roots. Onions did not do well, few germinated and these were very small. Peas did very well, though much later than the preceding year, not being ready for use until the end of July. They did not commence to ripen until the beginning of September. The Caractacus variety of pea seems still the best for this country, being earlier and more hardy. After these come Gregory's Surprise and Alaska, McLean's Advance and Cleveland. First and Best is productive, but later. In another garden, some distance away, English Wonder and American Wonder peas were sown, but both sorts were frosted, owing to their nearness to the woods. The same happened to the tomatoes and beans. Squash produced a few flowers, but nothing afterwards.

Oats did well in spite of the unfavourable season. They were five feet high, and the three varieties tried yielded about the same. The potatoes, in the same field as the oats, were all frozen. The oats, sown on May 11, were not harvested until September 26.

Barley did not succeed, it being attacked with rust, and frozen.

FORT RESOLUTION.

At Fort Resolution, the results, as a whole, were good. The condition and variety of the field and garden crops were a surprise to travellers from the more settled districts.

The early part of June was dry, but there was a light rainfall on the 10th, and a heavy one on the 30th. July was cold. Rain during the latter part of August was of great benefit to the potato crop.

On September 17 there was a heavy storm from the north, the temperature fell rapidly and the weather thereafter remained cold.

Owing to the grain sown not being covered deeply enough, much of it was eaten by snowbirds, which are present in myriads each spring in that region.

Germination was slow, caused by the drought in spring, but by the middle of July, grain and vegetable crops had an excellent appearance. Considerable damage was done by a band of dogs getting into the garden enclosure at the Mission.

The yields of grain are not given, as the threshing was not well done, much of the grain being left in the straw. (It is a very difficult matter to secure crustworthy labourers from among the Indians at the Missions, and they will generally work for only a few days at a time.)
SESSIONAL PAPER No. 16

Four varieties of oats sown ripened from September 6 to 16, and four of wheat were ready to cut on the 16th of the same month. Three varieties of barley were ripe from September 2 to 6. Winter rye did not mature. Spring rye was ripe on September 16. All the above were sown on May 15.

Onions did not yield a crop this year. Carrots and beets, sown May 17, were pulled September 18.

Four varieties of cabbage tested were all destroyed by dogs. Three varieties of lettuce, sown May 18, were in use July 12 to 15. Turnips, sown May 20, were fit for use July 30, and four varieties of peas, sown May 14, were in use July 30. Gregory’s Surprise ripened September 15.

Some cross-bred apple seeds, sown in the greenhouse, March 18, produced plants ten to eleven inches high. Apple seeds sown in the open, did not come up. The two-year-old apple trees are some three feet high.

Ten varieties of flowers, sown in the greenhouse and transplanted May 14-20, bloomed from July 31 to August 31.

FORT PROVIDENCE.

The work at Fort Providence was not reported on very fully this year, as it was not well understood how much detail was required. Following are some notes on the results obtained:

CEREALS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>May 7</td>
<td>May 20</td>
<td>July 1</td>
<td>Sept. 10</td>
</tr>
<tr>
<td>Oats</td>
<td>" 7.</td>
<td>" 21</td>
<td>July 1</td>
<td>" 28.</td>
</tr>
<tr>
<td>Rye</td>
<td>" 7.</td>
<td>" 22</td>
<td>" 1</td>
<td>" 30.</td>
</tr>
</tbody>
</table>

Two varieties of clover were sown, but the growth was not very vigorous.

Lettuce, sown May 6, was above ground on June 3, and was fit for use June 22. Best varieties, Cos Trianon and Grand Rapids, both of which were cut four times.

Radishes were sown May 7, and were up on June 6. Fit for use June 20 to 25.

Garden peas were sown May 7, and were up on June 6. Pods were formed on July 15 and the crop was harvested September 4.

Cauliflowers, sown May 10, gathered August 7; one weighed 2 pounds and another 1 1/2 pounds.

Cabbages, sown in March in boxes in the house; planted in garden, May 15; harvested, September 15, to the number of 212, weighing from 4 to 5 pounds each. The heaviest was 6 1/2 pounds.

Table beets were, as a rule, small. Carrots were of fair size, but a light crop.

The potato crop totalled 1,014 barrels.

The last spring frost was on June 2. There was a slight frost on July 23, and the first frost of autumn occurred on August 31.

Flowers were not a success this year.
EXPERIMENTS AT FORT VERMILION, PEACE RIVER DISTRICT, ALBERTA.

The spring of 1912 opened very early, the snow starting to thaw during the early part of April. Seeding was begun on April 29, but was not general until May 2. May opened very dry and continued so throughout the month, and, as a result, growth was very slow. June was very dry and hot, with only ½ of an inch of rain during the whole month. This gave the crops a permanent set-back which all the rains of July could not remedy. The crops that were not ploughed under were very light.

July opened showery and cold, a slight frost occurring on the nights of the 9th, 14th and 19th, which did considerable damage. The first part of August was showery, and the ripening period was prolonged. From the 13th to the 21st, however, the weather was good, and considerable cutting was done on the experimental plots. Frost occurred three times towards the end of the month. Notwithstanding, everything on the Experimental Station was a decided success, the wheat, when threshed, showing a yield of from 45 to 69 bushels per acre. Some of the varieties tested were Red Fife, Marquis, Bishop and Preston. Kubanka, a durum wheat, yielded 34 bushels per acre.

Three varieties of oats were grown, the Banner, Tartar King and Improved Ligowo, yielding 60 bushels, 63 bushels 18 pounds, and 72 bushels 32 pounds, respectively. Four varieties of barley ranged in yield from 75 bushels 30 pounds to 55 bushels 50 pounds per acre.

Longfellow Red Nose corn gave a yield of 12 tons 360 pounds of green fodder per acre.

Four varieties of turnips gave from 16 tons 1,600 pounds, to 21 tons 1,440 pounds per acre; four varieties of mangels from 10 tons 1,600 pounds to 16 tons 1,600 pounds. Four varieties of carrots from 8 tons 20 pounds, to 11 tons 500 pounds; and three varieties of sugar beets, from 8 tons 800 lbs to 18 tons per acre.

Five varieties of potatoes were tried, the Irish Cobbler giving the lowest yield, 96 bushels per acre, and the Carman No. 1 the highest, 288 bushels per acre.

No alfalfa was under trial this year, all the plots having been ploughed up.

Brome grass, sainfoin and canary grass gave good crops, the last-named at the rate of 4 tons per acre. Timothy, tall fescue, rye grass and awnless brome grass were poor, owing to drought in spring.

Vegetables did well, some of the specimens being of record size for the Peace River district; cabbage and cauliflower reached 15 pounds in weight, and other sorts in proportion. Varieties grown successfully in the open comprised asparagus, beans, table beets, carrots, celery, cucumbers, lettuce, parsley, garden peas, parsnips, radish, rhubarb, squash, spinach and table turnips. Tomatoes were cut down by frost on July 14.

Some twenty-nine varieties of flowers were sown in the open and gave a profusion of bloom until the first fall frost on September 23. Fourteen varieties sown in hot-beds and planted out late in May also did excellently.

Of seventy-three varieties of ornamental shrubs and trees, the records for the season indicate satisfactory growth and bloom in the great majority of cases. No winter-killing is reported.

In fruits, the cross-bred apple trees and their seedlings made from fair to very good growth, though none fruited this year. Plum trees did not do well. Raspberries and black, red and white currants all fruited.

METEOROLOGICAL RECORDS.

Following will be found the meteorological records for Fort Vermilion and also a table comparing these with records taken at Ottawa.
Exhibit of Farm Products. Grouard, Alberta, Sept. 18 and 19, 1912.

View of part of Experimental Station, Fort Vermilion, Peace River District, Alberta.
REPORT OF THE DIRECTOR

SESSIONAL PAPER No. 16

Table of Meteorological Observations taken at Fort Vermilion, Peace River District, Alberta, from April 1, 1912, to March 31, 1913, showing maximum, minimum, and mean temperature, the highest and lowest for each month with date of occurrence, also, rainfall, snowfall, and total precipitation.

<table>
<thead>
<tr>
<th>Months</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Range</th>
<th>Mean</th>
<th>Highest</th>
<th>Date</th>
<th>Lowest</th>
<th>Date</th>
<th>Rainfall</th>
<th>Total Precipitation</th>
<th>Snowfall</th>
<th>Number of Days Precipitation</th>
<th>Heaviest in 24 hours</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>48.28</td>
<td>21.19</td>
<td>27.09</td>
<td>34.73</td>
<td>64.0</td>
<td>16th</td>
<td>9.9</td>
<td>14th</td>
<td>0.40</td>
<td>0.75</td>
<td>0.47</td>
<td>2</td>
<td>0.40</td>
<td>20th</td>
</tr>
<tr>
<td>May</td>
<td>69.61</td>
<td>33.53</td>
<td>36.08</td>
<td>51.57</td>
<td>103.0</td>
<td>15th</td>
<td>22.0</td>
<td>10th</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>3</td>
<td>0.46</td>
<td>28th</td>
</tr>
<tr>
<td>June</td>
<td>75.75</td>
<td>42.66</td>
<td>33.09</td>
<td>59.29</td>
<td>88.0</td>
<td>22nd</td>
<td>29.0</td>
<td>2nd</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>4</td>
<td>0.67</td>
<td>27th</td>
</tr>
<tr>
<td>July</td>
<td>71.68</td>
<td>40.98</td>
<td>30.70</td>
<td>56.33</td>
<td>86.5</td>
<td>31st</td>
<td>25.0</td>
<td>14th</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
<td>9</td>
<td>0.41</td>
<td>20th</td>
</tr>
<tr>
<td>August</td>
<td>71.89</td>
<td>43.10</td>
<td>28.50</td>
<td>57.55</td>
<td>98.0</td>
<td>17th</td>
<td>23.5</td>
<td>28th</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>11</td>
<td>0.94</td>
<td>9th</td>
</tr>
<tr>
<td>September</td>
<td>64.83</td>
<td>27.51</td>
<td>37.32</td>
<td>46.17</td>
<td>89.5</td>
<td>10th</td>
<td>5.0</td>
<td>23rd</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>3</td>
<td>0.11</td>
<td>18th</td>
</tr>
<tr>
<td>October</td>
<td>46.24</td>
<td>22.48</td>
<td>23.76</td>
<td>34.36</td>
<td>66.0</td>
<td>10th</td>
<td>9.5</td>
<td>19th</td>
<td>0.76</td>
<td>2.00</td>
<td>0.99</td>
<td>5</td>
<td>0.40</td>
<td>1st</td>
</tr>
<tr>
<td>November</td>
<td>35.83</td>
<td>7.03</td>
<td>18.79</td>
<td>16.42</td>
<td>41.0</td>
<td>15th</td>
<td>15.0</td>
<td>30th</td>
<td>0.18</td>
<td>2.25</td>
<td>0.40</td>
<td>5</td>
<td>0.12</td>
<td>23th</td>
</tr>
<tr>
<td>December</td>
<td>9.86</td>
<td>-14.72</td>
<td>24.58</td>
<td>2.73</td>
<td>46.0</td>
<td>9th</td>
<td>-13.5</td>
<td>1st</td>
<td>2.50</td>
<td>2.50</td>
<td>2.24</td>
<td>4</td>
<td>0.10</td>
<td>6th</td>
</tr>
<tr>
<td>January</td>
<td>-10.78</td>
<td>-33.72</td>
<td>22.94</td>
<td>-22.25</td>
<td>18.3</td>
<td>28th</td>
<td>-64.5</td>
<td>20th</td>
<td>3.25</td>
<td>3.25</td>
<td>3.32</td>
<td>6</td>
<td>0.10</td>
<td>26th</td>
</tr>
<tr>
<td>February</td>
<td>11.63</td>
<td>-16.62</td>
<td>28.25</td>
<td>2.50</td>
<td>34.9</td>
<td>20th, 21st</td>
<td>-47.0</td>
<td>25th</td>
<td>4.00</td>
<td>4.00</td>
<td>3.93</td>
<td>4</td>
<td>0.30</td>
<td>13th</td>
</tr>
<tr>
<td>March</td>
<td>20.41</td>
<td>-13.35</td>
<td>33.76</td>
<td>3.53</td>
<td>53.5</td>
<td>28th</td>
<td>-10.5</td>
<td>18th</td>
<td>3.25</td>
<td>3.25</td>
<td>3.25</td>
<td>2</td>
<td>0.30</td>
<td>3rd</td>
</tr>
</tbody>
</table>

Record of Sunshine at Fort Vermilion, Peace River District, Alberta, from April 1, 1912, to March 31, 1913.

<table>
<thead>
<tr>
<th>Months</th>
<th>Number of days with Sunshine</th>
<th>Number of days without Sunshine</th>
<th>Total hours Sunshine</th>
<th>Average Sunshine per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>25</td>
<td>5</td>
<td>170.1</td>
<td>5.67</td>
</tr>
<tr>
<td>May</td>
<td>29</td>
<td>2</td>
<td>2.8</td>
<td>9.31</td>
</tr>
<tr>
<td>June</td>
<td>26</td>
<td>4</td>
<td>288.6</td>
<td>9.62</td>
</tr>
<tr>
<td>July</td>
<td>27</td>
<td>4</td>
<td>239.5</td>
<td>7.72</td>
</tr>
<tr>
<td>August</td>
<td>23</td>
<td>8</td>
<td>191.5</td>
<td>6.27</td>
</tr>
<tr>
<td>September</td>
<td>29</td>
<td>1</td>
<td>239.6</td>
<td>7.98</td>
</tr>
<tr>
<td>October</td>
<td>16</td>
<td>15</td>
<td>104.5</td>
<td>3.37</td>
</tr>
<tr>
<td>November</td>
<td>14</td>
<td>16</td>
<td>53.9</td>
<td>1.79</td>
</tr>
<tr>
<td>December</td>
<td>18</td>
<td>13</td>
<td>62.8</td>
<td>2.62</td>
</tr>
<tr>
<td>January</td>
<td>19</td>
<td>12</td>
<td>78.5</td>
<td>2.55</td>
</tr>
<tr>
<td>February</td>
<td>23</td>
<td>5</td>
<td>120.4</td>
<td>4.20</td>
</tr>
<tr>
<td>March</td>
<td>20</td>
<td>1</td>
<td>218.4</td>
<td>7.04</td>
</tr>
</tbody>
</table>
Some Weather Observations taken at Central Experimental Farm, Ottawa, as compared with those taken at Fort Vermilion, Peace River District, Alberta.

APRIL

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Hours Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>39.07</td>
<td>67.0</td>
<td>7.0</td>
<td>2.80</td>
<td>0.66</td>
<td>234.6</td>
<td>7.82</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>34.73</td>
<td>64.0</td>
<td>9.9</td>
<td>0.47</td>
<td>0.40</td>
<td>170.1</td>
<td>5.67</td>
</tr>
</tbody>
</table>

MAY

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Hours Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>56.25</td>
<td>82.0</td>
<td>33.0</td>
<td>5.15</td>
<td>1.44</td>
<td>294.3</td>
<td>6.59</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>51.57</td>
<td>103.0</td>
<td>22.0</td>
<td>0.57</td>
<td>0.46</td>
<td>288.8</td>
<td>9.31</td>
</tr>
</tbody>
</table>

JUNE

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Hours Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>61.62</td>
<td>88.4</td>
<td>39.1</td>
<td>1.35</td>
<td>0.42</td>
<td>308.6</td>
<td>10.28</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>59.20</td>
<td>98.0</td>
<td>29.0</td>
<td>0.17</td>
<td>0.06</td>
<td>288.6</td>
<td>9.62</td>
</tr>
</tbody>
</table>

JULY

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Hours Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>69.03</td>
<td>95.8</td>
<td>45.6</td>
<td>3.89</td>
<td>0.83</td>
<td>312.5</td>
<td>10.08</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>56.33</td>
<td>86.5</td>
<td>25.0</td>
<td>1.37</td>
<td>0.41</td>
<td>239.5</td>
<td>7.72</td>
</tr>
</tbody>
</table>

AUGUST

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Hours Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>62.54</td>
<td>81.5</td>
<td>40.4</td>
<td>4.94</td>
<td>1.18</td>
<td>178.8</td>
<td>5.76</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>57.35</td>
<td>98.9</td>
<td>23.5</td>
<td>1.80</td>
<td>0.91</td>
<td>194.5</td>
<td>6.27</td>
</tr>
</tbody>
</table>

SEPTEMBER

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Hours Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>58.01</td>
<td>80.0</td>
<td>28.5</td>
<td>4.01</td>
<td>0.62</td>
<td>102.1</td>
<td>3.40</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>46.17</td>
<td>80.5</td>
<td>5.0</td>
<td>0.26</td>
<td>0.11</td>
<td>239.6</td>
<td>7.98</td>
</tr>
</tbody>
</table>

OCTOBER

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Hours Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>48.92</td>
<td>75.0</td>
<td>26.2</td>
<td>2.47</td>
<td>0.66</td>
<td>173.0</td>
<td>5.58</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>34.96</td>
<td>66.0</td>
<td>9.5</td>
<td>0.96</td>
<td>0.40</td>
<td>104.5</td>
<td>3.37</td>
</tr>
</tbody>
</table>
SESSIONAL PAPER No. 16

SOME WEATHER OBSERVATIONS taken at Central Experimental Farm, Ottawa, as compared with those taken at Fort Vermilion, Peace River District, Alberta.—Con.

NOVEMBER.

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>34.42°</td>
<td>58.4°</td>
<td>5.2°</td>
<td>4.80</td>
<td>2.10</td>
<td>83.8</td>
<td>2.79</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>16.42°</td>
<td>41.0°</td>
<td>-15.9°</td>
<td>0.40</td>
<td>0.12</td>
<td>53.9</td>
<td>1.79</td>
</tr>
</tbody>
</table>

DECEMBER.

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>22.65°</td>
<td>50.0°</td>
<td>-4.8°</td>
<td>2.17</td>
<td>0.81</td>
<td>66.2</td>
<td>2.13</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>-2.73°</td>
<td>48.0°</td>
<td>-43.5°</td>
<td>0.24</td>
<td>0.10</td>
<td>62.8</td>
<td>2.02</td>
</tr>
</tbody>
</table>

JANUARY.

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>20.90°</td>
<td>42.0°</td>
<td>-16.0°</td>
<td>4.59</td>
<td>0.92</td>
<td>94.4</td>
<td>3.04</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>-22.25°</td>
<td>18.3°</td>
<td>-64.5°</td>
<td>0.32</td>
<td>0.10</td>
<td>78.5</td>
<td>2.53</td>
</tr>
</tbody>
</table>

FEBRUARY.

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>10.60°</td>
<td>37.8°</td>
<td>-18.0°</td>
<td>2.35</td>
<td>0.70</td>
<td>124.2</td>
<td>4.43</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>-2.50°</td>
<td>34.9°</td>
<td>-47.0°</td>
<td>0.30</td>
<td>0.30</td>
<td>129.4</td>
<td>4.30</td>
</tr>
</tbody>
</table>

MARCH.

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Heaviest in 24 Hours</th>
<th>Total Sunshine</th>
<th>Average Sunshine per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa</td>
<td>26.18°</td>
<td>58.8°</td>
<td>-14.2°</td>
<td>4.62</td>
<td>0.60</td>
<td>107.7</td>
<td>3.47</td>
</tr>
<tr>
<td>Fort Vermilion</td>
<td>3.53°</td>
<td>53.5°</td>
<td>-40.5°</td>
<td>0.32</td>
<td>0.39</td>
<td>218.4</td>
<td>7.04</td>
</tr>
</tbody>
</table>

Note.—The records for Fort Vermilion are taken by Mr. R. Jones, of the Experimental Station there, and the tables therefrom are prepared by Mr. William Ellis, Weather Observer, Central Farm.

EXPERIMENTAL WORK AT ATHABASKA LANDING.

It is to be regretted that the pressure of other duties has compelled Bishop Robins to give up much of his experimental work at Athabaska Landing. In a letter received from him, he reports briefly on the character of the season of 1912 as follows:

'The summer of last year was very dry at Athabaska Landing, and all garden industries suffered, by being dwarfed and late. Then, when rain came and a late spurt resulted, the August frost cut down all tender growth, including tomatoes, 16—24...
EXPERIMENTAL FARMS

The potato crop was satisfactory. Green peas were late and yielded for a shorter time than usual, the taller varieties again doing better than the dwarfs. Beets and onions were light; indeed, the root products of the garden suffered most from lack of moisture.

The cutworm troubled cabbages, and I did not know of the Paris green method of destruction at the time.

The fruit trees have not shown their possibilities yet. You will remember, I received a new consignment. The currants among them flowered and fruited at once, but the others had no opportunity, as growth follows quickly after the planting season. They will prove themselves better this year.'

EXPERIMENTAL WORK AT GRANDE PRAIRIE, ALTA.

In the report of the Experimental Farms for 1911-12, mention was made that Mr. S. J. Webb was to do some experimental work for the department at Grande Prairie.

The following letter was received from him, giving a brief report of his results for the season. It also gives some idea of the difficulties to be met in getting seeds and other supplies to these distant points in time for planting. The seeds referred to as reaching him on June 6 were sent from Ottawa early in April.

During the past winter we had a call from Mr. Webb, who brought a collection of very good samples of grains grown by him and some of his neighbours in the Grande Prairie district.

In his report, Mr. Webb says:

'The past season was, on the whole, very favourable for crops of all sorts in this locality. After an exceptionally mild winter, the spring opened early in April, and by the 20th seeding was in full swing. Stock came through the winter in good shape, and horses, which were on the range all winter, were in excellent condition.

Harvest started about the 20th of August, wheat being fully ripe, none being frosted. Fall wheat has done very well in this district, there being several small acreages sown.

Wheat yielded 30 bushels per acre; oats did not yield very heavily, running about 50 bushels per acre; although some reported larger yields, I did not see them. Barley went 56 bushels per acre, with excellent grain. Potatoes were a very good crop, and of extra good quality.

'I would estimate the grain crop of this district at 150,000 bushels.

'The seeds you sent me did not reach me until June 6, which was too late for sowing this year. I am keeping them for next year.

'This part is settling very fast, the people like the country and have come to stay. It is going to be one of the best districts in the west, and is especially adapted for mixed farming and stock raising. All we want is transportation and we have the rest.

'I have not received the thermometers sent from Toronto; they are on the trail somewhere between here and Edson. On account of the wet season it has been impossible to get express through, but I intend hunting them up on my way out. I expect to be in Ottawa this winter and will call on you.'

REPORT OF EXPERIMENTAL WORK AT GROUARD, LESSER SLAVE LAKE, ALBERTA.

The Fathers of the Mission were the first to practise farming at this point, on a large scale. Having begun agricultural operations in the district some eighteen years ago, they are now fairly in a position to give an exact report on the possibility of growing cereals, such as wheat, barley and oats, as well as roots and vegetables near Lesser Slave Lake.
SESSIONAL PAPER No. 16

The village of Grouard is situated at the northwest end of Lesser Slave lake, and is bounded by the forest on the east side, with very little open ground between that and the lake. The arable land here is limited in area, but here and there one finds clear spaces for cultivation. The land bordering on the lake is very sandy. To extend the cultivated area it was necessary to clear the forest and, accordingly, about ten acres of new land was made. This work was commenced in 1894. The forest land is generally good, with four or five inches of humus on the surface. The subsoil is of friable clay. Grain does well on this land, but it has been little grown, potatoes and vegetables being sown in preference.

To grow the cereals, it was thought advisable to break some land about eight miles to the northwest of Grouard on a hillside sloping to the southeast. The soil on this area is of two kinds, the low land, a heavy clay, and the high land, a sandy loam, containing possibly thirty per cent of vegetable mould.

This land was cleared in part to commence with, and each year the clearing has been extended.

The success obtained in growing cereals and potatoes has been decided enough in spite of some temporary setbacks from drought and frost (the latter rarely, twice in eighteen years) to encourage the breaking of new land in order to practise rotations as far as required. These rotations allowed the sowing of some eighty acres in grain for several years without growing the same crop on the same land oftener than once in three years.

The harvest from the clayey and alkaline land is less than that on the higher land, which is a sandy loam. The former, however, always yields good, heavy grain, nearly always mature.

The spring of 1911 was particularly unfavourable at Grouard, as in all Alberta. The harvest was very late, although the grain was partly ripe. The bad harvest weather made it very difficult to save the grain harvested when damp, and the wheat especially heated in the shock. This injured its vitality greatly, as was evident the next spring.

Oats, sown on May 4, were harvested on September 2, 135 bushels yielding 1,578 bushels. The oats were sown in the most unfavourable location, a heavy clay, and owing to the extreme drought the straw was so short that about a third of the area was pastured.

Wheat, owing to low vitality of seed, was very light; forty bushels, sown on May 2 and harvested September 5, yielding 350 bushels.

Fifteen bushels of barley, sown May 1, yielded 186 bushels, harvested August 19. The grain was much blackened by heating.

It should be noted that the yield during the previous two years (1909 and 1910) was three times as great on the same area, seed of good vitality having been used. The seeding in 1911 could not be done at the usual time, April 20 to 25, owing to heavy falls of snow making outside work impossible. The rains of the previous autumn had also prevented the usual preparatory work.

Early Rose potatoes were sown May 18 and dug September 26. The field of three acres yielded 600 bushels, or about one-third of the return from a field of the same size in 1911.

Two varieties each of carrots, beets, onions and celery gave good returns. Cabbage, garden peas, beans, tomatoes, lettuce, radish, turnips, pumpkins and squashes, without exception, gave very satisfactory crops of properly-matured vegetables.

Currants fruited freely and a tree of Pyrus baccata produced fruit which was harvested September 11.

THE AUTUMN SOWING OF GARDEN SEEDS.

It may interest our readers who are engaged in gardening, especially those living in the cold regions of the Northwest Territories, to hear of a method which has been found advantageous in overcoming the shortness of the season there.
About the first week of October, after the crops have been harvested, the land is prepared for sowing, as in the spring, ploughed or spaded and raked ready to receive the seed. The seed is then sown just before the freeze up. The advantage of this is that the land worked up in the autumn thaws out more quickly in the spring and seeds, slow to germinate, such as carrots, onions and parsnips, being thoroughly moistened by the melting snow, spring up as soon as the frost is out of the ground. There is a difference of from fifteen to eighteen days in germination between seed sown in the fall and in the spring.

REPORT OF EXPERIMENTS ON THE FRUIT FARM OF THOS. A. SHARPE, SALMON ARM, B.C.

The soil on this farm is mostly gravelly loam and, with proper preparation, is excellent for the production of clover and alfalfa, and of suitable varieties of apples, plums, prunes, sour cherries, and all small fruits.

Potatoes were exceptionally good in quality this year.

In 1908, thirty-nine varieties of plums and prunes were planted.

APPLES.

Of the apples, nineteen varieties fruited in 1912; of these, Longfield, Jonathan, Ira and Newtown Pippin fruited freely and are all valuable varieties. The others produced only a few specimens, not sufficient to judge of their quality or productiveness.

There were also fifty-eight varieties of apples planted in the experimental orchard in 1911 and 1912, and nearly thirty varieties either in nursery on the farm or ordered for this spring's planting.

CHERRIES.

Two varieties were planted, Olivet and Planchoury. Both produced good crops of fine fruit, of excellent quality for shipping and canning, as well as for eating out of hand. Two varieties are planted in nursery and about twenty ordered for this spring's planting.

PLUMS AND PRUNES.

All the varieties of plums and prunes fruited.

German prune, Shropshire damson and Primate were the best in quality and productiveness. Purple being a good second. These are all good shippers. Two varieties of Reine Claude fruited, but ripened so late that they are evidently not adapted to this district.

About twelve varieties of plums have been ordered for this season's planting.

PEARS.

There are thirty-eight varieties planted in the orchard, and several sorts in the nursery.

SMALL FRUITS.

Blackberries.—Eldorado, Snyder and Stone's Hardy. These have grown vigourously and fruited well without winter protection.

Red Raspberries.—Cuthbert, Pauline, Columbian and King. These have proved vigourous and fruitful, also without protection.

Grapes.—Saunders' Seedling, Delaware, Brighton and Worden. These were all vigourous growers and ripened their fruit.
Many of the above-mentioned varieties of fruit are selected sorts, got from British and European nurseries for the Experimental Farm at Agassiz, B.C., and proved, on being tested there, to be of sufficient merit to justify the test in the Salmon Arm district.

New varieties of merit will be added as opportunity offers. The annual rainfall in this district is light, but, as there is seldom any frost in the ground during the winter, the melting snows sink into the soil, and this carries the growth well on into June, when, as a rule, there is a fair amount of precipitation in the form of gentle rains. There is, thus, quite sufficient moisture to enable the crops to mature, and a failure has not been recorded for over twenty years. On the uplands there are seldom late spring or early autumn frosts, tomatoes, garden corn, muskmelons and water-melons ripening well.

REPORT OF EXPERIMENTAL WORK AT KAMLOOPS, B.C.

Ten acres of land on the Harper Ranch at Kamloops are retained for experimental purposes by the Department of Agriculture. The Kamloops district is one of very sparse rainfall, and one of the main objects aimed at is the testing of methods of conserving soil moisture and of drought-resistant varieties.

The season of 1912 was exceptional in the amount of precipitation, the snowfall being above the average. The spring was late, and the snow did not disappear until the end of March.

Slight showers of rain fell on five days in April, two days in May, and fairly heavy showers on five days in June, ten days in July, ten days in August. This amount was far above the average for this part of the country.

The fall wheat seemed to have gone through the winter well, except for a few patches where the snow had thawed off quickly and the sun had burnt it up.

On April 4 one acre of the fall wheat was harrowed, but no apparent difference was discernible when harvested. The four acres yielded 1,155 pounds.

The 100 pounds of Red Fife spring wheat and the 2 bushels of O.A.C. No. 21 barley were each sown, on one-acre plots, on May 6, and were harvested on August 13.

The wheat threshed out 900 pounds and the barley 328 pounds; samples of all the grain were sent to Dr. Saunders, Dominion Cerealist, and both the wheats proved to be very good milling samples.

On May 16 the summer-fallow was harrowed. On July 19 and 20 it was skimmed ploughed. On September 27 it was cultivated with a spring-tooth cultivator. On October 15, a bushel and a half each of Kharkov, Turkey Red No. 380 and Girka wheat were sown on half-acre plots which had been summer-fallowed. On October 20 the barley and wheat stubble was ploughed six inches deep.

With regard to the orchard, some of the trees have done extremely well, e.g., Cups of Wine and Red Stettin. Others that have done well and seem to be likely to make good trees are Congo, Pinto, Lowland Raspberry, Walton, Salone and Wendel; also perhaps, Jonathan.

EXPERIMENTAL STATION FOR THE UPPER COLUMBIA RIVER VALLEY, AT INVERMERE, B.C.

The following is a brief description of the Station at Invermere, with an account of the preliminary work carried on during the year.

SITUATION.

This farm was selected in the summer of 1910, and is located in the centre of the Columbia River valley, midway between the main line of the Canadian Pacific railway on the north and the Crows Nest line on the south. The valley is about 190
miles in length, and from eight to ten miles wide. It is bounded by the Rocky Mountains on the east and by the Selkirk range on the west. The town of Invermere is situated on the western shore of lake Windermere, a beautiful sheet of water, and close to the townsite the farm has been located. It is situated on the first bench, about 150 feet above the level of the lake.

TRANSPORTATION.

In the past, transportation has been difficult. The three summer months, June, July and August, is the only time river navigation can be depended upon. In the warm weather, the ice and snow melt on the mountain ranges, causing the water to rise in the river, but in the spring and fall the water gets so low that the stern-wheeled, flat-bottomed steamers have the greatest difficulty in getting around the short bends and over the many sandbars that impede navigation, especially towards the upper end of the river. However, the Kootenay Central railway is being built from both ends of the valley. It is expected that the steel will soon be laid to Spul-machum, a distance of about forty miles from Golden on the Canadian Pacific railway main line. But this season all passenger traffic has been handled either by steamer or automobile, all summer freight coming by river.

THE FARM.

The farm consists of 53 acres, 35 of which forms a square block, and is adjacent to the townsite of Invermere. The farm has a 66-foot road allowance on three sides. On the east side, its boundary is a 100-foot boulevard. The land has a gentle slope towards the north and east. Near the northwest corner there are several acres somewhat broken, with a number of small gravel ridges. When the land was cleared, a couple of clumps of evergreen trees were preserved from the natural forest. Eighteen acres is divided from the farm by a road; part of it lies on a steep hillside, with a northern slope, and is covered with a growth of small evergreen timber. Several acres are low bottom land covered with a dense growth of poplar underbrush. This low land is only a few feet above the level of Toby creek.

SOIL.

The soil is a sandy loam, from 20 to 24 inches deep. It is an easily worked, friable, warm soil. The subsoil is a porous, open, stony gravel.

IRRIGATION

For the profitable production of crops in ordinary seasons, irrigation has to be resorted to. A plentiful supply of irrigation water can be obtained from the numerous mountain streams. The creek from which the water comes to irrigate the farm is nearly two miles away. Some years ago a ditch was dug to convey water to what is now the Invermere townsite. In some places, sediment has partly filled the ditch in. It will all require to be cleaned out, in some places remade and nearly all the old fluming renewed. However, there is an abundance of water and, as the farm lies lower than the ditch, there should not be very much trouble in applying it to the land.

DOMESTIC WATER SUPPLY.

The town waterworks system extends down the west side of the farm. An inch pipe conveys the water from the corporation main to both house and stable. This furnishes an adequate supply of pure water for both domestic and stable use.
The first Crop on the Experimental Station, Invermere, B.C.

An Experimental Farm in the Rough, Sidney, B.C.
FENCING.

In the month of June the farm was enclosed with a woven wire fence. Fir posts were planted 20 feet apart. Tamarack corner, anchor and gate posts were set four feet deep, securely braced and weighted; wire was firmly stapled to posts. A wide gate provides access to the barn from the west side. Two 10 and two 3½-foot gates give entrance to the house and farm from the east. This makes a strong, substantial fence, nearly five feet high, which is sufficient to turn the most unruly range stock.

BARN.

During the season, a combination barn, stable and granary was built, size 46 x 30, with 20-foot posts. This accommodates four horses, two tied and two loose in boxes, with space in a third box for a couple of cows. The stable is 22 x 30. The drive-in and carriage house is 24 x 30. The second story includes storage room for hay, granary and a commodious sorting room, which has been fitted up and is used as a temporary residence for the foreman.

In the fall of 1911, a contract was let to clear, chop, loo, burn, stump, plough and double-disc 35 acres. This work was finished in the early spring of 1912, and was so well and satisfactorily done that, after the stump holes were filled and the land levelled, a few strokes of the smoothing harrow were sufficient to prepare a fairly good seed-bed.

CROPS.

Twenty-six acres were sown to oats, and seeding was finished on the 12th of May. The crop was harvested in the end of August, was cut a little on the green side, as the straw was required for fodder. Sheaves were set up in round stooks and, though the harvest weather was wet and showery, with re-stooking the crop several days before hauling, and drawing only in the afternoons, both oats and straw were saved in good condition. About 10 acres were seeded to red clover and 4 acres to alfalfa. Although care was used in sowing the nurse crop thin, the young clover plants in the late fall looked rather delicate.

POTATOES.

Nearly two acres were planted with potatoes, with a view to keeping the land in summer tillage preparatory for experimental work next season. However, there was a nice crop of clean, good quality potatoes. After being harvested they were left in temporary pits for two weeks, when they were carefully selected with the aim of saving the very choicest seed for next year's planting.

The potatoes were stored in pits over winter, trenches being dug 3 feet wide, 2 feet deep and 16 feet long. The potatoes were filled in, not quite up to the level of the land, cross pieces of wood were laid across the trench, old lumber was laid on the cross pieces and about 8 inches of earth was piled on the lumber. If the weather got very cold, a few loads of horse manure acted as a protection in zero weather. With a couple of small ventilators on each pit and two or three inches of air space left between the potatoes and the lumber there will not be much danger of the potatoes rotting from over-heating. As last season was extremely wet, raining almost continuously from the latter part of June to the end of August, no irrigation was required.

TEAM AND IMPLEMENTS.

In the end of May a carload was bought and shipped from Calgary, including team of five-year-old horses, weighing 3,000 pounds, harness, wagon, several soil working implements, also hay and feed.
FRUIT TREES.

Early in November, consignments of fruit trees were sent from the Experimental Farm at Ottawa and from the nursery at Grand Forks, B.C. They are heeled in over winter, so as to be ready for planting early next spring.

LAND FOR PLANTING.

About 14 acres on the north side of the farm are ready and in fine shape for next season's planting. It was part in summer-fallow, potato ground and late summer and early fall cultivated stubble land. It is full of moisture, mellow and friable from repeated cultivations with disc and smoothing harrows.

EXPERIMENTAL STATION, SIDNEY, B.C.

Clearing operations were commenced on October 1, 1912. The farm, some 125 acres in extent, was covered with heavy timber, along with some second growth and thick brush, with the exception of a very small portion, which was ready for cultivation.

During the autumn and early winter months, clearing operations were greatly retarded by wet weather, although advantage was taken of every opportunity to push on the work.

SOME COMPARISONS OF METHODS OF CLEARING.

On twenty acres, before attacking the standing timber, the windfalls, trees left by loggers, and brush, were cleared away. This method of clearing proved an expensive one, it being carried on under provincial conditions under which only British subjects (white) were employed, and the wages paid were from 34½ cents to 50 cents per hour, eight hours per day. Teamsters were paid $70 per month and hired teams $6 per day. Twenty acres were cleared ready for the plough at an average cost of $506 per acre.

This cost may be itemized as follows:

<table>
<thead>
<tr>
<th>Clearing Operation</th>
<th>Per Acre</th>
<th>Per Cent of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slashing, cutting and clearing windfalls, logs, pulling and blowing old stumps and piling and burning same</td>
<td>$215</td>
<td>42½</td>
</tr>
<tr>
<td>Felling, cutting, splitting and piling standing timber, burning same and clearing up ready for plough</td>
<td>163</td>
<td>32½</td>
</tr>
<tr>
<td>Powder, fuse and caps</td>
<td>64</td>
<td>12</td>
</tr>
<tr>
<td>Teaming</td>
<td>52</td>
<td>10</td>
</tr>
<tr>
<td>Tools and repairs</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>$506</td>
<td>100</td>
</tr>
</tbody>
</table>

CLEARING BY CONTRACT.

During February and March, 1913, fifty-four acres were cleared under contracts, the following comparisons being made:

(1) Twenty acres of swampy ground were cleared with a 40 h.p. donkey engine. The contract price per acre was $350, including engine rental, but the extra burning required cost $20 per acre, and transportation of engine $40. The total cost averaged $398 per acre.

(2) Twenty acres, timbered similarly to the above but with no swamp, were cleared by a practical man with a good crew and teams, at a cost of $398 per acre.
The details of cost are as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Per Acre</th>
<th>Per Cent of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slashing, cutting, clearing windfalls, logs, pulling and blowing old stumps, piling and burning same before felling trees</td>
<td>$98</td>
<td>29</td>
</tr>
<tr>
<td>Felling, cutting, splitting, piling and burning trees and cleaning up ready for plough</td>
<td>$108</td>
<td>32</td>
</tr>
<tr>
<td>Powder, fuse, caps</td>
<td>$65</td>
<td>20</td>
</tr>
<tr>
<td>Teaming</td>
<td>$22</td>
<td>7</td>
</tr>
<tr>
<td>Tools and repairs</td>
<td>$15</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>$338</td>
<td>100</td>
</tr>
</tbody>
</table>

(3) Seven acres of similarly timbered land, with no swamp, but previously slashed: Contract, $260 per acre; total cost of clearing, $240 per acre. Details as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Per Acre</th>
<th>Per Cent of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting and clearing windfalls, logs, pulling and blowing old stumps, piling and burning same before felling trees</td>
<td>$40</td>
<td>16</td>
</tr>
<tr>
<td>Felling, cutting, splitting, piling and burning same and cleaning up ready for plough</td>
<td>$78</td>
<td>32</td>
</tr>
<tr>
<td>Powder, fuse, caps</td>
<td>$60</td>
<td>24</td>
</tr>
<tr>
<td>Teaming</td>
<td>$56</td>
<td>23</td>
</tr>
<tr>
<td>Tools and repairs</td>
<td>$12</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>$246</td>
<td>100</td>
</tr>
</tbody>
</table>

(4) Seven acres, similarly timbered but previously cleared of brush by a forest fire, were cleared at a contract price of $200 per acre. The actual cost per acre was $189, the details of clearing being as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Per Acre</th>
<th>Per cent of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slashing, cutting and clearing windfall logs, pulling and blowing old stumps, piling and burning same before felling trees</td>
<td>$225</td>
<td>134</td>
</tr>
<tr>
<td>Felling, cutting, splitting, piling and burning same and cleaning up ready for plough</td>
<td>$58</td>
<td>30%</td>
</tr>
<tr>
<td>Powder, fuse and caps</td>
<td>$56</td>
<td>26%</td>
</tr>
<tr>
<td>Teaming</td>
<td>$46</td>
<td>24%</td>
</tr>
<tr>
<td>Tools and repairs</td>
<td>$10</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>$189</td>
<td>100%</td>
</tr>
</tbody>
</table>
(5) Four acres, similarly timbered and cleared of brush by fire, was cleared by a crew of men, stump-puller and team. The average cost was $212 per acre, made up as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Per acre</th>
<th>Per cent of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearing and burning windfalls, etc.</td>
<td>$25</td>
<td>11.3</td>
</tr>
<tr>
<td>Felling, cutting, splitting, piling and burning, clearing ready to plough</td>
<td>58</td>
<td>27</td>
</tr>
<tr>
<td>Powder, fuse and caps</td>
<td>50</td>
<td>23.5</td>
</tr>
<tr>
<td>Teaming</td>
<td>60</td>
<td>29.3</td>
</tr>
<tr>
<td>Tools and repairs</td>
<td>14</td>
<td>6.7</td>
</tr>
<tr>
<td>Cost, stump-pulling machine</td>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>100</td>
</tr>
</tbody>
</table>

On the 78 acres above reported on, the whole surface was encumbered with heavy windfalls. The standing timber was fairly uniform in quantity and size throughout. Dividing the trees into three classes, according to diameter, the percentage of each per acre would run about as follows. The powder used per acre is also given.

Six to 18 inches diameter, 26 per cent per acre; powder, 10 sticks.

Eighteen to 60 inches diameter, 37 per cent per acre; powder, 20 sticks.

Sixty to 108 inches diameter, 37 per cent per acre; powder, 40 sticks.

In November two trials were made of the char pit system, but owing to heavy rainfall, they were not a success.

Two tests were also made, under similar conditions, on two large stumps, standing side by side to see whether by running a cable from each to a 7-foot stump and tightening it by wedges, the side tension would help in pulling the stump clear of the ground when blown up. Thirty sticks of powder were used under each stump. The results, however, were not as good as when no cable was used.

Four acres of the proposed eight-acre park adjoining the British Columbia Electric Railway Company’s station, were cleared of fallen timber, and the ravine, which runs from the highway diagonally through the farm near the British Columbia electric line, was stumped, cleared and the piles burned.

FENCING, ROAD-MAKING AND GRADING.

Owing to a resurvey of the property, the boundary lines were changed, necessitating the pulling up of new wire fence on the north, south and west sides, on each side of the East Saanich road, the British Columbia Electric Railway Company’s and the Victoria and Sydney rights-of-way. Fence was also put up along the 42-foot road running through the farm to the water-front. This road gives access to the railway stations as well.

The East Saanich road was widened from 30 feet to 66 feet for 1,310 feet, and was cleaned, levelled and graded. It is fenced with turned posts and Page wire fencing.

A road was made, levelled and graded through the horticultural grounds, 15 feet wide, for 1,000 feet to the western boundary of the Station.

A winding road, 20 feet wide, around and through the eight-acre park was made, levelled and graded ready for traffic. This road passes through some swampy places where it was filled in with stones gathered while clearing the land.

DITCHING AND DRAINING.

January and February were so wet that it was necessary to do some ditching and draining to facilitate clearing the land and getting it ready for the season’s crop.
Three thousand feet of ditch was dug to take off surface water and drain swampy land. 4,346 feet of tile of diameters ranging from 3 inches to 24 inches was laid and seventy 24-inch square cedar culverts put in. Two drop wells, 6 feet x 3 feet x 29 feet concreted, were dug to receive laterals. Two wells 7 feet deep x 3 feet diameter lined with brick furnish an abundance of good water for domestic and horticultural requirements.

Agriculture and Horticulture.

The land on the station is slightly rolling, with a loamy soil, varying in depth from one to several feet. The subsoil is a brick and tile clay, containing 12 to 24 per cent of iron oxide and aluminium oxide.

Fifty acres have been stoned, cleared, levelled, ploughed, harrowed and rolled, ready for crop. It is proposed to devote twenty acres of this to shrubbery, small fruits and vegetables, and the other thirty will be sown to oats, clover and roots. Hot and cold frames are now (March 31) in operation, forcing the seeds for an early planting-out in 200-foot plots.

Plane and dogwood trees will be set out along the 150-foot avenue which extends to the water-front from the East Saanich road, a distance of some 2,810 feet. The clearing, draining, levelling and grading of this road is now well under way.

Live Stock.

Five general-purpose horses have been bought for the farm work. These are all in good condition and working well.

Buildings.

When work on the Station was started in October, 1912, there were some buildings on the property, which have been temporarily adapted for stabling, storing feed and implements, workshop, office, etc.

The commanding location of the Station, the magnificent view of Mount Baker, Bazar bay and the straits of Georgia, the uniform elevation running from the water-front to the west boundary with a fairly even seven per cent grade, the variety of soils, the plentiful supply of pure water from natural springs, the even climatic conditions the year round, all make for a future ideal farm.

The Division of Field Husbandry.

Field crop experimentation which, in the past, has formed a part of the work of a larger Division having to do with both the culture of field crops and the raising of live stock, now constitutes a Division in itself.

Its work is being directed along very practical lines and, as relating to all Experimental Farms and Stations, briefly includes:

1. Investigations of the relative merits of different crop rotations, including special rotations for 'dry farming' conditions.

2. Studies in the methods of culture of, and curing, field crops. A series of cultural experiments adapted to prairie conditions has now been under way two years on each of the six prairie Farms. These tests involve approximately five hundred plots on each Farm, and include twelve different lines of investigation.

3. Determinations of the costs of growing field crops under regular farm conditions.

4. Experiments to show the value of under-drainage and irrigation.
5. Studies of the influence of size and character of cultural implements on cost of crop production.
6. Comparisons (in a limited way) of varieties of grain and forage crops as food producers.

Rotations.

The most important work at present in progress at the Central Experimental Farm is the testing of rotations considered suitable for live stock farming. During the past year a re-arrangement was made so that there are now permanently located thirteen rotations varying in duration and treatment. They are being studied, keeping in mind the following points of merit:

1. Their ability to supply different crops in the proper proportions for certain needs.
2. Their power to keep weeds in check.
3. Their comparative profits.
4. Their effect on the fertility of the soil.

Owing to the changed location of many of them, and to the fact that it was not possible to have the regular crops grown in every case, all of the results for the past year are not being published to show comparisons, nor will they be included in averages that will be compiled in later years.

The results to date have not been of such a nature as to warrant making statements as to the relative effect of the various rotations that we have tried on the fertility of the soil. From a summing up of past investigations and results we would, however, submit the following rotations, as having given excellent results here, where the object is to supply suitable kinds of feed in the right proportions for live stock raising.

Rotation ‘D.’

This is of three years' duration and is well suited for intensive dairy farming where soiling crops are used.

First year.—Corn or other hoed crop. Apply manure during the winter or spring at the rate of 15 tons per acre, shallow plough in the spring for corn (fall plough for roots) turning under manure and clover, work well before sowing.

Second year.—Grain. Seed down with 10 pounds red clover, 2 pounds alsike, 6 pounds alfalfa and 6 pounds timothy per acre.

Third year.—Clover hay, two crops expected.

Rotation ‘C.’

An excellent four-year rotation made up of equal areas of hoed crops, grain, hay, pasture.

First year.—Corn or other hoed crop. Plough previous August, manure 20 tons per acre, work at intervals, and ridge up in fall.

Second year.—Grain. Seed down with 10 pounds red clover and 10 pounds to 12 pounds timothy per acre.

Third year.—Clover hay, two crops expected. Second crop may be saved for seed.

Fourth year.—Timothy hay or pasture.
This is of five years' duration, and contains a relatively larger proportion of grain to roots and hay than 'C.'

First year.—Grain. Plough previous August, top work and rib up in October. Seed down with the grain 10 pounds red clover per acre, which allow to grow to be turned under the following spring.

Second year.—Corn or other hoed crop. Apply manure during the winter or spring at rate of 25 tons per acre, shallow plough in spring, turning under both clover and manure.

Third year.—Grain. Seed down 8 pounds red clover, 2 pounds alsike and 10 pounds timothy per acre.

Fourth year.—Clover hay, two crops expected.

Fifth year.—Timothy hay or pasture.

On some farms no rough pasture is available, and more is required than any of the above rotations supplies. Though it has not been tested here, we might mention the following seven-year rotation as being likely to meet the requirements of such a case:—

Grain, clover hay, pasture, hoed crops, grain, clover hay, pasture.

In view of its long duration it would be preferable to supply the manure in two applications, using part for the hoed crop, and part on the last year pasture in preparation for grain.

If an examination of the above rotations be made, there will be noted a few desirable characteristics common to them all.

1. Grain fields are always seeded down with clover, even though it be used only as a fertilizer, as in the case of the first year of rotation 'A.'

2. Grass and clover seedings are heavy. Increased crops of hay and rare failures of a catch have justified them.

3. Hoed crops form a large proportion of every rotation. An attempt to farm a small area without a hoed crop was not successful. Weeds could not readily be kept in check.

4. No field is left in hay for more than two successive years. Our records show that the second crop almost always costs more per ton than the first and that succeeding crops are very liable to be grown at a loss.
The table given below shows the costs of producing the various crops grown on the '200-acre farm' (so-called) and the profits therefrom during the past year. In calculating the various items presented, the following values have been used:

RETURN VALUES.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oats</td>
<td>$0.34 per bushel</td>
</tr>
<tr>
<td>Oat straw</td>
<td>$0.60 per ton</td>
</tr>
<tr>
<td>Hay</td>
<td>$0.60 per ton</td>
</tr>
<tr>
<td>Corn ensilage</td>
<td>$2.00</td>
</tr>
<tr>
<td>Turnips and mangel</td>
<td>$2.00</td>
</tr>
<tr>
<td>Forage crops (green)</td>
<td>$2.00</td>
</tr>
<tr>
<td>Potatoes</td>
<td>$0.50 per bushel</td>
</tr>
<tr>
<td>Swine pasture</td>
<td>$1.50 per bushel</td>
</tr>
</tbody>
</table>

COST VALUES.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual labour</td>
<td>$0.17 per hour</td>
</tr>
<tr>
<td>Horse labour, including teamsters</td>
<td>$0.27, $0.31, $0.41, $0.48 per hour</td>
</tr>
<tr>
<td>Rent</td>
<td>$3.00 per acre</td>
</tr>
<tr>
<td>Barnyard manure</td>
<td>$1.00</td>
</tr>
<tr>
<td>Machinery (inclusive of threshing machinery)</td>
<td>$0.60</td>
</tr>
</tbody>
</table>

Turnip, mangel, corn and potato seed charged at actual cost.
Grass and clover seed charged at actual cost.
Twine charged at actual cost.
Threshing charged according to actual labor expended.

Statement of Crop Returns on '200-acre Farm,' 1912.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area (Acres)</th>
<th>Total Cost</th>
<th>Average Cost per acre</th>
<th>Average Cost per bushel, per ton</th>
<th>Total Yield</th>
<th>Average Yield per acre</th>
<th>Total Value</th>
<th>Average Value per acre</th>
<th>Average Profit per acre</th>
<th>Total Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oats (including cost of straw)</td>
<td>56.22</td>
<td>$628.74</td>
<td>$11.54</td>
<td>$0.25</td>
<td>116.15</td>
<td>$0.84</td>
<td>$1,115.15</td>
<td>$20.53</td>
<td>$5.18</td>
<td>$291.41</td>
</tr>
<tr>
<td>Oat straw</td>
<td>56.22</td>
<td>$628.74</td>
<td>$11.54</td>
<td>$0.25</td>
<td>116.15</td>
<td>$0.84</td>
<td>$1,115.15</td>
<td>$20.53</td>
<td>$5.18</td>
<td>$291.41</td>
</tr>
<tr>
<td>Corn</td>
<td>48.50</td>
<td>$1,183.82</td>
<td>$24.34</td>
<td>$0.51</td>
<td>1,569.82</td>
<td>$1.16</td>
<td>$1,569.82</td>
<td>$32.28</td>
<td>$7.88</td>
<td>$382.00</td>
</tr>
<tr>
<td>Roots (mangel and turnips)</td>
<td>14.78</td>
<td>$216.23</td>
<td>$14.30</td>
<td>$1.00</td>
<td>87.39</td>
<td>$0.73</td>
<td>$67.92</td>
<td>$11.99</td>
<td>$7.11</td>
<td>$171.29</td>
</tr>
<tr>
<td>Potatoes</td>
<td>4.00</td>
<td>$231.10</td>
<td>$57.78</td>
<td>$0.34</td>
<td>106.86</td>
<td>$4.95</td>
<td>$502.22</td>
<td>$12.55</td>
<td>$6.40</td>
<td>$630.40</td>
</tr>
<tr>
<td>Green feed (peas and oats)</td>
<td>3.60</td>
<td>$65.00</td>
<td>$18.06</td>
<td>$1.80</td>
<td>72.23</td>
<td>$12.74</td>
<td>$902.34</td>
<td>$25.07</td>
<td>$1.96</td>
<td>$25.56</td>
</tr>
<tr>
<td>Hay</td>
<td>57.22</td>
<td>$932.98</td>
<td>$16.17</td>
<td>$1.80</td>
<td>347.88</td>
<td>$3.04</td>
<td>$1,042.37</td>
<td>$31.33</td>
<td>$6.91</td>
<td>$260.56</td>
</tr>
<tr>
<td>Pig pasture</td>
<td>3.15</td>
<td>$124.34</td>
<td>$49.83</td>
<td>$1.60</td>
<td>197.15</td>
<td>$6.40</td>
<td>$1,274.30</td>
<td>$39.41</td>
<td>$1.31</td>
<td>$205.55</td>
</tr>
</tbody>
</table>

Note.—A few acres used for cattle pasture and for cutting green and feeding in field where it could not easily be weighed, were calculated on the basis of the average yield of hay for the remainder of the farm.

Owing to the fact that the charges for both horse and manual labour are higher than in previous years, with no corresponding increase in the valuation of the products, the net profits as given above are not so great as last year. A comparison of the value of the returns for the past fourteen years shows, however, very appreciable increases up to the present, and indicates that our system of cultivation and cropping...
REPORT OF THE DIRECTOR

SESSIONAL PAPER No. 16

is gradually but surely building up the fertility of our soil. Using the same prices throughout, the value of the products of the 200-acre farm per acre were: $14.39 in 1899, $21.30 in 1900, $22.98 in 1901, $24.18 in 1902, $21.61 in 1903, $24.50 in 1904, $29.30 in 1905, $23.23 in 1906, $24.45 in 1907, $23.87 in 1908, $28.51 in 1909, $29.58 in 1910, $27.38 in 1911 and $31.63 in 1912.

PROPOSED EXPERIMENTAL WORK.

In addition to the rotation tests and to the costs-of-production work now under way, it is proposed to inaugurate a series of cultural experiments similar in purpose and outline to those being conducted on our Prairie Farms. In the carrying out of such work we are, however, very greatly handicapped because of the limited area of land at our disposal. The growth of the other Divisions and the establishment of new Divisions have necessitated the concession of small areas from time to time to make possible the new work. We have now, in all, less than two hundred acres on which to carry the stock of the Division of Animal Husbandry, and to conduct experiments, which cannot always be designed to supply the greatest amounts of the kinds of food required. By the use of soiling crops and other intensive methods, we have endeavoured to produce a maximum of feeds. Much further economizing of space through this means is not practicable, however, and I would present for your consideration the need to acquire more land, if the Division is to carry out to best advantage the work for which it was instituted.

ANIMAL HUSBANDRY DIVISION.

At the commencement of the fiscal year of 1912-13, the Animal Husbandry work was made into a Division separate from Field Husbandry, by the splitting up of the former Agricultural Division. Two appointments were made, namely, E. S. Archibald, B.A., B.S.A., as Dominion Animal Husbandman; and G. B. Rothwell, B.S.A., as Assistant Dominion Animal Husbandman. The field of work for this new Division covers directly the care, breeding, feeding, housing and marketing, the testing of foodstuffs, live stock methods and machinery; and much similar investigational work with horses, cattle, sheep and swine on the Central Experimental Farm. In consultation with the Director and the Branch Farm Superintendents, this Division will assist in the same lines of work on the Branch Farms, thus consolidating and systematizing the live stock experimental work.

The year 1912-13 has been most favourable to all classes of live stock on the Central Farm. Grass started early in the spring and, although suffering slightly during the drought of July, yet the copious fall rains induced very heavy after-growth, which afforded excellent pasture. Unfortunately, owing to the shortage of land, only nineteen acres are available for pasturage, which prevents the expansion of the live stock work. However, the Field Husbandry Division supplies a large amount of soiling crops which facilitates fairly extensive animal feeding.

There are 309 head of live stock at present in the stables, made up as follows: 18 horses, 114 pure-bred breeding dairy cattle, 24 grade dairy cattle, 5 beef steers, 57 sheep and 151 swine.

HORSES.

During past years, the horses were kept for labour purposes exclusively, but during the year 1912 a small start was made in breeding work. This is to gather data relating to the cost of colt rearing and the many other phases of the horse industry. That every farmer should do a large amount of this work with brood mares, and raise one or more colts per year, we are convinced is profitable. Data on this subject will be most valuable.

16—3
The eighteen horses perform all labour for the Field Husbandry, Horticultural, Cereal, Botanical and other Divisions, as well as road making, messenger service and trucking for the offices. During the past year, the teams performed 6,452 days' labour which, at 70 cents, gives a total valuation of $4,516.40 returns.

No experimental horse feeding was conducted during the past year.

Dairy Cattle.

The pure-bred dairy herds now in the stables are Holstein, Ayrshire, Guernsey, French Canadian and Jersey. The purpose of keeping these herds is to acquire more information along the lines of experimental breeding and feeding, to distribute a small number of breeding cattle at reasonable figures, to obtain milk with which to conduct dairy manufacturing and marketing experiments, and to demonstrate the most modern and advisable methods of economic dairy husbandry. Two grade milch cow herds, Holstein and Ayrshire, containing 12 head each, were established during the past year. These cows are kept for several reasons, namely: (1) to supply milk for dairy experimental manufacture; (2) to test the high-quality grade cow for economy of production; (3) to test the grade against the pure-bred cow, and (4) to obtain the female offspring from these cows and sired by the best obtainable pure-bred bulls of the breeds, which should show the advantage of continued and persistent upgrading of the grade herds. This latter experiment is well under way on several branch Farms. Data of such import cannot be acquired too rapidly.

Feeding Dairy Cattle.

The possibility of feeding 138 head of cattle, containing 78 milch cows, on a 200-acre farm which includes only 19 acres of pasture, would scarcely be credited by the average farmer; yet this has been clearly demonstrated, and a wide margin of profit shown. This is made possible only by the use of a large amount of soiling crops, and a heavy acreage of corn for ensilage. Meals are fed to cows during the pasture season as well as in the winter. The profit accruing from meal feeding of milch cows on pasture has been demonstrated beyond a doubt and an increasingly large number of farmers are annually adopting this method.

Several dairy feeding experiments of a more or less extensive nature have been started during the year, but to date there have been but few conclusive results. The value of molasses as a food for dairy cattle is receiving marked prominence from many feed companies. Many farmers are now using either the blackstrap feeding molasses or a patented molasses meal. To gain more data on this subject, a series of experiments was started, the first stage of which pointed to the following facts: (1) When molasses replaces a meal (composed of 6 parts bran, 3 parts gluten meal, 2 parts cottonseed meal, and 2 parts dried brewers’ grains) pound for pound to the extent of 10 per cent of total meal fed, it proves quite satisfactory; this is due probably in large measure to the increasing of the palatability of the feed. (2) When molasses replaces the meal to the extent of 20 per cent, the cows dropped in their milk flow and milk cost, to produce, more per hundred pounds; it is worthy of note that on the 20 per cent molasses (14 to 2 pounds per day) the cows gained in weight and condition. (3) When molasses replaced meal to the extent of 30 per cent, the cows dropped heavily in milk flow and milk cost more per hundred pounds. This quantity of molasses slightly secured the cows and caused loss in bodily weight. The above is but a brief example of the investigational work being carried on with this and other foodstuffs which are in common use on our Canadian dairy farms.

Milking Machines.

The scarcity of good labour is the greatest problem facing the Canadian dairyman of to-day, and nowhere else in his work as much as in the milking of cows. So
little information on this most important question of dairy labour-saving machinery is at hand that it was considered necessary to install a milking machine with which to conduct a series of experiments, and to acquire these much-needed data for the commercial dairymen. A Sharples Mechanical Milker, consisting of six units, was installed, and during the subsequent eight months much valuable information has been acquired. Although no conclusive evidence has yet been obtained, there are a few facts which, even at this date, are evident. These are briefly as follows: (1) At least 50 per cent of the labour in milking may be saved by the use of the milking machine, but this is partly offset by the extra work in washing and sterilizing the machine twice per day. (2) Scrupulous care must be taken in the cleaning of the machine. As yet, careful hand milking has given milk freer from bacteria, which is due largely to the difficulty of obtaining absolute sterility of the rubber parts of the milking machine without destroying the rubber. (3) The machine performs the milking operation more thoroughly than the majority of average farm hands. (4) Cows take to, and respond well to, the machine, as a rule not drying off in their milk much more than by hand milking. A separate publication covering the details of this work is planned when the experiment has covered a greater period and solutions of the many difficulties, of minor detail, have been achieved.

Dairy Cow Returns.

It is worthy of mention that the quality of the dairy cattle on the Central Farm continues to make improvement. The following is a brief summary, showing returns of some of the cows in the four herds. Profits are based on the following valuations: Butter, 30 cents per pound; skim milk, 20 cents per hundredweight; pasture, $1 per head per month; hay, $7; straw, $4; green feed, $3; and meal, $25 per ton.

<table>
<thead>
<tr>
<th>No. of head</th>
<th>Age Years</th>
<th>Breed</th>
<th>Days in milk</th>
<th>Pounds milk production</th>
<th>Average per cent fat</th>
<th>Profit over feed between calvings (labour, manure and calf not included)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>3 and up</td>
<td>Four Breeds</td>
<td>360</td>
<td>7433</td>
<td>4.15</td>
<td>$65.12</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>Four Breeds</td>
<td>391</td>
<td>5689</td>
<td>4.87</td>
<td>52.98</td>
</tr>
<tr>
<td>5</td>
<td>3 and up</td>
<td>Ayrshire</td>
<td>401</td>
<td>9679</td>
<td>3.96</td>
<td>94.77</td>
</tr>
<tr>
<td>5</td>
<td>3 and up</td>
<td>Guernsey</td>
<td>333</td>
<td>6600</td>
<td>5.15</td>
<td>72.49</td>
</tr>
<tr>
<td>5</td>
<td>3 and up</td>
<td>Canadian</td>
<td>314</td>
<td>6519</td>
<td>4.36</td>
<td>57.32</td>
</tr>
<tr>
<td>5</td>
<td>3 and up</td>
<td>Holstein</td>
<td>403</td>
<td>12425</td>
<td>3.38</td>
<td>96.69</td>
</tr>
</tbody>
</table>

The above figures include only cows which have finished their lactation period, some of the best profit-makers in the herd not being reported. The grade herds also are not included, as they have not yet finished a year's work. Although, in the above, the milk is valued on the basis of butter at 30 cents per pound, or milk at $1.65 per hundred pounds, yet, in reality, the manufacture and sale of cream, Coulommier and Cheddar cheese, certified milk and the like has, on a large part of the milk, netted $3 per hundredweight. The demand for these finished dairy products in all the larger Canadian cities has opened up the possibilities of splendid markets for farmers who are willing to go into the manufacture of the same.
The dairy manufacturing work continues to hold a very prominent position in the work of the Farm, and includes experimental and demonstrational work in the manufacturing and marketing of the above-named products. A new line of work was undertaken during the past year, namely, the production of certified milk. This naturally includes much investigation as to the most economical and perfect procedures both in the stable and in the dairy. In order to secure data that may be regarded as conclusive, this work must be continued for another year before publishing details.

BEEF PRODUCTION.

No breeding cattle of the beef breeds are maintained owing to lack of pasture and stable accommodation. Beef work for the past year has consisted wholly of steer-feeding experiments. Representatives of the Shorthorn, Aberdeen Angus, Hereford, and Galloway breeds, one year of age, were included in this experiment. Although not sufficiently uniform to give conclusive comparative results, yet much information of value was gained. The outstanding feature of this experiment was a demonstration of the fact that long-keep steers, especially with an absence of pasture and with the present high prices of food-stuffs, give but slight, if any, profit.

SHEEP.

The carrying of sheep on the Central Farm is continued under great difficulties. A wide field of investigation and demonstration is opened and in need of prompt attention; nevertheless, with almost no pasture accommodation, such work must remain nearly untouched. Breeding work, on a small scale, is continued with the two breeds, namely Shropshire, representing the medium wool type, and Leicester, representing the long wool type. Probably no class of live stock is in such backward condition or needs such prompt attention from both experimental and demonstrational view-points as sheep. As much work as possible is being conducted on the branch Farms, both in breeding and experimental lamb feeding.

SWINE.

Another most successful year is to be reported for swine husbandry as to net profit, experimental feeding, experimental breeding and the distribution, at a low price, of young, pure-bred breeding animals. Three breeds are maintained, namely, Yorkshire, Tamworth and Berkshire.

Two very useful and interesting feeding experiments conducted during the year are of much importance to the swine industry. In the summer feeding of hogs for market, it was found that green cut clover, when replacing one-quarter of the meal ration, may acquire a food value of $0.20 per ton. In the winter production of pork, much valuable information relating to the comparative values of meal, skim milk and turnips for growing and fattening hogs was acquired. Such experimental work is being continued in order to demonstrate the most advantageous methods of feeding, and the comparative values of the many food-stuffs either raised on the farm or commonly found in our markets.

NEW COW BARN.

It was found necessary to build a small cow barn for the accommodation of 24 milch cows. The object of this building is to have quarters properly equipped both for the carrying on of dairy feeding experiments and experiments in pure milk production. This building also contains a large room to be utilized, co-operatively with the Chemical Division, for the work on digestibility of food-stuffs. Aside from this, the barn represents a good type of complete modern dairy barn construction as to capacity, economy of structure, strength and lightness of framing, durability, con-
venience, light and ventilation; and one in which both healthy cattle and pure milk may be produced. To date, this structure has proven eminently satisfactory. The accompanying illustrations will show its type of structure.

There is now at the Central Experimental Farm probably the most modern and complete system of live stock barns, which represent the best type, that can be found in Canada. Many inquiries as to the details of these buildings are coming to the Animal Husbandry Division, in increasing numbers, from all parts of Canada. In consequence, this Division each year is assisting an increasingly large number of farmers in planning for, either the erection of new, or the remodelling of old, farm buildings. Such work is encouraged as much as possible owing to the fact that the average Canadian farm barn is most undesirable for the maintenance of healthy stock or the economical production of high-quality milk and beef.

The correspondence of this Division includes inquiries from all parts of Canada relating to the many phases of animal husbandry, such as the best known methods of feeding, breeding, care, management, housing and the prevention and treatment of the many minor ailments of all classes of stock. In consequence, a large amount of information is distributed.

The Dominion Animal Husbandman, in attending to his duties outside the Central Experimental Farm, has officially visited each of the Branch Farms on which live stock work is conducted or being planned for. In addition much of his time was taken up in attending meetings in various parts of Canada, judging at numerous exhibitions and in studying live stock conditions and the needs for experimental and demonstrational work relating to the same.

HORTICULTURAL DIVISION.

The Horticultural Division has charge of the orchards, small fruit and vegetable plantations, forest belts and ornamental trees and shrubs on the Central Experimental Farm, and carries on experiments in cultural methods and varieties, in spraying and in the breeding of new fruits, vegetables, and ornamental plants. In addition to the work on the Central Farm as much aid is given as possible on the branch Farms and Stations in developing horticulture.

Much correspondence is carried on by the Horticultural Division with farmers and horticulturists throughout Canada and other countries.

FRUIT AND VEGETABLE CROPS IN CANADA, 1912.

The apple crop in most fruit districts of Canada in 1912 was scarcely a medium one, but in British Columbia it was good. In Eastern Canada, the fruit which was comparatively free of apple scab in the early part of the season, became badly affected in many places in the latter part of the summer, owing, doubtless, to the damp weather. This reduced the grade and the prices, which for the best fruit were relatively low. In Eastern Ontario and the southwestern part of the province of Quebec, the ravages of the Tent Caterpillar lessened the crop very much where the trees were not thoroughly sprayed, and left the latter in bad condition for developing fruit buds for 1913.

Pears were a good crop in the warmer parts of Nova Scotia, but in Ontario the crop was below medium. In the upper part of British Columbia it was good, but rather light in the lower mainland and on Vancouver island. The same notes will apply to the plum crop as to the pear, except that along the lower St. Lawrence, especially in L'Islet county, it was good. A noted feature of the disposal of the plum crop here was that the bulk of it was canned locally and sold co-operatively.
The peach crop in Ontario was a medium to good one, but the prices obtained were not as high as usual. In the Okanagan district of British Columbia, where most of the peaches of that province are produced, the crop of fruit was good, but the prices obtained were low.

The grape, which is one of the most reliable fruits, gave a good average crop in Ontario, where it is mainly grown.

Owing to the cool season almost everywhere in Canada, the tenderer kinds of vegetables, such as tomatoes, melons, squash, etc., did not ripen as well as usual, but those vegetables, the foliage, roots or tubers of which are used, did well.

The potato crop was a particularly good one, nearly everywhere in Canada where it is grown; but, unfortunately, as is often the case when the yield is large, the price obtained was small.

At the Central Experimental Farm the crop of apples was medium to good and very free from scab and Codling Moth. There were a few European plums and a good crop of the American varieties. The cherry crop was almost a total failure, as usual, the flower buds being nearly always injured by winter.

The grape crop was below medium, and the fruit did not ripen as thoroughly as in some years.

The crop of currants, gooseberries, and raspberries was light to medium, and the crop of strawberries good.

The potato crop was very good; tomatoes, below medium and melons light. Most of the other vegetables did well.

DIVISION AND UTILIZATION OF LAND.

The area of land in the Horticultural Division at the Central Experimental Farm is 99 acres, divided as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits and vegetables</td>
<td>46</td>
</tr>
<tr>
<td>Forest belts</td>
<td>21</td>
</tr>
<tr>
<td>Ornamental grounds</td>
<td>30</td>
</tr>
<tr>
<td>Nursery and rose garden</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
</tr>
</tbody>
</table>

On this area of land are grown a very large number of plants of tree fruits, small fruits, vegetables, forest trees, and ornamental trees, shrubs and herbaceous plants in more or less permanent plantations, and in nursery rows. The lawns are extensive, and require much care to keep them in good condition. Owing to the large number of experiments in progress, the work involved in giving the necessary attention to them on this ninety-nine acres is very heavy, compared with what it would be on the same area under commercial crops, where the labour could be reduced to a minimum.

The Horticultural Division may at present be divided into five parts, or heads, under which most of the work falls. These are as follows:

1. Pomology.
2. Vegetable Gardening.
3. Ornamental Gardening.
5. Correspondence and Office Work.

In addition to these, or rather included in them, is the work in connection with the branch Farms; the forest belts planted both for ornamental purposes and to test the rate of tree growth; meetings attended, publications and visits to other horticultural districts for the purpose of studying conditions in different parts of Canada.
POMOLOGY.

Under Pomology is included the study of varieties of fruits for the purpose of learning their relative merits in regard to yield, season, quality, and profit. It also includes the identification, classification, and description of fruits as well as their propagation, planting and care, with experiments in cultural methods, including spraying. The exhibition and judging of fruits may be grouped under Pomology.

During the past year, this part of the work has received much attention. Many varieties have been described in detail on cards, which are filed for future reference and compilation. Varieties which have been sent in for identification have been named and the information sent to the correspondents. Many new varieties have been propagated for test on the Central and Branch Farms, and for trial in other places, and a number of new ones have been planted out at Ottawa.

A Wealthy Apple Orchard Closely Planted.

In 1896, a small orchard of about one-third of an acre was planted with Wealthy apple trees, ten feet apart each way, there being 144 trees in all, or at the rate of 435 trees per acre. Trees have been taken out from time to time until, in 1912, there were 97 remaining. A record has been kept of the cost of caring for this orchard and of the revenue therefrom. The total net profit per acre, 1896-1912 (17 years), has been $1,508.24. The average net profit per acre per year from date of planting is $88.72, and the average net profit per acre per year from date of fruiting, 1899, is $107.73.

Spraying Experiments.

Among experiments in spraying conducted in the Horticultural Division in 1912, was one for the purpose of comparing the relative value of the lime-sulphur wash with Bordeaux mixture in controlling late blight of the potato. The average difference in yield in favour of Bordeaux mixture over nine varieties was 62 bushels 36 pounds per acre.

EXHIBITIONS.

Fruit was exhibited at the Provincial Exhibition, Quebec; the Central Canada Exhibition, Ottawa; and the Annual Meeting of the Society for Horticultural Science, at Cleveland, Ohio. Fruit was also judged at several places by officers of the Horticultural Division.

VEGETABLE GARDENING.

This includes the testing of varieties of vegetables for comparison of their relative merits as regards season, yield, quality, etc.; the comparison of different strains of the same variety; cultural methods, and spraying; and the study of commercial methods of production both in the field and under glass. In 1912, special attention was paid to potatoes, peas, and tomatoes, though all the principal kinds of vegetables were under experiment.

Potatoes.

Thorough spraying with Bordeaux mixture to prevent late blight, and the application of a mixture of 1½ pounds arsenate of lead and 8 ounces of Paris green to 40 gallons of water to control potato beetles, with thorough culture and a good season, ensured a good crop of potatoes in 1912.

Among 136 varieties of potatoes tested in uniform plots in 1912, the following were the most productive twelve, in order of total yield per acre: Dalmeny Hero, 580 bushels 48 pounds; Eureka Extra Early, 563 bushels 12 pounds; Table Talk, 554 bushels 24 pounds; Conquering Hero, 550 bushels; Rochester Rose, 536 bushels 48
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

pounds; Delaware, 528 bushels; Burpee's Extra Early, 519 bushels 12 pounds; Dal-
housie Seedling, 519 bushels 12 pounds; Early Hebron, 514 bushels 48 pounds:
Carman No. 1, 510 bushels 24 pounds; Houlton Rose, 501 bushels 36 pounds; Clyde,
499 bushels 24 pounds.

TOMATOES UNDER GLASS.

For the past two winters, a variety test of tomatoes has been conducted in the
greenhouse. Taking the results of the two years, the following varieties have given
the most satisfactory returns: Industry, Sutton's Satisfaction, Livingston's Globe,
Bonny Best, and Winter Beauty.

ORNAMENTAL GARDENING.

Under Ornamental Gardening comes the culture of ornamental trees, shrubs,
and herbaceous plants, and the study of their individual characteristics, such as
height, form, colouring, and season of bloom, so that information will be available
to Canadians to enable them to plant their places in such a way that the trees, shrubs
and herbaceous plants will blend or be contrasted with one another to form pleasing
landscape effects. The education of the people by lectures and bulletins on orna-
mental gardening and the encouragement of the beautifying of home surroundings,
so much needed in Canada, also received attention during the year. In addition,
large collections of roses, irises, phloxes, peonies, lilacs, gladioli, geraniums and other
ornamental plants have been got together for study. There was a fine display of these
at the Central Farm in 1912 and visitors were much interested and pleased with
the ornamental grounds as a whole.

NOVELTIES OF MERIT TESTED.

Many varieties of annuals were tested in 1912, among these being some novelties
of merit: Alonsoa Warscewiczii compacta Cosmos Crimson Ray, Calliopsis Radiata
Golden Ray, Dimorphotheca aurantiaca hybrids, Helianthus Helios, Linaria Maroccana
Excelsior, Nemesia hybrida Blue Gem, Papaver Danebrog; and Phlox paniculata
Elizabeth Campbell and Phlox paniculata Frau Anton Bachner, perennials.

FOREST BELTS.

The forest belts, planting in which was begun in 1888, furnish interesting data
on the relative growth of the different timber trees and the merits of mixing the
species or of planting them in blocks of one kind. The annual measurements of a
number of trees were taken in 1912, as in previous years.

PLANT BREEDING.

The improvement of fruits, vegetables, and ornamental plants by cross-breeding
and selection, and the study of the laws of inheritance in different kinds and varieties
of horticultural plants is, in brief, the field of work which is covered in plant breeding
in the Horticultural Division. Up to comparatively recent years, Canada has had
to depend almost entirely on other countries for her new varieties of fruits, vegetables,
and ornamental plants, and, while many of these succeed admirably in this country,
it is felt that, if originated in a climate more nearly like where they are to be grown
than has been the case in many instances in the past, those that show especial merit
are likely to prove more useful than are those introduced from climates very dis-
similar. During the past twenty-five years, much attention has been paid to the
breeding of horticultural plants at the Central Experimental Farm.
SESSIONAL PAPER No. 16

NEW VARIETIES OF APPLES.

Many varieties of apples of handsome appearance and good quality have originated in the Horticultural Division, and the best of these have been sent out for test to different parts of Canada to compare with those already on the market. In 1912 there were 152 varieties of apples originated in the Horticultural Division which fruited for the first time. Of the total of 1,148 new sorts which have been named, 81 have been named. The following names were given to varieties fruited in 1912: Ascot, Briscoe, Diana, Epsom, Galena, Grover, Humber, Manda, Moreno, Orlando, Pandora, Pedro, Ramona, Rustler, Vermac.

There were some very promising seedlings of Northern Spy apple which fruited in 1912. These show much greater hardiness than Spy while preserving many of the Spy characteristics and, with a fruiting season from autumn to late winter, it is expected that in time some of these will take the place of varieties now on the market.

Cross-bred Varieties of Apples Originated by Dr. Wm. Saunders.

Many varieties of hardy hybrid apples, crosses between the Siberian crab (Pyrus baccata) and the apple originated by Dr. Wm. Saunders, have already been introduced into the prairie provinces and have proven hardier than any previously tested there. Second crosses now fruiting which have a larger quota of apple blood have given fruit 2½ inches in diameter and, if they prove sufficiently hardy on the prairies, will be very valuable. Some named in 1912 are: Angus, Elkhorn, Gretna, Trail and Wapella.

New varieties of black currants and raspberries of much merit have been introduced. These were also originated by Dr. Saunders.

Seedling Strawberries.

New and promising varieties of strawberries originated in the Horticultural Division were named in 1912 as follows: Cassandra, Cordelia, Desdemona, Hermia, Julia, Lucetta, Mariana, Miranda, Ophelia, Portia, Silvia, Viola, and Virgilia.

Seedling Plums.

The following names were given to promising new plums in 1912: Corona, Firman, Hazel, Rhoda, and Vesta.

EARLY STRAINS OF VEGETABLES.

Special attention is being paid to the development of early strains of vegetables which will be of great value in the colder parts of Canada, as well as in the more temperate sections. Good progress was made in this work in 1912, and provision has been made for greater efforts in plant-breeding in the future.

CARD INDEX SYSTEM.

The card index system installed last year in the Horticultural Division for the purpose of filing the records of the Central Farm and branch Farms and Stations has entailed a large amount of work, but is proving very satisfactory.

BRANCH FARMS.

The work of the Horticultural Division in relation to the branch Farms and Stations has grown rapidly. It is its aim to aid the Superintendents in as many ways as possible and to help them develop the horticultural work on the Farms of which they have charge, and also to help to so systematize the work that the results will be
made of the greatest value to the people of Canada. During the past year, much has been done in the directions above mentioned. Material, consisting of plants, seeds, labels, record books and other things have been furnished the branch Farms and Stations through the Horticultural Division, as in previous years. In order to learn what plants and seeds are needed, and to keep the Government in touch with the results of experimental work throughout Canada, the record books of the branch Farms and Stations are sent to the Central Farm each year and what information is needed is copied on cards representing a Central Card Index System, making it easy to learn what is growing at each of the Farms. The Superintendents furnish reports to the Dominion Horticulturist, each week, of the work which has been done so that he may be in a position to answer any questions which may be asked at any time of the year in regard to what is being done in horticulture at the branch Farms.

In 1912, the Dominion Horticulturist visited all the branch Experimental Farms and Stations, some of them more than once, and made plans with the Superintendents for the development of the horticultural work.

Seedling Apples at Prairie Farms.

In the effort to obtain hardy varieties of apples for the prairie provinces, seedling trees of the hardiest Russian apples in addition to the hybrids originated by Dr. Wm. Saunders are now being grown in large numbers, and tested at the six Prairie Farms. The plan is to plant yearlings in nursery rows three feet apart and the plants one foot apart in the row and leave them in these rows until they have gone through two or three winters, when those proving hardy will be transplanted to orchards. In 1912, there were 18,000 of these sent from Ottawa and planted, about 3,000 at each of the six Prairie Farms. Seed of apples fruited in Manitoba has been planted to compare the trees grown from these with those grown at Ottawa of the same varieties. A large quantity of seed was sown in the autumn of 1912, as it is desired to test this method on a large scale.

Places visited and Meetings attended.

The Dominion Horticulturist, who was appointed a delegate to the Royal International Horticultural Exhibition held in London, England on May 22-30, 1912, attended this great exhibition, the largest horticultural show ever held in any country. While in England, he visited a number of places to obtain information useful to him in his work. While making his visits to the branch Farms in Canada he took the opportunity of studying conditions in several places and districts in different parts of the West. He made a special inspection of the nurseries in British Columbia.

Some of the more important meetings which the Dominion Horticulturist attended were: The Annual Meeting of the Ontario Fruit Growers' Association, Toronto, Ont.; Annual Meeting of Ontario Horticultural Association, Toronto, Ont.; Annual Meeting of the Niagara Peninsula Fruit Growers' Association, Grimsby, Ont., and St. Catharines, Ont. The Annual Meeting of the Quebec Pomological Society was attended at Maclonald College, Que. At all of these meetings addresses were given. As President of the Society for Horticultural Science, he delivered the Presidential address at the Annual Meeting held at Cleveland, Ohio, on December 31, 1912. The Assistants in the Horticultural Division also attended meetings, delivered addresses, and helped judge at various exhibitions.
THE CEREAL DIVISION.

The season of 1912 was distinctly unfavourable for cereals over almost the whole of Canada. During the early part of the summer drought and intense heat were prevalent; and these conditions were followed by months of wet, cool weather, about as unfavourable for the ripening and harvesting of grain as could well be imagined. Under such conditions, normal crops could not be expected, and the injury done to grain intended for seed purposes was very great. In some districts the heat and drought of early summer caused the young plants of cereals to produce a small number of heads rather prematurely. Later on, when wet weather came, stooling of the plants occurred and a considerable crop of late heads was produced. There was not time, as a rule, for these to ripen; but they grew to a good height and often quite overshadowed the earlier heads; so that when the first heads were ready for harvesting they were almost hidden beneath a mass of green stalks. Under conditions such as these, it was quite impossible to make as accurate observations as usual on the dates of ripening of the various cereals. The yields obtained were also rather misleading, especially owing to the fact that the early-maturing varieties suffered most, because they were farther advanced when the wet weather set in and were, therefore, less capable of recuperating.

The first severe frosts came rather later in autumn than usual. The results of the season were therefore less disastrous than might have been expected. The quality of the grain was, however, considerably lowered in most districts, while in some localities sprouting of the seed in the stooks occurred to a very serious extent.

Cereal investigations and the propagation of new and approved varieties for distribution and sale could not make very good progress in such an adverse season, but some valuable observations were made, and on some of the Experimental Farms a considerable quantity of seed grain of good germination was harvested.

VISITS TO BRANCH FARMS AND STATIONS.

The eastern Farms were visited by the Dominion Cerealist in July, and those in the west in August and September. The conditions affecting cereals were carefully studied and plans were made, by consultation with the Superintendents, for modifications and improvements in the work whenever such seemed practicable.

At Cap Rouge the very unfavourable, wet spring had been followed almost immediately by hot, dry weather. Under such abnormal conditions the prospects for grain crops were very poor. At Charlottetown and Nappan, the grain was in a much healthier state, and gave promise of reasonably good yields.

Harvesting was in progress—between showers—at the western Farms when these were visited in August. While, for the reasons already explained, the season was an unfavourable one for early-maturing varieties of grain, general satisfaction was found to prevail in regard to the harvest prospects for the early varieties of wheat, Marquis and Prelude. In most instances, the high expectations were fully justified by the weight of grain threshed.

While the varieties of cereals under cultivation in some of the older settled portions of Manitoba and Saskatchewan are satisfactory, and the need of new and improved kinds is not very great, the condition of affairs is quite otherwise in northern districts and over a large portion of Alberta, where the early-maturing varieties of wheat hitherto introduced, including Marquis, can not be depended on to ripen every season, especially when sown on summer-fallow land. For these conditions, Prelude wheat will be of enormous value, but tests of a large number of the new cross-bred sorts produced by the Dominion Cerealist at Ottawa and now available for trial elsewhere should be inaugurated without delay, so that the very best varie-
ties for the various conditions of soil and climate may be discovered. In barley and oats, also, there is need for more extensive variety tests than are possible at present. About a hundred important, new cross-bred barleys are now being tested at Ottawa only, and these should be studied at other points as well.

Marquis Wheat.

Marquis wheat was so fully discussed in the report of last year that a passing reference will be sufficient on this occasion. The year 1912 has been another Marquis year, owing to the conditions being rather unfavourable for the growing of Red Fife. Not only did Marquis give yields which, as usual, surpassed Red Fife, on the great majority of farms, but the winning of the highest award at the International Dry-Farming Congress at Lethbridge last autumn again attracted the attention of the whole world to this variety. Marquis is now being grown by so many farmers in almost all parts of the western country that there has been no difficulty in securing good seed this winter. While any attempt to estimate the probable acreage of Marquis for the coming season will probably be quite inaccurate, it appears that at least one million acres of this variety will be sown. The widespread popularity of Marquis is all the more noteworthy when we recall that this variety was introduced into Saskatchewan in 1907; when about half a bushel of seed was sent from Ottawa for trial on the Experimental Farm at Indian Head. Almost the whole of the seed now in the farmers' hands traces back to that first shipment, very little seed grown at Ottawa having since been sent out.

Many excellent yields of Marquis wheat were reported last season, the most remarkable being on the Indian Head Farm, where a plot of one-fortieth of an acre gave a crop at the rate of over 81 bushels per acre. This is probably a world's record for spring wheat.

Prelude Wheat.

Preliminary tests at Ottawa and at some of the branch Experimental Farms having clearly demonstrated the great value of this new variety, a few small samples were sent last spring to farmers in Saskatchewan and Alberta, so that a better idea might be obtained as to its adaptability to various districts. The tests on the branch Farms were also increased in number and in acreage. The season was particularly unfavourable for varieties which develop rapidly, because excessive heat and drought prevailed during the early part of the summer, conditions which proved very trying to all grains which were moderately well advanced. Those sorts which develop slowly were not so seriously injured. In one or two cases, small plots of Prelude wheat were almost entirely destroyed during this dry period; but, on the whole, the record made by the new variety was most satisfactory, the yields in some instances being really remarkable.

Two special cases deserve mention. Mr. E. B. Cay, of Beatty (near Melfort), Sask., sowed five pounds of Prelude wheat on one-fifth of an acre of land and threshed 603 pounds. Mr. W. J. Borton, of Bottrel, Alberta, sowed one pound of seed on a relatively large piece of land and secured 123 pounds of clean grain. Of course in this case the wheat did not ripen so early as it would have done had it been sown more thickly. One would not advise such extremely thin seeding under ordinary circumstances, but it is perhaps justifiable when only a very small quantity of seed can be obtained, and when its value is (as in the present instance) quite beyond any ordinary scale of prices.

The conclusions to be drawn from the experience of this past season confirm those of previous years. Prelude wheat can be unhesitatingly recommended as the best variety available for districts where extreme earliness is necessary and where there is a tendency toward the production of long straw. For dry districts, where straw is apt to be short, Prelude cannot be recommended. The Dominion Cerealist hopes to intro-
duce a very early-maturing sort in the near future which, though not quite so early in ripening as Prelude, will produce somewhat longer straw. A very early-maturing wheat with decidedly long straw may perhaps be an impossibility.

The regular distribution of Prelude wheat in five-pound samples was commenced this winter. As there was on hand only a very small stock of seed, compared with the amount asked for, it was necessary to refuse most of the applications which were received, especially those from districts where the need of this particular variety was not so very great. More than 200 samples were sent out, chiefly to northern localities in what may be roughly described as the settled areas of Saskatchewan and Alberta. Provision has been made for a good acreage of Prelude on the Experimental Farms this season, so that there may be a large stock for distribution, and perhaps some seed for sale also, next winter.

DISTRIBUTION OF SEED GRAIN BY MAIL.

The annual free distribution of seed grain and potatoes, which is now in progress, is being carried on in a manner similar to that of the previous year. The grain for distribution was grown chiefly on the Experimental Farms at Indian Head and Brandon. Some Ottawa seed is also being used and the stock of potatoes has been obtained entirely from a field grown on the Central Experimental Farm under the supervision of the Dominion Botanist. In spite of the unfavourable character of the season, both the yield and quality of these potatoes were unusually good.

All grain for distribution is grown with the greatest care, so as to be free from admixture with other varieties. After threshing, it is thoroughly cleaned by the best obtainable grain-cleaning machinery and, finally, it is hand-picked, if necessary, to remove any remaining impurities. By these precautions, it is possible to send out seed of the very highest type, distinctly superior, as a rule, to the best commercial stocks. While the adoption of so high a standard makes it impossible to distribute as large amounts as in years gone by, there is no doubt of the advantages of the present system. Reasonable regulations are now being enforced so that samples of seed are sent only to those applicants whose requests give evidence of some thought. Those who have failed to send a report on a sample received in a previous season are not eligible for further samples. Considering its inherent difficulties, the claim may fairly be made that this distribution is now managed in such a way as to give general satisfaction. Undoubtedly it is proving of immense value to Canada.

The principal varieties distributed this season are as follows:—

Spring Wheat.—Marquis, Red Fife, White Fife, Huron, Prelude.

Barley.—Manchurian (6-row), Canadian Thorpe (2-row).

Oats.—Banner, Abundance, Ligowo, Daubeney.

Peas.—Arthur, Golden Vine.

Potatoes.—Irish Cobbler, Gold Coin, Carman No. 1, Delaware.

MILLING AND BAKING TESTS.

An extensive series of milling and baking tests has been carried on during the past winter. These have included many new cross-bred varieties produced at Ottawa by the Dominion Cerealist, and some of the standard, old varieties as well. The samples tested were chiefly grown at Ottawa, last season, but samples from some of the branch Experimental Farms were included, as it is important to study the variations which occur in baking qualities when varieties of wheat are grown under different conditions.
Attention is being given to problems in connection with the making of bread, both from a baker's point of view and a housekeeper's; and the laboratory is now prepared to investigate any cases of contaminated, spoiled or suspicious flour which may be submitted.

No detailed report of the tests of this winter will be made at present, as it is intended to publish a bulletin on this subject as soon as practicable, giving an account of most of the work which has been done along these lines for several years.

EXPERIMENTS WITH VARIETIES OF GRAIN AT OTTAWA.

On the Central Experimental Farm, last season, there were grown four principal series of plots:—

1. Very small plots of unfixed types produced in the second and later generations from cross-bred seeds.

2. Small propagation plots in which the new cross-bred sorts which have shown themselves to be fixed in character are increased until enough seed is available for a plot of one-sixtieth of an acre. A few named (commercial) sorts are also grown in these plots, as well as selected strains from named varieties (commercial or otherwise).

3. The regular series of plots of one-sixtieth of an acre each, in which the comparative tests of varieties are carried on.

4. Larger plots of varying size where those varieties which have given evidence of special merit are propagated on as large a scale as the limited amount of land (and sometimes of seed) permits. Seed from the best of these plots is sent to the branch Experimental Farms the following year for more extended trial.

The following figures will give an idea of the extent of this work, last season, at Ottawa:—

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very small plots of cross-bred sorts, not yet fixed</td>
<td>470</td>
</tr>
<tr>
<td>Small propagation plots</td>
<td>201</td>
</tr>
<tr>
<td>Plots of one-sixtieth of an acre</td>
<td>434</td>
</tr>
<tr>
<td>Larger propagation plots</td>
<td>45</td>
</tr>
<tr>
<td>Total plots</td>
<td>1,150</td>
</tr>
</tbody>
</table>

There were grown at Ottawa, last season, the following numbers of varieties of wheat, emmer, oats, barley, peas, rye, beans and flax:—

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>New cross-bred varieties, under numbers</td>
<td>426</td>
</tr>
<tr>
<td>Cross-bred varieties, named</td>
<td>38</td>
</tr>
<tr>
<td>Selected strains from commercial sorts</td>
<td>83</td>
</tr>
<tr>
<td>Commercial sorts, unselected</td>
<td>58</td>
</tr>
<tr>
<td>Total varieties and selections</td>
<td>605</td>
</tr>
</tbody>
</table>

The above figures would have been somewhat larger if there had been enough land available for the Cereal Division to make possible the sowing of all the varieties which were on hand. Unfortunately, a large number of barley plots had to be omitted on account of the shortage of land.

In view of the great amount of material which is being studied, it should be explained that the object in view is to test a multitude of varieties and finally though rejecting almost all of them, to retain everything which has shown outstanding merit.
SESSIONAL PAPER No. 16

To the public, there will be introduced only a few of the very best sorts. The great disadvantage of introducing too many varieties for the use of the farming community is fully recognized, and any such error is being carefully guarded against. Very short lists of varieties recommended for cultivation in the different provinces are published from time to time, for the guidance of farmers.

CROSS-BREEDING AND SELECTING CEREALS AT OTTAWA.

Cross-breeding and selection have been continued as in other years. An interesting new beardless barley called 'Arlington Awnless,' which has recently been introduced by the Department of Agriculture at Washington, furnished an opportunity of making some promising new crosses for the production of still better beardless sorts. Crosses were also made last summer between Marquis and Prelude wheats, for the purpose of combining, as far as possible, the splendid qualities of these two varieties. Other crosses in wheat and oats, were effected.

The amount of material now on hand is very great, but it is felt that some new crosses should be made from time to time, so that Canada may not lose the high position she now holds by the remarkably successful efforts which have been made here for the improvement of cereals.

DIVISION OF CHEMISTRY.

As heretofore, the work of the Chemical Division, under the superintendence of Mr. F. J. Shutt, Dominion Chemist and Assistant Director, has been carried forward with a two-fold purpose—the prosecution of research which might lead to the solution of problems in Canadian agriculture, general and specialized, and the more immediate and direct education and assistance of the individual farmer in matters pertaining to his every-day work. Though spoken of here, for the sake of clearness and convenience, as distinct classes of work, there is, at times, no sharp line of demarcation between them. One frequently prompts and assists the other and thus it is, that many investigations of wide importance have been taken in hand as the result of information or suggestion contained in a correspondent's appeal for help. Much of the most fruitful and timely work, yielding results of an essentially practical and widely useful character, has been the outcome of efforts to obtain the data necessary to enable one judiciously to advise the farmer in his difficulty.

Naturally, no detailed account can be given in the report of the year's activities in this branch of the work, which seeks directly to advise and inform the farmer through correspondence. It must, therefore, suffice to say that the endeavour has been made to make the Division a Bureau of Information in matters relating to the Chemistry of Agriculture, to which all may apply, and that there is a steadily increasing number of those who are sending in questions having reference to the economical maintenance and increase of soil fertility, the nature and amounts of plant-food constituents in manures and fertilizers, the special requirements of crops and farm animals, the relative nutritive values of forage crops and feeding stuffs, the composition of dairy products, the constitution and preparation of insecticides and fungicides, and a host of allied subjects in general and specialized farming that call for chemical aid. The experience of twenty-five years has shown this work of answering inquiries and reporting on samples sent in by farmers to be most useful, giving help when and where it is wanted to those who will benefit by it. It has proved very popular and it is thought successful in disseminating knowledge to those on the farm and further, has won for the reports and bulletins of the Farms many interested and earnest readers. This educational work necessarily occupies a considerable portion of the time of the Chief of the Division.
A classified list of samples received for examination from farmers and of those in connection with the various investigations that have been carried on during the year, is presented in the following table. The total number, 2,821, exceeds that of the previous year by nearly 500, and of 1911 by over 1,000, a fair indication of the increasing appreciation on the part of farmers of this branch of the work.

Samples Received for Examination and Report for the Twelve Months ended March 31, 1913.

<table>
<thead>
<tr>
<th>Samples</th>
<th>British Columbia</th>
<th>Alberta</th>
<th>Saskatchewan</th>
<th>Manitoba</th>
<th>Ontario</th>
<th>Quebec</th>
<th>New Brunswick</th>
<th>Nova Scotia</th>
<th>Prince Edward Island</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>53</td>
<td>601</td>
<td>485</td>
<td>456</td>
<td>52</td>
<td>59</td>
<td>29</td>
<td>27</td>
<td>13</td>
<td>1,778</td>
</tr>
<tr>
<td>Muds, mucks and marls</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>41</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Manures and fertilizers</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>41</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>Forage plants and fodders</td>
<td>14</td>
<td>38</td>
<td>16</td>
<td>6</td>
<td>137</td>
<td>20</td>
<td>7</td>
<td>6</td>
<td>17</td>
<td>231</td>
</tr>
<tr>
<td>Waters</td>
<td>51</td>
<td>23</td>
<td>24</td>
<td>7</td>
<td>215</td>
<td>39</td>
<td>23</td>
<td>8</td>
<td>3</td>
<td>388</td>
</tr>
<tr>
<td>Miscellaneous, including dairy</td>
<td>19</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>225</td>
<td>26</td>
<td>11</td>
<td>2</td>
<td></td>
<td>307</td>
</tr>
<tr>
<td>products, preservatives, fungicides, insecticides, etc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>143</td>
<td>676</td>
<td>533</td>
<td>478</td>
<td>631</td>
<td>179</td>
<td>80</td>
<td>57</td>
<td>42</td>
<td>2,821</td>
</tr>
</tbody>
</table>

Conservation of Soil Moisture.

This important investigation was begun in 1910, with the object of ascertaining the influence of various cultural operations and croppings on the moisture-content of the soil. It comprises a series of cultural and rotation experiments conducted on the Experimental Farms at Brandon, Man., Indian Head, Sask., and Lethbridge, Alta., planned and arranged to include a number of systems of tillage, soil management and crop rotation likely to prove suitable for farming in the open prairie districts enjoying but a sparse and irregular rainfall. Soil samples from the experimental plots have been taken to two depths—0 to 18 inches, and 18 inches to 5 feet, periodically throughout the season, and their moisture-content determined.

It will be understood that this work is still in progress and, therefore, that final conclusions must be deferred. It will be possible, however, to indicate some of the more striking results that have been obtained.

In 'prairie breaking' the plots were ploughed from 2 to 5 inches. In two seasons of the three the soil of the deeper ploughed plots, for the first 18 inches, retained the more moisture. Though the difference usually was small, it was fairly well maintained throughout the summer, the surface of the plots being kept well cultivated. It was found that adjacent plots of recently broken land, sown, after due and similar preparation by discing and harrowing, to a mixture of peas and oats and flax respectively, differed considerably in their moisture-content as the season advanced. That bearing the peas and oats was the more moist, probably owing to the greater protection against surface evaporation provided by the more leafy crop.

The influence on moisture-content of 'depth and time of ploughing' was determined on a large number of plots. As regards depth, the ploughing varied from 3 to 8 inches, with an additional subsoiling of 4 to 6 inches on certain of the plots. The times of ploughing were one month apart, in May, June and July. The trend of the results from two seasons' records is in the direction of greater moisture storage following the deeper ploughing, but evidently there is a limit—probably deter-
SESSIONAL PAPER No. 16

mined by the nature of the soil—beyond which the stirring of the soil by the plough does not appreciably affect the moisture-content or, at all events, cannot be done profitably.

Earliness in ploughing has shown itself conducive to moisture storage in a most marked degree. The delay of a few weeks has resulted in a decidedly lower moisture-content throughout the rest of the season.

In 'subsoil packing' the data show a well-marked advantage for light and sandy loams, but that there was little extra conservation of moisture from this operation on heavy clay loams.

INFLUENCE OF ENVIRONMENT ON THE COMPOSITION OF WHEAT AND BARLEY.

This research, inaugurated in 1905, and continued since that date, has shown that soil and seasonal conditions may markedly affect the composition of wheat and barley. For the past three years, wheat from the same stock has been grown on the larger number of Experimental Farms and Stations from Prince Edward Island to British Columbia, and the harvested grain analyzed. The data obtained in a very large measure confirm those of previous seasons from similar experiments conducted in the northwestern provinces only, and go to show that a moderately dry soil, accompanied by high temperatures during the period in which the grain is filling, tend to arrest the vegetative growth of the plant, to hasten maturity and conduct to a hard berry, with a high percentage of gluten and high baking value. It would seem from this investigation that the excellent quality of northwestern-grown wheat is due in part, at least, to climatic conditions which prevail during the later summer months over large areas in the grain-growing districts, and which bring about a quick maturation of the grain.

The results, as regards protein (gluten), from the examination of the 1912 crop are of considerable interest in showing the variations that may occur in one season's growth at points across the Dominion.

PROTEIN in Marquis Wheat Crop of 1912 (calculated on water-free basis).

<table>
<thead>
<tr>
<th>Laboratory No.</th>
<th>Locality grown.</th>
<th>Protein (N x 5.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11269</td>
<td>Parent Seed, Indian Head, Sask. 1911</td>
<td>14.62</td>
</tr>
<tr>
<td>13283</td>
<td>Charlottetown, P.E.I</td>
<td>12.50</td>
</tr>
<tr>
<td>13262</td>
<td>Napan, N.S.</td>
<td>13.20</td>
</tr>
<tr>
<td>13288</td>
<td>Cap Rouge, Que</td>
<td>14.96</td>
</tr>
<tr>
<td>13008</td>
<td>Ottawa, Ont</td>
<td>16.81</td>
</tr>
<tr>
<td>13173</td>
<td>Brandon, Man</td>
<td>17.21</td>
</tr>
<tr>
<td>13146</td>
<td>Indian Head, Sask</td>
<td>17.03</td>
</tr>
<tr>
<td>13196</td>
<td>Rosthern, Sask</td>
<td>17.17</td>
</tr>
<tr>
<td>13174</td>
<td>Scott, Sask</td>
<td>18.10</td>
</tr>
<tr>
<td>13089</td>
<td>Lethbridge, Alta., irrigated</td>
<td>16.32</td>
</tr>
<tr>
<td>13242</td>
<td>Lethbridge, Alta., non-irrigated</td>
<td>17.35</td>
</tr>
<tr>
<td>13196</td>
<td>Lacombe, Alta</td>
<td>18.00</td>
</tr>
<tr>
<td>13080</td>
<td>Agassiz, B.C.</td>
<td>14.77</td>
</tr>
</tbody>
</table>

As an illustration of the principle cited, that available soil moisture influences the protein-content, attention may be directed to the data from Lethbridge, Alta. The soil on the non-irrigated plot was found to be from 2 per cent to 4 per cent drier during June, July and August than that of the irrigated plot, and the wheat from the drier soil proved, on analysis, to be the richer in protein by 1.61 per cent.
FODDERS AND FEEDING STUFFS.

These, for the most part, comprise the milling by-products and manufactured feeds used in experimental work with stock on the Central Farm, Ottawa. The list, however, contains a number of materials of feeding value sent in by farmers but not coming within the jurisdiction of the Inland Revenue Department, the branch of the Government service undertaking the official analysis of feeding stuffs on the market. The list comprises middlings, shorts, feed flour, and mixed meals from oats and barley, of bean and rice meals, of molasses feeds of various kinds, dried grains from the brewery and distillery, tankage, etc., etc.

The composition of feeds is a matter well worthy of study by farmers and dairy-men, and especially so in these days of high prices. There are many concentrates on the market that, with judicious feeding, can give good value, and these are not necessarily low-priced goods—indeed they are more frequently those bringing a good figure per ton but which, nevertheless, are worth it by reason of their high protein and fat-content. There are also many inferior feeds which may almost be said to be dear at any price. Such, for instance, are many of the oat feeds, largely made of the refuse from oatmeal and cereal food mills, which contain little protein and fat and are overloaded with indigestible fibre which is not only useless but depresses the value of the other nutrients. These feeds, possibly largely oat hulls, find buyers at $10 to $15 per ton, when bran is selling for not more than $20. There is no economy in such practice. Again, there are certain manufactured feeds against which no complaint can be raised as to wholesomeness, but for which extravagant claims are made and extravagant prices are charged. In this class are some of the molasses feeds, certain brands of which are sold much above their value, when their prices are compared with staple milling products. The price of the feed is not an infallible guide to its nutritive value, and the purchaser, when not familiar with the material, would do well to look for the guarantee as to protein and fat-content.

THE RELATIVE VALUE OF FIELD ROOTS.

Twenty-three varieties of mangels, grown on the Central Farm, were submitted to analysis, and very considerable differences in nutritive value were noticed. In dry matter, they ranged from 13.38 per cent to 7.87 per cent and in sugar, from 9.15 per cent to 4.55 per cent. The sugar mangels, the Mammoth Long Red and the Giant Yellow Intermediate, headed the list, the poorer members of the series comprising several varieties of the Yellow Globe mangel. Though not an invariable rule, those containing the larger percentages of dry matter were the richer in sugar, the chief constituent of value from the nutritive standpoint. The averages for the whole series were 9.51 per cent dry matter and 4.55 per cent sugar.

Two well-known and typical varieties, Gate Post and Giant Yellow, grown side by side at Ottawa annually for 13 years, have been analyzed to ascertain the influence of heredity on composition. Though the differences between them have not been constant throughout this period, the Gate Post has invariably proved the superior root. The averages for the experimental period are: Gate Post, dry matter, 11.53 per cent, sugar, 6.16 per cent; for the Giant Yellow Globe, dry matter, 9.52 per cent, sugar, 4.56 per cent.

Nineteen varieties of turnips were submitted to analysis. Considerable differences as regards dry matter were found, as in the case of mangels, but the sugar-content was fairly constant. Turnips, as a class, are not so rich in dry matter as are mangels, and possess a much lower sugar-content. The best turnip in the series was Carter's PrizeWinner, with 10.55 per cent dry matter and 1.25 sugar, closely followed by Hartley's Bronze Top, Kangaroo and Best of All. The limits for the series in dry matter were 10.55 per cent and 5.85 per cent, and the average 8.65 per cent.
Carrots, judging from their composition, are intermediate in food value between mangels and turnips. Six of the prominent varieties were analyzed, and the differences between them, either in dry matter or in sugar, are small compared with those noted for other field roots. The first on the list is Giant White Vosges, with 11.45 per cent dry matter and 2.83 per cent sugar. The remaining varieties follow in close order, and the averages for the series are 10.60 per cent dry matter and 2.54 per cent of sugar. This crop it has been noticed, varies but slightly as to composition from year to year; evidently, it is not influenced by seasonal conditions to the same degree as are mangels and turnips.

SUGAR BEETS FOR FACTORY PURPOSES.

Three varieties of sugar beets—Vilmoron's Improved A, Vilmorin's Improved B. and Klein Wanzleben—have been tested on ten of the Experimental Farms and Stations. The seed was obtained from Messrs. Vilmorin, Andrieux et Cie., Paris, who are recognized as among the foremost firms in Europe for high quality sugar beet seed.

A survey of the whole series shows remarkably satisfactory results; in the larger number of instances, the beets were exceptionally good, and in one or two cases only—due to unfavourable weather conditions—could the roots be accounted too poor for profitable sugar extraction. Averaging the results from the three varieties tested at each Farm, the highest sugar-content was obtained at Lethbridge, Alta., on the non-irrigated plot (17.68 per cent) and the lowest at Brandon, Man., (13.40 per cent). At three Farms in the series, the average sugar-content was above 17 per cent and at three others between 15 per cent and 17 per cent. It has been conclusively shown from this investigation, which has been carried on systematically since 1901, that beets suitable for factory purposes can be grown at widely distant points in the Dominion.

FERTILIZING MATERIALS.

These include naturally-occurring materials and certain by-products of agricultural value by reason of the plant food they possess. Those analyzed and reported on during the year include marl and similar calcareous deposits, ground limestone, agricultural limestone—a product from lime-kilns—gypsum or land plaster, wood-ashes, river, marsh and mussel muds, lobster refuse from the packing houses, dog-fish scrap, a potash residue from the oxygen-acetylene plant and several other products of fertilizing value.

Without inserting analytical data—which space forbids—it would be impossible here intelligently to discuss the agricultural importance of all these varied materials. The reader must, therefore, refer to the annual report of the Division of Chemistry where they are considered in detail and their uses indicated. It must suffice to say that many of them can be very cheaply obtained and will be found of value in improving tilth and in supplying notable amounts of plant food. Some of these are of the nature of amendments, others may be ranked with commercial fertilizers, and all may be employed, as conditions dictate, as aids to the maintenance and increase of soil fertility.

INSECTICIDES AND FUNGICIDES.

The more important materials of this nature examined during the year are included in the following list: Formaldehyde, copper-sulphate, agricultural bluestone, carbolized wheat protector, apterite, lime-sulphur wash, potassium cyanide and lead arsenate.

Only one sample of formaldehyde was found below standard strength. The results generally show that the manufacturers are putting out an article of very fairly uniform strength and one in conformity with the guarantee.
Of the samples of bluestone submitted, two were found to contain notable percentages of sulphate of iron; they were, in fact, 'agricultural bluestone' being sold for bluestone, which is sulphate of copper.

Agricultural bluestone is the name given to a crystalline mixture of sulphate of copper and sulphate of iron. For the treatment of wheat it is distinctly inferior in fungicidal properties to bluestone proper and for the preparation of Bordeaux mixture it is useless. Readers are cautioned against buying it.

Carbolized wheat protector is a preparation found to consist essentially of sulphate of iron and crude carbolic acid. Its efficiency for the prevention of smut in grain is extremely doubtful.

Apterite is a compound described as a 'soil fumigant and fertilizer.' It is essentially a mixture of sulphides of lime (probably gas lime) with naphthalene. Experience in Canada with similar preparations is as yet limited, but such as there is has not been very favourable.

Five brands of lime-sulphur sold in Canada have been analyzed, the sulphide sulphur ranging from 21.87 per cent to 25.09 per cent, amounts that may be considered satisfactory. The larger number of lime-sulphur washes put on the market by reputable firms have been found of good quality.

Potassium cyanide, when obtained in sealed original containers, has proved of guaranteed strength. The chemical rapidly deteriorates on exposure, so that samples taken from open bottles are frequently of inferior quality.

Very considerable differences in lead arsenate content have been found to exist among the various brands of this insecticide upon the market, and results obtained here point to the desirability of compelling the manufacturer to give a guarantee on the label of the package, stating the percentage of arsenate of lead present.

THE FERTILIZING VALUE OF RAIN AND SNOW.

The total precipitation, as recorded at the Central Experimental Farm, Ottawa, for the year ending February 29, 1913, was 39.36 inches, 9.62 inches falling in the form of snow. Analysis showed that this furnished 6.144 pounds of nitrogen, per acre, in forms readily available for crop use. Records taken here indicate that the proportions of this amount furnished respectively by the rain and the snow, have not appreciably varied for the past four years, about eight-tenths of the nitrogen compounds being found in the rain.

THE WATER-SUPPLY OF FARM HOMESTEADS.

Of the 386 waters sent in during the year from various parts of the Dominion, 188 have been submitted to complete sanitary analysis. Of these, 89 were pronounced as pure and wholesome, 43 as suspicious and probably dangerous, 41 as severely contaminated and 15 as too saline to be used as a potable supply.

The worst waters were from shallow wells dug in barnyards, or in the neighbourhood of similar sources of pollution. These merely draw upon the ground water in their immediate vicinity and must become, by reason of their location, contaminated. The abandonment of such wells is strongly advocated. The bored, or driven well, obtaining its supply from a deep-seated source, and below one or more strata of impervious rock, has, as a rule, yielded good water. Both as to quantity and quality, the bored well is more satisfactory than the 'hole in the ground' so commonly found in the country. It is gratifying to note that such wells are now replacing the old form of supply on many Canadian farms.
MISCELLANEOUS.

The work of the year has also included the analysis of 185 samples for the Meat Inspection Division, Department of Agriculture. These were collected at the various packing houses in Canada and included lards, preserved meats, dye stuffs and colouring matters, preservatives, pickling solutions, spices and condiments, etc., etc. This examination is made with a view of determining their nature, purity and character of adulteration, if present.

Samples of water from Coquitlam lake, B.C., the source of the supply for the city of New Westminster, and where a large dam is being constructed, have been examined monthly for the Water Power Branch, Department of the Interior, for which Branch, also, a number of mechanical analyses of ‘fill’ used in dam construction in different parts of the Dominion have been made.

For the Dominion Parks Branch, Department of the Interior, a report has been made monthly on the water supply used at Banff, Alta. Analyses show this to be a water of exceptional purity.

Analyses of a number of natural waters have been made at the request of the Department of Marine and Fisheries, with a view to determining if certain alleged pollution might be such as to affect fish life or lessen their value in hatchery operations. Also, as for many years past, reports have been made on the composition of dog-fish scrap produced at the Government Reduction Works in the Maritime Provinces.

DIVISION OF FORAGE PLANTS.

The desirability of a closer study of those plants useful as food for stock has become more and more evident from year to year. Until 1900, experimental work with forage plants constituted part of the work of the Division of Entomology and Botany, under the late Dr. James Fletcher. After his death, separate Divisions of Entomology and of Botany were formed. That part of forage plant investigation dealing with the families of grasses and leguminous plants was taken over by the latter Division, while the study of field roots and Indian corn was carried on by the Cereal Division.

In 1912, it was felt that the growing need of wider experimental work, looking both to the testing of present varieties and to the originating of new and improved sorts, demanded the creation of a Division of Forage Plants, under the charge of a specialist in this line of work. Accordingly, all forage plant investigational work was placed in the hands of Dr. M. O. Malte, a brief account of whose career appears elsewhere in this report.

The farm plants coming within the scope of the work of this Division are:

1. Field roots.
2. Indian corn.
3. Leguminous plants.

In addition to these groups of forage plants, some experiments with broom corn are also being conducted by the Division.

FIELD ROOTS.

The work with field roots, including turnips, mangels, carrots and sugar beets, was continued along the lines followed in the immediately preceding years, i.e., it consisted chiefly in the testing of different varieties as to yielding power.

Of turnips (including swedes), nineteen varieties were tested, the highest yielding variety being Best of All, with a crop of 40 tons 1,634 pounds per acre.
Of mangel, twenty-three varieties were tested. The highest yielding varieties were four of the Yellow Globe type, which averaged 42 tons, 1,368 pounds per acre. The other nineteen varieties yielded a much smaller crop, their average being 26 tons, 315 pounds per acre.

Of carrots, six varieties were grown, their average yield being 18 tons, 545 pounds per acre.

Of sugar beets, three varieties were tested, the average yield being 15 tons, 1,978 pounds to the acre.

INdian Corn.

Of Indian corn, twelve varieties were tested, yielding an average of 16 tons, 1,700 pounds to the acre. The very wet weather during the first part of June, and the unfavourable conditions during practically the entire season had, on the whole, quite a disturbing effect on the results of the experiments.

Clover, Alfalfa and Grasses.

The year's work with leguminous forage plants and grasses consisted chiefly, save for comparative testing of the yield of those 'varieties' which were already growing in the experimental field, in starting the breeding of new varieties and strains from old, long-tryed species.

As is well known, the production of new varieties and strains can be accomplished by following three main courses, viz.:

1. *Line Breeding*, i.e., breeding from individual parent plants by means of self-fertilization.
2. *Mass-Selection*, by which production of new so-called varieties is effected by raising parent plants, selected *en masse*.
3. *Hybridization*, by which new strains are produced by combining desirable characters of two parent plants into one individual.

Whether Line Breeding, Mass-Selection or Hybridization should be used for the production of new varieties and strains depends largely upon two factors, viz.: (1) the way in which the plants worked with can be fertilized, and (2) what kinds of character the breeder wants to develop.

The influence of the ways of fertilization on the breeding methods to be employed can be demonstrated by the following two examples:

1. A Timothy plant growing among other individuals of its kin is apt to be cross-fertilized, and there is no doubt that the bulk of the timothy seed produced in the field is the result of cross-fertilization. A timothy plant isolated in such a way that pollen from other individuals has no chance whatever to reach its pistils, can be fertilized by its own pollen and produce seed of good quality.

2. A Red Clover plant is always fertilized by insects carrying pollen from one flower to another. If a red clover plant is isolated so that it cannot be visited by insects, it will not produce a single seed. What is of more importance in this connection is, however, the fact that red clover is perfectly self-sterile, *i.e.*, a flower of a certain individual cannot be fertilized by pollen developed by that individual. Every red clover seed produced is therefore the result of a cross-fertilization between two individual plants.

This clearly understood, it is evident that Line Breeding of red clover is entirely out of question. The method to be employed must be mass-selection or hybridization. Whether Mass-Selection or Line Breeding should be used as a basis for breeding work depends also upon what results are looked for.

When the aim is to secure uniform strains distinguished by certain constant morphological characters, Line Breeding is practically the only safe method to use.
SESSIONAL PAPER No. 16

When, however, certain physiological or biological characters are looked for, mass-selection can be used to advantage.

RED CLOVER.

Red Clover, being a self-sterile plant, new varieties and strains must be produced by means of mass-selection and hybridization respectively.

When breeding red clover, three qualities particularly should be taken into consideration, viz.: winter-hardiness, quality of seed, and yield of hay.

It has been proven in cereals which, like red clover, consist of thousands of distinct types, that resistance to disease and hardiness are hereditary characters subjected to the same general laws of heredity as govern the transmission from a mother-plant to its progeny, of strictly morphological characters. It is therefore very reasonable to suspect that winter hardiness in red clover is a hereditary character that can be transmitted from one parent plant to its progeny.

If this be the case, it will be a simple matter to produce a variety able to withstand, without being killed to any extent, the most severe Canadian winter. The task could be accomplished by sowing seed from those individuals which survive after a severe winter and which, therefore, according to our conception, represent hardy ‘lines’ or strains. After sowing the seed thus saved, a progeny may be expected that will prove harder than was the parent crop originally sown, and by saving the seed year after year, a perfectly hardy variety will soon be obtained. This method of improving the hardiness is simply mass-selection effected by nature herself.

With this aim in mind, seed was saved during the summer of 1912 from all plots of red clover except two, the intention being to use it for the production of hardier varieties.

In order to produce, by means of artificial crossings, red clover strains of high yielding power and with seed of a desirable type, seed collected from a number of individual plants during 1911 was sown in hills two feet apart each way. Several unfavourable factors, however, prevented most of the seed sown from germinating and developing properly.

TIMOTHY.

Timothy being able to produce seed when self-fertilized as well as when cross-fertilized, all three breeding methods referred to above can be used.

What should be especially looked for in timothy breeding is the production of constant strains of superior yielding power. Such strains can hardly be secured except by a phenomenal chance of luck by mass-selection. Line breeding must be considered the safest if not the only way.

In order to secure material for line breeding of timothy, seeds collected from a number of wild plants were selected. Of the seedlings obtained, about 1,200 were planted in the field 3 feet apart each way. The further development of these plants will decide how many of them will be selected as mother plants for production of new strains.

Similar steps have been taken, although on a much smaller scale, to secure material for breeding work with orchard grass and with certain other forage plants.
THE DIVISION OF ENTOMOLOGY.

THE ADMINISTRATION OF THE DESTRUCTIVE INSECT AND PEST ACT.

This includes the inspection and fumigation of imported nursery stock and the field and laboratory work against the Brown-tail Moth. The new arrangement whereby this Department and the Department of Agriculture of British Columbia co-operate in the work of inspection and fumigation of imported nursery stock at Vancouver, B.C., has worked most satisfactorily. As indicating the importance of our inspection of imported plants may be mentioned the discovery by an inspector at Vancouver during the inspection last spring of eight egg-masses of the Gipsy Moth in an evergreen (Thuja) from Japan. From these egg-masses several hundred larvae of the Gipsy Moth emerged. During the importation season of 1911-12, over 3,800,000 trees and plants were inspected. Owing to the danger of the importation of the Mediterranean Fruit Fly (Ceratitis capitata) from the Hawaiian Islands, the importation of all non-canned fruit from those islands was prohibited by the passing, in April, 1912, of Regulation No. 16 under the Act. In December, 1912, Regulation No. 17 was passed requiring a certificate of inspection to accompany all forest plant products originating in those of the New England States which are infested with the Gipsy Moth and imported into Canada. The importation of coniferous trees and Christmas greenery from the same states was also prohibited by the same regulation.

As recorded in the last annual report of this Division, the area infested with the Brown-tail Moth in New Brunswick was found to have increased very considerably. In 1911, as a result of our discovery that the Brown-tail Moth had spread from the state of Maine into New Brunswick, a thorough scout was made and in the spring of that year the infested area was found to be approximately 400 square miles. During the summer of 1911, the Brown-tail Moths apparently invaded the province to so great an extent that during the winter inspection of 1911-12 it was found that the infested area consisted of about 6,400 square miles. The light character of the latter infestation may be gathered from the fact that only 2,452 winter webs were collected. In Nova Scotia, the infestation was found during the inspection season 1911-12 to have spread a few miles farther eastward and a larger number of winter webs were collected; 7,503 webs were gathered, compared with 4,490 during the previous season.

FIELD LABORATORIES.

In 1911, by the courtesy of the Department of Agriculture of Ontario, a field laboratory was provided at Jordan Harbour, Ont. During the past season the field work of the Division was extended by the provision of small portable buildings in Nova Scotia, New Brunswick and Quebec and by the provision of temporary quarters in western Ontario and British Columbia. The following is a brief résumé of the field work which was started in connection with these laboratories. In Nova Scotia, Mr. G. E. Sanders commenced an important series of investigations on the life-history and control of the Bud Moth. An orchard of ten acres was placed at the disposal of the Division, for spraying experiments, by Mr. Ralph Eaton, of Kentville, N.S. Concurrent studies were commenced on the Green Fruit Worm (Xylina spp) now becoming a serious pest in some orchards. Results have already been obtained which would indicate that it will be possible to recommend a system of spraying which will control these insects and at the same time render unnecessary some of the applications now employed.

The work carried on by Mr. J. D. Tothill at the New Brunswick field laboratory located at Fredericton, N.B., consisted chiefly in the importation and colonization of two of the most important enemies of the Brown-tail and Gipsy Moths, namely, the predaceous beetle Calosoma sycophanta and the tachinid fly parasite Compsilura concinnata. Supplies of these were collected, thanks to the courtesy of Dr. Howard,
SESSIONAL PAPER No. 16

Chief Entomologist of the United States Department of Agriculture, in Massachusetts, into which state they had been imported from Europe. Considerable numbers of the beetles were reared and two colonies were placed out and went into hibernation. Two strong colonies of the tachinid parasite *Compsilura* were placed in the field, and before the close of the season it was found that individuals from one of these had spread three miles from the point of colonization and had parasitized the native Fall Webworm (*Hyphantria cunea*), a most encouraging result. The parasites of certain of the more serious native pests are being studied.

In Quebec, a field laboratory is located at Covey Hill, south of Montreal, in an orchard seriously infested with the more common species of apple insects. Here, Mr. C. E. Petch, during the latter half of the summer, commenced an investigation on the Apple Curculio (*Anthonomus quadrijugus*) and also made observations on the Apple Maggot (*Rhagoletis pomonella*). At the laboratory at Jordan Harbour, Ont., and at Bowmanville, Ont., Mr. W. A. Ross continued his studies on the Apple Maggot. While the wet season militated somewhat against the carrying out of all the work which had been outlined, important results, which will prove of practical value, were obtained and it is hoped that a third season will complete this thorough investigation.

Owing to an outbreak of the Chinch bug (*Blissus leucopterus*) in Middlesex County, Ont., Mr. H. F. Hudson was sent to the centre of the infested district where he investigated the outbreak and the possibilities of control measures. Although serious damage had been inflicted in places, the insect does not appear to be spreading rapidly and investigations will be continued during the coming year, when White Grubs (*Lachnosterna*), which are causing serious and widespread damage, will also be studied.

Temporary quarters were furnished for entomological work in British Columbia at Hatzie, in the Fraser valley, and here Mr. R. C. Treherne commenced an investigation on the Strawberry Root Weevil (*Otiorhyncus oratus*). An excellent beginning was made on a study of the life-history of the species and a number of experiments were carried out with a view of discovering practicable methods of control. The rotation of strawberry beds associated with proper cultural methods appears to be at present the most satisfactory method. A visit was made by Mr. Treherne to the States of Oregon and Washington for the purpose of studying this and other insects which are common in the Pacific Coast region. A permanent laboratory has now been erected on the Experimental Farm at Agassiz and this will serve as headquarters for the work in British Columbia.

The extension of our work into the field by the establishment of field laboratories, of which a brief outline of the work carried on during the first season has been given above, has not only rendered possible the inception of really valuable investigations on certain of the more serious insect pests and their control, but in many other ways has enabled the Entomological Division to reach a larger number of people to whom its work can be of service. As representatives of the Division, its field officers have been able to advise farmers and fruit growers and carry on an educational campaign which, if persisted in, must prove of incalculable benefit.

INSECTS AFFECTING FIELD CROPS.

The serious outbreak of cutworms in Southern Alberta was inquired into. It was found that between thirty and forty thousand acres of grain had been destroyed in the neighbourhood of Lethbridge. As the methods of control which were recommended appeared to be ineffectual and as the chief injurious species (*Porosagrotis delorata* Sm.) had not been previously recorded or studied, arrangements have been made to carry out a thorough investigation during the coming year.

The experiments on the control of the Root Maggots were continued and the results, on the whole, confirmed those of the previous years as to the superiority of
the tarred-felt paper discs for cabbages and cauliflowers, and hellebore decoction and screening the beds for radishes and onions. It is hoped that the results of the three years' work will be ready shortly for publication.

INSECTS AFFECTING FRUIT TREES.

Reference has already been made to the work on fruit insects which has been carried on at the different field stations. A very important result of the work in Nova Scotia was the discovery by Mr. G. E. Sanders of the presence of living San José scale, which had been brought into the province on nursery stock imported from Ontario. Assistance was given the provincial Government in the inspection of nursery stock which had been imported during the last three years, and a considerable number of trees infested with living scale were found.

The work on the Indian orchards for the Department of Indian Affairs was continued, and a full account of this will be published in the annual report of that Department.

INSECTS AFFECTING FOREST AND SHADE TREES.

The appointment of Mr. J. M. Swaine to have charge of the forest insect investigations has permitted of the very considerable extension of the work in this most important direction. During the year he has visited the Riding Mountain Forest Reserve, Man., Algonquin Park, Ont., and one or two districts in Quebec and, as a result, has collected a large amount of material and information which will be of great service in connection with future work.

A shipment was obtained of the cocoons of the Large Larch Sawfly infested with the useful parasite (*Mesoleius lenthredinis*) from the English Lake district and these were distributed by Mr. Swaine in Manitoba in the Riding Mountain Reserve. It is hoped to receive a further supply of parasitized cocoons from England this spring.

INSECTS AFFECTING DOMESTIC ANIMALS AND MAN.

An investigation was made into the distribution of the Rocky Mountain Spotted Fever Tick (*Dermacentor venustus*) in western Canada. A large number of ticks belonging to several species were received, and it was found that *D. venustus* was fairly common in southern British Columbia and also occurred in southern Alberta. Observations were also made on the life history of this species.

On account of the discovery by Drs. Sheppard, Rosenaw, Bruce and Anderson that the Stable Fly (*Stomoxys calcitrans*) could transmit the virus of Poliomyelitis (infantile paralysis), investigations on the life-history and habits of this insect were resumed and some interesting and valuable data have already been obtained. The campaign against the house fly was continued, and it is gratifying to record the appreciation with which efforts in this direction are met.

INSECTS AFFECTING GARDEN AND GREENHOUSE.

Experiments have been carried out and are still in progress on the control of White flies (*Aleyrodes*) by fumigation, and on the control of wood lice, or sowbugs, all of which are serious pests in some greenhouses.

APICULTURE.

In view of the further extension of this work, consequent upon the appointment of Mr. F. W. L. Sladen as Assistant Entomologist to take charge, a beginning was made by the importation of pure Italian queens from Bologna, Italy. It is planned
SESSIONAL PAPER No. 16

to carry on queen-rearing work and varietal studies. Experiments were also commenced on the outdoor wintering of bees, twelve colonies being placed in large wooden cases specially constructed to contain four hives each.

MISCELLANEOUS.

The correspondence for all parts of the Dominion relating to the identification of insect pests and requesting advice as to methods of control has increased considerably. The field officers of the Division are already rendering useful service in their respective regions in the matter of advising farmers and fruit growers in regard to the control of insect pests. An increasing number of collections of insects have been named for individuals and educational institutions. A collection of insects is being arranged in the Division, the various officers being responsible for certain orders. An exhibit of injurious and beneficial insects and their work was arranged for the Dominion Exhibition held at Ottawa.

Visits have been made to various provinces for the purposes of giving addresses and organizing the field work. In May, the Dominion Entomologist visited Nova Scotia, New Brunswick and Massachusetts in connection with the field laboratories in those provinces and the Brown-tail Moth campaign.

The International Congress of Entomology, held at Oxford, England, was attended from August 6 to 10, and on August 12 he attended a conference called by the Secretary of State for the Colonies at the Colonial Office to work out a scheme for Imperial co-operation in preventing the spread and furthering the investigation of insect pests. This conference, and a previous conference held in June, 1911, have resulted in the establishment of the Imperial Bureau of Entomology, to which reference is made later. Lectures and addresses have been given at Halifax, St. John, N.B., Toronto, Winnipeg, etc. In February a visit was made to North Portal, Sask., and Winnipeg. Mr. Gibson lectured on the control of fruit pests at a short course held at Charlottetown, P.E.I., in January, and has addressed other meetings. As already stated, Mr. Swaine has visited certain provinces, studying forest insect depredations. Mr. Sladen conducted a short course in apiculture at the Nova Scotia Agricultural College in January, and subsequently studied apicultural conditions in Nova Scotia and New Brunswick. By these and similar means, the Division has been enabled to extend its energies over a large field.

IMPERIAL BUREAU OF ENTOMOLOGY.

An Imperial Bureau of Entomology has been instituted in connection with the Colonial Office, and it has been decided to co-operate in its maintenance. Its chief function will be that of an intelligence bureau. In this connection, information will be collected from all parts of the world concerning injurious insects and the plants or animals, which they attack. A journal, The Review of Applied Entomology, is also being published, and this contains summaries of current literature relating to injurious insects and their control. The Bureau will also undertake the identification of insects. As a means of co-ordinating the work of preventing the spread and furthering the investigation of injurious insects within the Empire, the Bureau will undoubtedly prove of considerable service.
THE DIVISION OF BOTANY.

The work of this Division has been partly new and partly continued along the same lines as last year.

INSPECTORS UNDER THE DESTRUCTIVE INSECT AND PEST ACT.

An extensive inspection of potatoes and potato crops was carried on. The following inspectors acted for longer or shorter periods of time: Messrs. Sydney Dash, Hugh H. Lindesay, Herbert Groh, B.S.A., P. Lavoie, Rolph Holmden and H. Selwyn. As the work terminated in the different localities, the services of the inspectors were dispensed with, and at present only two remain to finish the work and start a new campaign towards planting time.

CORRESPONDENCE.

The correspondence is one of the principal features of the advisory work of the Division, and takes up considerable time; the number of letters received and despatched steadily increases, amounting for the year of report to 2,107 letters received and 2,531 sent out, or nearly double the number dealt with the year previous. Correspondence is the means by which the Experimental Farms are kept in closest contact with the farmers and fruit-growers of the Dominion, and although among the inquiries received there are, naturally, many relating to the same subjects, yet much useful information is often gained from this source on the distribution of weeds and plant diseases: furthermore, by these means, new problems have frequently been brought to our attention.

This year, some one thousand plants and weeds were identified, and information given as requested by their senders. A large number of inquiries dealt with diseases of economic plants, and the remainder were of a miscellaneous and executive character.

INVESTIGATIONS.

(a) Grain Diseases.

Smut Diseases of Grain.—The great importance of the diseases of grain and related crops caused by smut fungi, necessitated close attention to the study of certain phases of the life-history of these destructive organisms, and the control of such diseases. Since the organization of the plant pathological work of this Division, special attention has been paid to this problem. These investigations have now been concluded, and a bulletin (No. 73) has been prepared.

Studies of the Discolouration of Wheat Grains.—From time to time there have been received samples of wheat showing a shrivelling of the grain, accompanied by a more or less brownish discolouration. In some cases large samples submitted showed as many as 17 per cent grains discoloured. On germination, the young plant developed fairly well at first, but soon the rootlets began to decay before the food supply of the grain became exhausted. A considerable series of fungi appeared and were isolated; while some of them may be of secondary nature and harmless, yet they appeared fairly constantly, and experiments are being carried on to test their relation to the discolouration. At present, fungi like Gladosporium, Macrosorium, Hormodendron, Epicoccum, Septoria Heterosporium were observed, and pure cultures of them will be used for infection experiments. In some instances, the discoloured grains caused a sample to appear off colour, and in others the germination was found to be poor. In case fungi or bacteria are found to be capable of injuring grain in this manner, a careful study is necessary to prevent serious consequences, as such discoloured grain can hardly be classed as the best grade.
Injuries to the Young, Growing Wheat.—During the last two years, samples of young grain, particularly fall-sown grain, have been sent from the West, which are either completely destroyed or which will not produce strong plants. These injuries may be the result of severe winters or of certain fungous diseases.

The production of grain—the foremost industry of the Dominion—should be carefully guarded from any destructive diseases, and a considerable amount of close study is yet required to explain the various matters referred to.

(b) Diseases of the Potato.

Potato Scab.—The question of potato scab and its control has engaged a large number of investigators throughout the countries where potatoes are grown. Although taken up from almost every aspect, this universal disease is by no means under control. It is the general experience that certain methods of treatment may prove successful in some years, occasionally for some years in succession, and yet in other years prove of practically no value. Although potato scab cannot be classed among the destructive diseases, yet it causes a very objectionable appearance in badly-infected tubers. During the last season, a set of experiments was carried on in Prince Edward Island on some infested land kindly placed at the disposal of the Division by Dr. Andrew MacPhail, himself a successful potato grower, but, notwithstanding every care, none of the efforts made proved of any value. The experiments will be continued, some features observed indicating the desirability of certain new lines of inquiry being followed up. Meanwhile, the use of sound tubers and the proper disinfection of them, and the selection of land which has preferably not been used for potatoes before, or at any rate which has not borne a scabby crop, seem the only rules which afford any safeguard.

Rhizoctonia Disease.—This is another disease affecting the plant through the tuber. The disease-causing organism, while known, has not yet been well studied. There are still important biological features concerning it of which we know little, and further researches are necessary. In any disease where the soil serves as a medium of propagation, there exist serious difficulties in the way of a lasting control. At any rate, our present means of soil sterilization are practically useless, and rotation does not effect the desired purpose.

Storage Rots.—The rotting of potatoes when placed in storage has been very considerable during this year. During their investigations the inspectors examined some 20,000 bushels, or more, of stored potatoes, and found on the average a loss amounting to 15 per cent; in some single instances over 30 per cent loss was found due to this cause. The question of the control of storage rots involves careful study of a large number of common diseases affecting the growing plant, and, incidentally, the tuber; further, mechanical injuries when digging potatoes, frost, and last, but not least, the conditions under which the tubers are being stored, are closely concerned in producing storage losses. While it is generally correct to suggest that storage losses will be considerably reduced when these latter factors are eliminated, yet it will be realized that the problem as a whole cannot be satisfactorily solved as long as we fail to control the various diseases and causes themselves.

(c) Diseases affecting Fruit.

Silver Leaf.—Much progress has been made in the study of this disease. Curiously enough, the fruit-growers are still somewhat slow to recognize its true nature. It is one of the slowly-developing, slow-killing diseases as yet little known by its symptoms.
and hence regarded with indifference. Yet when it is stated that in one orchard, situated in one of the most important fruit-growing centres of British Columbia, 91-15 per cent of Northern Spy, 31 per cent of Wealthy, and, in another, 90 per cent of Spy, 6 per cent of Jonathan, 12 per cent of McIntosh, were found affected, and further, that the disease prevails more or less in almost every fruit-growing district of the Dominion—with the exception of the Niagara peninsula—and further that it attacks most of the important fruit trees and bush fruits, it should be realized that a dangerous disease is being permitted to spread unchecked. It has been already demonstrated in experiments here what causes the disease and how to prevent it from spreading; there are, however, still some factors to be studied before definite results can be published.

Fire or Pear Blight.—This disease has been very prevalent in orchards in British Columbia, where it assumed an epidemic character this summer. From an examination of a number of orchards, it was found that the disease had been present for some years in the form of so-called 'hold-over cankers,' which had been considered by some as due to winter injury or anthracnose. They were left unheeded, and the favourable climatic conditions of last season caused them to produce a serious outbreak which has lost some growers many trees. Constant cutting out of the 'hold-over cankers,' with the appearance of which every fruit-grower should make himself familiar, would greatly reduce the chances of early infection, and, if supplemented by immediate and proper pruning out and destruction of attacked shoots, would prevent the disease from becoming epidemic.

The usual number of inquiries were dealt with concerning the control of scab, anthracnose and other more common diseases.

Diseases of the grape, strawberry, currant, raspberry and almost all other kinds of fruit were studied, and advice given.

Storage Rots or Storage Defects of Fruits.—As with potatoes, there occur rots and injuries on stored fruits, and from just as many causes. Black Rot, Bitter Rot, Pink Rot, Core Rot, may be mentioned among the parasitic injuries. Physiological rots, showing a discoloration of the skin, spotting of the tissues below the lenticels, and others due to 'sweating' or sudden changes of temperature, etc., are also prevalent. Here again considerable work needs to be done, but it appears difficult to convince fruit-growers that such diseases or affections cannot be controlled without interfering to a greater or less degree with their general routine and practice. The practice in vogue, however, when it can be clearly shown to result in such consequences, can hardly be considered of the best.

EXPERIMENTAL WORK.

(a) Potato Growing.

At the request of the Director, the Division of Botany carried on an experiment in growing potatoes with the purpose, as stated in the instructions, to produce 'as large and as profitable a crop as possible; free from disease, or as free from disease as possible under conditions such as exist in Canada to-day.' As the production of 'large and profitable crops' is not a question of freedom from diseases alone, Mr. D. D. Gray, Farm Foreman, who had had considerable experience in raising potatoes, undertook the practical side of the experiment. The season may be described as an exceptional one. The very late spring, the cool weather after planting, the frequent and heavy showers throughout the year, which latter largely interfered with successful sprayings, did not forbode the best results. However, the land was very suitable and well prepared, and by close attention to cultivation and spraying, the potatoes, after once starting to grow, looked quite promising. One acre each of the following four varieties of potatoes was grown:
SESSIONAL PAPER No. 16

Carman No. 1, Early Delaware, Irish Cobbler, Gold Coin. The following surprisingly satisfactory yields were obtained:—

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (Bush)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carman No. 1</td>
<td>444.41</td>
</tr>
<tr>
<td>Irish Cobbler</td>
<td>455.83</td>
</tr>
<tr>
<td>Early Delaware</td>
<td>471.33</td>
</tr>
<tr>
<td>Gold Coin</td>
<td>411.48</td>
</tr>
</tbody>
</table>

The potatoes themselves looked very well, they were a good size, not too large and appeared fairly sound, although, notwithstanding regular spraying, potato blight appeared late in July, and the tops were to some extent affected. In seasons with less rainfall, no doubt the results would have been even better as regards freedom from blight. One of the principal features was the failure in rapidly controlling the Colorado Beetle, and it is probable that the control of this pest would have considerably reduced blight infection. The experiment will be repeated for some two or three years more, when the details, cost of production, manner of treatment, etc., may be dealt with in a special bulletin. It may be stated that these potatoes also suffered much from storage rots.

(b) Inquiry into the Sources of Bacteria in Milk Produced at the Farm.

This work occupied a considerable portion of the time of the Division. At the beginning of the experiment, the Dominion Botanist, at the suggestion of the Director, gave a series of six demonstration lectures before the men engaged in dairy work on the Farm, in order to familiarize them with the necessary precautions and the reasons for exercising them at all times. The question was taken up from every point of view, and included the testing of milk obtained by machine milking vs. hand milking. It may, however, be said that, with the exercise of constant care and diligence and interest taken in all operations by all parties concerned, there has been produced at the Farm, after nearly ten months' work, milk with as low a bacterial count per cubic centimetre as 200, which may be claimed to be among the lowest in bacterial content of any naturally-produced, untreated milk anywhere.

ST. CATHARINES FIELD LABORATORY.

This laboratory was established for the study of plant diseases in the Niagara district, and was opened August 1, 1912. In the thorough investigation of diseases occurring in certain districts climatically or otherwise different from those at the Central Experimental Farm, serious difficulties were experienced, so that it was thought best to place a laboratory in the orchard rather than to try to bring the orchard into the laboratory. We have found that this move met with the greatest appreciation of the fruit-growers in this district, and Mr. McCubbin, a very competent officer, reports well of the progress of this work. Throughout the season, a study of the local conditions was carried on, Mr. McCubbin attending and addressing many meetings held in that district. Among the diseases specially taken up may be mentioned the peach tree canker already referred to in previous reports; a new disease in currants due to one of the higher fungi (*Polyporus ribes*); Mosaic disease of tomatoes which appears to spread, and others. Careful attention is being paid to the control of peach yellow- and 'little peach' and some work begun by the Dominion Botanist in this connection has given interesting results and important clues. The officer in charge of this laboratory also acts as an inspector under the Destructive Insect and Pest Act.

ADMINISTRATION OF THE DESTRUCTIVE INSECT AND PEST ACT.

Every possible care is being taken by the responsible officers of the Division to prevent the introduction of plant diseases new to the Dominion, and the spreading of such as are scheduled under the Act.
The work in the Botanic Gardens and Arboretum made the usual annual progress. A large number of plant and tree labels were placed out. Seeds of many herbaceous plants, trees and shrubs were collected and exchanged with other Botanic Gardens.

COLLECTIONS.

The scientific collections were considerably increased. Mr. Eastham devoted as much time as he could spare to collecting and classifying fungi, and especially Canadian *Myxomycetes*. Miss Fyles is engaged in a study of the types of wild rice, and has also collected material for the gardens and herbarium. Every officer of the Division does his part to increase the various collections by personal efforts, in order to make them as complete and, consequently, as valuable as possible for reference purposes. Thanks are due the many correspondents who have contributed to these collections, but special thanks should be given the Bureau of Plant Industry, United States Department of Agriculture, for their courtesy in contributing some 574 specimens of dried (mainly microscopic) fungi to the herbarium. Through such generous contributions, and by systematic exchange, our collections continue to grow in a very satisfactory way.

TRAVELLING AND ADDRESSES, PUBLICATIONS, ETC.

The Dominion Botanist visited the Niagara district several times during the season in connection with the work of the field laboratory. Addresses were given before the Fruit-Growers' Association in St. Catharines and Grimsby on various topics of local interest. In August, and part of September, a visit was paid to the western provinces, where arrangements had been made to meet fruit-growers in the recently-started fruit plantations of the Kootenay valley. Observations were also made on the spreading or presence of a number of fruit and grain diseases which had been under investigation. Mr. Eastham was in charge of experiments conducted in Prince Edward Island concerning potato scab, the results of which are given in full elsewhere, and he was also away from the Central Laboratory inquiring into the source of an outbreak of powdery scab in the province of Alberta; later in the year he was authorized to attend the Cleveland meeting of the American Association for the Advancement of Science.

During the year, members of the staff of the Division were asked to attend and address various meetings, associations and congresses. Among others, papers relating to 'Legislation against plant diseases' (read before the International Horticultural Congress, London, Eng.), 'International Control of fungus diseases' (read at the meeting of the American Association for the Advancement of Science, in Cleveland), etc., were presented. A number of official publications have been issued, and minor papers and articles were published in scientific and agricultural journals.

THE POULTRY DIVISION.

Year by year, the poultry branch of farm work is becoming more and more valuable to the farmers of Canada and the indifference formerly displayed to poultry-keeping is gradually disappearing. The possibilities of profit from poultry, properly cared for, have been clearly demonstrated in the Poultry Division on the Central Experimental Farm, and have been fully reported on from year to year. When the products, eggs and chickens, are marketed at the proper seasons, that is, when the general supply is least and prices highest, each hen should show a profit of from one dollar to one dollar and fifty cents per annum. Many farmers who attend carefully to
SESSIONAL PAPER No. 16

their flocks of fowls, clear a much larger margin than this. Where pure-bred fowls of a good strain are kept, the sale of eggs for hatching adds materially to the income.

In order to obtain the advantages of having both eggs and chickens for sale, it is necessary either to keep two breeds, one for egg-production, such as the White Leghorn, Minorca, Ancona or Black Minorca, and one of the large, heavy breeds as a flesh-producer, or (2) the endeavour may be made to find a breed uniting in itself the characteristics of both to a marked degree. For the average farmer's purpose, the latter alternative is much to be preferred, as it relieves him of a great deal of extra labour.

From experimental work carried on here for many years, any of the following may be confidently recommended as a 'dual purpose' breed: Barred and White Plymouth Rocks, White Wyandottes, Rhode Island Reds, Orpingtons and Dorkings.

It has been a common practice in the past to attempt to secure flesh-forming and egg-laying characteristics by mating a bird of the former type with one of the latter. The resulting crosses have proven very unsatisfactory and it cannot be too strongly recommended that, whatever breed or type of fowl the farmer may choose, he keep nothing but pure-breds. The sale of breeding stock and of eggs for hatching, to say nothing of the greater returns in other ways, will more than repay him for his care in keeping his flock pure-bred.

There is little danger of the over-production of poultry and eggs in Canada for many years to come, if ever. Up to the present, in spite of increased production and decreased export, prices have steadily increased. As a matter of fact, Canada has, for the past two years, imported many hundreds of thousands of eggs. The field for greater home production is practically unlimited. In this production, however, the Canadian farmer's motto should be 'Quality.' It is the first quality, both of eggs and of chickens, which commands prices ensuring the maximum profits. The unsuitability of type and lack of finish of much of the poultry now marketed in Canada has frequently been commented on by our heaviest buyers.

With eggs, equal care and attention are necessary. They should be gathered regularly and frequently, packed in attractive shape and marketed without delay. The hens should be well and cleanly fed and both hens and houses kept free fromlice and mites. The houses should be comfortable and adapted to the climate of the locality. Plans of various styles of houses will be furnished free by applying to the Poultry Division, Central Experimental Farm, Ottawa.

Whether for the production of table fowl or for laying and breeding stock, the necessary care and proper feeding should commence from the time of hatching. Last hen was compelled to hunt continually for food are retarded and stunted in growth and develop sinew at the expense of flesh. It should not be forgotten at any stage that it is the production of the highest quality that should be aimed at and that care and good feeding are the requisites for success.

The production of eggs in winter is a problem, the solution of which is dependent on several factors, such as comfortable quarters and proper food, time of hatching and time of moulting. In order to be early winter layers, the hens should moult in midsummer and should be fully feathered out by the end of October. It has been shown that the progeny of hens which moulted in midsummer have a tendency to do the same. The possibility has also been demonstrated of controlling the moulting season by variations in the rate of feeding and in the food supplied.

Pullets, especially of the dual purpose breeds, in order to be early winter layers, should be hatched out not later than the first week in May. Both cockerels and pullets should be bred from parents of a good egg-laying strain.

Where hens have been laying regularly during the winter, a difficulty likely to be met with in early spring is that of weak germs, which are apt to hatch out, if they hatch at all, in the shape of weakling chickens, which usually die from acute indigestion or bowel trouble. It is far better to wait before setting hens or filling the
incubator, until the breeding stock has had an opportunity of running outside after the snow has gone, usually about the end of March. By so doing, the birds have an opportunity of recovering from their long confinement during the winter. Another advantage is that the chickens will hatch out when the weather is genial and the grass growing rapidly.

It is a mistake, however, to postpone hatching operations too long, as late-hatched pullets are non-productive during the period of highest prices, the early winter months.

A great deal of study and experimental work has been devoted to the preservation of eggs laid in the summer months for use in the winter season, when production is at its lowest. The Dominion Chemist, Mr. Frank T. Shutt, has tried a great number of fluids and preparations and has found that the two best preservatives are a solution of water glass and lime water. Eggs preserved in either of these have been kept quite sound for over a year.

With the co-operation of the Biological Laboratory of the Health of Animal-Branch, methods looking to the prevention and cure of tuberculosis in fowls and of blackhead, usually found in its most aggravated form in turkeys, are being sought for.

During the year, the Poultry Manager, Mr. A. G. Gilbert, made an extended trip through the western provinces, to examine into conditions there and to lay the foundation for more extended work with poultry in that part of the Dominion.

TOBACCO DIVISION.

The year 1912-13 has been a year of progress and transformation for this Division.

Up to the present, the Tobacco Division, besides imparting information to the farmers, has been carrying experiments on three Stations, one in Ontario (Harrow) and two in Quebec (St. Jacques l'Achigan and St. Césaire) as well as on a trial plot at the Central Experimental Farm, Ottawa.

Unfortunately, the Quebec Stations were of such small size that, whenever several varieties were grown together during the same season, the product of each was so small that it was practically useless to prepare it for the trade.

The St. Césaire Station, which covered an area of 7 acres, has been replaced by the Farnham Station, situated in the same district, but of a much larger area (74 arpents), near the town of Farnham. This new Station was taken over by the Division on May 28, 1912, shortly before transplanting time.

CENTRAL EXPERIMENTAL FARM.

Fermentation.—On account of delay in delivering the crop to the fermentation warehouse, treatment of the 1912 crop was not started until April 11. It was supervised by a foreman who had had two years' experience in tobacco warehouses at Farnham and St. Césaire.

Good temperatures were obtained in the piles of tobacco, although the crop was a little dry. The maximum temperatures were 49° C. and 51° C. The products were fermented three times in succession before being finally packed. The total time required for the fermentation from the moment the first bulk was formed until the products were packed was as follows: Fillers, from April 11 to June 18; binders, from May 11 to September 2. At the end of the operation the tobacco was in good condition, and of a fairly bright colour, with a good aroma and no rankness.

The crop.—The seedlings of the 1912 crop were set out on May 28. The beds which were established on black loam, disinfected with formalin, were very successful and gave a large number of seedlings.
SESSIONAL PAPER No. 16

The trial field on the Central Experimental Farm, which measures about one acre, is now used almost exclusively for the production of seed, a distribution of which is made every spring by the Tobacco Division. At times, rather large numbers of varieties are grown on this field, including not only the sorts grown for the production of seed, but also some new ones, or others recently introduced into Canada, that are being tested. There were thirteen varieties in 1912.

The season was not altogether favourable to the production of tobacco. It was wet and cold, and fears were entertained at one time that the seed would not ripen before the frosts. It was not injured, however, although harvested very late, September 7 and 8.

The curing was done with difficulty on account of the wet weather which prevailed during the month of September.

STATION OF ST. JACQUES L'ACHIGAN, P.Q.

A three-year rotation is followed on this Station, viz., tobacco, cereal and clover. The first cycle of this rotation was completed in 1911. The tobacco crop of 1912 included the following varieties: Comstock, Aurora and Cuban.

Beds.—The beds were good, generally speaking. For the first time since this Station was established, no hotbeds were used (beds with fresh manure). The seedling was done on April 12, swollen seed being used, and the seedlings were ready to be set out about June 2.

The Crop.—The setting-out was delayed by persistent rains, which interfered with the preparation of the land and made it necessary to hold the seedlings.

It was only on June 15 that transplanting was really started. The seedlings were slow in taking root, owing to the extreme cold weather, and a great amount of damage was done by insects (as much as 30 per cent of the crop had to be replaced).

The crop was harvested from September 6 to 8, on account of threatening frosts. Most of the seed plants had to be abandoned, owing to the incomplete ripening of the heads.

The curing, somewhat delayed at the beginning by the cold weather during which the crop had been harvested, was carried out without mishaps. Artificial heat was employed for reducing the ribs of the leaves, small fires of charcoal being built for the purpose on the floor of the curing house.

In spite of the poor season, the yields were satisfactory. They were as follows: Comstock, 1,242 pounds per acre; Cuban, 792 pounds; and Aurora, 1,304 pounds. The last-named variety proved a particular attraction at the annual fair at St. Jacques l'Achigan in January, 1913.

FARNHAM STATION.

This farm was almost abandoned when the Tobacco Division took possession of it. When put into good shape, it will prove a splendid demonstration of what may be accomplished by good management, as it had to be almost completely reorganized.

Soils.—A physico-chemical analysis gave satisfactory data. The land possesses average fertility, although considerable variations were observed in the various soil-samples, especially in the quantity of nitrogen contained. It cannot be said to be an exhausted soil, but rather a neglected farm.

Preparation.—Many difficulties were met with in the preparation of the soil. The land was taken over at a late date, the fall ploughing had been done too late, and too shallow, and had to be supplemented by a lot of work with the disc harrow. The
land remained wet a long time owing to poor drainage facilities. There was no grading, nor any open furrows, the land had been cross-ploughed and, furthermore, it rained almost continually. The fields planted in tobacco were manured at the rate of 18 tons to the acre.

Beds.—The beds had been established on some nearby land, kindly put at our disposal. They were seeded on April 12 and 13, and the seedlings were ready to be transplanted on May 28.

Transplanting.—On account of unfavourable circumstances, transplanting could not be started before June 15, and was not finished until the 30th. The seedlings took root slowly. They were beginning to weaken, as some of them had been kept over ten days. Cutworms and army worms did a great deal of damage, and a great number of plants had to be reset.

Plantation.—The following varieties were included in the plantation: Big-Ohio-x-Sumatra, Yamaska, Havana-Seed-Leaf, Brazil, Comstock Spanish, Rusticas and Cuban. The growth was slow and weak. Owing to the dampness of the season, the greater part of the tobacco went to seed prematurely and less than half a crop was obtained. The only variety that had a normal stand on some parts of the plantation was the Big-Ohio-x-Sumatra.

On the Farnham Station, the seedlings were set out late, and the crop was harvested at the end of September. The last part of it was taken in on the 26th. The rains which fell during the harvesting operations prevented the tobacco from ripening completely. Curing was, however, effected without any trouble.

Fall Ploughing.—As soon as the tobacco crop was safely housed in the curing barn, the whole farm was ploughed up; land which had been twenty years in sod was ploughed as early as possible. Some grading was done and furrows were opened for carrying off the water in the spring. The ditches were cleaned and deepened, and the plot which was to be planted in tobacco in 1913 was manured in the fall at the rate of 18 tons per acre. The effect of this treatment was soon noticeable; the land which in May, 1912, could not be cultivated was almost ready in March, 1913, in spite of a wet spring.

Buildings.—None of the buildings that were on the farm when the Division took it over were in shape to be used. One of the sheds was used temporarily as a shelter for agricultural machinery, but a curing house had to be built as soon as possible. It was completed in the first days of September. This curing house is large enough to receive the crop of twelve acres. In the fall and winter, a horse stable, a stripping barn and a double-purpose shed, to serve as curing house and implement shed, were built. With its present equipment, the Farnham Station is able to produce and take care of 15 acres of tobacco.

THE HARROW STATION.

The common varieties of tobacco used in southern Ontario are grown and tested on this Station. Owing to the nature of its soil, it is more especially adapted to the growing of Burley tobacco.

A three-year rotation is followed: grain, tobacco and corn. Clover is sown with the grain, and ploughed under in the spring, when the land is being prepared for the setting out of tobacco.

The fall wheat was seriously injured during the winter and the land had to be seeded over again in the spring. On the other hand, a splendid crop of corn was secured, and yields of 145 bushels to the acre were obtained on some plots.
Beds.—Although the spring was not very favourable to the beds, those of the Harrow Station gave, in due time, a large number of seedlings. Of the various beds used every year on this station, the one sheltered by glazed sashes (hot or cold) has, so far, given the best results in earliness and production. It cannot be too highly recommended.

Setting out.—The seedlings were set out in the beginning of May. The weather was rather cold for the season, and the recovery was a little slow. The cutworms were soon checked by the use of a mixture of bran and Paris green.

Crop.—The growth of the crop was rather slow, the temperature being much below the average of normal years during the whole of the season, but it did not suffer any checks, at least on the field of Burley, which was harvested on September 21, a rather late date even in Ontario, although frosts are not to be feared at that time of the year. The seed plants had a normal growth, and a large crop of selected seed was secured.

Some idea of the fertility of the Harrow Station may be gained from a comparison of the yields obtained in 1912 (1,200 to 1,950 pounds per acre for the Burley variety) and the average yields obtained during the same year by the growers of Burley in Ontario, which hardly exceeded 1,000 pounds per acre.

It should be stated that the season was not very favourable, but it is in a poor season that the benefits of intensive cultivation show to the best advantage. The soil is in such a state of fertility that it may produce an almost normal crop so long as atmospheric conditions are not absolutely contrary.

Yellow Tobacco.—The yellow tobacco was the only one that really suffered from the poor weather conditions. The yield in weight was satisfactory, but the colour might have been brighter. However, a bright colour is not to be expected unless the season is particularly favourable (a warm and comparatively dry season from transplanting to ripening). It cannot be hoped for in a cold and damp year, when the tobacco grows slowly and keeps on growing when it should be ripening. The Tobacco Division will test varieties of yellow tobacco which have given good results in temperate climates under conditions nearly similar to those that are found during a part of the year in that district of southern Ontario where the industry of yellow tobacco has been endeavouring for some time to get a foothold.

DISTRIBUTION OF SEED.

The samples of tobacco seed distributed in the spring of each year contain about one-quarter of an ounce of seed, selected and tested. The total crop of seed for all Stations was about 80 pounds, representing a total value of about $500. Over 3,600 samples were distributed during the spring of 1913. In a number of cases, the requests for samples were accompanied by a request for information, and a large correspondence ensued.

ADMINISTRATIVE CHANGES.

From the 16th January, 1913, by decision of the Minister, the Tobacco Division has formed a part of the Experimental Farms system. This change will be beneficial in many ways. The officers of the Division will now be able to give their whole time to the study of questions in which they are directly interested, as they will be relieved from many duties which had only a remote relation to their work.
EXPERIMENTAL FARMERS

EXPERIMENTAL STATION FOR PRINCE EDWARD ISLAND.

CHARLOTTETOWN, P.E.I.

CHARACTER OF SEASON AND GENERAL CROP NOTES.

A mild spell of weather about the middle of April, 1912, gave promise of an early spring, and sweet peas were sown on the 17th. Cold, dull weather followed, and it was not until May 11 that seeding began at this Station. The greater part of May was so backward that the leaves and blossoms were fully three weeks later bursting out than in the spring of 1911. A frost that wilted the clovers occurred on the 22nd. June was decidedly cool. The mean temperature was more than a degree below the average. Cutworms did much damage in the province. During the first half of July, the heat was extreme, and during the last half the rainfall was excessive. Large quantities of hay were ruined throughout the province. The cool, late spring and the heavy rains of July and August caused the hay crop to fall below the average, both in quantity and quality. The early grain also suffered much from this, and gave yields much below the same varieties sown later, a very unusual occurrence in this part of Canada. In many sections, haymaking was continued until harvest, or about the third week of August. The oats filled well, but smut was very prevalent. Rust and the joint worm did much injury to the wheat crop. September proved to be a good harvest month. The late grain ripened very slowly yet, where it did mature, it was heavy and well filled. No killing frost occurred during the month.

The potato crop was good and, when harvested, very free from rot. The corn, mangels and sugar beets were scarcely an average crop, but the turnips and carrots gave heavy yields. A severe frost occurred on the 16th of October, but it was not until the 12th of November that the hardy annual and perennial flowers were killed. They made an excellent showing up to that time. The weather was open and a very large percentage of the fall work was completed in the early autumn. Enough snow fell on November 29 to make fair sleighing. December was stormy, with sudden changes and high winds. The ground remained bare practically the whole month and most of January, which month was remarkably fine and mild. It was not until the 12th day of February that there was enough snow to make good sleighing, which continued for a month only. The extreme cold of February, was followed by a mild March, the snow going away suddenly. It was accompanied by heavy rains causing many bad cuts and washouts in the fields and on the highways. The clover which gave great promise last autumn, due to plenty of moisture during the growing season, appears to have wintered well.

ADDITIONS TO FARM.

The following properties have been added to the Experimental Station: (1) Twelve acres from the Johnson and six from the Connolly estate. These two areas adjoin and extend from that part of the Experimental Station which lies across on the west side of the railway to the Malpeque road. (2) Six acres from H. C. Connolly, six acres from Judge Haszard and ten acres from St. Dunstan's College. These areas adjoin one another and extend the Experimental Station north along the east side of the Prince Edward Island railway, from the DeBlois road, 18 chains, and have a frontage of 6 chains on the Mount Edward road. In all, 40 acres were added to the Station.

BUILDINGS.

A sheep barn, 100 feet by 20 feet, was built to the northwest of the main barn. Two portable poultry colony houses, 12 feet by 8 feet, were also built.
SESSIONAL PAPER No. 16

UNDERDRAINAGE.

The tile-drained areas gave very satisfactory yields, notwithstanding the most excessive rainfall of July. Land that, previous to being drained, did not produce as much barley as was sown for seed, gave yields of barley at the rate of 50 bushels per acre.

HORSES.

The four horses that are on the Station have been healthy throughout the year and are in excellent condition for the spring work.

GENERAL WORK.

The areas about the foreman’s house, in front of the machine shed, and between the shrubs along the Prince Edward Island railway were seeded down to lawns. The roads about the farm were kept graded and in good condition by the use of the split-log drag.

EXPERIMENTAL WORK.

Experiments in feeding steers and lambs were continued on a larger scale than the previous year. The results of these, and of the experimental plot work with cereals, roots, corn, grasses, and of the work in horticulture and field husbandry will be found in the detailed section of this report.

CO-OPERATIVE WORK.

With the assistance of Mr. G. LeLacheur, of the Seed Division, three varieties of oats were tested in duplicate on a number of farms in the eastern section of the province. This work is to be continued. Among the varieties tried, Banner led on all the farms.

FARMERS’ PICNICS.

Twelve Farmers’ Institutes came to the farm in July and August and held picnics. These were greatly enjoyed and gave to many an insight into the work of the Experimental Station, so that the reports and bulletins will be of greater benefit and future visits looked forward to. This will prove a direct connecting link between the Experimental Station and every farm in the province.

SEED FAIRS AND EXHIBITIONS.

Exhibits were prepared and shown at the two County Exhibitions and at the Provincial Exhibition held at Charlottetown. The Superintendent gave assistance by judging and by giving addresses at six fall exhibitions and at five seed fairs held during the winter. The attendance and interest at all of these were excellent. The quality of the exhibits of field crops showed much improvement. He also gave assistance at the Short Course held at the Nova Scotia College of Agriculture, Truro, N.S., from January 10 to January 16, 1913, and assisted by Messrs. Boving, of Macdonald College, B. H. Landells, of Nova Scotia Agricultural College, and S. J. Moore, Seed Inspector, gave the instruction on Field Husbandry at the Prince Edward Island Short Course held at Charlottetown from January 27 to February 8, 1913, at which about five hundred students were in attendance. Owing to the large number of students, it was necessary to make two divisions and repeat all the work.

VISITS TO FARMS AND AGRICULTURAL MEETINGS.

The Superintendent made as many personal visits to farms throughout the province as possible, and gave information and instruction as opportunity offered.
In conjunction with the Conservation Commission, sixty quarter-acre alfalfa plots were sown, and inoculated soil sent from the Experimental Station to all who applied for it. This was so distributed that such soil should be available this spring in almost every section of the country. He addressed Farmers’ Institute meetings in many districts of the province during the year, which were well attended.

CONVENTIONS AND ASSOCIATIONS.

The Superintendent attended the Central Farmers’ Institute Convention, the Fruit Growers’ Association, the Dairymen’s Association, the Floral Association, the Stock Breeders’ Association, both Maritime and Provincial, and the meetings held at the Winter Fair at Amherst, N.S.

DISTRIBUTION OF SEED POTATOES AND SALE OF SEED GRAIN.

Twenty-eight samples of potatoes were sent out in April, 1912, two lots of Marquis wheat and eleven lots of Banner oats were sold to farmers for seeding in 1912.

VISITORS.

There were 5,427 visitors to the Station during the year; many more are planning to come during 1913.

METEOROLOGICAL RECORDS.

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>Temperature</th>
<th>Precipitation</th>
<th>Bright Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>Minimum</td>
<td>Rainfall</td>
</tr>
<tr>
<td></td>
<td>Date Degrees</td>
<td>Date Degrees</td>
<td>Days</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>April</td>
<td>16</td>
<td>62°</td>
<td>5</td>
</tr>
<tr>
<td>May</td>
<td>27</td>
<td>79°</td>
<td>1</td>
</tr>
<tr>
<td>June</td>
<td>24</td>
<td>84-5°</td>
<td>11</td>
</tr>
<tr>
<td>July</td>
<td>10</td>
<td>91°</td>
<td>3</td>
</tr>
<tr>
<td>August</td>
<td>14</td>
<td>81°</td>
<td>10</td>
</tr>
<tr>
<td>September</td>
<td>15</td>
<td>73°</td>
<td>22</td>
</tr>
<tr>
<td>October</td>
<td>7</td>
<td>73°</td>
<td>17</td>
</tr>
<tr>
<td>November</td>
<td>4</td>
<td>65°</td>
<td>12</td>
</tr>
<tr>
<td>December</td>
<td>20</td>
<td>50°</td>
<td>13</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>4</td>
<td>50°</td>
<td>10</td>
</tr>
<tr>
<td>February</td>
<td>1</td>
<td>48°</td>
<td>7</td>
</tr>
<tr>
<td>March</td>
<td>21</td>
<td>60°</td>
<td>8</td>
</tr>
<tr>
<td>Total Annual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:—One inch of rain being figured as equivalent to ten inches of snowfall.
EXPERIMENTAL STATION FOR THE ANnapolis Valley.

Kentville, N.S.

The Superintendent, Mr. W. S. Blair, assumed his duties on the 15th of June. Active work at this Station was started in the spring. During the summer, several buildings were erected, grading was done, and necessary roads were made. As the greater portion of the farm was in woods when taken over, the labour on the land has been principally stumping, clearing and breaking. An orchard of eighteen and one-half acres was set out in May, on land which had been cleared the previous season.

LOCATION.

This Station is located partly within the limits of the town of Kentville, about one mile from the centre of the town. It extends from the Cornwallis river in a southwestern direction for about one and one-third miles. The width of the farm is variable, running from 1,200 feet frontage on the main road leading from Kentville to Wolfville, to 2,400 feet at the widest point farther south. The Dominion Atlantic railway runs through the northern section of the farm.

FARM AREAS.

The farm at present comprises an area of 294 acres. The first purchase from Kenneth Sharp was for an area of 250 acres. During this year, 41 acres were purchased from Eugene Roy. An option is held on 7 acres, which it is proposed to add to the above area, making in all 301 acres. The marsh land survey is 11 1/2 acres of which 9 acres are within the dyke. About 18 acres on the northern portion of the farm, on which the buildings are located, which is more or less broken with abrupt hills and will not be fit for agricultural purposes, has been graded ready for seeding to grass, and will be given over largely to ornamental planting. Some scattered apple trees around the hillside on this area produce annually about one hundred barrels of apples, principally Ribston and King. Above this, there is 55 acres which has recently been cleared from woods, of which 18 1/3 acres have been planted to orchard. The most of this 55-acre field is now in fairly good condition for cropping. It is all sloping toward the north, and the soil is of a sandy loam, thin and poor. Above this, extending to the southern boundary, the land is fairly level, not quite so sandy and apparently more fertile. Sixty acres of this is ready for stumping and ploughing, and another forty to fifty acres no win woods will be cleared later. About 100 acres is taken up by a deep ravine, some one and one-quarter miles long, which is heavily wooded. This area will not be cleared but will be preserved as a natural park.

BUILDINGS CONSTRUCTED.

During the summer, eight buildings were constructed. The Superintendent's house, 43 by 40 feet, with a kitchen 28 by 18 feet; foreman's house, 30 by 30 feet, with a kitchen 24 by 12 feet; double tenement house for herdsman and gardener. 40 by 32 feet, with kitchen 30 by 25 feet; barn, 78 by 47 feet, to accommodate seven horses and twenty-five head of other stock, with a root house, 38 by 18 feet and 10 feet deep, to hold 100 tons roots, and a silo, 50 feet high and 15 feet in diameter, for 125 tons corn; attached carriage house, 30 by 18 feet; dairy building, 20 by 15 feet; poultry building, 26 by 18 feet, and a greenhouse, 50 by 20 feet, with potting and
work room attached, 25 by 18 feet. These buildings were all built of wood and, with the exception of the barn, which was clap-boarded with pine siding, were shingled with cedar shingles.

EXPERIMENTAL ORCHARDS.

As no mature orchards are growing on the farm, it has been considered advisable to lease 5-acre blocks of mature orchard at Berwick, Kings county, Bridgetown, Annapolis county, and Falmouth, Hants county. These orchards are to be devoted to experimental work in spraying, fertilizing, thinning of fruit, etc. In this way it is hoped that information of greater value to the orchardist will be secured than is possible with the young orchard just planted at the Station.

ORCHARD PLANTED.

Eighteen and one-half acres of orchard, made up principally of varieties commercially grown in the Annapolis valley, were planted in the spring of 1912. These trees have made excellent growth.

STOCK.

One driving horse and three pair of team horses are kept at this Station. Three pair of working oxen for breaking up stump land are also used.

Nineteen steers were fed during the winter. These were put in to make manure for field work and to use up rough feed and some 1,500 bushels of roots grown during the year. The steers were an uneven lot and no experiments were conducted with them. One cow is kept for milk.

EXPERIMENTAL FARM FOR NOVA SCOTIA.

NAPPAH, N.S.

The spring of 1912 opened dull and cold with some frosts during April. No snow fell, but there was a rather heavier precipitation than usual. May was also cold and, for the first three weeks, dry, just enough rain falling to retard seeding operations. Seeding was general about the 15th of the month. During the last week of May, the rainfall was heavier than usual. Although no great amount of rain fell during June, showers were frequent, and the month was cool. Grain and roots did fairly well during the month, but corn was at a standstill.

July was a warm, dry month until the 22nd, from which date until the end of the month, 6.62 inches of rain fell. Hay and grain did well during this month, but roots made only a poor growth.

From the 22nd of July until the end of August, rain was practically continuous, making haying almost impossible, lodging the grain and having a most disastrous effect upon the root crops, it having been impossible to do any cultivation during all that period. As a result, unusually small crops of roots and corn were harvested.

From this time onward, the season was quite favourable for harvesting and the usual fall work. There were no extremes of drought, wet, heat or cold until the last day of November, when 18 degrees of frost were registered.

December and January were unusually mild, with very little zero weather and not snow enough falling at any time to make sleighing.

February was very cold, the extreme being -15 degrees on the 7th. Seventeen inches of snow fell, making good sleighing during the latter part of the month.

Fine, typical winter weather prevailed during the first week of March, gradually getting warmer toward the middle of the month, which ended with high winds and snow squalls.
LIVE STOCK.

The experiment commenced last year of grading up the common cattle of the district, by the use of a pure-bred bull, was continued. The twelve heifers originally chosen have all calved and have finished a lactation period between January 1, 1912, and January 1, 1913. It will, of course, be some years before comprehensive and final results can be announced, but the milk records and profits shown year by year are of considerable interest.

In feeding for beef, the results of the experiment commenced in January, 1912, and finished April 30, 1912, show that forty-five steers, divided into three lots of 15 each, gave an average profit per steer of $11.23, $9.48 and $12.69 for the three lots respectively.

The experiment commenced this year was concluded on March 15, in time for Easter delivery. There were thirty-four head under feed, one lot of ten and one of twenty-four. The former gave an average profit per steer of $19.61 and the latter one of $18.22.

A sheep-feeding experiment was also conducted. Forty grade wethers were divided into four lots of ten each and were fed different rations. The net average profit of each group was: Lot 1, $1.43; lot 2, $1.37; lot 3, $1.43, and lot 4, $1.50 per head in each case.

A test of the value of skim-milk as a feed for swine was conducted during the year, one lot being fed three pounds of skim milk per day and another, six pounds, the other constituents of the ration being the same for both lots. Those fed the larger quantity of milk made more economical gains, a saving of 1% of a cent per pound increase in weight being effected.

CEREALS, CORN FOR ENSILAGE AND ROOTS.

In cereals, eleven varieties of wheat ranged in yield from 36 bushels to 20 bushels per acre. Twelve varieties of oats ran from 97 bushels 20 pounds to 82 bushels 12 pounds per acre. Six varieties of six-row barley yielded from 59 bushels 8 pounds to 40 bushels per acre, and the same number of two-row sorts ranged from 62 bushels 24 pounds to 41 bushels 32 pounds.

The pea crop was a very poor one, owing to the continued wet weather delaying harvesting until September 24. The yields of ten varieties were from 17 bushels 20 pounds to 7 bushels 20 pounds per acre.

Five varieties of buckwheat gave yields of from 47 bushels 24 pounds to 41 bushels 32 pounds per acre.

The unfavourable season reduced the yield of Indian corn for ensilage, the average being five tons of forage per acre.

In roots, turnips yielded from 31 tons 1,000 pounds to 25 tons 700 pounds per acre; mangels, from 25 tons 400 pounds to 10 tons 400 pounds; sugar beets, from 8 tons 200 pounds to 5 tons 100 pounds; and carrots from 16 tons 1,000 pounds to 12 tons 500 pounds. Nineteen varieties of potatoes ranged in yield from 413 bushels 20 pounds to 171 bushels 40 pounds per acre.

FRUITS AND VEGETABLES.

The apple crop was above that of 1911 in quantity, and equal to it in quality. Most small fruits did fairly well, although there was some damage from the wet weather which also delayed and, in some cases, prevented the maturing of vegetables such as tomatoes, garden corn and melons.

An exhibit of farm products was made at the Nova Scotia Provincial Exhibition, Halifax, N.S., and at the Colchester County Exhibition at Shubenacadie, N.S.
During the year, the Superintendent delivered a considerable number of addresses at various points, as well as assisted at Short Courses, etc.

The number of visitors to the Farm during the year was 4,015.

The annual distribution of seed potatoes was carried on, the number of samples distributed being 484.

The following are the meteorological records for the year ending March 31, 1913.

METEOROLOGICAL RECORD.

<table>
<thead>
<tr>
<th>Months</th>
<th>Temperature F. Monthly.</th>
<th>Rainfall</th>
<th>Snowfall</th>
<th>Total Precipitation</th>
<th>Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>Minimum</td>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td>Date. °</td>
<td>Date. °</td>
<td>°</td>
<td>Inches. Inches.</td>
<td>Hours.</td>
</tr>
<tr>
<td>April</td>
<td>16 66</td>
<td>10 17</td>
<td>37.61</td>
<td>1.84</td>
<td>2 91</td>
</tr>
<tr>
<td>May</td>
<td>27 77</td>
<td>6 24</td>
<td>50.27</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>25 84</td>
<td>18 35</td>
<td>56.29</td>
<td>2.32</td>
<td>1.62</td>
</tr>
<tr>
<td>July</td>
<td>10 92</td>
<td>1 40</td>
<td>63.61</td>
<td>6.62</td>
<td>4.82</td>
</tr>
<tr>
<td>August</td>
<td>23 51</td>
<td>26 38</td>
<td>66.75</td>
<td>4.82</td>
<td>4.26</td>
</tr>
<tr>
<td>September</td>
<td>15 73</td>
<td>10 33</td>
<td>52.99</td>
<td>2.86</td>
<td>2.86</td>
</tr>
<tr>
<td>October</td>
<td>7 74</td>
<td>22 25</td>
<td>46.50</td>
<td>1.97</td>
<td>1.57</td>
</tr>
<tr>
<td>November</td>
<td>7 66</td>
<td>30 14</td>
<td>36.52</td>
<td>3.20</td>
<td>3.70</td>
</tr>
<tr>
<td>December</td>
<td>19 51</td>
<td>13 0</td>
<td>25.33</td>
<td>5.22</td>
<td>5.62</td>
</tr>
</tbody>
</table>

1913.

January	12 52	10 9	28.96	2.42	17 12	112.15
February	1 51	7 15	13.51	4.5	3.5	140.0
March	20 62	8 1	5.86	3.16	140.0	

Note.—Ten inches of snowfall is reckoned as one inch of rainfall.

EXPERIMENTAL STATION FOR NEW BRUNSWICK.

Fredericton, N.B.

As the land for the Experimental Station here was not purchased until September last, this report can only be very brief.

The land comprises an area of approximately four hundred and fifty (450) acres. It is situated within the limits of the city of Fredericton, fronting on the St. John river, and is crossed by the Canadian Pacific railway, the platform known as Doak being on the Station land. The line of the St. John Valley railway crosses the Station close to the bank of the St. John river. The centre of the farm is about three miles down river from the centre of the city proper.

The area was made up of farms, belonging respectively to John O. Adams, Dell Gunter, H. C. Jewett, A. H. Waterhouse and W. W. Boyce. None of these farms had more than a small proportion of land in a good state of cultivation. Of the whole area, only about one hundred acres has been in crop.

Some twenty acres of sod were ploughed for the planting of corn, potatoes, roots, etc., and about six acres were ploughed on the Boyce property when it was bought. Much of the land requires drainage to secure maximum crops.

With the object of getting all the land lying between the Canadian Pacific railway and the river under cultivation, comprising an area of approximately three hundred acres, as much land as possible was brushed and ditched before winter conditions set in. The place was also surveyed, and a road through the centre of the
SESSIONAL PAPER No. 16

farm laid out from the river to the Canadian Pacific railway track. There was some work done on the construction of the road. Cedar posts and woven wire were bought and a portion of the roadside levelled for fencing.

During the winter, from four to five men were kept at work cutting bushes and wood, and digging and hauling gravel for road purposes. The nearest gravel pit from which a supply could be obtained was across the St. John River, on the property of the Fredericton and Grand Lake Coal and Railway Company. Two hundred and ninety yards of this gravel were bought, and hauled to the Station. As there was quite a demand for the wood growing on the land which it was desired to clear, it was possible to sell it for what it was worth standing, and the purchasers have cut the land clean, piled the brush and removed the wood. It is hoped to be able to burn this land over, and use for sheep pasturage what it is not possible to break up this coming season.

As no barns suitable for Experimental Station purposes are on the place, a complete outfit of new buildings will have to be erected, as well as a residence for the Superintendent, and several houses for the staff.

Four Clydesdale grade mares were sent from Ottawa, and worked throughout the fall and winter. Two of these mares were bred on the 4th of December to a Clydesdale stallion.

Some manure has been purchased in the city and hauled to the farm.

Ornamental plants and trees have been ordered, and will be set in 1913 in nursery rows.

No stock other than the horses above mentioned have been bought with the exception of a small flock of fowls. These fowls, comprising eleven Barred Plymouth Rock and six Rhode Island Red pullets with a cockerel of each breed, were put in on the 1st January. They laid, during January, 184 eggs; during February, 84; and during March, 287; a total of forty-six and a quarter dozen for the three months from the seventeen pullets. These birds were kept in a shed, which, while dry, was as cold as out-of-doors. The only provision made for protection from the cold was an enclosed roosting pen, across the front of which a curtain was dropped at night. An ample supply of litter was given, and kept dry by frequent renewal. The whole grain part of the ration was scattered through the litter, and the hens kept at work scratching. On fine days, the flock had the run of the barnyard. While the thermometer was above zero, no inconvenience from cold seemed to be felt, but when it fell lower, and especially when the wind was high, egg production shrank, the birds seemed to be rather moody, and the combs of the cockerels were frozen somewhat. Small wheat and screenings formed a considerable portion of the ration, and it was aimed to supply a moderate quantity of everything necessary for health and egg production. Raw turnips were provided, and apparently much relished. Cut green bone was mixed with mash consisting of boiled potatoes and cracked oats. Some coarsely cracked corn was scattered in the litter with the wheat. The eggs sold at thirty cents per dozen.

Some repairs were put on the buildings to make them comfortable for horse-stabling, and two small houses on the farm, occupied by the foreman, teamsters and some of the extra men working on the farm, were also repaired to some extent. An office building of one story, 12 feet wide by 30 feet long, was built. Implements and tools needed for the fall work were purchased and a portion of the equipment for 1913 ordered.
EXPERIMENTAL STATION FOR EASTERN QUEBEC.

STE. ANNE DE LA POCATIERE, QUE.

THE FARM; SITUATION, AREA AND NATURE.

The Experimental Station for Eastern Quebec has been described as follows in the Experimental Farms Report for 1911:

'This farm is composed of two holdings, one of eighty-four arpents, occupied by Mr. Antonio Gendron, and a part of that occupied by Mr. Georges Hudon, about sixty arpents, making 144 arpents, or about 120 acres, in all.

'These properties lie immediately west of Ste. Anne de la Pocatière station on the Intercolonial railway. They are traversed from east to west by the main travelled road of the counties of Kamouraska and L'Islet. A much-used road to the southward starts on the west side of the Gendron property.

'These farms consist each of a stretch of level land extending south from the Intercolonial railway for about 1,100 yards to the foot of a hill, from which point they rise for another 1,000 yards, or thereabouts. The level part of the land consists of heavy clay soil, possible of drainage, which would be needed. The upper, or rising land, consists of porous gravelly soil, in some parts covered, to a greater or lesser extent, with boulders. The hill land is, in part, arable, or capable of being made so. The lots are each about 120 yards wide. The land would be very suitable for experimental work, as it is quite typical, in character and situation, of the land of this district.'

To complete this description, it may be stated that the farm is situated seventy-five miles from the city of Quebec, in latitude 47°22' north and longitude 70°02' west, on the south shore of the St. Lawrence. The average altitude from the St. Lawrence river is 47 feet for the low part of the land and 334 feet for the southern limit. As the farm rises from the railway like an amphitheatre, a good view of it may be obtained from the Intercolonial trains.

A creek runs obliquely through the farm, at the foot of the hill; the water in this creek is of excellent quality. It is the surplus of the springs on the hill, which have been piped. The water pipe, which belongs to the Ste. Anne de la Pocatière college, passes along the western boundary, and supplies the farm with water.

THE SEASON.

The season was extremely damp and cold, most unfavourable for field work and the ripening of crops. More than 80 per cent of the farmers of this district will have to import seed grain for next year. The hay crop, which looked very promising at the beginning of the season, only gave an average yield, of poor quality.

It rained for twelve consecutive days, from the 1st to the 17th of June. During the night of the 15th the creeks overflowed their banks and the low land was submerged. The grain which had been sown during the first week of May was damaged to some extent. However, only the grain sown at that time gave satisfactory yields, for from the 14th May to the 20th June, very little seed could be sown in this district.

The land on the Experimental Station had been so carefully prepared during the fall of 1911 that the average yield of oats, in spite of the unfavourable season, was 32 bushels to the acre.

The Indian corn was sown on June 24 and 25; it came up well and made a good growth during the first half of July, which was dry and rather hot.

The latter part of July and August was very damp, cold and cloudy. Having was slow and difficult. A splendid second growth was obtained on clover meadows-
and a good catch of clover and timothy was secured in the grain fields. September was wet and cold; there was a white frost on the 16th, two inches of snow on the 29th and sleet on the 30th.

October was also a very rainy month; much grain had to be left in the fields and the rest was housed in bad condition.

November was damp, but the total fall of rain and snow was not very large.

December was mild, with a little more snow, but hardly enough to make good winter roads. The winter was characterized by frequent and light falls of rain and snow, and sudden changes of temperature. The high winds accumulated large quantities of snow in the woods and the ravines; the earth which was bare became covered with ice, owing to the frequent thaws during the winter. It is to be feared that the meadows will be damaged or destroyed.

The worst snow storm of the winter came on the 6th and 7th of March; there was a big thaw on the 2nd and 22nd of March, with a high gale. The rest of the snow almost completely disappeared, and the roads were flooded for several days in many places. The rest of the month was cold, with a heavy rain on the 31st.

LIVE STOCK.

There is, as yet, no live stock on the farm, with the exception of horses, but there will be some next year. There are two teams of draft horses, weighing respectively 2,800 and 2,800 pounds, and a light horse for lighter work and for the use of the Superintendent. An old horse, unfit for work, was sold and replaced.

IMPROVEMENTS.

The following buildings are now on the farm: A house, 28 x 33 feet (the residence of the Superintendent), which was repaired last summer. It was clapboarded and given two coats of paint; the old shingles were replaced by galvanized iron; a good stone wall, with good sashes and double doors, was built around the basement. The upper story was boarded up and divided into four rooms, making a comfortable and good-looking house. Another house, 30 x 32 feet, which will be used as a house for the herdsman, was repaired in the same way, with the exception of the masonry around the basement, and the roofing. It is now a comfortable building. A barn 28 x 95 x 20, with a stable 20 x 40 which may be used as a sheep barn when repaired and improved is on the property. Some urgent repairs have already been made. There is also another barn of 27 x 75, with a stable 27 x 28. It is in rather poor shape and in a poor situation, and will have to be taken down. However, it has been repaired for temporary use. A shed in fairly good shape but sunk in the soil, was raised two feet and put on a good stone foundation; temporary grain bins were built in the upper story. A shed, 11 x 15, was rebuilt and turned into a storeroom.

The large dairy stable is supplied with water through a pipe, 882 feet long and one inch in diameter; two half-inch pipes (146 feet and 148 feet respectively) connected with the above, bring the water to the houses, which have been fitted with closets and sinks. The water pipes were laid at an average depth of 54 inches. Draining wells (cesspools) of 6 x 6 x 5 were dug about 50 feet from the houses, to receive waste water. These wells are wooded and covered with cedar. The soil is very permeable at that place and the waste water readily escapes through the bottom of the wells.

IMPROVEMENT OF THE ROADS.

The front road, which was in very poor condition, has been repaired; it has been graded, widened and left with a good crown and good ditches. The land being
a heavy clay, it is hard to keep this road in good shape in wet weather. It should be covered with stones or gravel.

FENCES.

Along the front road a fence of 8 strands of No. 9 wire, and 40 inches high, was laid on good turned cedar posts, 6 x 6 inches and set 10 feet apart. These posts are connected at 52 inches from the level of the soil by a rail, 3 x 4, and the whole fence is painted with two coats of paint. Gates, 15 feet wide, give access to the different fields, and a double artistic-looking gate, 16 feet wide, and one 4 feet, of the same design, close the avenue. The gate and corner posts are 8 x 8 and 12 x 12 respectively, sunk to a depth of five feet and set on stones; facing the proposed buildings, there is a lawn fence painted green.

On the high road, to the west, and on the south road facing the farm, as well as on other parts of the farm, 3,188 yards of fences, 48 inches high and made of 10 strands of No. 9 wire were put up. All the posts are dressed cedar, 6 to 8 inches; the upper part is rounded and painted. They were set at intervals of 16 feet 6 inches. The posts are sunk 3 feet and more in the soil, which makes a very strong fence. Gates, 14 and 15 feet, at various places on the high road, give access to the other fields. A number of culverts of various sizes, according to the widths of the creeks, were laid on the farm. A bridge, which was too low and in poor condition, was rebuilt on good foundations of stone and cedar.

DRAINAGE.

More than 6,000 feet of drains were laid during the past season; part of these drains were laid in a four-acre field at the foot of the hill. This was ploughed last July; it was worked up, graded, cleared of stones and an orchard of more than 400 trees will be set out in the spring.

A number of ditches were dug or widened; others were started, and will be completed next season; others again will need to be made larger. A large number of stones were removed from various parts of the farm, and more particularly from the drained fields. Nearly six acres of new land were ploughed for the first time, and more than 600 yards of stone were taken off the fields.

About 14 acres of land, covered with brush, or wood of little value, were cleared. The greater part of this area is marshy land, on the high part of the farm. When drained, this area will be possible of cultivation.

The other fields were not laid out in a suitable manner for an Experimental Station when the property was purchased. A part of the old fences were removed; and four different rotations of three, four and five years respectively will be started this spring.

FRUIT TREES.

There are, near the buildings, thirty-four apple trees of all ages, including six varieties; some of these trees yield very little fruit, while others do not yield anything. The apple crop was an average to a poor one, and of inferior quality. There are, in the same place, eighteen plum trees, made up of five varieties. The plum crop was a very good one on the Station and in the whole district.

Two shipments of European plums, forwarded on the 5th and 12th of September to the Dominion Fruit Exchange, at Ottawa, were classed as 'choice.' Two other shipments to M. Vipond & Co., Montreal, were classed 'excellent.' Some dead trees were removed and some others will have to be specially treated.

CEREALS.

Cereals were not grown from an experimental point of view last year. About twenty-five acres were sown in oats from the 6th to the 14th May. The varieties used were the
REPORT OF THE DIRECTOR

SESSIONAL PAPER No. 16

Banner and the Wide Awake. The crop was good in yield and quality. It was cut from the 13th to the 21st of September; the average length of the straw was three feet six inches, and the average yield thirty-two bushels per acre. A little rust was observed in the various fields, as well as some smut in the fields on the heavy clay land, and a great deal of smut in a field of about three acres, situated on a moist, sandy loam.

Two acres of oats were sown on the 24th of June, but did not ripen. The oats gave a great growth of straw, which remained green until the 28th of September, date of cutting. Another acre of oats sown on the 26th of June on a piece of new land met the same fate. One acre of buckwheat sown on the 29th of June on new land made a poor start, and was ploughed under on the 2nd of September.

FODDER CORN AND ROOTS.

The season was most unfavourable to fodder corn. Three acres of Longfellow were sown on the 23rd and 24th of June. The seed was put in hills, thirty-six inches apart; the corn came up promptly but did not grow to a height of more than five feet, owing to the cold weather; also it suffered from a light frost on the 16th of September. The corn was cut on the last day of September, and gave some two tons to the acre. Another crop sown on new land gave about three tons.

A field of turnips, Magnum Bonum variety, a little less than one arpent in area, sown on new land the 3rd of July, with very little manure, came up very slowly and in a very uneven manner, on account of the unevenness and dampness of the field. However, in September and October the roots made a strong growth; the average yield of this field was eight tons to the acre.

METEOROLOGICAL RETURNS.

<table>
<thead>
<tr>
<th>Month</th>
<th>Monthly temperature °F.</th>
<th>Rainfall</th>
<th>Snowfall</th>
<th>Precipitation</th>
<th>Hours of Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td>Average</td>
<td>Inches</td>
<td>Inches</td>
</tr>
<tr>
<td>January.....</td>
<td>19</td>
<td>35</td>
<td>22</td>
<td>25</td>
<td>15.65</td>
</tr>
<tr>
<td>February....</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>23.33</td>
</tr>
</tbody>
</table>

Note.—The recording apparatus was received on the 30th December.

EXPERIMENTAL STATION FOR CENTRAL QUEBEC.

CAP ROUGE, QUE.

CHARACTER OF SEASON.

The past season was the most unfavourable which the farmer of the Cap Rouge district has had for a quarter of a century. All crops, except hay, were below the average.

April was rather cold, and the snow went away slowly. On the 28th, the ice bridge was still solid on the St. Lawrence river, in front of the farm.

The first thing sown outside was sweet peas, on May 1. This month was one of the worst in years. It rained on fourteen different days, from the 7th to the 31st, and as there was nothing done before the first-mentioned date, seeding was kept back.
There was precipitation during thirteen of the eighteen first days of June. This kept seeding back so long that many farmers could not put in more than half the grain which they had intended to sow. The bulk of the oats was sown, at the Station, during the first and second weeks of the month, corn from the 19th to the 26th, potatoes on the 24th, swedes on the 28th and 29th.

A drought lasted from the 20th of June until the end of July. The land, which had been repeatedly flooded in early June was now parched and cracked. Everything had been sown late, and the dry weather stopped germination. At the Station, haying commenced on the 10th and was finished on the 20th.

August was wet and cold. Farmers who had delayed haying had a great deal of trouble, besides obtaining only a poor quality of feed. Grain grew well during this month, but corn, potatoes and roots were at a standstill.

September was damp and cloudy, sunshine averaging only a little over three hours per day. Corn did not grow, and was practically a total failure all through the district.

October was wet, as it rained on seventeen days. Nearly all the grain was cut during this month at the Station and vicinity. Much of it was still green, and most of it was light and will be useless for seed in 1913. Cutting corn was only begun on the 1st, and potatoes were dug on the 12th, at the Station.

November was dull; there being only 26.2 hours of sunshine during the month. Swedes were pulled from the 6th to the 11th. On the 14th, sleighs were used, but were discarded for wheels on the 22nd, and put into use for the winter on the 26th.

December was quite mild. The rain of the 29th, immediately followed by severe cold, caused a great deal of damage to fruit trees.

January was also very mild, and the rain of the 17th brought the snow down to ten inches. This was about two feet less than usual.

February was colder than last year, and furnished the only regular winter weather of the season. There were two bad storms, on the 15th and 22nd, and trains on most railways were either cancelled or very late.

March was mild and wet. The rains caused an early thaw, and the cold weather of the end of the month froze the ground which had been uncovered early. This will injure meadows and pastures, especially on low-lying places where the water stood.

FIELD WORK.

That the season was a very bad one, can readily be seen when crops of 1911 are compared with those of 1912. For instance, corn only yielded 21 per cent of what it did last year: swedes, 38 per cent; potatoes, 25 per cent; oats, 71 per cent. Hay yielded about the same as the year before.

Cultural experiment with Indian corn.—This was commenced in 1911 and continued in 1912. The following figures show comparative yield for the two seasons:

<table>
<thead>
<tr>
<th></th>
<th>drill</th>
<th>hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>42</td>
<td>36</td>
<td>100</td>
</tr>
<tr>
<td>36</td>
<td>69</td>
<td>95</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Of course, these results are far from definite, and too much importance should not be attached to them until two or three more experiments, at least, are made.

Rotations.—To make room for the extension of the orchard, one of the 6-year rotations had to be dropped out temporarily. A five-year rotation, however, was started so that there are now four: one 3-year, one 4-year, one 5-year, one 6-year.
Horses.

There are now at the Station five mares and two fillies, a 2-year-old and a weanling, all registered French-Canadians besides two teams of from 2,000 to 2,900 pounds weight per team, and a driver of about 1,000 pounds. Four of the pure-bred mares are in foal to a stallion of the same breed.

Exercise for colts.—Without feed of the right kind, and lots of it, it is impossible to grow a young animal as he should be grown. But when fed heavily, and kept in the stable during winter, a colt adds more weight to his body than the limbs can support, and the legs go wrong. The only practical preventive is exercise. A paddock, with a shed boarded on three sides and facing south, well bedded with straw, is the right place to keep the youngsters. At the Station, a weanling filly was turned out in such a place, every day of the winter, except three or four very stormy ones, from about eight in the morning until five in the afternoon. There was from one to three feet of snow in the paddock. She was fed with good clover hay, bran and oats, and the day she was one year old, she weighed 730 pounds. As her dam's weight is about 1,125 pounds, she should make a mare at least 100 pounds heavier than her mother.

Experiment wintering a horse at low cost.—The gelding which was used for this experiment last year was in splendid shape for the season's work. He had received one pound of hay from mixed grasses, one pound of straw, and one pound of swedes per day for each hundred pounds of his own weight. The bulky ration and the roots had a very beneficial effect on the digestive tract of the animal.

The same experiment was made in 1912-13 with a very nervous mare, fifteen years old. She weighed 1,350 pounds on November 1, 1912, and 1,455 on March 31, 1913. If she goes through next season's work in good shape, it would seem advisable for farmers who own more horses than they can use in winter time to try this way of feeding the idle animals.

Cattle.

There are now at the Station, one bull, nine cows, five heifers, registered French-Canadians; also ten cows, grades of the same breed, and four heifers out of these by a pure-bred Canadian bull.

The milk of each cow is weighed at each milking and a butter-fat test made each month. The cows themselves are weighed at different times, so that it will be interesting to see if the heifers of the grade cows, especially, will be improved in size, also in milk productiveness, by the use of a good sire, and with rational feeding.

Swine.

There are now one aged and two young boars, nine breeding sows, and three gilts, all registered Yorkshires. No feeding experiments have been started.

Sheep.

One ram and six ewes, registered Leicesters, were bought for this Station, and will be shipped as soon as the weather gets mild enough to prevent injury to the young ones, a number of which were dropped since the dams were purchased.

Poultry.

There are two pens of White Wyandottes, but as there is not room for more at present, just a few chicks were hatched this year.
This year, fourteen varieties of wheat, ten of peas, six of two-row barley, seven of six-row barley, eleven of oats, five of oats and barley, five of carrots, eight of mangels, three of sugar beets, ten of swede turnips, and three of Indian corn were tested.

A uniform piece of land was chosen for the test plots, and a three-year rotation will be used. It will be divided into equal parts, one for roots and corn, one for cereals, and one to note how clover grows when seeded down with different cereals, with different varieties of the same cereal, and with the same cereal sown in different quantities.

HORTICULTURE.

Fruit.—A certain number of apple and plum trees, also of currant, gooseberry and raspberry bushes were added to the variety tests. About half an acre was planted to grapes, and an area of over seven acres of land was transferred from the agricultural to the horticultural division, to extend the apple orchard.

Vegetables.—There were 215 different varieties tested, and it was interesting to note that some of them only yielded from thirty to forty per cent of others of the same kind sown alongside. A couple of acres were used to grow vegetables for the market, and a part of the crop was packed in‘Home Hampers,’ which are slatted crates containing six four-quart baskets. It is the intention to continue doing educational work in this line, as the price which the grower receives for his goods when marketed in the ordinary way is generally quite small compared with what the consumer has to pay for them.

Flowers.—Over 300 different kinds of annual and perennial herbaceous plants, shrubs, and bulbs were tested. A good deal of work was done on the ornamental grounds, which will be very attractive when completed.

STATION IMPROVEMENTS.

Granary.—A three-story grain granary, 40 x 50, was built during the year. A part of this will be used as an exhibition room, in which different varieties of cereals, weeds, etc., will be displayed; it will also be employed to hand-pick grain in during the winter. The upper or third story will be for the cereal division, and will serve as a storage room for all grain from the test plots, and that which is grown to be sold or distributed for seed. All the rest of the building will be for feed for live stock. The grist and the fanning mills will be installed on the ground floor underneath large hoppers made to hold one thousand bushels each.

Workshop.—A two-story workshop, 42 x 25, was also built during the year. It is on a concrete foundation and floor, and contains a good forge, wood and ironworking benches, anvil, vise, drills, etc. The upper story is used to store paint, glass, hardware and pieces for implements. Downstairs are places for small tools. All vehicles and machines will be looked over yearly, during the winter, repaired, and painted. Loose pieces, such as neck-yokes and whiffle trees are marked with a number, which is the same as that on the machine, so that there may be no mixing or exchanging of parts.

Painting Buildings.—All the Station buildings were painted, except the Superintendent’s and the Foreman’s houses.

Clearing Land.—About seven acres of land were stumped and ploughed. This is part of a tongue of brush, situated between two fields. Its removal will be quite an improvement to the looks of the property, whilst giving much-needed ground for crops.

Drainage.—Nearly 8,000 feet of tiles were put in during 1912, and excavations made ready for 3,000 feet more which will be laid early in 1913.
Waterworks.—An artesian well is being dug on the highest point of the Station, not far from a small pond. A concrete tank, to be filled by an engine, will be built in the ground, and from it water will be brought by gravitation to the different buildings of the Station, and to many of the fields.

VISITORS.

During the year, 1,330 persons visited the Station. A remarkable fact is that farmers very seldom criticise the Experimental Farm system after they have visited one of the Stations and have seen the work done or in preparation. This shows the wisdom of doing everything possible to improve facilities for such visits.

DISTRIBUTION OF SEEDS.

Up to March 31, 1913, 503 packages of sweet corn, and 200 of tomato seed were distributed whilst about 400 more packages of sweet corn were made ready to send out.

Meteorological Data.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature</th>
<th>Precipitation</th>
<th>Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date</td>
<td>Highest</td>
<td>Lowest</td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>27</td>
<td>60</td>
<td>5:2</td>
</tr>
<tr>
<td>May</td>
<td>29</td>
<td>80</td>
<td>26:2</td>
</tr>
<tr>
<td>June</td>
<td>26</td>
<td>83</td>
<td>35:2</td>
</tr>
<tr>
<td>July</td>
<td>8</td>
<td>92</td>
<td>44:2</td>
</tr>
<tr>
<td>September</td>
<td>9</td>
<td>74</td>
<td>31:2</td>
</tr>
<tr>
<td>October</td>
<td>7</td>
<td>72</td>
<td>28:2</td>
</tr>
<tr>
<td>November</td>
<td>11</td>
<td>59</td>
<td>18:2</td>
</tr>
<tr>
<td>December</td>
<td>7</td>
<td>47</td>
<td>13:2</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>1</td>
<td>41</td>
<td>-19:9</td>
</tr>
<tr>
<td>March</td>
<td>22</td>
<td>52</td>
<td>-14:9</td>
</tr>
</tbody>
</table>

Experimental Farm for Manitoba.

Brandon, Man.

The season of 1912-13 was one of extremes. Spring was cold and backward; a heavy snowfall in the middle of April delayed the commencement of seeding, and frequent light showers kept the land unfit for cultivation, and made all crops late in being sown. Next followed a period of extreme drought; June was the driest month in the history of the Farm. July went to the other extreme again, with an unusually heavy rainfall. Wet conditions continued until the end of September, and greatly hampered harvesting and threshing, and lowered the quality of the grain crops. October and November were fine, and gave a most acceptable opportunity for catching up with the sadly-delayed farm operations. The winter season was about normal, with the usual amount of cold weather and snow.
The work in comparing rotations of crops has progressed during the year. Over half of the arable land of the Farm is now laid out in rotation fields, and seven different rotations are now in operation; an eighth has had a block of land allotted to it, but work will not be started thereon until 1913. It is too soon to report any definite results from the work, but even at this early date in the test, some noteworthy facts stand out, such as the value of corn in a rotation, the profit from the use of manure, and the possibility of growing a crop every year, through using a suitable rotation.

The system of cultural experiments, inaugurated in 1911, has been brought more nearly to full working order, but as some of the experiments take from two to four years in preparation, all are not in full operation as yet. The work for the season of 1912 was all done in a thorough manner. Results for this season have been rather disappointing; there has not been the difference in yield between what are generally supposed to be good and bad methods, that would be expected. Perhaps this was due, at least in part, to the wet weather in July, which forced all crops to grow, whether they were in properly prepared land or not.

Varieties of Grain.

The usual tests of varieties of cereal crops were conducted this year. Four named varieties of wheat were tested and, in addition, ten new sorts, received from the Dominion Cerealist, under number, were given a trial. A comparison was made of eight different strains of Red Fife, secured from different seed merchants and seed growers, to ascertain what source of this variety offered Manitoban farmers the best seed. Sixteen varieties of oats, ten varieties of six-rowed barley, seven varieties of two-rowed barley, eight varieties of flax and ten varieties of field peas were tested in uniform test plots.

Quantities of seed grain, of a number of the best varieties, were grown for distribution by the Dominion Cerealist, and for sale in small quantities.

The season was an unfavourable one for experimental work with grains. The extreme drought followed by extreme wet caused a heavy second growth in all the earlier crops; wet harvest weather increased the difficulties, so that the results obtained are not, in all cases, typical of the usual results obtained from the different varieties.

Field Roots and Forage Crops.

Excellent crops of field roots were obtained this season. The wet weather of late summer and early autumn just suited them. These crops deserve more general cultivation in this province. Tests were made of fourteen varieties of turnips, eight varieties of mangels, seven varieties of sugar mangels or sugar feeding beets, three varieties of sugar beets for sugar production, and six varieties of field carrots.

Indian corn was not as good a crop as usual, on account of the low germination of seed and unfavourable conditions at time of planting. However, yields were obtained which amply justified the growing of the crop. Tests were made of ten different varieties of corn for fodder. The crop was stored in the silo as usual, and made a great bulk of very excellent feed.

The crop of hay, grasses and clover was rather short, as it was injured by the June drought. Alfalfa was much better able to withstand the dry weather, and produced two very good cuttings. A set of twenty-eight plots of grasses, clovers, alfalfa, and mixtures, sown in 1911, produced crops this season which gave an interesting comparison of the productiveness of the different sorts.
LIVE STOCK.

The herd of cattle consists chiefly of the milking type of Shorthorn. The milk records show that, while these cattle cannot equal the regular dairy breeds in milk production, they do much better than the ordinary cattle of the country. At the same time, they are capable of producing offspring of reasonably good beef type. From December 19th, to January 18th inclusive, one of these cows gave 1,810 pounds of milk. Great interest is taken in this type of cattle by the farmers of Manitoba and the other western provinces, and there is quite a keen demand for young stock. All the males and the surplus females are sold to farmers at low rates. In addition to Shorthorns, two Ayrshire females and two grade females are on hand.

An experiment in feeding steers outdoors, as compared with stabling, was completed in May, 1912. As in previous experiments of this nature, outdoor feeding was proven to be practicable and profitable. In November, 1912, a carload of steers was purchased, in order to continue the steer-feeding experiments. This year all the steers are being fed outdoors, but some receive alfalfa in place of part of the grain ration. The experiment is not completed at the time of writing.

The flock of ewes has done well during the season, and has produced a good crop of lambs. A hundred range lambs were purchased in November, 1912, for the purpose of conducting a feeding experiment. One night in January, dogs attacked them and worried them so badly that thirty-three of them were killed or injured so seriously as to necessitate their being killed. The remainder were so upset by fright and lesser injuries, that the experiment was rendered entirely valueless.

A small number of Yorkshire and Berkshire swine are kept; they have done well during the season. A feeding experiment was conducted to compare the feeding values of barley and shorts. The result proved a victory for the barley.

A sufficient number of horses are kept to do the work of the Farm. No experiments have been conducted with horses, and very little breeding.

HORTICULTURE.

Twenty-three varieties of potatoes were tested in uniform test rows, and were also subjected to a cooking test. Tests were also made of the effect of various commercial fertilizers on potatoes. The usual variety tests of all the different kinds of garden vegetables were also conducted. Garden crops were fairly successful, yielding abundant crops, in most instances, but being rather late.

The usual display of flowers was made, and was greatly admired by numerous visitors. Sweet peas were specialized in, and fifty-seven varieties were in bloom at one time.

No additions were made to the arboretum. Notes were taken as usual on the growth, hardiness and other characteristics of all the different kinds of trees and shrubs.

Additions were made to the fruit orchard by purchasing trees of promising varieties of apples and plums from several nursery firms, and planting them out in the place of other trees that had died or proven unsatisfactory. A good crop of native plums was harvested, and quite a number of cross-bred apples, of very good quality and fair size, were produced. Three thousand young apple seedlings of standard varieties were received from the Dominion Horticulturist, and planted out in nursery rows. A new plantation of bush fruits was set out. Specimens of the most promising varieties of black, red and white currants, gooseberries and raspberries are included in the plantation.

POULTRY AND BEES.

Small flocks of hens, of Barred Rock and Silver Grey Dorking breeds, are kept. No experimental work with poultry has been done during this year. The birds have been healthy and have laid reasonably well.
The bees wintered satisfactorily, and ten hives were taken out in the spring. During the summer there was a greater interest shown in bees than usual. Six hives were sold, and more would have been taken if they could have been spared. Fifteen hives were stored away in winter quarters. The cold dark season was unfavourable for honey production and the quantity stored was not as great as usual, but was of the usual excellent quality.

EXCURSION.

On July 3, 1912, an excursion was run to the Experimental Farm by the Virden Agricultural Society. The train started at Elkhorn and received passengers at each station between that point and Brandon. This is the first excursion to this Farm for many years. About 200 persons took advantage of the excursion.

DISTRIBUTION.

During the year, the following distribution was made: 367 samples of seed potatoes, 35 bundles of trees and cuttings, 22,200 pounds of inoculated soil for alfalfa.

VISITORS.

During the year about 9,000 visitors inspected the Farm.

METEOROLOGICAL RECORD FOR BRANDON.

<table>
<thead>
<tr>
<th>Months</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Mean Temperature</th>
<th>Total Rainfall</th>
<th>Total Snowfall</th>
<th>Hours Bright Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>71.9</td>
<td>14</td>
<td>41.2</td>
<td>.86</td>
<td>7</td>
<td>226.4</td>
</tr>
<tr>
<td>May</td>
<td>84</td>
<td>13</td>
<td>51.5</td>
<td>2.94</td>
<td></td>
<td>208</td>
</tr>
<tr>
<td>June</td>
<td>101.5</td>
<td>5</td>
<td>62.1</td>
<td>24</td>
<td></td>
<td>224.9</td>
</tr>
<tr>
<td>July</td>
<td>97.8</td>
<td>18</td>
<td>61.3</td>
<td>6.46</td>
<td></td>
<td>166.3</td>
</tr>
<tr>
<td>August</td>
<td>82.1</td>
<td>3</td>
<td>59.9</td>
<td>1.17</td>
<td></td>
<td>118.1</td>
</tr>
<tr>
<td>September</td>
<td>80.2</td>
<td>25</td>
<td>49.8</td>
<td>3.46</td>
<td></td>
<td>126.5</td>
</tr>
<tr>
<td>October</td>
<td>75.4</td>
<td>22</td>
<td>41.6</td>
<td>.24</td>
<td></td>
<td>137.8</td>
</tr>
<tr>
<td>November</td>
<td>54.6</td>
<td>27</td>
<td>29.2</td>
<td></td>
<td></td>
<td>85.1</td>
</tr>
<tr>
<td>December</td>
<td>39.9</td>
<td>8</td>
<td>9.3</td>
<td></td>
<td>10</td>
<td>61.1</td>
</tr>
</tbody>
</table>

1913

<table>
<thead>
<tr>
<th>Months</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Mean Temperature</th>
<th>Total Rainfall</th>
<th>Total Snowfall</th>
<th>Hours Bright Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>36.9</td>
<td>12</td>
<td>-37.6</td>
<td></td>
<td>11</td>
<td>73.6</td>
</tr>
<tr>
<td>February</td>
<td>32</td>
<td>26</td>
<td>-38.6</td>
<td>-3.8</td>
<td>6</td>
<td>112.4</td>
</tr>
<tr>
<td>March</td>
<td>46.4</td>
<td>2</td>
<td>-29.7</td>
<td>7.7</td>
<td>5</td>
<td>148.2</td>
</tr>
</tbody>
</table>

*Reckoning 10 inches of snowfall as equivalent to 1 inch of rainfall the total precipitation for the year ending March 31, 1913 was 1937 inches.

EXPERIMENTAL FARM FOR SOUTHERN SASKATCHEWAN.

Indian Head, Sask.

The winter of 1911-12 was remarkable for little snow, few storms and exceedingly cold weather in January. The winter of 1912-13, just passed away, has been noted for fine weather up to the end of the year, few storms, considerable snow, and the usual cold January.

Seeding commenced early in April, with both weather and soil conditions favourable. On the Experimental Farm, wheat was sown on April 8, peas on the 9th, barley on the 25th and oats on the 29th.

Fall-rye, fall wheat and Prelude spring wheat were cut on August 5, barley on the 12th and oats on the 14th. All wheat, oats and barley were in stock by the last of the month, excepting a few acres of late oats. Threshing commenced on the
SESSIONAL PAPER No. 16

Experimental Farm on September 3, with fall rye and fall wheat and, after many delays from unfavourable weather, was completed on October 9. Rains discoloured the barley after being in stock, and injured the wheat sample considerably.

With few exceptions, all grain crops gave excellent returns last year, those from the experimental plots exceeding those of any previous year in the history of the Farm. Marquis heads the list of wheats in yield, while Prelude is first in earliness, being from twenty to twenty-five days earlier than Red Fife, which has in the past been the variety chiefly grown in the West. Fall wheat, which is usually a failure in southern Saskatchewan, gave a good yield, though the sample was only fair. Oats did well on summer-fallow, and an average return was obtained on stubble land. Barley yields were all satisfactory excepting two varieties, which were only fair. Peas were overtaken by frost before maturing and both yield and quality were injured.

The hay crop did not equal that of 1911, on account of the dry weather in June checking the growth of the first cutting. Wet weather at the time of cutting made the task of saving the crop more difficult than usual. In the experimental work with grasses and clovers, the chief point worthy of notice was the small yields of hay obtained where the seed was sown with a nurse crop. In Rotation 'R,' where the grass and clover seed was sown with oats, the yield was only 880 pounds per acre, and in Rotation 'P,' 1,794 pounds. In the cultural tests the yields were much better, but still below those plots where the seed was sown alone.

Corn, roots and potatoes were especially good the past year. Carrots and sugar beets, although small in yield, as is usually the case here, were of excellent quality.

SUMMARY OF CROPS EXCLUSIVE OF UNIFORM TEST PLOTS.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Acres</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>73.25</td>
<td>2,099</td>
</tr>
<tr>
<td>Oats</td>
<td>37.44</td>
<td>4,267</td>
</tr>
<tr>
<td>Barley</td>
<td>37.44</td>
<td>2,154</td>
</tr>
<tr>
<td>Peas</td>
<td>8.16</td>
<td>338</td>
</tr>
<tr>
<td>Fall rye</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Flax</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Fall wheat</td>
<td>6</td>
<td>172</td>
</tr>
<tr>
<td>Potatoes</td>
<td></td>
<td>5,000</td>
</tr>
<tr>
<td>Roots</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Corn ensilage</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Rye grass</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Rye grass and clover</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Alfalfa</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Hay cut in coulees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vegetables, with a few exceptions, were satisfactory. Beans failed to mature before being caught by frost. Corn, the squaw variety excepted, shared the same fate. Melons were a failure, while tomatoes had to be gathered before fully matured. Beets, cabbage, cauliflower, celery, carrots, etc., were, as they always have been, very satisfactory.

Last year was particularly favourable for trees; although spring frost killed a large part of the blossoms, no injury or set-back to the trees took place, and all made a large growth and matured the wood during the long season.

Shrubs did exceedingly well; lilacs, caragana, honeysuckles and other flowering sorts were conspicuous by the large quantity of bloom.

As usual the flower beds were prolific in bloom and beauty. In annuals, asters, verbenas, petunias, stocks, and pansies were very conspicuous; and in perennials, dahlias, gladoli, paconies, and tulips have seldom been surpassed.
Late spring frost caught the crab-apple and plum blossoms before the fruit was set, and the crop was not large, although good.

In small fruits, currants and raspberries were never better; while gooseberries and strawberries were a failure, chiefly caused by the late spring frost.

A large number of seedling apple trees were set out last spring, and made a satisfactory growth during the season.

During last spring four registered mares were purchased, with the intention of raising sufficient colts to replace old and worn-out animals. Only one mare is with foal, although all were bred. At present eleven heavy work horses, and two light horses are on hand.

The herd of cattle on the Farm at present consists of thirty-six pure-bred Short-horns, and four grade animals.

The flock of sheep consist of one pure-bred Shropshire ram and three pure-bred ewes, in addition to eleven grade ewes.

There are at present on the Farm, two pure-bred Yorkshire White boars, four pure-bred Yorkshire White brood sows, one pure-bred Berkshire boar and one pure-bred Berkshire brood sow.

Two breeds of poultry are kept on the Farm, and the flock at present consists of twenty-nine Barred Plymouth Rocks and twelve White Wyandottes.

During last year an enlarged horse stable, replacing the one destroyed by fire in the winter of 1911-1912, was erected, but not entirely completed when severe weather stopped the work. The building, which has been occupied since the new year, is 70 x 32 feet, the bottom story being cement, and the top, lumber.

The silo, which was partly destroyed by fire, was rebuilt in time for the corn crop in September. Four feet were added to the length of the staves, making the height thirty instead of twenty-six feet.

A long-felt want in the way of granary room was supplied last year in the erection of a building 26 x 50 feet x 8 feet high, the foundation and floor being made of cement.

A building 24 x 44 feet, and 12 feet high, was put up during the year, to hold the large machinery, such as threshing machines.

On account of delay in obtaining the necessary plans, etc., the large barn could only be commenced, when cold weather stopped the cement foundation work.

A new office building was erected early in the season and occupied late in June. The size is 20 x 25 feet, one and one-half stories high, giving ample room for the increased work on the Farm.

During the season, as opportunity occurred, trees, hedges and shrubs were removed, where they were too numerous, about the Superintendent’s house and along the driveways, with the intention of having more open space and lawns. The rotation experiments commenced in 1910 and the cultural tests commenced in 1911 were carried on during the past year. The most notable result obtained in the rotation tests was the poor returns received in seeding grass seed with a nurse crop.

Mr. Robert Whiteman, B.S.A., had charge of the cultural experiments this year.

DISTRIBUTION OF SAMPLES.

A distribution of samples of products of the Farm was made in the spring, chiefly to residents of Saskatchewan. The following is a list of the samples sent out:

Potatoes, 3-lb. bags, mailed to Ontario and Quebec, 1,388.
Potatoes, 3-lb. bags, mailed to Saskatchewan, 1,405.
Garden peas, 1-lb. bags, 139.
Garden corn, 1-lb. bags, 139.
Small seeds, 131 packages containing 1,310 packets of flower and shrub seeds.
Tree seeds, maple, 249 packages of 1-lb. each.
Tree seeds, ash, 255 packages of ½-lb. each.
REPORT OF THE DIRECTOR

SESSIONAL PAPER No. 16

Tree and shrub seedlings, 329 packages containing 75 trees each.
Express parcels containing trees and shrubs, 15, of 50 trees each.
Crab-apple and plum seedlings, 60 packages containing 12 trees each.
Rhubarb roots, 96 packages containing 6 roots each.

Inoculated soil—201 packages of 100 lbs. each were taken from one of the old alfalfa fields, and shipped to residents in the province, the applicants paying freight charges and cost of bag.

VISITORS.

During the past summer, 2,234 men, women and children visited the Farm. A good many were from the town, and walked or drove through the grounds on Sundays. The students from Regina College paid the Farm a visit on June 22, and the Normal School students from Regina, about 150 in number, visited the Farm on September 12. No excursions were run to the Farm last year on account of having no large buildings in case of rain.

METEOROLOGICAL RECORDS.

<table>
<thead>
<tr>
<th>Month</th>
<th>Maximum Temperature</th>
<th>Rainfall</th>
<th>Snowfall</th>
<th>Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date.</td>
<td>Degrees</td>
<td>Date.</td>
<td>Degrees</td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>21</td>
<td>78</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>May</td>
<td>25</td>
<td>81</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>June</td>
<td>27</td>
<td>97</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>July</td>
<td>24</td>
<td>90</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>August</td>
<td>16</td>
<td>80</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>September</td>
<td>18</td>
<td>74</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>October</td>
<td>9</td>
<td>61</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>November</td>
<td>9</td>
<td>39</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>December</td>
<td>9</td>
<td>39</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>28</td>
<td>40</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>February</td>
<td>16</td>
<td>40</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>March</td>
<td>31</td>
<td>45</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reckoning ten inches of snowfall as equivalent to one inch of rainfall, the total precipitation for the year ending March 31, 1913, was 18.55 inches.

EXPERIMENTAL STATION FOR CENTRAL SASKATCHEWAN.
ROSTHERN, SASK.

WEATHER CONDITIONS, 1912-13.

The season opened under normal and favourable conditions, and seeding was begun on April 10. All crops made good growth until early in June, when dry weather set in, crops that had not a goodly supply of soil moisture suffered greatly, and even those under the most favourable conditions suffered to a very appreciable extent. Showery weather prevailed until nearly the middle of May, and hay crops especially
were very promising, but with the continued dry weather until late in June the meadows of two years' standing, or longer, became yellow and did not fully revive again all summer. In the months of July, August and September, there was more than average precipitation, which had a peculiar effect upon the grain crops. The plants had adapted themselves to the dry weather conditions of June by stooling very little, but with the heavy rains in July the stools developed and, at harvest time, there was the unusual circumstance of several stages of development in the plants of any one plot and, in many cases, in the heads of grain of one plant. Some of the wheat was ripe while other heads in the same plant were in blossom. This condition of irregular growth worked to the disadvantage of the farmer at every stage. In the first place, there was no means of determining the best time to cut; after cutting, the green straw delayed the drying of the grain; at threshing, a great deal of the undeveloped grain blew out with the straw which very materially lowered the yield as compared with the yield promised from the stand, and at marketing, the presence of immature grain with the good grain lowered the grade.

Following are the meteorological records for the past year:

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature °F</th>
<th>Precipitation</th>
<th>Hours of Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date</td>
<td>Max.</td>
<td>Date</td>
</tr>
<tr>
<td>April</td>
<td>11</td>
<td>63.2</td>
<td>15</td>
</tr>
<tr>
<td>May</td>
<td>27</td>
<td>81.2</td>
<td>20</td>
</tr>
<tr>
<td>June</td>
<td>23</td>
<td>93.8</td>
<td>16</td>
</tr>
<tr>
<td>July</td>
<td>30</td>
<td>76.2</td>
<td>16</td>
</tr>
<tr>
<td>August</td>
<td>23</td>
<td>79.2</td>
<td>30</td>
</tr>
<tr>
<td>September</td>
<td>12</td>
<td>73.2</td>
<td>28</td>
</tr>
<tr>
<td>October</td>
<td>1</td>
<td>67.7</td>
<td>21</td>
</tr>
<tr>
<td>November</td>
<td>18</td>
<td>41.0</td>
<td>29</td>
</tr>
<tr>
<td>December</td>
<td>27</td>
<td>38.8</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1913.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>29</td>
</tr>
<tr>
<td>February</td>
<td>17</td>
</tr>
<tr>
<td>March</td>
<td>8</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
</tr>
</tbody>
</table>

The work begun in 1911 under the heading of Cultural Investigation Work, was continued in 1912, but as such work requires time to collect reliable results, very little can yet be deduced from most of the experiments. In the work begun at the same time on rotations, however, something can already be learned by studying the results of this work carefully. Allowing a fair market value for all crops produced, and a fair wage, and necessary allowances for wear and tear of machinery, rent of land and other incidental expenses, it will be seen in the first place, that the more the variety of crops, within certain limits, the greater is the return from the soil. Another notable feature in this work is the great returns obtained from somewhat more than ordinary cultivation. The returns from land poorly cultivated and sown to but one crop continuously show poor returns for the capital invested.

In the work on test of varieties, several new varieties of wheat bred by Dr. C. Saunders were under test, but none has shown any decided advantage over Marquis.

Attention is called to the work carried on with potatoes last season, and particularly the different yields obtained from different methods of planting and cultiva-
SESSIONAL PAPER No. 16

DISTRIBUTION, the two most notable features being the high yields from deep planting as opposed to shallow planting and from level cultivation as opposed to ridging.

BUILDINGS.

The contract was let in September for a large barn, but because of danger of frost, work could not be continued on this, and there is still insufficient accommodation for the live stock. There is also need of space for grain, and particularly for the variety samples.

DISTRIBUTION OF SAMPLES.

In the spring of 1912 there were 176 samples of potatoes sent out, besides a number of samples of caragana, maple and ash seed.

WATER SUPPLY AND SEWAGE DISPOSAL.

In the report of 1910 the water supply system and the sewage disposal system were described, and now, after 3½ years of continuous trial, their efficiency has been proven. The only mistake that was made was in the laying of the tile drain, leading from the septic tank to the cesspool, 7 feet deep instead of 9 feet. At 7 feet the pipe froze in the winter of 1911, and in July of that year was laid two feet deeper, since which time it has continued to do efficient service.

THE GROUNDS.

The work in the horticultural department was considerably extended in 1912, and in March of this year (1913) the services of an experienced gardener were secured.

EXPERIMENTAL STATION FOR NORTHWEST SASKATCHEWAN.

SCOTT, SASK.

CHARACTER OF SEASON.

The crop season of 1912 opened favourably. Work on the land commenced with harrowing on the 11th day of April, and on the 13th the varieties of spring wheat were sown. The soil was in good condition and, generally, the seed went into a favourable seed bed. After seeding, germination was uniform, and the grain crops had a good start. During May, the rainfall was moderate, amounting to 2.19 inches. In June, the precipitation was 2.19 inches. This low rainfall for June was associated with hot weather, which tended to hasten early varieties of grain towards maturity, at a sacrifice of yield. In July, a very heavy rainfall was recorded, totalling 6.16 inches. This amount of moisture, coming late in the season, benefited the slower-maturing grains to some extent. However, a second growth was so encouraged that the sample, in many cases, was marred by the immature grain appearing among the good. The length of the growing season made it possible for all crops to mature, September 15 being the date of the first damaging frost.

In this part of Saskatchewan, the crops in 1912 were good. On account of other unfavourable conditions, however, the year rates as a poor one from a grain-grower's standpoint.

The open season for fall work was short, the plough being stopped by October 31. Owing to the scarcity of labour (all of which was required for threshing opera-
tions) very little was accomplished with cropped land, by way of soil preparation, for the seeding of 1913. After the ground froze up, considerable good weather was experienced, which permitted threshing to be completed on the majority of farms throughout this district. Following on this fine period of early winter, January proved the coldest month of the year, resembling closely the same month in 1911. After twenty-four days of steady cold, the weather moderated and the balance of January, with February, was favourable winter weather. March was a month of good cold weather up to the 27th, when spring conditions obtained control. The snowfall for the winter of 1912 and 1913 was light. However, seeding prospects for 1913 (in view of the depth of frost, and the moisture in the soil from the two preceding rainy seasons) are bright.

WORK CARRIED ON DURING YEAR.

During the year, on the Experimental Station, the regular work in farm crops and horticulture was carried on. Very satisfactory results were obtained in the majority of tests. Results of special note were observed in crops of well-matured field peas, good yields of barley, and heavy returns with oats. Potatoes and turnips gave good yields of tubers and roots of excellent quality. Also, the flower border was very pleasing, in a beautiful, persistent bloom, which extended over several weeks of the season.

For horticulture, the area was enlarged, and considerable stock of a permanent nature was added; sample hedges, an arboretum and a new orchard were started. In November, a substantial and commodious implement shed was erected, near the barn. This building is 70 feet by 25 feet, with 10-foot studding at the back, and 12-foot studding in the front. The roof is a suitable design for spread and strength, and also permits of high doors. This roof has a peak formed by a 20-foot run and an 11-foot run of rafter; the short rafter is placed at the front. The shed is entered by three pairs of doors, 10 feet, 12 feet, and 16 feet in width. The centre pair slide on the inside of the wall, which allows all doorways to be open at the same time.

Two of the work mares, bred in 1911, reared foals in the season of 1912, which, from the first, have been thrifty and promise to make useful workers for the farm.

During the year, over 700 visitors were recorded at the Station. These received personal attention by some member of the staff. This visiting was confined largely to the summer months, when crops and growth of interest could be seen.

In the course of the year the Superintendent visited the Provincial Farm at the Agricultural College, Saskatoon, the Dominion Experimental Station, Rostherm, and the Provincial Winter Fair, held in Regina. He also attended the Saskatchewan Agricultural Societies' Convention, held at the university, Saskatoon.

WORK FOR THE PROVINCIAL EXTENSION DEPARTMENT.

H. C. Love, gardener at the Scott Station, officiated as judge of vegetables, grains, and grasses at the Summer Fair, Unity, July 31. At a ploughing match of the Wilkie Agricultural Society, on June 18, the Superintendent acted as judge. He also attended as judge of horses in July and August at the following fairs: Kindersley, Zealandia, Luseland, Brock, Outlook, Brownlee, and Hanley. On March 29, 1913, he addressed a meeting of farmers in the Cut Knife Hall, on Diversified Farming, and, following this, conducted the organization of the Cut Knife Agricultural Society.
SESSIONAL PAPER No. 16

METEOROLOGICAL RECORDS.

<table>
<thead>
<tr>
<th>Month</th>
<th>Maximum Date</th>
<th>Maximum Degrees</th>
<th>Minimum Date</th>
<th>Minimum Degrees</th>
<th>Mean Degrees</th>
<th>Precipitation Inches</th>
<th>Sunshine Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>29th</td>
<td>68.5</td>
<td>26th</td>
<td>12.2</td>
<td>46.65</td>
<td>Not any</td>
<td>235.9</td>
</tr>
<tr>
<td>May</td>
<td>15th</td>
<td>85.0</td>
<td>12th</td>
<td>24.7</td>
<td>49.41</td>
<td>2.46</td>
<td>253.5</td>
</tr>
<tr>
<td>June</td>
<td>22nd</td>
<td>92.5</td>
<td>4th</td>
<td>28.7</td>
<td>61.71</td>
<td>2.19</td>
<td>313.0</td>
</tr>
<tr>
<td>July</td>
<td>31st</td>
<td>88.0</td>
<td>14th</td>
<td>34.2</td>
<td>58.00</td>
<td>6.16</td>
<td>183.5</td>
</tr>
<tr>
<td>August</td>
<td>30th</td>
<td>81.0</td>
<td>30th</td>
<td>32.9</td>
<td>50.74</td>
<td>2.93</td>
<td>192.5</td>
</tr>
<tr>
<td>September</td>
<td>11th</td>
<td>74.5</td>
<td>28th</td>
<td>15.7</td>
<td>45.64</td>
<td>2.01</td>
<td>132.7</td>
</tr>
<tr>
<td>October</td>
<td>1st</td>
<td>75.0</td>
<td>31st</td>
<td>14.2</td>
<td>39.09</td>
<td>1.15</td>
<td>161.0</td>
</tr>
<tr>
<td>November</td>
<td>17th & 18th</td>
<td>47.0</td>
<td>20th</td>
<td>8.2</td>
<td>27.00</td>
<td>20.0</td>
<td>84.9</td>
</tr>
<tr>
<td>December</td>
<td>1st</td>
<td>44.1</td>
<td>5th</td>
<td>-19.8</td>
<td>16.86</td>
<td>27.0</td>
<td>91.3</td>
</tr>
</tbody>
</table>

1913,

<table>
<thead>
<tr>
<th>Month</th>
<th>Maximum Date</th>
<th>Maximum Degrees</th>
<th>Minimum Date</th>
<th>Minimum Degrees</th>
<th>Mean Degrees</th>
<th>Precipitation Inches</th>
<th>Sunshine Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>28th</td>
<td>38.8</td>
<td>20th</td>
<td>-48.8</td>
<td>-9.47</td>
<td>39.0</td>
<td>83.9</td>
</tr>
<tr>
<td>February</td>
<td>15th</td>
<td>58.8</td>
<td>3rd</td>
<td>-35.4</td>
<td>8.33</td>
<td>42.0</td>
<td>104.4</td>
</tr>
<tr>
<td>March</td>
<td>31st</td>
<td>46.0</td>
<td>1st</td>
<td>-35.6</td>
<td>11.08</td>
<td>23.0</td>
<td>157.4</td>
</tr>
</tbody>
</table>

EXPERIMENTAL STATION FOR CENTRAL ALBERTA.

LACOMBE, ALTA.

THE CLIMATIC CONDITIONS.

Seeding commenced on the 15th of April, which is an average for earliness. Germination was prompt, growth rapid, but maturity was delayed and harvest operations interfered with by an unusually heavy rainfall. The precipitation for the year totals 23.64 inches, and is the heaviest on record. There was little snow throughout the winter, there being good sleighing for a week in March.

METEOROLOGICAL REPORT.

<table>
<thead>
<tr>
<th>Months</th>
<th>Highest Temperature F.</th>
<th>Lowest Temperature F.</th>
<th>Total Precipitation</th>
<th>Total Hours Sunshine</th>
<th>Date Lowest Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>63.3</td>
<td>17.9</td>
<td>1.26</td>
<td>196.2</td>
<td>1912</td>
</tr>
<tr>
<td>May</td>
<td>82.7</td>
<td>29.5</td>
<td>2.92</td>
<td>232.9</td>
<td>1912</td>
</tr>
<tr>
<td>June</td>
<td>89.5</td>
<td>29.5</td>
<td>3.00</td>
<td>304.0</td>
<td>1912</td>
</tr>
<tr>
<td>July</td>
<td>73.5</td>
<td>30.4</td>
<td>5.29</td>
<td>177.1</td>
<td>1912</td>
</tr>
<tr>
<td>August</td>
<td>84.5</td>
<td>30.0</td>
<td>4.44</td>
<td>177.7</td>
<td>1912</td>
</tr>
<tr>
<td>September</td>
<td>75.8</td>
<td>29.8</td>
<td>2.17</td>
<td>175.2</td>
<td>1912</td>
</tr>
<tr>
<td>October</td>
<td>70.6</td>
<td>13.6</td>
<td>1.56</td>
<td>147.5</td>
<td>1912</td>
</tr>
<tr>
<td>November</td>
<td>58.8</td>
<td>2.9</td>
<td>8.33</td>
<td>88.5</td>
<td>1912</td>
</tr>
<tr>
<td>December</td>
<td>58.6</td>
<td>10.6</td>
<td>8.08</td>
<td>74.2</td>
<td>1912</td>
</tr>
</tbody>
</table>

1913,

<table>
<thead>
<tr>
<th>Months</th>
<th>Highest Temperature F.</th>
<th>Lowest Temperature F.</th>
<th>Total Precipitation</th>
<th>Total Hours Sunshine</th>
<th>Date Lowest Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>45.3</td>
<td>-35.5</td>
<td>1.33</td>
<td>63.3</td>
<td>1912</td>
</tr>
<tr>
<td>February</td>
<td>55.6</td>
<td>-28.6</td>
<td>1.15</td>
<td>103.2</td>
<td>1912</td>
</tr>
<tr>
<td>March</td>
<td>52.1</td>
<td>-23.6</td>
<td>1.81</td>
<td>164.1</td>
<td>1912</td>
</tr>
</tbody>
</table>

Total | 23.64 | 1903.9 |
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

VARIETIES OF CEREALES.

With the view of securing definite information as to the adaptability of varieties of grains for this climate, tests of various numbers of those considered most likely to succeed have been carried on during the past six seasons. From the results of these tests, the following varieties may safely be recommended as suitable for districts similar to this in soil, precipitation, altitude and temperature:

Spring Wheat.—Marquis, Prelude (when seed is available), and Huron.
Winter Wheat.—Kharkof and Alberta Red.
Oats.—Banner and Abundance.
Six-Rowed Barley.—O.A.C. No. 21 and Mensury.
Two-Rowed Barley.—Standwell and Hannchen.

CULTURAL WORK.

The cultural work has been carefully carried on during the year. Already sufficient data have been secured from these experiments, which were first systematically organized two years ago, to indicate that the information gained therefrom will be most valuable. The experiment begun for the purpose of securing information concerning the best method of seeding down to grass and clover is giving decided differences in yields of hay. The experiment, having in view the answer to the question, ‘What is the best method of summer-fallowing’ is showing big differences in yield of grain. Thus, this line of experiments, comparatively recently instituted as they are, and admitting that as yet it is too early to draw conclusions, is, nevertheless, showing sufficiently definite results to warrant the confidence that this work will be productive of much useful data.

ALFALFA.

This crop may be satisfactorily grown in Alberta. From experiments made at Lacombe, two things are indicated as necessary: (1st), a hardy strain, and (2nd), inoculation of the soil. The hardy strains here are Grimm and Turkestan. One hundred pound of inoculated soil may be obtained from the Lacombe Station for any district north of township twenty-four and west of the fourth meridian, freight prepaid to destination, for one dollar.

ROTATIONS.

A number of rotations have been under way for two and three years. The value of these rotations is being compared from two standpoints: (1st), economy of production, and (2nd), maintenance of soil fertility. The answer to the first may be secured from the cost data, an accurate account of which is kept, and the second will be answered by comparison of chemical analyses. The first analysis was made from soil before commencing the rotations, and subsequent analyses will be made from soils taken from time to time, after the rotations have been under way long enough to affect the chemical constituents of the soil. These figures will enable a farmer to determine the desirability of a rotation from the two important angles, cost of crops under any given system, and the life of his land under that system.
SESSIONAL PAPER No. 16

SUMMARY OF CROPS EXCLUSIVE OF UNIFORM TEST PLOTS.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Acres</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>12.753</td>
<td>330</td>
</tr>
<tr>
<td>Oats</td>
<td>88.407</td>
<td>5066</td>
</tr>
<tr>
<td>Barley</td>
<td>29.966</td>
<td>1278</td>
</tr>
<tr>
<td>Peas</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Potatoes</td>
<td>3.723</td>
<td>834</td>
</tr>
<tr>
<td>Roots</td>
<td>2.506</td>
<td>144</td>
</tr>
<tr>
<td>Timothy</td>
<td>55.0</td>
<td>65</td>
</tr>
<tr>
<td>Brome</td>
<td>19.0</td>
<td>65</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>5.425</td>
<td>9</td>
</tr>
<tr>
<td>Mixed Hay</td>
<td>17.586</td>
<td>28</td>
</tr>
<tr>
<td>Green Feed</td>
<td>25.0</td>
<td>35</td>
</tr>
</tbody>
</table>

SMALL FRUITS AND ORCHARD.

Small fruits are succeeding well. Black currants have this year produced large yields of excellent quality. Strawberries, if given protection by shelter belts or bluff, will yield well. The varieties leading, for a period of years, are Haverland, Senator Dunlap and Bederwood, while Warfield and Wm. Belt stood highest in 1912.

A large number of seedling apple trees, grown from seed of hardy stock, have been planted this year. The growing of trees produced from seed of hardy varieties of good quality affords the quickest solution to the problem of securing suitable stock for our climate.

ORNAMENTAL TREES AND SHRUBS.

With the idea of providing an object lesson in methods of grouping ornamental trees and shrubs, the grounds between the Superintendent's residence and the Calgary and Edmonton trail were laid out and have been partially planted, under the direction of the Dominion Horticultrist. The remaining work will be completed in the spring of 1913.

EXTENSION.

In March of 1912, the Honourable the Minister of Agriculture authorized the purchase of some three hundred and sixty acres additional land. This area was secured in order to give more scope for the horticultural and cereal work already under way, and to provide range and winter forage for live stock, which had not hitherto been kept. The district which the Station serves is well adapted for live stock, and there is a large field for work along that line.

BUILDINGS.

To provide accommodation for stock, a dairy barn, a beef barn and a storage barn, were erected, which will hold the fodder for, and house, about one hundred head of beef and dairy sows and young stock. The dairy barn is a one-storey structure with the aisle opening into a feed-room in the storage barn, with which it forms an L. Concrete foundations and floors have been provided, while care has been exercised to secure an abundance of light and good ventilation.
A dairy in which to manufacture butter and cheese from the milk produced on the farm has been built. This building has a deep well in connection, from which water for the stock is secured.

A six-room cottage for the herdsman has been built.

An ice-house of about eighty tons capacity was also erected.

HORSES.

Ten mares were purchased during the year. A few of these are registered; both Clydesdale and Percheron blood is represented among the pure-breds secured.

CATTLE.

Eighteen Aberdeen Angus were purchased. The herd now numbers twenty, and is headed by ‘Elm Park Ringleader 7th’ – 88884, a bull of good quality and one which has already proved himself as a sire.

Twelve head of Holstein-Friesian cattle were purchased. The herd is headed by ‘Royalton Korndyke Count’ (88884), a young bull of great promise and excellent pedigree.

The cattle on the farm have been increased from four to sixty-three during the past twelve months.

SWINE.

Four Yorkshire sows and one Berkshire sow represent the breeding stock of hogs at present.

POULTRY.

A start was made in March, 1913, toward establishing a poultry plant. Barred Rock, White Wyandotte, Buff Orpington and Rhode Island Red hens will be kept, and special attention given to the development of egg production. Toulouse geese, Pekin ducks and Bronze turkeys will also be kept, and small flocks have already been established.

FEEDING FOR BEEF.

Three groups of steers, evenly divided in regard to age, initial weight, quality and breed, have been fed during the winter of 1912-13. These cattle were of various ages, from almost two to over three years, and each group contained twelve head.

A fourth lot, consisting of thirteen head, was left over after having divided the three groups and making a uniform cut, and this lot was also fed. This group was handled in exactly the same manner as group number three, and the results of this part of the experiment need little consideration, except in that they show that profits can scarcely be hoped for, when cull steers are being fed. This inferior group sold at six cents per pound, straight weight, after having been on feed for the same length of time, and having consumed, approximately, the same quantity of feed as those better groups which brought about seven and one-half cents per pound, subject to a five per cent shrink, on the same date of delivery. The Swift Canadian Company were the purchasers of the cattle, shipping them to the coast. A number of young cattle included in this year’s feeding tests made very satisfactory gains, showing the advisability of securing cattle with good breeding and of good size for their age when purchasing feeders. A few of the younger cattle, of inferior breeding, made losses.

The manure produced by the steers on feed has been estimated to be sufficient to pay for the labour in connection with feeding them. The quantity produced by
the twelve steers fed inside amounted to 140,400 pounds. Experiments which have been conducted at the Lacombe Station with the view of ascertaining the value of barnyard manure, show that it is well worth $1 per ton, applied. The cost of applying manure from the yards to the fields is less than twenty-five cents per ton. It is therefore fair to credit the cattle with the manure produced by them at seventy-five cents per ton in the yard. Those who are not in a position to realize on the fertilizer value of manure, would necessarily charge labour against cattle they have undertaken to feed, at current wages.

The three groups were fed on exactly the same feeds, but were given different accommodation. Group No. 1 was fed in the barn in box stalls, which were kept well bedded and cleaned at regular intervals. They were not let out at all except once each month for the purpose of being weighed. They had water twice a day, though it was before them practically throughout the day. They were fed straw in their mangers as well as green feed and hay during the last three weeks of the feeding period, as were also the other two groups.

Group No. 2 was fed in the corral, having but a very limited run, being confined near the buildings. These steers had water before them at all times and were fed their roughage in the feeding racks about the corral. They got their straw at the straw stack. The water in the tank was kept free from ice by the use of a tank heater.

Group No. 3 was fed in the bluff toward the western boundary of the farm; they were at liberty to run free practically over a half section of land with access to the straw stacks and were fed green feed on the ground. They watered at a small lake through the ice.

The grain mixture used for the steers this year consisted of wheat, oats and barley mixed in the proportion of one-fifth wheat, two-fifths oats and two-fifths barley, finely ground. The chop was charged at one cent per pound, the green feed at $10 per ton, hay at $10 per ton, salt at cost, and the straw consumed per head has been estimated at one ton per steer, and charged at $2 per ton.

Group 1 required 261 hours 30 minutes labour to attend to them for 109 days; group number 2, 64 hours 15 minutes labour; and group number 3, 58 hours labour to attend to them for the same lengths of time.

No charge has been made against the group of cattle fed in the barns for shelter. The experiment considered only the economy of gain in each case. The charge for shelter, if made, would be about $4 per head.

Group number 1 made an average of 1.53 pounds daily gain, consumed 1,07 pounds of hay and green feed, 1,019 pounds of chop, and (estimated) 1 ton of straw. The feed cost: $5.39 for the hay and green feed, $10.19 for chop, and $2 per head for straw. The average profit per head on this group was $10.95.

Group number 2 made an average daily gain of 1.79 pounds; consumed 1,122 pounds of hay and green feed, 1,032 pounds of chop, and (estimated) 1 ton of straw. The feed cost $5.61 for hay and green feed, $10.52 for chop, and $2 per head for straw. The average profit per head on this group, after paying the above costs of feed, was $14.05.

Group number 3 made an average daily gain of 1.34 pounds; consumed 994 pounds of hay and green feed, 949 pounds of chop, and (estimated) 1 ton of straw. The average profit per head on this group was $10.15.

Uniformly satisfactory profits on the feeding of steers have now been made for years in succession. By feeding the grain to cattle, we have secured a market for grain as beef, at a much higher price than could have been secured for number one grades of grain sold through the elevator.

The grip of necessity is forcing in upon the mind of the grain grower a vivid realization of the need of directing his energies along more varied lines, and of keeping live stock to insure a satisfactory outlet for either high or low-grade grain.
EXPERIMENTAL STATION FOR SOUTHERN ALBERTA.

Lethbridge, Alta.

The season of 1912 resembled that of 1911 in that the rainfall during the early part was deficient, while during the latter part the usual amount was received.

The results of the crops on the Station during the summer of 1912 have been interesting although, in many instances, somewhat disappointing. The season opened up in a most propitious manner. Work on the land began on March 28 and the first seeding was done on April 1, although it would have been possible to have begun a little earlier. The soil was left moist from the fall of 1911 and the land was in excellent shape to work in the spring, consequently, the grain crops, in fact all crops, were put in under exceedingly favourable conditions where land had been prepared the summer or fall previous. However, the rainfall during April, May and until the end of June, in the immediate vicinity of Lethbridge, was extremely light. Although grain sown on summer-fallowed land and on very early spring ploughing, where the land was cultivated immediately afterwards, came up well because it was possible to sow the seed in moist soil, germination on land that had not been so treated was not good.

On account of the previous season closing up so early in the fall of 1911 it was impossible for the farmers in southern Alberta to do much fall ploughing, the result being that a great deal of grain was 'stubbed in' this past spring, and most of this, in the Lethbridge district, germinated poorly.

The rainfall was very light, indeed, until the last few days in June; from then on during July, August and September, it was above normal. On account of this light rainfall during the first part of the growing season, all early-sown crops and especially winter wheat suffered acutely. Crops that looked extremely promising early in the season gave but low yields. Late-sown crops, on the other hand, did much better, providing they ripened before the frost.

The yields of all the crops on the non-irrigated portion of the Station were rather low, with the exception of peas and such late-growing crops as turnips, potatoes, etc.

On the irrigated portion of the Station, however, where water was applied in June, and in some cases even in May, the yields were very much more satisfactory. In the case of hay, however, especially alfalfa, it was found that the rainy season was rather difficult to operate in as it was hard to get the hay cured properly. Alfalfa usually makes its most rapid growth when supplied with the necessary moisture during the hot weather of J uly and August, but this year, on account of the many showers during this period, the weather was not as hot as it ordinarily is, so that alfalfa fields did not produce quite as much as they usually do.

CUT WORMS.

Considerable damage from these pests was again experienced and, unfortunately, the poisoned-bran treatment was not particularly effective. When ploughing early in the spring, specimens were occasionally noticed, but the first feeding by them that was observed was on May 6 which was between two and three weeks earlier than they appeared to show activity in 1911.

GENERAL OPERATIONS.

As usual, investigations were carried out on both the irrigated and non-irrigated land. The water used for irrigation was measured, as far as it was practical to do so.
SESSIONAL PAPER No. 16

A large number of varieties of oats, barley, peas and spring and winter wheats were tested. Experiments in rates of seed, and also dates of seeding with wheat, oats and barley were carried out. Flax was also put in at different dates, and our results would indicate that it would be profitable for farmers to sow this crop from one to three weeks earlier than they usually do. Tests were made with different varieties of turnips, mangels, carrots, sugar beets and corn. With forage plants, over 100 plots of grasses and mixtures of grasses and clovers were sown on both the irrigated and dry land to endeavour to obtain some data in regard to the best pasture grass or mixture of grasses.

In the horticultural department the usual number of varieties of vegetables and flowers were tested. The strawberries were injured by the frost of June 6, and the crop was a practical failure, from a commercial standpoint. Raspberries and currants yielded well; of the latter, the red and white bore quite satisfactorily, but the crop of fruit on the blacks was rather light. An apple, the first since the farm was started, was produced on a tree of Florence crab.

CULTURAL EXPERIMENTS.

The various experiments in cultural methods included under 'Prairie Breaking,' 'Depth of Ploughing,' 'Summer-fallow Treatment,' 'Stubble Treatment,' 'Seeding to Grass and Clover,' 'Breaking Sod from Cultivated Grasses,' 'Applying Barnyard Manure,' 'Green Manuring,' 'Seed Bed Preparation,' 'Soil Packers,' 'Depth of Seeding,' 'Commercial Fertilizer,' and 'Underdraining' were carried along successfully. Careful examination of the results reveals the fact that there is a much greater uniformity in the yields than might be expected, considering the diversity of treatment given the different plots in the various experiments, as to methods of cultivation. It is rather difficult to suggest a satisfactory explanation for this, unless it can be attributed to the rather unusual climatic conditions prevailing during the season, for the crops on all the plots began to show the lack of sufficient moisture soon after they were well up. As indicated in the table at the end of this report, the precipitation during April and May was very light, and during June only 0.71 inches fell up to the 27th of the month. This was not sufficient to maintain maximum growth even on land in which a good supply of moisture had been stored during the previous season by careful cultivation with this special object in view, consequently, the crops on all the plots suffered acutely up to the time the rains came. With the oats, a second growth started, which in most cases ripened, so that they yielded relatively better than did the wheat and barley.

The experiment in depth of seeding was interesting in that it seemed to throw some light on a rather controversial question, which is, whether it is advisable to sow grain deep or shallow in the early spring. As would be expected, the shallow-seeded grain came up first, but beyond this it did not seem to have any advantage over that sown three or four inches deep. It is often maintained, when the seed is planted deep, that an added strain is put on the plant by having to establish a secondary set of roots near the surface. So far as this year's results are concerned, there was nothing to indicate that such was the case. Under the conditions prevailing here, where we are subject to so much windy weather during April which dries the land out and drifts the surface soil, it is important to seed deep to obtain an even stand, if we can do so without detrimental results.

ROTATIONS.

In one or two cases, extra large yields were obtained from fields in the regular rotations. The field of turnips on the dry land rotation 'T,' sown on summer-fallow, yielded 25 tons per acre, giving a net profit, with turnips valued at $3 per
GEORGE V., A. 1914

102 EXPERIMENTAL FARMS

EXPERIMENTAL FARMS

4

The Grimm alfalfa, planted in rows in this rotation, yielded 135 pounds of cleaned seed per acre, which, valued at 40 cents per pound, gives a net profit of $46.39 per acre. In Rotation 'U,' which is on irrigated land, wheat, sown after roots, yielded 59 bushels per acre and gave a net profit per acre of $36.43, with wheat valued at 80 cents per bushel. In this same rotation, potatoes, planted on alfalfa sod freshly broken, gave a yield of 757 bushels per acre, which made a net profit of $307.38, with potatoes valued at 50 cents per bushel.

STOCK.

No breeding stock has been kept on the Station up to this time, but 250 head of yearling sheep and 50 lambs were fed during the winter, also 12 head of steers. Alfalfa was the roughage used in every case, but the sheep were divided into six lots. One lot each was fed alfalfa alone, alfalfa and grain, alfalfa and roots, alfalfa and screenings; two lots were fed alfalfa, grain and roots.

MEETINGS AND CONVENTIONS ATTENDED.

During the past year the Superintendent spoke at a number of Farmers' Institute meetings. He also attended the Western Canada Irrigation Convention, at Kelowna, B.C., in August, the International Irrigation Congress at Salt Lake, Utah, in October, the International Dry-Farming Congress at Lethbridge, where he acted as Chairman of the Jury of Awards. At the Provincial Seed Fair at Claresholm, in February, he gave an address.

EXCURSIONS TO THE FARM, AND VISITORS.

On the 22nd of July, a special train, under the auspices of the Provincial Government, was run from Medicine Hat to the Station, and on the 23rd another train was run from Calgary. These excursions are well patronized and seem to be appreciated by the farmers. All through the year, farmers from this part of the province came to visit the farm and to consult in regard to different problems that confront them. The number of visitors to the farm during the year that were actually counted was 2,400. No doubt many more than this came, as it was impossible to count them all.

DISTRIBUTION OF SAMPLES.

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-pound bags of potatoes sent out.</td>
<td>280</td>
</tr>
<tr>
<td>Packets of cuttings (willow and poplar).</td>
<td>60</td>
</tr>
<tr>
<td>5-pound bags of winter wheat.</td>
<td>17</td>
</tr>
<tr>
<td>150-pound bags of inoculated alfalfa soil.</td>
<td>72</td>
</tr>
</tbody>
</table>
REPORT OF THE DIRECTOR

SESSIONAL PAPER No. 16

METEOROLOGICAL REPORT.

<table>
<thead>
<tr>
<th>Months</th>
<th>Highest Temperature</th>
<th>Lowest Temperature</th>
<th>Total Precipitation</th>
<th>Bright Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>8</td>
<td>6</td>
<td>0.20</td>
<td>203.9</td>
</tr>
<tr>
<td>May</td>
<td>15</td>
<td>1</td>
<td>0.66</td>
<td>250.4</td>
</tr>
<tr>
<td>June</td>
<td>26</td>
<td>6</td>
<td>1.73</td>
<td>322.7</td>
</tr>
<tr>
<td>July</td>
<td>31</td>
<td>14</td>
<td>2.18</td>
<td>296.8</td>
</tr>
<tr>
<td>August</td>
<td>23</td>
<td>30</td>
<td>1.11</td>
<td>240.1</td>
</tr>
<tr>
<td>September</td>
<td>18</td>
<td>28</td>
<td>2.61</td>
<td>169.3</td>
</tr>
<tr>
<td>October</td>
<td>1</td>
<td>11</td>
<td>1.07</td>
<td>172.9</td>
</tr>
<tr>
<td>November</td>
<td>24</td>
<td>11</td>
<td>0.99</td>
<td>129.3</td>
</tr>
<tr>
<td>December</td>
<td>4</td>
<td>2</td>
<td>0.23</td>
<td>102.3</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>28</td>
<td>20</td>
<td>0.80</td>
<td>31.9</td>
</tr>
<tr>
<td>February</td>
<td>16</td>
<td>-30</td>
<td>0.30</td>
<td>102.1</td>
</tr>
<tr>
<td>March</td>
<td>8</td>
<td>-23</td>
<td>0.42</td>
<td>157.3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>13.20</td>
<td>228.8</td>
</tr>
</tbody>
</table>

In the above, ten inches of snow is computed as one inch of precipitation.

EXPERIMENTAL FARM FOR BRITISH COLUMBIA.

Agassiz, B.C.

Since climatic conditions affect farming operations, there is given below a record of weather data taken at the Agassiz Farm during the year. In two respects the past year was phenomenal, there being a very wet, cloudy summer and a very steady winter, during which there were forty-eight consecutive days with snow on the ground. The month of April was somewhat wet but reasonably warm; May was a fine month, and gave an opportunity to finish seeding and planting operations. The first half of June was excellent weather, but, from that time on, with the exception of a short period in September, the weather was unusually dark and rainy.

The grain harvest suffered most of all the operations of the year. The winter was not as severe as in some previous years, the lowest temperature being four degrees above zero, on the 19th of January; 6 feet, 11.7 inches of snow fell, and most of it remained throughout the winter.
All things being considered, the farming operations of the year were most successful. The following crops were grown for the support of the live stock on the Farm:

- Hay: 116 tons, 260 lb.
- Silage corn: 240 = 1,185
- Silage clover: 29 = 1,700
- Mangels: 146 = 1,650
- Turnips: 18 = 1,750
- Carrots: 2 = 1,300
- Beets: 2 = 800
- Potatoes: 22 tons.
- Mixed Grains: 1,152 bushels
- Barley: 26 tons.
- Peas: 24
- Wheat: 19

Five more acres of land were brought under cultivation and were seeded down to clover. In addition, four acres of land were slashed and burnt during the summer and winter, as other work would permit, and from this a large quantity of wood was obtained for fuel.

About one hundred rods of fencing were erected, and there is still a considerable amount in the course of construction. The fall being wet and the spring late, the usual amount of fall and early spring cultivating could not be done. During the winter, the teams were kept busy hauling manure from the yards and hauling gravel for the upkeep and improvement of the farm roads and also for some of the building operations. Over two hundred yards of this material were hauled, most of it coming from the river, about one and one-half miles distant.

The horses on the Farm are the same as last year. These are kept for working purposes only, although data are being collected as to their food consumption and the time spent tending them, with a view to obtaining the actual cost of maintaining teams in this district.

It has been a very successful year with cattle on the Farm, and there has been much improvement in the appearance of the herd since the last report. In all, there are forty-eight females and two males, all of the Holstein-Friesian breed (the greater proportion of the females being grades). Of the ones which were received from

<table>
<thead>
<tr>
<th>Month</th>
<th>Maximum Temperature</th>
<th>Minimum Temperature</th>
<th>Mean Temp.</th>
<th>Total Precipitation</th>
<th>Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date</td>
<td>Deg.</td>
<td>Date</td>
<td>Deg.</td>
<td>Deg.</td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>12</td>
<td>64</td>
<td>3</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>May</td>
<td>14</td>
<td>92</td>
<td>2 & 6</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>June</td>
<td>23</td>
<td>89</td>
<td>3</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>July</td>
<td>18</td>
<td>89</td>
<td>6</td>
<td>43</td>
<td>63</td>
</tr>
<tr>
<td>August</td>
<td>13</td>
<td>85</td>
<td>28</td>
<td>40</td>
<td>69</td>
</tr>
<tr>
<td>September</td>
<td>17</td>
<td>81</td>
<td>3</td>
<td>36</td>
<td>56</td>
</tr>
<tr>
<td>October</td>
<td>12</td>
<td>64</td>
<td>20, 23 & 30</td>
<td>33</td>
<td>47</td>
</tr>
<tr>
<td>November</td>
<td>1 & 7</td>
<td>55</td>
<td>4</td>
<td>31</td>
<td>42</td>
</tr>
<tr>
<td>December</td>
<td>5, 11 & 12</td>
<td>49</td>
<td>10</td>
<td>25</td>
<td>39</td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>2</td>
<td>47</td>
<td>19</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>February</td>
<td>22</td>
<td>44</td>
<td>4</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>March</td>
<td>8</td>
<td>59</td>
<td>19</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table shows the precipitation for each month.
Report of the Director

Ontario last year, to date, only two have been sold as being unprofitable, and the rest have increased in apparent value at least sixty-five per cent. Three pure-bred cows and one pure-bred bull were purchased during the summer. The herd is just now getting into shape so as to be fit to do experimental work upon, and since January, 1913, a certain amount of work has been carried on with regard to the cost of handling dairy cattle and determining the value of certain foods. Very careful data are also being kept of all operations in connection with the herd, so as to have a valuable foundation for future work.

It is gratifying to be able to report a substantial increase in the number of hogs kept on the Farm, nearly all the increase being Farm-bred. There has been a very great demand during the year for breeding stock, particularly the Yorkshire breed, and the supply has been some seventy per cent short. The demand has come chiefly from the newer districts.

The Agassiz herd is still headed by Summerhill Jerry 21st, and there are on hand eleven brood sows, ranging in age from nine months to four years.

Although this branch has been somewhat handicapped by lack of adequate accommodation, there have been but few losses during the year, and the hog branch has proved one of the most profitable on the Farm. Some experimental work was carried on, and valuable data obtained.

With regard to the sheep, the experience of the past year has proved that they are a valuable adjunct even to a dairy farm, and although some of the oldest ewes were sold, the flock increased considerably during the year. The Horned Dorset breed is kept exclusively, and the demand for this breed has increased three hundred per cent in two years. They seem to be well adapted to the damp climate and the lowlands on which they are kept, and are proving to be prolific breeders and very easy keepers.

The Poultry branch has been enlarged considerably. The breeds kept at present are Barred Plymouth Rocks, Single Comb White Leghorns, and Single Comb Rhode Island Reds. Last year the incubator capacity was not large enough to allow the raising of sufficient stock to permit thorough culling in the fall, and there was not, during the winter, the quantity of poultry that had been expected in the previous spring. During the summer, one new laying-house and a small incubator cellars were built, and, at present there is a large number of eggs set for early chicks. It is hoped this year to increase the flock very materially and to get started early in the fall with some experimental work. Trap nesting was carried on with the Barred Rocks and Leghorns, with fairly gratifying results.

With regard to bees, the past season has been more successful than the previous one, and a considerable amount of information has been gathered regarding their care and management under conditions such as obtain in the lower Fraser valley. Commencing the year, there were eleven colonies, but one died early in the season, as they were all quite low in stores. During the summer, swarming was prevented as much as possible, and but two were hived. One of these produced honey freely. In the autumn, there were twelve hives and all had from twenty-five to forty-five pounds of stores, and there was some three hundred pounds of honey to sell. During the winter, two hives were lost probably from too much moisture, there being a backward tilt to the hives. At present, there are remaining ten hives. These are in excellent condition, there being plenty of stores and the queens laying, although spring conditions have not been good. They were wintered outdoors, being covered only with some roofing felt to protect them from high winds and rain. The fronts to the south were left open. All work in connection with the bees, with the exception of extracting some honey, was done by the Superintendent, at odd times. The twelve hives took about eight hours work for the twelve months.
As there is not yet a permanent location whereon to run the field and crop experiments, these have been carried on in the same fields with the regular rotation. This year there were grown:

- Nine varieties of mangels.
- Six varieties of sugar beets.
- Five varieties of field carrots.
- Ten varieties of turnips.
- Eight varieties of silage corn.
- Fourteen varieties of oats.
- Twelve varieties of wheat.
- Thirteen varieties of peas.
- Fifteen varieties of barley.
- Thirty-one varieties of potatoes.

A few fertilizer experiments were also carried on with the root crops, but this was only by way of an introduction to future work in this respect, which it is planned to continue this coming year.

The garden this year was reasonably successful, considering the amount of labour expended upon it, the chief work being variety testing of many kinds of vegetables, annual flowers and bulbs. The greatest drawback to vegetable growing was a bad attack of Root Maggot; this attacked all members of the Brassica or turnip family. The perennial flowers were laid out in a long border under the direction of the Dominion Horticulturist, and a border nine hundred feet long and twelve feet wide was prepared and planted. With this it is hoped to make a reasonable showing this coming season. There is a small home orchard cultivated and ready to plant with a considerable number of varieties of apples, pears, plums, cherries and small fruits. On the lawns and shrubbery, there has been considerable time and labour spent, greatly to the improvement of the place, but there is still much to do. The moles are the greatest drawback to the lawns at Agassiz. Several methods of combating these were tried this year, but to date, no treatment can be recommended. Experiments, however, are being continued, and there is being tried a new style of trap, so we hope to report progress in this line soon.

Some nine hundred applications for free samples of potatoes were received at Agassiz this year, but, owing to lack of stock, not more than two hundred and forty-three could be filled. Results of which are tabulated below:

REPORTED ON.

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. Sent Out</th>
<th>Reports Received</th>
<th>Percentage</th>
<th>Diseased</th>
<th>Clean</th>
<th>General Opinion of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Rose</td>
<td>43</td>
<td>23</td>
<td>53</td>
<td>5</td>
<td>18</td>
<td>Fair</td>
</tr>
<tr>
<td>Early Potentate</td>
<td>15</td>
<td>10</td>
<td>67</td>
<td>2</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>Money Maker</td>
<td>13</td>
<td>3</td>
<td>23</td>
<td></td>
<td>3</td>
<td>Poor</td>
</tr>
<tr>
<td>Early Envy</td>
<td>20</td>
<td>14</td>
<td>70</td>
<td>1</td>
<td>13</td>
<td>Fair</td>
</tr>
<tr>
<td>Late Puritan</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Irish Cobbler</td>
<td>14</td>
<td>5</td>
<td>36</td>
<td>1</td>
<td>4</td>
<td>Good</td>
</tr>
<tr>
<td>American Wonder</td>
<td>13</td>
<td>10</td>
<td>77</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Dalmeny Beauty</td>
<td>18</td>
<td>9</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>Poor</td>
</tr>
<tr>
<td>Rochester Rose</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Seedling No. 2</td>
<td>38</td>
<td>17</td>
<td>44</td>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Empire State</td>
<td>12</td>
<td>7</td>
<td>58</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Morgan Seedling</td>
<td>20</td>
<td>12</td>
<td>60</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Hard to Beat</td>
<td>6</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>Poor</td>
</tr>
<tr>
<td>Everett</td>
<td>11</td>
<td>4</td>
<td>36</td>
<td>4</td>
<td>4</td>
<td>Fair</td>
</tr>
<tr>
<td>Factor</td>
<td>3</td>
<td>1</td>
<td>33</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dooley</td>
<td>9</td>
<td>4</td>
<td>44</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>243</td>
<td>124</td>
<td>51%</td>
<td>28</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>
SESSIONAL PAPER No. 16

During the year the water system has been completed, and this has given excellent satisfaction. Although the main is small, when worked within its capacity it gives one hundred pounds of pressure. All the Farm buildings were painted, and the Superintendent's house and Foreman's cottage were repaired; an ice-house was also built. Late in the fall, the erection of a boarding-house was begun; this, at the time of writing, is not completed. But, when finished, it will be one of the Farm's most valuable assets. It will hold from ten to twenty men, and is being well equipped.

Chief among the implements purchased this year is a corn-planter and also a corn-binder, both of which gave excellent satisfaction; the planter, in particular, paying more than one-half the purchase price in saved labour this season.
Dominion of Canada
Department of Agriculture
Experimental Farms

REPORT

FROM THE

DIVISION OF FIELD HUSBANDRY

For the Year ending March 31, 1913

PREPARED BY

Assistant Dominion Field Husbandman, Central Farm, Ottawa - O. C. White, B.S.A.
Superintendent Experimental Station, Charlottetown, P.E.I. - J. A. Clark, B.S.A.
Superintendent Experimental Farm, Napan, N.S. - R. Robertson.
Superintendent Experimental Station, Cap Rouge, Que. - G. A. Langelier.
Superintendent Experimental Farm, Brandon, Man. - W. C. McKillican, B.S.A.
Superintendent Experimental Farm, Indian Head, Sask. - Angus Mackay.
Superintendent Experimental Station, Rosthern, Sask. - Wm. A. Munro, B.A., B.S.A.
Superintendent Experimental Station, Scott, Sask. - R. E. Everest, B.S.A.
Superintendent Experimental Station, Lacombe, Alta. - G. H. Hutton, B.S.A.
Superintendent Experimental Station, Lethbridge, Alta. - W. H. Fairfield, M.S.
REPORT
FROM THE
DIVISION OF FIELD HUSBANDRY.

CENTRAL EXPERIMENTAL FARM, OTTAWA,
March 31, 1913.

J. H. Grisdale, Esq., B.Agr.,
Director of Experimental Farms,
Ottawa.

Sir,—I have the honour to submit herewith the accompanying account of the work conducted by the Division of Field Husbandry for the year 1912.

In addition to my own report of the work carried on at the Central Farm, there will be found reports from J. A. Clark, Superintendent Experimental Station, Charlottetown, P.E.I.; R. Robertson, Superintendent Experimental Farm, Nappan, N.S.; G. A. Langelier, Superintendent Experimental Station, Cap Rouge, Que.; W. C. McKillican, Superintendent Experimental Farm, Brandon, Man.; Angus Mackay, Superintendent Experimental Farm, Indian Head, Sask.; Wm. A. Munro, Superintendent Experimental Station, Rosthern, Sask.; R. E. Everest, Superintendent Experimental Station, Scott, Sask.; W. H. Fairfield, Superintendent Experimental Station, Lethbridge, Alta., and G. H. Hutton, Superintendent Experimental Station, Lacombe, Alta.

The experiments and investigations now under way are being conducted along very practical lines, and, as relating to all Experimental Farms and Stations, briefly include:—

1. Investigation of the relative merits of different crop rotations, including special rotation for 'dry farming' conditions.
2. Studies in the methods of culture of, and curing, field crops. A series of cultural experiments adapted to prairie conditions has now been under way two years on each of the six prairie Farms. These tests involve approximately five hundred plots on each Farm, and include twelve different lines of investigation.
3. Determination of the costs of growing field crops under regular farm conditions.
4. Experiments to show the value of underdrainage and irrigation.
5. Studies of the influence of size and character of cultural implements on cost of crop production.
6. Comparisons (in a limited way) of various grains and forage crops as food producers.

In these reports particular importance is attached to the rotation tests which are being carried on at all Farms and Stations with a view to determining how best to
grow a variety of crops suitable for live stock purposes. A comprehensive set of experiments in soil cultivation, inaugurated in 1911, is reported upon for the first time from some of the prairie Farms. While the data this year do not afford any conclusive evidence, we believe that they will be followed with interest and that they will ultimately supply us with much needed information along the lines taken up.

I have the honour to be, sir,
Your obedient servant,

O. C. WHITE,
Assistant Dominion Field Husbandman.
CENTRAL EXPERIMENTAL FARM, OTTAWA.

REPORT OF THE ASSISTANT DOMINION FIELD HUSBANDMAN—
O. C. WHITE, B.S.A.

WEATHER CONDITIONS AND CROP NOTES, 1912.

The crop year of 1912 will be remembered as one of the rainiest on record. The month of April was slightly cooler than the average, but cultivation was, nevertheless, commenced in fairly good season, the first grain being sown on April 26. On April 30 the last spring frost was registered. May was exceedingly wet, with the result that seeding operations generally were greatly prolonged, and the seed bed in many cases could not be well prepared. June was just moderate in temperature, with no very hot days, and usually quite cool nights. The early part of the month was showery, the latter part quite dry. The only really hot weather during the whole growing season was between July 3 and July 10. In August the weather turned cool again, and rains were so frequent that harvesting was much delayed, and the quality of the seed in general was poor. Here, where the land is well underdrained, corn made a very good growth, but throughout the district many failures were reported. September continued cool and showery, but no frosts occurred until the 30th. October was cool but fine, and roots were harvested in good condition. Winter set in on November 25.

Some Weather Observations taken at Central Experimental Farm, Ottawa, 1912.

<table>
<thead>
<tr>
<th>Month</th>
<th>Highest</th>
<th>Lowest</th>
<th>Mean</th>
<th>Rainfall</th>
<th>Snowfall</th>
<th>Total</th>
<th>Heaviest in 24 hours</th>
<th>Total sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
<td>Inches</td>
<td>Inches</td>
<td>Inches</td>
<td>Inches</td>
<td></td>
<td>Hours</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>36.4</td>
<td>26.2</td>
<td>22.24</td>
<td>0.11</td>
<td>25.00</td>
<td>2.61</td>
<td>0.95</td>
<td>119.1</td>
</tr>
<tr>
<td>February</td>
<td>35.4</td>
<td>24.0</td>
<td>21.94</td>
<td>0.07</td>
<td>29.75</td>
<td>3.04</td>
<td>1.30</td>
<td>141.2</td>
</tr>
<tr>
<td>March</td>
<td>41.0</td>
<td>17.0</td>
<td>23.54</td>
<td>0.02</td>
<td>14.00</td>
<td>1.42</td>
<td>0.75</td>
<td>211.0</td>
</tr>
<tr>
<td>April</td>
<td>57.0</td>
<td>7.0</td>
<td>29.54</td>
<td>2.60</td>
<td>2.00</td>
<td>2.80</td>
<td>0.64</td>
<td>234.0</td>
</tr>
<tr>
<td>May</td>
<td>82.0</td>
<td>33.0</td>
<td>52.58</td>
<td>5.15</td>
<td>5.15</td>
<td>5.15</td>
<td>1.44</td>
<td>304.3</td>
</tr>
<tr>
<td>June</td>
<td>88.4</td>
<td>39.4</td>
<td>58.12</td>
<td>5.15</td>
<td>5.15</td>
<td>5.15</td>
<td>1.44</td>
<td>308.6</td>
</tr>
<tr>
<td>July</td>
<td>59.8</td>
<td>45.6</td>
<td>47.72</td>
<td>3.89</td>
<td>3.89</td>
<td>3.89</td>
<td>0.83</td>
<td>312.5</td>
</tr>
<tr>
<td>August</td>
<td>81.5</td>
<td>40.4</td>
<td>60.94</td>
<td>4.94</td>
<td>4.94</td>
<td>4.94</td>
<td>1.18</td>
<td>178.8</td>
</tr>
<tr>
<td>September</td>
<td>80.0</td>
<td>28.5</td>
<td>54.28</td>
<td>4.01</td>
<td>4.01</td>
<td>4.01</td>
<td>0.62</td>
<td>102.1</td>
</tr>
<tr>
<td>October</td>
<td>75.0</td>
<td>26.2</td>
<td>45.92</td>
<td>2.47</td>
<td>2.47</td>
<td>2.47</td>
<td>0.66</td>
<td>173.0</td>
</tr>
<tr>
<td>November</td>
<td>58.4</td>
<td>5.2</td>
<td>31.88</td>
<td>2.59</td>
<td>2.59</td>
<td>2.59</td>
<td>0.62</td>
<td>83.8</td>
</tr>
<tr>
<td>December</td>
<td>50.0</td>
<td>4.8</td>
<td>27.42</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>0.81</td>
<td>66.2</td>
</tr>
</tbody>
</table>

Total: 238.37 103.75 38.74 2134.6

CROP RETURNS—200-ACRE FARM.

Based on the valuations used in the rotation experiments (see page 117), there are given below the costs of producing the various crops grown on the "200-acre Farm" (so called), and the profits therefrom, during the past year.

16—8
<table>
<thead>
<tr>
<th>Crop</th>
<th>Area</th>
<th>Total Cost</th>
<th>Average cost per acre</th>
<th>Total Value</th>
<th>Average yield</th>
<th>Total Profit</th>
<th>Average profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. (including cost of straw)</td>
<td>56.22</td>
<td>837.71</td>
<td>$8.35</td>
<td>1.173.82</td>
<td>24.46</td>
<td>8.00</td>
<td>$0.94</td>
</tr>
<tr>
<td>Oats (including cost of straw)</td>
<td>48.50</td>
<td>516.23</td>
<td>$10.62</td>
<td>1.156.830</td>
<td>22.38</td>
<td>11.38</td>
<td>$0.96</td>
</tr>
<tr>
<td>Corn</td>
<td>31.30</td>
<td>147.710</td>
<td>$4.72</td>
<td>516.52</td>
<td>1.94</td>
<td>5.26</td>
<td>$0.95</td>
</tr>
<tr>
<td>Potatoes</td>
<td>15.00</td>
<td>60.28</td>
<td>$4.02</td>
<td>1.016.800</td>
<td>4.67</td>
<td>2.78</td>
<td>$0.91</td>
</tr>
<tr>
<td>Green feed (Tes and cots)</td>
<td>15.00</td>
<td>357.98</td>
<td>$2.38</td>
<td>547.935</td>
<td>1.06</td>
<td>5.16</td>
<td>$0.94</td>
</tr>
<tr>
<td>Pig pasture</td>
<td>3.15</td>
<td>39.34</td>
<td>$12.60</td>
<td>39.60</td>
<td>0.00</td>
<td>0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Total</td>
<td>175.17</td>
<td>3,571.30</td>
<td>$20.06</td>
<td>5,925.53</td>
<td>10.97</td>
<td>2.42</td>
<td>$0.94</td>
</tr>
</tbody>
</table>

Note: A few acres used for cattle pasture and for cutting green and feeding in field where it could not easily be weighed, were calculated on the basis of the average yield of hay for the remainder of the farm.
Owing to the fact that the charges for both horse and manual labour are higher than in previous years, with no corresponding increase in the valuation of the products, the net profits, as given above, are not so great as last year. A comparison of the value of the returns for the past fourteen years shows, however, very appreciable increases up to the present, and indicates that our system of cultivation and cropping is gradually but surely building up the fertility of our soil. Using the same prices throughout, the value of the products of the '200-acre Farm,' per acre, were: $14.59 in 1899, $21.30 in 1900, $22.98 in 1901, $24.18 in 1902, $21.61 in 1903, $24.50 in 1904, $29.30 in 1905, $23.23 in 1906, $24.45 in 1907, $23.57 in 1908, $25.51 in 1909, $29.58 in 1910, $27.38 in 1911 and $31.63 in 1912.

ROTATION OF CROPS.

The most important work at present in progress at the Central Experimental Farm, is the testing of rotations considered suitable for live stock farming.

It will perhaps not be out of place to repeat what has been said in previous reports in connection with this experiment.

The true farmer will ever have two objects in view when managing his farm: To so manage as to increase gradually but surely the margin of profit, and, at the same time, to render his farm more productive. Many factors must necessarily unite to produce such desirable results, but of one feature we may be certain, there will be followed on such a farmer's farm a regular rotation of crops, for no other single practice in farm management can compare with this in importance. The rotation or rotations adopted, will, of course, depend upon the line of farming followed, and to some extent upon the character of the soil and the physical peculiarities of the farm as a unit, but a rotation there will be.

Crop rotation means a certain succession of crops which regularly repeats itself each time the course is run. It really means, further, that the crops follow each other in such order as to insure each having supplies of plant food of such a character as to aid in securing good returns from each particular crop.

Hence, in arranging a rotation, it is very necessary to have some knowledge of the food requirements of different crops and to know something of the values of the residues from the different crops included. Certain forage crops, such as corn, roots, potatoes and hay, require an immense amount of food for stems, leaf and root production—that is an abundance of nitrates as is found in clover or other sod turned down, and in well-manured lands. Other crops, such as cereals, can get along best with a lighter supply of nitrates, but need more phosphates, hence do well after some forage crop has taken up the superabundance of free nitrates found after sod. It is evident, therefore, that a good rotation will include (1) meadow or pasture, (2) roots or corn, and (3) some cereal crop.

Various combinations of these three classes are possible, and the natural aim of experimental work will be to determine (1) the comparative values of rotations as soil improvers, and (2) their relative suitability for different lines of farming.'

During the year a re-arrangement of the rotations in this experiment was made. Owing to their changed location and to the fact that it was not possible to have the regular crops grown in all cases, the results are not altogether comparable, and will not be included in averages that will be compiled in later years.

The test now includes five rotations, A, B, C, D and R, most of which may be found in more or less common use in the better farming districts of Eastern Canada where live stock is kept.

16—81
They are permanently located, it is hoped, and are being studied, keeping in mind the following points of merit:

1. Their ability to supply different crops in the proper proportions for certain needs.
2. Their power to keep weeds in check.
3. Their comparative profits.
4. Their effect on the fertility of the soil as indicated by an increase or decrease of crop returns from one period of years to another.

Rotation 'A'.

First year.—Corn. Manure applied in spring at rate of 15 tons per acre. Shallow ploughed shortly before corn planting time, turning under both clover and manure. After corn is harvested land is shallow ploughed or cultivated.

Second year.—Grain. Seeded down with 8 pounds red clover, 2 pounds alsike and 10 pounds timothy per acre.

Third year.—Clover hay. Two crops expected. Top dressed in fall with manure at rate of 15 tons per acre.

Fourth year.—Timothy hay. Field ploughed in August, top worked and ribbed up in October.

Fifth year.—Grain. Seeded down with 10 pounds red clover, which is allowed to grow to be turned under following spring for corn.

Rotation 'B'.

First year.—Corn. Manure applied in spring at rate of 15 tons per acre. Shallow ploughed shortly before corn planting time, turning under both clover and manure.

Second year.—Grain. Seeded down with 10 pounds red clover, 2 pounds alsike and 5 pounds timothy per acre.

Third year.—Hay. Ploughed late fall, manured at rate of 15 tons per acre.

Fourth year.—Grain. Seeded down with 10 pounds red clover, 2 pounds alsike and 5 pounds timothy per acre.

Fifth year.—Clover hay.

Rotation 'C'.

First year.—Corn.

Second year.—Grain. Seeded down with 10 pounds red clover and 12 pounds timothy per acre.

Third year.—Clover hay.

Fourth year.—Timothy hay. Field ploughed in August, manured at the rate of 24 tons per acre, worked at intervals and ridged up in late fall in preparation for corn.

Rotation 'D'.

First year.—Corn. Manure applied in spring at rate of 18 tons per acre. Shallow ploughed shortly before corn planting time, turning under both clover and manure.
Second year.—Grain. Seeded down with 10 pounds red clover, 2 pounds alsike, 6 pounds alfalfa and 6 pounds timothy per acre.

Third year.—Clover hay.

Rotation 'R.'

First year.—Corn. Manure applied in spring at rate of 18 tons per acre. Shallow ploughed shortly before corn planting time, turning under both clover and manure.

Second year.—Peas and oats mixed. Cut green for cattle. Seeded down with 10 pounds red clover, 2 pounds alsike, 6 pounds alfalfa and 6 pounds timothy per acre.

Third year.—Clover hay. Cut green for cattle.

To make comparisons of the returns and net profits in these experiments the following arbitrary values have been used:

Return Values.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oats</td>
<td>$0.31</td>
</tr>
<tr>
<td>Oat straw</td>
<td>$4.00</td>
</tr>
<tr>
<td>Hay</td>
<td>$7.00</td>
</tr>
<tr>
<td>Corn ensilage</td>
<td>$2.00</td>
</tr>
<tr>
<td>Turnips and mangels</td>
<td>$2.00</td>
</tr>
<tr>
<td>Potatoes</td>
<td>$0.50</td>
</tr>
<tr>
<td>Forage crops (green)</td>
<td>$2.00</td>
</tr>
<tr>
<td>Swine pasture</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

Cost Values.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual labour</td>
<td>$0.17</td>
</tr>
<tr>
<td>Horse labour, including teamster—</td>
<td></td>
</tr>
<tr>
<td>Single horse</td>
<td>$0.27</td>
</tr>
<tr>
<td>2-horse team</td>
<td>$0.34</td>
</tr>
<tr>
<td>3-horse team</td>
<td>$0.41</td>
</tr>
<tr>
<td>4-horse team</td>
<td>$0.48</td>
</tr>
<tr>
<td>Rent</td>
<td>$3.00</td>
</tr>
<tr>
<td>Barnyard manure (spread over rotation)</td>
<td>$1.00</td>
</tr>
<tr>
<td>Machinery (inclusive of threshing machinery)</td>
<td>$0.60</td>
</tr>
<tr>
<td>Seed oats</td>
<td>$1.00</td>
</tr>
<tr>
<td>Turnip, mangel, potato and corn seed charged at actual cost.</td>
<td></td>
</tr>
<tr>
<td>Grass and clover seed charged at actual cost, distributed over the number of years in hay and pasture.</td>
<td></td>
</tr>
<tr>
<td>Twine charged at actual cost.</td>
<td></td>
</tr>
<tr>
<td>Threshing charged according to actual labour expended.</td>
<td></td>
</tr>
<tr>
<td>Rotation Year</td>
<td>Location</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>A 2</td>
<td>F.S. 18.</td>
</tr>
<tr>
<td>A 1</td>
<td>F.S. 17.</td>
</tr>
<tr>
<td>A 5</td>
<td>F.S. 16.</td>
</tr>
<tr>
<td>B 4</td>
<td>F.S. 15.</td>
</tr>
<tr>
<td>B 3</td>
<td>F.S. 14.</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Description of Soil</th>
<th>Area in acres</th>
<th>1911</th>
<th>1912</th>
<th>Rent and manure</th>
<th>Manual Labour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Clay hardpan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 2</td>
<td>F.S. 13.</td>
<td>Clay loam.</td>
<td>1</td>
<td>9 00</td>
<td>1 97</td>
<td>4</td>
<td>68</td>
</tr>
<tr>
<td>B 1</td>
<td>F.S. 12.</td>
<td>"</td>
<td>1</td>
<td>9 00</td>
<td>1 88</td>
<td>30</td>
<td>5 10</td>
</tr>
<tr>
<td>B 5</td>
<td>F.S. 11.</td>
<td>"</td>
<td>1</td>
<td>9 00</td>
<td>4 70</td>
<td>10</td>
<td>1 70</td>
</tr>
<tr>
<td>B 3</td>
<td>F.S. 9.</td>
<td>"</td>
<td>1</td>
<td>9 00</td>
<td>4 69</td>
<td>10</td>
<td>1 70</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td>5</td>
<td>45 00</td>
<td>15 20</td>
<td>58</td>
<td>9 86</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Description of Soil</th>
<th>Area in acres</th>
<th>1911</th>
<th>1912</th>
<th>Rent and manure</th>
<th>Manual Labour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Clay hardpan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 2</td>
<td>F.S. 8.</td>
<td>Clay loam.</td>
<td>1</td>
<td>9 00</td>
<td>1 97</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>C 1</td>
<td>F.S. 7.</td>
<td>"</td>
<td>1</td>
<td>9 00</td>
<td>1 77</td>
<td>30</td>
<td>5 10</td>
</tr>
<tr>
<td>C 4</td>
<td>F.S. 6.</td>
<td>"</td>
<td>1</td>
<td>9 00</td>
<td>3 87</td>
<td>10</td>
<td>1 70</td>
</tr>
<tr>
<td>C 3</td>
<td>F.S. 5.</td>
<td>"</td>
<td>1</td>
<td>9 00</td>
<td>3 87</td>
<td>10</td>
<td>1 70</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td>4</td>
<td>36 00</td>
<td>9 88</td>
<td>55</td>
<td>9 35</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Indicates loss.
IN RAISING CROP.

Horses labour (including teamster.)

<table>
<thead>
<tr>
<th>Hours</th>
<th>1 horse</th>
<th>2 horses</th>
<th>3 horses</th>
<th>4 horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5/4</td>
<td>2</td>
<td>379</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>6</td>
<td>2 1/2</td>
<td>8 18</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5/4</td>
<td>2 1/2</td>
<td>3 79</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4/3</td>
<td>2 1/2</td>
<td>1 80</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7/2</td>
<td>2 1/2</td>
<td>2 82</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>27</td>
<td>16 1/2</td>
<td>7 20 38</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5/4</td>
<td>2 1/2</td>
<td>3 70</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>6</td>
<td>3 1/2</td>
<td>8 18</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4/3</td>
<td>2 1/2</td>
<td>3 45</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5/4</td>
<td>2 1/2</td>
<td>3 70</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>7/2</td>
<td>2 1/2</td>
<td>2 82</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>27</td>
<td>16 1/2</td>
<td>7 20 72</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>5/4</td>
<td>2 1/2</td>
<td>3 70</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>6</td>
<td>3 1/2</td>
<td>8 18</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>4/3</td>
<td>2 1/2</td>
<td>2 65</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>7/2</td>
<td>2 1/2</td>
<td>2 65</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>27</td>
<td>11 1/2</td>
<td>5 17 27</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>5/4</td>
<td>2 1/2</td>
<td>3 70</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>6</td>
<td>3 1/2</td>
<td>8 18</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>4/3</td>
<td>2 1/2</td>
<td>2 65</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>7/2</td>
<td>2 1/2</td>
<td>2 65</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>27</td>
<td>11 1/2</td>
<td>5 17 27</td>
</tr>
</tbody>
</table>

PARTICULARS OF CROP.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 8.00</td>
</tr>
</tbody>
</table>
ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Description of Soil</th>
<th>Area in acres</th>
<th>Crops</th>
<th>Items of Expense</th>
<th>Manual Labour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Clay hard</td>
<td>Ac.</td>
<td></td>
<td>Rnt. and manure</td>
<td>Seed, lime and use of machinery</td>
</tr>
<tr>
<td>D 1. F.S. 4.</td>
<td>Loam</td>
<td>1.6 Corn.</td>
<td>1911</td>
<td>9.00</td>
<td>1.97</td>
<td>4</td>
</tr>
<tr>
<td>D 2. F.S. 2.</td>
<td>"</td>
<td>1.6 Corn.</td>
<td>1912</td>
<td>9.00</td>
<td>1.87</td>
<td>50</td>
</tr>
<tr>
<td>D 3. F.S. 2.</td>
<td>"</td>
<td>1.6 Corn.</td>
<td></td>
<td>9.00</td>
<td>6.09</td>
<td>10</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td>27.00</td>
<td>9.93</td>
<td>44</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Description of Soil</th>
<th>Area in acres</th>
<th>Crops</th>
<th>Items of Expense</th>
<th>Manual Labour</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 1. EPG S1</td>
<td>Sandy loam.</td>
<td>Hardpan</td>
<td></td>
<td>1.6 Peas & oats.</td>
<td>Hay.</td>
<td>14.40</td>
</tr>
<tr>
<td>R 2. EPG S2</td>
<td>"</td>
<td>"</td>
<td></td>
<td>1.6 Peas & oats.</td>
<td>Hay.</td>
<td>14.40</td>
</tr>
<tr>
<td>R 3. EPG S3</td>
<td>"</td>
<td>"</td>
<td></td>
<td>1.6 Hay.</td>
<td>Turnips</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"D."

IN RAISING CROP.

<table>
<thead>
<tr>
<th>Horse labour (including teamster)</th>
<th>Total cost</th>
<th>Cost for 1 acre</th>
<th>Cost for 1 ton or 1 ton.</th>
<th>Weight in Pounds</th>
<th>Value of crop per acre</th>
<th>Profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOURS</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
</tr>
<tr>
<td>singles horse</td>
<td>3 79</td>
<td>1 25</td>
<td>16 69</td>
<td>16 69</td>
<td>0 38</td>
<td>1,482</td>
</tr>
<tr>
<td>2 horse team</td>
<td>5 79</td>
<td>1 25</td>
<td>16 69</td>
<td>16 69</td>
<td>0 38</td>
<td>1,482</td>
</tr>
<tr>
<td>3 horse team</td>
<td>8 18</td>
<td>2 15</td>
<td>24 15</td>
<td>24 15</td>
<td>1 70</td>
<td>28,420</td>
</tr>
<tr>
<td>4 horse team</td>
<td>2 65</td>
<td>1 44</td>
<td>19 44</td>
<td>19 44</td>
<td>5 14</td>
<td>7,570</td>
</tr>
<tr>
<td>5 horse team</td>
<td>14 62</td>
<td>1 25</td>
<td>60 28</td>
<td>60 28</td>
<td>1,482</td>
<td>73 28</td>
</tr>
<tr>
<td></td>
<td>20 69</td>
<td>20 69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"R."

<table>
<thead>
<tr>
<th>Horse labour (including teamster)</th>
<th>Total cost</th>
<th>Cost for 1 acre</th>
<th>Cost for 1 ton or 1 ton.</th>
<th>Weight in Pounds</th>
<th>Value of crop per acre</th>
<th>Profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 horse team</td>
<td>1 55</td>
<td>16 71</td>
<td></td>
<td>8,000</td>
<td>17 50</td>
<td>0 79</td>
</tr>
<tr>
<td>2 horse team</td>
<td>29 54</td>
<td>18 46</td>
<td></td>
<td>82,000</td>
<td>20 00</td>
<td>1 54</td>
</tr>
<tr>
<td></td>
<td>50 25</td>
<td>31 69</td>
<td></td>
<td>52,250</td>
<td>32 66</td>
<td>1 06</td>
</tr>
<tr>
<td></td>
<td>106 51</td>
<td>66 77</td>
<td></td>
<td>8,000 84,250</td>
<td>70 16</td>
<td>3 39</td>
</tr>
<tr>
<td></td>
<td>22 25</td>
<td>22 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following table presents in brief, the comparative costs, returns and net profits of the above rotations for 1912:

Rotation Experiment.—Comparative Costs, Returns and Net Profits, 1912.

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Total cost to operate</th>
<th>Value of returns</th>
<th>Net profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A', five years' duration</td>
<td>$ 18.56</td>
<td>$ 26.61</td>
<td>$ 8.05</td>
</tr>
<tr>
<td>'B', five years' duration</td>
<td>$ 18.63</td>
<td>$ 27.64</td>
<td>$ 9.01</td>
</tr>
<tr>
<td>'C', four years' duration</td>
<td>$ 18.39</td>
<td>$ 24.86</td>
<td>$ 6.47</td>
</tr>
<tr>
<td>'D', three years' duration</td>
<td>$ 20.99</td>
<td>$ 24.42</td>
<td>$ 3.43</td>
</tr>
<tr>
<td>'R', three years' duration</td>
<td>$ 22.25</td>
<td>$ 23.38</td>
<td>$ 1.13</td>
</tr>
</tbody>
</table>

These figures may not, however, represent the relative value of these rotations under normal conditions, and, for the reasons stated above, they will not be used in future calculations.

In 1911 an eight-years' test with rotations 'A,' 'B,' 'C' and 'D' was completed. Based on this extended test we would submit the following regarding them:

Rotation 'A.'—This rotation has proven an excellent one. When carefully followed and where cultural operations were well performed weeds have been kept under fair control, and crop yields have been maintained. It supplies a relatively larger proportion of grain to roots and hay than the ordinary three or four-course rotation, and for that reason would be preferable under conditions where considerable grain is called for.

Rotation 'B.'—While this rotation has maintained crop yields, and has given profits equal to rotation 'A' in the test just completed, we do not yet feel that we could recommend it as being equal to rotation 'A' in all respects. In the average season, when two crops of clover would be taken off, no early fall ploughing is possible, and weeds are therefore not so easily combatted.

Rotation 'C.'—This rotation is most satisfactory from all standpoints except that it supplies a rather smaller proportion of grain than is often desired. Where live stock is the mainstay of the farm, this is, however, a very minor fault. The turning of a shallow furrow, when ploughing sod in preparation for grain or corn, has been found to be good practice here. In preparing for roots, deeper ploughing or the regular plough with subsoiler is to be advised.

Rotation 'D.'—This would be a most excellent rotation to put into practice where sufficient rough land was available to serve as pastureage. It is the rotation that would supply the greatest amount of forage of the best description for dairying or beef production. It is better suited for heavy than for light soils.

If a careful examination of the above rotations be made there will be noted a few desirable characteristics common to all:

1. Grain fields are always seeded down with clover, even though it be used only as a fertilizer, as in the case of the fifth year of rotation.
2. Grass and clover seedings are heavy. Increased crops of hay and rare failures of a catch have justified them.
3. Hoed crops form a large proportion of every rotation. An attempt to farm a small area without a hoed crop was not successful. Weeds could not readily be kept in check.
4. No field is left in hay for more than two successive years. Our records show that the second crop almost always costs more per ton than the first, and that succeeding crops are very liable to be grown at a loss.
'SHALLOW PLOUGHING AND DEEP CULTIVATION' VERSUS 'DEEP PLOUGHING.'

The season of 1911 completed an eight-years' test of the above methods of preparing land for hoed crops. While the results have shown the advantage of deep over shallow tillage, especially in preparing for roots, they have not indicated to any marked degree, a superiority of one or the other of the above methods.

In 1912 the two four-year rotations used in this experiment were re-arranged, and divided into eight one-acre plots. The experiment will be continued for another term of years, but, owing to the changes made, this year's results will not be included in averages that will be drawn.

Rotation 'S' (Shallow ploughing and deep cultivation).

First year.—Corn or roots. Field manured at rate of 24 tons per acre. Ploughed out of sod previous August, 4 inches deep, and subsoiled to a depth of 8 to 9 inches, worked at intervals and ridged up in fall. In case manure is not applied before ploughing, deep cultivation is attained by means of a strong, deep-reaching cultivator, after the sod has rotted in the fall, or the next spring. After the corn crop is harvested the land is ploughed shallow or cultivated in preparation for the grain which follows.

Second year.—Grain. Seeded down with 10 pounds red clover and 12 pounds timothy per acre.

Third year.—Clover hay. Cut twice in the season, and the aftermath left on the field.

Fourth year.—Timothy hay. Broken in August and prepared for corn or roots, as indicated above.

Rotation 'P' (Deep ploughing).

This rotation differs from rotation 'S' only in the treatment of the timothy hay field in preparation for corn or roots. It is manured and ploughed in August, 7 inches deep, top worked, and ploughed again in late fall, 7 inches deep.

The details of cost and returns are shown in the tables herewith presented.
<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Description of Soil</th>
<th>Area in acres</th>
<th>Crops</th>
<th>1911</th>
<th>1912</th>
<th>Rent and charge</th>
<th>Items of Expense</th>
<th>Manual Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gravelly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 1. E.P.G.S.4</td>
<td>Sandy loam</td>
<td>clay</td>
<td>1 Corn</td>
<td>Oats</td>
<td>9.00</td>
<td>1.94</td>
<td>5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>2. E.P.G.S.5</td>
<td>"</td>
<td>"</td>
<td>1 Oats</td>
<td>Peas & oats</td>
<td>9.03</td>
<td>2.10</td>
<td>12</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>3. E.P.G.S.8</td>
<td>"</td>
<td>"</td>
<td>1 Hay</td>
<td>Hay</td>
<td>9.00</td>
<td>2.77</td>
<td>9</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>4. E.P.G.S.9</td>
<td>"</td>
<td>"</td>
<td>1 Hay</td>
<td>Corn</td>
<td>9.00</td>
<td>1.87</td>
<td>26</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.00</td>
<td>8.68</td>
<td></td>
<td>8.84</td>
<td></td>
</tr>
<tr>
<td>Average per acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Description of Soil</th>
<th>Area in acres</th>
<th>Crops</th>
<th>1911</th>
<th>1912</th>
<th>Rent and charge</th>
<th>Items of Expense</th>
<th>Manual Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 1 E.P.G.S.6</td>
<td>Sandy loam</td>
<td>clay</td>
<td>1 Corn</td>
<td>Oats</td>
<td>9.00</td>
<td>1.97</td>
<td>5</td>
<td>0.85</td>
</tr>
<tr>
<td>P 2 E.P.G.S.7</td>
<td>"</td>
<td>"</td>
<td>1 Oats</td>
<td>Peas & oats</td>
<td>9.03</td>
<td>2.10</td>
<td>12</td>
<td>2.04</td>
</tr>
<tr>
<td>P 3 E.P.G.S.10</td>
<td>"</td>
<td>"</td>
<td>1 Hay</td>
<td>Hay</td>
<td>9.00</td>
<td>2.77</td>
<td>9</td>
<td>1.53</td>
</tr>
<tr>
<td>P 4 E.P.G.S.11</td>
<td>"</td>
<td>"</td>
<td>1 Hay</td>
<td>Corn</td>
<td>9.00</td>
<td>1.87</td>
<td>26</td>
<td>4.42</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.00</td>
<td>8.71</td>
<td></td>
<td>8.84</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"S" (Shallow ploughing and deep cultivation).

IN RAISING CROP.

<table>
<thead>
<tr>
<th>Horse labor (including teamster).</th>
<th>Cost of horse labor.</th>
<th>Total cost.</th>
<th>Cost for 1 acre.</th>
<th>Cost for 1 bus. or 1 ton.</th>
<th>Weight in Pounds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>Lb.</td>
</tr>
<tr>
<td>No.</td>
<td>No.</td>
<td>No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$3.85</td>
<td>$2.09</td>
<td>$17.73</td>
<td>2,459</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>$5.20</td>
<td>$18.35</td>
<td>$18.35</td>
<td>2,459</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>$9.98</td>
<td>$24.27</td>
<td>$24.27</td>
<td>2,274</td>
</tr>
</tbody>
</table>

P (Deep ploughing).

<table>
<thead>
<tr>
<th>Horse labor (including teamster).</th>
<th>Cost of horse labor.</th>
<th>Total cost.</th>
<th>Cost for 1 acre.</th>
<th>Cost for 1 bus. or 1 ton.</th>
<th>Weight in Pounds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>Lb.</td>
</tr>
<tr>
<td>No.</td>
<td>No.</td>
<td>No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$3.85</td>
<td>$2.36</td>
<td>$18.03</td>
<td>2,774</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>$5.31</td>
<td>$18.35</td>
<td>$18.35</td>
<td>2,774</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>$8.98</td>
<td>$24.27</td>
<td>$24.27</td>
<td>2,774</td>
</tr>
</tbody>
</table>

PARTICULARS OF CROP.

<table>
<thead>
<tr>
<th></th>
<th>Total value.</th>
<th>Value of crop per acre.</th>
<th>Profit per acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
</tr>
<tr>
<td>2</td>
<td>2,459</td>
<td>3,321</td>
<td>54,700</td>
</tr>
<tr>
<td>1</td>
<td>2,774</td>
<td>3,226</td>
<td>60,220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARMS

Comparative Costs, Returns, and Profits, 1912, 'Shallow Ploughing and Deep Cultivation' versus 'Deep Ploughing.'

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Total cost to operate</th>
<th>Total value of returns</th>
<th>Net profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>'S' (shallow ploughing and deep cultivation)</td>
<td>19 47</td>
<td>27 14</td>
<td>7 67</td>
</tr>
<tr>
<td>'P' (deep ploughing)</td>
<td>19 02</td>
<td>28 99</td>
<td>9 97</td>
</tr>
</tbody>
</table>

COMMERCIAL FERTILIZER EXPERIMENT.

In 1909 three rotations, having for object the gaining of information as to the value of commercial fertilizers in regular farm rotation, were introduced. In this experiment, superphosphate, muriate of potash and nitrate of soda are being substituted to a greater or lesser extent for barnyard manure. In 1912 a further rotation was added in which no fertilizer of any kind is used. The nomenclature has been changed, so that rotations 'A,' 'B,' 'C' Fertilizer are now 'X,' 'Y' and 'Z,' respectively, and the added rotation is termed 'N.'

Rotation 'N'.

This rotation is of four years' duration, and includes, grain, hay, pasture, roots. The grain follows roots, the land being ploughed shallow or cultivated after the hoed crop is harvested. With the grain is sown 8 pounds red clover, 2 pounds alsike and 12 pounds timothy per acre. Field is left seeded down two years, first year of which is cut for hay, second is pastured. In August, pasture land is ploughed 5 inches deep, worked at intervals during the autumn and ribbed up in the late fall. The following spring the land is worked into good tilth and sown to roots, no manure or commercial fertilizer of any kind being applied.

Rotation 'X'.

This rotation is of four years' duration, and includes grain, hay two years, roots. The grain follows roots, the land being ploughed or cultivated in the fall after the hoed crop is harvested. With the grain is sown 8 pounds red clover, 2 pounds alsike and 12 pounds timothy per acre. The clover hay is cut twice in the season. After the second year hay the land is manured at the rate of 15 tons barnyard manure per acre, and ploughed in August, 5 inches deep, worked at intervals during the autumn and ribbed up in the late fall. The following spring the land is worked into good tilth and sown to roots.

Rotation 'Y'.

This rotation is of four years' duration, and includes grain, hay two years, and roots. The grain follows roots, the land being ploughed or cultivated in the fall after the hoed crop is harvested. With the grain is sown 8 pounds red clover, 2 pounds alsike and 12 pounds timothy per acre. The clover hay is cut twice in the season. After the second year hay, the land is ploughed in August, 5 inches deep, worked at inter-
vals during the autumn and ribbed up in the late fall. The following spring the land is worked into good tilth and 300 pounds superphosphate, 75 pounds muriate of potash and 100 pounds nitrate of soda are applied before being sown to roots. In addition to the above, the land receives a dressing of 100 pounds nitrate of soda per acre each year that the field is in hay or grain. This application is given in early spring on the grass, and just as the grain is coming through, when under grain.

Rotation 'Z.'

This rotation is of four years' duration, and includes grain, hay two years, roots. The grain follows roots, the land being ploughed or cultivated in the fall after the hooed crop is harvested. With the grain is sown 8 pounds red clover, 2 pounds alsike and 12 pounds timothy per acre. The clover hay is cut twice in the season. After the second year hay, the land is manured at the rate of 7½ tons barnyard manure per acre and ploughed in August, 5 inches deep, worked at intervals during the autumn and ribbed up in the late fall. The following spring the land is worked into good tilth and 150 pounds superphosphate, 37½ pounds muriate of potash and 50 pounds nitrate of soda are applied before being sown to roots. In addition to the above the land receives a dressing of 100 pounds nitrate of soda per acre each year that the field is in hay or grain. This application is given in early spring on the grass, and just as the grain is coming through, when under grain.

In the following tables of results, rotation 'N' is not included, as it had not been under proper rotation long enough to be comparable with the others.
EXPERIMENTAL FARMS

FERTILIZER ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Description of Soil</th>
<th>Ac.</th>
<th>1911</th>
<th>1912</th>
<th>$ c.</th>
<th>$ c.</th>
<th>No.</th>
<th>$ c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 1. A. S. 5 Clay loam</td>
<td>Clay hard-pan</td>
<td>1 Hay</td>
<td>Mangels</td>
<td>6.75</td>
<td>2.10</td>
<td>83</td>
<td>14.11</td>
<td></td>
</tr>
<tr>
<td>X 2. A. S. 8</td>
<td>"</td>
<td>1 Mangels</td>
<td>Oats</td>
<td>6.75</td>
<td>1.94</td>
<td>5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>X 3. A. S. 11 Black muck</td>
<td>"</td>
<td>1 Hay</td>
<td>Timothy hay</td>
<td>6.75</td>
<td>3.07</td>
<td>5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>X 4. A. S. 14</td>
<td>"</td>
<td>1 Oats</td>
<td>Clover hay</td>
<td>6.75</td>
<td>3.07</td>
<td>10</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td>27.60</td>
<td>10.18</td>
<td></td>
<td>17.51</td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td>6.75</td>
<td>2.55</td>
<td></td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>Average per acre for 4 years</td>
<td></td>
<td></td>
<td></td>
<td>5.63</td>
<td>1.70</td>
<td></td>
<td>5.90</td>
<td></td>
</tr>
</tbody>
</table>

FERTILIZER ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Description of Soil</th>
<th>Ac.</th>
<th>1911</th>
<th>1912</th>
<th>$ c.</th>
<th>$ c.</th>
<th>No.</th>
<th>$ c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y 1. A. S. 6 Clay loam</td>
<td>Clay hard-pan</td>
<td>1 Hay</td>
<td>Mangels</td>
<td>7.14</td>
<td>2.10</td>
<td>83</td>
<td>14.11</td>
<td></td>
</tr>
<tr>
<td>Y 2. A. S. 9</td>
<td>"</td>
<td>1 Mangels</td>
<td>Oats</td>
<td>7.14</td>
<td>1.94</td>
<td>5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Y 3. A. S. 12 Black muck</td>
<td>"</td>
<td>1 Hay</td>
<td>Timothy hay</td>
<td>7.14</td>
<td>3.07</td>
<td>5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Y 4. A. S. 15</td>
<td>"</td>
<td>1 Oats</td>
<td>Clover hay</td>
<td>7.14</td>
<td>3.07</td>
<td>10</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td>28.56</td>
<td>10.18</td>
<td></td>
<td>17.51</td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td>7.14</td>
<td>2.55</td>
<td></td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>Average per acre for 4 years</td>
<td></td>
<td></td>
<td></td>
<td>7.41</td>
<td>1.68</td>
<td></td>
<td>6.09</td>
<td></td>
</tr>
</tbody>
</table>

FERTILIZER ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Description of Soil</th>
<th>Ac.</th>
<th>1911</th>
<th>1912</th>
<th>$ c.</th>
<th>$ c.</th>
<th>No.</th>
<th>$ c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z 1. A. S. 7 Clay loam</td>
<td>Clay hard-pan</td>
<td>1 Hay</td>
<td>Mangels</td>
<td>8.07</td>
<td>2.10</td>
<td>83</td>
<td>14.11</td>
<td></td>
</tr>
<tr>
<td>Z 2. A. S. 10</td>
<td>"</td>
<td>1 Mangels</td>
<td>Oats</td>
<td>8.07</td>
<td>1.94</td>
<td>5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Z 3. A. S. 13 Black muck</td>
<td>"</td>
<td>1 Hay</td>
<td>Timothy hay</td>
<td>8.07</td>
<td>3.07</td>
<td>5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Z 4. A. S. 16 Gravel</td>
<td>"</td>
<td>1 Oats</td>
<td>Clover hay</td>
<td>8.07</td>
<td>3.07</td>
<td>10</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td>32.28</td>
<td>10.18</td>
<td></td>
<td>17.51</td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td>8.07</td>
<td>2.55</td>
<td></td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>Average per acre for 4 years</td>
<td></td>
<td></td>
<td></td>
<td>6.97</td>
<td>1.68</td>
<td></td>
<td>6.02</td>
<td></td>
</tr>
</tbody>
</table>

* Indicates loss.
The Oat Crop. Experimental Station, Lacombe, Alta.

Threshing. Experimental Station, Lethbridge, Alta.
SESSIONAL PAPER No. 16

"X." (Barnyard manure.)

IN RAISING CROP.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOURS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single horse.</td>
<td>6</td>
<td>154</td>
<td>5</td>
<td>11 75</td>
<td>34 71</td>
<td>34 71</td>
<td>1 44</td>
<td>48 36</td>
</tr>
<tr>
<td>2-horse team</td>
<td>2</td>
<td>5</td>
<td>3 55</td>
<td>2 12</td>
<td>15 21</td>
<td>15 21</td>
<td>0 21</td>
<td>31 40</td>
</tr>
<tr>
<td>3-horse team</td>
<td>1</td>
<td>4</td>
<td>1 80</td>
<td>12 47</td>
<td>4 53</td>
<td>4 53</td>
<td>6 500</td>
<td>19 25</td>
</tr>
<tr>
<td>4-horse team</td>
<td>1</td>
<td>8</td>
<td>2 99</td>
<td>14 51</td>
<td>4 46</td>
<td>4 46</td>
<td>6 500</td>
<td>22 75</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>120</td>
<td>4 09</td>
<td>2 61</td>
<td>2 38</td>
<td>2 38</td>
<td>2 90</td>
<td>12 20</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>5 23</td>
<td>18 45</td>
<td>18 45</td>
<td>18 45</td>
<td>530</td>
<td>26 90</td>
</tr>
</tbody>
</table>

"Y" (Commercial Fertilizers.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOURS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single horse.</td>
<td>6</td>
<td>154</td>
<td>5</td>
<td>11 75</td>
<td>35 10</td>
<td>35 10</td>
<td>1 43</td>
<td>49 13</td>
</tr>
<tr>
<td>2-horse team</td>
<td>2</td>
<td>5</td>
<td>3 55</td>
<td>11 68</td>
<td>5 35</td>
<td>5 35</td>
<td>6 700</td>
<td>19 25</td>
</tr>
<tr>
<td>3-horse team</td>
<td>1</td>
<td>4</td>
<td>1 80</td>
<td>12 86</td>
<td>5 29</td>
<td>5 29</td>
<td>5 800</td>
<td>17 21</td>
</tr>
<tr>
<td>4-horse team</td>
<td>1</td>
<td>8</td>
<td>2 99</td>
<td>14 90</td>
<td>4 41</td>
<td>4 41</td>
<td>6 700</td>
<td>22 62</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>120</td>
<td>20 99</td>
<td>77 54</td>
<td>11 610</td>
<td>11 610</td>
<td>107 79</td>
<td>30 25</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>5 23</td>
<td>19 39</td>
<td>19 39</td>
<td>19 39</td>
<td>355</td>
<td>26 95</td>
</tr>
<tr>
<td></td>
<td>4 72</td>
<td>20 17</td>
<td>20 17</td>
<td>297</td>
<td>2 733</td>
<td>2 733</td>
<td>297</td>
<td>26 25</td>
</tr>
</tbody>
</table>

"Z" (Barnyard manure and Commercial Fertilizers.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOURS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single horse.</td>
<td>6</td>
<td>154</td>
<td>5</td>
<td>11 75</td>
<td>36 03</td>
<td>36 03</td>
<td>1 40</td>
<td>48 36</td>
</tr>
<tr>
<td>2-horse team</td>
<td>2</td>
<td>7</td>
<td>3 55</td>
<td>15 29</td>
<td>0 59</td>
<td>0 59</td>
<td>1 635</td>
<td>14 21</td>
</tr>
<tr>
<td>3-horse team</td>
<td>1</td>
<td>4</td>
<td>1 80</td>
<td>13 79</td>
<td>5 45</td>
<td>5 45</td>
<td>1 945</td>
<td>17 21</td>
</tr>
<tr>
<td>4-horse team</td>
<td>1</td>
<td>8</td>
<td>2 99</td>
<td>15 83</td>
<td>5 22</td>
<td>5 22</td>
<td>6 000</td>
<td>21 21</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>120</td>
<td>20 09</td>
<td>80 94</td>
<td>11 120</td>
<td>11 120</td>
<td>101 52</td>
<td>20 38</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>5 23</td>
<td>19 70</td>
<td>19 70</td>
<td>19 70</td>
<td>281</td>
<td>26 33</td>
</tr>
</tbody>
</table>

16—9
Commercial Fertilizer Experiment.—Comparative Costs, Returns and Net Profits, average of 4 years.

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Cost to Operate</th>
<th>Value of Returns</th>
<th>Net Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>'X' barnyard manure</td>
<td>$ 18.45</td>
<td>$ 26.90</td>
<td>$ 8.45</td>
</tr>
<tr>
<td>'Y' commercial fertilizers</td>
<td>$ 20.17</td>
<td>$ 26.25</td>
<td>$ 6.08</td>
</tr>
<tr>
<td>'Z' barnyard manure and commercial fertilizers</td>
<td>$ 19.70</td>
<td>$ 27.33</td>
<td>$ 7.63</td>
</tr>
</tbody>
</table>

PROPOSED EXPERIMENTAL WORK.

In addition to the rotation tests and to the costs of production work now under way it is proposed to inaugurate a series of cultural experiments similar in purpose and outline to those conducted on our prairie farms. In the carrying out of such work we are, however, very greatly handicapped because of the limited area of land at our disposal. The growth of the other Divisions and the establishment of new Divisions has necessitated the concession of small areas from time to time to make possible the new work. We have now, in all, less than two hundred acres on which to carry the stock of the Division of Animal Husbandry, and to conduct experiments which cannot always be designed to supply the greatest amounts of the kinds of food required. By the use of soiling crops and other intensive methods we have endeavoured to produce a maximum of feeds. Much further economizing of space through this means is not practicable, however, and I would present for your consideration the need to acquire more land, if the Division is to carry out to best advantage the work for which it was instituted.
EXPERIMENTAL STATION FOR PRINCE EDWARD ISLAND, CHARLOTTETOWN, P.E.I.

REPORT OF THE SUPERINTENDENT, J. A. CLARK, B.S.A.

WEATHER CONDITIONS AND CROP NOTES, 1912.

A mild spell of weather about the middle of April gave promise of an early spring. Cold, dull weather followed, and it was not until the 11th of May that seeding began at this Station. The greater part of May was so backward that the leaves and the blossoms were fully three weeks later bursting out than in the spring of 1911; a frost that wilted the clovers occurred on the 22nd. June was decidedly cool. The mean temperature was more than a degree below the average. Cutworms did much damage in the province. During the first half of July the heat was extreme, and during the latter half the rainfall was excessive. Large quantities of hay were ruined throughout the province. The cool, late spring and the heavy rains of July and August caused the hay crop to fall below the average, both in quantity and quality. The early grain also suffered much from this, and gave yields much below the same varieties sown later. This was a very unusual occurrence in this province. In many sections haymaking was continued until harvest, or about the third week in August. The oats filled well, but smut was very prevalent. Rust and the joint worm did much injury to the wheat crop. September proved to be a good harvest month. The late grain ripened very slowly, yet where it did mature it was heavy and well filled. No killing frost occurred during the month. The potato crop was good, and when harvested was very free from rot. The corn, mangels and sugar beets were scarcely an average crop, but the turnips and carrots gave heavy yields. A severe frost occurred on the 16th of October, but it was not until the 12th of November that the more hardy vegetation was killed. The weather was open and a very large percentage of the fall work was completed in the early autumn.

Some Weather Observations taken at Charlottetown Experimental Station, 1912.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature F.</th>
<th>Precipitation</th>
<th>Total Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>50.0</td>
<td>-3.0</td>
<td>24.17</td>
</tr>
<tr>
<td>February</td>
<td>48.0</td>
<td>-17.5</td>
<td>13.46</td>
</tr>
<tr>
<td>March</td>
<td>60.0</td>
<td>-4.0</td>
<td>50.80</td>
</tr>
<tr>
<td>April</td>
<td>62.0</td>
<td>12.0</td>
<td>35.72</td>
</tr>
<tr>
<td>May</td>
<td>79.0</td>
<td>27.0</td>
<td>50.53</td>
</tr>
<tr>
<td>June</td>
<td>84.5</td>
<td>36.0</td>
<td>57.82</td>
</tr>
<tr>
<td>July</td>
<td>91.5</td>
<td>39.0</td>
<td>64.90</td>
</tr>
<tr>
<td>August</td>
<td>81.0</td>
<td>48.0</td>
<td>61.68</td>
</tr>
<tr>
<td>September</td>
<td>73.0</td>
<td>38.0</td>
<td>54.02</td>
</tr>
<tr>
<td>October</td>
<td>73.0</td>
<td>28.5</td>
<td>47.71</td>
</tr>
<tr>
<td>November</td>
<td>68.0</td>
<td>23.0</td>
<td>37.01</td>
</tr>
<tr>
<td>December</td>
<td>50.0</td>
<td>-2.0</td>
<td>26.60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>38.18</td>
</tr>
</tbody>
</table>

16—91
ROTATION OF CROPS.

Six rotations varying in duration and treatment were started in 1912, on the land to the west of the farm buildings. The area they cover extends north along the railway to the De Blois road. They are laid out in fields as follows:

A and B, 1.00 acre each; C, .57 of an acre; D, 1.00 acre; F, .88 of an acre; G, .4 of an acre.

Rotation 'A' (five years' duration).
First year.—Corn. Manured 25 tons per acre.
Second year.—Oats. Seeded down.
Third year.—Clover hay.
Fourth year.—Timothy hay or pasture.
Fifth year.—Oats.

Rotation 'B' (five years' duration).
First year.—Corn.
Second year.—Grain. Seeded down.
Third year.—Clover hay.
Fourth year.—Grain. Seeded down.
Fifth year.—Clover hay.

Rotation 'C' (four years' duration).
First year.—Hoed crop. Manured 20 tons per acre.
Second year.—Grain. Seeded down.
Third year.—Clover hay.
Fourth year.—Timothy hay or pasture.

Rotation 'D' (three years' duration).
First year.—Hoed crop. Manured 15 tons per acre.
Second year.—Grain. Seeded down.
Third year.—Clover hay.

Rotation 'F' (four years' duration).
First year.—Hoed crop. Manured 20 tons per acre.
Second year.—Grain. Seeded down.
Third year.—Clover hay.
Fourth year.—Grain. Seeded down.

Rotation 'G' (seven years' duration).
First year.—Grain.
Second year.—Hoed crop.
Third year.—Wheat or barley. Seeded down.
Fourth year.—Clover hay.
Fifth year.—Timothy hay.
Sixth year.—Pasture.
Seventh year.—Pasture.

The land available for this rotation work was very uneven. On rotation 'A' there had been several buildings, as well as a cellar and an old brick-yard. Two feet of brick clay were removed from part of the land before the normal surface was
SEASONAL PAPER No. 16

reached. Rotations 'B', 'D' and 'F' were partly drained in 1911. Rotation 'C' contains a filled pond, house cellar and door yard. Rotation 'G' also contained a large pond area that was drained and filled. Careful accounts were kept which will prove valuable in time. On these fields the cereals considered most suitable to the province were multiplied, so as to be available to those wishing to purchase pure seed.

MIXED GRAINS.

Experiments are being conducted to determine the best mixture of crops for green feed, and for the production of grain for feeding stock. The results of these will be published when averages for several years have been obtained.

PROPOSED EXPERIMENTAL WORK.

Cultural experiments have been held in abeyance pending the addition of more land to the Station. A great amount of work along these lines has been planned, and will be instituted just as soon as the land can be properly prepared for it.
EXPERIMENTAL FARM FOR NOVA SCOTIA, NAPPAN, N.S.

REPORT OF THE SUPERINTENDENT, R. ROBERTSON.

WEATHER CONDITIONS, 1912.

The spring of 1912 opened dull and cold with some frosts during April. On the 10th the thermometer registered 15 degrees of frost and on the 25th 7 degrees. No snow fell during the month, but there was a rather heavy precipitation of rain. During May the weather was cold, and for the first three weeks dry, with just enough rain falling to retard seeding operations, which became general about the 15th. The precipitation during the last week of this month was much heavier than usual. June, although having no great amount of rainfall, was both cool and damp. Grain and roots did fairly well, but corn was almost a complete failure. July was a dry, warm month until the 22nd, after which rain fell continually until the end of the month, giving a total precipitation of 6.62 inches. Hay and grain did well, but roots made poor growth. The latter part of August was practically continuous rainfall. Haymaking was almost impossible, the grain lodged badly, and root crops suffered severely. Due to the heavy rains no cultivating could be done after July 22. September's rainfall of 2.86 inches was below the average, but this, together with the heavy rains of the previous month, made the harvesting operations slow, especially in the case of grain. No frost was recorded up to this time. October was a very fine month with a light precipitation and a few light frosts, a splendid month for harvesting roots and getting the general fall work done. November was also a very seasonable month enabling the fall work to be further advanced than usual.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature F.</th>
<th>Precipitation</th>
<th>Total Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest °</td>
<td>Lowest °</td>
<td>Mean °</td>
</tr>
<tr>
<td>January</td>
<td>45</td>
<td>-24</td>
<td>11.70</td>
</tr>
<tr>
<td>February</td>
<td>45</td>
<td>-18</td>
<td>18.22</td>
</tr>
<tr>
<td>March</td>
<td>48</td>
<td>-15</td>
<td>27.54</td>
</tr>
<tr>
<td>April</td>
<td>66</td>
<td>17</td>
<td>37.04</td>
</tr>
<tr>
<td>May</td>
<td>77</td>
<td>24</td>
<td>50.27</td>
</tr>
<tr>
<td>June</td>
<td>84</td>
<td>35</td>
<td>56.29</td>
</tr>
<tr>
<td>July</td>
<td>92</td>
<td>49</td>
<td>63.61</td>
</tr>
<tr>
<td>August</td>
<td>81</td>
<td>38</td>
<td>60.75</td>
</tr>
<tr>
<td>September</td>
<td>73</td>
<td>33</td>
<td>52.99</td>
</tr>
<tr>
<td>October</td>
<td>74</td>
<td>25</td>
<td>46.80</td>
</tr>
<tr>
<td>November</td>
<td>66</td>
<td>14</td>
<td>36.32</td>
</tr>
<tr>
<td>December</td>
<td>51</td>
<td>0</td>
<td>26.33</td>
</tr>
</tbody>
</table>

... 34 36 41.50 38.51 1695.05
CROP YIELDS.

Below is a summary of the yields of the crops grown, exclusive of uniform test plots of grain and potatoes.

Field grain .. 1,110 bush. 38 lb.
Turnips and mangels ... 6,315 " 15 "
Fodder corn .. 25 tons 50 "
Hay .. 134 " 1,575 "

The field grain consisted of upland and marsh oats, barley and mixed grain (2 bushels of oats, 1 bushel of barley and 1 peck of peas, sown at the rate of three bushels per acre). The yields were as follows:

<table>
<thead>
<tr>
<th>Area</th>
<th>Name of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres</td>
<td></td>
<td>Tons</td>
<td>Lb</td>
</tr>
<tr>
<td>8 ares upland oats yielded</td>
<td>..........................</td>
<td>55 bush. 6 lb. per acre.</td>
<td></td>
</tr>
<tr>
<td>6 " marsh oats</td>
<td>"</td>
<td>22 " 8 "</td>
<td></td>
</tr>
<tr>
<td>1½ " barley</td>
<td>"</td>
<td>34 " 4 "</td>
<td></td>
</tr>
<tr>
<td>8½ " mixed grain</td>
<td>"</td>
<td>46 " 20 "</td>
<td></td>
</tr>
</tbody>
</table>

TURNIPS.

Six varieties of turnips were grown in fields of one-half acre each. The land was a clay loam in only a fair state of fertility, and was given a dressing of barnyard manure at the rate of 24 tons per acre. Where commercial fertilizer was used in addition to the manure, it was applied at the rate of 300 pounds per acre.

The following were the results:

Varieties of Turnips with Manure alone, and with Commercial Fertilizer in addition to Manure.

<table>
<thead>
<tr>
<th>Area</th>
<th>Name of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres</td>
<td></td>
<td>Tons</td>
<td>Lb</td>
</tr>
<tr>
<td>1 acre improved Greystone, manure with fertilizer</td>
<td>..........................</td>
<td>31 1,115</td>
<td>605 55</td>
</tr>
<tr>
<td>"</td>
<td>" only</td>
<td>30 1,490</td>
<td>624 50</td>
</tr>
<tr>
<td>1 acre Rennie's Prize, manure with fertilizer</td>
<td>"</td>
<td>20 1,470</td>
<td>591 10</td>
</tr>
<tr>
<td>"</td>
<td>" only</td>
<td>20 1,340</td>
<td>568 00</td>
</tr>
<tr>
<td>1 acre Magnum Bonum, manure with fertilizer</td>
<td>"</td>
<td>17 680</td>
<td>576 20</td>
</tr>
<tr>
<td>"</td>
<td>" only</td>
<td>20 580</td>
<td>576 00</td>
</tr>
<tr>
<td>1 acre Best of All, manure with fertilizer</td>
<td>"</td>
<td>16 500</td>
<td>541 40</td>
</tr>
<tr>
<td>"</td>
<td>" only</td>
<td>18 400</td>
<td>568 00</td>
</tr>
<tr>
<td>1 acre Canadian Gem, manure with fertilizer</td>
<td>"</td>
<td>18 357</td>
<td>622 50</td>
</tr>
<tr>
<td>"</td>
<td>" only</td>
<td>14 1,100</td>
<td>498 20</td>
</tr>
<tr>
<td>1 acre Kangaroo, manure with fertilizer</td>
<td>"</td>
<td>10 1,230</td>
<td>583 40</td>
</tr>
<tr>
<td>"</td>
<td>" only</td>
<td>7 1,790</td>
<td>562 40</td>
</tr>
</tbody>
</table>

In addition to the above, four acres of turnips were grown in acre plots, on a clay loam on which was spread manure at the rate of 20 tons per acre. On account of the extremely wet weather this crop received very little cultivation. The following are the results:

1 acre mixed Best of All and Greystone .. 625 bush. per acre.
1 " Hartley's Bronze ... 390 "
1 " Elephart .. 330 "
1 " mixed Hartley's Bronze and Sutton's Champion | 240 " |
MANGELS.

Three varieties of mangels were grown in one-third acre plots. The land was a clay loam and was given a dressing of 20 tons of manure per acre.

The following yields were obtained:

Yields of Field Lots of Mangels, Nappan, 1912.

<table>
<thead>
<tr>
<th>Area.</th>
<th>Name of Variety.</th>
<th>Yield per Acre.</th>
<th>Yield per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons.</td>
<td>Lb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
<td>Lb.</td>
</tr>
<tr>
<td>1/3</td>
<td>Mammoth Long Red</td>
<td>11</td>
<td>1,445</td>
</tr>
<tr>
<td></td>
<td>Yellow Globe</td>
<td>10</td>
<td>475</td>
</tr>
<tr>
<td>1/3</td>
<td>Yellow Intermediate</td>
<td>8</td>
<td>200</td>
</tr>
</tbody>
</table>

SPRING WHEAT.

Three varieties of spring wheat were grown in half-acre fields. They were sown on May 15 and 16. The results were as follows:

Yields of Field Lots of Spring Wheat, Nappan, 1912.

<table>
<thead>
<tr>
<th>Area.</th>
<th>Name of Variety.</th>
<th>Yield per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
</tr>
<tr>
<td>1/4</td>
<td>White Fife</td>
<td>23</td>
</tr>
<tr>
<td>1/4</td>
<td>Huron</td>
<td>19</td>
</tr>
<tr>
<td>1/4</td>
<td>Red Fife</td>
<td>17</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION FOR CENTRAL QUEBEC.
CAP ROUGE, QUE.

REPORT OF THE SUPERINTENDENT, G. A. LANGEPLIER.

WEATHER CONDITIONS, 1912.

The past season was the most unfavourable which the farmer of this district has experienced for a quarter of a century. The month of April was cold and the snow disappeared slowly. In May, seeding was retarded by the excessive rainfall, which occurred on fourteen different days between the seventh and the thirty-first. The wet weather continued into June, there being precipitation during thirteen of the first eighteen days of the month. This was followed by a drought which extended from the twentieth of June until the end of July. The land, which had been repeatedly flooded, was then parched and cracked, and the late sown crops germinated poorly. August was wet and cold, and those who delayed haying for finer weather found little opportunity to cure it properly. Grain grew well, but corn, potatoes and roots were at a standstill. September continued damp and cloudy, sunshine averaging only a little over three hours a day. Corn did not grow well, and was practically a total failure throughout the district. In October, rain fell on seventeen days, making it difficult to harvest the grain in good condition. Much of it was still green when cut, and seed, as a rule, was of poor quality. November continued dull. On the twenty-sixth the ground froze up so that no further field work could be done.

Some Weather Observations taken at Cap Rouge Experimental Station, 1912.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature F.</th>
<th>Precipitation</th>
<th>Total Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest</td>
<td>Lowest</td>
<td>Mean</td>
</tr>
<tr>
<td>January</td>
<td>34</td>
<td>-24.2</td>
<td>1.94</td>
</tr>
<tr>
<td>February</td>
<td>35</td>
<td>-19.2</td>
<td>2.00</td>
</tr>
<tr>
<td>March</td>
<td>43</td>
<td>-14.2</td>
<td>15.28</td>
</tr>
<tr>
<td>April</td>
<td>60</td>
<td>5.2</td>
<td>31.35</td>
</tr>
<tr>
<td>May</td>
<td>80</td>
<td>26.2</td>
<td>51.31</td>
</tr>
<tr>
<td>June</td>
<td>83</td>
<td>35.2</td>
<td>56.18</td>
</tr>
<tr>
<td>July</td>
<td>92</td>
<td>44.2</td>
<td>60.81</td>
</tr>
<tr>
<td>August</td>
<td>77</td>
<td>39.2</td>
<td>59.20</td>
</tr>
<tr>
<td>September</td>
<td>74</td>
<td>31.2</td>
<td>53.37</td>
</tr>
<tr>
<td>October</td>
<td>72</td>
<td>28.2</td>
<td>44.94</td>
</tr>
<tr>
<td>November</td>
<td>59</td>
<td>10.2</td>
<td>30.92</td>
</tr>
<tr>
<td>December</td>
<td>47</td>
<td>-13.2</td>
<td>16.83</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIELD CROP YIELDS.

With the exception of hay, the yield of all crops was below average. No further explanation than the inclement weather need be given for the poor showing made, and indicated in the following table:

Field Crop Areas and Yields, Cap Rouge, 1912.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Variety</th>
<th>Acreage</th>
<th>Total Yield</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>Longfellow</td>
<td>7.31</td>
<td>40,185</td>
<td>2 tons, 1,497 lb.</td>
</tr>
<tr>
<td>Turnips</td>
<td>Select Purple Top</td>
<td>3.00</td>
<td>33,790</td>
<td>5 " 1,382 "</td>
</tr>
<tr>
<td>Potatoes</td>
<td>Irish Cobbler</td>
<td>1.00</td>
<td>1,713</td>
<td>28 bush. 33 "</td>
</tr>
<tr>
<td>Oats</td>
<td>Banner</td>
<td>1.92</td>
<td>5,565</td>
<td>1 ton. 898 "</td>
</tr>
<tr>
<td>Oats</td>
<td>(ripened) Banner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hay</td>
<td>Timothy</td>
<td>21.75</td>
<td>65,250</td>
<td>1 1/2 "</td>
</tr>
</tbody>
</table>

Total area in field crops 87.59

ROTATION OF CROPS.

With a view to learning something of the relative value of different rotations, and of showing the advantages of a well-ordered succession of crops over long continued growing of the same crops, four rotations were inaugurated in 1911. The work with them has been continued, but we do not feel warranted in presenting any figures until we have the results of at least one more year's work. It will be noted that rotation 'J' is omitted from the number reported as having been started last year. It has been temporarily dropped to make room for the extension of the orchard. Rotation 'B' of five years' duration has been added, so that there are now under test the following:

Rotation 'D' (three years' duration).

First year.—Corn, roots, potatoes, peas, and peas and oats mixed to cut for green feed or for hay.

Second year.—Oats. Seeded down with 10 pounds red clover, 6 pounds timothy, and 3 pounds alsike per acre.

Third year.—Clover hay. Two crops cut if possible.

Rotation 'C' (four years' duration).

First year.—Corn, roots, potatoes, peas, and peas and oats mixed to cut for green feed or for hay.

Second year.—Grain. Seeded down.

Third year.—Clover hay.

Fourth year.—Pasture.
SESSIONAL PAPER No. 16

Rotation 'B' (five years' duration).

First year.—Corn, roots, potatoes, peas, and peas and oats mixed for green feed or for hay.
Second year.—Grain. Seeded down.
Third year.—Clover hay.
Fourth year.—Grain. Seeded down.
Fifth year.—Clover hay.

Rotation 'K' (six years' duration).

First year.—Corn, roots, potatoes, peas, and peas and oats mixed for green feed or for hay.
Second year.—Grain. Seeded down.
Third year.—Hay.
Fourth year.—Hay.
Fifth year.—Pasture.
Sixth year.—Pasture.

PLANTING CORN IN HILLS AND DRILLS.

The experiment started in 1911 to learn the relative merits of sowing corn in drills and in hills in this climate and locality has been continued. The following table shows the results for each year, and the average for two years.

Planting Fodder Corn in Hills and Drills.

<table>
<thead>
<tr>
<th>Method of Planting</th>
<th>Yield 1911</th>
<th>Yield 1912</th>
<th>Average yield 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tons.</td>
<td>Tons.</td>
<td>Tons.</td>
</tr>
<tr>
<td>In drills 42 inches apart, 8 inches between plants</td>
<td>13.89</td>
<td>4.69</td>
<td>9.29</td>
</tr>
<tr>
<td>48 8 " " " " " " "</td>
<td>13.82</td>
<td>3.83</td>
<td>8.92</td>
</tr>
<tr>
<td>In hills 42 42 " " " " " "</td>
<td>11.92</td>
<td>3.83</td>
<td>6.37</td>
</tr>
<tr>
<td>36 36 " " " " " "</td>
<td>11.33</td>
<td>3.98</td>
<td>6.00</td>
</tr>
</tbody>
</table>

The rather marked difference in favour of the drill-sown corn may be partly accounted for in 1912 by the nature of the season. The almost incessant rainfall prevented seeding until June 19. A long drought then followed. The corn sown in drills with the horse planter, was seeded deeper, and nearer moisture, than that sown in hills with the hand machine. The drilled corn, therefore, germinated more quickly and was cultivated at an earlier date, thus receiving an advantage at the outset that counted for much in that particular season. This test will be continued and reported upon next year.
EXPERIMENTAL FARM FOR MANITOBA, BRANDON, MAN.

REPORT OF THE SUPERINTENDENT, W. C. McKILLCAN, B.S.A.

ROTATION OF CROPS.

There is a growing sentiment in the province of Manitoba in favour of increasing the number of live stock kept, growing more forage crops, and thus going in for that system of agriculture, known as mixed farming. This province has long been known as a grain-growing country. It seemed specially adapted to that purpose; the great fertility of the soil, the ease with which large areas could be cultivated, and the quality of the grain produced, all tended to make wheat production the mainstay of prairie farming. Thirty years of that method have begun to bring about the inevitable result. Weeds are becoming more prevalent, fertility is beginning to fail, and soil blowing is becoming more of a difficulty, each year. These difficulties are more perceptible on some farms than on others, depending on how well the land has been farmed.

The very essence of the advantage of mixed farming, is that it makes possible a more scientific rotation of crops than can be practised under grain growing. By causing the various crops to follow each other in the most desirable sequence, it is possible that the fertility and cleanliness of the land may be kept up, and that each crop may leave the land in a suitable condition for its successor. In order to get definite information as to what rotations are suited for Manitoban conditions, eight different rotations have been adopted for this Experimental Farm. Some of these have been in operation for a few years, others are partly in operation, and one has not yet been started.

In order that the results obtained in various years may be comparable, fixed valuations have been established upon which to calculate them. These valuations will be used from year to year, regardless of fluctuations in rates of wages and values of products. Thus, in some seasons the actual profits will really be greater than is shown, in others, when prices for products are low, the profits will be less. These constant values, however, permit of a fairer comparison of the different rotations, and of periods of years within a single rotation.
The following values have been fixed:

Return values.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat (from the machine)</td>
<td>1½c.</td>
</tr>
<tr>
<td>Barley</td>
<td>1c.</td>
</tr>
<tr>
<td>Oats</td>
<td>1½c.</td>
</tr>
<tr>
<td>Peas</td>
<td>3c.</td>
</tr>
<tr>
<td>Flax</td>
<td>3c.</td>
</tr>
<tr>
<td>Timothy hay</td>
<td>$10.00</td>
</tr>
<tr>
<td>Red Clover hay</td>
<td>10.00</td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td>12.00</td>
</tr>
<tr>
<td>Brome Grass hay</td>
<td>10.00</td>
</tr>
<tr>
<td>Western Rye Grass hay</td>
<td>10.00</td>
</tr>
<tr>
<td>Mixed hay</td>
<td>10.00</td>
</tr>
<tr>
<td>Green hay</td>
<td>10.00</td>
</tr>
<tr>
<td>Oat straw</td>
<td>2.00</td>
</tr>
<tr>
<td>Barley straw</td>
<td>2.00</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>1.00</td>
</tr>
<tr>
<td>Pea straw</td>
<td>2.00</td>
</tr>
<tr>
<td>Flax straw</td>
<td>2.00</td>
</tr>
<tr>
<td>Dry corn stalks</td>
<td>5.00</td>
</tr>
<tr>
<td>Corn ensilage</td>
<td>3.00</td>
</tr>
<tr>
<td>Mangel's and turnips</td>
<td>3.00</td>
</tr>
<tr>
<td>Sugar beets</td>
<td>4.00</td>
</tr>
<tr>
<td>Pasture, each horse</td>
<td>1.00</td>
</tr>
<tr>
<td>Cow</td>
<td>1.00</td>
</tr>
<tr>
<td>Sheep</td>
<td>25.00</td>
</tr>
</tbody>
</table>

Cost values.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent</td>
<td>2.00</td>
</tr>
<tr>
<td>Barnyard manure spread on fields</td>
<td>1.00</td>
</tr>
<tr>
<td>Seed wheat</td>
<td>1.50</td>
</tr>
<tr>
<td>Seed oats</td>
<td>1.00</td>
</tr>
<tr>
<td>Seed barley</td>
<td>1.00</td>
</tr>
<tr>
<td>(All other seeds to be charged at actual cost. Cost of grass seed to be charged equally on the years producing grass. Twine charged at actual cost.)</td>
<td></td>
</tr>
<tr>
<td>Machinery</td>
<td>60.00</td>
</tr>
<tr>
<td>Manual labour</td>
<td>19.00</td>
</tr>
<tr>
<td>Horse labour (including teamster)</td>
<td></td>
</tr>
<tr>
<td>Single horse (including teamster)</td>
<td>27.00</td>
</tr>
<tr>
<td>Two-horse team</td>
<td>34.00</td>
</tr>
<tr>
<td>Three-horse team</td>
<td>41.00</td>
</tr>
<tr>
<td>Four-horse team</td>
<td>48.00</td>
</tr>
<tr>
<td>Additional horses per hour</td>
<td>7.00</td>
</tr>
<tr>
<td>(Work done by traction engine is to be converted into the amount of horse labour required to do the work, and charged accordingly.)</td>
<td></td>
</tr>
<tr>
<td>Threshing (covering work from stook to granary)</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>7.00</td>
</tr>
<tr>
<td>Oats</td>
<td>4.00</td>
</tr>
<tr>
<td>Barley</td>
<td>5.00</td>
</tr>
<tr>
<td>Flax</td>
<td>12.00</td>
</tr>
<tr>
<td>Peas</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Rotation ‘D’ (four years’ duration).

First year.—Wheat.
Second year.—Wheat. Manured preceding fall at rate of 3 tons per acre.
Third year.—Oats.
Fourth year.—Summer-fallow.
This is a typical grain-farming rotation, except that manure is applied every four years. The first crop of wheat is sown on summer-fallowed land. After the crop is harvested the land is manured in the fall and then ploughed. A second crop of wheat is then sown. The stubble is ploughed in the fall, if possible, and a crop of oats is grown the following year. The land is summer-fallowed in the fourth year, in preparation for wheat again. The soil on which this rotation is located is a black loam, varying from clayey to sandy. Operations were commenced on this rotation in 1910, and it has been in full operation in 1911 and 1912.

Rotation 'E' (four years' duration).

First year.—Wheat.
Second year.—Wheat.
Third year.—Oats.
Fourth year.—Summer-fallow.

This is identically the same rotation as 'D,' except that no manure is applied at any time. It is the same rotation as used by many of the best grain farmers in Manitoba. The operations have been exactly the same as on 'D,' except for the application of manure. The land is the same as 'D,' each field lying contiguous to the corresponding field in 'D.'

Rotation 'F' (five years' duration).

First year.—Wheat.
Second year.—Wheat.
Third year.—Corn or roots. Manured preceding fall.
Fourth year.—Oats or barley Seeded with grass and clover.
Fifth year.—Clover hay.

This is a mixed-farming rotation for conditions where there is such a sufficiency of permanent pasture that it does not have to be included in the rotation. It provides hay and corn or roots, for stock, and substitutes the latter crops for summer-fallow. It produces a crop, on every field, every year. It gives two-fifths of the land to wheat.

The first year, wheat is sown on the clover sod of the former fifth year. After the wheat is taken off, the land is fall ploughed. Wheat is sown again the second year. The land is then manured in the fall, and either fall or spring ploughed. The third year corn is planted, and the land is kept clean by frequent intertillage. Barley or oats is sown the fourth year on the corn stubble, without ploughing. Along with the barley or oats is sown a mixture of 3 pounds of timothy, 5 pounds of western rye grass and 8 pounds of red clover per acre. The fifth year, a crop of hay, largely clover, is harvested. As soon as the hay is off, the land is ploughed, and worked up for the wheat of the first year again.

The soil on which this experiment is located is black loam and is mostly of a fairly heavy clay mixture. This rotation was begun in 1910, and by this year (1912), was almost in full operation. The only exception was a piece of three acres in the field allotted to corn; this piece was rather bad with couch grass, and was given an exceptionally thorough summer-fallowing in an effort to get rid of this pest.
Rotation 'G' (six years' duration).

First year.—Wheat.
Second year.—Wheat.
Third year.—Oats and barley. Seeded with grass and clover.
Fourth year.—Clover hay.
Fifth year.—Pasture.
Sixth year.—Corn or roots. Manured preceding fall.

This is a mixed-farming rotation which provides for one-third of the farm in wheat and, in addition, gives a good area to different kinds of feed for live stock, including pasture. The latter necessitates the building of divisional fences between the fields.

The wheat of the first year is sown among the stubble of the corn of the sixth year, without ploughing. The trash from the corn is raked off and burned, and the land harrowed. After the first crop of wheat is harvested the land is fall ploughed for a second crop. After the second crop, it is again fall ploughed. The third crop is oats or barley, and with it is sown a mixture of 5 pounds of timothy and 8 pounds of red clover, per acre. The fourth year, there is a crop of hay, mostly clover. As soon as it is removed, the aftermath is used for pasture. The fifth year is pasture, up till about the middle of July or first of August, when the aftermath of the hay field is ready to carry the stock. The pasture is then manured, and ploughed under. There having been only two years of grass, the sod is not very hard to plough, and does not need to be backset. The sixth year is corn or roots. These are thoroughly cultivated, so that the land is left as clean as a good summer-fallow, and is ready for wheat again, without ploughing.

The land used for rotation 'G' is a heavy clay loam. This rotation was the first started on the Farm, and has been in full operation several years.

The amount of hand labour expended on the corn this year was exceptional, and is due to a set of circumstances, including poor seed, late spring, dry June, and very wet July, which made extra efforts necessary if the field were to be kept clean.

Rotation 'H' (six years' duration).

First year.—Wheat.
Second year.—Wheat.
Third year.—Summer-fallow.
Fourth year.—Oats. Seeded with grass and clover.
Fifth year.—Hay.
Sixth year.—Pasture. Manured.

This is a mixed-farming rotation, suitable for those who do not wish to grow corn or roots on a large scale. It gives one-third of the land to wheat, and one-sixth each to oats, hay and pasture. It requires divisional fences on account of the pasture.

The rotation is located on heavy clay land. A change has been made in the nature of this rotation, and this year, 1912, is the first year of the present order of crops. The land on which it is located is rather badly infested with couch grass. An effort is being made to put it in good shape. However, at the present time, it is not fair to the rotation to publish a comparison of results, obtained here, as contrasted with results obtained on land in good condition.
Rotation 'I' (six years' duration).

First year.—Flax.
Second year.—Oats.
Third year.—Summer-fallow.
Fourth year.—Wheat. Seeded with grass and clover.
Fifth year.—Hay.
Sixth year.—Pasture. Manured.

This rotation is very similar to 'H,' the difference being that one crop of wheat is replaced by flax, and the position of the other crop of wheat is changed with the oats, so that the seeding down is with wheat. This rotation is in the present order this year for the first time. It occupies half of the same fields as occupied by 'H,' and is under the same disadvantage as regards couch grass.

The seeding mixture for both 'H' and 'I' is as follows: 8 pounds western rye grass, 6 pounds red clover and 2 pounds alsike per acre.

Rotation 'Q' (eight years' duration).

First year.—Roots and peas.
Second year.—Wheat or oats. Seeded with grass and clover.
Third year.—Hay.
Fourth year.—Hay.
Fifth year.—Pasture.
Sixth year.—Pasture.
Seventh year.—Pasture.
Eighth year.—Green feed and rape. Manured in fall.

This rotation is located in a piece of poor, gravelly soil, on the high land, at the rear of the Experimental Farm. It is used as a sheep farm, and the rotation is arranged accordingly. The first year is divided between peas and turnips. They are sown on land that grew green feed and rape the year before, and was manured and fall ploughed. The next year, the field is seeded down, with oats or wheat as a nurse crop. Two years of hay and three of pasture follow. In the last year of pasture, the land is ploughed in midsummer, and backset the following spring. A crop of green feed (peas and oats), and a crop of rape for pasture, are grown the last year. The land is then manured, and ploughed for the first year crops again.

This rotation was in partial operation in 1911 and 1912, but is not yet in complete operation.

Rotation 'W' (ten years' duration).

First year.—Wheat.
Second year.—Wheat.
Third year.—Corn or roots.
Fourth year.—Oats.
Fifth year.—Barley.
Sixth year.—Alfalfa. Seeded without nurse crop.
Seventh year.—Alfalfa.
Eighth year.—Alfalfa.
Ninth year.—Alfalfa.
Tenth year.—Alfalfa.
This is distinctly an alfalfa rotation. For the use of this crop it is necessary to have a long rotation, as the alfalfa is expensive to seed, and takes some time to reach its highest production. This rotation would be best suited to a dairy or stock farm, as half the land is alfalfa.

The soil on which rotation 'W' is used, is heavy clay. This rotation has not yet been started. All that has been done is to allot a block of land, and get most of it seeded to alfalfa. The land has not as yet been subdivided. The first year wheat will be sown on land that grew alfalfa for four years and was ploughed in midsummer after the first cutting of the last year of alfalfa was taken off. After fall ploughing, another crop of wheat will be taken off. The land will then be heavily manured, and sown to corn or roots. Following the hoed crop, oats will be sown, without ploughing. Following the oats, a crop of early maturing barley (probably beardless) will be grown, and the land given a partial summer-fallow, either before the barley is sown or after it comes off. The next year, alfalfa will be sown without a nurse crop. Three full years of alfalfa hay, and a first cutting of the fourth year, will be harvested. The land will then be ploughed in midsummer, and made ready for wheat again.

The details of costs, returns and profits of rotations 'D,' 'E,' 'F' and 'G' are given in the following table:
<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Area</th>
<th>Crop</th>
<th>Rent and manure</th>
<th>Seed, lime, and use of machinery</th>
<th>Manual Labour</th>
<th>Horse labour (including teamster)</th>
<th>Cost of horse labour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ c.</td>
<td>$ c.</td>
<td>Hrs.</td>
<td>Cost.</td>
<td>Hours.</td>
</tr>
<tr>
<td>Ac. 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 1</td>
<td>Plot 1</td>
<td>3.5</td>
<td>Summer-fallow</td>
<td>7.00</td>
<td>2.10</td>
<td>219</td>
<td>3.33</td>
<td>204</td>
</tr>
<tr>
<td>D 2</td>
<td>Plot 2</td>
<td>3.5</td>
<td>Oats</td>
<td>12.25</td>
<td>6.86</td>
<td>143</td>
<td>3.12</td>
<td>12.00</td>
</tr>
<tr>
<td>D 2</td>
<td>Plot 3</td>
<td>3.5</td>
<td>Wheat</td>
<td>12.25</td>
<td>8.07</td>
<td>94</td>
<td>4.13</td>
<td>11.35</td>
</tr>
<tr>
<td>D 1</td>
<td>Plot 4</td>
<td>3.5</td>
<td>Wheat</td>
<td>7.00</td>
<td>8.79</td>
<td>51</td>
<td>5.00</td>
<td>3.92</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Location</th>
<th>Area</th>
<th>Crop</th>
<th>Rent and manure</th>
<th>Seed, lime, and use of machinery</th>
<th>Manual Labour</th>
<th>Horse labour (including teamster)</th>
<th>Cost of horse labour</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 4</td>
<td>Plot 1</td>
<td>3.5</td>
<td>Summer-fallow</td>
<td>7.00</td>
<td>2.10</td>
<td>219</td>
<td>3.33</td>
<td>204</td>
</tr>
<tr>
<td>E 3</td>
<td>Plot 2</td>
<td>3.5</td>
<td>Oats</td>
<td>7.00</td>
<td>6.83</td>
<td>143</td>
<td>3.12</td>
<td>12.00</td>
</tr>
<tr>
<td>E 2</td>
<td>Plot 3</td>
<td>3.5</td>
<td>Wheat</td>
<td>7.00</td>
<td>8.07</td>
<td>94</td>
<td>4.13</td>
<td>11.35</td>
</tr>
<tr>
<td>E 1</td>
<td>Plot 4</td>
<td>3.5</td>
<td>Wheat</td>
<td>7.00</td>
<td>8.79</td>
<td>51</td>
<td>5.00</td>
<td>3.92</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Location</th>
<th>Area</th>
<th>Crop</th>
<th>Rent and manure</th>
<th>Seed, lime, and use of machinery</th>
<th>Manual Labour</th>
<th>Horse labour (including teamster)</th>
<th>Cost of horse labour</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 5</td>
<td>Plot 1</td>
<td>8.0</td>
<td>Wheat</td>
<td>16.00</td>
<td>18.96</td>
<td>274</td>
<td>37.00</td>
<td>26.92</td>
</tr>
<tr>
<td>F 4</td>
<td>Plot 2</td>
<td>8.0</td>
<td>Wheat</td>
<td>16.00</td>
<td>20.28</td>
<td>274</td>
<td>37.00</td>
<td>10.31</td>
</tr>
<tr>
<td>F 3</td>
<td>Plot 3</td>
<td>8.0</td>
<td>Hay</td>
<td>16.00</td>
<td>26.16</td>
<td>274</td>
<td>37.00</td>
<td>6.30</td>
</tr>
<tr>
<td>F 2</td>
<td>Plot 4</td>
<td>8.0</td>
<td>Barley</td>
<td>23.89</td>
<td>15.08</td>
<td>284</td>
<td>13.50</td>
<td>16.04</td>
</tr>
<tr>
<td>F 1</td>
<td>Plot 5</td>
<td>8.0</td>
<td>Corn</td>
<td>28.80</td>
<td>23.00</td>
<td>125</td>
<td>63.00</td>
<td>82.01</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Location</th>
<th>Area</th>
<th>Crop</th>
<th>Rent and manure</th>
<th>Seed, lime, and use of machinery</th>
<th>Manual Labour</th>
<th>Horse labour (including teamster)</th>
<th>Cost of horse labour</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 4</td>
<td>Plot 1</td>
<td>6.0</td>
<td>Hay</td>
<td>12.00</td>
<td>10.50</td>
<td>124</td>
<td>2.61</td>
<td>4.25</td>
</tr>
<tr>
<td>G 3</td>
<td>Plot 2</td>
<td>6.0</td>
<td>Barley</td>
<td>12.00</td>
<td>12.21</td>
<td>24</td>
<td>4.20</td>
<td>19.20</td>
</tr>
<tr>
<td>G 2</td>
<td>Plot 3</td>
<td>6.0</td>
<td>Wheat</td>
<td>20.00</td>
<td>14.40</td>
<td>25</td>
<td>9.18</td>
<td>20.83</td>
</tr>
<tr>
<td>G 1</td>
<td>Plot 4</td>
<td>6.0</td>
<td>Wheat</td>
<td>29.00</td>
<td>15.29</td>
<td>25</td>
<td>6.96</td>
<td>10.96</td>
</tr>
<tr>
<td>G 5</td>
<td>Plot 5</td>
<td>6.0</td>
<td>Corn</td>
<td>26.00</td>
<td>17.88</td>
<td>154</td>
<td>60.00</td>
<td>42.34</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sessional Paper No. 16

"D."

In Raising Crop.

<table>
<thead>
<tr>
<th>Cost of Threshing</th>
<th>Total Cost</th>
<th>Cost for 1 Acre</th>
<th>Cost for 1 Bus. of 1 Ton.</th>
<th>Height of Stubble</th>
<th>Grain</th>
<th>Straw</th>
<th>Hay</th>
<th>Roots and Stalks</th>
<th>Total Value</th>
<th>Value of Crop per Acre</th>
<th>Profit per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>Ins.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>67</td>
<td>5 62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 29</td>
<td>0 40</td>
<td>64 11 61</td>
<td>0 20</td>
<td>6,970</td>
<td>5,400</td>
<td>8 400</td>
<td></td>
<td>78 10</td>
<td>22 31</td>
<td>10 70</td>
<td>-5 62</td>
</tr>
<tr>
<td>5 53</td>
<td>0 38</td>
<td>64 10 96</td>
<td>0 48</td>
<td>4,740</td>
<td>4,800</td>
<td>8,900</td>
<td></td>
<td>65 60</td>
<td>18 74</td>
<td>7 78</td>
<td></td>
</tr>
<tr>
<td>9 10</td>
<td>0 30</td>
<td>34 8 61</td>
<td>0 43</td>
<td>7,800</td>
<td>9,600</td>
<td></td>
<td></td>
<td>108 80</td>
<td>31 08</td>
<td>22 47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>252 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 03</td>
<td>8 83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| "E."
7 40	0 34	56 9 87	0 19	7,072	8 400			71 30	20 37	10 50	-5 62
4 65	0 32	41 9 26	0 49	3,900	4,800			54 40	15 54	6 28	
9 10	0 30	14 8 61	0 43	7,800	9,600			106 80	31 08	22 47	
								234 30			
								14 75	8 41		

| "F."
13 23	77 77	0 9 72	0 45	11,340	14 400			158 60	19 80	10 68	
22 40	71 27	8 91	0 49	15,200	22 300			36 70	33 40	24 52	
53 40	0 68							60 85	7 61	0 93	
22 10	84 90	0 61	0 19	21,210	19 200			24 16	30 17	19 66	
41 25	202 51	25 31		110,000	165 00			105 00	20 62	-4 60	3 acres S.F. for couch grass, hence loss.
	489 85							893 01			
	429 25							12 33	10 00		

| "G."
17 00	61 68	10 25	0 18	16,320	19 800			180 00	30 60	19 74	
13 37	70 50	11 75	0 37	11,490	12 900			158 80	26 47	14 72	
15 19	63 16	10 53	0 39	13,020	15 000			182 60	30 45	19 90	
42 75	174 94	29 16		144,000	171 00			114,000	23 50	0 66	Pasture on afternoon worth $27.
25 80	4 30							54 00	9 00	4 70	Pastured 18 cattle 3 m.
	425 34							843 40			
	11 81							23 43	11 62		

16—103
CULTURAL EXPERIMENTS.

The work of inaugurating the system of cultural experiments has made progress during the year. All the operations which the system called for have been carried out. On most of the experiments, the preparatory work has been completed, and results should now be obtained. On some experiments, where several years of preparation are necessary, the work has not yet reached the stage where results are expected.

Operations commenced on the cultural plots on April 29, but wet weather prevented further operations until May 9. Spring ploughing and other spring work was accomplished with difficulty on account of the wet condition of the soil. Later on, the weather turned very dry, and the germination of turnips and rape was uneven. During the hot dry weather of June, a difference could be observed in the plots under the various methods of treatment. The heavy rains of July caused an excessive growth of straw, and a large amount of secondary shooting. Oats and barley lodged very badly, and it was impossible to entirely avoid waste in harvesting. As a result of these peculiar weather conditions, the results obtained are almost valueless. Methods that theory and practice have heretofore shown to be objectionable, have produced just as good yields as the best methods; in some cases, such as in depth of ploughing, the results that would be expected are practically reversed. The year’s results are, therefore, quite disappointing; instead of giving some definite information, as was expected, the figures are largely contradictory and confusing. We report the yields, as they occurred, for what they may be worth.

DEPTH OF PLOUGHING WHEAT STUBBLE TO BE SOWN TO OATS.

The wheat stubble was ploughed and disced the preceding fall. The oats were sown May 16. All plots came up on May 27, headed on July 17, were cut on September 10 and were threshed on September 25.

Depth of Ploughing Wheat Stubble to be sown to Oats.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Depth of Ploughing Wheat Stubble, fall of 1911</th>
<th>Yield of Oats per acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Ploughed 3 inches deep</td>
<td>2,800</td>
</tr>
<tr>
<td>2</td>
<td>Ploughed 4 inches deep</td>
<td>2,680</td>
</tr>
<tr>
<td>3</td>
<td>Ploughed 5 inches deep</td>
<td>2,800</td>
</tr>
</tbody>
</table>

DEPTH OF PLOUGHING SUMMER-FALLOW TO BE SOWN TO WHEAT.

The land was ploughed on June 15, 1911, was packed and harrowed after ploughing, and was cultivated twice afterwards, during the summer, with a stiff tooth cultivator, and harrowed after the first cultivation. Wheat was sown on all plots on May 13, 1912, after a double harrowing. All plots came up on May 22, headed on June 8, were cut on August 7 and threshed on September 12.
Depth of Ploughing Summer-fallow to be sown to Wheat.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Depth of Ploughing Summer-fallow, 1911.</th>
<th>Yield of Wheat per acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain.</td>
</tr>
<tr>
<td>1</td>
<td>Ploughing 3 inches deep.</td>
<td>2,600</td>
</tr>
<tr>
<td>2</td>
<td>Ploughing 4 inches deep.</td>
<td>2,560</td>
</tr>
<tr>
<td>3</td>
<td>Ploughing 6 inches deep.</td>
<td>2,400</td>
</tr>
<tr>
<td>4</td>
<td>Ploughing 6 inches deep.</td>
<td>2,400</td>
</tr>
<tr>
<td>5</td>
<td>Ploughing 7 inches deep.</td>
<td>2,240</td>
</tr>
<tr>
<td>6</td>
<td>Ploughing 8 inches deep.</td>
<td>2,480</td>
</tr>
<tr>
<td>7</td>
<td>Ploughing 8 inches deep and subsoiling 4 inches.</td>
<td>2,440</td>
</tr>
<tr>
<td>8</td>
<td>Ploughing 8 inches deep and subsoiling 4 inches.</td>
<td>2,160</td>
</tr>
<tr>
<td>9</td>
<td>Ploughing 7 inches deep and subsoiling 4 inches.</td>
<td>2,520</td>
</tr>
<tr>
<td>10</td>
<td>Ploughing 8 inches deep and subsoiling 4 inches.</td>
<td>2,640</td>
</tr>
</tbody>
</table>

Depth of Ploughing Sod to be Sown to Wheat.

There has not been time to get results on this part of the experiment, as the first grass seed was sown in 1911; and, consequently, there was no sod to plough up the same season. Sod has been ploughed, the various depths, in 1912, and the 1913 crop will give the yields produced thereon.

Summer-fallow Treatment.

The plots on which this year’s results are obtained, were summer-fallowed in 1911. With the exception of plots 11 and 13, they were ploughed on June 14, 1911. Those getting a second ploughing, received it on September 28, 1911. The other operations, during the summer, were according to the methods outlined below. Wheat was sown on May 10, and, with the exception of plot 10, came up on May 19. On plot 10, it came up on May 21. All headed out on July 6, were ripe on August 26, cut on August 28 and threshed on September 12.
Treatment of Summer-fallow to be sown to wheat.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment of Summer-fallow, 1911.</th>
<th>Yield of Wheat per Acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>--</td>
<td>Grain.</td>
</tr>
<tr>
<td>1</td>
<td>Plough 4 inches, June, pack if necessary and practicable, cultivate as necessary.</td>
<td>2,560</td>
</tr>
<tr>
<td>2</td>
<td>Plough 6 inches, June, pack if necessary and practicable, cultivate as necessary.</td>
<td>2,560</td>
</tr>
<tr>
<td>3</td>
<td>Plough 8 inches, June, pack if necessary and practicable, cultivate as necessary.</td>
<td>2,760</td>
</tr>
<tr>
<td>4</td>
<td>Plough 4 inches, June, cultivate.</td>
<td>2,400</td>
</tr>
<tr>
<td>5</td>
<td>Plough 4 inches, September, harrow.</td>
<td>2,720</td>
</tr>
<tr>
<td>6</td>
<td>Plough 5 inches, June, cultivate.</td>
<td>2,280</td>
</tr>
<tr>
<td>7</td>
<td>Plough 6 inches, September, harrow.</td>
<td>2,400</td>
</tr>
<tr>
<td>8</td>
<td>Plough 4 inches, September, harrow.</td>
<td>2,280</td>
</tr>
<tr>
<td>9</td>
<td>Plough 4 inches, June, early as possible, cultivate.</td>
<td>2,210</td>
</tr>
<tr>
<td>10</td>
<td>Plough 5 inches, June, seed to rape or other green forage crop and pasture off.</td>
<td>2,320</td>
</tr>
<tr>
<td>11</td>
<td>Plough 6 inches, May 15, harrow and pack if necessary, cultivate as necessary.</td>
<td>2,730</td>
</tr>
<tr>
<td>12</td>
<td>Plough 6 inches, June 15, harrow and pack if necessary, cultivate as necessary.</td>
<td>2,520</td>
</tr>
<tr>
<td>13</td>
<td>Plough 6 inches, July 15, harrow and pack if necessary, cultivate as necessary.</td>
<td>2,440</td>
</tr>
<tr>
<td>14</td>
<td>Fall cultivate before summer-fallowing. Plough 6 inches, June, harrow and pack if necessary, cultivate as necessary.</td>
<td>2,440</td>
</tr>
<tr>
<td>15</td>
<td>Plough 6 inches, June, harrow and pack if necessary, cultivate as necessary.</td>
<td>2,720</td>
</tr>
<tr>
<td>16</td>
<td>Plough 6 inches, June, pack, cultivate as necessary.</td>
<td>2,790</td>
</tr>
<tr>
<td>17</td>
<td>Plough 6 inches, June, no packing, otherwise same as other plots.</td>
<td>2,600</td>
</tr>
</tbody>
</table>

STUBBLE TREATMENT.

The plots on which this experiment was conducted, grew wheat in 1911. The treatment of the stubble was performed, according to directions given below, in the fall of 1911 and spring of 1912. Wheat was sown on plots 1 to 10, on May 13; they all came up on May 23; plots 3, 4 and 5 headed out on July 6; plots 1, 2, 6, 7, 8, 9 and 10 headed out on July 8. All ripened on August 28, were cut on August 31, and threshed on September 25. Plots 11, 12 and 13 were sown to oats on May 16. All came up on May 28, headed out on July 20, were ripe on September 11, were cut on September 11 and threshed October 3.
DIVISION OF FIELD HUSBANDRY

SESSIONAL PAPER No. 16

TREATMENT of Wheat Stubble to be sown to Wheat.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment given Wheat Stubble preceding Wheat</th>
<th>Yield of Wheat per acre, 1912</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain.</td>
<td>Straw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lb.</td>
<td>Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Plough, autumn</td>
<td>1,720</td>
<td>2,680</td>
</tr>
<tr>
<td>2</td>
<td>Disc harrow, autumn</td>
<td>2,080</td>
<td>3,200</td>
</tr>
<tr>
<td>3</td>
<td>Burn stubble—then disc, autumn</td>
<td>2,120</td>
<td>2,720</td>
</tr>
<tr>
<td>4</td>
<td>Burn stubble—then plough, autumn</td>
<td>1,900</td>
<td>2,900</td>
</tr>
<tr>
<td>5</td>
<td>Burn stubble in spring—seed at once</td>
<td>2,200</td>
<td>3,320</td>
</tr>
<tr>
<td>6</td>
<td>Plough in spring—seed at once</td>
<td>3,280</td>
<td>3,320</td>
</tr>
<tr>
<td>7</td>
<td>Disc at cutting time—spring plough.</td>
<td>1,520</td>
<td>3,500</td>
</tr>
<tr>
<td>8</td>
<td>Disc at cutting time—autumn plough.</td>
<td>2,400</td>
<td>3,900</td>
</tr>
<tr>
<td>9</td>
<td>Plough, autumn—subsurface pack at once</td>
<td>2,250</td>
<td>3,720</td>
</tr>
<tr>
<td>10</td>
<td>Plough, spring—seed—subsurface pack</td>
<td>1,680</td>
<td>3,120</td>
</tr>
</tbody>
</table>

TREATMENT of Wheat Stubble to be sown to Oats.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment given Wheat Stubble preceding Oats</th>
<th>Yield of Oats per acre, 1912</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain.</td>
<td>Straw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lb.</td>
<td>Lb.</td>
</tr>
<tr>
<td>11</td>
<td>Plough, autumn—subsurface pack at once</td>
<td>3,400</td>
<td>3,800</td>
</tr>
<tr>
<td>12</td>
<td>Plough, spring—seed, subsurface pack</td>
<td>3,320</td>
<td>3,880</td>
</tr>
<tr>
<td>13</td>
<td>Cultivate, autumn—spring plough, seed</td>
<td>3,440</td>
<td>3,160</td>
</tr>
</tbody>
</table>

SEEDING TO GRASS AND CLOVER.

The various operations that were called for this year, in this experiment, were carried through. As several years' preparatory work are necessary, in growing the different crops which precede the seeding down, it has not been possible to obtain results as yet.

The following are the methods being tested in this experiment:

1. Seeding Rye grass 10 pounds, and red clover 10 pounds with nurse crop on summer-fallow.
2. Seeding Rye grass 10 pounds, and red clover 10 pounds, alone after summer-fallow.
3. Seeding Rye grass 10 pounds, and red clover 10 pounds, with nurse crop on first year after hoed crop.
4. Seeding Rye grass 10 pounds, and red clover 10 pounds, alone after hoed crop.
5. Seeding Rye grass 10 pounds, and red clover 10 pounds, with nurse crop on first year wheat stubble.
6. Seeding Rye grass 10 pounds, and red clover 10 pounds, alone after first year wheat.
7. Seeding Rye grass and red clover with oats to cut green on first year wheat stubble.
8. Seeding Rye grass 10 pounds, and red clover 10 pounds, alone on first year wheat stubble, manure 8 tons per acre, ploughed preceding fall.
9. Seeding Rye grass 10 pounds, and red clover 10 pounds, with nurse crop on second year wheat stubble.
10. Seeding Rye grass 10 pounds, and red clover 10 pounds, alone after second year grain (oats).
11. Seeding Rye grass 10 pounds, and red clover 10 pounds, with nurse crop on second year after hoed crop.

BREAKING SOD FROM CULTIVATED GRASSES AND CLOVERS.

As the block of land allotted to this experiment was not in sod at the start, it was first necessary to grow the sod. The land was seeded down in 1911, produced a crop of hay this year (1912), and will be ready for the first set of plots to be broken up in 1913.
The following methods are to be tried in this experiment:

1. Plough July 20 to 30, 5 inches deep. Pack and disc at once—disc in fall.
3. Plough early July, 3 inches deep. Backset September, cultivate as necessary.
4. Stiff tooth rip July—plough 5 inches deep September—cultivate.
5. Spring plough, 5 inches deep—seed same spring to wheat.
6. Duplicate No. 5—sow flax.
7. Repeat No. 5—sow peas.
8. Plough May 15—work as summer-fallow.

APPLICATION OF BARNYARD MANURE.

Two years' work have now been put on these experiments, and the various operations have been carried out each season. A third year is necessary on many of the plots before comparative results are obtained, as most of the work, in these two seasons, has been of a preparatory nature.

The following methods of applying manure are being tried:

For Corn.

1. No manure, second year stubble, ploughed in autumn.
2. Apply on surface in autumn after ploughing second year stubble, and work in at once.
3. Apply in spring on surface of ploughed land, second year stubble, and work in at once.
4. Plough in autumn right after applying, second year stubble.
5. Plough in spring right after applying, second year stubble.
6. Winter apply, plough in spring, second year stubble.
7. Winter apply, green manure (cut straw) on second year stubble—plough in spring.
8. Winter apply, green manure (cut straw) on summer-fallow—disc in.

For Wheat.

1. Apply in winter green manure (cut straw) first year stubble—disc in.
2. Apply in winter green manure (cut straw) summer-fallow—disc in.
3. Apply with spreader after grain sown on first year stubble.
4. Apply with spreader after grain sown on summer-fallow.
5. No manure—fall ploughed—first year stubble.
6. Apply on surface first year stubble and plough in, in autumn.
7. Apply on surface first year stubble and plough in, in spring.
8. No manure—disc—first year stubble.

For Barley.

1. Apply in winter green manure (cut straw) on first year stubble—disc in.
2. Apply in winter green manure (cut straw) on summer-fallow, sow barley on summer-fallow.
3. Apply with spreader after barley sown on first year stubble.
4. Apply with spreader after seeding barley on summer-fallow.
5. No manure—fall ploughed—first year stubble.
6. Apply on surface first year stubble and plough in, in autumn.
7. Apply on surface first year stubble and plough in, in spring.
8. No manure—disc—first year stubble.

For Oats.

1. Apply in winter green manure (cut straw) first year stubble—disc in.
2. Apply in winter green manure (cut straw) summer-fallow—disc in.
3. Apply with spreader after grain sown on first year stubble.
4. Apply with spreader after grain sown on summer-fallow.
5. No manure—fall ploughed—first year stubble.
6. Apply on surface first year stubble and plough in, in autumn.
7. Apply on surface first year stubble and plough in, in spring.
8. No manure—disc—first year stubble.
DIYISIOX

SESSIONAL PAPER No. 16

GREEN MANURING.

In this experiment the plots were given the treatment described below in 1911, and were sown to wheat in the spring of 1912. Plots 1, 5 and 6 were ploughed on June 15, 1911. The crops of green peas and tares were ploughed in, on plots 2, 3 and 4, on July 15, 1911. Manure was applied on plot 5 on October 20, 1911. Wheat was sown on all these plots on May 11, 1912. All came up on May 20. Plot 5 headed out on July 4 and the others on July 8. All ripened on August 28, were cut on August 31 and threshed on September 25.

Green Manuring for Wheat, followed by Oats.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment of land year previous to Wheat</th>
<th>Yield of Wheat per acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
</tr>
<tr>
<td>1</td>
<td>Summer-fallow</td>
<td>2,320</td>
</tr>
<tr>
<td>2</td>
<td>Peas, two bushels Golden Vine (or other similar variety), ploughed under early in July.</td>
<td>2,280</td>
</tr>
<tr>
<td>3</td>
<td>Peas, two bushels Golden Vine, ploughed under when in blossom.</td>
<td>2,240</td>
</tr>
<tr>
<td>4</td>
<td>Tares, one bushel per acre, ploughed under late July.</td>
<td>2,520</td>
</tr>
<tr>
<td>5</td>
<td>Summer-fallow. Barnyard manure, 12 tons per acre, applied on summer-fallow in September.</td>
<td>2,680</td>
</tr>
<tr>
<td>6</td>
<td>Summer-fallow</td>
<td>2,920</td>
</tr>
</tbody>
</table>

SEED BED PREPARATION.

This experiment was conducted with wheat sown on summer-fallow. The summer-fallowing had been equally well done on all plots. The plot called ‘poor preparation’ was harrowed once, the one called ‘good preparation’ was harrowed twice, and the one called ‘extraordinary preparation’ was harrowed four times. The wheat was sown on May 9; it came up on May 20, on plots 2 and 3, and on May 22, on plot 1. All ripened on August 28, were cut on August 31 and threshed September 25.

Preparation of Seed Bed for Wheat.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment given.</th>
<th>Yield of Wheat per acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Poor preparation</td>
<td>1,410</td>
</tr>
<tr>
<td>2</td>
<td>Good preparation</td>
<td>1,640</td>
</tr>
<tr>
<td>3</td>
<td>Extraordinary preparation</td>
<td>1,560</td>
</tr>
</tbody>
</table>

This experiment was also conducted with oats on fall-ploughed wheat stubble. The land was ploughed on October 23. The ‘poor preparation’ plot was sown after ploughing and packing only. The ‘good preparation’ plot was ploughed, harrowed twice and packed. The ‘extraordinary preparation’ plot was ploughed, harrowed four times and packed. The oats were sown on May 14, came up on all plots on May 26, headed on July 17, were ripe on September 10, cut on September 10 and threshed on October 2.
Preparation of Seed Bed for Oats.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment given</th>
<th>Yield of Oats per acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
</tr>
<tr>
<td>1</td>
<td>Poor preparation</td>
<td>3,040</td>
</tr>
<tr>
<td>2</td>
<td>Good preparation</td>
<td>3,640</td>
</tr>
<tr>
<td>3</td>
<td>Extraordinary preparation</td>
<td>3,640</td>
</tr>
</tbody>
</table>

SOIL PACKERS.

Packing for Wheat sown on Summer-fallow.

The plots for this experiment were all summer-fallowed in 1911. Plots 15 to 20 were packed, after ploughing, as described in the following table. The ploughing was all done on June 14. Packing and other spring work was done on May 10 and 11. All plots were sown to wheat on May 10, all came up on May 19; plots 2, 6, 7, 8, 9, 10, 18, 19 and 25 headed out on July 4, plots 3, 4, 11, 12, 13, 14, 15, 16, 17 and 21 headed out on July 6; plots 1, 22, 23 and 24 headed out on July 8. All ripened on August 26 and were cut on August 28.

Soil Packing in Preparation for Wheat following Summer-fallow.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Cultural Treatment Given</th>
<th>Yield of Wheat per Acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds</td>
</tr>
<tr>
<td>1</td>
<td>Harrow, seed</td>
<td>2,440</td>
</tr>
<tr>
<td>2</td>
<td>Harrow, surface pack</td>
<td>2,920</td>
</tr>
<tr>
<td>3</td>
<td>Harrow, subsurface pack</td>
<td>2,640</td>
</tr>
<tr>
<td>4</td>
<td>Harrow, combination pack</td>
<td>2,750</td>
</tr>
<tr>
<td>5</td>
<td>Harrow</td>
<td>2,680</td>
</tr>
<tr>
<td>6</td>
<td>Harrow</td>
<td>2,640</td>
</tr>
<tr>
<td>7</td>
<td>Surface pack, seed, surface pack</td>
<td>2,680</td>
</tr>
<tr>
<td>8</td>
<td>Subsurface pack, seed, subsurface pack</td>
<td>2,680</td>
</tr>
<tr>
<td>9</td>
<td>Combination pack, seed, combination pack</td>
<td>2,680</td>
</tr>
<tr>
<td>10</td>
<td>Plough for summer-fallow, surface pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>11</td>
<td>Plough for summer-fallow, subsurface pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>12</td>
<td>Plough for summer-fallow, combination pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>13</td>
<td>Plough for summer-fallow, surface pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>14</td>
<td>Plough for summer-fallow, subsurface pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>15</td>
<td>Plough for summer-fallow, combination pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>16</td>
<td>Plough for summer-fallow, surface pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>17</td>
<td>Plough for summer-fallow, subsurface pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>18</td>
<td>Plough for summer-fallow, combination pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>19</td>
<td>Plough for summer-fallow, surface pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>20</td>
<td>Plough for summer-fallow, subsurface pack, cultivate; next spring, smoothing</td>
<td>2,680</td>
</tr>
<tr>
<td>21</td>
<td>Harrow, seed</td>
<td>2,680</td>
</tr>
<tr>
<td>22</td>
<td>Harrow when 6 inches high</td>
<td>2,680</td>
</tr>
<tr>
<td>23</td>
<td>Surface pack when 6 inches high</td>
<td>2,680</td>
</tr>
<tr>
<td>24</td>
<td>Roll when 6 inches high</td>
<td>2,680</td>
</tr>
<tr>
<td>25</td>
<td>Roll when 6 inches high</td>
<td>2,680</td>
</tr>
</tbody>
</table>
Packing for Wheat Sown on Spring-Ploughed Stubble Land.

The plots on which this part of the experiment was conducted were in wheat the previous year. They were all ploughed April 29. The harrowing and packing was done on May 10 and 11. Wheat was sown on May 10; all plots came up on May 21. Plots 4, 5 and 6 headed on July 4; plots 8 and 10 headed on July 6, and plots 1, 2, 3, 7, 9 and 11 headed on July 8. All ripened on August 26, were cut on August 30 and threshed on September 25.

Soon Packing for Wheat sown on Spring-ploughed Stubble Land.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Cultural Treatment Given</th>
<th>Yield of Wheat per Acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds</td>
</tr>
<tr>
<td>1</td>
<td>Harrow, subsurface pack, harrow, seed</td>
<td>2,080</td>
</tr>
<tr>
<td>2</td>
<td>Harrow, surface pack, harrow, seed</td>
<td>2,400</td>
</tr>
<tr>
<td>3</td>
<td>Harrow, combination pack, harrow, seed</td>
<td>2,360</td>
</tr>
<tr>
<td>4</td>
<td>Harrow, subsurface pack, harrow, seed, subsurface pack</td>
<td>2,280</td>
</tr>
<tr>
<td>5</td>
<td>Harrow, surface pack, harrow, seed, surface pack</td>
<td>2,440</td>
</tr>
<tr>
<td>6</td>
<td>Harrow, combination pack, harrow, seed, combination pack</td>
<td>2,240</td>
</tr>
<tr>
<td>7</td>
<td>Harrow, seed, harrow</td>
<td>2,160</td>
</tr>
<tr>
<td>8</td>
<td>Harrow, seed, surface pack</td>
<td>2,080</td>
</tr>
<tr>
<td>9</td>
<td>Harrow, seed, subsurface pack</td>
<td>2,640</td>
</tr>
<tr>
<td>10</td>
<td>Harrow, seed, combination pack</td>
<td>2,120</td>
</tr>
<tr>
<td>11</td>
<td>Harrow, seed</td>
<td>2,080</td>
</tr>
</tbody>
</table>

Packing for Wheat sown on Fall-Ploughed Stubble Land.

The plots on which this part of the experiment was conducted were in wheat the previous year. They were all ploughed on October 5, and no further work was done during the fall. The harrowing and packing was done on May 10 and 11. Wheat was sown, on all plots, on May 10. All came up on May 20. Plots 23, 24 and 25 headed out on July 4; the remainder headed on July 6. All ripened on August 26, were cut on August 30 and threshed on September 25.
Soil Packing for Wheat sown on Fall-Ploughed Stubble Land.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Cultural Treatment Given</th>
<th>Yield of Wheat per Acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds</td>
</tr>
<tr>
<td>12</td>
<td>No packer, harrow, seed</td>
<td>2,840</td>
</tr>
<tr>
<td>13</td>
<td>Subsurface pack in fall, seed in spring</td>
<td>2,080</td>
</tr>
<tr>
<td>14</td>
<td>Subsurface pack in spring, then seed</td>
<td>2,000</td>
</tr>
<tr>
<td>15</td>
<td>Subsurface pack in spring, after seeding</td>
<td>2,120</td>
</tr>
<tr>
<td>16</td>
<td>Surface pack in fall, seed in spring</td>
<td>2,080</td>
</tr>
<tr>
<td>17</td>
<td>Surface pack in spring, then seed</td>
<td>2,000</td>
</tr>
<tr>
<td>18</td>
<td>Surface pack in spring, after seeding</td>
<td>2,120</td>
</tr>
<tr>
<td>19</td>
<td>Combination pack in fall, seed in spring</td>
<td>2,040</td>
</tr>
<tr>
<td>20</td>
<td>Combination pack in spring, then seed</td>
<td>2,000</td>
</tr>
<tr>
<td>21</td>
<td>Combination pack in spring, after seeding</td>
<td>1,800</td>
</tr>
<tr>
<td>22</td>
<td>No packer, harrow, seed</td>
<td>1,820</td>
</tr>
<tr>
<td>23</td>
<td>Surface pack in fall, seed, surface pack</td>
<td>1,800</td>
</tr>
<tr>
<td>24</td>
<td>Subsurface pack in fall, seed, subsurface pack</td>
<td>2,000</td>
</tr>
<tr>
<td>25</td>
<td>Combination pack in fall, seed, combination pack</td>
<td>1,760</td>
</tr>
</tbody>
</table>

Depth of Seeding.

This experiment was tried with wheat on summer-fallow. The land was given the usual good cultivation. Wheat was sown, on all plots, on May 13. Plots 1 and 2 came up on May 22, plot 3 on May 23 and plot 4 on May 24. Plots 1 and 2 headed out on July 8 and plots 3 and 4 on July 10. All ripened on August 26, were cut on August 27 and threshed on September 12.

Depths of Seeding Wheat.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Depths Sown</th>
<th>Yield of Wheat per Acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds</td>
</tr>
<tr>
<td>1</td>
<td>Sowing 1 inch deep</td>
<td>2,200</td>
</tr>
<tr>
<td>2</td>
<td>Sowing 2 inches deep</td>
<td>2,440</td>
</tr>
<tr>
<td>3</td>
<td>Sowing 3 inches deep</td>
<td>1,880</td>
</tr>
<tr>
<td>4</td>
<td>Sowing 4 inches deep</td>
<td>2,000</td>
</tr>
</tbody>
</table>

This experiment was also tried with oats, on wheat stubble. The stubble land was ploughed on October 24, the previous fall, and was worked into good tilth in the spring.

Oats were sown, on all plots, on May 16. Plots 1 and 2 came up on May 27, and plots 3 and 4 on May 28. All plots headed out on July 17, ripened on September 10, were cut on September 10 and threshed on October 2.
DIVISION OF FIELD HUSBANDRY

SESSIONAL PAPER No. 16

DEPTHS of Seeding Oats.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Depths Sown.</th>
<th>YIELD OF WHEAT PER ACRE, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds.</td>
</tr>
<tr>
<td>1</td>
<td>Sowing 1 inch deep</td>
<td>3,000</td>
</tr>
<tr>
<td>2</td>
<td>Sowing 2 inches deep</td>
<td>2,840</td>
</tr>
<tr>
<td>3</td>
<td>Sowing 3 inches deep</td>
<td>2,960</td>
</tr>
<tr>
<td>4</td>
<td>Sowing 4 inches deep</td>
<td>3,120</td>
</tr>
</tbody>
</table>

COMMERCIAL FERTILIZERS.

The plots for this experiment grew wheat in 1911, and the fertilizers were applied when the wheat was sown. This year they grew oats, without any further fertilizing. The oats were sown on May 14; all plots came up on May 26, headed out on July 17, ripened on September 10, were cut on September 11 and threshed on October 3.

APPLICATION of Commercial Fertilizers.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment Given.</th>
<th>YIELD OF OATS PER ACRE, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds.</td>
</tr>
<tr>
<td>1</td>
<td>Check. No fertilizer</td>
<td>3,720</td>
</tr>
<tr>
<td>2</td>
<td>320 pounds nitrate of soda per acre</td>
<td>3,640</td>
</tr>
<tr>
<td>3</td>
<td>600 pounds superphosphate per acre</td>
<td>3,480</td>
</tr>
<tr>
<td>4</td>
<td>200 pounds muriate of potash per acre</td>
<td>3,920</td>
</tr>
<tr>
<td>5</td>
<td>Check. No fertilizer</td>
<td>3,640</td>
</tr>
<tr>
<td>6</td>
<td>320 pounds nitrate of soda per acre</td>
<td>3,720</td>
</tr>
<tr>
<td>7</td>
<td>600 pounds superphosphate per acre</td>
<td>3,760</td>
</tr>
<tr>
<td>8</td>
<td>320 pounds nitrate of soda per acre</td>
<td>3,600</td>
</tr>
<tr>
<td>9</td>
<td>600 pounds superphosphate per acre</td>
<td>3,640</td>
</tr>
<tr>
<td>10</td>
<td>200 pounds muriate of potash per acre</td>
<td>3,400</td>
</tr>
<tr>
<td>11</td>
<td>Basic slag, 1000 pounds per acre</td>
<td>3,400</td>
</tr>
</tbody>
</table>

UNDERDRAINAGE.

These plots produced wheat this year, 1912, following wheat in 1911. They were all ploughed on October 16; sufficient cultivation was given in the spring to put the land in good tilth. The wheat was sown on all plots, on May 11, came up on May 21, headed out on July 4, was ripe on August 27, cut on August 30 and threshed on September 25.
UNDRAINED Land versus Land Drained 3 feet and 4 feet deep.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment Given.</th>
<th>Yield of Wheat, per Acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds.</td>
</tr>
<tr>
<td>1</td>
<td>Undrained</td>
<td>2,040</td>
</tr>
<tr>
<td>2</td>
<td>Undrained</td>
<td>2,000</td>
</tr>
<tr>
<td>3</td>
<td>Drain 3 feet deep</td>
<td>1,960</td>
</tr>
<tr>
<td>4</td>
<td>Undrained</td>
<td>2,960</td>
</tr>
<tr>
<td>5</td>
<td>Undrained</td>
<td>2,040</td>
</tr>
<tr>
<td>6</td>
<td>Undrained</td>
<td>2,120</td>
</tr>
<tr>
<td>7</td>
<td>Undrained</td>
<td>2,080</td>
</tr>
<tr>
<td>8</td>
<td>Drain 4 feet deep</td>
<td>2,060</td>
</tr>
<tr>
<td>9</td>
<td>Undrained</td>
<td>2,160</td>
</tr>
<tr>
<td>10</td>
<td>Undrained</td>
<td>2,160</td>
</tr>
</tbody>
</table>

QUANTITIES OF SEED PER ACRE.

Wheat sown on Wheat Stubble.

The land was fall ploughed, and was harrowed and packed in the spring. The wheat was sown on May 16.

Quantities of Wheat sown on Wheat Stubble.

<table>
<thead>
<tr>
<th>Quantity of Seed per Acre.</th>
<th>No. of Days Maturing.</th>
<th>Yield of Wheat per Acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
</tr>
<tr>
<td>2 bushels</td>
<td>102</td>
<td>25</td>
</tr>
<tr>
<td>1 1/2 bushels</td>
<td>104</td>
<td>24</td>
</tr>
<tr>
<td>1 3/4 bushels</td>
<td>104</td>
<td>28</td>
</tr>
<tr>
<td>1 bushel</td>
<td>106</td>
<td>27</td>
</tr>
<tr>
<td>3/4 bushel</td>
<td>108</td>
<td>31</td>
</tr>
</tbody>
</table>

Wheat sown on Summer-fallow.

The land was well summer-fallowed, in 1911. The wheat was sown on May 8.

Quantities of Wheat sown on Summer-fallow.

<table>
<thead>
<tr>
<th>Quantity of Seed per Acre.</th>
<th>No. of Days Maturing.</th>
<th>Yield of Wheat per Acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
</tr>
<tr>
<td>2 bushels</td>
<td>105</td>
<td>38</td>
</tr>
<tr>
<td>1 1/2 bushels</td>
<td>105</td>
<td>37</td>
</tr>
<tr>
<td>1 3/4 bushels</td>
<td>107</td>
<td>31</td>
</tr>
<tr>
<td>1 bushel</td>
<td>107</td>
<td>31</td>
</tr>
<tr>
<td>3/4 bushel</td>
<td>108</td>
<td>28</td>
</tr>
<tr>
<td>1/2 bushel</td>
<td>109</td>
<td>32</td>
</tr>
</tbody>
</table>
The land was ploughed in the fall of 1911; it was harrowed and packed in the spring, and sown to oats on May 16. There was a considerable amount of volunteer grain, from the previous crop, which thickened the stand.

Oats sown on Oat Stubble.

Quantity of Oats sown on Oat Stubble.

<table>
<thead>
<tr>
<th>Quantity of Seed per Acre</th>
<th>No. of Days Maturing</th>
<th>Yield of Oats per Acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 bushels</td>
<td>116</td>
<td>80 00</td>
</tr>
<tr>
<td>3½ bushels</td>
<td>116</td>
<td>89 16</td>
</tr>
<tr>
<td>3 bushels</td>
<td>117</td>
<td>85 39</td>
</tr>
<tr>
<td>2½ bushels</td>
<td>117</td>
<td>80 00</td>
</tr>
<tr>
<td>2 bushels</td>
<td>118</td>
<td>80 40</td>
</tr>
<tr>
<td>1½ bushels</td>
<td>118</td>
<td>88 38</td>
</tr>
</tbody>
</table>

Oats sown on Summer-fallow.

The land was well summer-fallowed, in 1911. The oats were sown on May 9.

Quantity of Oats sown on Summer-fallow.

<table>
<thead>
<tr>
<th>Quantity of Seed per Acre</th>
<th>No. of Days Maturing</th>
<th>Yield of Oats per Acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 bushels</td>
<td>117</td>
<td>125 30</td>
</tr>
<tr>
<td>3½ bushels</td>
<td>117</td>
<td>122 12</td>
</tr>
<tr>
<td>3 bushels</td>
<td>117</td>
<td>125 30</td>
</tr>
<tr>
<td>2½ bushels</td>
<td>118</td>
<td>121 00</td>
</tr>
<tr>
<td>2 bushels</td>
<td>118</td>
<td>117 22</td>
</tr>
<tr>
<td>1½ bushels</td>
<td>119</td>
<td>116 16</td>
</tr>
</tbody>
</table>

Barley sown on Barley Stubble.

The land was ploughed the preceding fall. It was harrowed and packed in the spring, and the seed sown on May 20. There was a considerable quantity of volunteer grain, from the previous crop, which thickened the stand of grain.

Quantities of Barley sown on Barley Stubble.

<table>
<thead>
<tr>
<th>Quantity of Seed per Acre</th>
<th>No. of Days Maturing</th>
<th>Yield of Barley per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 bushels</td>
<td>95</td>
<td>57 24</td>
</tr>
<tr>
<td>2½ bushels</td>
<td>97</td>
<td>66 40</td>
</tr>
<tr>
<td>2½ bushels</td>
<td>97</td>
<td>52 24</td>
</tr>
<tr>
<td>2½ bushels</td>
<td>98</td>
<td>55 00</td>
</tr>
<tr>
<td>1½ bushels</td>
<td>101</td>
<td>54 08</td>
</tr>
<tr>
<td>1½ bushels</td>
<td>101</td>
<td>66 32</td>
</tr>
</tbody>
</table>
Barley sown on Summer-fallow.

The soil was the same as used for wheat and oats. The seed was sown on May 20.

<table>
<thead>
<tr>
<th>Quantity of Seed per Acre</th>
<th>No. of days Maturing</th>
<th>Yield of Barley per acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
</tr>
<tr>
<td>3 bushels</td>
<td>98</td>
<td>82</td>
</tr>
<tr>
<td>2½ bushels</td>
<td>98</td>
<td>89</td>
</tr>
<tr>
<td>2 bushels</td>
<td>98</td>
<td>86</td>
</tr>
<tr>
<td>1½ bushels</td>
<td>99</td>
<td>82</td>
</tr>
<tr>
<td>1½ bushels</td>
<td>99</td>
<td>74</td>
</tr>
</tbody>
</table>

Flax sown on Summer-fallow.

The land was well summer-fallowed in 1911, and was harrowed before the flax was sown. The flax was sown on June 8.

<table>
<thead>
<tr>
<th>Quantity of Seed per Acre</th>
<th>No. of days Maturing</th>
<th>Yield of Flax per acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
</tr>
<tr>
<td>43 lb.</td>
<td>107</td>
<td>17</td>
</tr>
<tr>
<td>38 lb.</td>
<td>107</td>
<td>14</td>
</tr>
<tr>
<td>33 lb.</td>
<td>107</td>
<td>19</td>
</tr>
<tr>
<td>32 lb.</td>
<td>107</td>
<td>20</td>
</tr>
<tr>
<td>23 lb.</td>
<td>108</td>
<td>17</td>
</tr>
<tr>
<td>18 lb.</td>
<td>108</td>
<td>18</td>
</tr>
</tbody>
</table>

WEATHER CONDITIONS, 1912.

The season of 1912 was one of extremes. Spring was cold and backward; a heavy snowfall in the middle of April delayed the commencement of seeding, and frequent light showers kept the land unfit for cultivation and made all crops late in being sown. Next followed a period of extreme drought. June was the driest June in the history of the Farm. July went to the other extreme again, with an unusually heavy rainfall. Wet conditions continued until the end of September, and greatly hampered harvesting and threshing, and lowered the quality of the grain crops. October and November were fine and gave a most acceptable opportunity for catching up with the sadly delayed farm operations. The winter season has been about normal, with the usual amount of cold weather and snow.
Some Weather Observations taken at Brandon Experimental Farm, 1912.

<table>
<thead>
<tr>
<th>Months</th>
<th>Temperature F.</th>
<th>Precipitation</th>
<th>Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest</td>
<td>Lowest</td>
<td>Mean</td>
</tr>
<tr>
<td>January</td>
<td>25.9</td>
<td>-45.0</td>
<td>-13.0</td>
</tr>
<tr>
<td>February</td>
<td>34.0</td>
<td>-7.7</td>
<td>4.6</td>
</tr>
<tr>
<td>March</td>
<td>41.9</td>
<td>-25.2</td>
<td>15.1</td>
</tr>
<tr>
<td>April</td>
<td>71.9</td>
<td>14.0</td>
<td>41.2</td>
</tr>
<tr>
<td>May</td>
<td>84.0</td>
<td>21.0</td>
<td>51.5</td>
</tr>
<tr>
<td>June</td>
<td>101.5</td>
<td>35.0</td>
<td>62.1</td>
</tr>
<tr>
<td>July</td>
<td>97.8</td>
<td>36.0</td>
<td>63.1</td>
</tr>
<tr>
<td>August</td>
<td>82.1</td>
<td>38.4</td>
<td>55.9</td>
</tr>
<tr>
<td>September</td>
<td>80.2</td>
<td>18.5</td>
<td>49.8</td>
</tr>
<tr>
<td>October</td>
<td>75.7</td>
<td>16.0</td>
<td>41.6</td>
</tr>
<tr>
<td>November</td>
<td>52.9</td>
<td>5.0</td>
<td>29.2</td>
</tr>
<tr>
<td>December</td>
<td>39.9</td>
<td>-27.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARM FOR SOUTHERN SASKATCHEWAN, INDIAN HEAD, SASK.

REPORT OF THE SUPERINTENDENT, ANGUS MACKAY.

ROTATION OF CROPS.

In 1910 the first of a series of rotations considered more or less suitable for conditions such as obtain in many parts of Saskatchewan was laid down. A fifty-acre field was divided into nine equal areas of 5.55 acres each, and a rotation of nine years' duration commenced. This was followed in 1911 with an eight-year rotation comprised of fields of five acres each, and a three-year rotation in which twenty acres were divided into three equal parts. In the spring of 1912 thirty more acres became available, on which was inaugurated a six-year rotation.

It is proposed to study these carefully over a long period of years, so that in addition to learning something of their relative merits as crop producers and weed destroyers, we may secure information as to their effect on soil fertility. On some of them, roots, corn and legumes have been introduced, the object being to supply foods of a kind suitable for stock-feeding purposes.

It will require the evidence of many years of comparison before we can accept results as being final, but we shall publish our figures from year to year, and make what comment that seems warranted and likely to be of service to our readers.

The following is a description of these rotations, and tables with details regarding the crops grown thereon, this year:

Rotation 'C'.

First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat.

Rotation 'P'.

First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat.
Fourth year.—Summer-fallow.
Fifth year.—Roots or legumes. Manured 15 tons per acre.
Sixth year.—Barley. Seeded down with rye grass, red clover and alfalfa.
Seventh year.—Hay.
Eighth year.—Pasture.

Rotation 'R'.

First year.—Summer-fallow.
Second year.—Hoed crops or legumes. Manured 15 tons per acre.
Third year.—Wheat.
Fourth year.—Oats.
Fifth year.—Summer-fallow.
Sixth year.—Wheat.
Seventh year.—Oats. Seeded down with rye grass, red clover and alfalfa.
Eighth year.—Hay.
Ninth year.—Pasture.
The following values have been fixed:

Return Values

<table>
<thead>
<tr>
<th>Crop</th>
<th>Return Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat (from the machine)</td>
<td>1½c</td>
<td>per lb.</td>
</tr>
<tr>
<td>Barley</td>
<td>1c</td>
<td></td>
</tr>
<tr>
<td>Oats</td>
<td>1c</td>
<td></td>
</tr>
<tr>
<td>Peas</td>
<td>1½c</td>
<td></td>
</tr>
<tr>
<td>Flax</td>
<td>3c</td>
<td></td>
</tr>
<tr>
<td>Timothy hay</td>
<td>$10.00</td>
<td>per ton.</td>
</tr>
<tr>
<td>Red clover hay</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>Bromegrass hay</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Western Rye Grass hay</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Mixed hay</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Green hay</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Oat straw</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Barley straw</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Wheat straw</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Flax straw</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Dry corn stalks</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>Corn ensilage</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Mangels and turnips</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Sugar beets</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Pasture, each horse</td>
<td>1.00</td>
<td>per month.</td>
</tr>
<tr>
<td>" cow</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>" sheep</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Cost Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent</td>
<td>2.00</td>
<td>per acre.</td>
</tr>
<tr>
<td>Barnyard manure spread on fields (charged equally over all years of the rotation)</td>
<td>1.00</td>
<td>per ton.</td>
</tr>
<tr>
<td>Seed wheat</td>
<td>1.50</td>
<td>per acre.</td>
</tr>
<tr>
<td>Seed oats</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Seed barley</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

(All other seeds to be charged at actual cost. Cost of grass seed to be charged equally on the years producing grass. Twine charged at actual cost.)

Machinery	60	per acre.
Manual labour	19	per hour.
Horse labour (including teamster)—		
Single horse	27	per hour.
Two-horse team	34	
Three-horse team	41	
Four-horse team	45	
Additional horses	7	

Work done by traction engine is to be converted into the amount of horse labour required to do the work and charged accordingly.

Threshing (covering work from stook to granary)—		
Wheat	7	per bush.
Oats	4	
Barley	5	
Flax	12	
Peas	7	
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

EXPERIMENTAL FARMS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ c.</td>
<td>No.</td>
<td>$ c.</td>
<td></td>
<td>$ c.</td>
</tr>
<tr>
<td>C 2... Lot 1</td>
<td></td>
<td>6.26</td>
<td>Summer-fallow</td>
<td>6.26 Wheat</td>
<td>12 50</td>
<td>20 35</td>
<td>13 1</td>
<td>2.56</td>
<td>2.56</td>
</tr>
<tr>
<td>C 3... Lot 2</td>
<td></td>
<td>6.26</td>
<td>Summer-fallow</td>
<td>6.26 Wheat</td>
<td>12 50</td>
<td>20 10</td>
<td>9 1</td>
<td>1.80</td>
<td>1.80</td>
</tr>
<tr>
<td>C 1... Lot 3</td>
<td></td>
<td>6.26</td>
<td>Summer-fallow</td>
<td>6.26 Wheat</td>
<td>12 50</td>
<td>3 75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aggregate

| A verage per acre in 1912 | | 37 50 | 44 23 | 23 1 | 4.36 | 4.36 |

ROTATION

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ c.</td>
<td>No.</td>
<td>$ c.</td>
<td></td>
<td>$ c.</td>
</tr>
<tr>
<td>P 2... Lot 1</td>
<td></td>
<td>6.00</td>
<td>Summer-fallow</td>
<td>6.00 Wheat</td>
<td>23 25</td>
<td>21 20</td>
<td>19 3</td>
<td>3.61</td>
<td>3.61</td>
</tr>
<tr>
<td>P 3... Lot 2</td>
<td></td>
<td>6.00</td>
<td>Wheat</td>
<td>6.00 Wheat</td>
<td>23 25</td>
<td>21 00</td>
<td>18 3</td>
<td>3.42</td>
<td>3.42</td>
</tr>
<tr>
<td>P 4... Lot 3</td>
<td></td>
<td>6.00</td>
<td>Wheat</td>
<td>6.00 Summer-fallow</td>
<td>23 25</td>
<td>3 60</td>
<td>70 13 30</td>
<td>13 30</td>
<td>13 30</td>
</tr>
<tr>
<td>P 5... Lot 4</td>
<td></td>
<td>6.00</td>
<td>Summer-fallow</td>
<td>6.00 Wheat</td>
<td>23 25</td>
<td>20 30</td>
<td>591 112 20</td>
<td>112 20</td>
<td>112 20</td>
</tr>
<tr>
<td>P 6... Lot 5</td>
<td></td>
<td>6.00</td>
<td>Corn</td>
<td>6.00 Barley</td>
<td>23 25</td>
<td>3 61</td>
<td>28 5 32</td>
<td>5 32</td>
<td>5 32</td>
</tr>
<tr>
<td>P 7... Lot 6</td>
<td></td>
<td>6.00</td>
<td>Barley</td>
<td>6.00 Hay</td>
<td>23 25</td>
<td>3 61</td>
<td>28 5 32</td>
<td>5 32</td>
<td>5 32</td>
</tr>
<tr>
<td>P 8... Lot 7</td>
<td></td>
<td>6.00</td>
<td>Seeded</td>
<td>6.00 Pasture</td>
<td>23 25</td>
<td>3 61</td>
<td>28 5 32</td>
<td>5 32</td>
<td>5 32</td>
</tr>
<tr>
<td>P 1... Lot 8</td>
<td></td>
<td>6.00</td>
<td>Seeded</td>
<td>6.00 Summer-fallow</td>
<td>23 25</td>
<td>3 61</td>
<td>28 5 32</td>
<td>5 32</td>
<td>5 32</td>
</tr>
</tbody>
</table>

Aggregate

| A verage per acre in 1912 | | 186 60 | 81 71 | 154 145 25 | 145 25 |

ROTATION

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ c.</td>
<td>No.</td>
<td>$ c.</td>
<td></td>
<td>$ c.</td>
</tr>
<tr>
<td>R 3... Lot 1</td>
<td></td>
<td>5.5</td>
<td>Hoed crop</td>
<td>5.5 Wheat</td>
<td>20 16</td>
<td>19 03</td>
<td>19 19 3.70</td>
<td>3.70</td>
<td>3.70</td>
</tr>
<tr>
<td>R 4... Lot 2</td>
<td></td>
<td>5.5</td>
<td>Wheat</td>
<td>5.5 Oats</td>
<td>20 16</td>
<td>16 06</td>
<td>10 1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>R 5... Lot 3</td>
<td></td>
<td>5.5</td>
<td>Oats</td>
<td>5.5 Summer-fallow</td>
<td>20 16</td>
<td>16 06</td>
<td>19 1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>R 6... Lot 4</td>
<td></td>
<td>5.5</td>
<td>Summer-fallow</td>
<td>5.5 Wheat</td>
<td>20 16</td>
<td>18 81</td>
<td>20 3 86</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>R 7... Lot 5</td>
<td></td>
<td>5.5</td>
<td>Wheat</td>
<td>5.5 Oats</td>
<td>20 16</td>
<td>16 79</td>
<td>9 1.80</td>
<td>1.80</td>
<td>1.80</td>
</tr>
<tr>
<td>R 8... Lot 6</td>
<td></td>
<td>5.5</td>
<td>Oats</td>
<td>5.5 Hay</td>
<td>20 16</td>
<td>3 30</td>
<td>22 4 18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>R 9... Lot 7</td>
<td></td>
<td>5.5</td>
<td>Hay</td>
<td>5.5 Pasture</td>
<td>20 16</td>
<td>3 30</td>
<td>22 4 18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>R 1... Lot 8</td>
<td></td>
<td>5.5</td>
<td>Pasture</td>
<td>5.5 Summer-fallow</td>
<td>20 16</td>
<td>3 30</td>
<td>22 4 18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>R 2... Lot 9</td>
<td></td>
<td>5.5</td>
<td>Summer-fallow</td>
<td>5.5 Corn</td>
<td>20 16</td>
<td>12 10</td>
<td>187 35 53</td>
<td>35 53</td>
<td>35 53</td>
</tr>
</tbody>
</table>

Aggregate

| A verage per acre in 1912 | | 181 41 | 93 29 | 335 63 64 | 63 64 |
Expense in Raising Crop.

<table>
<thead>
<tr>
<th>Horse labour (including teamster).</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>9</td>
<td>5.1</td>
<td>10</td>
<td>78</td>
<td>55</td>
<td>73</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9.25</td>
</tr>
<tr>
<td>11</td>
<td>41</td>
<td>19</td>
<td>66</td>
<td>5</td>
<td>81</td>
<td>55</td>
<td>86</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9.25</td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>48</td>
<td>81</td>
<td>18</td>
<td>16</td>
<td>153</td>
<td>96</td>
<td>24</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>

C.”

Sessionsal Paper No. 16

Particulars of Crop.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>28</td>
<td>35</td>
<td>98</td>
<td>11</td>
<td>99</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

“P.”

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>20</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>79</td>
<td>39</td>
<td>13</td>
<td>23</td>
<td>0</td>
<td>32</td>
<td>9.15</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>11</td>
<td>94</td>
<td>11</td>
<td>33</td>
<td>70</td>
<td>99</td>
<td>11</td>
<td>83</td>
<td>0</td>
<td>44</td>
<td>9.76</td>
</tr>
<tr>
<td>9</td>
<td>64</td>
<td>56</td>
<td>15</td>
<td>14</td>
<td>20</td>
<td>102</td>
<td>65</td>
<td>32</td>
<td>04</td>
<td>32</td>
<td>32</td>
<td>04</td>
</tr>
<tr>
<td>15</td>
<td>91</td>
<td>23</td>
<td>14</td>
<td>83</td>
<td>19</td>
<td>24</td>
<td>89</td>
<td>34</td>
<td>14</td>
<td>80</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>7</td>
<td>37</td>
<td>39</td>
<td>55</td>
<td>6</td>
<td>59</td>
<td>39</td>
<td>55</td>
<td>6</td>
<td>59</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>96</td>
<td>42</td>
<td>08</td>
<td>65</td>
<td>33</td>
<td>10</td>
<td>89</td>
<td>65</td>
<td>33</td>
<td>10</td>
<td>89</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>251</td>
<td>230</td>
<td>196</td>
<td>65</td>
<td>46</td>
<td>80</td>
<td>656</td>
<td>41</td>
<td>109</td>
<td>39</td>
<td>13</td>
<td>67</td>
</tr>
</tbody>
</table>

“R.”

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>42</td>
<td>20</td>
<td>45</td>
<td>18</td>
<td>25</td>
<td>81</td>
<td>60</td>
<td>14</td>
<td>83</td>
<td>0.31</td>
<td>9.15</td>
<td>00</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>15</td>
<td>84</td>
<td>11</td>
<td>92</td>
<td>66</td>
<td>48</td>
<td>12</td>
<td>88</td>
<td>0.22</td>
<td>9.10</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>24</td>
<td>19</td>
<td>47</td>
<td>63</td>
<td>8</td>
<td>66</td>
<td>47</td>
<td>63</td>
<td>8</td>
<td>66</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>22</td>
<td>26</td>
<td>17</td>
<td>42</td>
<td>82</td>
<td>45</td>
<td>14</td>
<td>99</td>
<td>0.33</td>
<td>9.14</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>15</td>
<td>23</td>
<td>9</td>
<td>84</td>
<td>63</td>
<td>82</td>
<td>11</td>
<td>60</td>
<td>0.25</td>
<td>9.11</td>
<td>04</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>4</td>
<td>34</td>
<td>31</td>
<td>88</td>
<td>5</td>
<td>81</td>
<td>31</td>
<td>88</td>
<td>5</td>
<td>81</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>51</td>
<td>88</td>
<td>91</td>
<td>67</td>
<td>16</td>
<td>53</td>
<td>91</td>
<td>67</td>
<td>16</td>
<td>53</td>
<td>254</td>
</tr>
<tr>
<td>52</td>
<td>28</td>
<td>29</td>
<td>16</td>
<td>9</td>
<td>94</td>
<td>17</td>
<td>63</td>
<td>9</td>
<td>94</td>
<td>17</td>
<td>63</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>1034</td>
<td>3124</td>
<td>166</td>
<td>85</td>
<td>37</td>
<td>44</td>
<td>582</td>
<td>16</td>
<td>105</td>
<td>81</td>
<td>11</td>
<td>76</td>
</tr>
</tbody>
</table>
CULTURAL EXPERIMENTS.

In the spring of 1911 our work on soil and crop management was greatly extended. In addition to the inception of rotation tests a comprehensive set of experiments was inaugurated with a view to determining methods of cultivation likely to prove best, within a specified rotation. This work involves 478 plots, each one-fortieth of an acre in extent. Considerable preparatory work was necessary, and even now certain of them have not reached the point where results of value are being obtained. The following brief outline will indicate the object and nature of this work:

Experiment 2A—Depth of ploughing wheat stubble to be sown to oats.

" 2B—Depth of ploughing summer-fallow to be sown to wheat, followed by oats.

" 2C—Depth of ploughing sod to be sown to wheat, followed by oats.

" 3—Summer-fallow treatment previous to sowing wheat.

" 4A—Treatment of wheat stubble to be sown to wheat.

" 4B—Treatment of wheat stubble to be sown to oats.

" 5—Seeding to grass and clover.

" 6—Breaking sod from cultivated grasses and clovers.

" 7A—Applying barnyard manure for corn or roots.

" 7B—Applying barnyard manure for wheat.

" 7C—Applying barnyard manure for barley.

" 7D—Applying barnyard manure for oats.

" 8—Green manuring.

" 9—Seed-bed preparation.

" 10A—Soil packing for wheat sown on summer-fallow.

" 10B—Soil packing for wheat sown on spring-ploughed wheat stubble.

" 10C—Soil packing for wheat sown on fall ploughed stubble land.

" 11—Depth of seeding.

" 12—Commercial fertilizers.

" 13—Underdraining.

DEPTH OF PLOUGHING.

Depth of Ploughing Wheat Stubble to be sown to Oats.

Plot	Depth of Ploughing Wheat Stubble, Fall of 1911	Date of Sowing	Date of Coming Up	Date of Heading	Date of Ripening	Days to Mature	Yield of Oats per Acre, 1912		
1	Ploughed 3 inches deep	May 13	May 26	July 22	Sept. 6	116	2,760	2,840	
2	" 4 "	"	"	"	"	"	116	2,920	2,400
3	" 5 "	"	"	"	"	"	116	2,720	2,360
4	" 5 "	"	"	"	"	"	116	2,800	2,320
5	" 5 "	"	"	"	"	"	116	2,610	2,520
6	" 5 "	"	"	"	"	"	116	3,160	4,000
7	" 5 "	"	"	"	"	"	116	3,220	4,680
8	" 5 "	"	"	"	"	"	116	3,440	3,680
9	" 5 "	"	"	"	"	"	116	3,500	3,320
10	" 5 "	"	"	"	"	"	116	3,840	4,900
Depth of Ploughing Summer-fallow to be sown to Wheat.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Depth of Ploughing Summer-fallow, 1911</th>
<th>Date of Sowing</th>
<th>Date of Coming Up</th>
<th>Date of Heading</th>
<th>Date of Ripening</th>
<th>Days to Mature</th>
<th>Yield of Wheat per Acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ploughing 3 inches deep</td>
<td>Apr. 11</td>
<td>May 10</td>
<td>July 5</td>
<td>Aug 19</td>
<td>130</td>
<td>2,480, 4,360</td>
</tr>
<tr>
<td>2</td>
<td>" 4 "</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 19 "</td>
<td>130</td>
<td>2,920, 3,500</td>
</tr>
<tr>
<td>3</td>
<td>" 5 "</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 19 "</td>
<td>130</td>
<td>2,360, 4,360</td>
</tr>
<tr>
<td>4</td>
<td>" 6 "</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 19 "</td>
<td>130</td>
<td>2,140, 4,360</td>
</tr>
<tr>
<td>5</td>
<td>" 7 "</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 16 "</td>
<td>127</td>
<td>3,000, 4,650</td>
</tr>
<tr>
<td>6</td>
<td>" 8 "</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 16 "</td>
<td>127</td>
<td>3,160, 4,040</td>
</tr>
<tr>
<td>7</td>
<td>Ploughing 5 inches deep and subsoiling 4 inches</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 19 "</td>
<td>130</td>
<td>3,440, 4,520</td>
</tr>
<tr>
<td>8</td>
<td>Ploughing 6 inches deep and subsoiling 4 inches</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 19 "</td>
<td>130</td>
<td>3,040, 5,960</td>
</tr>
<tr>
<td>9</td>
<td>Ploughing 7 inches deep and subsoiling 4 inches</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 20 "</td>
<td>131</td>
<td>3,060, 6,920</td>
</tr>
<tr>
<td>10</td>
<td>Ploughing 8 inches deep and subsoiling 4 inches</td>
<td>" 11 "</td>
<td>" 10 "</td>
<td>" 5 "</td>
<td>" 20 "</td>
<td>131</td>
<td>3,280, 5,360</td>
</tr>
</tbody>
</table>

Depth of Ploughing Sod to be sown to Wheat.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Depth of Plowing Sod, 1911</th>
<th>Date of Sowing</th>
<th>Date of Coming Up</th>
<th>Date of Heading</th>
<th>Date of Ripening</th>
<th>Days to Mature</th>
<th>Yield of Wheat per Acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ploughed 3 inches deep</td>
<td>Apr. 15</td>
<td>May 14</td>
<td>July 16</td>
<td>Aug 19</td>
<td>126</td>
<td>1,780, 3,260</td>
</tr>
<tr>
<td>2</td>
<td>" 4 "</td>
<td>" 15 "</td>
<td>" 14 "</td>
<td>" 16 "</td>
<td>" 19 "</td>
<td>126</td>
<td>1,560, 2,300</td>
</tr>
<tr>
<td>3</td>
<td>" 5 "</td>
<td>" 15 "</td>
<td>" 14 "</td>
<td>" 16 "</td>
<td>" 19 "</td>
<td>126</td>
<td>1,900, 2,060</td>
</tr>
<tr>
<td>4</td>
<td>" 6 "</td>
<td>" 15 "</td>
<td>" 14 "</td>
<td>" 16 "</td>
<td>" 19 "</td>
<td>126</td>
<td>1,780, 5,260</td>
</tr>
</tbody>
</table>
SUMMER-FALLOW TREATMENT.

Treatment of Summer-fallow to be sown to Wheat, followed by Oats.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Treatment of summer-fallow 1911</th>
<th>Date of seeding</th>
<th>Date of coming up</th>
<th>Date of heading</th>
<th>Date of Ripening</th>
<th>Days to mature</th>
<th>Yield of Wheat per acre 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grain</td>
</tr>
<tr>
<td>1</td>
<td>Plough 4 inches June, pack if necessary and practicable, cultivate as necessary</td>
<td>April 11</td>
<td>May 12</td>
<td>June 29</td>
<td>Aug. 15</td>
<td>126</td>
<td>3,490</td>
</tr>
<tr>
<td>2</td>
<td>Plough 6 inches June, pack if necessary and practicable, cultivate as necessary</td>
<td>" 11</td>
<td>" 12</td>
<td>" 20</td>
<td>" 15</td>
<td>126</td>
<td>3,480</td>
</tr>
<tr>
<td>3</td>
<td>Plough 8 inches June, pack if necessary and practicable, cultivate as necessary</td>
<td>" 11</td>
<td>" 12</td>
<td>" 20</td>
<td>" 15</td>
<td>126</td>
<td>3,440</td>
</tr>
<tr>
<td>4</td>
<td>Plough 4 inches June, cultivate. Plough 4 inches September, harrow</td>
<td>" 11</td>
<td>" 12</td>
<td>" 20</td>
<td>" 15</td>
<td>126</td>
<td>3,200</td>
</tr>
<tr>
<td>5</td>
<td>Plough 6 inches June, cultivate. Plough 6 inches September, harrow</td>
<td>" 11</td>
<td>" 12</td>
<td>July 1</td>
<td>" 18</td>
<td>129</td>
<td>3,040</td>
</tr>
<tr>
<td>6</td>
<td>Plough 8 inches June, cultivate. Plough 8 inches September, harrow</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 18</td>
<td>129</td>
<td>3,210</td>
</tr>
<tr>
<td>7</td>
<td>Plough 6 inches June, cultivate. Plough 4 inches September, harrow</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 18</td>
<td>129</td>
<td>3,080</td>
</tr>
<tr>
<td>8</td>
<td>Plough 4 inches June, cultivate. Plough 6 inches September, harrow</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 18</td>
<td>129</td>
<td>2,520</td>
</tr>
<tr>
<td>9</td>
<td>Plough 4 inches June early as possible, cultivate Plough 6 inches September, leave untouched</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 18</td>
<td>129</td>
<td>2,520</td>
</tr>
<tr>
<td>10</td>
<td>Plough 5 inches June, seed to rape or other forage crop and pasture off</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 18</td>
<td>129</td>
<td>2,800</td>
</tr>
<tr>
<td>11</td>
<td>Plough 6 inches May 15, harrow and pack if necessary, cultivate as necessary</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 18</td>
<td>129</td>
<td>3,080</td>
</tr>
<tr>
<td>12</td>
<td>Plough 6 inches June 15, harrow and pack if necessary, cultivate as necessary</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 19</td>
<td>130</td>
<td>3,160</td>
</tr>
<tr>
<td>13</td>
<td>Plough 6 inches July 15, harrow and pack if necessary, cultivate as necessary</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 19</td>
<td>130</td>
<td>3,280</td>
</tr>
<tr>
<td>14</td>
<td>Fall cultivate before summer-fallowing. Plough 6 inches June, harrow and pack if necessary, cultivate as necessary</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 20</td>
<td>131</td>
<td>3,240</td>
</tr>
<tr>
<td>15</td>
<td>Fall plough 4 inches before summer-fallowing. Plough 6 inches June, harrow and pack</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 20</td>
<td>131</td>
<td>3,000</td>
</tr>
<tr>
<td>16</td>
<td>Plough 6 inches June, pack, cultivate as necessary</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 20</td>
<td>131</td>
<td>3,080</td>
</tr>
<tr>
<td>17</td>
<td>Plough 6 inches June, no packing, otherwise same as other plots</td>
<td>" 11</td>
<td>" 12</td>
<td>" 1</td>
<td>" 20</td>
<td>131</td>
<td>3,120</td>
</tr>
</tbody>
</table>
Stubble Treatment

Treatment of Wheat Stubble to be sown to Wheat.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment given Wheat Stubble preceding Wheat.</th>
<th>Date of Sowing</th>
<th>Date of Coming-up.</th>
<th>Date of Heading.</th>
<th>Date of Ripening.</th>
<th>Days to Mature</th>
<th>Yield of Wheat per Acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plough, autumn</td>
<td>April 15</td>
<td>May 12</td>
<td>July 6</td>
<td>Aug. 10</td>
<td>117</td>
<td>1,920</td>
</tr>
<tr>
<td>2</td>
<td>Disc harrow, autumn</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
<td>1,780</td>
</tr>
<tr>
<td>3</td>
<td>Burn stubble, then disc, autumn</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
<td>1,300</td>
</tr>
<tr>
<td>4</td>
<td>Burn stubble, then plough, autumn</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
<td>1,140</td>
</tr>
<tr>
<td>5</td>
<td>Burn stubble in spring, seed at once.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>17</td>
<td>1,540</td>
</tr>
<tr>
<td>6</td>
<td>Plough in spring, seed at once.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
<td>1,850</td>
</tr>
<tr>
<td>7</td>
<td>Disc at cutting time, spring plough.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
<td>1,940</td>
</tr>
<tr>
<td>8</td>
<td>Disc at cutting time, autumn plough.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
<td>1,780</td>
</tr>
<tr>
<td>9</td>
<td>Plough aut, subsurface pack at once.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
<td>2,180</td>
</tr>
<tr>
<td>10</td>
<td>Plough spring, seed, subsurface pack.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
<td>1,540</td>
</tr>
</tbody>
</table>

Treatment of Wheat Stubble to be sown to Oats.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment given Wheat Stubble preceding Oats.</th>
<th>Date of Sowing</th>
<th>Date of Coming-up.</th>
<th>Date of Heading.</th>
<th>Date of Ripening.</th>
<th>Days to Mature</th>
<th>Yield of Oats per Acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Plough autumn, subsurf. pack at once.</td>
<td>May 13</td>
<td>May 23</td>
<td>July 23</td>
<td>Aug. 30</td>
<td>109</td>
<td>2,120</td>
</tr>
<tr>
<td>12</td>
<td>Plough spring, seed, subsurface pack.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>109</td>
<td>2,240</td>
</tr>
<tr>
<td>13</td>
<td>Cultivate autumn, spring ploughin, seed.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>109</td>
<td>2,240</td>
</tr>
</tbody>
</table>

Green Manuring

Green Manuring for Wheat followed by Oats.

<table>
<thead>
<tr>
<th>Plot Number</th>
<th>Treatment of Land year previous to Wheat</th>
<th>Date of Sowing</th>
<th>Date of coming up.</th>
<th>Date of heading.</th>
<th>Date of ripening.</th>
<th>Days to mature</th>
<th>Yield of Wheat per Acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summer-fallow</td>
<td>Apr. 11</td>
<td>May 13</td>
<td>July 8</td>
<td>Aug. 19</td>
<td>130</td>
<td>2,360</td>
</tr>
<tr>
<td>2</td>
<td>Peas, ploughed under early July</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>19</td>
<td>5,140</td>
</tr>
<tr>
<td>3</td>
<td>Peas, ploughed under when in blossom.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>19</td>
<td>3,240</td>
</tr>
<tr>
<td>4</td>
<td>Tares, ploughed under late July</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>19</td>
<td>2,840</td>
</tr>
<tr>
<td>5</td>
<td>Summer-fallow, barnyard manure, 12 tons per acre applied on summer-fallow in September</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>19</td>
<td>3,000</td>
</tr>
<tr>
<td>6</td>
<td>Summer-fallow</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>19</td>
<td>3,000</td>
</tr>
</tbody>
</table>
Preparation of Seed Bed for Wheat following Summer-fallow

<table>
<thead>
<tr>
<th>Plot Number</th>
<th>Treatment given</th>
<th>Date of sowing</th>
<th>Date of coming up</th>
<th>Date of heading</th>
<th>Date of ripening</th>
<th>Days to mature</th>
<th>Yield of Wheat per acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Poor preparation</td>
<td>Apr. 11</td>
<td>May 13</td>
<td>July 5</td>
<td>Aug. 19</td>
<td>130</td>
<td>3,600</td>
</tr>
<tr>
<td>2</td>
<td>Good preparation</td>
<td>" 11"</td>
<td>" 13"</td>
<td>" 5"</td>
<td>" 19"</td>
<td>130</td>
<td>2,920</td>
</tr>
<tr>
<td>3</td>
<td>Extraordinary preparation</td>
<td>" 11"</td>
<td>" 13"</td>
<td>" 5"</td>
<td>" 19"</td>
<td>130</td>
<td>2,920</td>
</tr>
</tbody>
</table>

Preparation of Seed Bed for Oats following Wheat

<table>
<thead>
<tr>
<th>Plot Number</th>
<th>Treatment given</th>
<th>Date of sowing</th>
<th>Date of coming up</th>
<th>Date of heading</th>
<th>Date of ripening</th>
<th>Days to mature</th>
<th>Yield of Oats per acre, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Poor preparation</td>
<td>May 13</td>
<td>May 23</td>
<td>July 24</td>
<td>Aug. 31</td>
<td>110</td>
<td>2,640</td>
</tr>
<tr>
<td>2</td>
<td>Good preparation</td>
<td>" 13"</td>
<td>" 23"</td>
<td>" 24"</td>
<td>" 31"</td>
<td>110</td>
<td>2,920</td>
</tr>
<tr>
<td>3</td>
<td>Extraordinary preparation</td>
<td>" 13"</td>
<td>" 23"</td>
<td>" 24"</td>
<td>" 31"</td>
<td>110</td>
<td>3,280</td>
</tr>
</tbody>
</table>
Soil Packers.

Soil Packing in Preparation for Wheat following Summer-fallow.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Cultural Treatment Given.</th>
<th>Date of sowing.</th>
<th>Date of coming up.</th>
<th>Date of heading.</th>
<th>Date of ripening.</th>
<th>Days to mature.</th>
<th>Yield of Wheat per acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Harrow, seed.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Harrow, seed, surface pack.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Harrow, seed, surface pack, harrow.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Harrow, seed, subsurface pack.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Harrow, seed, subsurface pack, harrow.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Harrow, seed, combination pack.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Harrow, seed, combination pack, harrow.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Surface pack, seed, surface pack.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Subsurface pack, seed, subsurface pack.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Combination pack, seed, combination pack.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Surface pack, harrow, seed.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Subsurface pack, harrow, seed.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Combination pack, harrow, seed.</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Harrow, seed.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Plough for summer-fallow, surface pack, cultivate the next spring, smoothing harrow, seed.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>15</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Plough for summer-fallow, subsurface pack, cultivate the next spring, smoothing harrow, seed.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>15</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Plough for summer-fallow, combination pack, cultivate the next spring, smoothing harrow, seed.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Plough for summer-fallow, surface pack, cultivate the next spring, smoothing harrow, seed, surface pack.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Plough for summer-fallow, subsurface pack, cultivate the next spring, smoothing harrow, seed, subsurface pack.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Plough for summer-fallow, combination pack, cultivate the next spring, smoothing harrow, seed, combination pack.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Harrow, seed.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Harrow, seed, harrow when 6 inches high.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Harrow, seed, surface pack when 6 inches high.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Harrow, seed, roll when 6 inches high.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Harrow, seed.</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td></td>
</tr>
</tbody>
</table>

Depth of Seeding.

Depths of Seeding Wheat.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Depths Sown.</th>
<th>Date of sowing.</th>
<th>Date of coming up.</th>
<th>Date of heading.</th>
<th>Date of ripening.</th>
<th>Days to mature.</th>
<th>Yield of Wheat per acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sowing 1 inch deep.</td>
<td>11</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 inches</td>
<td>11</td>
<td>13</td>
<td>7</td>
<td>19</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 inches</td>
<td>11</td>
<td>13</td>
<td>5</td>
<td>19</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4 inches</td>
<td>11</td>
<td>15</td>
<td>5</td>
<td>19</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>
Depths of Seeding Oats.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Depths Sown.</th>
<th>Date of sowing</th>
<th>Date of coming up</th>
<th>Date of heading</th>
<th>Date of ripening</th>
<th>Days to mature</th>
<th>Yield of Oats per acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 inch deep</td>
<td>May 13</td>
<td>May 25</td>
<td>July 20</td>
<td>Sept. 4</td>
<td>114</td>
<td>2,840</td>
</tr>
<tr>
<td>2</td>
<td>2 inches</td>
<td>13</td>
<td>27</td>
<td>20</td>
<td>4</td>
<td>114</td>
<td>2,720</td>
</tr>
<tr>
<td>3</td>
<td>3 inches</td>
<td>13</td>
<td>27</td>
<td>20</td>
<td>4</td>
<td>114</td>
<td>3,160</td>
</tr>
<tr>
<td>4</td>
<td>4 inches</td>
<td>13</td>
<td>27</td>
<td>20</td>
<td>4</td>
<td>114</td>
<td>3,640</td>
</tr>
</tbody>
</table>

COMMERCIAL FERTILIZER.

The plots for this experiment grew wheat in 1911, and the fertilizers were applied when the wheat was sown. This year they grew oats.

Application of Commercial Fertilizers.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment Given</th>
<th>Date of sowing</th>
<th>Date of coming up</th>
<th>Date of heading</th>
<th>Date of ripening</th>
<th>Days to mature</th>
<th>Yield of Oats per acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check. No Fertilizer</td>
<td>13</td>
<td>25</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,600</td>
</tr>
<tr>
<td>2</td>
<td>320 pounds nitrate of soda per acre</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,700</td>
</tr>
<tr>
<td>3</td>
<td>300 pounds superphosphate per acre</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,900</td>
</tr>
<tr>
<td>4</td>
<td>200 pounds muriate of potash per acre</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,800</td>
</tr>
<tr>
<td>5</td>
<td>Check. No Fertilizer</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,680</td>
</tr>
<tr>
<td>6</td>
<td>320 pounds nitrate of soda, 600 pounds superphosphate, 200 pounds muriate of potash per acre</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,800</td>
</tr>
<tr>
<td>7</td>
<td>320 pounds nitrate of soda, 600 pounds superphosphate, per acre</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,804</td>
</tr>
<tr>
<td>8</td>
<td>320 pounds nitrate of soda, 200 pounds muriate of potash, per acre</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,280</td>
</tr>
<tr>
<td>9</td>
<td>600 pounds superphosphate, 200 pounds muriate of potash, per acre</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,920</td>
</tr>
<tr>
<td>10</td>
<td>Check. No Fertilizer</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,760</td>
</tr>
<tr>
<td>11</td>
<td>Basic Slag, 1,000 pounds per acre</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,280</td>
</tr>
<tr>
<td>12</td>
<td>Clover in place of grass</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,760</td>
</tr>
<tr>
<td>13</td>
<td>Clover in place of grass</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>2,880</td>
</tr>
<tr>
<td>14</td>
<td>Barnyard manure, 16 tons applied once in 4 years</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>2,400</td>
</tr>
<tr>
<td>15</td>
<td>Barnyard manure, 8 tons applied once in 4 years</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>2,320</td>
</tr>
<tr>
<td>16</td>
<td>Check. No Fertilizer</td>
<td>13</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>112</td>
<td>3,160</td>
</tr>
</tbody>
</table>
UNDERDRAINAGE.

UNDRAINED Land versus Land Drained three feet and four feet deep.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Treatment Given.</th>
<th>Date of Sowing</th>
<th>Date of Coming Up</th>
<th>Date of Heading</th>
<th>Date of Ripening</th>
<th>Days to Mature</th>
<th>Yield of Wheat per Acre, 1912.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>April</td>
<td>May</td>
<td>July</td>
<td>Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>No drainage</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>130</td>
<td>1,860</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>130</td>
<td>1,820</td>
</tr>
<tr>
<td>3</td>
<td>Drained 3 feet deep</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>130</td>
<td>2,860</td>
</tr>
<tr>
<td>4</td>
<td>No drainage</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>130</td>
<td>2,820</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>130</td>
<td>2,780</td>
</tr>
<tr>
<td>6</td>
<td>Drained 4 feet deep</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>130</td>
<td>2,460</td>
</tr>
<tr>
<td>7</td>
<td>No drainage</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>130</td>
<td>1,940</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>130</td>
<td>1,820</td>
</tr>
</tbody>
</table>

FIELD CROP YIELDS.

SPRING WHEAT.

Yields of Spring Wheat following Different Crops.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Previous Treatment</th>
<th>Area</th>
<th>Yield per Acre</th>
<th>Total Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Fife</td>
<td>Root land</td>
<td>5.50</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>Red Fife</td>
<td>Fallow</td>
<td>5.50</td>
<td>45</td>
<td>16</td>
</tr>
<tr>
<td>Red Fife</td>
<td>Fallow</td>
<td>6.00</td>
<td>42</td>
<td>35</td>
</tr>
<tr>
<td>Red Fife</td>
<td>Stubble</td>
<td>5.80</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Red Fife</td>
<td>Fallow</td>
<td>6.25</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>Red Fife</td>
<td>Fallow</td>
<td>3.00</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>Red Fife</td>
<td>Stubble</td>
<td>6.25</td>
<td>16</td>
<td>58</td>
</tr>
<tr>
<td>Marquis</td>
<td>Fallow</td>
<td>10.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Marquis</td>
<td>Fallow</td>
<td>10.80</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>Marquis, (Special Register-</td>
<td>Fallow</td>
<td>10.00</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>ed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prelude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>368 "E" (Variety not named)</td>
<td>Fallow</td>
<td>1.15</td>
<td>54</td>
<td>26</td>
</tr>
</tbody>
</table>

Total: 73.35

Average yield per acre: 35 bushels 17 pounds.
OATS.

YIELDS of Oats, following Different Crops.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Previous Treatment</th>
<th>Area</th>
<th>Yield per Acre</th>
<th>Total Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner</td>
<td>Fallow</td>
<td>9</td>
<td>101</td>
<td>26</td>
</tr>
<tr>
<td>"</td>
<td>Stubble</td>
<td>5.67</td>
<td>52</td>
<td>21</td>
</tr>
<tr>
<td>"</td>
<td>Pea land</td>
<td>5.24</td>
<td>46</td>
<td>32</td>
</tr>
<tr>
<td>Abundance</td>
<td>Fallow</td>
<td>8.35</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>Lignow, Swedish</td>
<td></td>
<td>2.22</td>
<td>108</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average yield per acre: 75 bushels 9 pounds.

BARLEY.

YIELDS of Barley following Different Crops.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Previous Treatment</th>
<th>Area</th>
<th>Yield per Acre</th>
<th>Total Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mensoru</td>
<td>Fallow</td>
<td>10.50</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>O.A.C., No. 21</td>
<td>Fallow</td>
<td>2.50</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>Canadian Thorpe</td>
<td>Fallow</td>
<td>2.44</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>Haniechen</td>
<td>Fallow</td>
<td>2.42</td>
<td>57</td>
<td>.</td>
</tr>
<tr>
<td>Manchurian</td>
<td>Fallow</td>
<td>8.16</td>
<td>73</td>
<td>28</td>
</tr>
<tr>
<td>Manchurian</td>
<td>Back setting</td>
<td>5.29</td>
<td>58</td>
<td>33</td>
</tr>
<tr>
<td>Manchurian</td>
<td>Root land</td>
<td>6.13</td>
<td>59</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average yield per acre: 53 bushels 35 pounds.

PEAS.

Two varieties were sown in field lots on fallowed land, at the rate of two bushels of Golden Vine and three bushels of Arthur per acre. Both were sown on April 19. Golden Vine was ripe on September 10; Arthur was ripe on September 5. They yielded as follows:—

Arthur: 36 bushels 51 pounds per acre.
Golden Vine: 50 bushels 49 pounds per acre.

FLAX.

Premost flax was sown on fallowed and on potato land at the rate of 40 pounds per acre. That sown on fallow, on May 28, was ripe on September 10. That sown on potato land, on May 15, was ripe on September 2. Yields were as follows:—

Premost, on fallowed land: 17 bushels 9 pounds per acre.
Premost, on root land: 14 bushels 29 pounds per acre.
Sessional Paper No. 16

Some Weather Observations taken at Indian Head Experimental Farm, 1912.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature °F.</th>
<th>Precipitation</th>
<th>Total Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Highest</td>
<td>Lowest</td>
</tr>
<tr>
<td>January</td>
<td>-8.06</td>
<td>30</td>
<td>-47</td>
</tr>
<tr>
<td>February</td>
<td>7.41</td>
<td>35</td>
<td>-25</td>
</tr>
<tr>
<td>March</td>
<td>6.93</td>
<td>42</td>
<td>-28</td>
</tr>
<tr>
<td>April</td>
<td>49.45</td>
<td>81</td>
<td>22</td>
</tr>
<tr>
<td>May</td>
<td>61.63</td>
<td>97</td>
<td>34</td>
</tr>
<tr>
<td>June</td>
<td>60.29</td>
<td>90</td>
<td>39</td>
</tr>
<tr>
<td>July</td>
<td>59.71</td>
<td>80</td>
<td>39</td>
</tr>
<tr>
<td>August</td>
<td>46.23</td>
<td>74</td>
<td>22</td>
</tr>
<tr>
<td>September</td>
<td>39.93</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>October</td>
<td>29.40</td>
<td>61</td>
<td>8</td>
</tr>
<tr>
<td>November</td>
<td>13.19</td>
<td>39</td>
<td>-19</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION FOR CENTRAL SASKATCHEWAN, ROSTHERN, SASK.

REPORT OF THE SUPERINTENDENT, WM. A. MUNRO, B.A., B.S.A.

WEATHER CONDITIONS, 1912.

The season opened under normal and favourable conditions, and seeding was begun on April 10, and all crops made good growth until early in June, when dry weather set in and crops that had not a goodly supply of soil moisture suffered greatly, and even those under the most favourable conditions suffered to a very large extent.

Showery weather prevailed until nearly the middle of May and hay crops especially were very promising, but with the continued dry weather until late in June the meadows of two years’ standing, or longer, became yellow and did not fully revive again all summer. In the months of July, August and September, there was more than average precipitation, which had a peculiar effect upon the grain crops. The plants had adapted themselves to the dry weather conditions of June by growing very little, and with the heavy rains in July the plants developed, and at harvest time there was the peculiar circumstance of several stages of development in the plants of one plot, and in many cases in the heads of grain of one plant. Some of the wheat was ripe while other heads in the same plant were in blossom. This condition of irregular growth worked to the disadvantage of the farmer at every stage. In the first place there was no means of determining the best time to cut; after cutting, the green straw delayed the drying of the grain; at threshing a great deal of the undeveloped grain blew out with the straw which very materially lowered the yield as compared with the yield promised from the stand, and, at marketing, the immature grain with the good grain lowered the grade.

Another unfavourable weather condition of 1912 was the unusually high precipitation in August, September and October. The continued wet weather in the latter part of July and August delayed the ripening of the grain, and then the wet weather of September and October prevented drying, and in many cases caused sprouting in the shocks.

The redeeming feature was the delay of very cold weather until December which made it possible to continue threshing throughout the month of November.

Following are the meteorological records for the past year:
Some Weather Observations taken at Rosthern Experimental Station, 1912.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature F.</th>
<th>Precipitation.</th>
<th>Total Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest</td>
<td>Lowest</td>
<td>Mean</td>
</tr>
<tr>
<td>January</td>
<td>34.4</td>
<td>-54.1</td>
<td>12.52</td>
</tr>
<tr>
<td>February</td>
<td>39.3</td>
<td>-27.8</td>
<td>5.5</td>
</tr>
<tr>
<td>March</td>
<td>40.4</td>
<td>-30.0</td>
<td>4.00</td>
</tr>
<tr>
<td>April</td>
<td>63.0</td>
<td>16.8</td>
<td>39.21</td>
</tr>
<tr>
<td>May</td>
<td>84.2</td>
<td>28.2</td>
<td>48.5</td>
</tr>
<tr>
<td>June</td>
<td>53.8</td>
<td>34.0</td>
<td>61.88</td>
</tr>
<tr>
<td>July</td>
<td>78.2</td>
<td>38.2</td>
<td>57.7</td>
</tr>
<tr>
<td>August</td>
<td>79.2</td>
<td>37.2</td>
<td>58.6</td>
</tr>
<tr>
<td>September</td>
<td>73.2</td>
<td>20.6</td>
<td>45.74</td>
</tr>
<tr>
<td>October</td>
<td>67.7</td>
<td>17.7</td>
<td>38.48</td>
</tr>
<tr>
<td>November</td>
<td>41.0</td>
<td>0.0</td>
<td>23.99</td>
</tr>
<tr>
<td>December</td>
<td>38.8</td>
<td>-23.2</td>
<td>8.15</td>
</tr>
<tr>
<td>Total</td>
<td>163.3</td>
<td>22.5</td>
<td>18.58</td>
</tr>
</tbody>
</table>
ROTATION OF CROPS.

Records of costs of operations and values of products were kept for four different rotations varying in duration from three to nine years.

Rotation 'C'.

First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat or coarse grain.

Rotation 'J'.

First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat or coarse grain.
Fourth year.—Oats. Seeded down with rye grass, red clover and alfalfa.
Fifth year.—Hay.
Sixth year.—Pasture.

Rotation 'P'.

First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat.
Fourth year.—Summer-fallow.
Fifth year.—Hoe'd crops or legumes.
Sixth year.—Barley. Seeded down with rye grass, red clover and alfalfa.
Seventh year.—Hay.
Eighth year.—Pasture.

Rotation 'R'.

First year.—Summer-fallow.
Second year.—Hoe'd crop or legumes. Manured 15 tons per acre.
Third year.—Wheat.
Fourth year.—Oats.
Fifth year.—Summer-fallow.
Sixth year.—Wheat.
Seventh year.—Oats. Seeded down with rye grass, red clover and alfalfa.
Eighth year.—Hay.
Ninth year.—Pasture.

The following schedule shows the valuations that have been fixed for computing the results of these rotation experiments:

Return Values.

<table>
<thead>
<tr>
<th>Product</th>
<th>Value per ton</th>
<th>Value per lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat (from the machine)</td>
<td>$10.00</td>
<td>13c.</td>
</tr>
<tr>
<td>Barley</td>
<td>15c.</td>
<td>1c.</td>
</tr>
<tr>
<td>Oats</td>
<td>10c.</td>
<td>1c.</td>
</tr>
<tr>
<td>Peas</td>
<td>8c.</td>
<td>1c.</td>
</tr>
<tr>
<td>Flax</td>
<td>3c.</td>
<td>1c.</td>
</tr>
<tr>
<td>Timothy hay</td>
<td>$10.00</td>
<td>13c.</td>
</tr>
<tr>
<td>Red Clover hay</td>
<td>10.00</td>
<td>1c.</td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td>12.00</td>
<td>1c.</td>
</tr>
<tr>
<td>Brome Grass hay</td>
<td>10.00</td>
<td>1c.</td>
</tr>
<tr>
<td>Western Rye Grass hay</td>
<td>10.00</td>
<td>1c.</td>
</tr>
</tbody>
</table>
Mixed hay

Mixed hay ... per ton. $10.00

Green hay

Green hay .. 10.00

Oat straw

Oat straw ... 2.00

Barley straw

Barley straw .. 2.00

Wheat straw

Wheat straw .. 1.00

Pea straw

Pea straw .. 2.00

Flax straw

Flax straw .. 2.00

Dry corn stalks

Dry corn stalks ... 5.00

Corn ensilage

Corn ensilage .. 3.00

Mangles and turnips

Mangles and turnips ... 3.00

Sugar beets

Sugar beets ... 4.00

Pasture, each horse

Pasture, each horse .. per month. 1.00

" cow

" cow .. 1.00

" sheep

" sheep .. 25

Cost Values

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kent</td>
<td>$2.00</td>
</tr>
<tr>
<td>Barnyard manure spread on fields (charged equally over all years of the rotation)</td>
<td>1.00</td>
</tr>
<tr>
<td>Seed wheat</td>
<td>1.50</td>
</tr>
<tr>
<td>Seed barley</td>
<td>1.00</td>
</tr>
<tr>
<td>(All other seeds to be charged at actual cost. Cost of grass seed to be charged equally on the years producing grass. Twine charged at actual cost.)</td>
<td></td>
</tr>
<tr>
<td>Machinery</td>
<td>60</td>
</tr>
<tr>
<td>Manual labour</td>
<td>19</td>
</tr>
</tbody>
</table>

Horse labour (including teamster)

- **Single horse**: .. per hour. 27
- **Two-horse team**: ... 34
- **Three-horse team**: ... 41
- **Four-horse team**: ... 48
- **Additional horses**: .. 7

Work to be done by traction engine is to be converted into the amount of horse labour required to do the work and charged accordingly.

Threshing (covering work from stock to granary)

- **Wheat**: ... per bush. 7
- **Oats**: .. 4
- **Barley**: .. 5
- **Flax**: .. 12
- **Peas**: .. 7
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Area</th>
<th>Crops</th>
<th>Manual Labour</th>
<th>Horse Labour (in Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1911</td>
<td>1912</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$$c$</td>
<td>$$c$</td>
<td>No.</td>
</tr>
<tr>
<td>C 3. Lot 1...</td>
<td>2</td>
<td></td>
<td>4 00</td>
<td>5 35</td>
<td>2 1</td>
</tr>
<tr>
<td>C 1.</td>
<td>2</td>
<td></td>
<td>4 10</td>
<td>1 20</td>
<td>4 0</td>
</tr>
<tr>
<td>C 2.</td>
<td>2</td>
<td></td>
<td>4 00</td>
<td>5 51</td>
<td>4 0</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td>12 00</td>
<td>12 06</td>
<td>6 1</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td>2 00</td>
<td>2 01</td>
<td>0 20</td>
</tr>
</tbody>
</table>

ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Area</th>
<th>Crops</th>
<th>Manual Labour</th>
<th>Horse Labour (in Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1911</td>
<td>1912</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$$c$</td>
<td>$$c$</td>
<td>No.</td>
</tr>
<tr>
<td>J 2. Lot 1...</td>
<td>2</td>
<td></td>
<td>4 00</td>
<td>5 75</td>
<td>4 0</td>
</tr>
<tr>
<td>J 3.</td>
<td>2</td>
<td></td>
<td>4 00</td>
<td>5 35</td>
<td>2 0</td>
</tr>
<tr>
<td>J 4.</td>
<td>2</td>
<td></td>
<td>4 00</td>
<td>8 62</td>
<td>2 1</td>
</tr>
<tr>
<td>J 5.</td>
<td>2</td>
<td></td>
<td>4 00</td>
<td>3 4</td>
<td>2 0</td>
</tr>
<tr>
<td>J 6.</td>
<td>2</td>
<td></td>
<td>4 00</td>
<td>1 20</td>
<td>2 0</td>
</tr>
<tr>
<td>J 1.</td>
<td>2</td>
<td></td>
<td>4 00</td>
<td>1 20</td>
<td>2 0</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td>24 00</td>
<td>25 0</td>
<td>15</td>
</tr>
<tr>
<td>Average per acre, 1912</td>
<td></td>
<td></td>
<td>2 00</td>
<td>2 13</td>
<td>0 2</td>
</tr>
</tbody>
</table>

ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Area</th>
<th>Crops</th>
<th>Manual Labour</th>
<th>Horse Labour (in Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1911</td>
<td>1912</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$$c$</td>
<td>$$c$</td>
<td>No.</td>
</tr>
<tr>
<td>P 2. Lot 1...</td>
<td>2</td>
<td></td>
<td>7 00</td>
<td>5 55</td>
<td>4 0</td>
</tr>
<tr>
<td>P 3.</td>
<td>2</td>
<td></td>
<td>7 00</td>
<td>5 51</td>
<td>3 0</td>
</tr>
<tr>
<td>P 4.</td>
<td>2</td>
<td></td>
<td>7 00</td>
<td>1 20</td>
<td>1 0</td>
</tr>
<tr>
<td>P 5.</td>
<td>2</td>
<td></td>
<td>7 00</td>
<td>6 84</td>
<td>18 63</td>
</tr>
<tr>
<td>P 6.</td>
<td>2</td>
<td></td>
<td>7 00</td>
<td>5 25</td>
<td>1 0</td>
</tr>
<tr>
<td>P 7.</td>
<td>2</td>
<td></td>
<td>7 00</td>
<td>3 48</td>
<td>1 1</td>
</tr>
<tr>
<td>P 8.</td>
<td>2</td>
<td></td>
<td>7 00</td>
<td>1 20</td>
<td>1 0</td>
</tr>
<tr>
<td>P 1.</td>
<td>2</td>
<td></td>
<td>7 00</td>
<td>1 20</td>
<td>1 0</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td>56 00</td>
<td>33 30</td>
<td>20 1</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td>3 50</td>
<td>2 08</td>
<td>2 43</td>
</tr>
</tbody>
</table>

ROTATION

<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Area</th>
<th>Crops</th>
<th>Manual Labour</th>
<th>Horse Labour (in Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1911</td>
<td>1912</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$$c$</td>
<td>$$c$</td>
<td>No.</td>
</tr>
<tr>
<td>R 2. Lot 1...</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>5 72</td>
<td>58 0</td>
</tr>
<tr>
<td>R 3.</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>5 59</td>
<td>12 3</td>
</tr>
<tr>
<td>R 4.</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>6 26</td>
<td>6 0</td>
</tr>
<tr>
<td>R 5.</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>1 20</td>
<td>6 0</td>
</tr>
<tr>
<td>R 6.</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>5 75</td>
<td>4 0</td>
</tr>
<tr>
<td>R 7.</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>7 98</td>
<td>5 1</td>
</tr>
<tr>
<td>R 8.</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>3 80</td>
<td>1 0</td>
</tr>
<tr>
<td>R 9.</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>1 20</td>
<td>1 0</td>
</tr>
<tr>
<td>R 11.</td>
<td>2</td>
<td></td>
<td>6 66</td>
<td>1 20</td>
<td>1 0</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td>59 94</td>
<td>38 70</td>
<td>9 3</td>
</tr>
<tr>
<td>Average per acre 1912</td>
<td></td>
<td></td>
<td>3 33</td>
<td>2 15</td>
<td>1 2</td>
</tr>
</tbody>
</table>
Sessional Paper No. 16

IN RAISING CROP.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4 71</td>
<td>2 17</td>
<td>16 70</td>
<td>8 33</td>
<td>0 54</td>
<td>8</td>
<td>1 873</td>
<td>8 064</td>
<td>29 00</td>
<td>14 50</td>
</tr>
<tr>
<td>2</td>
<td>7 20</td>
<td>12 40</td>
<td>6 20</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 41</td>
<td>3 15</td>
<td>17 86</td>
<td>8 93</td>
<td>0 39</td>
<td>8</td>
<td>2 727</td>
<td>9 892</td>
<td>41 28</td>
<td>20 64</td>
</tr>
<tr>
<td>7</td>
<td>16 35</td>
<td>5 32</td>
<td>46 96</td>
<td>23 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70 28</td>
<td>35 14</td>
</tr>
<tr>
<td></td>
<td>2 72</td>
<td>0 89</td>
<td>7 82</td>
<td>7 82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 71</td>
<td>11 71</td>
</tr>
</tbody>
</table>

"J."

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3 44</td>
<td>3 43</td>
<td>18 38</td>
<td>9 19</td>
<td>0 37</td>
<td>8</td>
<td>2 939</td>
<td>7 272</td>
<td>42 81</td>
<td>21 48</td>
</tr>
<tr>
<td>3</td>
<td>5 74</td>
<td>2 10</td>
<td>17 57</td>
<td>8 78</td>
<td>0 58</td>
<td>8</td>
<td>1 810</td>
<td>8 568</td>
<td>28 41</td>
<td>14 20</td>
</tr>
<tr>
<td>2</td>
<td>3 83</td>
<td>4 12</td>
<td>21 60</td>
<td>10 89</td>
<td>0 21</td>
<td>8</td>
<td>3 105</td>
<td>9 510</td>
<td>44 55</td>
<td>22 27</td>
</tr>
<tr>
<td>1</td>
<td>1 23</td>
<td></td>
<td>8 99</td>
<td>4 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 4 48</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 25</td>
<td></td>
<td>12 45</td>
<td>6 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38 82</td>
<td>19 31</td>
</tr>
<tr>
<td>11</td>
<td>25 62</td>
<td>9 65</td>
<td>87 71</td>
<td>43 83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>154 39</td>
<td>77 18</td>
</tr>
<tr>
<td></td>
<td>2 1 3</td>
<td>0 80</td>
<td>7 30</td>
<td>7 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 86</td>
<td>12 86</td>
</tr>
</tbody>
</table>

"P."

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5 64</td>
<td>2 24</td>
<td>20 96</td>
<td>10 48</td>
<td>0 65</td>
<td>8</td>
<td>1 920</td>
<td>7 392</td>
<td>29 20</td>
<td>14 60</td>
</tr>
<tr>
<td>3</td>
<td>5 55</td>
<td>2 19</td>
<td>22 89</td>
<td>12 98</td>
<td>0 65</td>
<td>8</td>
<td>1 977</td>
<td>7 392</td>
<td>29 20</td>
<td>14 60</td>
</tr>
<tr>
<td>1</td>
<td>2 75</td>
<td>4 55</td>
<td>21 36</td>
<td>12 12</td>
<td>0 27</td>
<td>8</td>
<td>1 396</td>
<td>9 169</td>
<td>44 48</td>
<td>22 24</td>
</tr>
<tr>
<td>2</td>
<td>2 46</td>
<td>3 11</td>
<td>12 61</td>
<td>6 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 6 11</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3 27</td>
<td>1 17</td>
<td>11 47</td>
<td>5 73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47 47</td>
<td>23 88</td>
</tr>
<tr>
<td>2</td>
<td>6 49</td>
<td>1 46</td>
<td>14 89</td>
<td>7 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 69</td>
<td>30 84</td>
</tr>
<tr>
<td>12</td>
<td>33 67</td>
<td>11 65</td>
<td>173 48</td>
<td>86 71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>295 90</td>
<td>147 94</td>
</tr>
<tr>
<td></td>
<td>2 1 0</td>
<td>0 73</td>
<td>10 84</td>
<td>10 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 49</td>
<td>18 49</td>
</tr>
</tbody>
</table>

"R."

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5 51</td>
<td>26 91</td>
<td>13 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 950</td>
<td>91 50</td>
</tr>
<tr>
<td>2</td>
<td>4 34</td>
<td>6 24</td>
<td>23 63</td>
<td>11 81</td>
<td>0 36</td>
<td>8</td>
<td>3 961</td>
<td>13 565</td>
<td>69 560</td>
<td>59 56</td>
</tr>
<tr>
<td>2</td>
<td>5 56</td>
<td>6 29</td>
<td>25 91</td>
<td>12 96</td>
<td>0 16</td>
<td>8</td>
<td>5 361</td>
<td>13 429</td>
<td>86 890</td>
<td>66 63</td>
</tr>
<tr>
<td>1</td>
<td>7 59</td>
<td>15 45</td>
<td>7 72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 72</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3 86</td>
<td>29 56</td>
<td>10 28</td>
<td>0 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 968</td>
<td>11 458</td>
</tr>
<tr>
<td>2</td>
<td>4 85</td>
<td>3 28</td>
<td>13 42</td>
<td>13 24</td>
<td>0 17</td>
<td>8</td>
<td>5 372</td>
<td>11 098</td>
<td>84 80</td>
<td>53 20</td>
</tr>
<tr>
<td>1</td>
<td>2 89</td>
<td>13 54</td>
<td>6 72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 6 72</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4 22</td>
<td>15 79</td>
<td>6 88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 802</td>
<td>23 36</td>
</tr>
<tr>
<td>2</td>
<td>9 63</td>
<td>17 49</td>
<td>8 74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 8 74</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>46 46</td>
<td>30 66</td>
<td>184 13</td>
<td>91 98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386 65</td>
<td>193 32</td>
</tr>
<tr>
<td></td>
<td>2 58</td>
<td>1 14</td>
<td>10 22</td>
<td>10 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21 48</td>
<td>21 48</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The following brief summary compares the chief items in the rotations tabled in detail above.

<table>
<thead>
<tr>
<th>Rotation.</th>
<th>Area</th>
<th>Total Cost to Operate.</th>
<th>Total Value of Products.</th>
<th>Total Profit.</th>
<th>Profit per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘C’ (3 years duration)</td>
<td>6 Acres</td>
<td>$46 96</td>
<td>$70 28</td>
<td>$23 32</td>
<td>$3 89</td>
</tr>
<tr>
<td>‘J’ (6)</td>
<td>12 Acres</td>
<td>$87 71</td>
<td>$134 39</td>
<td>$51 68</td>
<td>$5 16</td>
</tr>
<tr>
<td>‘P’ (8)</td>
<td>16 Acres</td>
<td>$173 46</td>
<td>$256 90</td>
<td>$122 44</td>
<td>$7 65</td>
</tr>
<tr>
<td>‘R’ (9)</td>
<td>18 Acres</td>
<td>$184 13</td>
<td>$386 65</td>
<td>$202 52</td>
<td>$11 26</td>
</tr>
</tbody>
</table>

CULTURAL EXPERIMENTS.

An extensive set of experiments in soil cultivation and management has been inaugurated, but the work is not yet far enough advanced for the publication of results. We indicate below merely the various lines which we are investigating to show the purpose and extent of this work. Next year we hope to have results that will demonstrate their usefulness, though necessarily many years will be required to gather conclusive evidence on some of the problems taken up.

Briefly, these experiments are as follows:—

Experiment 1—Prairie breaking.

2A—Depth of ploughing wheat stubble to be sown to oats.
2B—Depth of ploughing summer-fallow in preparation for wheat.
2C—Depth of ploughing sod in preparation for wheat followed by oats.
3—Summer-fallow treatment.
4—Treatment of wheat stubble to be sown to wheat, and to oats.
5—Seeding of grass and clover.
6—Breaking sod from cultivated grasses and clovers.
7A—Applying barnyard manure for corn or roots.
7B—Applying barnyard manure for wheat.
7C—Applying barnyard manure for barley.
7D—Applying barnyard manure for oats.
8—Green manuring.
9—Seed-bed preparation.
10A—Soil packing for wheat following summer-fallow.
10B—Soil packing for wheat on spring ploughed stubble land.
10C—Soil packing for wheat on fall ploughed stubble land.
11—Depth of seeding.
12—Commercial fertilizers.
13—Underdraining.
EXPERIMENTAL STATION FOR NORTH-WESTERN SASKATCHEWAN, SCOTT, SASK.

REPORT OF THE SUPERINTENDENT, R. E. EVEREST, B.S.A.

ROTATION OF CROPS.

Continuous cropping with grain is bound ultimately to exhaust the available store of plant food laid up in a soil, and is likely to favour the growth of many of the obnoxious weeds that are already too apparent in our midst. In order to compare methods of cropping commonly used, and to learn the possibility and advisibility of growing a greater variety of crops, several rotations have been started. We cannot yet, of course, speak advisedly of the merits of these rotations, but we publish them in the belief that their final outcome will be followed with interest by farmers working under conditions such as obtain here.

Rotation 'A.'

Wheat continuously.

Rotation 'J.'

First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat or coarse grain.
Fourth year.—Oats. Seeded down with rye grass, red clover and alfalfa.
Fifth year.—Hay.
Sixth year.—Pasture.

Rotation 'P.'

First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat.
Fourth year.—Summer-fallow.
Fifth year.—Roots or peas. Manured at rate of 15 tons per acre.
Sixth year.—Barley. Seeded down with rye grass, red clover and alfalfa.
Seventh year.—Hay.
Eighth year.—Pasture.

Rotation 'R.'

First year.—Summer-fallow.
Second year.—Hoed crop or peas. Manured at rate of 15 tons per acre.
Third year.—Wheat.
Fourth year.—Oats.
Fifth year.—Summer-fallow.
Sixth year.—Wheat.
Seventh year.—Oats. Seeded down with rye grass, red clover and alfalfa.
Eighth year.—Hay.
Ninth year.—Pasture.
CULTURAL EXPERIMENTAL WORK.

The mere following of a rotation, no matter how well suited to dry farming conditions it may be, is not sufficient to insure good crops from year to year. Soil cultivation within the rotation must be the second great consideration. In order to learn something of the merits of different methods and practices commonly used, a series of soil cultivation experiments is being started. As yet just a beginning has been made, but we hope in a few years to have obtained useful knowledge along many lines of soil management, about which little reliable information is to be had at the present time.

The new lines of work begun are as follows:

Experiment 1—Prairie breaking.

- 5—Seeding to grass and clover.
- 10A—Soil packing for wheat sown on summer-fallow.
- 10B—Soil packing for wheat sown on spring-ploughed stubble land.
- 10C—Soil packing for wheat sown on fall-ploughed stubble land.
- 11—Depth of seeding.

Of this new work, experiment 11 is the only one sufficiently long under way to warrant publication of results. We present them herewith, together with the results of other experiments of a similar nature.

DEPTHS OF SEEDING.

Experiments in seeding wheat and oats to depths of 1, 2, 3 and 4 inches resulted as follows:

Depths of Seeding Wheat.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Depth of Seeding</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marquis</td>
<td>1 inch</td>
<td>2,280</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2 inches</td>
<td>2,200</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2,360</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2,620</td>
<td>38</td>
</tr>
</tbody>
</table>

The wheat plot sown to a depth of three inches produced the greatest yield of grain, which fact is further emphasized by observations made in general farm practice in the district.

Depths of Seeding Oats.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Depth of Seeding</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days to Mature</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner</td>
<td>1 inch</td>
<td>May 1</td>
<td>Sept 11</td>
<td>133</td>
<td>3,720</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>2 inches</td>
<td>" 1</td>
<td>" 11</td>
<td>133</td>
<td>4,160</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>" 1</td>
<td>" 11</td>
<td>133</td>
<td>4,410</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>" 1</td>
<td>" 11</td>
<td>133</td>
<td>4,060</td>
<td>120</td>
</tr>
</tbody>
</table>
Four different depths were employed in the seeding of oats, namely, one, two, three and four inches. The plot sown at a depth of three inches gave the largest yield of grain, which fact points to the advantage of seeding oats to a good depth under conditions such as exist here.

DATES OF SEEDING.

Experiments to learn the best time for sowing spring wheat, oats and barley in this district gave the following results this year:

Dates of Seeding Spring Wheat.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of days to Mature</th>
<th>Average length of straw including head</th>
<th>Strength of straw on scale of 10 points</th>
<th>Average length of head</th>
<th>Yield of grain per acre</th>
<th>Yield of grain per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marquis</td>
<td>April 15, Aug. 30</td>
<td>137</td>
<td>32</td>
<td>10</td>
<td>31/2</td>
<td>1,570</td>
<td>26 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>" 20</td>
<td>" 30</td>
<td>132</td>
<td>32</td>
<td>10</td>
<td>31/2</td>
<td>1,440</td>
<td>24 00</td>
</tr>
<tr>
<td></td>
<td>" 29</td>
<td>Sept. 3</td>
<td>127</td>
<td>34</td>
<td>10</td>
<td>3</td>
<td>1,340</td>
<td>30 40</td>
</tr>
<tr>
<td></td>
<td>May 6</td>
<td>" 3</td>
<td>120</td>
<td>38</td>
<td>10</td>
<td>2</td>
<td>1,300</td>
<td>30 00</td>
</tr>
</tbody>
</table>

It will be noted that the third date of seeding gave the largest return. This may probably be partly accounted for by the unusually heavy rainfall in July, which favoured the later crops.

Dates of Seeding Oats.

Dates of Seeding Barley.
The latest sowing, on May 6, gave the highest yield. This plot would receive the greatest benefit from the late rains which, in part at least, accounts for the decided advantage it gave over the earlier seeding dates.

QUANTITIES OF SEED PER ACRE.

This test was conducted with spring wheat, oats and barley.

Quantities of Spring Wheat per Acre.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Quantities of seed per acre</th>
<th>Date of sowing</th>
<th>Date of ripening</th>
<th>Number of days to mature</th>
<th>Average length of straw including head</th>
<th>Strength of straw on scale of 10 points</th>
<th>Average length of head</th>
<th>Yield of grain per acre</th>
<th>Yield of grain per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marquis</td>
<td>2 bush.</td>
<td>April 15</td>
<td>Aug. 30</td>
<td>137</td>
<td>40</td>
<td>10</td>
<td>3½</td>
<td>1,260</td>
<td>26 00</td>
</tr>
<tr>
<td>"</td>
<td>1½ "</td>
<td>" 15 "</td>
<td>" 50 "</td>
<td>137</td>
<td>33</td>
<td>10</td>
<td>3</td>
<td>1,560</td>
<td>25 00</td>
</tr>
<tr>
<td>"</td>
<td>1½ "</td>
<td>" 15 "</td>
<td>" 50 "</td>
<td>137</td>
<td>34</td>
<td>10</td>
<td>3½</td>
<td>1,570</td>
<td>26 10</td>
</tr>
<tr>
<td>"</td>
<td>2½ "</td>
<td>" 15 "</td>
<td>" 30 "</td>
<td>137</td>
<td>32</td>
<td>10</td>
<td>3½</td>
<td>1,320</td>
<td>22 00</td>
</tr>
<tr>
<td>"</td>
<td>2½ "</td>
<td>" 13 "</td>
<td>" 50 "</td>
<td>137</td>
<td>24</td>
<td>10</td>
<td>3½</td>
<td>1,190</td>
<td>19 20</td>
</tr>
</tbody>
</table>

One and three-quarter bushels per acre was the amount of seed giving the largest yield. After the quantity of seed sown is deducted, it will be seen that one and one-quarter bushels per acre gave the largest net return. With the knowledge at present available for this district, one and three-quarter bushels per acre may be expected to give the best results.

Quantities of Oats per Acre.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Quantities of seed per acre</th>
<th>Date of sowing</th>
<th>Date of ripening</th>
<th>Number of days to mature</th>
<th>Average length of straw including head</th>
<th>Strength of straw on a scale of 10 points</th>
<th>Average length of head</th>
<th>Yield of grain per acre</th>
<th>Yield of grain per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner</td>
<td>1 bush.</td>
<td>Apr. 24</td>
<td>Sept. 13</td>
<td>142</td>
<td>67</td>
<td>5</td>
<td>10</td>
<td>4,760</td>
<td>140 00</td>
</tr>
<tr>
<td>"</td>
<td>1½ "</td>
<td>" 24 "</td>
<td>" 13 "</td>
<td>142</td>
<td>69</td>
<td>4</td>
<td>12</td>
<td>3,480</td>
<td>102 12</td>
</tr>
<tr>
<td>"</td>
<td>2½ "</td>
<td>" 24 "</td>
<td>" 13 "</td>
<td>142</td>
<td>69</td>
<td>4</td>
<td>10</td>
<td>4,260</td>
<td>123 18</td>
</tr>
<tr>
<td>"</td>
<td>3½ "</td>
<td>" 24 "</td>
<td>" 13 "</td>
<td>142</td>
<td>69</td>
<td>3</td>
<td>10½</td>
<td>3,360</td>
<td>98 28</td>
</tr>
<tr>
<td>"</td>
<td>3½ "</td>
<td>" 24 "</td>
<td>" 13 "</td>
<td>142</td>
<td>69</td>
<td>3</td>
<td>9½</td>
<td>2,980</td>
<td>84 24</td>
</tr>
</tbody>
</table>

Of six different amounts used, the lightest seeding, that of one bushel per acre, gave the highest yield. This result was scarcely to be expected, but to some extent it was due to the plot standing more erect for ripening and harvesting than those of heavier seeding. The quantity of straw was in excess of the usual growth. This exceptional result is not sufficient evidence on which to recommend a reduction of the quantity of seed oats generally sown.
Quantities of Barley per Acre.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Quantities of seed per acre.</th>
<th>Date of sowing.</th>
<th>Date of ripening.</th>
<th>Number of days to mature.</th>
<th>Average length of straw including head.</th>
<th>Strength of straw on a scale of 10 points.</th>
<th>Average length of head.</th>
<th>Yield of grain per acre.</th>
<th>Yield of grain per acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manchurian</td>
<td>1 bsh.</td>
<td>Apr. 23</td>
<td>Aug. 23</td>
<td>127</td>
<td>46</td>
<td>3</td>
<td>5</td>
<td>3 Lb.</td>
<td>4,000 Lb.</td>
</tr>
<tr>
<td>"</td>
<td>2 bsh.</td>
<td>" 23</td>
<td>" 23</td>
<td>" 127</td>
<td>" 40</td>
<td>" 4</td>
<td>" 4</td>
<td>" 34 Lb.</td>
<td>" 3,300 Lb.</td>
</tr>
<tr>
<td>"</td>
<td>3 bsh.</td>
<td>" 23</td>
<td>" 28</td>
<td>" 127</td>
<td>" 40</td>
<td>" 4</td>
<td>" 4</td>
<td>" 34 Lb.</td>
<td>" 3,000 Lb.</td>
</tr>
</tbody>
</table>

Of the five amounts used, the lightest seeding, one bushel per acre gave the best return. The thin seeding maintained its upright growth to a greater extent than the heavier-sown plots, permitted a more complete harvesting of the grain produced, and encouraged the full development of the maturing kernels. This result may be regarded as somewhat of an exception and not sufficiently conclusive to warrant any reduction of the amount of seed generally used.

WEATHER CONDITIONS.

In 1912 conditions at time of seeding were favourable. After seeding, germination was uniform and the grain crops had a good start. During May the rainfall was moderate, amounting to 2-46 inches. In June the precipitation was 2-19 inches. This rainfall for June was associated with hot weather which tended to hasten maturity of early varieties of grain at a sacrifice of yield. In July a very heavy rainfall was recorded, the total being 6-16 inches. This amount of moisture, coming late in the season benefited the slower-maturing grains to some extent. However, a second growth was so encouraged that the sample in many cases was marred by the immature grain appearing among the good. The length of the growing season made it possible for all crops to mature, September 15 being the date of the first damaging frost.

Some Weather Observations taken at Scott Experimental Station, 1912.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature F.</th>
<th>Precipitation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>31.8</td>
<td>-43.3</td>
</tr>
<tr>
<td>February</td>
<td>36.5</td>
<td>-50.3</td>
</tr>
<tr>
<td>March</td>
<td>46.0</td>
<td>-31.8</td>
</tr>
<tr>
<td>April</td>
<td>68.5</td>
<td>12.2</td>
</tr>
<tr>
<td>May</td>
<td>85.0</td>
<td>24.7</td>
</tr>
<tr>
<td>June</td>
<td>95.5</td>
<td>28.7</td>
</tr>
<tr>
<td>July</td>
<td>88.0</td>
<td>31.2</td>
</tr>
<tr>
<td>August</td>
<td>71.0</td>
<td>32.0</td>
</tr>
<tr>
<td>September</td>
<td>74.5</td>
<td>15.7</td>
</tr>
<tr>
<td>October</td>
<td>75.0</td>
<td>14.2</td>
</tr>
<tr>
<td>November</td>
<td>47.0</td>
<td>8.2</td>
</tr>
<tr>
<td>December</td>
<td>44.1</td>
<td>-19.8</td>
</tr>
</tbody>
</table>

Total sunshine: 3674 hours.
YIELD OF FIELD CROPS.

WHEAT.

Two varieties of wheat, Marquis and Huron, were grown in field lots. Both varieties were sown on fallowed land and received similar treatment. From each field a very fair crop of grain was obtained, Huron leading by four bushels per acre. This variety is a favourable yielder at this Station. Marquis was grown on other fields, which received varying treatment. Pea ground, spring ploughed, gave a larger crop of better quality grain than did wheat stubble, fall ploughed. Wheat stubble, fall ploughed, gave a greater yield than wheat stubble not ploughed. The stubbled-in field required less time to mature, but was very low in yield per acre.

YIELDS OF SPRING WHEAT IN FIELD LOTS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of sowing</th>
<th>Date of ripening</th>
<th>No. of days maturing</th>
<th>Previous treatment</th>
<th>Yield of grain per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huron</td>
<td>April 20</td>
<td>Aug. 30</td>
<td>132</td>
<td>Summer-fallow</td>
<td>1,883 Lb 31 Bush. 23 Lb</td>
</tr>
<tr>
<td>Marquis</td>
<td>" 27</td>
<td>" 30</td>
<td>125</td>
<td>Summer-fallow</td>
<td>1,637 Lb 27 Bush. 17 Lb</td>
</tr>
<tr>
<td>"</td>
<td>27</td>
<td>30</td>
<td>125</td>
<td>Pea ground, spring ploughed</td>
<td>1,519 Lb 25 Bush. 19 Lb</td>
</tr>
<tr>
<td>"</td>
<td>20</td>
<td>30</td>
<td>132</td>
<td>Wheat land, fall ploughed</td>
<td>1,150 Lb 19 Bush. 10 Lb</td>
</tr>
<tr>
<td>"</td>
<td>28</td>
<td>21</td>
<td>120</td>
<td>Sown on wheat stubble</td>
<td>696 Lb 11 Bush. 26 Lb</td>
</tr>
</tbody>
</table>

OATS.

Two varieties of oats were grown in field lots, Abundance and Banner. Both varieties received similar treatment, being grown on spring-ploughed wheat stubble, which had been broken in 1910.

The Abundance variety gave the larger yield per acre by about ten bushels. Banner was also a good crop, beautiful in straw and grain.

YIELD OF OATS IN FIELD LOTS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of sowing</th>
<th>Date of ripening</th>
<th>No. of days maturing</th>
<th>Previous crop</th>
<th>Yield of grain per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance</td>
<td>May 3</td>
<td>Sept. 9</td>
<td>129</td>
<td>Wheat land, spring ploughed</td>
<td>3,130 Lb 92 Bush. 2 Lb</td>
</tr>
<tr>
<td>Banner</td>
<td>" 2</td>
<td>" 7</td>
<td>128</td>
<td>Wheat land, spring ploughed</td>
<td>2,815 Lb 82 Bush. 27 Lb</td>
</tr>
</tbody>
</table>

BARLEY.

One variety of six-rowed barley was grown in the field. This barley, Manchurian, made a very nice growth, the crop standing well and threshing a fair yield of grain. The sample was lacking somewhat in size and colour. It was sown on pea ground, spring ploughed, on May 3, ripened on August 23, and yielded 53 bushels 22 pounds per acre.
PEAS.

One variety of peas was grown in the field. The growth throughout the season was good, and the threshed result of fully matured grain is of particular importance to this portion of the province. The Arthur variety, used on this field area, seems best adapted to our need in a field pea. It was sown on May 3, on summer-fallowed ground, ripened on September 10 and yielded at the rate of 35 bushels 1 pound per acre.

SUMMARY OF CROPS, 1912.

WHEAT.

<table>
<thead>
<tr>
<th>Description</th>
<th>Bushels</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two varieties in field lots 16 acres</td>
<td>375</td>
<td>...</td>
</tr>
<tr>
<td>Uniform test plots</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Cultural experiment plots</td>
<td>59</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>445</td>
<td>53</td>
</tr>
</tbody>
</table>

OATS.

<table>
<thead>
<tr>
<th>Description</th>
<th>Bushels</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two varieties in field lots 8½ acres</td>
<td>685</td>
<td>1</td>
</tr>
<tr>
<td>Uniform test plots</td>
<td>61</td>
<td>29</td>
</tr>
<tr>
<td>Cultural experiment plots</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>762</td>
<td>4</td>
</tr>
</tbody>
</table>

BARLEY.

<table>
<thead>
<tr>
<th>Description</th>
<th>Bushels</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>One variety in field lot 1½ acres</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>Uniform test plots</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
<td>41</td>
</tr>
</tbody>
</table>

PEAS.

<table>
<thead>
<tr>
<th>Description</th>
<th>Bushels</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>One variety in field lot 3½ acres</td>
<td>131</td>
<td>14</td>
</tr>
<tr>
<td>Uniform test plots</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>134</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Bushels</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring rye</td>
<td>...</td>
<td>28</td>
</tr>
<tr>
<td>Flax</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Potatoes</td>
<td>569</td>
<td>3</td>
</tr>
<tr>
<td>Roots</td>
<td>351</td>
<td>25</td>
</tr>
<tr>
<td>Corn</td>
<td>...</td>
<td>943</td>
</tr>
</tbody>
</table>

HAY.

<table>
<thead>
<tr>
<th>Description</th>
<th>Bushels</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Rye Grass and clover</td>
<td>10 tons</td>
<td>610</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION FOR SOUTHERN ALBERTA, LETHBRIDGE, ALTA,

REPORT OF THE SUPERINTENDENT, W. H. FAIRFIELD, M.S.

THE SEASON.

The season of 1912 resembled that of 1911 in that the rainfall during the early part was deficient, while during the latter part the usual amount was received.

The results of the crops on the Station during the summer of 1912 have been interesting, although in many instances somewhat disappointing. The season opened up in a most propitious manner. Work on the land began on March 28, and the first seeding was done on April 1, although it would have been possible to have begun a little earlier. The soil was left moist from the fall of 1911 and the land was in excellent shape to work in the spring; consequently, the grain crops, in fact all crops planted, were put in under exceedingly favourable conditions where land had been prepared the summer or fall previous. However, the rainfall during April, May and until the end of June in the immediate vicinity of Lethbridge was extremely light. Grain sown on summer-fallowed land and on very early spring ploughing, where the land was cultivated immediately afterwards, came up well, because it was possible to place the seed in moisture. Germination on land that was not so treated was not good.

On account of the previous season closing up so early in the fall of 1911 it was impossible for the farmers in southern Alberta to do much fall ploughing, the result being that a great deal of grain was ‘stubbled’ in this past spring, and most of this, in the Lethbridge district, germinated poorly.

The rainfall was very light, indeed, until the last few days in June; from then on, during July, August and September it was above normal. On account of this light rainfall during the first part of the growing season, all early sown crops, and especially winter wheat, suffered acutely. Crops that looked extremely promising early in the season gave but low yields. Late-sown crops, on the other hand, did much better providing they ripened before the frost.

The yield of all the crops on the non-irrigated portion of the station was rather low, with the exception of peas and such late growing crops as turnips, potatoes, etc.

On the irrigated portion of the Station, however, where water was applied in June, and in some cases even in May, the yields were very much more satisfactory. In the case of hay, however, especially alfalfa, we found the rainy season rather difficult to operate in, as it was hard to get it cured properly. Alfalfa usually makes its most rapid growth when supplied with the necessary moisture during the hot weather of July and August, but this year, on account of the many showers during this period, the weather was not so hot as it ordinarily is, so the alfalfa fields did not produce quite as much as they usually do.
Sessionsal Paper No. 16

Some weather observations taken at Lethbridge Experimental Station, 1912.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature F.</th>
<th>Precipitation</th>
<th>Total sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest</td>
<td>Lowest</td>
<td>Mean</td>
</tr>
<tr>
<td>January</td>
<td>46.1</td>
<td>-23.8</td>
<td>14.13</td>
</tr>
<tr>
<td>February</td>
<td>45.2</td>
<td>-23.6</td>
<td>23.07</td>
</tr>
<tr>
<td>March</td>
<td>63.3</td>
<td>-22.5</td>
<td>19.04</td>
</tr>
<tr>
<td>April</td>
<td>69.1</td>
<td>17.4</td>
<td>44.33</td>
</tr>
<tr>
<td>May</td>
<td>82.8</td>
<td>23.6</td>
<td>51.94</td>
</tr>
<tr>
<td>June</td>
<td>84.8</td>
<td>28.3</td>
<td>62.41</td>
</tr>
<tr>
<td>July</td>
<td>86.6</td>
<td>35.0</td>
<td>58.87</td>
</tr>
<tr>
<td>August</td>
<td>88.7</td>
<td>35.1</td>
<td>60.01</td>
</tr>
<tr>
<td>September</td>
<td>76.7</td>
<td>24.1</td>
<td>47.07</td>
</tr>
<tr>
<td>October</td>
<td>71.4</td>
<td>14.2</td>
<td>42.34</td>
</tr>
<tr>
<td>November</td>
<td>57.4</td>
<td>10.1</td>
<td>33.81</td>
</tr>
<tr>
<td>December</td>
<td>50.1</td>
<td>-6.9</td>
<td>23.16</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
YIELDS OF GRAIN IN FIELD LOTS.

WINTER WHEAT (NON-IRRIGATED).

The following fields of Kharkov winter wheat were sown September 2, 1911, on summer-fallowed land ploughed the different depths indicated in the table.

DEPTH OF PLoughING FOR WINTER WHEAT.

<table>
<thead>
<tr>
<th>Area</th>
<th>Depth ploughed</th>
<th>Date ripe</th>
<th>Yield of grain per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres</td>
<td>Inches</td>
<td>1912</td>
<td>Bush.</td>
</tr>
<tr>
<td>1.02</td>
<td>6</td>
<td>July 21</td>
<td>23</td>
</tr>
<tr>
<td>1.06</td>
<td>5</td>
<td>July 21</td>
<td>20</td>
</tr>
<tr>
<td>1.02</td>
<td>4</td>
<td>July 21</td>
<td>18</td>
</tr>
</tbody>
</table>

On September 12, 1911, 3.32 acres of Ghirka winter wheat were sown on summer-fallowed land. This was ripe on July 30, and yielded at the rate of 28 bushels per acre.

OATS (NON-IRRIGATED).

A field of Banner oats, 15.73 acres in size, was sown on land on which grain had been grown the year previous. It was sown on April 24 and ripened August 23. The field yielded at the rate of 45 bushels and 25 pounds per acre, but was considerably damaged by the cutworms.

OATS (IRRIGATED).

The following field lots of oats were grown in 1912:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Area</th>
<th>Preparation of land</th>
<th>Date sown</th>
<th>Date ripe</th>
<th>Date irrigated</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner</td>
<td>.12</td>
<td>Spring ploughed alfasad</td>
<td>15</td>
<td>13</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Banner</td>
<td>.32</td>
<td>Land on which grain was grown in 1911</td>
<td>17</td>
<td>Aug. 21</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>Banner</td>
<td>.64</td>
<td>Summer-fallow</td>
<td>6</td>
<td>13</td>
<td>11</td>
<td>132</td>
</tr>
<tr>
<td>Banner</td>
<td>.59</td>
<td>Grain in 1911</td>
<td>27</td>
<td>27</td>
<td>12</td>
<td>67</td>
</tr>
</tbody>
</table>
DIVISION OF FIELD HUSBANDRY

SESSIONAL PAPER No. 16

BARLEY (IRRIGATED).

The following fields of barley were grown in 1912:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Area.</th>
<th>Condition of land, 1911.</th>
<th>Date sown.</th>
<th>Date ripe.</th>
<th>Date irrigated.</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish Chevalier</td>
<td>.087</td>
<td>In peas</td>
<td>Apr. 29</td>
<td>Aug. 9</td>
<td>June 11</td>
<td>57 46</td>
</tr>
<tr>
<td>Mansfield</td>
<td>.46</td>
<td>In peas</td>
<td>" 29</td>
<td>" 8</td>
<td>" 11</td>
<td>37 28</td>
</tr>
<tr>
<td>Odessa</td>
<td>.29</td>
<td>In peas</td>
<td>" 29</td>
<td>" 6</td>
<td>" 11</td>
<td>50 2</td>
</tr>
<tr>
<td>Claude</td>
<td>.65</td>
<td>In peas</td>
<td>" 29</td>
<td>" 7</td>
<td>" 11</td>
<td>55 20</td>
</tr>
<tr>
<td>O. A. C. No. 21</td>
<td>.057</td>
<td>In alfalfa</td>
<td>" 26</td>
<td>" 6</td>
<td>" 5</td>
<td>49 26</td>
</tr>
<tr>
<td>Swedish Chevalier</td>
<td>.22</td>
<td>Hoed crops</td>
<td>" 26</td>
<td>" 20</td>
<td>" 8</td>
<td>99 34</td>
</tr>
<tr>
<td>Clifford</td>
<td>.4</td>
<td>Summer-fallow</td>
<td>" 29</td>
<td>" 20</td>
<td>" 11</td>
<td>88 31</td>
</tr>
</tbody>
</table>

PEAS (IRRIGATED).

The following field lots of peas were grown in 1912:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Area.</th>
<th>Date sown.</th>
<th>Date ripe.</th>
<th>Date irrigated.</th>
<th>Condition of land in 1911.</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paragon</td>
<td>.52</td>
<td>Apr. 2</td>
<td>Sept. 13</td>
<td>June 5</td>
<td>Grain</td>
<td>62 16</td>
</tr>
<tr>
<td>Mackay</td>
<td>.649</td>
<td>Apr. 2</td>
<td>Sept. 14</td>
<td>June 5</td>
<td>Grain</td>
<td>74 50</td>
</tr>
</tbody>
</table>

EXPERIMENTS ON NON-IRRIGATED LAND.

ROTATIONS.

In the table below are given the results obtained in the various rotations on the non-irrigated land. Some heavy yields are recorded, notably the turnips on rotation 'T.' They produced 25 tons per acre, and gave a net profit of $36.43.

In computing the results given, fixed valuations for the items debited and credited to the rotations were adopted.

The following values have been fixed:

Return Values.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Per lb.</th>
<th>Per ton.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat (from the machine)</td>
<td>1½c.</td>
<td>$10 00</td>
</tr>
<tr>
<td>Barley</td>
<td>1c.</td>
<td>10 00</td>
</tr>
<tr>
<td>Oats</td>
<td>1c.</td>
<td>10 00</td>
</tr>
<tr>
<td>Peas</td>
<td>1½c.</td>
<td>10 00</td>
</tr>
<tr>
<td>Flax</td>
<td>3c.</td>
<td>10 00</td>
</tr>
<tr>
<td>Timothy hay</td>
<td></td>
<td>$10 00</td>
</tr>
<tr>
<td>Red Clover hay</td>
<td></td>
<td>10 00</td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td></td>
<td>12 00</td>
</tr>
<tr>
<td>Bromegrass hay</td>
<td></td>
<td>10 00</td>
</tr>
<tr>
<td>Western Rye Grass hay</td>
<td></td>
<td>10 00</td>
</tr>
<tr>
<td>Mixed hay</td>
<td></td>
<td>10 00</td>
</tr>
<tr>
<td>Green hay</td>
<td></td>
<td>10 00</td>
</tr>
<tr>
<td>Oat straw</td>
<td></td>
<td>2 00</td>
</tr>
<tr>
<td>Barley straw</td>
<td></td>
<td>2 00</td>
</tr>
<tr>
<td>Wheat straw</td>
<td></td>
<td>1 00</td>
</tr>
</tbody>
</table>

16-16
Cost Values.

Rent .. per acre. $2.00
Barnyard manure spread on fields (charged equally over all years of the rotation) .. per ton. 1.00
Seed wheat .. per acre. 1.50
Seed oats ... 1.00
Seed barley .. 1.00

All other seeds to be charged at actual cost. Cost of grass seed to be charged equally on the years producing grass. Twine charged at actual cost.

Machinery ... 60
Manual labour (including teamster)—
 Single horse 27
 Two-horse team 31
 Three-horse team 41
 Four-horse team 48
 Additional horses 7

(Work done by traction engine is to be converted into the amount of horse labour required to do the work and charged accordingly.)

Threshing (covering work from stock to granary)—
 Wheat .. 7
 Oats ... 4
 Barley .. 5
 Flax .. 12
 Peas ... 7

Rotation 'A.'
Wheat continuously.

Rotation 'V.'
Alfalfa continuously.

Rotation 'B.'
First year.—Summer-fallow.
Second year.—Wheat.

Rotation 'C.'
First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat or coarse grain.

Rotation 'M.'
First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Coarse grain. Manure on stubble in fall.
Fourth year.—Summer-fallow.
Fifth year.—Peas and oats for hay.
Sixth year.—Barley or oats.
SESSIONAL PAPER No. 16

Rotation 'S'.

First year.—Summer-fallow. Manured in preparation for hoed crops.
Second year.—Hoed crops.
Third year.—Wheat.
Fourth year.—Summer-fallow.
Fifth year.—Wheat.
Sixth year.—Coarse grain.
Seventh year.—Summer-fallow.
Eighth year.—Peas and oats for hay. Seeded in fall to rye.
Ninth year.—Rye pasture.

Rotation 'T'.

First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Oats or barley.
Fourth year.—Summer-fallowed May. Seeded to alfalfa late in June in rows 28 inches apart.
Fifth year.—Alfalfa hay or seed.
Sixth year.—Alfalfa hay or seed.
Seventh year.—Alfalfa hay or pasture.
Eighth year.—Summer-fallow.
Ninth year.—Hoed crops.
Tenth year.—Wheat. Manure applied on stubble.
<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Area</th>
<th>Crop</th>
<th>Rent and manure</th>
<th>Seed, twine and use of machinery</th>
<th>Manual Labour</th>
<th>Horse labour (including teamster)</th>
<th>Value of horse labour</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1. Lot 1.</td>
<td>1.57</td>
<td>Wheat</td>
<td></td>
<td>3 14</td>
<td>5 26</td>
<td>1 32</td>
<td>0 32</td>
<td>1 32</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td>3 14</td>
<td>5 26</td>
<td>0 32</td>
<td>0 32</td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td>2 00</td>
<td>3 33</td>
<td>0 29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V 1. Lot 1.	1.06	Alfalfa		3 18	0 64	3 35	6 65	8 32	2 98
Aggregate				3 18	0 64	6 65			2 98
Average per acre in 1912				3 00	0 60	6 27			2 81

B 2. Lot 1.	1.57	Wheat		3 14	3 73	5 3	1 05	1 3	1 68	1 07
B 1. Lot 2.	1.57	Summer-fallow		3 14	0 94	0 94	0 94	1 18	8 92	
Aggregate				6 28	4 67	6 28	4 67		9 99	
Average per acre in 1912				2 00	1 49	0 33			3 18	

C 2. Lot 1.	1.57	Wheat		3 14	3 67	5 0	0 95	1 10	1 10	1 03
C 3. Lot 2.	1.57	Oats		3 14	2 73	1 0	0 19	1 10	7 10	3 92
C 1. Lot 3.	1.57	Summer-fallow		3 14	0 94	0 94	0 94	1 14	6 76	
Aggregate				9 42	7 34	9 42	7 34		11 71	
Average per acre in 1912				2 00	1 56	0 24			2 49	

M 2. Lot 1.	1.25	Wheat		5 00	3 27	3 0	0 70	1 38	0 70	0 92
M 3. Lot 2.	1.25	Oats		5 00	2 27	1 0	0 19	1 0	0 23	2 50
M 4. Lot 3.	1.25	Summer-fallow		5 00	2 27	0 73	0 97	0 73	13 1	6 09
M 5. Lot 4.	1.25	Peas and oats		5 00	2 27	0 73	0 97	0 73	13 1	6 09
M 6. Lot 5.	1.25	Oats		5 00	0 75	0 0	0 75	0 0	0 00	3 71
M 1. Lot 6.	1.25	Summer-fallow		5 00	0 75	0 0	0 75	0 0	0 00	6 00
Aggregate				30 00	11 31	2 05			22 29	
Average per acre in 1912				4 00	1 51	0 27			2 96	
IN RAISING CROP.

<table>
<thead>
<tr>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Grain</th>
<th>Straw</th>
<th>Hay</th>
<th>Roots and stover</th>
<th>Total value</th>
<th>Value of crop per acre</th>
<th>Profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>In.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>15.60</td>
<td>9.94</td>
<td>0.31</td>
<td>7</td>
<td>1.931</td>
<td>2,877</td>
<td></td>
<td></td>
<td>27.19</td>
<td>17.32</td>
<td>7.38</td>
</tr>
<tr>
<td>2.25</td>
<td>15.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.43</td>
<td>9.94</td>
<td>9.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.32</td>
<td>17.32</td>
<td>7.38</td>
</tr>
</tbody>
</table>

Notes.

75% of crops were eaten by cutworms, and re-sown with Marquis wheat which got frosted before it was cut.

V.

<table>
<thead>
<tr>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Grain</th>
<th>Straw</th>
<th>Hay</th>
<th>Roots and stover</th>
<th>Total value</th>
<th>Value of crop per acre</th>
<th>Profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>In.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

B.

<table>
<thead>
<tr>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Grain</th>
<th>Straw</th>
<th>Hay</th>
<th>Roots and stover</th>
<th>Total value</th>
<th>Value of crop per acre</th>
<th>Profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>In.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
</tr>
<tr>
<td>2.96</td>
<td>11.95</td>
<td>7.61</td>
<td>0.28</td>
<td>7</td>
<td>2.540</td>
<td>2.990</td>
<td></td>
<td></td>
<td>35.37</td>
<td>22.53</td>
<td>14.98</td>
</tr>
<tr>
<td>13.00</td>
<td>8.28</td>
<td></td>
</tr>
<tr>
<td>24.95</td>
<td>15.89</td>
<td></td>
</tr>
<tr>
<td>7.95</td>
<td>7.95</td>
<td></td>
</tr>
</tbody>
</table>

C.

<table>
<thead>
<tr>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Grain</th>
<th>Straw</th>
<th>Hay</th>
<th>Roots and stover</th>
<th>Total value</th>
<th>Value of crop per acre</th>
<th>Profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>In.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
</tr>
<tr>
<td>2.61</td>
<td>11.43</td>
<td>7.28</td>
<td>0.30</td>
<td>7</td>
<td>2.950</td>
<td>2.630</td>
<td></td>
<td></td>
<td>31.45</td>
<td>20.63</td>
<td>12.72</td>
</tr>
<tr>
<td>3.74</td>
<td>13.27</td>
<td>8.74</td>
<td>0.14</td>
<td>7</td>
<td>3.176</td>
<td>2.600</td>
<td></td>
<td></td>
<td>34.56</td>
<td>21.88</td>
<td>13.14</td>
</tr>
<tr>
<td>7.70</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>6.38</td>
<td>32.83</td>
<td>20.92</td>
<td></td>
<td></td>
<td>5.436</td>
<td>5.230</td>
<td></td>
<td></td>
<td>65.81</td>
<td>41.91</td>
<td>5.21</td>
</tr>
<tr>
<td>1.35</td>
<td>6.97</td>
<td>6.97</td>
<td></td>
<td></td>
<td>1.154</td>
<td>1.111</td>
<td></td>
<td></td>
<td>13.97</td>
<td>13.97</td>
<td>7.00</td>
</tr>
</tbody>
</table>

M.

<table>
<thead>
<tr>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Grain</th>
<th>Straw</th>
<th>Hay</th>
<th>Roots and stover</th>
<th>Total value</th>
<th>Value of crop per acre</th>
<th>Profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>In.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>11.64</td>
<td>9.32</td>
<td>0.46</td>
<td>1.475</td>
<td>1.845</td>
<td></td>
<td></td>
<td>20.59</td>
<td>16.48</td>
<td>7.16</td>
<td></td>
</tr>
<tr>
<td>2.52</td>
<td>12.94</td>
<td>10.35</td>
<td>0.20</td>
<td>2.144</td>
<td>1.892</td>
<td></td>
<td></td>
<td>23.33</td>
<td>18.66</td>
<td>8.32</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>9.46</td>
<td></td>
</tr>
<tr>
<td>10.30</td>
<td>8.24</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>14.37</td>
<td>11.50</td>
<td>0.18</td>
<td>2.718</td>
<td>2.511</td>
<td></td>
<td></td>
<td>28.64</td>
<td>22.91</td>
<td>11.49</td>
<td></td>
</tr>
<tr>
<td>7.47</td>
<td>7.38</td>
<td>58.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.60</td>
<td>9.31</td>
<td>9.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation Year</td>
<td>Location</td>
<td>Area</td>
<td>Crop</td>
<td>Rent and manure</td>
<td>Seed, twine and use of machinery</td>
<td>Manual Labour</td>
<td>Horse labour (including teamster)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hours</td>
<td>Cost</td>
<td>Single horse</td>
<td>2-horse team</td>
<td>3-horse team</td>
<td>4-horse team</td>
<td>Value of horse labour</td>
</tr>
<tr>
<td>S 9</td>
<td>Lot 1</td>
<td>1:25</td>
<td>Rye pasture</td>
<td>4 17</td>
<td>1 17</td>
<td>14 1/2</td>
<td>5 1/2</td>
<td>9 1/2</td>
<td>2 4/5</td>
<td>3 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1:25</td>
<td>Summer-fallow.</td>
<td>4 17</td>
<td>2 85</td>
<td>5 51</td>
<td>2 2/4</td>
<td>11 1/2</td>
<td>4 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1:25</td>
<td>Corn</td>
<td>4 17</td>
<td>2 85</td>
<td>5 51</td>
<td>2 2/4</td>
<td>11 1/2</td>
<td>4 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1:25</td>
<td>Wheat</td>
<td>4 17</td>
<td>2 85</td>
<td>5 51</td>
<td>2 2/4</td>
<td>11 1/2</td>
<td>4 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1:25</td>
<td>Summer-fallow</td>
<td>4 17</td>
<td>2 85</td>
<td>5 51</td>
<td>2 2/4</td>
<td>11 1/2</td>
<td>4 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1:25</td>
<td>Wheat</td>
<td>4 17</td>
<td>2 85</td>
<td>5 51</td>
<td>2 2/4</td>
<td>11 1/2</td>
<td>4 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1:25</td>
<td>Oats</td>
<td>4 17</td>
<td>2 85</td>
<td>5 51</td>
<td>2 2/4</td>
<td>11 1/2</td>
<td>4 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1:25</td>
<td>Oats and peas</td>
<td>4 17</td>
<td>2 85</td>
<td>5 51</td>
<td>2 2/4</td>
<td>11 1/2</td>
<td>4 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td>37 53</td>
<td>16 19</td>
<td>7 61</td>
<td>5 61</td>
<td>37 27</td>
<td>4 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td>3 33</td>
<td>1 44</td>
<td>0 68</td>
<td>5 68</td>
<td>3 31</td>
<td>4 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 8</td>
<td>Lot 1</td>
<td>1:57</td>
<td>Alfalfa</td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1:57</td>
<td>Alfalfa</td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1:57</td>
<td>Alfalfa</td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>T 1</td>
<td></td>
<td></td>
<td></td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>T 2</td>
<td></td>
<td></td>
<td></td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1:57</td>
<td>Turnips</td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>T 3</td>
<td></td>
<td></td>
<td></td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>T 4</td>
<td></td>
<td></td>
<td></td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>T 5</td>
<td></td>
<td></td>
<td></td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>T 6</td>
<td></td>
<td></td>
<td></td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>T 7</td>
<td></td>
<td></td>
<td></td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td>5 02</td>
<td>1 24</td>
<td>3 40</td>
<td>6 66</td>
<td>5 1/2</td>
<td>6 1/2</td>
<td>1 92</td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td>3 33</td>
<td>1 44</td>
<td>0 68</td>
<td>5 68</td>
<td>3 31</td>
<td>4 51</td>
<td>45 30</td>
<td></td>
</tr>
</tbody>
</table>

Rotation
In Raising Crop.

<table>
<thead>
<tr>
<th>Cost of growing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost for 1 bushel</th>
<th>Height of stalks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>Ins.</td>
</tr>
<tr>
<td>8.51</td>
<td>6.81</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>9.28</td>
<td>7.42</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>21.45</td>
<td>17.16</td>
<td>0.00</td>
<td>0.00</td>
<td>4.2</td>
</tr>
<tr>
<td>2.77</td>
<td>3.33</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1.89</td>
<td>1.63</td>
<td>0.00</td>
<td>0.00</td>
<td>7.00</td>
</tr>
<tr>
<td>3.40</td>
<td>2.88</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>11.69</td>
<td>9.43</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>103.65</td>
<td>84.83</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>9.43</td>
<td>9.43</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Particulars of Crop.

<table>
<thead>
<tr>
<th>Weight in Pounds.</th>
<th>Grain.</th>
<th>Straw.</th>
<th>Hay.</th>
<th>Roots and ensilage.</th>
<th>Total value</th>
<th>Value of crop per acre</th>
<th>Profit per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
<td>$ c.</td>
<td>$ c.</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>1.60</td>
<td>0.00</td>
<td>0.00</td>
<td>62 days pasture for 1 cow.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td>20.57</td>
<td>12.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.56</td>
<td>18.05</td>
<td>12.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.06</td>
<td>22.45</td>
<td>14.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.00</td>
<td>28.60</td>
<td>23.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.56</td>
<td>104.45</td>
<td>56.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.61</td>
<td>11.61</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes.

- Manured.
- Seeded in fall to rye.

T.

<table>
<thead>
<tr>
<th>$ c.</th>
<th>$ c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.55</td>
<td>2.96</td>
</tr>
<tr>
<td>3.55</td>
<td>2.96</td>
</tr>
<tr>
<td>3.55</td>
<td>2.96</td>
</tr>
<tr>
<td>1.16</td>
<td>0.38</td>
</tr>
<tr>
<td>39.64</td>
<td>23.25</td>
</tr>
<tr>
<td>2.59</td>
<td>2.26</td>
</tr>
<tr>
<td>13.46</td>
<td>8.53</td>
</tr>
<tr>
<td>2.46</td>
<td>1.85</td>
</tr>
<tr>
<td>1.08</td>
<td>0.81</td>
</tr>
<tr>
<td>11.63</td>
<td>7.54</td>
</tr>
<tr>
<td>156.07</td>
<td>99.47</td>
</tr>
<tr>
<td>9.94</td>
<td>9.94</td>
</tr>
</tbody>
</table>

- Seed saved, Grimm.
- Seed saved, Grimm.
The following is a summary of the above tables:

Costs, Values of Products and Profits of Rotations 'A', 'V', 'B', 'C', 'M', 'S', and 'T'.

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Total Cost per Acre</th>
<th>Total Value per Acre</th>
<th>Net Profit per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A' wheat continuously</td>
<td>$ 9.94</td>
<td>$ 17.32</td>
<td>$ 7.38</td>
</tr>
<tr>
<td>'V' Alfalfa continuously</td>
<td>$ 12.69</td>
<td>$ 24.92</td>
<td>$ 12.23</td>
</tr>
<tr>
<td>'B' two years' duration</td>
<td>$ 7.95</td>
<td>$ 11.25</td>
<td>$ 3.31</td>
</tr>
<tr>
<td>'C' three years' duration</td>
<td>$ 6.97</td>
<td>$ 13.97</td>
<td>$ 7.00</td>
</tr>
<tr>
<td>'M' six years' duration</td>
<td>$ 9.81</td>
<td>$ 13.66</td>
<td>$ 4.85</td>
</tr>
<tr>
<td>'S' nine years' duration</td>
<td>$ 9.43</td>
<td>$ 11.61</td>
<td>$ 2.18</td>
</tr>
<tr>
<td>'T' ten years' duration</td>
<td>$ 9.94</td>
<td>$ 20.63</td>
<td>$ 10.69</td>
</tr>
</tbody>
</table>

CULTURAL EXPERIMENTS.

A comprehensive set of experiments in soil cultivation has been undertaken, but we do not feel it advisable to publish the results of the work this year, as it was more or less of a preparatory nature.

The lines of investigation along which we are working are as follows:

Experiment 1 - Prairie breaking.
 " 2A—Depth of ploughing wheat stubble to be sown to oats.
 " 2B—Depth of ploughing summer-fallow to be sown to wheat followed by oats.
 " 2C—Depth of ploughing sod to be sown to wheat, followed by oats.
 " 3—Summer-fallow treatment previous to sowing wheat.
 " 4A—Treatment of wheat stubble to be sown to wheat.
 " 4B—Treatment of wheat stubble to be sown to oats.
 " 5—Seeding to grass and clover.
 " 6—Breaking sod from cultivated grasses and clovers.
 " 7A—Applying barnyard manure for corn or roots.
 " 7B—Applying barnyard manure for wheat.
 " 7C—Applying barnyard manure for barley.
 " 7D—Applying barnyard manure for oats.
 " 8—Green manuring.
 " 9—Seed-bed preparation.
 " 10A—Soil packing for wheat sown on summer-fallow.
 " 10B—Soil packing for wheat sown on spring-ploughed wheat stubble.
 " 10C—Soil packing for wheat sown on fall-ploughed wheat stubble.
 " 11—Depth of seeding.
 " 12—Commercial fertilizers.
 " 13—Underdraining.
DATES OF SEEDING.

Marquis Wheat (Non-irrigated).

DATES of Seeding Marquis Wheat.

<table>
<thead>
<tr>
<th>Date sown.</th>
<th>Date ripe.</th>
<th>Size of plot</th>
<th>Length of straw</th>
<th>Length of head</th>
<th>Weight of straw per acre</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1</td>
<td>August 7</td>
<td>1/60</td>
<td>24</td>
<td>24</td>
<td>1,500</td>
<td>25</td>
</tr>
<tr>
<td>April 12</td>
<td>August 8</td>
<td>1/60</td>
<td>24</td>
<td>24</td>
<td>1,680</td>
<td>24</td>
</tr>
<tr>
<td>April 22</td>
<td>August 8</td>
<td>1/60</td>
<td>24\frac{1}{2}</td>
<td>24</td>
<td>1,620</td>
<td>23</td>
</tr>
<tr>
<td>May 1</td>
<td>August 17</td>
<td>1/60</td>
<td>24\frac{1}{2}</td>
<td>3</td>
<td>1,260</td>
<td>25</td>
</tr>
<tr>
<td>May 11</td>
<td>August 25</td>
<td>1/60</td>
<td>31\frac{1}{2}</td>
<td>24</td>
<td>1,800</td>
<td>21</td>
</tr>
<tr>
<td>May 22</td>
<td>September 16</td>
<td>1/60</td>
<td>35</td>
<td>24</td>
<td>1,490</td>
<td>25</td>
</tr>
<tr>
<td>May 31</td>
<td>September 16</td>
<td>1/60</td>
<td>34</td>
<td>24</td>
<td>1,110</td>
<td>26</td>
</tr>
</tbody>
</table>

*Grain badly frosted. Was not ripe at time of killing frost September 14 and 15.

Kharkov Winter Wheat (Non-irrigated).

The table would indicate that September 1 was the best date to seed. From our observations we are of the opinion that from August 20 to September 1 is about the best period for the Lethbridge district.

DATES of Seeding Kharkov Winter Wheat.

<table>
<thead>
<tr>
<th>Date Sown.</th>
<th>Date Ripe.</th>
<th>Size of plot</th>
<th>Length of Straw</th>
<th>Length of head</th>
<th>Weight of straw</th>
<th>Yield per acre</th>
<th>Average yield per acre for 4 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 15</td>
<td>July 24</td>
<td>1-20</td>
<td>25</td>
<td>24</td>
<td>1440</td>
<td>7 50</td>
<td>4 37*</td>
</tr>
<tr>
<td>August 2</td>
<td>July 24</td>
<td>1-20</td>
<td>25</td>
<td>24</td>
<td>1240</td>
<td>12 60</td>
<td>12 6*</td>
</tr>
<tr>
<td>August 15</td>
<td>July 24</td>
<td>1-20</td>
<td>25\frac{1}{2}</td>
<td>24</td>
<td>1230</td>
<td>12 40</td>
<td>23 51</td>
</tr>
<tr>
<td>September 1</td>
<td>July 24</td>
<td>1-20</td>
<td>25</td>
<td>24</td>
<td>1620</td>
<td>18 20</td>
<td>28 30</td>
</tr>
<tr>
<td>September 15</td>
<td>July 29</td>
<td>1-20</td>
<td>24</td>
<td>24</td>
<td>1570</td>
<td>19 30</td>
<td>22 32</td>
</tr>
<tr>
<td>October 2</td>
<td>Aug. 5</td>
<td>1-20</td>
<td>25</td>
<td>21</td>
<td>1310</td>
<td>15 30</td>
<td>19 60</td>
</tr>
<tr>
<td>October 16</td>
<td>Aug. 12</td>
<td>1-20</td>
<td>25</td>
<td>21</td>
<td>1700</td>
<td>24 60</td>
<td>18 60</td>
</tr>
</tbody>
</table>

*Average yield for three years only.
Banner Oats (Non-irrigated.)

An experiment was started with dates of seeding oats, the first seeding being done on April 1, and the last on July 2. The land was summer-fallowed in 1911.

Dates of Seeding Banner Oats.

<table>
<thead>
<tr>
<th>Date Sown</th>
<th>Date Ripe</th>
<th>Length of straw (Inches)</th>
<th>Length of head (Inches)</th>
<th>Weight of straw per acre (Tons Lb.)</th>
<th>Yield per acre (Bush Lb.)</th>
<th>Size of plots (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1</td>
<td>August 17</td>
<td>32</td>
<td>52</td>
<td>1 880</td>
<td>68 28</td>
<td>1/60</td>
</tr>
<tr>
<td>April 15</td>
<td>August 17</td>
<td>30</td>
<td>52</td>
<td>1 760</td>
<td>67 2</td>
<td>1/60</td>
</tr>
<tr>
<td>May 1</td>
<td>August 17</td>
<td>33</td>
<td>6</td>
<td>1 940</td>
<td>77 22</td>
<td>1/60</td>
</tr>
<tr>
<td>May 15</td>
<td>August 23</td>
<td>31</td>
<td>7</td>
<td>1 450</td>
<td>58 18</td>
<td>1/60</td>
</tr>
<tr>
<td>May 31</td>
<td>September 11</td>
<td>38</td>
<td>7</td>
<td>1 190</td>
<td>80 16</td>
<td>1/60</td>
</tr>
<tr>
<td>June 15</td>
<td>Cut for green feed September 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 2</td>
<td>Cut for green feed September 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mensury Barley (Non-irrigated).

An experiment was started with dates of seeding barley, the first seeding being done on April 1, and the last on July 2. The land was summer-fallowed in 1911.

Dates of Seeding Mensury Barley.

<table>
<thead>
<tr>
<th>Date sown</th>
<th>Date ripe</th>
<th>Size of plot (Acres)</th>
<th>Length of straw (Inches)</th>
<th>Length of head (Inches)</th>
<th>Weight of straw per acre (Tons Lb.)</th>
<th>Yield per acre (Bush Lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1</td>
<td>August 10</td>
<td>1/60</td>
<td>27</td>
<td>2.5</td>
<td>1 400</td>
<td>26 12</td>
</tr>
<tr>
<td>April 15</td>
<td>August 10</td>
<td>1/60</td>
<td>26</td>
<td>2.5</td>
<td>1 400</td>
<td>27 24</td>
</tr>
<tr>
<td>May 1</td>
<td>August 23</td>
<td>1/60</td>
<td>28</td>
<td>2.5</td>
<td>1 520</td>
<td>32 24</td>
</tr>
<tr>
<td>May 16</td>
<td>August 23</td>
<td>1/60</td>
<td>34</td>
<td>3.2</td>
<td>1 400</td>
<td>26 12</td>
</tr>
<tr>
<td>May 31</td>
<td>August 20</td>
<td>1/60</td>
<td>34</td>
<td>3.2</td>
<td>1 570</td>
<td>29 18</td>
</tr>
<tr>
<td>June 15</td>
<td>August 15</td>
<td>1/60</td>
<td>38</td>
<td>3.4</td>
<td>1 240</td>
<td>26 60</td>
</tr>
<tr>
<td>July 2</td>
<td>August 15</td>
<td>1/60</td>
<td>33</td>
<td>3</td>
<td>2 140</td>
<td>26 12</td>
</tr>
</tbody>
</table>

* Grain frosted on September 14 and 15, almost ripe.

Flax (Non-irrigated).

An experiment with dates of seeding flax was begun this season. It was sown on summer-fallowed land in plots one-sixtieth of an acre in size. The first seeding was made April 1, and the last July 2. As will be noticed in the table given below all the flax sown on and after May 15 was frosted.
Dates of Seeding Flax.

<table>
<thead>
<tr>
<th>Date sown.</th>
<th>Date ripe.</th>
<th>Length of straw.</th>
<th>Weight of straw per acre</th>
<th>Yield per acre</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1</td>
<td>August 24</td>
<td>19 IN.</td>
<td>1,680</td>
<td>23</td>
<td>Frosted September 14 and 15.</td>
</tr>
<tr>
<td>April 15</td>
<td>August 27</td>
<td>20 (IN.)</td>
<td>1,749</td>
<td>27</td>
<td>Frosted September 14 and 15.</td>
</tr>
<tr>
<td>May 1</td>
<td>August 30</td>
<td>23 (IN.)</td>
<td>2,489</td>
<td>25</td>
<td>Cut for green feed Sept. 16.</td>
</tr>
<tr>
<td>May 15</td>
<td>Sept. 10*</td>
<td>24 (IN.)</td>
<td>2,540</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>May 31</td>
<td>Sept. 10*</td>
<td>23 (IN.)</td>
<td>2,489</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>June 15</td>
<td>Sept. 16*</td>
<td>24½ (IN.)</td>
<td>2,430</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

*Date cut.

Rates of Seed per Acre.

Kharkov Winter Wheat (Non-irrigated).

In these experiments the winter wheat was sown on summer-fallowed land.

Rates of Seeding Kharkov Winter Wheat.

<table>
<thead>
<tr>
<th>Rate per acre</th>
<th>Size of plot</th>
<th>Date sown.</th>
<th>Date ripe.</th>
<th>Length of straw.</th>
<th>Length of head.</th>
<th>Weight of straw per acre</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1/20</td>
<td>Sept. 1</td>
<td>Aug. 5</td>
<td>23</td>
<td>22</td>
<td>1,460</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>1/20</td>
<td>Sept. 1</td>
<td>July 21</td>
<td>27</td>
<td>24</td>
<td>1,750</td>
<td>23</td>
</tr>
<tr>
<td>45</td>
<td>1/20</td>
<td>Sept. 1</td>
<td>July 27</td>
<td>26</td>
<td>24</td>
<td>1,400</td>
<td>23</td>
</tr>
<tr>
<td>60</td>
<td>1/20</td>
<td>Sept. 1</td>
<td>July 27</td>
<td>26</td>
<td>24</td>
<td>1,400</td>
<td>23</td>
</tr>
<tr>
<td>75</td>
<td>1/20</td>
<td>Sept. 1</td>
<td>July 27</td>
<td>26</td>
<td>24</td>
<td>1,400</td>
<td>23</td>
</tr>
<tr>
<td>90</td>
<td>1/20</td>
<td>Sept. 1</td>
<td>July 27</td>
<td>26½</td>
<td>24</td>
<td>1,300</td>
<td>23</td>
</tr>
<tr>
<td>105</td>
<td>1/20</td>
<td>Sept. 1</td>
<td>July 24</td>
<td>26</td>
<td>24</td>
<td>1,200</td>
<td>21</td>
</tr>
<tr>
<td>120</td>
<td>1/20</td>
<td>Sept. 1</td>
<td>July 24</td>
<td>26</td>
<td>24</td>
<td>1,300</td>
<td>21</td>
</tr>
</tbody>
</table>

Red Fife Wheat (Non-irrigated).

Rates of Seeding Red Fife Wheat.

<table>
<thead>
<tr>
<th>Rate per acre</th>
<th>Size of plot</th>
<th>Date sown.</th>
<th>Date ripe.</th>
<th>Length of straw.</th>
<th>Length of head.</th>
<th>Weight of straw per acre</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1/20</td>
<td>April 1</td>
<td>Aug. 29</td>
<td>37½</td>
<td>3</td>
<td>1,840</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>1/20</td>
<td>April 1</td>
<td>Aug. 17</td>
<td>35</td>
<td>3</td>
<td>1,200</td>
<td>19</td>
</tr>
<tr>
<td>45</td>
<td>1/20</td>
<td>April 1</td>
<td>Aug. 15</td>
<td>33</td>
<td>3</td>
<td>1,600</td>
<td>25</td>
</tr>
<tr>
<td>60</td>
<td>1/20</td>
<td>April 1</td>
<td>Aug. 12</td>
<td>30</td>
<td>3</td>
<td>1,800</td>
<td>25</td>
</tr>
<tr>
<td>75</td>
<td>1/20</td>
<td>April 1</td>
<td>Aug. 12</td>
<td>30</td>
<td>3</td>
<td>1,800</td>
<td>25</td>
</tr>
<tr>
<td>90</td>
<td>1/20</td>
<td>April 1</td>
<td>Aug. 11</td>
<td>31</td>
<td>3</td>
<td>1,900</td>
<td>25</td>
</tr>
<tr>
<td>105</td>
<td>1/20</td>
<td>April 1</td>
<td>Aug. 10</td>
<td>28½</td>
<td>3</td>
<td>1,600</td>
<td>25</td>
</tr>
<tr>
<td>120</td>
<td>1/20</td>
<td>April 1</td>
<td>Aug. 9</td>
<td>26</td>
<td>3</td>
<td>1,810</td>
<td>23</td>
</tr>
</tbody>
</table>
Banner Oats (Non-irrigated.)

The size of the plots used was one-twentieth acre each and they were all sown April 15. Banner oats were used and they were sown on summer-fallowed land.

Rates of Seeding Banner Oats.

<table>
<thead>
<tr>
<th>Rate per acre.</th>
<th>Size of plot.</th>
<th>Date sown.</th>
<th>Date ripe.</th>
<th>Length of straw.</th>
<th>Length of head.</th>
<th>Weight of straw.</th>
<th>Yield per acre.</th>
<th>Average yield per acre for 4 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1/20</td>
<td>Apr. 15...</td>
<td>*</td>
<td>38</td>
<td>61/2</td>
<td>1,860</td>
<td>73 18</td>
<td>42 22</td>
</tr>
<tr>
<td>30</td>
<td>1/20</td>
<td>Apr. 15...</td>
<td>*</td>
<td>35</td>
<td>6</td>
<td>1,080</td>
<td>67 2</td>
<td>49 24</td>
</tr>
<tr>
<td>45</td>
<td>1/20</td>
<td>Apr. 15...</td>
<td>*</td>
<td>35</td>
<td>6</td>
<td>1,440</td>
<td>70 00</td>
<td>52 22</td>
</tr>
<tr>
<td>75</td>
<td>1/20</td>
<td>Apr. 15...</td>
<td>Aug. 17...</td>
<td>32</td>
<td>53/2</td>
<td>1,290</td>
<td>65 30</td>
<td>54 8</td>
</tr>
<tr>
<td>105</td>
<td>1/20</td>
<td>Apr. 15...</td>
<td>Aug. 5...</td>
<td>32</td>
<td>53/2</td>
<td>1,450</td>
<td>49 4</td>
<td>49 28</td>
</tr>
<tr>
<td>120</td>
<td>1/20</td>
<td>Apr. 15...</td>
<td>Aug. 1...</td>
<td>32</td>
<td>61/2</td>
<td>1,870</td>
<td>48 18</td>
<td>45 2</td>
</tr>
</tbody>
</table>

Mensury Barley (Non-irrigated).

The results would seem to indicate that 90 pounds was about the right amount to sow per acre. We find that from 85 to 90 pounds is about the right amount to use here.

Rates of Seeding Mensury Barley on Summer-fallow.

<table>
<thead>
<tr>
<th>Rate per acre.</th>
<th>Size of plot.</th>
<th>Date sown.</th>
<th>Date ripe.</th>
<th>Length of straw.</th>
<th>Length of head.</th>
<th>Weight of straw per acre.</th>
<th>Yield per acre.</th>
<th>Average yield per acre for 3 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1/20</td>
<td>Apr. 18...</td>
<td>Aug. 8...</td>
<td>27</td>
<td>2</td>
<td>1,710</td>
<td>20 30</td>
<td>9 45</td>
</tr>
<tr>
<td>30</td>
<td>1/20</td>
<td>Apr. 18...</td>
<td>Aug. 7...</td>
<td>26</td>
<td>21/2</td>
<td>1,350</td>
<td>23 36</td>
<td>13 16</td>
</tr>
<tr>
<td>45</td>
<td>1/20</td>
<td>Apr. 18...</td>
<td>Aug. 6...</td>
<td>27</td>
<td>2</td>
<td>1,820</td>
<td>20 30</td>
<td>15 00</td>
</tr>
<tr>
<td>60</td>
<td>1/20</td>
<td>Apr. 18...</td>
<td>Aug. 3...</td>
<td>20</td>
<td>2</td>
<td>1,820</td>
<td>18 36</td>
<td>13 12</td>
</tr>
<tr>
<td>75</td>
<td>1/20</td>
<td>Apr. 18...</td>
<td>Aug. 3...</td>
<td>22</td>
<td>2</td>
<td>1,930</td>
<td>18 36</td>
<td>16 00</td>
</tr>
<tr>
<td>90</td>
<td>1/20</td>
<td>Apr. 18...</td>
<td>Aug. 1...</td>
<td>24</td>
<td>2</td>
<td>1,980</td>
<td>20 30</td>
<td>19 41</td>
</tr>
<tr>
<td>105</td>
<td>1/20</td>
<td>Apr. 18...</td>
<td>Aug. 1...</td>
<td>22</td>
<td>2</td>
<td>1,820</td>
<td>20 30</td>
<td>24 5</td>
</tr>
<tr>
<td>120</td>
<td>1/20</td>
<td>Apr. 18...</td>
<td>Aug. 1...</td>
<td>21</td>
<td>2</td>
<td>1,700</td>
<td>20 30</td>
<td>22 44</td>
</tr>
</tbody>
</table>

EXPERIMENTS ON IRRIGATED LAND.

Rotation 'U.'

In this rotation wheat yielded 29 bushels per acre, and gave a net profit of $36.43. Potatoes on alfalfa sod yielded 757 bushels per acre making the rather phenomenal net profit of $307.38 per acre with the potatoes valued at 50 cents per bushel.
Rotation "U."

First year.—Seeding alfalfa.
Second year.—Alfalfa hay.
Third year.— "
Fourth year.— "
Fifth year.— "
Sixth year.— "
Seventh year.—Hoed crops.
Eighth year.—Wheat.
Ninth year.—Wheat or coarse grain.
Tenth year.—Coarse grain.
<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Acres</th>
<th>1911</th>
<th>1912</th>
<th>Rent and Manure</th>
<th>Manual Labour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seed, Twine and use of</td>
<td>Hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>machinery.</td>
<td></td>
</tr>
<tr>
<td>U 2. Lot 1</td>
<td>1.00</td>
<td>4.20</td>
<td>1.69</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 1.</td>
<td>2.</td>
<td>4.20</td>
<td>1.69</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 10.</td>
<td>3.</td>
<td>4.20</td>
<td>1.68</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 9.</td>
<td>4.</td>
<td>4.20</td>
<td>1.60</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 8.</td>
<td>5.</td>
<td>4.20</td>
<td>1.60</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 7.</td>
<td>6.</td>
<td>4.20</td>
<td>1.60</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 6.</td>
<td>7.</td>
<td>4.20</td>
<td>1.60</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 5.</td>
<td>8.</td>
<td>4.20</td>
<td>1.60</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 4.</td>
<td>9.</td>
<td>4.20</td>
<td>1.60</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>U 3.</td>
<td>10.</td>
<td>4.20</td>
<td>1.60</td>
<td>36</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td>42.00</td>
<td>30.99</td>
<td>58.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td>4.20</td>
<td>3.10</td>
<td>5.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expense in Raising Crop.

<table>
<thead>
<tr>
<th>Horse labour (including teamster.)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Single horse.</td>
<td>73</td>
<td></td>
<td></td>
<td>$2.55</td>
<td>$13.18</td>
<td>$13.18</td>
<td>$2.55</td>
<td>$13.18</td>
<td>$22.58</td>
</tr>
<tr>
<td>2 horse team</td>
<td>52</td>
<td>4</td>
<td></td>
<td>$2.90</td>
<td>$10.27</td>
<td>$10.27</td>
<td>$2.90</td>
<td>$10.27</td>
<td>$18.17</td>
</tr>
<tr>
<td>3 horse team</td>
<td>12</td>
<td>7</td>
<td></td>
<td>$2.30</td>
<td>$13.89</td>
<td>$13.89</td>
<td>$2.30</td>
<td>$13.89</td>
<td>$20.19</td>
</tr>
<tr>
<td>4 horse team</td>
<td>12</td>
<td>1</td>
<td></td>
<td>$1.60</td>
<td>$13.35</td>
<td>$13.35</td>
<td>$1.60</td>
<td>$13.35</td>
<td>$15.95</td>
</tr>
<tr>
<td>8 horse team</td>
<td>20</td>
<td>1</td>
<td></td>
<td>$3.20</td>
<td>$13.58</td>
<td>$13.58</td>
<td>$3.20</td>
<td>$13.58</td>
<td>$16.78</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
<td>$3.40</td>
<td>$14.21</td>
<td>$14.21</td>
<td>$3.40</td>
<td>$14.21</td>
<td>$17.61</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>32</td>
<td>8</td>
<td>$8.80</td>
<td>$19.07</td>
<td>$19.07</td>
<td>$8.80</td>
<td>$19.07</td>
<td>$27.87</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3</td>
<td>8</td>
<td>$8.80</td>
<td>$19.11</td>
<td>$19.11</td>
<td>$8.80</td>
<td>$19.11</td>
<td>$27.91</td>
</tr>
</tbody>
</table>
The size of the plots used was one-thirtieth of an acre. They were sown April 2 on summer-fallowed land. The variety used was Red Fife. One irrigation was given on June 8. We now have results from five seasons.

Rates of Seeding Spring Wheat.

<table>
<thead>
<tr>
<th>Rate per acre</th>
<th>Size of plot</th>
<th>Date sown</th>
<th>Date ripe</th>
<th>Length of Straw</th>
<th>Length of head</th>
<th>Weight of straw per acre</th>
<th>Yield per acre</th>
<th>Average yield per acre for 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1/30</td>
<td>Apr. 2</td>
<td>Aug. 23</td>
<td>50</td>
<td>3.7</td>
<td>3 7.50</td>
<td>56..</td>
<td>34..</td>
</tr>
<tr>
<td>30</td>
<td>1/30</td>
<td>Apr. 2</td>
<td>Aug. 23</td>
<td>49.2</td>
<td>3.5</td>
<td>3 1,470</td>
<td>63 30</td>
<td>40 30</td>
</tr>
<tr>
<td>45</td>
<td>1/30</td>
<td>Apr. 2</td>
<td>Aug. 20</td>
<td>50</td>
<td>3.5</td>
<td>3 420</td>
<td>63..</td>
<td>41 42</td>
</tr>
<tr>
<td>60</td>
<td>1/30</td>
<td>Apr. 2</td>
<td>Aug. 19</td>
<td>44.5</td>
<td>3.5</td>
<td>3 630</td>
<td>63 20</td>
<td>41 52</td>
</tr>
<tr>
<td>75</td>
<td>1/30</td>
<td>Apr. 2</td>
<td>Aug. 14</td>
<td>44</td>
<td>3.5</td>
<td>3 455</td>
<td>61 45</td>
<td>44 25</td>
</tr>
<tr>
<td>90</td>
<td>1/30</td>
<td>Apr. 2</td>
<td>Aug. 14</td>
<td>47</td>
<td>3.5</td>
<td>3 60</td>
<td>64..</td>
<td>45 34</td>
</tr>
<tr>
<td>105</td>
<td>1/30</td>
<td>Apr. 2</td>
<td>Aug. 14</td>
<td>43.5</td>
<td>3.5</td>
<td>3 660</td>
<td>66 30</td>
<td>47 51</td>
</tr>
<tr>
<td>120</td>
<td>1/30</td>
<td>Apr. 2</td>
<td>Aug. 13</td>
<td>41.5</td>
<td>3.5</td>
<td>2 1,280</td>
<td>62..</td>
<td>43 50</td>
</tr>
</tbody>
</table>

Oats (Irrigated.)

In the following experiment the size of the plots used was one-twentieth of an acre. They were sown April 15 on land on which hoed crops were grown in 1911. The variety used was Banner. One irrigation was given on June 4. We now have the results for five years from this experiment.

Rates of Seeding Oats.

<table>
<thead>
<tr>
<th>Rate per Acre</th>
<th>Size of Plot</th>
<th>Date Sown</th>
<th>Date Ripe</th>
<th>Length of Straw</th>
<th>Length of Head</th>
<th>Weight of Straw per Acre</th>
<th>Yield per Acre</th>
<th>Average yield per Acre for 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>33</td>
<td>Apr. 15</td>
<td>Aug. 23</td>
<td>44-5</td>
<td>7-5</td>
<td>1 490</td>
<td>69 24</td>
<td>67 18</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>" 15</td>
<td>" 22</td>
<td>43</td>
<td>7</td>
<td>2 80</td>
<td>110..</td>
<td>78 18</td>
</tr>
<tr>
<td>45</td>
<td>33</td>
<td>" 15</td>
<td>" 13</td>
<td>43</td>
<td>7</td>
<td>1 980</td>
<td>106 16</td>
<td>78 18</td>
</tr>
<tr>
<td>60</td>
<td>33</td>
<td>" 15</td>
<td>" 14</td>
<td>41</td>
<td>6-5</td>
<td>1 1,000</td>
<td>106 28</td>
<td>85 16</td>
</tr>
<tr>
<td>75</td>
<td>33</td>
<td>" 15</td>
<td>" 14</td>
<td>41</td>
<td>5-5</td>
<td>1 1,290</td>
<td>112 12</td>
<td>87 21</td>
</tr>
<tr>
<td>90</td>
<td>33</td>
<td>" 15</td>
<td>" 13</td>
<td>40-5</td>
<td>6</td>
<td>1 1,300</td>
<td>102 12</td>
<td>88 15</td>
</tr>
<tr>
<td>105</td>
<td>33</td>
<td>" 15</td>
<td>" 12</td>
<td>40-5</td>
<td>7</td>
<td>1 2,500</td>
<td>108 28</td>
<td>87 12</td>
</tr>
<tr>
<td>120</td>
<td>33</td>
<td>" 15</td>
<td>July 31</td>
<td>40</td>
<td>7-7</td>
<td>1 740</td>
<td>101 26</td>
<td>83 2</td>
</tr>
</tbody>
</table>

Barley (Irrigated.)

In the following experiments, the size of the plots used was one-thirtieth of an acre, they were sown on April 17 on summer-fallowed land. One irrigation was given on June 8. We now have results from five seasons.
Rates of Seeding Barley

<table>
<thead>
<tr>
<th>Rates per acre</th>
<th>Size of plot</th>
<th>Date sown</th>
<th>Date Ripe</th>
<th>Length of straw</th>
<th>Length of head</th>
<th>Weight of straw per acre</th>
<th>Yield per acre</th>
<th>Average yield per acre for 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lb</td>
<td>Acres</td>
<td>1912</td>
<td>1912</td>
<td>Inches</td>
<td>Inches</td>
<td>Tons. Lb</td>
<td>Bush Lb</td>
<td>Bush Lb</td>
</tr>
<tr>
<td>15</td>
<td>1/30</td>
<td>Apr. 17</td>
<td>Aug. 3</td>
<td>40</td>
<td>3.2</td>
<td>2 380</td>
<td>77 24</td>
<td>41 16</td>
</tr>
<tr>
<td>30</td>
<td>1/30</td>
<td>Apr. 17</td>
<td>Aug. 2</td>
<td>39</td>
<td>3.5</td>
<td>2 590</td>
<td>104 18</td>
<td>53 18</td>
</tr>
<tr>
<td>45</td>
<td>1/30</td>
<td>Apr. 17</td>
<td>Aug. 1</td>
<td>39</td>
<td>3.5</td>
<td>2 350</td>
<td>96 42</td>
<td>54 42</td>
</tr>
<tr>
<td>60</td>
<td>1/30</td>
<td>Apr. 17</td>
<td>Aug. 1</td>
<td>40</td>
<td>3.7</td>
<td>2 1,540</td>
<td>95 ..</td>
<td>56 24</td>
</tr>
<tr>
<td>75</td>
<td>1/30</td>
<td>Apr. 17</td>
<td>Aug. 1</td>
<td>39</td>
<td>3.7</td>
<td>..</td>
<td>99 18</td>
<td>53 7</td>
</tr>
<tr>
<td>90</td>
<td>1/30</td>
<td>Apr. 17</td>
<td>Aug. 1</td>
<td>39</td>
<td>3.5</td>
<td>1 1,730</td>
<td>85 ..</td>
<td>51 6</td>
</tr>
<tr>
<td>105</td>
<td>1/30</td>
<td>Apr. 17</td>
<td>July 31</td>
<td>38.5</td>
<td>3.5</td>
<td>1 1,090</td>
<td>98 6</td>
<td>47 24</td>
</tr>
<tr>
<td>120</td>
<td>1/30</td>
<td>Apr. 17</td>
<td>July 31</td>
<td>39</td>
<td>3.2</td>
<td>2 980</td>
<td>99 18</td>
<td>49 18</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION FOR CENTRAL ALBERTA, LACOMBE, ALTA.

REPORT OF THE SUPERINTENDENT, G. H. HUTTON, B.S.A.

ROTATION OF CROPS.

The following rotations reported upon last year, have been continued.

Rotation 'C.'
First year.—Summer-fallow.
Second year.—Wheat.
Third year.—Wheat, or coarse grain.

Rotation 'K.'
First year.—Hoed crop—peas—mixed grain.
Second year.—Wheat.
Third year.—Oats or barley. Seeded down per acre as follows: one-third, alsike clover 6 pounds, and rye grass 10 pounds; one-third, alsike clover 6 pounds, alfalfa 6 pounds, and timothy 3 pounds; one-third, alsike clover 2 pounds, red clover 6 pounds, timothy 2 pounds, and rye grass 2 pounds.
Fourth year.—Hay. Manured in autumn, 12 tons per acre.
Fifth year.—Pasture.
Sixth year.—Pasture. Ploughed July after haying, in preparation for roots.

Rotation 'L.'
First year.—Hay.
Second year.—Pasture. Manured in autumn, 12 tons per acre.
Third year.—Pasture. Break July, for fall wheat.
Fourth year.—Grain. Winter wheat, or, in case of failure, spring wheat.
Fifth year.—Oats.
Sixth year.—Barley. Seeded down with 4 pounds timothy, 4 pounds alsike and 4 pounds red clover per acre.

Rotation 'N.'
First year.—Alfalfa. Seeded down with no nurse crop.
Second year.—Alfalfa hay. Manured 6 tons per acre, autumn.
Third year.—Alfalfa hay.
Fourth year.—Alfalfa hay. Manured 6 tons per acre, autumn.
Fifth year.—Alfalfa hay. Break after first cutting.
Sixth year.—Winter wheat. In case of failure, sow spring wheat.
Seventh year.—Grain.
SESSIONAL PAPER No. 16

Rotation 'O.'

First year.—Hoed crops, or peas and oats mixed, cut early, and land disked and cultivated in fall.
Second year.—Wheat.
Third year.—Oats.
Fourth year.—Summer-fallow.
Fifth year.—Barley. Seeded down with 3 pounds timothy, 2 pounds alsike and 6 pounds alfalfa per acre.
Sixth year.—Hay. Manured in fall 6 tons per acre.
Seventh year.—Pasture. Portion intended for roots the following year to be ploughed early July.

The following values have been fixed:

Return Values.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat (from the machine)</td>
<td>$1.14</td>
</tr>
<tr>
<td>Barley</td>
<td>$1.00</td>
</tr>
<tr>
<td>Oats</td>
<td>$1.00</td>
</tr>
<tr>
<td>Peas</td>
<td>$0.75</td>
</tr>
<tr>
<td>Flax</td>
<td>$0.30</td>
</tr>
<tr>
<td>Timothy hay</td>
<td>$10.00</td>
</tr>
<tr>
<td>Red Clover hay</td>
<td>$10.00</td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td>$10.00</td>
</tr>
<tr>
<td>Brome Grass hay</td>
<td>$10.00</td>
</tr>
<tr>
<td>Western Rye Grass hay</td>
<td>$10.00</td>
</tr>
<tr>
<td>Mixed hay</td>
<td>$10.00</td>
</tr>
<tr>
<td>Green hay</td>
<td>$10.00</td>
</tr>
<tr>
<td>Oat straw</td>
<td>$2.00</td>
</tr>
<tr>
<td>Barley straw</td>
<td>$2.00</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>$1.00</td>
</tr>
<tr>
<td>Pea straw</td>
<td>$2.00</td>
</tr>
<tr>
<td>Flax straw</td>
<td>$2.00</td>
</tr>
<tr>
<td>Dry corn stalks</td>
<td>$5.00</td>
</tr>
<tr>
<td>Corn ensilage</td>
<td>$3.00</td>
</tr>
<tr>
<td>Mangels and turnips</td>
<td>$3.00</td>
</tr>
<tr>
<td>Sugar beets</td>
<td>$4.00</td>
</tr>
<tr>
<td>Pasture, each horse</td>
<td>$1.00</td>
</tr>
<tr>
<td>" " cow</td>
<td>$1.00</td>
</tr>
<tr>
<td>" " sheep</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

Cost Values.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent</td>
<td>$2.00</td>
</tr>
<tr>
<td>Barnyard manure spread on fields</td>
<td>$1.00</td>
</tr>
<tr>
<td>Seed wheat</td>
<td>$1.50</td>
</tr>
<tr>
<td>Seed oats</td>
<td>$1.60</td>
</tr>
<tr>
<td>Seed barley</td>
<td>$1.00</td>
</tr>
<tr>
<td>All other seeds to be charged at actual cost</td>
<td></td>
</tr>
</tbody>
</table>

Grass seed to be charged equally on the years producing grass.

Twine charged at actual cost.

Machinery

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual labour</td>
<td>$49.00</td>
</tr>
<tr>
<td>Horse labour (including teamster)</td>
<td>$19.00</td>
</tr>
</tbody>
</table>

Single horse

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-horse team</td>
<td>$27.00</td>
</tr>
<tr>
<td>Three-horse team</td>
<td>$34.00</td>
</tr>
<tr>
<td>Four-horse team</td>
<td>$41.00</td>
</tr>
</tbody>
</table>

Additional horses | $48.00

(Work done by traction engine is to be converted into the amount of horse labour required to do the work and charged accordingly.)

Threshing (covering work from stock to granary)

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>$7.00</td>
</tr>
<tr>
<td>Oats</td>
<td>$4.00</td>
</tr>
<tr>
<td>Barley</td>
<td>$5.00</td>
</tr>
<tr>
<td>Flax</td>
<td>$12.00</td>
</tr>
<tr>
<td>Peas</td>
<td>$7.00</td>
</tr>
</tbody>
</table>

16—14¾
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>C 2.</td>
<td>Plot 1...</td>
<td>1-0</td>
<td>Summer-fallow. Barley</td>
<td></td>
<td></td>
<td>2 00</td>
<td>3 58</td>
<td>24</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>C 3.</td>
<td>= 2</td>
<td>1-0</td>
<td>Wheat. Barley</td>
<td></td>
<td></td>
<td>2 00</td>
<td>3 48</td>
<td>24</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>C 1.</td>
<td>= 3</td>
<td>1-0</td>
<td>Wheat. Summer-fallow</td>
<td></td>
<td></td>
<td>2 00</td>
<td>0 60</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 00</td>
<td>7 66</td>
<td>5 00</td>
<td>0.94</td>
<td>83</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 00</td>
<td>2 55</td>
<td>1 66</td>
<td>0.31</td>
<td>2.55</td>
</tr>
</tbody>
</table>

ROTATION

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>K 3.</td>
<td>Plot 1...</td>
<td>3-969</td>
<td>Wheat. Barley</td>
<td></td>
<td></td>
<td>15 64</td>
<td>7 23</td>
<td>5 4</td>
<td>1.00</td>
<td>72</td>
</tr>
<tr>
<td>K 4.</td>
<td>= 2</td>
<td>3-969</td>
<td>Barley. Hay</td>
<td></td>
<td></td>
<td>15 64</td>
<td>5 87</td>
<td>14 4</td>
<td>2.81</td>
<td>15</td>
</tr>
<tr>
<td>K 1.</td>
<td>= 3</td>
<td>3-969</td>
<td>Oats. Hay</td>
<td></td>
<td></td>
<td>15 64</td>
<td>5 87</td>
<td>10 4</td>
<td>1.00</td>
<td>14</td>
</tr>
<tr>
<td>K 1.</td>
<td>= 4</td>
<td>3-969</td>
<td>Oats. Hay</td>
<td></td>
<td></td>
<td>15 64</td>
<td>5 87</td>
<td>14 4</td>
<td>3.09</td>
<td>14</td>
</tr>
<tr>
<td>K 1.</td>
<td>= 5</td>
<td>3-969</td>
<td>Green feed. Hoed crop.</td>
<td></td>
<td></td>
<td>15 64</td>
<td>32 43</td>
<td>32 9</td>
<td>62 51</td>
<td>36</td>
</tr>
<tr>
<td>K 2.</td>
<td>= 6</td>
<td>3-969</td>
<td>Hoed crop. Wheat</td>
<td></td>
<td></td>
<td>15 64</td>
<td>9 53</td>
<td>8 1</td>
<td>1.57</td>
<td>7</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93 84</td>
<td>66 82</td>
<td>383 4</td>
<td>72 58</td>
<td>107</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 00</td>
<td>2 85</td>
<td>15 21</td>
<td>3 11</td>
<td>4 34</td>
</tr>
</tbody>
</table>

ROTATION

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>L 2.</td>
<td>Plot 1...</td>
<td>1-74</td>
<td>Hay. Pasture.</td>
<td></td>
<td></td>
<td>6 96</td>
<td>2 39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 3.</td>
<td>= 2</td>
<td>1-74</td>
<td>Hay. Pasture.</td>
<td></td>
<td></td>
<td>6 96</td>
<td>2 39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 5.</td>
<td>= 3</td>
<td>1-74</td>
<td>Hay. Wheat</td>
<td></td>
<td></td>
<td>6 96</td>
<td>4 94</td>
<td>3 4</td>
<td>0.62</td>
<td>18</td>
</tr>
<tr>
<td>L 8.</td>
<td>= 4</td>
<td>1-74</td>
<td>Wheat. Oats.</td>
<td></td>
<td></td>
<td>6 96</td>
<td>3 21</td>
<td>4</td>
<td>0.76</td>
<td>3</td>
</tr>
<tr>
<td>L 6.</td>
<td>= 5</td>
<td>1-74</td>
<td>Oats. Barley</td>
<td></td>
<td></td>
<td>6 96</td>
<td>3 32</td>
<td>14</td>
<td>0.24</td>
<td>2</td>
</tr>
<tr>
<td>L 1.</td>
<td>= 6</td>
<td>1-74</td>
<td>Barley. Hay</td>
<td></td>
<td></td>
<td>6 96</td>
<td>2 39</td>
<td>6 2</td>
<td>1.19</td>
<td>6 7</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41 76</td>
<td>18 64</td>
<td>14 4</td>
<td>2.81</td>
<td>29</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 00</td>
<td>1 79</td>
<td>1 25</td>
<td>0.27</td>
<td>2 51</td>
</tr>
</tbody>
</table>

ROTATION

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>N 3.</td>
<td>Plot 1...</td>
<td>1-685</td>
<td>Alfalfa. Alfalfa.</td>
<td></td>
<td></td>
<td>4.03</td>
<td>4.87</td>
<td>9 4</td>
<td>1.85</td>
<td>54</td>
</tr>
<tr>
<td>N 4.</td>
<td>= 2</td>
<td>1-685</td>
<td>Alfalfa. Alfalfa.</td>
<td></td>
<td></td>
<td>4.03</td>
<td>4.87</td>
<td>6 3</td>
<td>1.28</td>
<td>53</td>
</tr>
<tr>
<td>N 5.</td>
<td>= 3</td>
<td>1-685</td>
<td>Alfalfa. Alfalfa.</td>
<td></td>
<td></td>
<td>4.03</td>
<td>4.87</td>
<td>6 3</td>
<td>1.28</td>
<td>53</td>
</tr>
<tr>
<td>N 6.</td>
<td>= 4</td>
<td>1-685</td>
<td>Alfalfa. Alfalfa.</td>
<td></td>
<td></td>
<td>4.03</td>
<td>4.87</td>
<td>6 3</td>
<td>1.28</td>
<td>53</td>
</tr>
<tr>
<td>N 7.</td>
<td>= 5</td>
<td>1-685</td>
<td>Alfalfa. Alfalfa.</td>
<td></td>
<td></td>
<td>4.03</td>
<td>4.87</td>
<td>6 3</td>
<td>1.28</td>
<td>53</td>
</tr>
<tr>
<td>N 1.</td>
<td>= 6</td>
<td>1-685</td>
<td>Alfalfa. Spring Wheat.</td>
<td></td>
<td></td>
<td>4.03</td>
<td>2.66</td>
<td>4</td>
<td>0.76</td>
<td>10</td>
</tr>
<tr>
<td>N 2.</td>
<td>= 7</td>
<td>1-685</td>
<td>Green feed. Barley.</td>
<td></td>
<td></td>
<td>4.03</td>
<td>2.16</td>
<td>2</td>
<td>0.35</td>
<td>11 4</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.21</td>
<td>29.17</td>
<td>42 4</td>
<td>8.11</td>
<td>37</td>
</tr>
<tr>
<td>Average per acre in 1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.71</td>
<td>3.84</td>
<td>6 2</td>
<td>1.67</td>
<td>4 58</td>
</tr>
</tbody>
</table>
IN Raising Crop.

(including teamster.)

<table>
<thead>
<tr>
<th>Hours</th>
<th>Value of Horse Labour</th>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Weight in Pounds</th>
<th>Value of corn per acre</th>
<th>Profit of crop per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 1/2</td>
<td>8 03</td>
<td>4 85</td>
<td>28 75</td>
<td>9 40</td>
<td>57</td>
<td>4,660</td>
<td>6,759</td>
<td>53 36</td>
<td>13 65</td>
</tr>
<tr>
<td>14 1/2</td>
<td>15 10</td>
<td>10 75</td>
<td>22 37</td>
<td>7 55</td>
<td>55</td>
<td>2,530</td>
<td>9,357</td>
<td>18 30</td>
<td>27 30</td>
</tr>
<tr>
<td>24 3/4</td>
<td>5 01</td>
<td>29 61</td>
<td>37 57</td>
<td>57</td>
<td>2,900</td>
<td>9,717</td>
<td>53 60</td>
<td>13 20</td>
<td>12 48</td>
</tr>
<tr>
<td>41 3/4</td>
<td>30 61</td>
<td>14 19</td>
<td>36 37</td>
<td>57</td>
<td>7,140</td>
<td>16,938</td>
<td>19,930</td>
<td>99 61</td>
<td>25 45</td>
</tr>
<tr>
<td>27 1/2</td>
<td>4 29</td>
<td>8 83</td>
<td>39 75</td>
<td>10 17</td>
<td>33</td>
<td>11,800</td>
<td>23,607</td>
<td>32,670</td>
<td>19,930</td>
</tr>
<tr>
<td>1 1/2</td>
<td>2 32</td>
<td>0 56</td>
<td>13 04</td>
<td>50 3</td>
<td>503</td>
<td>1,010</td>
<td>1,363</td>
<td>812</td>
<td>17 97</td>
</tr>
</tbody>
</table>

"K."

<table>
<thead>
<tr>
<th>Hours</th>
<th>Value of Horse Labour</th>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Weight in Pounds</th>
<th>Value of corn per acre</th>
<th>Profit of crop per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 1/2</td>
<td>8 03</td>
<td>4 85</td>
<td>28 75</td>
<td>9 40</td>
<td>57</td>
<td>4,660</td>
<td>6,759</td>
<td>53 36</td>
<td>13 65</td>
</tr>
<tr>
<td>14 1/2</td>
<td>15 10</td>
<td>10 75</td>
<td>22 37</td>
<td>7 55</td>
<td>55</td>
<td>2,530</td>
<td>9,357</td>
<td>18 30</td>
<td>27 30</td>
</tr>
<tr>
<td>24 3/4</td>
<td>5 01</td>
<td>29 61</td>
<td>37 57</td>
<td>57</td>
<td>2,900</td>
<td>9,717</td>
<td>53 60</td>
<td>13 20</td>
<td>12 48</td>
</tr>
<tr>
<td>41 3/4</td>
<td>30 61</td>
<td>14 19</td>
<td>36 37</td>
<td>57</td>
<td>7,140</td>
<td>16,938</td>
<td>19,930</td>
<td>99 61</td>
<td>25 45</td>
</tr>
<tr>
<td>27 1/2</td>
<td>4 29</td>
<td>8 83</td>
<td>39 75</td>
<td>10 17</td>
<td>33</td>
<td>11,800</td>
<td>23,607</td>
<td>32,670</td>
<td>19,930</td>
</tr>
<tr>
<td>1 1/2</td>
<td>2 32</td>
<td>0 56</td>
<td>13 04</td>
<td>50 3</td>
<td>503</td>
<td>1,010</td>
<td>1,363</td>
<td>812</td>
<td>17 97</td>
</tr>
</tbody>
</table>

"L."

<table>
<thead>
<tr>
<th>Hours</th>
<th>Value of Horse Labour</th>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Weight in Pounds</th>
<th>Value of corn per acre</th>
<th>Profit of crop per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 1/2</td>
<td>8 03</td>
<td>4 85</td>
<td>28 75</td>
<td>9 40</td>
<td>57</td>
<td>4,660</td>
<td>6,759</td>
<td>53 36</td>
<td>13 65</td>
</tr>
<tr>
<td>14 1/2</td>
<td>15 10</td>
<td>10 75</td>
<td>22 37</td>
<td>7 55</td>
<td>55</td>
<td>2,530</td>
<td>9,357</td>
<td>18 30</td>
<td>27 30</td>
</tr>
<tr>
<td>24 3/4</td>
<td>5 01</td>
<td>29 61</td>
<td>37 57</td>
<td>57</td>
<td>2,900</td>
<td>9,717</td>
<td>53 60</td>
<td>13 20</td>
<td>12 48</td>
</tr>
<tr>
<td>41 3/4</td>
<td>30 61</td>
<td>14 19</td>
<td>36 37</td>
<td>57</td>
<td>7,140</td>
<td>16,938</td>
<td>19,930</td>
<td>99 61</td>
<td>25 45</td>
</tr>
<tr>
<td>27 1/2</td>
<td>4 29</td>
<td>8 83</td>
<td>39 75</td>
<td>10 17</td>
<td>33</td>
<td>11,800</td>
<td>23,607</td>
<td>32,670</td>
<td>19,930</td>
</tr>
<tr>
<td>1 1/2</td>
<td>2 32</td>
<td>0 56</td>
<td>13 04</td>
<td>50 3</td>
<td>503</td>
<td>1,010</td>
<td>1,363</td>
<td>812</td>
<td>17 97</td>
</tr>
</tbody>
</table>

"N."

<table>
<thead>
<tr>
<th>Hours</th>
<th>Value of Horse Labour</th>
<th>Cost of threshing</th>
<th>Total cost</th>
<th>Cost of 1 acre</th>
<th>Cost of 1 bushel</th>
<th>Height of stubble</th>
<th>Weight in Pounds</th>
<th>Value of corn per acre</th>
<th>Profit of crop per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 1/2</td>
<td>8 03</td>
<td>4 85</td>
<td>28 75</td>
<td>9 40</td>
<td>57</td>
<td>4,660</td>
<td>6,759</td>
<td>53 36</td>
<td>13 65</td>
</tr>
<tr>
<td>14 1/2</td>
<td>15 10</td>
<td>10 75</td>
<td>22 37</td>
<td>7 55</td>
<td>55</td>
<td>2,530</td>
<td>9,357</td>
<td>18 30</td>
<td>27 30</td>
</tr>
<tr>
<td>24 3/4</td>
<td>5 01</td>
<td>29 61</td>
<td>37 57</td>
<td>57</td>
<td>2,900</td>
<td>9,717</td>
<td>53 60</td>
<td>13 20</td>
<td>12 48</td>
</tr>
<tr>
<td>41 3/4</td>
<td>30 61</td>
<td>14 19</td>
<td>36 37</td>
<td>57</td>
<td>7,140</td>
<td>16,938</td>
<td>19,930</td>
<td>99 61</td>
<td>25 45</td>
</tr>
<tr>
<td>27 1/2</td>
<td>4 29</td>
<td>8 83</td>
<td>39 75</td>
<td>10 17</td>
<td>33</td>
<td>11,800</td>
<td>23,607</td>
<td>32,670</td>
<td>19,930</td>
</tr>
<tr>
<td>1 1/2</td>
<td>2 32</td>
<td>0 56</td>
<td>13 04</td>
<td>50 3</td>
<td>503</td>
<td>1,010</td>
<td>1,363</td>
<td>812</td>
<td>17 97</td>
</tr>
</tbody>
</table>

"C."

- **DIVISION OF FIELD HUSBANDRY**
- **SESSIONAL PAPER No. 16**
- **PARTICULARS OF CROP.**
- **Weight in Pounds.**
- **Value of corn per acre.**
- **Profit of crop per acre.**
<table>
<thead>
<tr>
<th>Rotation Year</th>
<th>Location</th>
<th>Area</th>
<th>1911</th>
<th>1912</th>
<th>Rent and hire</th>
<th>Seed, twine and use of machinery</th>
<th>Manual Labour: Hours</th>
<th>C.S.</th>
<th>Single horse</th>
<th>2 horse train</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3</td>
<td>lot 1</td>
<td>3.2167</td>
<td></td>
<td></td>
<td>$9.18</td>
<td>$6.38</td>
<td>$6.5</td>
<td>1.2</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>0 4</td>
<td>2</td>
<td>3.727</td>
<td></td>
<td></td>
<td>$7.79</td>
<td>$1.64</td>
<td>$2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 5</td>
<td>3</td>
<td>3.266</td>
<td></td>
<td></td>
<td>$9.33</td>
<td>$10.10</td>
<td>$12.7</td>
<td>2.3</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>0 6</td>
<td>4</td>
<td>4.119</td>
<td></td>
<td></td>
<td>$11.78</td>
<td>$8.51</td>
<td>$10.4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 7</td>
<td>5</td>
<td>4.119</td>
<td></td>
<td></td>
<td>$11.78</td>
<td>$8.51</td>
<td>$2</td>
<td>2.0</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>0 8</td>
<td>6</td>
<td>4.119</td>
<td></td>
<td></td>
<td>$11.78</td>
<td>$8.75</td>
<td>$33.6</td>
<td>8.4</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>0 9</td>
<td>7</td>
<td>4.119</td>
<td></td>
<td></td>
<td>$11.78</td>
<td>$9.94</td>
<td>$13</td>
<td>2.4</td>
<td>804</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$73.42</td>
<td>$73.83</td>
<td>$38.3</td>
<td>72.83</td>
<td>41.4</td>
<td>136.4</td>
</tr>
</tbody>
</table>

Average per acre in 1912.

*33,370 pounds potatoes.
5,410 pounds corn.
In Raising Crops

(including teamster.)

| Hours | 3-horse team | 4-horse team | Value of horse labour | Cost of threshing | Total cost | Cost for 1 acre | Cost for 1 bushel | Height of stubble | Grain | Straw | Hay | Potatoes & Corn | Total value | Value of crop per acre | Profit of crop per acre |
|-------|--------------|--------------|-----------------------|-------------------|------------|----------------|------------------|------------------|------------------|-------|-------|-----|------------------|-------------|------------------------|------------------------|
| 154 | 10.97 | 5.95 | 33.72 | 10.50 | 23 | 5,055 | 11,819 | 62.37 | 19.39 | 8.89 |
| 154 | 8.21 | 17.64 | 6.47 | | | 6,195 | 13,055 | 73.00 | 22.90 | 11.41 |
| 8 | 9.52 | 6.45 | 37.73 | 11.55 | 29 | 6,195 | 13,055 | 73.00 | 22.90 | 11.41 |
| 2 | 4.93 | 27.22 | 6.61 | | | 17,401 | 34,802 | 87.30 | 21.19 | 14.58 |
| 2 | 20.29 | 4.93 | | | | 2,57 | 0.62 | 34.12 | | |
| 93 | 6.94 | 9.43 | 41.51 | 10.08 | 31 | 8,084 | 28,707 | 122.12 | 29.66 | 19.68 |
| 7 | 87.24 | 21.83 | 329.15 | | | 19,334 | 55,671 | 17,401 | 38,780 | 84.27 |

PARTICULARS OF CROP

<table>
<thead>
<tr>
<th>Weight in Pounds</th>
<th>Value of crop per acre</th>
<th>Profit of crop per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain</td>
<td>Straw</td>
<td>Hay</td>
</tr>
<tr>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
</tr>
</tbody>
</table>
CULTURAL EXPERIMENTS.

Experiments covering a wide variety of cultural methods, have now been under way for two years. This cultural work deals with twelve different lines of cultivation; each branch has been allotted a certain sized block of land which is sub-divided into plots, arranged so as to run a rotation varying in length, according to the information sought. In the case of the experiment seeking information on the question of how best to summer-fallow, for instance, a three-year rotation is followed. Seventeen methods of summer-fallowing are being tried out, one range of seventeen plots being under treatment each year while grain is being grown on each of the other ranges of seventeen plots each, and, by the yields secured over a number of years, the merits of the various systems may be compared.

In planning to secure an answer to the question, 'What is the best previous preparation and seeding practice for seeding down to grass and clover,' a five-year rotation, including fifty-five plots, has been arranged.

The following outline is given of the work being done, but it is perhaps too soon to draw conclusions from results.

A full statement of this work is given in the 'Guide to the Experimental Farms and Stations' for the prairie provinces, available through the Publication Branch, Department of Agriculture, Ottawa.

Depth of ploughing.—Experiment No. 2.—

(a) Ploughing on wheat stubble to be sown to oats.
(b) Ploughing for summer-fallow.
(c) On sod.

Summer-fallow treatment.—Experiment No. 3.
Stubble treatment.—Experiment No. 4.
Seeding to grass and clover.—Experiment No. 5.
Breaking sod from cultivated grasses and clovers.—Experiment No. 6.
Applying barnyard manure.—Experiment No. 7.—

(a) On corn or roots.
(b) On wheat.
(c) On barley.
(d) On oats.

Green manuring.—Experiment No. 8.
Seed bed preparation.—Experiment No. 9.
SESSIONAL PAPER No. 16

Soil packers.—Experiment No. 10.—
(a) Sowing wheat on summer-fallow.
(b) Sowing on spring-ploughed stubble land.
(c) Sowing on fall-ploughed stubble land.

Depth of seeding.—Experiment No. 11.
Commercial fertilizer.—Experiment No. 12.
Underdraining.—Experiment No. 13.

QUANTITIES OF SEED PER ACRE.

Spring Wheat.

In previous reports, the results of experiments with different quantities of seed per acre have been published. These reports have pointed to the advisability of comparatively heavy seeding for all cereals. Room was not available this year for conducting as wide a range of experiments with different quantities of seed as could have been wished, but the results of such experiments as were conducted point in the same direction as those of previous years. Marquis wheat was sown at the rate of one bushel to the acre, increasing one peck with each plot, up to two bushels per acre. One bushel per acre yielded at the rate of nineteen bushels per acre, while seed used at the rate of two bushels per acre, yielded at the rate of forty-two bushels per acre.

OATS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Quantity of seed</th>
<th>Date sown</th>
<th>Date cut</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner</td>
<td>1 bushel</td>
<td>April 27</td>
<td>Sept. 20</td>
<td>77</td>
</tr>
<tr>
<td>"</td>
<td>2 bushels</td>
<td>" 27</td>
<td>" 18</td>
<td>110</td>
</tr>
<tr>
<td>"</td>
<td>3 "</td>
<td>" 27</td>
<td>" 16</td>
<td>110</td>
</tr>
<tr>
<td>"</td>
<td>4 "</td>
<td>" 27</td>
<td>" 14</td>
<td>128</td>
</tr>
</tbody>
</table>

BARLEY.

Mensury barley was sown at the following rates of seed per acre, on one-fortieth acre plots, on April 27.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Quantity of seed</th>
<th>Date sown</th>
<th>Date cut</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mensury</td>
<td>1 bushel</td>
<td>April 27</td>
<td>Aug. 20</td>
<td>47</td>
</tr>
<tr>
<td>"</td>
<td>1 1/2 bushels</td>
<td>" 27</td>
<td>" 19</td>
<td>56</td>
</tr>
<tr>
<td>"</td>
<td>2 "</td>
<td>" 27</td>
<td>" 18</td>
<td>54</td>
</tr>
<tr>
<td>"</td>
<td>2 1/2 "</td>
<td>" 27</td>
<td>" 17</td>
<td>57</td>
</tr>
<tr>
<td>"</td>
<td>3 "</td>
<td>" 27</td>
<td>" 16</td>
<td>52</td>
</tr>
<tr>
<td>"</td>
<td>3 1/2 "</td>
<td>" 27</td>
<td>" 16</td>
<td>53</td>
</tr>
</tbody>
</table>
Some Weather Observations taken at Lacombe Experimental Station. 1912.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature—F.</th>
<th>Precipitation</th>
<th>Total Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest</td>
<td>Lowest</td>
<td>Mean</td>
</tr>
<tr>
<td>January</td>
<td>42.4</td>
<td>-45.0</td>
<td>5.6</td>
</tr>
<tr>
<td>February</td>
<td>46.8</td>
<td>-23.5</td>
<td>19.55</td>
</tr>
<tr>
<td>March</td>
<td>51.8</td>
<td>-29.0</td>
<td>19.37</td>
</tr>
<tr>
<td>April</td>
<td>63.3</td>
<td>17.9</td>
<td>41.85</td>
</tr>
<tr>
<td>May</td>
<td>82.7</td>
<td>23.5</td>
<td>43.8</td>
</tr>
<tr>
<td>June</td>
<td>89.6</td>
<td>23.5</td>
<td>50.18</td>
</tr>
<tr>
<td>July</td>
<td>78.5</td>
<td>30.4</td>
<td>56.66</td>
</tr>
<tr>
<td>August</td>
<td>84.5</td>
<td>30.0</td>
<td>57.7</td>
</tr>
<tr>
<td>September</td>
<td>79.8</td>
<td>20.8</td>
<td>46.4</td>
</tr>
<tr>
<td>October</td>
<td>70.6</td>
<td>13.6</td>
<td>39.24</td>
</tr>
<tr>
<td>November</td>
<td>58.3</td>
<td>2.9</td>
<td>30.45</td>
</tr>
<tr>
<td>December</td>
<td>58.6</td>
<td>10.6</td>
<td>21.98</td>
</tr>
</tbody>
</table>

Total | 19.74 | 11.97 | 20.98 | | | | | 1990.8 |
DOMINION OF CANADA
DEPARTMENT OF AGRICULTURE
DOMINION EXPERIMENTAL FARMS

REPORT

FROM

THE DIVISION OF CHEMISTRY

For the Fiscal Year Ending March 31, 1913

PREPARED BY
Dominion Chemist. - - - - - - - - - - - - - Frank T. Shutt, M.A., F.I.C.
REPORT OF THE DIVISION OF CHEMISTRY.

FRANK T. SHUTT, M.A., F.I.C., F.R.S.C.,
Dominion Chemist.

Ottawa, March 31, 1913.

J. H. Grisdale, Esq., B. Agr.,
Director, Dominion Experimental Farms,
Ottawa, Ont.

SIR,—I have the honour to submit herewith the twenty-sixth Annual Report of the Division of Chemistry of the Dominion Experimental Farms.

As heretofore, the work of the Chemical Division has been carried forward with a two-fold purpose—the prosecution of research which might lead to the solution of problems in Canadian agriculture, general and specialized, and the more immediate and direct education and assistance of the individual farmer in matters pertaining to his everyday work. Though spoken of here, for the sake of clearness and convenience, as distinct classes of work, there is, at times, no sharp line of demarkation to be drawn between them. One frequently prompts or assists the other and thus it is that many of our investigations of wide importance have been taken in hand as the result of information or suggestion contained in a correspondent's appeal for help. Much of our most fruitful and timely work, yielding results of an essentially practical and widely useful character, has been the outcome of our efforts to obtain the data necessary to enable us judiciously to advise the farmer in his difficulty.

Naturally, no detailed account can be given, in a report of the year's activities, of this branch of our work which seeks directly to advise and inform the farmer. It must, therefore, suffice to say that we have endeavoured to make the Division a bureau of information in matters relating to the chemistry of agriculture to which all may apply, and that there is a steadily increasing number of those who are sending in questions having reference to economical maintenance and increase of soil fertility, the nature and amounts of plant food constituents in manures and fertilizers, the special requirements of crops and farm animals, the relative nutritive values of forage crops and feeding stuffs, the composition of dairy products, the constitution and preparation of insecticides and fungicides and a host of allied subjects in general and specialized farming that call for chemical aid. Our experience of twenty-five years has shown this work of answering inquiries and reporting on samples sent in by farmers to be most useful, giving help when and where it was wanted to those who will benefit by it. It has proved very popular and, we think, successful in disseminating knowledge to those on the farm and, further, has won for our reports and bulletins many interested and earnest readers. This educational work necessarily occupies a considerable portion of the time of the chief of the Division.

A classified list of samples received for examination from farmers, and those in connection with the various investigations that have been carried on during the year is presented in the following table. The total number, 2,821, exceeds that of the previous year by nearly 500, and of 1911 by over 1,000, a fair indication of the increasing appreciation on the part of farmers of this branch of our work.
Samples received for Examination and Report for the Twelve Months ended March 31, 1913.

<table>
<thead>
<tr>
<th>Sample</th>
<th>British Columbia</th>
<th>Alberta</th>
<th>Saskatchewan</th>
<th>Manitoba</th>
<th>Ontario</th>
<th>Quebec</th>
<th>New Brunswick</th>
<th>New Scotia</th>
<th>Prince Edward Island</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>53</td>
<td>604</td>
<td>485</td>
<td>466</td>
<td>52</td>
<td>59</td>
<td>29</td>
<td>27</td>
<td>13</td>
<td>1,778</td>
</tr>
<tr>
<td>Alkali, mucks and marshes</td>
<td>1</td>
<td>4</td>
<td></td>
<td>1</td>
<td>12</td>
<td>41</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>82</td>
</tr>
<tr>
<td>Manures and fertilizers</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>41</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Forage plants and fodders</td>
<td>14</td>
<td>38</td>
<td>16</td>
<td>6</td>
<td>127</td>
<td>20</td>
<td>7</td>
<td>6</td>
<td>17</td>
<td>221</td>
</tr>
<tr>
<td>Waters</td>
<td>51</td>
<td>23</td>
<td>24</td>
<td>7</td>
<td>215</td>
<td>30</td>
<td>25</td>
<td>8</td>
<td>3</td>
<td>286</td>
</tr>
<tr>
<td>Miscellaneous, including dairy products, preservatives, fungicides, insecticides etc.</td>
<td>19</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>226</td>
<td>26</td>
<td>11</td>
<td>2</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>676</td>
<td>535</td>
<td>478</td>
<td>631</td>
<td>179</td>
<td>80</td>
<td>57</td>
<td>42</td>
<td>2,821</td>
<td></td>
</tr>
</tbody>
</table>

Conservation of soil moisture.—In many districts of the Northwest the rainfall is sparse and uncertain, and the so-called ‘dry-farming’ methods, which have for their object the absorption and conservation of the rain for crop use, are in vogue. Deep and early ploughing, subsurface packing, frequent cultivation to ensure a surface mulch of dry earth and to destroy capillarity, and summer fallowing, are among the principal means to that end. To obtain data as to the influence of these cultural operations and systems on crop yields, an extensive series of experiments was inaugurated in 1911 on several of the western Experimental Farms. This investigation is still in progress. To trace the moisture-content of the soil as affected by these operations and systems of soil management and to correlate it with crop yield, it was determined to take soil samples from the several plots periodically throughout the season and to ascertain their percentages of moisture. Data from two seasons' work have already been obtained but a final report will not be made until the close of the experiment, many of the plots being under rotations of from 3 to 5 years' duration. We can, however, at this stage, report several findings of considerable interest which indicate that the available soil-moisture may be very profoundly modified by methods of tillage. The whole question is one of great importance to the farming interests in the prairie provinces.

The influence of environment on the composition of wheat.—This research has thrown much light on the cause of the high quality of our northwestern-grown wheats. It would seem that moisture and temperature conditions during the filling out of grain may markedly affect its composition. A fairly dry soil and high temperatures during the later summer months, hasten maturity and conduce to a hard berry with a high percentage of gluten. Such conditions frequently prevail over large wheat-growing areas in the prairie provinces during the development of the seed, and no doubt constitute an important factor in determining the quality of the harvested grain. Similarly, it has been found in a semi-arid district that wheat grown under irrigation is always softer, less glutinous, than that (from the same stock) grown on an adjoining area under dry-farming methods. And the same is true for barley.

Further results, obtained by growing wheat from the same stock on the Experimental Farms and Stations across Canada during the season of 1913, are now being reported on. They bear out the conclusions previously reached, and furnish an interesting series indicative of the modifications that may be effected in one season's growth by varying conditions of soil and climate.
Fodders and feeding stuffs.—These, for the most part, comprise the milling by-products and manufactured feeds used in experimental work with stock on the Central Farm, Ottawa; the list, however, contains a number of materials of feeding value sent in by farmers but not coming within the jurisdiction of the Inland Revenue Department, the branch of the Government service undertaking the official analysis of feeding stuffs on the market. The list comprises middlings, shorts, feed flour and mixed meals from oats and barley, bean and rice meals, molasses feeds of various kinds, dried grains from the brewery and distillery, tankage, etc., etc.

The composition of feeds is a matter well worthy of study by farmers and dairymen, and especially so in these days of high prices. There are many ‘concentrates’ on the market that, with judicious feeding, can give good value, and these are not necessarily low-priced goods—indeed they are more frequently those bringing a good figure per ton but which, nevertheless, are worth it by reason of their high protein and fat-content. There are also many inferior feeds which may almost be said to be dear at any price. Such, for instance, are many of the oat feeds, largely made of the refuse oat meal and cereal food mills, which contain little protein and fat and are overloaded with indigestible fibre which is not only useless but depresses the value of the other nutrients. These feeds, possibly largely oat hulls, find buyers at $10 to $15 per ton when bran is selling at not more than $20. There is no economy in such practice. Again, there are certain manufactured feeds against which no complaint could be raised as to wholesomeness, but for which extravagant claims are made and extravagant prices are charged. In this class are some of the molasses feeds, certain brands of which are sold much above their value, when their prices are compared with staple milling products. The price of the feed is not an infallible guide to its nutritive value, and the purchaser, when not familiar with the material, would do well to look for the guarantee as to protein and fat-content.

The relative value of field roots.—Twenty-three varieties of mangels, grown on the Central Farm, were submitted to analysis, and very considerable differences in nutritive value were noticed. In dry matter they ranged from 13.38 per cent to 7.87 per cent, and in sugar from 9.15 per cent to 4.75 per cent. The Sugar mangels, the Mammoth Long Red, and the Giant Yellow Intermediate headed the list; the poorer members of the series comprised several varieties of the Yellow Globe mangels. Though not an invariable rule, those containing the larger percentages of dry matter were the richer in sugar, the chief constituent of value from the nutritive standpoint. The averages for the whole series were 9.51 per cent dry matter and 6.43 per cent sugar.

Two well-known and typical varieties, Gate Post and Giant Yellow Globe, grown side by side at Ottawa annually for thirteen years, have been analyzed to ascertain the influence of heredity on composition. Though the differences between them have not been constant throughout this period, the Gate Post has invariably proved the superior root. The averages for the experimental period are: Gate Post, dry matter 11.53 per cent, sugar, 6.16 per cent; for the Giant Yellow Globe, dry matter 9.52 per cent, sugar 4.56 per cent.

Nineteen varieties of turnips were submitted to analysis. Considerable differences as regards dry matter were found, as in the case of mangels, but the sugar-content was fairly constant. Turnips as a class are not so rich in dry matter as mangels, and possess a much lower sugar-content. The best turnip in the series was Carter’s Prize Winner, with 10.55 per cent dry matter and 1.28 per cent sugar, closely followed by Hartley’s Bronze Top, Kangaroo and Best of All. The limits for the series in dry matter were 10.55 per cent and 5.55 per cent, and the average 8.65 per cent.

Carrots, judging from their composition, are intermediate in food value between mangels and turnips. Six of the prominent varieties were analyzed and the differ-
ences between them, either in dry matter or sugar, are small compared with those noted for other field roots. The first on the list is Giant White Vosges with 11.45 per cent dry matter and 2.83 sugar. The remaining varieties follow in close order, and the averages for the series are 10.50 per cent dry matter and 2.54 per cent sugar. This crop, we have noticed, varies but slightly as to composition from year to year; evidently it is not influenced by seasonal conditions to the same degree as are turnips and mangels.

Sugar beets for factory purposes.—Three varieties of sugar beets—Vilmorin’s Improved A, Vilmorin’s Improved B, and Klein Wanzleben—have been tested on ten of the Experimental Farms and Stations. The seed was obtained from Messrs. Vilmorin, Andrieux et Cie, Paris, who are recognized as among the foremost firms in Europe for high-quality sugar beet seed.

A survey of the whole series shows remarkably satisfactory results; in the larger number of instances, the beets were exceptionally good, and in one or two cases only—due to unfavourable weather conditions—could the roots be accounted too poor for profitable sugar extraction. Averaging the results from the three varieties at each farm, the highest sugar-content was obtained at Lethbridge, Alta., on the non-irrigated plot (17.86 per cent) and the lowest at Brandon, Man., (13.40 per cent). At three farms in the series, the average sugar-content was above 17 per cent. It has been conclusively shown from this investigation, which has been carried on systematically since 1901, that beets suitable for factory purposes can be grown at widely distant points in the Dominion.

Fertilizing materials.—These include naturally-occurring materials and certain by-products of agricultural value by reason of the plant food they possess. Those analyzed and reported on during the year include marl and similar calcareous deposits, ground limestone, agricultural lime—a product from lime-kilns—gypsum or land plaster, wood-ashes, river, marsh and mussel muds, lobster refuse from the packing houses, dog-fish scrap, a potash residue from the oxygen-acetylene plant, and several other products of fertilizing value.

Many of these can be cheaply obtained and will be found of value in improving tilth and for supplying notable amounts of humus-forming material and plant food. Some of them are of the nature of amendments, others may be ranked with commercial fertilizers, and all may be employed, as conditions dictate, as aids to the maintenance and increase of soil fertility.

Insecticides and fungicides.—The more important materials of this nature examined during the year are included in the following list: Formaldehyde, copper sulphate, agricultural bluestone, Carbolized Wheat Protector, Apterite, lime-sulphur wash, potassium cyanide and lead arsenate.

Only one sample of formaldehyde was found below standard strength. The results generally show that the manufacturers are putting on the market an article of very fairly uniform strength, and in conformity with the guarantee.

Of the samples of bluestone submitted, two were found to contain notable percentages of sulphate of iron; they were in fact agricultural bluestone being sold for bluestone, which is sulphate of copper.

Carbolized Wheat Protector is a preparation found to consist essentially of sulphate of iron and crude carbolic acid. Its efficiency for the prevention of smut in grain is extremely doubtful.

Apterite is a compound described as a soil fumigant and fertilizer. It is essentially a mixture of sulphides of lime (probably gas lime) with napthalene. Experience in Canada with similar preparations is as yet limited, but such as there is has not been very favourable.
SESSIONAL PAPER No. 16

Five brands of lime-sulphur sold in Canada have been analyzed, the sulphide sulphur ranging from 21.87 per cent. to 25.09 per cent., amounts that may be considered satisfactory. The larger number of lime-sulphur washes put on the market by reputable firms have been found of good quality.

Potassium cyanide, when obtained in sealed original containers, has proved of guaranteed strength. This chemical rapidly deteriorates on exposure, so that samples taken from open bottles are frequently of inferior quality.

Very considerable differences in water-content have been found to exist among the various brands of lead arsenate upon the market and our results point to the desirability of obliging the manufacturer to give a guarantee on the label of the package stating the percentage of arsenate of lead present.

The fertilizing value of rain and snow.—The total precipitation, as recorded at the Central Experimental Farm, Ottawa, for the year ending February 29, 1913, was 39.56 inches, 9.62 inches falling in the form of snow. Analysis showed that this furnished 6.144 pounds of nitrogen per acre in forms readily available for crop use. Our records indicate that the proportions of this amount furnished respectively by the rain and snow, have not appreciably varied for the past four years, about eight-tenths of the nitrogen compounds being found in the rain.

The water-supply of farm homesteads.—Of the 586 waters sent in during the year from various parts of the Dominion, 185 have been submitted to a complete sanitary analysis. Of these, eighty-nine were pronounced as pure and wholesome, forty-three as suspicious and probably dangerous, forty-one as seriously contaminated and fifteen as too saline to be used as a potable supply.

The worst waters were from shallow wells dug in barnyards or in the neighbourhood of similar sources of pollution. These merely draw upon the ground water in their immediate vicinity and must become, by reason of their location, contaminated. We strongly advocate the abandonment of such wells. The bored or driven well obtaining its supply from a deep-seated source and below one or more strata of impervious rock, have, as a rule, yielded good water. Both as to quantity and quality, the bored well is more satisfactory than the 'hole' in the ground so commonly found in the country. It is gratifying to note such wells are now replacing the old form of supply on many Canadian farms.

Miscellaneous.—The work of the year has also included the analysis of 185 samples for the Meat Inspection Division, Department of Agriculture. These were collected at the various packing houses in Canada and included twelve lards, fourteen preserved meats, fifty-six dye stuffs and colouring matters, sixty-four preservatives and pickling solutions, thirty-one spices and condiments and eight miscellaneous. This examination is made with a view of determining their nature, purity and character of adulteration, if present.

Samples of water from Coquitlam lake, B.C., the source of the supply for the city of New Westminster, and where a large dam is being constructed, have been examined monthly for the Water-power Branch, Department of the Interior, for which also a number of mechanical analyses of 'fill' used in dam construction in different parts of the Dominion have been made.

For the Dominion Parks Branch, Department of the Interior, we have reported monthly on the water supply used at Banff, Alta. Our analyses show this to be a water of exceptional purity.

Analyses of a number of natural waters have been made at the request of the Department of Marine and Fisheries, with a view to determining if certain alleged pollution might be such as to affect fish life or hatchery operations. We have also for many years past, reported on the composition of dog-fish scrap produced at the Government Reduction Works in the Maritime Provinces.
Acknowledgements.—To Mr. A. T. Charron, M.A., First Assistant Chemist, Mr. C. Robinson, B.A., and Mr. A. T. Stuart, B.A., Assistant Chemists, my sincere thanks are tendered for much valuable assistance in the conduct of the work of the Division. Mr. E. B. Carruthers, M.A., Assistant Chemist, who had had charge of the analytical work in connection with the samples from the Meat Inspection Division, resigned his post during the year.

Extension of Chemical Building.—The need of further laboratory accommodation has been keenly felt for some time past. It is therefore with pleasure that we can announce that work on the extension of the chemical building was commenced last November, which when finished will add four good-sized laboratories to the present suite, and much facilitate the work of the Division.

I have the honour to be, sir,
Your obedient servant,

FRANK T. SHUTT,
Dominion Chemist.

CONSERVATION OF SOIL-MOISTURE.

This important investigation was begun in 1910, with the object of ascertaining the influence of various cultural operations and croppings on the moisture-content of the soil. It comprises a series of cultural and rotation experiments conducted on the Experimental Farms at Brandon, Man., Indian Head, Sask., Rosthern and Scott, Sask., Lethbridge, Alta., planned and arranged to include a number of systems of tillage, soil management and crop rotation likely to prove suitable for farming in the open prairie districts enjoying but a sparse and irregular rainfall. Soil samples from the experimental plots have been taken at two depths, 0 to 18 inches and 18 inches to 5 feet, periodically throughout the season, and their moisture-content determined.

It will be understood that this work is still in progress and, therefore, that final conclusions must be deferred. It is possible, however, to indicate some of the more striking results that already have been obtained.

In 'Prairie Breaking,' the plots were ploughed from two to five inches deep. In two seasons of the three, the soil of the deeper ploughed plots, for the first eighteen inches, retained the more moisture. Though the difference usually was small, it was fairly well maintained throughout the summer, the surface of the plots having been kept well cultivated. It was found that adjacent plots of recently-broken land sown, after due and similar preparation by discing and harrowing, to a mixture of peas and oats and flax respectively, differed considerably in their moisture-content as the season advanced. That bearing the peas and oats was the more moist; probably owing to the greater protection against surface evaporation provided by the more leafy crop.

The influence on moisture-content of 'Depth and Time of Ploughing' was determined on a large number of plots. As regards depth, the ploughing varied from three to eight inches, with an additional subsoiling of four to six inches on certain of the plots. The times of ploughing were one month apart, in May, June and July. The trend of the results from two seasons' records is in the direction of greater moisture storage following the deeper ploughing, but evidently there is a limit—probably determined by the nature of the soil—beyond which the stirring of the soil by the
SESSIONAL PAPER No. 16
plough does not appreciably affect the moisture-content or, at all events, cannot be done profitably.

Earliness in ploughing has shown itself conducive to moisture storage in a most marked degree. The delay of a few weeks has resulted in a decidedly lower moisture-content throughout the rest of the season.

In 'Subsoil Packing' the data show a well-marked advantage for light and sandy loams, but indicate that there was little extra conservation of moisture from this operation on heavy clay loams.

THE INFLUENCE OF ENVIRONMENT ON THE COMPOSITION OF WHEAT.

This research, inaugurated in 1905 and continued since that date, has shown that soil and seasonable conditions may markedly affect the composition of wheat and barley. For the past three years, wheat from the same stock has been grown on the larger number of Experimental Farms and Stations from Prince Edward Island to British Columbia, and the harvested grain analyzed. The data obtained in 1912 in a very large measure confirm those of previous seasons from similar experiments conducted in the northwestern provinces only, and go to show that a moderately dry soil accompanied by high temperatures during the period in which the grain is filling, tend to arrest the vegetative growth of the plant, hasten maturity and conduce to a hard berry with a high percentage of gluten and high baking value. It would seem from this investigation that the excellent quality of northwestern grown wheat is due, in part at least, to climatic conditions prevailing during the latter summer months over large areas in the grain-growing districts and which bring about a quick maturation of the grain.

The results as regards protein (gluten) from the examination of the 1912 crop are of considerable interest in showing the variations that may occur in one season's growth at points across the Dominion.

Protein in Marquis Wheat, Crop 1912 (calculated on water-free basis.)

<table>
<thead>
<tr>
<th>Laboratory Number</th>
<th>Locality grown</th>
<th>Protein (N x 5·7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,290</td>
<td>Parent Seed, Indian Head, Sask., 1911</td>
<td>14·62</td>
</tr>
<tr>
<td>13,923</td>
<td>Charlottetown, P. E. I,</td>
<td>12·50</td>
</tr>
<tr>
<td>13,162</td>
<td>Napan, N. S</td>
<td>13·32</td>
</tr>
<tr>
<td>13,288</td>
<td>Cap Rouge, Que</td>
<td>14·96</td>
</tr>
<tr>
<td>13,608</td>
<td>Ottawa, Ont</td>
<td>16·81</td>
</tr>
<tr>
<td>13,173</td>
<td>Brandon, Man</td>
<td>17·21</td>
</tr>
<tr>
<td>13,146</td>
<td>Indian Head, Sask</td>
<td>17·62</td>
</tr>
<tr>
<td>13,586</td>
<td>Resthorn, Sask</td>
<td>17·17</td>
</tr>
<tr>
<td>13,174</td>
<td>Scott, Sask</td>
<td>18·10</td>
</tr>
<tr>
<td>13,939</td>
<td>Lethbridge, Alta, irrigated</td>
<td>16·32</td>
</tr>
<tr>
<td>13,842</td>
<td>Lethbridge, Alta, non-irrigated</td>
<td>17·93</td>
</tr>
<tr>
<td>13,166</td>
<td>Lacombe, Alta</td>
<td>18·62</td>
</tr>
<tr>
<td>13,680</td>
<td>Agassiz, B. C</td>
<td>14·77</td>
</tr>
</tbody>
</table>

As an illustration of the principle we have cited, that available soil moisture influences the protein-content, attention may be directed to the data from Lethbridge, Alta. The soil on the non-irrigated plot was found to be from 2 per cent to 4 per cent drier during June, July and August than that of the irrigated plot, and the 16—15
wheat from the drier soil proved on analysis to be the richer in protein by 1.61 per cent.

Detailed discussion of these data in relation to climatic conditions prevailing during the growing season will be deferred until a further report, when additional results upon this interesting subject will afford a better ground for a final pronouncement.

FODDERS AND FEEDING STUFFS.

The nutritive value of the various feeds upon the market is a matter well worthy of study by the farmer and dairyman, and especially so in these days of high prices. Profit in feeding depends to a large extent upon economical buying of the 'concentrates' to supplement the home-grown feeds and fodders, and economical buying is not merely a matter of price. There are many high-priced feeds well worth the money asked for them, by reason of their richness in protein and fat; on the other hand, there are cheap feeds that are in reality very dear, simply because they contain little protein and fat and are overloaded with a superabundance of indigestible fibre. The farmer has necessarily familiarized himself with a number of feeds—such as bran and shorts—and feels himself fairly competent to decide as to the quality of any sample of such feeding stuff that may be offered him. But there are many by-products on the market to-day which cannot be judged simply from their appearance, or respecting which he has had no experience. For the value of these he must look to the chemist; in other words, he must know, approximately, their percentage of protein and fat and whether they contain little or much indigestible fibre. To furnish this information and at the same time protect the purchaser from fraud, the Commercial Feeding Stuffs Act was passed in 1908. This Act, under the operation of the Inland Revenue Department, requires that feeds offered for sale (with certain exceptions, such as bran, middlings, hay, straw, roots, the mixed or unmixed meals made directly from entire grain, and a few others) shall be duly registered and shall bear a label or statement attached to the package giving the registration number and a guaranteed analysis in terms of its minimum content of protein and fat and its maximum content of fibre. The enforcement of this Act has undoubtedly had a salutary effect in keeping many of the more worthless feeds off the market, but the educational value of the Act might be increased by a keener appreciation of its teachings on the part of those for whom it was passed. Every purchaser of a feeding stuff coming within the jurisdiction of the Act should see that the material bears a label or brand with registration number and guaranteed analysis inscribed thereon. He should then study the analysis, comparing it with that of other feeds that are available, so that he may be in a position, knowing their respective prices per ton, to make a judicious selection.

This official examination and control of feeding stuffs by the Inland Revenue Department has relieved the Experimental Farm laboratories of much analytical work; nevertheless, we still find it desirable from one reason or another to submit certain feeding materials to examination. During the year, the data given in the subjoined table have been obtained. The feeds tabulated have been used in experimental stock feeding in the Central Farm, or are those respecting which information was specially desired.

Barley and oats.—Both of these cereals are highly esteemed for farm stock; oats finding their chief use in horse feeding, while barley is more commonly employed for dairy cows and swine. The average composition of the two grains may be given, for the purposes of comparison, though it should be pointed out that not only are both variable but that both are very susceptible as regards protein-content to climatic
influences, and in this respect resemble wheat. A hot and rather dry season during the filling out of the kernel tends to a small grain, rich in protein, whereas if this period be cool and wet the grain is larger and more starchy.

Average Composition of Barley and Oats.

<table>
<thead>
<tr>
<th></th>
<th>Moisture</th>
<th>Protein</th>
<th>Fat</th>
<th>Carbo-</th>
<th>Fibre</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>10·96</td>
<td>10·69</td>
<td>2·08</td>
<td>69·50</td>
<td>4·36</td>
<td>2·41</td>
</tr>
<tr>
<td>Oats</td>
<td>9·46</td>
<td>11·83</td>
<td>4·73</td>
<td>59·69</td>
<td>11·39</td>
<td>2·92</td>
</tr>
</tbody>
</table>

These averages are from analyses made a few years ago in the Farm laboratories, about twenty samples each of barley and oats, grown chiefly in different parts of Ontario, being examined. It will be observed that oats are rather richer in protein and in ash constituent and much richer in oil than barley; they, however, contain more fibre. Speaking broadly, ground barley would be mealer (due to a larger percentage of starch) but the ground oats would be the stronger and richer, though somewhat the more fibrous feed.

The two grains mixed and ground together make an excellent feeding material. Such a mixture (usually two parts of oats to one of barley) has long been used with much satisfaction in England and other Northern European countries, both for milk and pork production, and undoubtedly such a meal will be found equally valuable in Canadian feeding and more especially for dairy stock. The first four analyses of the table are from samples drawn at short periods from a meal made by grinding oats and barley in equal proportions and used on the Central Experimental Farm in an experiment in pig feeding. The results indicate that the mixing has been thorough, the differences between the different samples being very slight, and that a meal of a most desirable character has been produced. It has a protein-content between 11 and 12 per cent, largely digestible, and a comparatively low percentage of fibre, two features which, with its moderately loose and bulky character, should make it generally useful as a large component of the ration for several classes of farm stock.

Middlings and Feed Flour.—In the modern milling of wheat by the roller process, from 25 to 30 per cent of the grain appears as certain by-products of very considerable value as cattle feeds, viz., bran, shorts, middlings, and feed flour. Bran consists of the membranous coats of the wheat berry, together with the underlying 'aleurone' layer, which is especially rich in protein. Shorts and middlings are almost synonymous terms and contain more floury particles and less fibre than does bran. There appear to be several grades of these two latter feeds and it is not uncommon nowadays to find shorts to be merely a reground, fine bran, practically destitute of the mealiness that characterized the shorts of the old stone mills. Middlings will vary in appearance and composition according to the proportions of the fine bran particles and flour present. This by-product also occasionally contains the wheat germ, which is rich in protein and fat, but which is an undesirable ingredient in flour. Feed flour also known as 'red dog,' dark feeding flour, etc., is the lowest grade of flour, too dark for bread making but which has a high feeding value.

In the table of analyses presented, the composition of middlings and feed flour used in experimental pig feeding on the Central Farm, is given. In protein-content they are very similar and there is not much difference in fat, though the middlings are somewhat the richer. In fibre the middlings contain about four times the amount found in the feed flour and similarly in ash constituents (phosphate of lime) the
middlings contain the larger amount. In order to compare at a glance the composition of these by-products, we append the following averages from analyses made in the Farm laboratories.

Average Composition of Bran, Shorts, Middlings and Feed Flour.

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Protein</th>
<th>Fat</th>
<th>Carbohydrates</th>
<th>Fibre</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bran</td>
<td>11.07</td>
<td>14.52</td>
<td>4.37</td>
<td>54.19</td>
<td>10.14</td>
<td>5.71</td>
</tr>
<tr>
<td>Shorts</td>
<td>10.34</td>
<td>15.93</td>
<td>5.24</td>
<td>59.58</td>
<td>5.23</td>
<td>3.88</td>
</tr>
<tr>
<td>Middlings</td>
<td>12.11</td>
<td>16.96</td>
<td>3.79</td>
<td>56.14</td>
<td>6.71</td>
<td>4.26</td>
</tr>
<tr>
<td>Feed flour</td>
<td>12.19</td>
<td>18.11</td>
<td>2.94</td>
<td>63.45</td>
<td>1.48</td>
<td>1.83</td>
</tr>
</tbody>
</table>

Individual samples of all these by-products will naturally vary somewhat from these averages, but the above data show the main differences in composition between these feeding stuffs, and allow the farmer, with a knowledge of their market prices, to select those best suited to the requirements of his stock. Bran, for instance, by reason of its bulk, its protein and fat and good supply of ash constituents needed for milk production, has shown itself unexcelled for dairy cows, in feeds, for which the comparatively high fibre-content is not an undesirable feature. On the other hand, middlings are more suitable for young pigs, since these animals cannot digest the larger percentage of fibre in the coarser bran. In briefly referring to the nutritive value of feed flours, this by-product, though rich in protein and low in fibre, does not furnish bone-forming material (ash constituents) in the same proportion as bran and shorts and, as a consequence, cannot be used with success as largely as these feeds, for growing animals.

Shorts, Laboratory No. 13176—These were forwarded by the Western Canada Flour Mills, Brandon, Man. The analysis shows them to be of distinctly inferior quality, being low in protein and too high in fibre. The legal requirements for shorts are protein not less than 15 per cent, fat not less than 4 per cent, and fibre not more than 8 per cent.

Wheat by-product from the manufacture of a breakfast food, Laboratory No. 11077.—This feed is comparable with the best class of shorts, but is somewhat lower in moisture, fat and fibre. It should prove a nutritious feeding stuff of merit and of especial value in the meal mixture where it is desirable to keep down the fibre-content, as in pig feeding.

Rice Meal, Laboratory No. 11354.—A finely-ground meal, sound and free from rancidity. Evidently a palatable, nutritious feed. The data indicate that in protein and fat it is somewhat above the average of rice meals imported into the United States.

Rice Meal, No. 13715.—This meal was purchased in Vancouver, B.C., and used on the Experimental Farm, Agassiz, B.C., in a pig-feeding trial. Though of satisfactory quality it is not quite equal in protein and fat to the better brands of rice meal on the market.

Rice meal, when of good quality and free from rancidity, is considered an excellent feed for dairy stock and in pig feeding. It is somewhat variable in composition, but the protein in samples of average quality is about 12 per cent, fat 13.0 per cent, and fibre not more than 6.0 per cent.
Oats, Laboratory Nos. 11520-7.—These are from the crop of 1911, grown in Alberta and graded as 'Extra Feed' and 'No. 1 Feed,' respectively. They were forwarded to the laboratory and analyzed in May, 1912. Extra feed weighed 38 pounds per bushel; No. 1 Feed 34 pounds. The analysis was made to learn if these oats contained an excessive amount of moisture (as was reported) and to ascertain what differences there might be between the two grades as to nutritive value.

The moisture-content of the cereals depends not only on their ripeness when threshed, but also on the conditions under which they have been subsequently stored. Thus, not infrequently we have found fully-ripened wheat to lose from 2 to 4 per cent moisture on storage for a few weeks in the winter season in cotton bags stacked in the warm dry air of the chemical building at Ottawa. Much of this may be regained during the following summer, when the air is more moist than in the winter. The present samples have a somewhat higher moisture-content than is usually met with in oats on the market, but the amount is not excessive, and we are inclined, from the appearance of the grain and certain other considerations, to attribute it to the grain not being thoroughly ripe when threshed.

The proportion of hull to kernel is an important consideration, for the hull has a very low feeding value. This fact was well brought out in our work on the Banner oat, published in the Annual Report of this Division for 1903. The data for the present samples, together with those from Banner oats grown on the Central Experimental Farm, 1902, inserted for comparison, are as follows:

<table>
<thead>
<tr>
<th>Kernels.</th>
<th>Hulls.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra Feed, Alberta, 1911</td>
<td>69.84</td>
</tr>
<tr>
<td>No. 1 Feed, Alberta, 1911</td>
<td>65.77</td>
</tr>
<tr>
<td>Banner, C.E.F., 1902</td>
<td>71.92</td>
</tr>
</tbody>
</table>

These results clearly indicate the superior quality of the grade Extra Feed, as compared with No. 1 Feed, though evidently it is not equal to the sample of Banner oats previously examined.

The protein and fibre data confirm the statement as to the relative feeding value of these two grades; Extra Feed contains 1 per cent more protein and 1.21 per cent less fibre. The slightly higher percentage of ash in No. 1 Feed indicates a larger proportion of hull.

The weight of 1,000 kernels of oats of Extra Feed was 29.14 grams, that for No. 1 Feed, 27.96 grams. These results follow the respective weights per bushel and serve to support the contention that the heavier oat contains the larger proportion of kernel and has the greater feeding value.

Oats, slightly damaged, Laboratory No. 12074.—A correspondent in Castor, wrote us in June, 1912, 'As doubtless you know, the West this year has thousands of bushels of damaged oats and we in this neighbourhood would feel obliged if you would inform us as to their feeding value. If useful for cattle feed we would obtain cattle for feeding next winter. A representative sample is sent herewith.' These oats, as received, had a somewhat damaged appearance and were considerably discoloured, but they were not damp nor were there appearances of mould.

The data indicate that there has not been such an impairment as to render them useless as feed, though they are from 2 to 3 per cent lower in protein than well-matured, sound oats. A further feature lowering the feeding value, as compared with first-class oats, is the higher fibre-content, due to the larger proportion of hull. Their feeding value would probably be about three-fourths that of good quality oats. Provided these damaged oats were dried before any fermentation had taken place or mould appeared, they should prove suitable for cattle feeding.
In the report of this Division for 1908, we give the analysis of a sample of 'frozen oats,' the feeding value of which was distinctly inferior to those now reported on. No doubt the stage of development of the grain when caught by the frost would determine very largely its quality.

Distillery Grains, Laboratory No. 11164.—Dried distillery grains are a concentrate of high feeding value and have been used to advantage, more especially in milk production. The composition of the 'grains' will depend somewhat on the nature of the cereals used in the manufacture of the 'spirit,' the protein in the kiln-dried product varying from 24 to 32 per cent, and the fat between 9 per cent and 12 per cent. This large variation renders it desirable to purchase only on guaranteed analysis. As a class dried distillery grains are richer both in protein and fat than dried brewers' grains and, being both palatable and digestible, constitute one of the best feeds on the market.

Dried Brewers' Grains, Laboratory No. 13827.—Forwarded by a correspondent at Ste. Anne de Bellevue, Que., and stated to be from Molson's Brewery, Montreal.

Dried Brewers' Grains, No. 13903.—Sent in by a correspondent at Sherbrooke, Que., and stated to be a product of a local brewery.

Both are of good quality, though No. 13827 is somewhat superior by reason of its higher protein-content.

The average composition of this feed, as given by American authorities, is as follows:

<table>
<thead>
<tr>
<th>Analysis of Brewers' Grains.</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>8-2</td>
</tr>
<tr>
<td>Protein</td>
<td>19-9</td>
</tr>
<tr>
<td>Fat</td>
<td>5-6</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>51-7</td>
</tr>
<tr>
<td>Fibre</td>
<td>11-0</td>
</tr>
<tr>
<td>Ash</td>
<td>3-6</td>
</tr>
</tbody>
</table>

Dried brewers' grains rank high as a concentrated feed, being rich in protein and moderately rich in fat, palatable and fairly digestible. Its use has been chiefly for dairy cows, for which it is considered an excellent and desirable feeding stuff.

Bean Meal, Laboratory No. 11251.—This is a coarse brown meal with an odour of locust bean. It was obtained through H. M. Fowlds & Son, Toronto, and is stated to be ground from a bean imported from Palestine, and sold at $25.00 per ton.

This is not a feeding stuff with which there has been much experience in Canada. In European countries bean meals have long occupied an important place among the more nitrogenous concentrates. The present sample would appear to be of fair quality as regards protein and fat, but the very high percentage of ash seems to point to the presence of dirt from sweepings or other source. Bean meal, free from foreign matter, and sound, is a feeding stuff of considerable merit, by reason of its high protein-content. Some bean meals possess a bitter taste that renders them unsalable to stock; on the other hand, many have a sweet and nutty flavour, and are highly relished.

Ground Flax, Laboratory No. 12849.—The percentage of protein and oil found are considerably lower than those stated to be present. From the analysis of the seed of a number of varieties in 1910, we obtained an average protein-content of 24.77 per cent, oil 37-10 per cent, but 'ground flax' as found on the market would be considered of good quality if it contained 21 to 22 per cent protein and 30 to 33 per cent.
oil. It is not a feed that is used on the farm save for calves (for which, in conjunction with skim milk, it is highly esteemed), but linseed oil cake and oil meal, resulting from the expression of the greater part of the oil from the flax seed, are feeds of the very highest order for bringing up the proportion of protein and fat in the ration, for both milk and beef production.

Tankage. Laboratory No. 11350.—This is a by-product from an abattoir. As received, it was a fine, dry powder of a dark-brown colour with the characteristic and unpleasant smell of tankage and similar products. The percentage of protein and fat are very fairly satisfactory for materials of this class: protein nearly, 60 per cent, fat almost 10 per cent, but, except in a limited way, in connection with pig and poultry feeding, it is doubtful if tankage can be used to advantage as a food on the farm; cattle and sheep find it unpalatable and generally refuse to eat it. It is a feed which readily spoils, especially in warm, damp weather. From difficulty in learning the nature and condition of the materials used in its manufacture, it is not a feed to be generally recommended.

Molassine Meal, No. 13947. This feeding stuff is manufactured by the Molassine Co., Ltd., London, England. It is prepared from crude molasses and peat or moss—the latter constituent acting simply as an absorbent and not adding to the nutritive value of the material though counteracting, it is claimed, the tendency to 'looseness' frequently induced when molasses alone is fed. This 'meal' is in the form of a loosely-held-together mass, brownish-black, slightly moist and sticky, but readily crumbling on handling.

The constituent of importance is sugar, of which there is 39.12 per cent present in the sample examined.

Considered solely from the point of view of their food value, molasses feeds in general may be regarded simply as furnishing sugar, of which they usually contain about 50 per cent. Sugar has a high value in the animal economy, as a source of heat and energy and in the formation of fat. Its ready solubility, and the ease with which it is digested and assimilated, gives sugar a high place among the carbohydrates for these purposes. Apart from their direct food value, the molasses feeds are stated to act beneficially in stimulating the appetite, increasing digestion, and in keeping the animal in a thrifty condition.

Molasses feeds cannot be used to supply deficiencies in protein and fat and, therefore, are not in the same class as those concentrates which are solely used to enrich the ration in these constituents. In most of them, the percentage of digestible protein and fat is extremely small and may be disregarded. They are extremely palatable and highly relished by cattle, but it is doubtful if they can be economically employed in the ration beyond one-fifth to one-third of the whole, not merely by reason of their poverty in protein and fat, but from the prices at which they are sold, namely, $20 to $38 per ton, which can scarcely be justified simply on the grounds of food value.

Molascuit, Laboratory No. 13869.—This is a product made in Demerara, British Guiana, from sugar cane fibre or pith (sugar cane from which the sugar has been expressed and subsequently disintegrated) and molasses. The former is very absorbent and constitutes an excellent medium for holding the molasses and presenting it in a convenient form for feeding; it, however, does not contribute in any appreciable degree to the nutritiousness of the mixture. In appearance this feed is brown and fibrous (not unlike certain varieties of peat, but not quite so loose in character) and slightly sticky. It has the smell of the coarser, unrefined grades of molasses.

As regards protein and fat its value is negligible: its feeding properties are dependent upon the sugars present, of which, in the sample analyzed, there was present 43.70 per cent.
Herb Spice, Laboratory No. 11225.—Manufactured by the Durham Cattle Food Co., Durham, N.H. The sample analyzed (in original container) was sent by a correspondent in Morton, Ont., who states that it is retailed at $3.50 per 25 pounds. The data would indicate that it has a fairly high feeding value but do not allow of any pronouncement as to its condimental or medicinal properties.

In the compounding of this class of feeds, known as condimental foods, condition powders, stock foods, etc., etc., a variety of ingredients are used. The basis may be bran, wheat refuse and screenings, linseed meal, cotton seed meal and milling by-products of various kinds and values. According to the nature of the feed basis so will the percentage of protein, fat and fibre be; some of these preparations do not contain more than 10 to 12 per cent protein, while others of a richer character contain more than 30 per cent. To the feed basis certain chemicals and drugs in varying proportions are added. These are all low-priced materials and comprise salt, sulphate of iron, charcoal, sulphur, saltpetre, gentian root, fenugreek, aniseed, coriander and licorice and possibly other spices of a somewhat similar character. These chemicals and spices, it is held, impart certain medicinal properties to the preparation, acting as tonics, appetizers, regulators, etc., etc.

Our main contention with regard to these 'condimental foods' is that the prices charged are far in excess of their value. All the ingredients used are low-priced, most of them worth from 3 to 5 cents per pound, and none of them more than 10 cents per pound. The feeds could be compounded, if desired, at home for a fraction of the price generally asked for the proprietary article. Secondly, we contend that if the animals require medicine it would be cheaper and better from every point of view for the farmer to purchase at the drug store what he wants and to treat the animals according to their ailment, or, if the matter is one requiring professional skill and knowledge, to procure the services of a veterinary surgeon. With good and nutritious feeds and their judicious use, there should be little need of condimental preparations, as in cases of serious illness, as we have said, the ailment should be specially treated.

Corn Ensilage, Laboratory No. 13279.—This ensilage, forwarded from Alvinston, Ont., had been made from 'White Cap' dent corn. As received it was very dry and of a pale-yellow colour; evidently the corn had been cut when fairly ripe, and later than is customary for the silo. It was pleasantly aromatic and showed a fair amount of cob and kernel. By reason of its low water-content (the percentage of water in ensilage is usually between 70 and 80 per cent), the protein, carbo-hydrates and fibre are somewhat higher than the average. Considering all the data and its excellent condition, it may be assumed to be fully equal to average quality ensilage—the slightly higher fibre content being offset by the larger amount of protein present. It was reported that the cattle ate it readily, with little waste.

Corn Ensilage, Laboratory No. 13656.—From St. Janvier, Que. The particulars accompanying this sample are, briefly, as follows: The corn was quite green when cut and contained very few cobs. The kernels appeared to be in the early milk stage. The ensilage, as received, was in good condition and sweet. The data indicate that the crop was decidedly immature when harvested. As a result, the ensilage is watery and of a lower food value than that cut at a more advanced stage of growth. Its dry matter content is 14-31 per cent, whereas that of ensilage from corn ensiled at the right stage of growth (seed 'glazing' and lower leaves turning yellow) is not less than 21-0 per cent. Similarly the protein, the chief nutrient, is considerably less than an ensilage of good quality.

Clover Ensilage, No. 13757.—Forwarded from the Experimental Farm Agassiz, B.C. As received it was essentially clover stems, the percentage of leaves being very
small. There was present a certain admixture of straw. This was from first crop clover cut about the end of June, 1912, and at once placed in the silo. In September the remaining space in the silo was filled with corn. The underlying clover ensilage may have become more or less saturated with juice from the corn. It was reported as unpalatable to dairy cattle. The data are in general accord with those for clover ensilage and indicate average quality. In this respect this sample differs markedly from the clover ensilage made on this Farm (Agassiz, B.C.) in 1910, and analyzed last year (vide page 149, Annual Report, 1912), and which was found to be exceptionally rich in protein.

Oat Hay, Laboratory No. 13924.—This sample was grown at Lacombe, Alta., on land seeded to oats and peas, but the proportion of the latter that grew was so small that the harvested product might be considered as 'straight oats.' The crop was cut green, the kernels being in the milk, shocked and stacked when dried.

The data, with the exception of those for protein, are in fair accord with those previously obtained for oat hay; the percentage of protein is somewhat lower than that usually found in this class of roughage. It compares very favourably with well-cured hay from mixed grasses, but could scarcely be considered as more nutritious. It would no doubt be found a palatable roughage.

Teff Grass Hay, Laboratory No. 13362.—Teff (Eragrostis Abyssinica) is an annual grass with small seeds used for making bread in certain parts of Africa. It has been grown in the Southern States as a source of hay, of which it is stated to yield a heavy crop of fine quality.

The sample analyzed was collected at Bank Head, Okanagan District, B.C., and was said to have yielded a good crop. The hay was about three feet, and apparently very ripe and strawy. It was harsh and brittle and gave the impression of being too mature for profitable use as a fodder. The seed had been threshed out. The analytical data indicate a material of exceedingly low feeding value, and decidedly inferior in nutritive properties to many straws. If cut at an earlier stage of growth it would have yielded a better quality hay, but it is very doubtful if the plant is worth cultivating for forage purposes.
Analysis of Feeding Stuffs—1912-13.

<table>
<thead>
<tr>
<th>Laboratory Number</th>
<th>Name</th>
<th>Particulars</th>
<th>Water</th>
<th>Crude protein</th>
<th>Oil or fat</th>
<th>Carbohydrates</th>
<th>Fibre</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>13873</td>
<td>" "</td>
<td>"</td>
<td>14:31</td>
<td>11:90</td>
<td>2:17</td>
<td>63:30</td>
<td>5:58</td>
<td>2:71</td>
</tr>
<tr>
<td>13875</td>
<td>" "</td>
<td>"</td>
<td>14:36</td>
<td>11:95</td>
<td>1:50</td>
<td>63:95</td>
<td>5:44</td>
<td>2:60</td>
</tr>
<tr>
<td>13876</td>
<td>" "</td>
<td>"</td>
<td>13:48</td>
<td>12:00</td>
<td>1:55</td>
<td>63:76</td>
<td>5:77</td>
<td>3:24</td>
</tr>
<tr>
<td>13877</td>
<td>" "</td>
<td>"</td>
<td>12:00</td>
<td>16:50</td>
<td>3:61</td>
<td>56:10</td>
<td>6:58</td>
<td>4:52</td>
</tr>
<tr>
<td>13878</td>
<td>" "</td>
<td>"</td>
<td>12:02</td>
<td>17:55</td>
<td>3:53</td>
<td>56:45</td>
<td>6:36</td>
<td>4:08</td>
</tr>
<tr>
<td>13879</td>
<td>" "</td>
<td>"</td>
<td>12:07</td>
<td>16:97</td>
<td>4:30</td>
<td>55:46</td>
<td>6:97</td>
<td>4:23</td>
</tr>
<tr>
<td>13881</td>
<td>" "</td>
<td>"</td>
<td>12:56</td>
<td>18:57</td>
<td>3:21</td>
<td>62:10</td>
<td>1:51</td>
<td>1:95</td>
</tr>
<tr>
<td>13882</td>
<td>" "</td>
<td>"</td>
<td>13:46</td>
<td>18:82</td>
<td>2:29</td>
<td>64:11</td>
<td>1:40</td>
<td>1:82</td>
</tr>
<tr>
<td>13884</td>
<td>" "</td>
<td>"</td>
<td>12:17</td>
<td>16:19</td>
<td>2:48</td>
<td>72:39</td>
<td>2:49</td>
<td>1:82</td>
</tr>
<tr>
<td>13885</td>
<td>" "</td>
<td>"</td>
<td>13:54</td>
<td>16:00</td>
<td>15:00</td>
<td>39:82</td>
<td>8:85</td>
<td>11:18</td>
</tr>
<tr>
<td>13886</td>
<td>" "</td>
<td>"</td>
<td>10:54</td>
<td>11:44</td>
<td>11:25</td>
<td>53:36</td>
<td>6:13</td>
<td>7:28</td>
</tr>
<tr>
<td>13887</td>
<td>" "</td>
<td>"</td>
<td>13:82</td>
<td>10:77</td>
<td>4:60</td>
<td>58:06</td>
<td>9:82</td>
<td>2:93</td>
</tr>
<tr>
<td>13888</td>
<td>" "</td>
<td>"</td>
<td>14:42</td>
<td>9:78</td>
<td>4:89</td>
<td>57:24</td>
<td>11:08</td>
<td>3:11</td>
</tr>
<tr>
<td>13889</td>
<td>" "</td>
<td>"</td>
<td>11:24</td>
<td>9:01</td>
<td>4:87</td>
<td>61:03</td>
<td>10:38</td>
<td>3:47</td>
</tr>
<tr>
<td>13890</td>
<td>" "</td>
<td>"</td>
<td>4:50</td>
<td>26:52</td>
<td>3:20</td>
<td>38:49</td>
<td>12:29</td>
<td>2:80</td>
</tr>
<tr>
<td>13891</td>
<td>" "</td>
<td>"</td>
<td>8:17</td>
<td>18:11</td>
<td>4:51</td>
<td>51:84</td>
<td>13:49</td>
<td>3:88</td>
</tr>
<tr>
<td>13892</td>
<td>" "</td>
<td>"</td>
<td>8:10</td>
<td>21:30</td>
<td>4:14</td>
<td>48:45</td>
<td>13:83</td>
<td>4:40</td>
</tr>
<tr>
<td>13894</td>
<td>" "</td>
<td>"</td>
<td>12:49</td>
<td>20:36</td>
<td>26:34</td>
<td>4:15</td>
<td>29:95</td>
<td></td>
</tr>
<tr>
<td>13895</td>
<td>" "</td>
<td>"</td>
<td>21:45</td>
<td>8:44</td>
<td>0:35</td>
<td>36:29</td>
<td>5:40</td>
<td>6:97</td>
</tr>
<tr>
<td>13896</td>
<td>" "</td>
<td>"</td>
<td>19:10</td>
<td>2:51</td>
<td>0:20</td>
<td>66:23</td>
<td>6:87</td>
<td>7:69</td>
</tr>
<tr>
<td>13897</td>
<td>" "</td>
<td>"</td>
<td>8:56</td>
<td>31:05</td>
<td>8:76</td>
<td>36:98</td>
<td>8:79</td>
<td>5:86</td>
</tr>
<tr>
<td>13898</td>
<td>" "</td>
<td>"</td>
<td>65:72</td>
<td>3:15</td>
<td>0:87</td>
<td>20:49</td>
<td>7:15</td>
<td>1:56</td>
</tr>
<tr>
<td>13899</td>
<td>" "</td>
<td>"</td>
<td>86:99</td>
<td>1:44</td>
<td>0:08</td>
<td>7:21</td>
<td>4:01</td>
<td>1:57</td>
</tr>
<tr>
<td>13900</td>
<td>" "</td>
<td>"</td>
<td>78:16</td>
<td>2:76</td>
<td>0:26</td>
<td>9:63</td>
<td>7:49</td>
<td>1:74</td>
</tr>
<tr>
<td>13902</td>
<td>" "</td>
<td>"</td>
<td>22:44</td>
<td>1:22</td>
<td>56:67</td>
<td>32:23</td>
<td>6:77</td>
<td></td>
</tr>
<tr>
<td>13903</td>
<td>" "</td>
<td>"</td>
<td>4:67</td>
<td>2:44</td>
<td>1:22</td>
<td>56:67</td>
<td>32:23</td>
<td>6:77</td>
</tr>
<tr>
<td>13904</td>
<td>" "</td>
<td>"</td>
<td>4:67</td>
<td>2:44</td>
<td>1:22</td>
<td>56:67</td>
<td>32:23</td>
<td>6:77</td>
</tr>
</tbody>
</table>

EXPERIMENTAL FARMS

4 GEORGE V. A. 1914
THE RELATIVE VALUE OF FIELD ROOTS.

MANGELS.

Farmers in making selection of the variety of field roots to sow, usually take into consideration yield and keeping quality in storage, but neglect to acquaint themselves with the relative feeding properties of the different varieties offered for sale. This latter is an important point, especially as regards mangels, the chief root crop in many sections. Our investigation, carried on season by season for the past eight years, has shown wide differences in dry matter and sugar-content between the varieties examined—differences in some cases amounting to almost 100 per cent. It is not claimed that the whole value of mangels in the ration is determined by their nutritive properties as measured by the percentage of their nutrients. Undoubtedly their succulence, their palatability, their entire digestibility, in addition to their medicinal properties, give them an enhanced value in the well-balanced ration. Nevertheless, since all varieties contribute alike in these respects, we may safely conclude that those possessing high percentages of the nutrients will be more valuable as food than varieties less rich. It is this consideration that leads us to direct the attention of the farmer to the results of 1912, presented in the following table.

Twenty-three varieties of mangels, grown on the Central Experimental Farm, Ottawa, were submitted to analysis. The larger number of these are well-known mangels and have appeared in the series for a number of years. It is not claimed that these are all distinct varieties or sorts; seedsmen are apt to rename for the purposes of advertisement, old and well-known strains, and this has led, no doubt, in some cases to duplication of the same variety in the series. Unfortunately, there is no way of eliminating this duplication, nor indeed of recognizing it, with certainty, when it does occur. We do know that in some cases, though it is not admitted by seedsmen, the same variety is put out under two or more names, and this necessarily has led to confusion in a critical study of our data. It is quite possible, of course, for these to be an improved strain of an old and well-known variety, and giving such a distinct name has some justification.

In the table that follows, the varieties have been placed in the order of their richness in dry matter. In a general way, but not universally, the sugar-content bears a relation to the dry matter. As sugar is the most important nutrient in this class of foods, its percentage has been determined and recorded in the table. The average weight of root, which, as a rule, bears a fairly constant ratio to the yield per acre, is also given.
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

ANALYSIS of Mangels, Central Experimental Farm, Ottawa, Ont, 1912.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Water.</th>
<th>Dry Matter.</th>
<th>Sugar in Juice.</th>
<th>Average Weight of One Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant White Half Sugar</td>
<td>86.62</td>
<td>13.38</td>
<td>7.50</td>
<td>2</td>
</tr>
<tr>
<td>Giant Intermediate Sugar</td>
<td>85.86</td>
<td>13.14</td>
<td>9.15</td>
<td>1</td>
</tr>
<tr>
<td>Mammoth Long Red</td>
<td>87.00</td>
<td>13.00</td>
<td>8.53</td>
<td>2</td>
</tr>
<tr>
<td>Giant Yellow Intermediate</td>
<td>87.35</td>
<td>12.65</td>
<td>7.31</td>
<td>3</td>
</tr>
<tr>
<td>Prize Mammoth Long Red</td>
<td>87.92</td>
<td>12.08</td>
<td>8.01</td>
<td>3</td>
</tr>
<tr>
<td>2345 Half Sugar</td>
<td>88.15</td>
<td>11.85</td>
<td>7.62</td>
<td>2</td>
</tr>
<tr>
<td>2194 Mammoth Long Red</td>
<td>88.48</td>
<td>11.52</td>
<td>6.25</td>
<td>2</td>
</tr>
<tr>
<td>Golden Tankard</td>
<td>88.82</td>
<td>11.18</td>
<td>6.33</td>
<td>3</td>
</tr>
<tr>
<td>Selected Perfection</td>
<td>88.57</td>
<td>11.13</td>
<td>6.94</td>
<td>3</td>
</tr>
<tr>
<td>2191 Barres Long Yellow</td>
<td>89.50</td>
<td>10.50</td>
<td>5.65</td>
<td>1</td>
</tr>
<tr>
<td>2192 Yellow Half Long</td>
<td>89.90</td>
<td>10.02</td>
<td>5.65</td>
<td>2</td>
</tr>
<tr>
<td>Giant White Half Sugar</td>
<td>90.31</td>
<td>9.79</td>
<td>7.12</td>
<td>2</td>
</tr>
<tr>
<td>Danish Tarrojo</td>
<td>90.51</td>
<td>9.49</td>
<td>6.24</td>
<td>3</td>
</tr>
<tr>
<td>Giant Yellow Oval</td>
<td>90.57</td>
<td>9.43</td>
<td>5.75</td>
<td>3</td>
</tr>
<tr>
<td>Giant Yellow Intermediate</td>
<td>90.82</td>
<td>9.18</td>
<td>6.33</td>
<td>3</td>
</tr>
<tr>
<td>Gate Post</td>
<td>91.02</td>
<td>8.98</td>
<td>5.05</td>
<td>3</td>
</tr>
<tr>
<td>2193 Red Echendorfer</td>
<td>91.39</td>
<td>8.61</td>
<td>4.65</td>
<td>3</td>
</tr>
<tr>
<td>Selected Yellow Globe</td>
<td>91.58</td>
<td>8.42</td>
<td>5.66</td>
<td>1</td>
</tr>
<tr>
<td>Selected Giant Yellow Globe</td>
<td>91.69</td>
<td>8.31</td>
<td>6.44</td>
<td>3</td>
</tr>
<tr>
<td>Windsor Yellow Globe</td>
<td>91.92</td>
<td>8.08</td>
<td>5.16</td>
<td>4</td>
</tr>
<tr>
<td>Danish Sindstrup</td>
<td>91.93</td>
<td>8.07</td>
<td>4.92</td>
<td>3</td>
</tr>
<tr>
<td>Giant Yellow Globe</td>
<td>92.13</td>
<td>7.87</td>
<td>4.75</td>
<td>3</td>
</tr>
</tbody>
</table>

Comparing the extremes of this series, we note a vast difference in nutritive value. The difference in dry matter is 5.51 per cent, and in sugar 4.40 per cent, and it would not be far from the truth to conclude that, weight for weight, the richest of the series, considered from the feeding standpoint, is worth almost twice as much as the poorest. These results are in close accord with those of previous seasons and emphasize the importance of this inquiry to the farmer who is seeking to improve the quality and value of his crops.

A study of the following table allows a comparison of the averages of past seasons.

MANGELS.—Yield and Average Composition, 1904-1912.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of varieties analyzed</th>
<th>Average Weight of One Root</th>
<th>Yield per acre</th>
<th>Dry matter.</th>
<th>Sugar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1904</td>
<td>10</td>
<td>2</td>
<td>11</td>
<td>39</td>
<td>1,277</td>
</tr>
<tr>
<td>1905</td>
<td>17</td>
<td>3</td>
<td>9</td>
<td>33</td>
<td>300</td>
</tr>
<tr>
<td>1906</td>
<td>18</td>
<td>2</td>
<td>7</td>
<td>31</td>
<td>150</td>
</tr>
<tr>
<td>1907</td>
<td>10</td>
<td>2</td>
<td>11</td>
<td>27</td>
<td>650</td>
</tr>
<tr>
<td>1908</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>23</td>
<td>650</td>
</tr>
<tr>
<td>1909</td>
<td>14</td>
<td>3</td>
<td>5</td>
<td>28</td>
<td>920</td>
</tr>
<tr>
<td>1910</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>1912</td>
<td>23</td>
<td>2</td>
<td>9</td>
<td>29</td>
<td>61</td>
</tr>
<tr>
<td>Average for eight years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.08</td>
</tr>
</tbody>
</table>

Although the percentage of dry matter in the 1912 mangels is below the average, due no doubt to the inclusion in the series of a larger number than usual of rather-
poor varieties, the sugar content is very satisfactory as compared with that of past years. The data for average weight of one root and yield are those of a normal crop and indicate a season suitable to the growth of a well-developed but not too large a root, that was well matured before harvesting.

INFLUENCE OF HEREDITY IN MANGELS.

In this inquiry commenced in 1900, two well-known mangels, Gate Post and Giant Yellow Globe have been used, and the results of the thirteen seasons form an exceedingly interesting series for comparing the relative value of these varieties. Reference has been made to the fact that large differences in composition exist among the varieties of mangels, and to the further fact that the varieties fell generally into the same order, season by season, when considering their dry-matter-content, indicating that quality might be inherited and to a certain degree independent of seasonal influences. To obtain specific data on this point, which would mean that a certain character as regards composition is transmitted, the two varieties mentioned above were chosen, as these, from a preliminary analysis, seemed to be typical of the richer and poorer classes of mangels. They have been grown side by side, year by year, on the same soil and with the same culture—and, therefore, necessarily under the same climatic conditions. Differences in composition, as well as in other matters, must, under such circumstances, be very largely due to inherited qualities. The data for the thirteen seasons are as follows:

Dry Matter and Sugar in Gate Post and Giant Yellow Globe Mangels.

<table>
<thead>
<tr>
<th>Season of Growth</th>
<th>Gate Post</th>
<th>Giant Yellow Globe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>1901</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1902</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1903</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>1904</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>1905</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1906</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>1907</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1908</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>1909</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>1910</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>1911</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Average for 13 years</td>
<td>11.53</td>
<td>6.16</td>
</tr>
</tbody>
</table>

It is significant that the Gate Post has always proved the superior root, though the differences between the two varieties have not been constant. Considering the averages for the experimental period, we learn that the Gate Post would contain about 22 per cent more dry matter and almost 35 per cent more sugar, than the Giant Yellow Globe. This denotes a very considerable difference in feeding value. It has long been recognized that conditions of soil, culture and season may markedly affect the size and quality of root, but it would seem from this work that
there is an additional factor to be taken into consideration, and that heredity also has an influence in determining the composition of mangels.

TURNIPS.

Nineteen varieties of turnips grown on the Central Farm last season have been analyzed and the results recorded in the subjoined table in order of their dry-matter-content.

Analysis of Turnips, Central Experimental Farm, Ottawa, Ont., 1912.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter's Prize Winner</td>
<td>89.45</td>
<td>10.55</td>
<td>1.23</td>
<td>3 13</td>
<td></td>
</tr>
<tr>
<td>Hartley's Bronze Top</td>
<td>89.73</td>
<td>10.27</td>
<td>1.21</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Kangaroo</td>
<td>89.85</td>
<td>10.15</td>
<td>.91</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Best of All</td>
<td>90.06</td>
<td>9.94</td>
<td>.29</td>
<td>3 12</td>
<td></td>
</tr>
<tr>
<td>Halewood's Bronze Top</td>
<td>90.10</td>
<td>9.90</td>
<td>1.21</td>
<td>4 0</td>
<td></td>
</tr>
<tr>
<td>Carter's Elephant</td>
<td>90.39</td>
<td>9.61</td>
<td>1.31</td>
<td>3 14</td>
<td></td>
</tr>
<tr>
<td>Magnum Bonum</td>
<td>90.45</td>
<td>9.55</td>
<td>1.31</td>
<td>4 0</td>
<td></td>
</tr>
<tr>
<td>Hall's Westbury</td>
<td>90.54</td>
<td>9.46</td>
<td>.90</td>
<td>2 11</td>
<td></td>
</tr>
<tr>
<td>Perfection</td>
<td>90.56</td>
<td>9.44</td>
<td>1.52</td>
<td>3 6</td>
<td></td>
</tr>
<tr>
<td>Jumbo</td>
<td>90.63</td>
<td>9.37</td>
<td>1.01</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Skirvings</td>
<td>90.67</td>
<td>9.33</td>
<td>1.21</td>
<td>5 6</td>
<td></td>
</tr>
<tr>
<td>Elephant</td>
<td>91.45</td>
<td>8.55</td>
<td>.91</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Good Luck</td>
<td>91.75</td>
<td>8.25</td>
<td>1.25</td>
<td>3 11</td>
<td></td>
</tr>
<tr>
<td>Bangholm</td>
<td>92.70</td>
<td>7.30</td>
<td>1.21</td>
<td>3 5</td>
<td></td>
</tr>
<tr>
<td>Selected Purple Top (Westbury)</td>
<td>92.80</td>
<td>7.20</td>
<td>1.21</td>
<td>3 9</td>
<td></td>
</tr>
<tr>
<td>2195, Bangholm</td>
<td>92.93</td>
<td>7.07</td>
<td>1.01</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>2197, Funen Bortfelder</td>
<td>93.60</td>
<td>6.49</td>
<td>1.02</td>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>Mammoth Clyde</td>
<td>93.80</td>
<td>6.20</td>
<td>1.01</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>2196, Tankard</td>
<td>94.15</td>
<td>5.85</td>
<td>1.01</td>
<td>4 6</td>
<td></td>
</tr>
</tbody>
</table>

It will be observed that very considerable differences occur as regards dry matter but that, unlike as is the case with mangels, the sugar-content is fairly constant. We do not consider that the value of turnips to the practical feeder would be measured directly by the percentage of dry matter present, but there can be no doubt, with data such as the foregoing as the result of one season's crop, that very considerable differences in nutritive value do exist among the many varieties found on the market.

In the following tabular scheme the averages obtained since 1905 are presented.

Turnips.—Average Composition, 1905-1912.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Varieties Analyzed</th>
<th>Average Weight of one Root Lb.</th>
<th>Yield per Acre Tons</th>
<th>Dry Matter p.c.</th>
<th>Sugar p.c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1905</td>
<td>20</td>
<td>2 13</td>
<td>30 1,060</td>
<td>10.69</td>
<td>1.10</td>
</tr>
<tr>
<td>1906</td>
<td>29</td>
<td>1 19</td>
<td>15 1,899</td>
<td>12.18</td>
<td>1.78</td>
</tr>
<tr>
<td>1907</td>
<td>14</td>
<td>3 5</td>
<td>33 142</td>
<td>10.14</td>
<td>1.11</td>
</tr>
<tr>
<td>1908</td>
<td>13</td>
<td>3 12</td>
<td>27 1,063</td>
<td>9.87</td>
<td>1.52</td>
</tr>
<tr>
<td>1909</td>
<td>13</td>
<td>2 10</td>
<td>29 542</td>
<td>11.30</td>
<td>1.43</td>
</tr>
<tr>
<td>1910</td>
<td>10</td>
<td>3 11</td>
<td>31 565</td>
<td>10.87</td>
<td>1.07</td>
</tr>
<tr>
<td>1912</td>
<td>19</td>
<td>3 12</td>
<td>33 155</td>
<td>8.65</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Average for 7 years: 10.44 1.30
It is held by many that size is an infallible guide to quality, the heavier the root the more nutritious it is—that is, the higher the percentage of dry matter. This may be true when comparing individuals of the same variety, but our results do not bear out that contention when comparing varieties.

CARROTS.

The more important varieties commonly grown are included in those now reported on. The results generally are very good, two of the six varieties examined containing more than 11 per cent of dry matter, indicating that seasonal conditions were favourable to this crop. Mammoth White Intermediate and White Belgian, as in 1910, contain least dry matter though quite up to the average in sugar-content. Between the first and the last of the series the difference in dry matter is somewhat less than 2 per cent, but in sugar-content the greatest difference is 1 per cent.

Analysis of Carrots, Central Experimental Farm, Ottawa, Ont., 1912.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Water</th>
<th>Dry Matter</th>
<th>Sugar in Juice</th>
<th>Average Weight of One Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant White Vosges</td>
<td>88.55</td>
<td>11.45</td>
<td>2.83</td>
<td>1</td>
</tr>
<tr>
<td>Half Long Chantenay</td>
<td>88.00</td>
<td>11.40</td>
<td>2.73</td>
<td>1</td>
</tr>
<tr>
<td>Chantenay</td>
<td>89.13</td>
<td>10.77</td>
<td>2.92</td>
<td>1</td>
</tr>
<tr>
<td>Ontario Champion</td>
<td>90.00</td>
<td>10.90</td>
<td>1.92</td>
<td>1</td>
</tr>
<tr>
<td>Mammoth White Intermediate</td>
<td>90.33</td>
<td>9.67</td>
<td>2.65</td>
<td>1</td>
</tr>
<tr>
<td>White Belgian</td>
<td>90.37</td>
<td>9.63</td>
<td>2.22</td>
<td>1</td>
</tr>
</tbody>
</table>

The averages for the past seven years are as follows:

Carrots.—Average Composition, 1905-1912.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Varieties Analyzed</th>
<th>Average Weight of One Root</th>
<th>Yield per Acre</th>
<th>Dry Matter</th>
<th>Sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1905</td>
<td>11</td>
<td>1 3</td>
<td>25 1,510</td>
<td>10.25</td>
<td>3.52</td>
</tr>
<tr>
<td>1906</td>
<td>10</td>
<td>1 2</td>
<td>19 1,665</td>
<td>10.59</td>
<td>3.36</td>
</tr>
<tr>
<td>1907</td>
<td>6</td>
<td>1 1</td>
<td>21 1,517</td>
<td>10.30</td>
<td>3.02</td>
</tr>
<tr>
<td>1908</td>
<td>6</td>
<td>1 3</td>
<td>22 1,333</td>
<td>10.89</td>
<td>3.34</td>
</tr>
<tr>
<td>1909</td>
<td>6</td>
<td>1 0</td>
<td>17 1,680</td>
<td>10.40</td>
<td>3.30</td>
</tr>
<tr>
<td>1910</td>
<td>5</td>
<td>1 9</td>
<td>34 1,140</td>
<td>10.17</td>
<td>3.22</td>
</tr>
<tr>
<td>1912</td>
<td>6</td>
<td>1 1</td>
<td>18 545</td>
<td>10.50</td>
<td>2.54</td>
</tr>
<tr>
<td>Average for 7 years</td>
<td>11</td>
<td>1 3</td>
<td>25 1,510</td>
<td>10.25</td>
<td>3.52</td>
</tr>
</tbody>
</table>

It is interesting to note from these yearly averages that this crop, from season to season, varies but very slightly as to composition—and this is particularly true of the dry matter-content. We do not find those fluctuations due to seasonal conditions observable in other farm roots.
SUGAR BEETS FOR FACTORY PURPOSES.

This investigation, instituted some years ago to ascertain the suitability of different parts of the Dominion to the growth of sugar beets satisfactory for sugar extraction, has been continued, seed from three leading varieties having been sown on nine of the Dominion Experimental Farms and Stations, and the products analyzed.

The varieties used in the test were Vilmorin's Improved A, Vilmorin's Improved B, and Klein Wanzleben, the seed being obtained from the well-known house of seedsmen and plant breeders, Messrs. Vilmorin, Andrieux et Cie., Paris, France, who have, by their skilful and painstaking work, accomplished so much in recent years in the improvement of the sugar beet.

Although these specially bred and selected varieties are noted for their high sugar-content and possess undoubtedly in a marked degree the property or quality of withstanding conditions conducive to their deterioration, they, in common with all varieties, are susceptible to some extent to conditions of season, soil and culture. It is, therefore, not surprising that considerable differences should be found when examining the products grown at so many and widely distant points as have been included in this trial. A survey, however, of the whole series shows results remarkably satisfactory: in the larger number of instances, the beets were exceptionally good and in one or two cases only would the roots be accounted too poor for profitable sugar extraction. From the fact that the present data are strongly supported by those of previous years, it would seem that beets eminently suited for factory purposes, both as to richness and purity, can be grown in many parts of Canada. The manufacture of beet root sugar is at the present time carried on at two points in the Dominion—the one in western Ontario, the other in Alberta—and the beets used in both establishments are, we understand, of a satisfactory character. Our results go to show that beets of equally good quality could be grown in many other districts.
Sugar Beets grown on the Dominion Experimental Farms, 1912.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Locality</th>
<th>Percentage of Sugar in Juice</th>
<th>Percentage of Solids in Juice</th>
<th>Coefficient of Purity</th>
<th>Average Weight of One Root</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vilmorin's Improved A</td>
<td>Charlottetown, P.E.I.</td>
<td>17.45</td>
<td>18.43</td>
<td>94.6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Nappan, N.S.</td>
<td>15.49</td>
<td>14.43</td>
<td>93.5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cap Rouge, Que.</td>
<td>14.92</td>
<td>17.30</td>
<td>86.2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ottawa, Ont.</td>
<td>14.99</td>
<td>17.83</td>
<td>85.3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Brandon, Man</td>
<td>14.91</td>
<td>17.37</td>
<td>80.9</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Indian Head, Sask.</td>
<td>15.52</td>
<td>18.89</td>
<td>82.1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Rosthern, Sask</td>
<td>17.51</td>
<td>18.50</td>
<td>83.8</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Lethbridge, Alta., (irrigated)</td>
<td>19.42</td>
<td>21.57</td>
<td>90.0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Agassiz, B.C.</td>
<td>17.26</td>
<td>20.60</td>
<td>83.4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Vilmorin's Improved B</td>
<td>Charlottetown, P.E.I.</td>
<td>11.40</td>
<td>13.26</td>
<td>85.9</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nappan, N.S.</td>
<td>17.21</td>
<td>19.31</td>
<td>89.1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cap Rouge, Que.</td>
<td>14.94</td>
<td>18.40</td>
<td>81.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ottawa, Ont.</td>
<td>14.64</td>
<td>18.83</td>
<td>83.7</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Brandon, Man</td>
<td>14.92</td>
<td>17.60</td>
<td>72.8</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Indian Head, Sask.</td>
<td>16.89</td>
<td>19.57</td>
<td>85.3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rosthern, Sask</td>
<td>14.89</td>
<td>17.06</td>
<td>86.1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Lethbridge, Alta., (irrigated)</td>
<td>17.83</td>
<td>20.63</td>
<td>86.9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Agassiz, B.C.</td>
<td>17.63</td>
<td>18.60</td>
<td>85.1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Raymond A</td>
<td>Lethbridge, Alta., (irrigated)</td>
<td>15.84</td>
<td>19.00</td>
<td>83.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Agassiz, B.C.</td>
<td>17.56</td>
<td>20.43</td>
<td>85.9</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Raymond B</td>
<td>Lethbridge, Alta., (irrigated)</td>
<td>16.25</td>
<td>18.80</td>
<td>86.5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Agassiz, B.C.</td>
<td>17.84</td>
<td>20.43</td>
<td>87.3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Klein Wanzleben</td>
<td>Charlottetown, P.E.I.</td>
<td>17.50</td>
<td>19.30</td>
<td>91.1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Nappan, N.S.</td>
<td>19.50</td>
<td>20.50</td>
<td>90.4</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Cap Rouge, Que.</td>
<td>14.99</td>
<td>18.89</td>
<td>81.9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ottawa, Ont.</td>
<td>14.89</td>
<td>19.43</td>
<td>83.4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Brandon, Man</td>
<td>16.11</td>
<td>19.37</td>
<td>79.8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Indian Head, Sask.</td>
<td>16.14</td>
<td>18.03</td>
<td>83.9</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Rosthern, Sask</td>
<td>15.08</td>
<td>16.66</td>
<td>82.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lethbridge, Alta., (irrigated)</td>
<td>17.43</td>
<td>19.63</td>
<td>90.0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Agassiz, B.C.</td>
<td>19.40</td>
<td>20.40</td>
<td>95.1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Très Riche</td>
<td>Nappan, N.S.</td>
<td>15.97</td>
<td>18.06</td>
<td>88.4</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Vilmorin's Improved</td>
<td></td>
<td>18.19</td>
<td>18.86</td>
<td>96.5</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Très Riche</td>
<td>Charlottetown, P.E.I.</td>
<td>14.81</td>
<td>15.50</td>
<td>95.0</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Agassiz, B.C.</td>
<td>15.51</td>
<td>17.15</td>
<td>90.4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Vilmorin's Improved</td>
<td></td>
<td>17.91</td>
<td>19.40</td>
<td>92.3</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

At Charlottetown, P.E.I., although the season was reported as generally unfavourable, being very dry for a considerable period following the seeding and with little sunshine during August and September, two of the varieties gave excellent results, both as to sugar-content and purity. The average from the three varieties is not equal to that of 1911, but, as will be seen from the subjoined table, it compares very favourably with those from other Farms and Stations. The soil is a sandy loam.

The roots from Vilmorin's Improved B, for some reason not apparent, showed a decidedly low sugar-content and coefficient of purity.
The season at Nappan, N.S., opened with a cold, late spring and was decidedly wet throughout the summer. However, in spite of these somewhat untoward conditions, two of the varieties produced very rich roots and the average from the three must be considered as excellent. The average weight of root was somewhat less than usual, which may have been due to seasonal conditions. The soil was a clay loam.

At Cap Rouge, Que., the season was very bad, an early drought being followed by several weeks of rain. The remainder of the summer was characterized by raw, wet, dull weather. This resulted in the root crop generally being a failure. The beets were exceedingly small but their sugar-content, considering the conditions of growth, was fair. The soil was a sandy loam.

The results obtained on the Central Farm, Ottawa, have almost invariably been good, and those of the past season are among the very best in the series. The data show a sugar-content, for all the varieties, of over 17 per cent, with a coefficient of purity of considerably more than 90. The soil was a sandy loam of good quality.

The season at Brandon, Man., was not conducive to a high sugar-content, though the yield of roots was quite satisfactory. At seeding time the weather was cool and cloudy. A very wet June and July followed, with August and September characterized by considerable rain and very little sunshine. The beets show only a moderate sugar-content and fair purity, the average from the three varieties being the lowest in the series. The soil was a clay loam.

The beets grown at Indian Head, Sask., were of medium quality only, but decidedly richer than those at Brandon. The season generally was cool and wet, 9.87 inches of rain falling during the summer months. The soil was a clay loam.

At Rosthern, central Saskatchewan, the season was more than usually wet and the results generally very similar to those obtained at Indian Head. Though in richness the beets from this Station fall behind many others in the series, the yield was very good. The soil was a sandy loam.

The beets grown at Lethbridge, southern Alberta, were of excellent quality, both on irrigated and non-irrigated soils. They show a somewhat higher standard of quality than the crop of the previous year. The season during the early part was decidedly dry, but there was a more than usual rainfall during the summer and autumn months, so that irrigation was largely dispensed with as unnecessary. Though the yield on the irrigated land was invariably the larger, the results do not show any marked difference (save in the case of one variety) in richness between the beets grown on irrigated and non-irrigated land. Possibly this may be attributed in part to the character of the season, which, as already remarked, was decidedly wet for this locality.

Results obtained on irrigated and non-irrigated land from two kinds of seed supplied by the sugar factory at Raymond, Alta., are appended. The data are not quite so high as those from the varieties sown in this investigation, but nevertheless indicate a very good beet for sugar extraction. With this Raymond seed, the roots on the non-irrigated land were somewhat richer than those grown with irrigation. The average from the two series stands the highest in the list, though closely followed by those of Ottawa and Agassiz. The soil is described as moderately heavy, chocolate-coloured loam.

The season at Agassiz, B.C., may be described as generally cool and wet. Since 1906, the beets grown at this Farm have invariably been of an exceptionally high quality, both as to sugar-content and purity, and last season’s crop (1912) maintains the good reputation gained for a first-class crop. The long autumn without frost or markedly low temperatures (the beets were pulled November 5), is evidently conducive to sugar production.

At the close of the foregoing table, a number of results are given that have been obtained at Charlottetown, P.E.I., Nappan, N.S., and Agassiz, B.C., from certain
good varieties of factory beets, the seed of which, however, was obtained locally. The data as regards sugar-content and purity are on the whole very satisfactory.

The following table will allow a comparison of the averages, as regards sugar-content, obtained since 1902 at several localities included in this investigation.

Average Percentage of Sugar in Juice in Sugar Beets grown on the Dominion Experimental Farms 1902-1912.

<table>
<thead>
<tr>
<th>Locality</th>
<th>1902</th>
<th>1903</th>
<th>1904</th>
<th>1905</th>
<th>1906</th>
<th>1907</th>
<th>1908</th>
<th>1909</th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlottetown, P. E. I</td>
<td>15.87</td>
<td>15.33</td>
<td>14.41</td>
<td>16.52</td>
<td>17.68</td>
<td>...</td>
<td>...</td>
<td>14.25</td>
<td>17.23</td>
<td>15.51</td>
<td></td>
</tr>
<tr>
<td>Napan, N. S.</td>
<td>16.77</td>
<td>15.34</td>
<td>16.31</td>
<td>12.45</td>
<td>11.37</td>
<td>15.44</td>
<td>16.30</td>
<td>14.84</td>
<td>16.44</td>
<td>...</td>
<td>15.59</td>
</tr>
<tr>
<td>Cap Rouge, Que.</td>
<td>...</td>
<td>14.92</td>
</tr>
<tr>
<td>Ottawa, Ont.</td>
<td>15.15</td>
<td>15.34</td>
<td>16.21</td>
<td>12.45</td>
<td>11.37</td>
<td>15.44</td>
<td>16.30</td>
<td>14.84</td>
<td>16.44</td>
<td>...</td>
<td>15.59</td>
</tr>
<tr>
<td>Brandon, Man.</td>
<td>11.36</td>
<td>10.62</td>
<td>11.09</td>
<td>13.50</td>
<td>16.99</td>
<td>15.82</td>
<td>18.83</td>
<td>18.40</td>
<td>...</td>
<td>13.50</td>
<td>13.40</td>
</tr>
<tr>
<td>Indian Head, Sask.</td>
<td>15.92</td>
<td>14.94</td>
<td>14.91</td>
<td>13.92</td>
<td>15.96</td>
<td>17.16</td>
<td>...</td>
<td>14.48</td>
<td>15.78</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Rosthern, Sask.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>16.60</td>
<td>17.31</td>
<td>17.62</td>
<td>17.41</td>
<td></td>
</tr>
<tr>
<td>Lethbridge, Alta., (irrigated).</td>
<td>16.73</td>
<td>18.36</td>
<td>...</td>
<td>16.73</td>
<td>...</td>
<td>17.65</td>
<td>17.65</td>
<td>17.65</td>
<td>17.65</td>
<td>17.65</td>
<td></td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Lacombe, Alta.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>12.34</td>
<td>11.21</td>
<td>12.77</td>
<td>12.69</td>
<td>...</td>
</tr>
<tr>
<td>Agassiz, B.C.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>17.65</td>
<td>17.15</td>
<td>18.30</td>
<td>19.18</td>
<td>16.95</td>
</tr>
</tbody>
</table>

In almost every instance, the figures are very satisfactory, indicating beets of a superior quality and eminently suitable for factory purposes.

FERTILIZING MATERIALS.

During the year a number of materials have been received for examination as to fertilizing value. Many of these are deposits or other naturally-occurring substances, while others are by-products from manufacturing processes.* Details of a few of these are given, to indicate the varied nature of materials that may be used in agriculture and to furnish information of more or less general interest to farmers.

MARL.

Marl, as generally occurring in Canada, is essentially carbonate of lime, though in many European countries the term has been used to include calcareous mixtures of clay and sand containing as little as 5 per cent of calcium carbonate.

Shell marl is perhaps the most common of the calcareous deposits, being found to a greater or less extent in all the provinces of the Dominion. Its usual occurrence is beneath the 'muck' of swamps or forming a deposit on the bottom of fresh water ponds and lakes. The beds, or layers, are of varying thickness, from a few inches to several feet. It is easily recognized by the presence of many small shells, which are imbedded in a matrix consisting of clay, silt and carbonate of lime, formed largely from the disintegration of previous generations of shell fish. When freshly dug it is usually a grayish, pasty mass; on drying it becomes lighter in colour and forms a mass which may be easily crumbled. While here we have merely to do with the use of marl from an agricultural point of view, it may be mentioned that many of these deposits have been found of a high degree of purity, containing, when dry, upwards

* The official examination of commercial fertilizers sold in Canada is undertaken by the Inland Revenue Department, Ottawa, to whom all inquiries respecting suspected adulteration, etc., should be addressed.
of 95 per cent carbonate of lime, and some of these have been utilized in the manufacture of cement.

Of all the naturally-occurring sources of lime, marl is one of the most valuable and the cheapest for agricultural purposes. It is not to be regarded as a fertilizer (that term being now restricted to materials furnishing one or more of the following essential elements—nitrogen, phosphoric acid and potash—in notable amounts), but it is an amendment of very considerable importance. It may be used for the improvement of many types of soil—clays, sandy loams and peaty soils. This it accomplishes, first, by favourably altering their physical condition or texture. Especially is this the case with heavy clay loams upon which lime (or carbonate of lime) has the effect of destroying plasticity and rendering them more permeable to air and the passage of water. Thus it is that liming or marling such soils makes them mellower, more easily worked and affords the root system better facilities for rapid extension.

Secondly, it furnishes lime in a form agreeable to crop growth. Lime is a normal constituent of plant tissues, and crops need it for their development. It is for this reason that no soil can be accounted at its best that does not contain an appreciable amount of this element in an available form. Continued cropping reduces the store of available lime (and many soils are, originally, but poorly supplied) and further, in the course of time, washes down below the range of the feeding roots. We have in these facts the explanation why an occasional liming or marling is frequently beneficial, even on soils originally well furnished with this element.

Again, through the loss of lime, or rather carbonate of lime, and imperfect drainage, soils are apt to become sour, and it is generally recognized that soils only slightly acid are not congenial to the majority of farm crops. Lime or marl or ground limestone corrects this acidity and restores conditions favourable to plant growth. Acidity of soil is one of the causes of failure of the clover crop, and thus it has frequently been found that an application of lime, either as such or as marl or ground limestone, has been sufficient to ensure a good growth of this valuable crop, where before such could not be obtained.

And, thirdly, the micro-organisms engaged in the nitrification of the organic matter, which means the preparation or conversion of the inert nitrogen of the soil into forms suitable for the use of crops, cannot perform their important function in an acid soil, one which is deficient in available lime. This is also true of nitrogen-fixing bacteria, those which have the ability to fix atmospheric nitrogen without the aid of leguminous crops, as well as those associated with the legumes in this all-important work. One of the vital factors towards the development and activity of these organisms is a neutral or slightly alkaline soil, and it is in this we have the explanation that an application of lime in some alkaline form may vastly increase the productiveness of a soil, without having materially added to its store of plant food.

To sum up this discussion of the function of lime, as such or in the form of carbonate, for it must be remembered that it is in the form of the latter compound that slaked or quick lime exists soon after its admixture with the soil, the presence of carbonate of lime, then, whether supplied as lime, marl or finely-ground limestone, performs a very important triple role—physically, chemically and biologically—in influencing for good a soil’s productiveness.

Physically, it is of value to all classes of soils, lightening and mellowing heavy clays and cementing and giving ‘body’ to sandy loams. For the improvement of texture it plays a most important part, especially in conjunction with efficient drainage, right culture and the supplying of organic matter.

From the chemical standpoint, it is first to be regarded as plant food, and hence indispensable to the best results for all soils deficient in lime. This deficiency may be due to the character of the rocks that formed the mineral basis of the soil or it may have arisen through a long term of cropping and the leaching out of soluble lime
compounds by the rain. Soils rich in lime, other conditions being favourable, produce a strong and vigorous vegetation of the highest nutritive qualities.

A further very important chemical function is that of neutralizing acidity or sourness, a frequent cause of failure, especially with clover, alfalfa and other legumes. Very few farm crops will thrive in a sour soil, even if the acidity is not strongly marked, and all do well on a neutral or slightly alkaline soil. From various causes—imperfect drainage, deficiency in lime, an excess of organic matter—many soils tend to become sour; even upland soils at times exhibit this tendency and correction or neutralization by lime becomes necessary to restore fertility. Herein lies, probably, the most important function of lime in soil treatment.

Biologically, lime is necessary for the development of soil bacteria, those minute organisms present in large numbers in every fertile soil and to whose life and growth are due the preparation of food for the use of higher plants—farm crops. Without this bacterial life, a soil would indeed be ‘dead’; with conditions favourable to its development (and the presence of lime is one of them) we may utilize in a very high degree the stores of food, organic and mineral, largely inert as they occur in the soil, for it is through this agency, chiefly perhaps, that these stores are attacked and made to yield nourishment for crops.

There is a use and an abuse in the application of lime. The endeavour to keep up fertility by its frequent application without the addition of the essential elements of plant food and humus-forming material, will undoubtedly lead to the soil’s exhaustion and diminished yields. There is ample proof in this country, as in other lands, for this assertion. Because there is a response at first to liming, it must not be concluded that productiveness can be maintained simply by this means. Rational farming calls at times for lime and the intelligent farmer will recognize the conditions that make its application desirable. It may then be depended on to give a profitable return, but science and experience alike teach that sole dependence upon this means results eventually in the running-out of the land, and failure.

In the following tabular scheme, we present the data obtained on certain samples of marl examined during the year.

Analysis of Marls (air-dried).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11,213</td>
<td>Antigonish, N.S</td>
<td>6.17*</td>
<td>81.73</td>
<td>13.10</td>
</tr>
<tr>
<td>12,609</td>
<td>Pavilion, B.C.</td>
<td>5.25</td>
<td>89.73</td>
<td>5.52</td>
</tr>
<tr>
<td>13,105</td>
<td>Port Hope, Ont.</td>
<td>18.97†</td>
<td>89.38</td>
<td>14.94</td>
</tr>
<tr>
<td>13,753</td>
<td>Lower West River, N.S</td>
<td>4.16</td>
<td>81.69</td>
<td>6.84</td>
</tr>
<tr>
<td>14,053</td>
<td>Ste. Luce, Que.</td>
<td>6.16</td>
<td>87.60</td>
<td>8.54</td>
</tr>
<tr>
<td>14,102</td>
<td>Clydesdale, N.S</td>
<td>6.46</td>
<td>85.09</td>
<td>8.54</td>
</tr>
</tbody>
</table>

* Containing 0.58 per cent CaSO₄ (calcium sulphate).
† Containing 10.11 per cent organic matter.

No 11213.—From Mount Cameron, Antigonish, N.S. A yellowish, earthy deposit, in small lumps and powder. Associated with the carbonate there is about 0.5 per cent of sulphate of lime. Though not of very high quality, it would prove a useful amendment for all soils in need of lime. Its effect, no doubt, would be more marked and immediate if the material were crushed, say to the condition of a coarse powder.
No. 12609.—From Pavilion, B.C. This deposit in an air-dried condition was of a yellowish-grey colour, the mass being crumbly and friable, with the general appearance of marl. The data show that this is a marl of excellent quality.

No. 13105.—From the bed of a creek at Port Hope. As received, this was a greyish-white pasty mass, containing many small shells. In addition to 80 per cent carbonate of lime, the marl contains about 16 per cent vegetable organic matter, which would enhance the value of the deposit for certain soils.

No. 13753.—From Lower West river, Antigonish, N.S. A light yellowish-grey earthy deposit, in powder and small lumps and having the appearance of weathered, disintegrated limestone. Of fair quality. Its efficiency, no doubt, would be enhanced by crushing.

No. 14053.—From bottom of a lake near Ste. Luce, Rimouski, Que. As received, was whitish-grey pasty mass; on drying, it was found to be friable and easily reducible to powder. The analysis confirms the impression from its appearance—that it is a marl of very fair quality.

No. 14102.—From Clydesdale, N.S. A yellowish-red, earthy deposit in lumps of very considerable hardness. Analysis shows the presence of 85 per cent carbonate of lime, but in order that this material might prove an efficient amendment it would be necessary to reduce it to powder.

No. 13813.—From the bottom of a lake near St. Jovite, Que. A light-grey, earthy deposit, containing a good many small shells. A qualitative examination showed very little insoluble matter and the sample was reported as a shell marl of good quality.

No. 13055.—From Hedley, B.C. This calcareous material, evidently formed by deposition from water highly charged with lime, was submitted to qualitative analysis and found to consist essentially of carbonate of lime.

No. 14108.—From Conseecon, Ont. As received, this was greyish-white and showed little or no admixture with clay or sand. It was completely soluble in dilute hydrochloric acid with brisk effervescence. Results by qualitative examination showed the excellent quality of this marl.

CALCAREOUS DEPOSIT.

No. 13969, Calcereous deposit. From Hedley, B.C. Analysis showed this to be a mixture of sulphate and carbonate of lime.

Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate of lime (gypsum)</td>
<td>77.27</td>
</tr>
<tr>
<td>Carbonate of lime</td>
<td>14.02</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>3.10</td>
</tr>
<tr>
<td>Undetermined</td>
<td>5.31</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Though the percentage of carbonate is not very large, it is nevertheless sufficient to make the deposit of value for correcting sourness in poorly-drained soils. It could, of course, be used on all types of soils, to supply lime, and to act as an indirect fertiliser.
SESSIONAL PAPER No. 16

Nos. 12351-2.—These are two samples of ground limestone forwarded from England with a view to establishing trade in Canada, provided their composition were satisfactory and there was a sufficient demand in agriculture for such material. Our analysis showed 96.07 per cent and 96.52 per cent carbonate of lime, respectively. Although these are of excellent quality and quite satisfactory from the mechanical standpoint, it seems doubtful if importation from such a distance could be prosecuted with profit. Canada has immense areas covered with limestone, and the question of crushing and transportation, so that the material can be delivered to the farmer at a reasonable price, will no doubt be solved if experience shows that our soils generally respond to this amendment.

GROUND LIMESTONE, LIME-KILN REFUSE, ETC.

No. 14019.—From the quarries at Cap St. Martin, Que. The ground limestone was partly as powder and partly as fine fragments of limestone rock.

Analysis.

<table>
<thead>
<tr>
<th></th>
<th>Blue Rock.</th>
<th>Magnesia.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 14155.</td>
<td>No. 14156.</td>
</tr>
<tr>
<td>In fine powder</td>
<td>58.60 per cent.</td>
<td>48.22 per cent.</td>
</tr>
<tr>
<td>In coarse powder and lumps</td>
<td>41.40 “</td>
<td>51.78 “</td>
</tr>
<tr>
<td></td>
<td>100.00 “</td>
<td>100.00 “</td>
</tr>
<tr>
<td>Carbonate of lime</td>
<td>34.23 “</td>
<td>35.73 “</td>
</tr>
<tr>
<td>Caustic and slaked lime</td>
<td>43.45 “</td>
<td>39.67 “</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>1.50 “</td>
<td>1.19 “</td>
</tr>
</tbody>
</table>

Both are good, but for agricultural purposes 'Blue Rock,' No 14155, is the better by reason of its higher lime-content and its larger proportion in the condition of a fine powder.

No. 14177, 'Agricultural Limestone.'—This sample obtained from V.-V. L and B Co., Victoria, and forwarded from Agassiz, B.C., was stated to be ground limestone containing about 10 per cent free or quicklime; evidently, as in the preceding case, it is a product of lime kilns. It was, in the condition of a fine powder.

Analysis.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral matter, insoluble in acid</td>
<td>4.87 per cent.</td>
</tr>
<tr>
<td>Carbonate of lime</td>
<td>67.34 “</td>
</tr>
<tr>
<td>Caustic and slaked lime</td>
<td>21.73 “</td>
</tr>
</tbody>
</table>

This should prove a useful source, agriculturally, of lime, and one from which good results might be expected, especially on heavy clays and sour soils. Its composition and fine mechanical condition point to a high degree of efficiency.
No. 13963.—Lime refuse or waste from tannery, forwarded from Fredericton, N.B. This, as received, was a greyish-white, pasty mass, with a small quantity of hair, but apparently no other foreign matter. The analysis in the air-dried condition gave the following data:—

Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate of lime</td>
<td>38.79 per cent.</td>
</tr>
<tr>
<td>Slaked lime</td>
<td>54.55 "</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>1.65 "</td>
</tr>
<tr>
<td>Undetermined (organic, etc.)</td>
<td>5.61 "</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

An excellent material for dressing lands in need of lime or for composting with swamp muck or peat.

No. 13963.—This was forwarded as a limestone from Cape George, Antigonish, N.S. This rock, it was claimed, had shown itself to have considerable value as a fertilizer. Our correspondent says, 'We spread it on the land last spring; it melted down like ashes and gave excellent results.' This sample was in hard lumps or fragments, not unlike shale.

Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>1.93 per cent.</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>75.44 "</td>
</tr>
<tr>
<td>Oxide of iron and alumina</td>
<td>10.60 "</td>
</tr>
<tr>
<td>Lime*</td>
<td>2.94 "</td>
</tr>
<tr>
<td>Magnesia*</td>
<td>3.41 "</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>0.17 "</td>
</tr>
</tbody>
</table>

* This lime and magnesia exist essentially as carbonates.

It is obvious that rock could not be classed as a limestone, since the carbonate of lime does not exceed 5 per cent. The percentage of phosphoric acid is very small, not exceeding that in many soils of medium fertility—and certainly not more available. It is rather difficult, therefore, to understand how this material can have any marked influence as a fertilizer, save in so far as it may favourably affect the mechanical condition of the soil.

GYPSUM OR LAND PLASTER.

Gypsum or land plaster is a naturally-occurring sulphate of lime, containing about one-fifth of its weight of water, known as water of crystallization. When gypsum is strongly heated (burned), this water is driven off and plaster of Paris remains. This is not used in agriculture, but is much valued in the arts from its property of making a white, hard cement when mixed with the requisite amount of water.

Gypsum, from the agricultural point of view, supplies lime, an essential constituent for plant growth. Since, however, this lime is combined with sulphuric acid and is present in a neutral condition it follows that gypsum cannot take the place of quick or slaked lime, marl or ground limestone (which are essentially alkaline in character) for the treatment of sour or acid soils. Apart from its function in supplying lime, it seems probable that the combined sulphuric acid in gypsum has, on certain types of soils, a manurial influence, but it is doubtful if its value from this standpoint is of any great economic importance.

Undoubtedly its chief value is as an indirect fertilizer, setting free potash from its inert or locked-up stores in the soil. While it does not add to the sum total of
the soil's potash, it performs a useful function in increasing the amount of this constituent in a form available for crop use. It is this property that has made it specially beneficial as a top dressing for clover, a crop that particularly responds to available potash.

The application of land plaster is usually from 300 to 500 pounds per acre, but larger dressings are sometimes found of benefit to heavy soils.

Gypsum possesses the property of 'fixing' ammonia, and for this reason is largely used in stables and cow barns. Thus employed, the sprinkling or dusting of the finely-ground material in the stalls serves to retain the nitrogen of the very readily decomposable urine and incidentally to keep the atmosphere of the building clean and sweet. It is this use of land plaster that we specially recommend, for by this means the value of the resulting manure is enhanced without any hindrance to the exercise of the other useful functions of this amendment subsequently in the soil.

By reason of its property of flocculating clay, its application to heavy loams may prove of very considerable benefit in rendering them plastic and more open and friable.

Similarly, an application of gypsum is valuable to lands affected by 'black alkali.' The sodium carbonate (sal. soda) which such soils contain not only acts directly as a corrosive chemical, cutting into and eating away the plant tissues (especially at the immediate surface of the soil, but its acts most injuriously on the physical condition of the soil. All kinds of alkali have a tendency to destroy good tilth, but this is particularly marked in the case of black alkali. Soil, so affected, readily puddles, becomes impervious to water and air and dries into hard, refractory masses. The addition of land plaster converts the carbonate of soda into sulphate of soda—the chief constituent of 'white alkali,' a milder form of alkali as regards vegetable life and one with less effect on the physical condition of the soil.

Commercial gypsum is somewhat variable in composition; poor samples may not contain more than 65 per cent sulphate of lime, while high grades will reach 90 to 95 per cent. Analysis of some samples recently examined are as follows:—

Analysis of Gypsum.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate of lime</td>
<td>94.12</td>
<td>94.40</td>
<td>87.47</td>
<td>91.80</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>1.03</td>
<td>3.2</td>
<td>1.43</td>
<td>2.99</td>
</tr>
<tr>
<td>Undetermined</td>
<td>4.83</td>
<td>5.28</td>
<td>11.10</td>
<td>5.21</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Samples A, B, and C are from the Tobique River district, N.B., where gypsum is largely quarried, and D is from Hants county, N.S. In addition to the vast deposits found in Nova Scotia and New Brunswick, gypsum occurs in several localities in Ontario, and more particularly in the vicinity of Paris along the Grand river, associated with dolomite rocks.

Wood Ashes.

No. 12352.—This sample was taken from a heap of leached ashes from an old potash works at Carleton Place, Ont.

Analysis showed that the ashes had been very thoroughly leached, the percentage of potash being only .022. While the fertilizing value of this residue must be very small, its application would no doubt improve certain soils, so that, if cheaply obtained, it might be found useful as an amendment.
Laboratory No. 13771.—This is the ash from a ‘waste’ burner of a shingle mill near Sidney, B.C. An analysis has afforded the following data:—

Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Per cent. (K₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>19-20</td>
</tr>
<tr>
<td>Lime, present largely as carbonate</td>
<td>12-40</td>
</tr>
<tr>
<td>Potash</td>
<td>1-10</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>0-92</td>
</tr>
</tbody>
</table>

While these ashes do not possess as high a percentage of potash as good quality hardwood ashes (which on an average contains from 5 per cent to 6 per cent) they undoubtedly have a fertilizing value. They should be found more particularly useful for leafy crops—corn, potatoes, roots, clover, etc.—on light and sandy loams. Their profitable use would of course depend largely on their cost laid down at the farm.

Laboratory No. 13521.—From Valcartier, Que. These ashes, presumably, had been obtained by house to house collection and, as received, were quite dry. They appeared to contain a considerable amount of charcoal, scraps of iron, pottery, etc.

Analysis of (Air-dried) Ashes.

<table>
<thead>
<tr>
<th>Component</th>
<th>Per cent. (K₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>1-04</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>41-43</td>
</tr>
<tr>
<td>Organic and volatile (charcoal, etc.)</td>
<td>17-50</td>
</tr>
<tr>
<td>Oxide of iron and alumina</td>
<td>26-96</td>
</tr>
<tr>
<td>Lime</td>
<td>10-14</td>
</tr>
<tr>
<td>Magnesia</td>
<td>7-77</td>
</tr>
<tr>
<td>Potash</td>
<td>2-76</td>
</tr>
<tr>
<td>Soda</td>
<td>1-08</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>1-10</td>
</tr>
<tr>
<td>Carbonic acid, etc. (undetermined)</td>
<td>2-92</td>
</tr>
<tr>
<td>Total</td>
<td>100-00</td>
</tr>
</tbody>
</table>

Good, unleached wood ashes do not, as a rule, fall below 5.5 per cent potash; this sample, therefore, is of inferior quality. It would seem that these ashes have been partially leached, or contain too high a percentage of sand and other foreign matter. They were being sold at from $8 to $10 per ton, whereas from their potash-content they were worth about $3.50 per ton. The lime and phosphoric acid present are, of course, of agricultural value, but they would not appreciably influence the market price of the ashes.

POTASH RESIDUE FROM OXYGEN-ACETYLENE PLANT.

This is the by-product from the oxygen acetylene plant and results from the preparation of oxygen (used in welding and other high temperature operations) by the heating together of potassium chloride and manganese dioxide. The latter is unchanged in the process, merely acting as a catalytic agent and facilitating the evolution of oxygen gas; the chlorate is reduced to chloride. The residue therefore consists of potassium chloride and the insoluble manganese dioxide. Considerable quantities of this by-product have accumulated at several centres in the Dominion. The inquiry is, can this material be used agriculturally as a source of potash, either by itself or mixed with other fertilizers, without injury to soil or crops?

Laboratory No. 11361.—This sample was from Winnipeg, Man., and was found to contain 70.67 per cent potassic chloride, equivalent to 44.60 per cent potash (K₂O), all of which is entirely and easily soluble in water and readily available for plant use.

Laboratory No. 13693.—This from New Glasgow, N.S., and contained 85.27 per cent potassic chloride, equivalent to 53-84 per cent potash (K₂O).
SESSIONAL PAPER No. 16

It is evident from these results that this residue is very rich in potash and one that should prove of considerable agricultural value.

The question naturally arises: Would the associated manganese dioxide have any injurious effect on vegetation? Experiments have shown that small quantities of soluble manganese compounds act as stimulants on plant growth, but that larger amounts are toxic. The manganese in this residue is quite insoluble, and there seems no reason to suppose that any injurious effect would follow its application. As yet we have no results from practical field tests with this material and, therefore, it cannot be definitely stated that the manganese would not become, in the course of time, more or less soluble in the soil. If such proved to be the case and injury to crops resulted the potash salts could be leached from the residue and subsequently used in fertilizer preparations. But any such injury to crops is not to be feared and we should have no hesitation in using it, in the ordinary application that potash fertilizers are made.

ROCK SUPPOSED TO CONTAIN POTASH.

Laboratory No. 11683.—The active search that has been prosecuted in the United States during recent years for native sources of potash has, in some degree, spread to Canada. This has led to sending to the Farm laboratories by explorers and others of several samples of rocks, mineral waters and brines supposed to contain potash in notable quantities and in a condition more or less available for agricultural purposes. So far the quest has not been successful and, to the best of our knowledge, the sea-weeds of our coasts remain to-day the only native source of potash suitable, without treatment, for agricultural purposes. The analytical data now to be given are from a rock specimen obtained in the East Kootenay, B.C. It was soft and of a slaty-grey colour, with irregular veins or pockets of a lighter and softer material scattered throughout it. For analysis the whole sample was crushed to a fine powder.

For water-soluble potash five grams were shaken for five days in 1000 cc. of distilled water and filtered. The filtrate contained .0927 per cent potash. Qualitative analysis showed the presence of a considerable amount of sulphate of lime.

Digestion with hydrochloric acid. This involved digestion with strong hydrochloric acid (Sp. Gr. 1.115) for several days at the temperature of boiling water. The results obtained are as follows.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insoluble rock matter</td>
<td>8.72</td>
</tr>
<tr>
<td>Oxide of iron and alumina (Fe₂O₃, Al₂O₃)</td>
<td>4.06</td>
</tr>
<tr>
<td>Lime (CaO)</td>
<td>29.10</td>
</tr>
<tr>
<td>Magnesia (MgO)</td>
<td>6.38</td>
</tr>
<tr>
<td>Soluble silica (SiO₂)</td>
<td>4.3</td>
</tr>
<tr>
<td>Sulphuric acid, combined (SO₃)</td>
<td>22.88</td>
</tr>
<tr>
<td>Phosphoric acid (P₂O₅)</td>
<td>trace</td>
</tr>
<tr>
<td>Potash</td>
<td>2.6</td>
</tr>
<tr>
<td>Water, carbonic acid, etc., by difference</td>
<td>27.58</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Total potash by fusion. For this determination, the rock was thoroughly decomposed by fusion with alkaline carbonates, and the result lixiviated with dilute acid. The solution contained .51 per cent potash.

It is evident, in the first place, that the rock is essentially sulphate and carbonate of lime and might be regarded as a low-grade gypsum.

Secondly, these three analyses are conclusive in showing that this rock has no value as a commercial source of potash.
Laboratory No. 13274.—This is from the bank of a creek, taken below the level of the grass-producing mud. It dries on exposure into masses or lumps of a dull red colour which, though hard, are fairly friable. Examination indicates that the mineral or rock constituents are very finely ground; there is neither coarse sand nor gravel present. Although there is sufficient silt and clay present to give tenacity to the dried material, it would appear that the chief component is fine and very fine sand. There are no visible evidences of organic debris.

Laboratory No. 13275.—From the land upon which the salt grass grows. In general appearance and nature this mud bears a strong resemblance to the preceding sample. Closer examination, however, shows it is not as homogeneous, that many of the lumps are, save on the outside, greyish, and the dried masses are somewhat tenacious and refractory, possibly due to the presence of a little more clay. It is free from gravel and coarse sand and under the microscope has much the same appearance as No. 13274.

Laboratory No. 13276.—This was designated as 'blue marsh mud,' underlying the red marsh mud, Laboratory No. 13274, to a depth of six inches to six feet. This, in the air-dried condition, is grey and forms rather tough masses. Except in colour it is not unlike the two preceding samples, though possibly somewhat richer in clay.

Analysis of (Air-dried) Muds.

<table>
<thead>
<tr>
<th></th>
<th>No. 13274</th>
<th>No. 13275</th>
<th>No. 13276</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>1.21</td>
<td>2.03</td>
<td>1.32</td>
</tr>
<tr>
<td>Organic and volatile matter</td>
<td>48.82</td>
<td>9.38</td>
<td>6.38</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid (clay, sand, etc.)</td>
<td>81.39</td>
<td>72.37</td>
<td>73.04</td>
</tr>
<tr>
<td>Oxide of iron and alumina</td>
<td>9.22</td>
<td>12.72</td>
<td>9.05</td>
</tr>
<tr>
<td>Lime</td>
<td>1.20</td>
<td>1.36</td>
<td>1.38</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>13</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>Potash</td>
<td>46</td>
<td>245</td>
<td>64</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>114</td>
<td>245</td>
<td>118</td>
</tr>
</tbody>
</table>

These data are in fair accord with those previously obtained in the Farm laboratories from the examination of tidal deposits of the bay of Fundy, and very clearly, in our opinion, indicate the general nature of these muds. They are amendments rather than fertilizers, that is, they may be used to generally improve or recuperate soils (and more particularly so when applied liberally and for the first time on worn soils) rather than to furnish notable amounts of available nitrogen, phosphoric acid and potash, which is the special function of commercial or chemical fertilizers. The amounts present in these tidal deposits of the more essential elements of plant food do not, as a rule, exceed those in soils of average quality, nor are these muds rich in organic matter which would make them of value in increasing the soil's store of humus-forming material. Nevertheless, they have a value for occasional use, as renovators, probably benefiting the land as much from the phsy' al as from the chemical standpoint.

While the amounts of the fertilizing constituents in these marsh muds are not large, such plant food as is present, exists in a comparatively high state of availability and to this fact, apart from their physical influence on the soil, undoubtedly these muds very largely owe their value. This phase of the subject—the availability
SESSIONAL PAPER No. 16

of the plant food in marsh muds—was investigated some years ago, and a discussion thereof will be found in the Report of the Division of Chemistry for 1899.

All three samples are of the same type or character and no great differences in agricultural value exist between them; No. 13275, however, by reason of its larger percentage of organic matter and nitrogen, might be expected to prove the best of the three samples. The colour of No. 13276, bluish-grey, would become red on exposure of the mud to the air, due to oxidation of its iron, and not until this change is brought about would it be advisable to incorporate the mud with the soil, when applied as an amendment.

It is difficult to see wherein any very great advantage can result from the continued use of these muds, for they do not supply in any notable quantity those elements in which most poor soils are more or less deficient. They may affect favourably the texture of a soil and they furnish a certain small amount of plant food, but they cannot be regarded as substitutes for farm manures or comparable to commercial fertilizers. That some benefit may accrue from their application is quite possible, but we certainly think it advisable to try out the ‘mud’ on a small area before going to any considerable expense in digging and hauling it on to the land.

RIVER MUD.

This sample (Laboratory No. 11230) was forwarded from Launching, P.E.I., where it was stated it can be obtained easily and in large quantities. The inquiry accompanying it was as to its fertilizing value on sandy loam that was somewhat light and dry. In the air-dried condition the mud was of a light-reddish colour, in lumps of an easily friable character, consisting largely of sand with a few small shells.

Analysis of (air-dried) Mud.

<table>
<thead>
<tr>
<th>Component</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>3.16</td>
</tr>
<tr>
<td>Organic and volatile matter</td>
<td>13.87</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid (clay, sand, etc.)</td>
<td>69.78</td>
</tr>
<tr>
<td>Oxide of iron and alumina</td>
<td>6.85</td>
</tr>
<tr>
<td>Lime</td>
<td>-56</td>
</tr>
<tr>
<td>Fertilizing constituents—</td>
<td></td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>-36</td>
</tr>
<tr>
<td>Potash</td>
<td>-28</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>-52</td>
</tr>
</tbody>
</table>

The chief manorial value of this deposit lies in its organic matter and nitrogen, in both of which it is comparatively rich. In phosphoric acid, potash and lime, the amounts are not exceptional, but rather those found in many good, fertile soils.

While as regards plant food it is not comparable to farm manures or commercial fertilizer, it is reasonable to suppose that it would prove a useful amendment, more particularly for heavy soils, poor in vegetable matter. These latter it would improve physically as well as chemically, rendering them more open and friable. While, of course, it should not be depended on solely to maintain fertility, an occasional application would no doubt give a good return.

River Mud, Laboratory No. 11272.—From the bed of the Murrell river, P.E.I., and dug in salt water. In the air-dried condition (water, 4.44 per cent) it was found to contain 26.44 per cent organic (vegetable) matter and .61 per cent nitrogen. It is thus shown to be a valuable amendment for soils exhausted by cropping, and which have not been adequately manured. Composting the partially dry material for a few weeks would be desirable, though on some soils there might be a fair response to an application of the crude, raw muck.
OYSTER MUD.

This sample (Laboratory No. 11231), was sent from Amherst, N.S., and stated to have been taken from an old oyster bed in the channel of a river. The correspondent inquired as to its value as a fertilizer. It was of a reddish colour and consisted of a matrix of clay in which was embedded a number of shells and fragments of seaweed. On drying it formed rather hard masses, which, however, were capable of being reduced by moderate crushing. Its analysis accorded the following data:

Analysis of (Air-dried) Mud.

<table>
<thead>
<tr>
<th></th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>-86</td>
</tr>
<tr>
<td>Organic and volatile matter*</td>
<td>7.43</td>
</tr>
<tr>
<td>Mineral matter†</td>
<td>91.71</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

* Containing nitrogen
† Containing carbonate of lime

Although this material has a certain agricultural value, it cannot properly be considered as a 'fertilizer,' that is, it would not furnish in notable amounts any of the essential constituents of plant growth, nitrogen, phosphoric acid and potash. It is rather of the nature of an 'amendment,' and might be found useful for land that would be benefited by liming. The proportion of nitrogen does not exceed that in many soils of average fertility. It could not, therefore, be considered as of any special value for furnishing this important element. The amounts of phosphoric acid and potash were not obtained quantitatively but qualitative results showed that they were insignificant and, therefore, of no particular value from the standpoint of enriching the soil.

MUCKS.

Laboratory Nos. 11115-6.—From Broughton Station, Que. These two samples of swamp muck were rather peaty in character and decidedly acid.

As received, their analysis gave the following results:

Analysis.

<table>
<thead>
<tr>
<th></th>
<th>No. 11115</th>
<th>No. 11116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>24.46</td>
<td>15.24</td>
</tr>
<tr>
<td>Organic matter</td>
<td>62.58</td>
<td>69.36</td>
</tr>
<tr>
<td>Mineral matter (clay, sand, etc.)</td>
<td>12.86</td>
<td>12.50</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Nitrogen in organic matter</td>
<td>1.53</td>
<td>1.59</td>
</tr>
</tbody>
</table>

These are excellent mucks, rich in nitrogen and undoubtedly useful for the improvement of soils poor in humus. It is possible that their employment without previous treatment might prove advantageous for heavier loams, but they should be composted for lighter soils.

INFUSORIAL EARTH.

Laboratory No. 13289.—From Hillbank, Vancouver island, B.C. This material, not unlike marl in appearance, underlies a large area of loam land which is of a peaty nature. Examination shows it to be a species of 'infusorial earth,' consisting largely of diatoms and sponge spicules. It is of no agricultural value, being practically destitute of plant food. Not infrequently deposits of infusorial earth and of fine silt or clay are mistaken for marl, the usual occurrence of which is below swamp
muck. Marl, which is carbonate of lime, may be recognized by the brisk effervescence set up on the addition of acid; there is little or no effervescence from the other deposit named.

LOBSTER REFUSE.

No. 13914.—This waste product from a lobster cannery in Nova Scotia was received in the form of a coarse powder. Our correspondent writes, 'This material contains both body and shell of the lobster. We have dried it and ground it in a simple way in order to get it into condition for handling. We should be glad to have a report as to its fertilizer value. As received, the product was quite sweet and in excellent condition for application to the soil.

Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>5.71</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>4.70</td>
</tr>
<tr>
<td>Phosphoric acid*</td>
<td>2.72</td>
</tr>
<tr>
<td>Lime (present as carbonate, phosphate, etc.)</td>
<td>20.90</td>
</tr>
</tbody>
</table>

It is quite evident that this material has a very considerable fertilizer value, for from present results one ton would contain 94 pounds nitrogen and 54 pounds phosphoric acid. The nitrogen is not present in an immediately available form, but in mellow, warm and moist soils it would no doubt be readily set free in a condition usable by crops. Similarly, the phosphoric acid is not of immediate value to crops, but the ready decomposition of waste in the soil would quickly liberate it in more or less easily assimilable forms. Indeed, it might be expected to act as quick and forcing manure, provided the soil is not too heavy and the moisture and temperature conditions are favourable. It should also be valuable in the making of composts.

As will be seen, it is essentially a nitrogenous fertilizer and in consequence its use, in many cases, would have to be supplemented by an application of the mineral elements—phosphoric acid and potash—for the best results. This could be accomplished by the addition of superphosphate and muriate or sulphate of potash—the proportions being dictated by the character of the soil and the nature of the crop to be fertilized.

The analysis in 1897 of two somewhat similar samples of dried lobster refuse showed, on a 10 per cent moisture basis:—

<table>
<thead>
<tr>
<th>Component</th>
<th>A. Per cent.</th>
<th>B. Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>5.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>2.8</td>
<td>3.4</td>
</tr>
</tbody>
</table>

These results indicate a certain variableness in composition, which, considering the nature of the refuse, is easily understood—the larger the proportion of 'bodies,' the more nitrogenous the waste, whereas a preponderance of tails, claws and shells would render it more distinctly phosphatic in character.

DOG FISH SCRAP.

The dog fish, a species of shark, by reason of its voraciousness and its abundance in Atlantic waters, has done great injury to the cod, haddock and other fisheries on the eastern coast. To keep it in check and thus protect the fisheries, the Government some years ago offered a bounty for the capture of this pest and established a reduction works (at Canso, N.S., and Shippigan, N.B.) wherein the fish could be utilized

* Equal to 5.72 per cent phosphate of lime.
to advantage. The chief products of this rendering or reduction, as it is called, are oil and a scrap or refuse characterized by a high percentage of nitrogen and hence of considerable value as a fertilizer. The process, in the outline, is as follows:

On bringing in the fish, the livers are removed and the remainder softened and 'digested' in suitable vessels by means of superheated steam.* This causes the greater part of the oil to separate. After drawing off the oil the residue is run through presses, to further exclude oil and get rid of a large proportion of the water, and dried in spiral heaters.

For the past seven years this scrap has been periodically analyzed in the Farm laboratories at the request of the Department of Marine and Fisheries (the branch of the Government service controlling the reduction works) and the results published for the benefit of farmers in the reports of this Division. During the past year, two samples of this scrap from the works at Canso, N.S., have been submitted to analysis.

* The livers being exceedingly rich in oil, which is considered of finer quality than that in the bodies of the fish, are separately rendered.

<table>
<thead>
<tr>
<th>Analysis of Dog-fish Scrap.</th>
<th>No. 11288</th>
<th>No. 13287</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>8-11</td>
<td>3-37</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>8-89</td>
<td>10-80</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>2-88</td>
<td>3-50</td>
</tr>
<tr>
<td>Total mineral acid</td>
<td>8-16</td>
<td>8-60</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>4-7</td>
<td>6-6</td>
</tr>
<tr>
<td>Oil</td>
<td>24-72</td>
<td>22-19</td>
</tr>
</tbody>
</table>

In all essential features, these results agree fairly well with those of previous years. They indicate the high manurial value of the scrap, primarily as a source of nitrogen, and secondarily of phosphoric acid. From the nature of the material and the method of its preparation, some variation in composition might be expected from time to time—and such has been the case. Hitherto, however, the larger number of samples have fallen within the following limits: Nitrogen, 7.5 per cent and 9.5 per cent; phosphoric acid, 2.5 per cent and 3.5 per cent. Of the present samples, No. 13287 is decidedly superior, both as regards nitrogen and phosphoric acid, to the average output of the works. The value of this scrap in the field as compared with other fertilizers is a matter not yet finally settled. Some farmers in Nova Scotia have spoken highly of the response observable on its application, while others report that they have been disappointed in its use. Fish waste, as a rule, is a quick, forcing manure readily nitrifying in warm, moist loams that are moderately light. In cold, heavy, ill-dried clays, however, the setting free of its plant food in available forms would be necessarily slow and consequently upon such there would not be an adequate return the season of application, even though the soil stood in need of nitrogenous fertilizer. It will be noticed that this scrap contains from 20 per cent to 25 per cent of oil. This is objectionable, not because oil is of no manurial value but because its presence in such large quantities retards the decomposition of the refuse in the soil and the setting free of its plant food. Moreover, if large dressings are applied for a number of years, the accumulation of oil may injuriously affect the tilth of the soil.

Correspondence is invited from those who have tried or who purpose trying this fertilizer; possibly information can be given as to its use that may be of assistance. It is well to bear in mind that it is not a 'complete' fertilizer; for many field and garden crops it should be supplemented by phosphatic and potassic fertilizers. The home mixing of fertilizers is not a difficult matter, and formula will be suggested to meet various requirements provided particulars are furnished as to the nature of soil and its history as to manuring and cropping and the character of the crop to be grown.
This is a fertilizer of recent introduction, containing from 12 to 14 per cent of nitrogen present in a highly soluble and available form. This material is not pure calcium nitrate but is essentially a mixture of this compound and lime. Its manufacture on a large scale is now carried on in several European countries—notably in Norway, Austria and France—and though there are several processes in operation, they are all the same in principle—the oxidation of atmospheric nitrogen by means of an electric arc or flame and the subsequent neutralization of the nitric acid so formed by lime.

As yet, there is but little experience on this continent with lime nitrate, but experiments of an extensive nature which have been in progress for so many years, in England and other European countries, go to show that its nitrogen, unit for unit, is just as valuable as that of nitrate of soda. It is considered as among the most promising of the competitors of Chili saltpetre in the fertilizer markets of the world. As a source of immediately assimilable nitrogen it is capable of wide application, but it is thought it will be found, by reason of its basic character, particularly suitable for peaty and clay soils.

A sample submitted for our examination, forwarded from London, England, Laboratory No. 13179, and stated to contain 'about 13 per cent nitrogen' was analyzed and found to contain 12.954 per cent nitrogen, of which 12.954 per cent was readily soluble in water. Its concentrated and highly available character will be apparent from these data. The fertilizer, as received, was in the form of a coarse, grey powder, not unlike in appearance to finely crushed shale, and was readily soluble.

INSECTICIDES AND FUNGICIDES.

FORMALDEHYDE.

There is in these days, a very large and ever-increasing use in agriculture of formaldehyde, chiefly in the treatment of wheat for the prevention of smut. For this purpose, in many districts of the Canadian Northwest, it has almost entirely taken the place of bluestone (copper sulphate)—the time-honoured smut preventive. This substitution has much to commend it, for, compared with the bluestone solution, that of formaldehyde is equally efficacious in destroying smut, is more easily prepared (since dilution only is necessary), and is less injurious to the vitality of the treated grain.

We have, from time to time since 1902, analyzed samples from the various brands on the Canadian market and the results have shown that the manufacturers are putting out an article of very fairly uniform strength and conforming to the guarantee. Occasionally a sample is sent in that has proved below strength, but such, it has always been found, had been purchased from bulk and not in the original container. Our records, as remarked, do not show that adulteration exists to any degree, nevertheless it would appear that both manufacturer and user would be better protected if the formaldehyde were sold in sealed bottles, say of 1, 2, 5 and 10 pounds each, rather than retailed from bulk.

A sample received during the year (Laboratory No. 11257) from Delmas, Sask., and which had been purchased from bulk (manufacturers unknown) was found on analysis to contain 31.82 per cent formaldehyde. This is decidedly below standard strength, which calls for approximately 37.3 per cent by weight or 40 per cent by volume.

Another sample (Laboratory No. 11383), forwarded from Parr, Alta., was found to contain 33.65 per cent formaldehyde and was therefore in conformity with the guarantee.
LIME-SULPHUR SPRAY.

Lime-sulphur spray is fast supplanting Bordeaux mixture in many of our fruit-growing districts as a fungicidal wash, especially as a preventive against apple spot. It is not improbable that this increasing popularity is due in a large measure to the ease with which the spray may be prepared—simple dilution only being necessary—when the concentrated wash is purchased. Home manufacture of the lime-sulphur wash, once so common, is now comparatively rare. It is certainly a somewhat troublesome operation and it entails a determination of the strength of the resultant wash in order to arrive at the correct dilution necessary before it is ready for use. However, for those who consider it the more economical to prepare the wash and who have facilities for the work, formulae and directions will be found in the reports of this Division for 1908 and 1909, and further assistance if desired, will be given by correspondence.

The commercial lime-sulphur washes upon the market have been examined by us for a number of years past. Consideration of the results indicates that the larger number of brands are now well-made, contain a goodly proportion of their sulphur as sulphide and are of fairly uniform and satisfactory strength. In the first years of this spray, inferiority due to faulty manufacture was occasionally noted, but methods have evidently improved, so that now it is seldom one meets with a wash that has been poorly made or is below the recognized standard strength.

Samples of five prominent brands sold in Canada have been submitted to analysis, with the following results:

<table>
<thead>
<tr>
<th>Analysis of Lime-Sulphur Washes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory No.</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>11321</td>
</tr>
<tr>
<td>11359</td>
</tr>
<tr>
<td>11385</td>
</tr>
<tr>
<td>11386</td>
</tr>
<tr>
<td>14507</td>
</tr>
</tbody>
</table>

We have in these data satisfactory evidence of good quality and they further indicate, as has been noted in past years, that no great difference in strength exists among the larger number of lime-sulphur washes put on the market by reputable firms.

The questions of strength of sprays for summer and winter use, methods for determining strength by the hydrometer and necessary dilution, with other information relating to the concentrated and diluted wash, are discussed at some length in the report of this Division for 1912, copies of which are obtainable on application. The chapter will be found of interest to all orchardists using lime-sulphur spray for the control of insect and fungus pests.

SOLUBLE SULPHUR.

This compound has recently been introduced by the Niagara Brand Spray Co., Burlington, Ont., as a substitute for lime-sulphur. It is in the form of a fine, yellowish powder and for use is dissolved in water, in which it is almost entirely soluble. If successful as a fungicide, it would be an important competitor of the
SESSIONAL PAPER No. 16

lime-sulphur wash as the preparation of the spray is a very simple and clean operation and freight charges would be very light compared with those on the heavy, bulky lime-sulphur.

Two samples from the material freshly manufactured, were submitted to analysis:

Analysis of Soluble Sulphur.

<table>
<thead>
<tr>
<th></th>
<th>No. 15655.</th>
<th>No. 13673.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sulphur</td>
<td>58.20</td>
<td>56.20</td>
</tr>
<tr>
<td>Sulphur present as sulphide</td>
<td>44.07</td>
<td>40.30</td>
</tr>
<tr>
<td>" in compounds other than sulphides</td>
<td>14.13</td>
<td>13.90</td>
</tr>
<tr>
<td>Matter insoluble in water</td>
<td>traces</td>
<td>traces</td>
</tr>
</tbody>
</table>

Both samples contained carbonate of soda, as a residual in the process of manufacture. The sulphur compounds have sodium as a base and it is quite evident from the data that a large percentage of them exist in other forms than sulphide. From our experience, and that of other investigators, it is the sulphide sulphur that practically determines the fungicidal value of the spray and, consequently, these other-than-sulphide compounds—sulphites, hyposulphites, etc.—may be left out of consideration by the orchardist.

There is as yet no experience with this spray, either as to effectiveness in controlling fungous diseases or its harmlessness to foliage, and therefore its value as a substitute for lime-sulphur cannot as yet be stated. While it might prove effective as a winter spray on dormant wood it seems probable, from its strongly alkaline character, that it might be injurious to tender foliage, save in very dilute solutions.

APERTITE.

This preparation is described as a 'soil-fumigant' and 'fertilizer' and, further, as a 'scientifically prepared powder,' the purpose of which 'is to destroy the many insects and other pests which live or hibernate in the soil and damage the crops.' It is a purplish red powder smelling strongly of naphthalene. Its examination yielded the following data:—

Analysis.

<table>
<thead>
<tr>
<th></th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol and homologues (crude carbolic acid, naphthalene, etc.)</td>
<td>20.50</td>
</tr>
<tr>
<td>Oxide of iron and alumina</td>
<td>3.20</td>
</tr>
<tr>
<td>Silex</td>
<td>6.65</td>
</tr>
<tr>
<td>Lime (present largely as sulphide and carbonate)</td>
<td>20.65</td>
</tr>
<tr>
<td>Sulphur (present as sulphide)</td>
<td>3.36</td>
</tr>
<tr>
<td>Magnesia</td>
<td>-3.8</td>
</tr>
<tr>
<td>Soda</td>
<td>trace</td>
</tr>
<tr>
<td>Potash</td>
<td>none</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>traces</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>traces</td>
</tr>
</tbody>
</table>

It would appear to be essentially sulphide of lime, probably gas lime—a by-product of the gas works long recognized as having a value for the destruction of noxious insects in the soil—with naphthalene oils. The red dye present is probably a 'lake.'

As it only contains mere traces of nitrogen, phosphoric acid and potash, it cannot be said to have any value as a fertilizer, though its lime may act as an amendment.

Preparations of this character have been used in England to protect many classes of crops from insect ravages, being used at the rate of 2 to 3 cwt. per acre, and dug or ploughed in before sowing the seed or planting the land. The experience with
these 'deterrents' or soil disinfectants in Canada is as yet limited, but such as there is has not been very favourable from the economic standpoint. It will be understood, therefore, that at the present time we are unable to recommend them and that further experimental work is necessary to establish their usefulness and efficiency. The analysis of a similar preparation (Vaporite) will be found in the report of this Division for 1908.

COAL-TAR DISINFECTANTS AND DETERRENTS.

Two products of this nature forwarded by the Kingsdale Poultry and Supply Co., Sussex, N.B., have been submitted to analysis.

'Cow Spray,' Laboratory No. 11325.—This is probably a by-product of coal distillation below 250°C. It consists almost entirely of coal tar hydrocarbons, one-third of which distils over below 150°C. (light oils of the nature of kerosene) and a second third between 150°C. and 210°C. The remaining third consists of heavy naphthalene oils, distilling between 210°C. and 240°C. There is present a small amount of tar residue. We have no knowledge as to its practical usefulness as a protection to cattle against flies, but preparations of this character have been advocated and used for this purpose.

'Lice Spray,' Laboratory No. 11326.—This is an emulsion consisting essentially of coal tar hydrocarbons and a resin soap. It probably contains cresols or analogous bodies. Coal oil (kerosene) has long been used, and with success, for ridding the poultry house of lice, and there seems little reason to doubt that a preparation of this nature would serve the purpose equally well. It remains to be shown, however, that it would be more efficacious or cheaper than the older and well-tried remedy.

LEAD ARSENATE.

Three brands of this insecticide have been analyzed, the samples being submitted by the Horticultural Division which had them under trial in the Farm's orchards.

Analysis of Arsenate of Lead.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11387 Grasselli</td>
<td>55.16</td>
<td>11.44</td>
<td>39.22</td>
<td>0.06</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>11388 Niagara</td>
<td>48.14</td>
<td>14.15</td>
<td>33.96</td>
<td>0.06</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>11389 Rex</td>
<td>36.22</td>
<td>17.55</td>
<td>40.88</td>
<td>0.08</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

It is quite evident from the results obtained in the laboratory that considerable difference in lead arsenate content exists among the various brands of this insecticide upon the market. As we pointed out in a previous report there are, no doubt, difficulties of manufacture that militate against turning out continuously a product absolutely constant as to water-content (which necessarily fixes the lead arsenate content), but there seems no reason, if good methods are used, why greater uniformity than is to be observed to-day could not be attained. Many firms are now putting a
guarantee on the label, stating percentage of lead arsenate present and particulars as to soluble impurities. This practice is to be commended as furnishing the purchaser information required in making sprays of any desired strength and in allowing him to judge of the relative values of the various brands offered for sale.*

AGRICULTURAL BLUESTONE.

This compound, a crystalline mixture of the sulphate of copper and sulphate of iron, is frequently sold for bluestone or sulphate of copper, to which it is distinctly inferior in the treatment of wheat for the destruction of smut. Further, it is worthless for the purpose of making Bordeaux mixture, the common use of bluestone by orchardists. Some years ago there was a considerable amount of this compound on the market in the Canadian Northwest and we warned our readers against purchasing it, as the fungicidal power, as shown by our experiments, was very materially reduced by the presence of the sulphate of iron. For sometime past no samples have been received at the laboratories, but one was forwarded a few months ago from Armstrong, B.C., which had been sold as bluestone. This sample, (Laboratory No. 13550), proved, on analysis, to contain 77.05 per cent of sulphate of iron. Subsequently a similar sample was forwarded by another correspondent from the same district and was found equally impure.

Bluestone has a deep blue colour (it may be slightly effloresced on the surface due to loss of water of crystallization) and if to its solution in water a slight excess of ammonia is added, the precipitate that at first forms dissolves entirely, the solution being intensely blue. Agricultural bluestone may be recognized by its greenish hue and by the fact that on the addition of ammonia to its solution a dirty, yellowish-red precipitate of hydrated oxide of iron persists. The term ‘agricultural’ as applied by the trade to this compound, is misleading; there is no use in agriculture in which it is not inferior to bluestone—and for some purposes, as for Bordeaux mixture, it is worthless.

CARBOLIZED WHEAT PROTECTOR.

This preparation made by G. B. Clark, Woburn Sands, England, is sold for the treatment of wheat, oats and barley for the destruction of smut, and consequently comes into competition with the two well-tried remedies, (bluestone and formaldehyde). It is also stated to act as a preventative against rust, bunt and mildew and the ravages of slugs, wire-worms, and the attacks of birds and other farm pests.’ It is a reddish powder, smelling strongly of carbolic acid. Its analysis afforded the following data:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate of iron</td>
<td>71.89</td>
</tr>
<tr>
<td>Sulphate of copper</td>
<td>25.98</td>
</tr>
<tr>
<td>Crude carbolic acid</td>
<td>3.36</td>
</tr>
<tr>
<td>Red ochre</td>
<td>0.10</td>
</tr>
<tr>
<td>Mineral matter insoluble in acid</td>
<td>0.61</td>
</tr>
<tr>
<td>Undetermined</td>
<td>0.36</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

It is not at all probable that the use of this compound, which is practically 'agricultural bluestone,' with a little carbolic acid and coloured with ochre, would prove as effective for the treatment of wheat as either of the chemicals now in common use. For smut destruction, the value of carbolic acid in dilute solutions is extremely doubtful; such evidence as we have would appear to be distinctly adverse to its use..

* A chapter of the physical and chemical properties of arsenate of lead, together with an account of the 'neutral' and 'acid' forms found on the market, will be found in the Report of the Chemical Division, 1912.
cessful employment as a fungicide. Sulphate of iron (copperas), as our experiments have shown, has a very low fungicidal power compared with that of bluestone (sulphate of copper). Consequently, we may conclude that its value for this purpose practically depends upon its bluestone content, which the analysis shows to be 25 per cent.

POTASSIUM CYANIDE.

This chemical is used for the production of hydrocyanic (prussic) acid used in the fumigation of nursery stock, greenhouses, etc. Commercial grades nowadays usually contain large percentages of sodium cyanide or, indeed, they may be entirely sodium cyanide. This in itself is no disadvantage, but rather the reverse, since weight for weight, the sodium compound will disengage a larger amount of hydrocyanic gas than will the potassium salts. Certain low-grade cyanides, however, are on the market and these will be more or less ineffective unless used in larger quantities than called for by formula. It will be, therefore, for the purchaser when ordering to stipulate the high-grade cyanide (98 per cent to 100 per cent) and further, if possible, to obtain it in unopened containers as put up by the wholesale druggist. The latter precaution is advisable by reason of the readiness with which this compound deteriorates when exposed to the air. In a bottle of cyanide kept loosely corked for some months and examined in the farm laboratories it was found that the lumps at the top had lost nearly two-thirds of their strength. Several samples of cyanide bought from bulk were analyzed and were found to a greater or less degree below the guaranteed strength, but those obtained in original and sealed containers conformed with the guarantee.

Owing to the extremely poisonous character of cyanide and of the hydrocyanic acid gas, which it so readily evolves, the very greatest care must be exercised in handling this material or in conducting a fumigation. The work should be performed by responsible and experienced persons.

GOPHER POISON.

The more common poison used to-day in the northwestern provinces for the destruction of gophers, is strychnine, though from our own experiments at Indian Head, Sask., and that of the Wyoming Experiment Station, carbon bisulphide is probably a more effective exterminator of these pests.

Carbon bisulphide is a highly inflammable liquid, with a very disagreeable smell. Though not corrosive, its vapor is detrimental to health when breathed in quantities. It, however, can be used without danger provided ordinary care is exercised—more especially in regard to flame and fire. The method of use is to saturate a small ball of rags or cotton waste with the bisulphide and thrust it into the fresh burrow in the evening, closing the mouth of the burrow with a little earth. Dry balls of horse manure have been used successfully instead of cotton waste. The fumes from the bisulphide are very heavy and sink down the burrow or tunnel, destroying the gophers by suffocation.

Strychnine is dangerous to live stock running loose and, moreover, it is difficult at times, when food is plentiful, to get the gophers to eat the poisoned grain. Strychnine is intensely bitter even in very dilute solutions and no doubt the gophers are often deterred from eating the grain by tasting the poison on the outside of wheat. For this reason, the poisoned wheat, while still damp, might be sprinkled with a little sugar.

In gopher-infested districts, solutions of strychnine are frequently distributed by municipalities to farmers, a certain strength or number of grains of strychnine per fluid ounce being stipulated. A number of such solutions have been forwarded
for examination to ascertain if they are equal to the guarantee. In the majority of instances these have been found of guaranteed strength, but in a few cases they have been weaker. We advise that on the labels, in addition to directions for use and the caution to be observed in its employment in order to avoid the poisoning of children and stock, the amount of strychnine per fluid ounce be stated.

Strychnine and strychnine sulphate are white, crystalline solids, but may be brought into solution by the addition of a few drops of acid or a little strong vinegar. Strychnine sulphate is fairly soluble and for this reason is, perhaps the better form to use, when the solution is not bought. In employing either of these substances, the poison should be entirely dissolved before covering the grain with the solution. All the samples of strychnine and strychnine sulphate (crystallized) submitted to analysis have been found pure. The quantity usually recommended is one ounce of strychnine to one bushel of wheat.

The wheat should be allowed to stand in the poison solution (of which there should be sufficient to cover the grain) for 36 hours, or until the grain is quite soft, showing thorough saturation with the poison. A teaspoonful placed at the mouth of each burrow should be ample.

We would again emphasize the necessity for the greatest care in the handling and use of this deadly poison, to avoid accident.

THE FERTILIZING VALUE OF RAIN AND SNOW.

The sixth year of this investigation, the object of which is to ascertain the possible enrichment of the soil, per acre, due to nitrogen compounds furnished by rain and snow, closed on February 28, 1913. The collection of the samples submitted to analysis has been made on the Central Experimental Farm, situated on the outskirts of Ottawa, and every precipitation of rain and snow that would yield a sufficiency for analysis from the catchment area employed has been chemically examined.*

In previous reports we have dealt at some length with the various factors that influence the nitrogen-content of the precipitation—and especially that of the rain. It may, therefore, suffice to enumerate the more important of these and to state briefly that the total amount of nitrogen so furnished per acre, per annum, has not been found to follow the total precipitation closely.

While the direction of the prevailing winds, considered apart from velocity during the falling of rain and snow, as for instance toward or from the city, does not apparently markedly influence the nitrogen content, its velocity or violence may and frequently does very appreciably affect the character of the rain in this respect. The rain during thunder storms is invariably rich in nitrogen, and this we have attributed chiefly to the presence of an increased amount of dust in the air, though to some extent the nitrates may be increased by the electric discharges (lightning flashes) of the storm. It has been repeatedly noted that the rain falling during or immediately following cyclonic storms of great severity and which 'filled' the atmosphere with dust particles, had an exceedingly high nitrogen-content, more particularly present as free and albuminoid ammonia.

Another factor and probably the most potent, is frequency of precipitation, and this is more particularly true during the summer months. A scanty rainfall after a period of hot, dry weather, is invariably rich and on the other hand the later collections after several days of showery weather show a rapidly decreasing nitrogen-content.

During the year March 1, 1912, to February 28, 1913, 107 samples were collected and analyzed, being fifteen more than the year previous.

* The catchment basin is approximately 60 by 50 inches, and is placed about 25 feet from the ground, which, for some distance around, is in lawn and shrubbery.
The principal data for the year are recorded in the following table, comprising monthly totals of precipitation, the average nitrogen-content for the month expressed as 'free' and 'albuminoid' ammonia and as 'nitrates' and 'nitrites.' The last column gives the pounds of nitrogen, so supplied, per acre.

Rain and Snow at Ottawa for the Year ending February 28, 1913.

<table>
<thead>
<tr>
<th>Month and Year</th>
<th>Precipitation in Inches.</th>
<th>Nitrogen.</th>
<th>Pounds of Nitrogen per acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>14 00</td>
<td>14 00</td>
<td>14 00</td>
</tr>
<tr>
<td>April</td>
<td>2 60</td>
<td>2 60</td>
<td>2 60</td>
</tr>
<tr>
<td>May</td>
<td>5 15</td>
<td>5 15</td>
<td>5 15</td>
</tr>
<tr>
<td>June</td>
<td>3 89</td>
<td>3 89</td>
<td>3 89</td>
</tr>
<tr>
<td>July</td>
<td>4 94</td>
<td>4 94</td>
<td>4 94</td>
</tr>
<tr>
<td>August</td>
<td>4 01</td>
<td>4 01</td>
<td>4 01</td>
</tr>
<tr>
<td>September</td>
<td>2 47</td>
<td>2 47</td>
<td>2 47</td>
</tr>
<tr>
<td>October</td>
<td>2 59</td>
<td>2 59</td>
<td>2 59</td>
</tr>
<tr>
<td>November</td>
<td>1 17</td>
<td>1 17</td>
<td>1 17</td>
</tr>
<tr>
<td>December</td>
<td>10 00</td>
<td>10 00</td>
<td>10 00</td>
</tr>
<tr>
<td>1913.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>2 17</td>
<td>23 75</td>
<td>25 92</td>
</tr>
<tr>
<td>February</td>
<td>23 50</td>
<td>23 50</td>
<td>23 50</td>
</tr>
<tr>
<td>30 34</td>
<td>96 25</td>
<td>39 96</td>
<td></td>
</tr>
</tbody>
</table>

Attention may be directed to the more salient features in the foregoing table and one or two comparisons made with similar data from previous years. The total precipitation, 39.96 inches, is considerably higher than that recorded since the beginning of the investigation, 1907, and exceeds that of the average for 22 years by practically 5½ inches. As the snowfall for the year was practically normal, it necessarily follows that the increased precipitation was as rain, which was considerably heavier in May, August and September. The rainfall of 2.17 inches during January may be quoted as exceptional, and this serves to explain the larger amount of nitrogen for that month than has usually been found.

The total nitrogen for the year amounted to 6.144 pounds—an amount practically identical with that of the preceding year and, excepting the year ending February, 1909, when the results were abnormally high owing to bush fires, 403 pounds, above the average for the period of investigation February, 1907, to February, 1913.

The precipitation data and amount of nitrogen per acre for the past six years are given in the following table:—
It is interesting to note that the proportions of the total nitrogen furnished by the rain and snow respectively have remained practically constant for the past four years, and it would seem that, for the precipitation at Ottawa, somewhat more than eight-tenths of the nitrogen is to be found in the rain. For the past year, we have 5.113 pounds nitrogen, or 83 per cent of the whole, in the rain, and 1.031 pounds, or 17 per cent, in the snow. For the period 1908-1913, the data are given in tabulated form as follows:

Precipitation and Amount of Nitrogen per Acre, Ottawa, 1908-1913.

<table>
<thead>
<tr>
<th>Year ending February</th>
<th>Rain in Inches.</th>
<th>Snow in Inches.</th>
<th>Total precipitation in Inches.</th>
<th>Pounds of Nitrogen per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>29, 1908</td>
<td>24.05</td>
<td>133.00</td>
<td>37.33</td>
<td>4.332</td>
</tr>
<tr>
<td>" 28, 1909</td>
<td>22.39</td>
<td>16.25</td>
<td>32.63</td>
<td>8.364</td>
</tr>
<tr>
<td>" 28, 1910</td>
<td>28.79</td>
<td>80.75</td>
<td>36.87</td>
<td>6.869</td>
</tr>
<tr>
<td>" 28, 1911</td>
<td>19.67</td>
<td>73.00</td>
<td>32.97</td>
<td>5.271</td>
</tr>
<tr>
<td>" 28, 1912</td>
<td>20.33</td>
<td>104.25</td>
<td>30.76</td>
<td>6.100</td>
</tr>
<tr>
<td>" 28, 1913</td>
<td>39.34</td>
<td>96.25</td>
<td>39.96</td>
<td>6.144</td>
</tr>
<tr>
<td>Average for 22 years</td>
<td>25.23</td>
<td>92.36</td>
<td>34.47</td>
<td></td>
</tr>
</tbody>
</table>

Amounts of Nitrogen furnished by Rain and Snow.

<table>
<thead>
<tr>
<th>Year ending February</th>
<th>By Rain.</th>
<th>By Snow.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>29, 1908</td>
<td>4.322</td>
<td>3.243</td>
</tr>
<tr>
<td>" 28, 1909</td>
<td>8.264</td>
<td>7.528</td>
</tr>
<tr>
<td>" 28, 1910</td>
<td>6.869</td>
<td>5.83</td>
</tr>
<tr>
<td>" 28, 1911</td>
<td>5.271</td>
<td>4.424</td>
</tr>
<tr>
<td>" 28, 1912</td>
<td>6.100</td>
<td>5.075</td>
</tr>
<tr>
<td>" 28, 1913</td>
<td>6.144</td>
<td>5.113</td>
</tr>
</tbody>
</table>

* Snowfall exceptionally heavy.
† Rain abnormally rich in ammonia due to bush fires.

Considering the distribution or proportion of the various nitrogen compounds, the results of the past year are in close accord with those previously obtained; of the total nitrogen, 6.144 pounds, it will be observed 4.434 pounds, or 72 per cent, were present as free and organic ammonia, and 1.710 pounds, or 28 per cent, as nitrates and nitrites.

The results in the following table are of interest in showing the greater richness of the rain and the proportions of the several nitrogen compounds as present in both rain and snow:
AVERAGE Nitrogen-Content of Rain and Snow.

(Amount of Nitrogen per acre, as Free and Albuminoid Ammonia and as Nitrates and Nitrites.)

<table>
<thead>
<tr>
<th></th>
<th>Number of Samples Analyzed</th>
<th>Precipitation in Inches</th>
<th>Parts per Million</th>
<th>Percentage of Total</th>
<th>Per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free Ammonia</td>
<td>Nitrites</td>
<td>Total</td>
</tr>
<tr>
<td>Rain</td>
<td>85</td>
<td>30.34</td>
<td>.409</td>
<td>.129</td>
<td>.216</td>
</tr>
<tr>
<td>Snow</td>
<td>22</td>
<td>96.23</td>
<td>.265</td>
<td>.104</td>
<td>.104</td>
</tr>
</tbody>
</table>

The rain and snow in falling through the atmosphere exert a cleansing action, washing out and filtering out many impurities, both gaseous and solid. This function of the precipitation undoubtedly has an important hygienic bearing but, further, as we have seen, it furnishes the soil with a notable amount of that most important and most costly of all plant foods, nitrogen, in a condition immediately available for crop use. Among the many useful ways in which the rain and snow affect agriculture, this role in which they act as fertilizing agents must not be overlooked. From the data of this investigation it would appear that the manurial value of the rain and snow, at current prices of nitrogen in fertilizers, would be almost $1 per acre, annually.

THE WATER SUPPLY OF FARM HOMESTEADS.

There ought to be little necessity nowadays to urge upon farmers the desirability of a pure water supply, for in recent years there are few subjects that have received more attention in the agricultural press and in the literature issued by authorities on hygiene. The relation generally of water to health, the fact that there are certain diseases, more or less prevalent in rural parts as in cities, and which are frequently epidemic in character, that are essentially water-borne, constitutes knowledge that should be in the possession of all. Nevertheless, a survey of present conditions on the average farm and the outbreaks of typhoid fever that still occur from time to time on farms, in villages, assure us that it is incumbent to continue our propaganda again and again, to bring before our people the danger to health in using a polluted water supply. For twenty-five years, the Chemical Division of the Dominion Experimental Farms has taken an active part, not only in the dissemination of information regarding the importance of pure water to the good health of the farmer and his family and the thriftiness of his stock, but in examining and reporting upon such samples of well waters as may be submitted according to directions for collection, etc., obtainable upon application. Many have availed themselves of this privilege and during that period many hundreds, probably thousands, of samples from farm homesteads have been analyzed. But the work must be continued and extended, for we feel assured that there still remains a very large number of farmers who as yet have not fully realized the importance of pure water and who, by reason of an improperly
located well and disregard of hygienic principles, are using water of very doubtful quality.

We have enlarged from time to time in the annual report of the Division, and elsewhere, upon the great risk of pollution that follows when the well, usually quite shallow and drawing merely on the ground water of the immediate environment, is located in the barnyard, near the farm buildings, or otherwise in the proximity to sources of contamination. Unfortunately, such wells are only too common. Convenience has been secured but health jeopardized; in too many instances the results has been polluted water, a water that is a serious menace to good health. We take the position that such wells should be abandoned at the earliest possible moment and that, until a purer supply is available, there should be no neglect in boiling all the water required for drinking and culinary use. Boiling will not make bad water good, but it will make it reasonably safe as regards the possible dissemination of infective disease germs. When the location of the shallow well is satisfactory from the hygienic standpoint it may yield a good water, and a safeguard of considerable value may be adopted by keeping an area of say fifty yards radius around the well free from manure and all kinds of filth (preferably this area should be sod) and by lining the well, say to a depth of ten feet from the surface, with puddled clay or concrete. This lining may be from six to twelve inches thick and should project some twelve inches above the mouth of the well to preclude the entrance of surface wash. The impervious lining ensures that all water entering the well shall pass through at least a certain layer of soil that is able to perform its function as a natural filter.

Next in order is the bored or driven well, obtaining its supply from a deep seated source, the well being sunk through one or more layers of impervious rock until a water-carrying stratum is reached. Such wells constructed so that not only is surface water excluded but that there is also a perfect sealing where the pipe enters the solid rock, are strongly advocated and it is gratifying to be able to record they are replacing the shallow, ground-water well on Canadian farms. Ordinarily they yield a water of good quality and quite palatable, though one perhaps not quite so suitable for certain domestic purposes as the softer water from shallow wells. Occasionally the salinity is high, especially from the presence of sulphates, but in most districts the water is seldom non-potable from this cause. But it must not be supposed that the bored well is always and necessarily free from organic impurity; instances have come under our notice in which the presence of drainage matter has been shown both by chemical and bacteriological examination. The pollution may have arisen from faulty sealing where the pipe enters the rock, or, as is more frequently the case, by the passage of the pipe through a shaly rock or one full of fissures which allowed the downward flow of surface water without exerting any purifying influence thereon.

Provided the farmer has found by such means an ample and good supply, a pump may be installed, actuated by windmill, small gasoline or hot-air engines and the water piped to tanks in the house and barns. The convenience, comfort and economy in labour of such a service, in addition to the value to be placed upon a wholesome supply, make it one ideal for the rural home and well worth the cost of installation. It permits not only a constant supply of water in the kitchen but the putting in of a bath-room and the disposal of sewage by the septic tank system—modern conveniences which undoubtedly tend to better health conditions.

We must add one word of caution as to the judging of water by the farmer from its appearance, its temperature and its odour or absence of odour. Usually, if a water is not objectionable to sight and smell it is considered satisfactory. A water may be clear and sparkling, very cool and odourless and yet be most seriously polluted. Therefore, reliance should not be implicitly placed upon these characteristics, though they are those which all good waters should possess.
In the appended table, we give the analytical data and a very brief report upon 188 samples of water from various parts of the Dominion, examined during the past year. Of these eighty-nine have been pronounced as pure and wholesome, forty-three as suspicious and probably dangerous and forty-one as seriously contaminated. There were fifteen too saline for use as a potable supply.

Farmers desiring an examination of their water supply are invited to send for a copy of the directions to be followed in the collection and shipment of the sample. Samples are being constantly received at the laboratories which, owing to insufficiency in quantity, dirty containers or corks, or other causes, cannot be submitted to analysis; trouble and expense to the farmer will therefore be saved if these instructions are first obtained and faithfully carried out.
Analyses of Well Waters, 1912-13

Results Stated in Parts per Million

<table>
<thead>
<tr>
<th>Number</th>
<th>Locality</th>
<th>Marks</th>
<th>Date</th>
<th>Free Ammonia</th>
<th>Allommonium</th>
<th>Nitrate and Nitrites</th>
<th>Chlorine</th>
<th>Total Solids at 100°C</th>
<th>Solids after Ignition</th>
<th>Loss on Ignition</th>
<th>Phosphates</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bedford, Que.</td>
<td>T. G. G.</td>
<td>Apr. 3</td>
<td>.58</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>2</td>
<td>Ironsides, Que.</td>
<td>A.G.B.</td>
<td>Sep. 30</td>
<td>.41</td>
<td>.48</td>
<td>12</td>
<td>14.5</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>3</td>
<td>Coquitlam Lake, B.C.</td>
<td>E.S.S., No. 65</td>
<td>Oct. 20</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Southport, B.C.</td>
<td>J.C.</td>
<td>Dec. 20</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>7</td>
<td>Wynyard, Sask.</td>
<td>J.P.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>8</td>
<td>North Thompson, Kamloops, B.C.</td>
<td>E.H.J.</td>
<td>Dec. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>9</td>
<td>Banff, Alta.</td>
<td>J.R.H.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>10</td>
<td>Kelowna, B.C.</td>
<td>H.I.C.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>11</td>
<td>Blakely, Ont.</td>
<td>B.W.C.</td>
<td>Dec. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>12</td>
<td>Ottawa, Ont.</td>
<td>R.I.C.</td>
<td>Dec. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>13</td>
<td>St. Hyacinthe, Que.</td>
<td>S.P.M.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>14</td>
<td>Coquitlam Lake, B.C.</td>
<td>E.S.S., No. 65</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Allensville, Muskoka, O.</td>
<td>J.H.R.M.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>19</td>
<td>Wyeollow, Sask.</td>
<td>H.I.C.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>20</td>
<td>Bealton, Ont.</td>
<td>A.R.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>21</td>
<td>Hamilton, Ont.</td>
<td>J.C., No. 1.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Orilla, Ont.</td>
<td>S.D.M.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>24</td>
<td>Banff, Alta.</td>
<td>J.E.H.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>25</td>
<td>Rock Lake</td>
<td>A.W.F.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>26</td>
<td>Butler, Man.</td>
<td>J.C.W.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>27</td>
<td>Coquitlam Lake, B.C.</td>
<td>E.S.S., No. 79</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>St. Catharines, Ont.</td>
<td>T.M.K.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>32</td>
<td>Rostern, Sask.</td>
<td>F.T.S.</td>
<td>Nov. 30</td>
<td>.50</td>
<td>.48</td>
<td>12</td>
<td>14.7</td>
<td>280</td>
<td>196.4</td>
<td>96</td>
<td>.0</td>
<td>Free.</td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Locality</td>
<td>Marks</td>
<td>Date</td>
<td>Free Ammonia</td>
<td>Alkali Ammonia</td>
<td>Nitrogen in N/1000</td>
<td>Total Solids at 100° C</td>
<td>Salts after Ignition</td>
<td>Loss on Ignition</td>
<td>Phosphates</td>
<td>Report</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Crystal City, Man</td>
<td>G. D. A. E.</td>
<td>June 22</td>
<td>Free</td>
<td>12</td>
<td>Free</td>
<td>2.5</td>
<td>320</td>
<td>90</td>
<td>100</td>
<td>Wholesome</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>St. John, N. B.</td>
<td>T. S. S.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>St. Grégoire, Que.</td>
<td>L. H.</td>
<td></td>
<td>25</td>
<td>26</td>
<td>59</td>
<td>390</td>
<td>485</td>
<td>435</td>
<td>Free</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Rock Lake</td>
<td>A. W. F.</td>
<td></td>
<td>26</td>
<td>10</td>
<td>72</td>
<td>37</td>
<td>246</td>
<td>200</td>
<td>575</td>
<td>F. trace</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>St. Marcel, Que.</td>
<td>J. G. P.</td>
<td>July 2</td>
<td>Free</td>
<td>3</td>
<td>9</td>
<td>54</td>
<td>9</td>
<td>30</td>
<td>Free</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Loggieville, N. B.</td>
<td>A. B. M.</td>
<td>5/86</td>
<td>24</td>
<td>46</td>
<td>132</td>
<td>71</td>
<td>162</td>
<td>101</td>
<td>50</td>
<td>F. trace</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Bariff, Alta</td>
<td>J. B. H.</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Berton, Man</td>
<td>B. J. C.</td>
<td></td>
<td>3</td>
<td>19</td>
<td>6</td>
<td>31</td>
<td>37</td>
<td>51</td>
<td>Free</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Glen Adelaide, Sask.</td>
<td>G. A. H.</td>
<td></td>
<td>3</td>
<td>10</td>
<td>59</td>
<td>20</td>
<td>160</td>
<td>142</td>
<td>30</td>
<td>F. trace</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Innerkip, Ont</td>
<td>F. M. C.</td>
<td></td>
<td>4</td>
<td>Free</td>
<td>9</td>
<td>5</td>
<td>184</td>
<td>12</td>
<td>70</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Ottawa, Ont</td>
<td>J. B. No. 1</td>
<td>8</td>
<td>42</td>
<td>32</td>
<td>113</td>
<td>20</td>
<td>184</td>
<td>70</td>
<td>Trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>" No. 2.</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Spanish, Ont</td>
<td>J. F.</td>
<td></td>
<td>9</td>
<td>16</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>122</td>
<td>63</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Longhead, Alta</td>
<td>A. B. B.</td>
<td></td>
<td>9</td>
<td>16</td>
<td>14</td>
<td>39</td>
<td>17</td>
<td>10</td>
<td>142</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Cogshall Lake, B. C.</td>
<td>R. S. No. 74</td>
<td>10</td>
<td>8</td>
<td>24</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>70</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>" No. 75.</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>" No. 76.</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>St. Grégoire, Que.</td>
<td>L. H.</td>
<td></td>
<td>11</td>
<td>37</td>
<td>10</td>
<td>103</td>
<td>110</td>
<td>69</td>
<td>77</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Ironside, Que.</td>
<td>A. B. D.</td>
<td></td>
<td>11</td>
<td>79</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>66</td>
<td>30</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Ottawa West, Ont</td>
<td>W. H. T.</td>
<td></td>
<td>13</td>
<td>98</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>90</td>
<td>30</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Piapot, Sask</td>
<td>C. A. L.</td>
<td></td>
<td>16</td>
<td>13</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>62</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>C. K. F., Ottawa, Ont</td>
<td>C. S.</td>
<td></td>
<td>22</td>
<td>10</td>
<td>17</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>80</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Merriville, Ont</td>
<td>R. T. B. C</td>
<td></td>
<td>22</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>28</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>" O. D. No. 1.</td>
<td></td>
<td></td>
<td>23</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>30</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>" No. 2.</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Vankleek Hill, Ont</td>
<td>N. B.</td>
<td></td>
<td>23</td>
<td>5/4</td>
<td>17</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>570</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Oakwood, Ont</td>
<td>W. T. G.</td>
<td></td>
<td>23</td>
<td>5/4</td>
<td>17</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>570</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Ottawa, Ont</td>
<td>J. S.</td>
<td></td>
<td>23</td>
<td>5/4</td>
<td>17</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>570</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Chelsea, Que</td>
<td>J. G.</td>
<td></td>
<td>23</td>
<td>5/4</td>
<td>17</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>570</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Westboro, Ont</td>
<td>J. A. L.</td>
<td></td>
<td>24</td>
<td>5/4</td>
<td>17</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>570</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Ottawa, Ont</td>
<td>A. M. N.</td>
<td></td>
<td>30</td>
<td>178</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>128</td>
<td>128</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Woodstock, Ont</td>
<td>J. R. F.</td>
<td></td>
<td>30</td>
<td>178</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>128</td>
<td>128</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Billings Bridge, Ont</td>
<td>F. F. W.</td>
<td></td>
<td>31</td>
<td>178</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>128</td>
<td>128</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Chelsea, Que</td>
<td>A. G.</td>
<td>Aug. 1</td>
<td>1</td>
<td>2/4</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>128</td>
<td>128</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Ottawa, Ont</td>
<td>T. P. R.</td>
<td></td>
<td>1</td>
<td>2/4</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>128</td>
<td>128</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Locality</td>
<td>Marks</td>
<td>Date</td>
<td>Free Ammonia</td>
<td>Abnormal Ammonia</td>
<td>Nitrogen in</td>
<td>Chlorine</td>
<td>Total Solids at 180° C</td>
<td>Solids after Ignition</td>
<td>Loss on Ignition</td>
<td>Phosphates</td>
<td>Report</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>129</td>
<td>St. Therese, Que.</td>
<td>A.P. No 1</td>
<td>Oct.</td>
<td>08</td>
<td>12</td>
<td>845</td>
<td>24</td>
<td>348</td>
<td>280</td>
<td>68</td>
<td>8 Free</td>
<td>Contaminated</td>
</tr>
<tr>
<td>121</td>
<td>"</td>
<td>No 2</td>
<td></td>
<td>08</td>
<td>11</td>
<td>425</td>
<td>19</td>
<td>245</td>
<td>294</td>
<td>54</td>
<td>4 "</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>St. John, N.B.</td>
<td>G.U.H</td>
<td></td>
<td>112</td>
<td>36</td>
<td>Free</td>
<td>16</td>
<td>207</td>
<td>134</td>
<td>73</td>
<td>0 "</td>
<td>Seriously contami</td>
</tr>
<tr>
<td>123</td>
<td>Loggieville, N.B.</td>
<td>A.P.H</td>
<td></td>
<td>10</td>
<td>05</td>
<td>Free</td>
<td>9</td>
<td>110</td>
<td>82</td>
<td>28</td>
<td>8 "</td>
<td>Very suspicious</td>
</tr>
<tr>
<td>121</td>
<td>The Lodge, N.S.</td>
<td>A.N.</td>
<td></td>
<td>Free</td>
<td>40</td>
<td></td>
<td>13</td>
<td>118</td>
<td>32</td>
<td>80</td>
<td>8 "</td>
<td>Unpolluted</td>
</tr>
<tr>
<td>125</td>
<td>Coquihana Lake, B.C.</td>
<td>R.S. No 82</td>
<td></td>
<td>09</td>
<td>06</td>
<td>Free</td>
<td>7</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>2 "</td>
<td>Wholese</td>
</tr>
<tr>
<td>126</td>
<td>"</td>
<td>No 81</td>
<td></td>
<td>Free</td>
<td>03</td>
<td>Free</td>
<td>24</td>
<td>249</td>
<td>12</td>
<td>11</td>
<td>2 "</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>"</td>
<td>No 81</td>
<td></td>
<td>08</td>
<td>04</td>
<td>135</td>
<td>29</td>
<td>250</td>
<td>243</td>
<td>47</td>
<td>0 "</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Arriss, Ont.</td>
<td>T.G.</td>
<td></td>
<td>12</td>
<td>12</td>
<td>Free</td>
<td>12</td>
<td>249</td>
<td>243</td>
<td>66</td>
<td>8 Free</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Ottawa, Ont.</td>
<td>T.J.</td>
<td></td>
<td>Free</td>
<td>12</td>
<td>135</td>
<td>29</td>
<td>250</td>
<td>243</td>
<td>47</td>
<td>0 "</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Oxbow, Sack</td>
<td>J.W.</td>
<td></td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>15</td>
<td>118</td>
<td>82</td>
<td>28</td>
<td>8 "</td>
<td>Very suspicious</td>
</tr>
<tr>
<td>131</td>
<td>Salt Spring Island, B.C.</td>
<td>J.C.L., No. 1</td>
<td></td>
<td>330</td>
<td>337</td>
<td>2478</td>
<td>156</td>
<td>738</td>
<td>574</td>
<td>47</td>
<td>0 "</td>
<td>Polluted</td>
</tr>
<tr>
<td>132</td>
<td>Salisbury, N.B.</td>
<td>J.W.C.</td>
<td>20</td>
<td>44</td>
<td>44</td>
<td>250</td>
<td>156</td>
<td>738</td>
<td>574</td>
<td>47</td>
<td>0 "</td>
<td>Contaminated</td>
</tr>
<tr>
<td>133</td>
<td>St. John, N.B.</td>
<td>G.H.R.</td>
<td></td>
<td>Free</td>
<td>01</td>
<td>158</td>
<td>7</td>
<td>78</td>
<td>83</td>
<td>30</td>
<td>8 "</td>
<td>Suspicious</td>
</tr>
<tr>
<td>135</td>
<td>Hull, Que.</td>
<td>W.B., No. 1</td>
<td></td>
<td>08</td>
<td>08</td>
<td>Free</td>
<td>02</td>
<td>332</td>
<td>112</td>
<td>220</td>
<td>0 Heavy</td>
<td>Very suspicious</td>
</tr>
<tr>
<td>136</td>
<td>Coquihana Lake, B.C.</td>
<td>R.S. No 83</td>
<td>Nov.</td>
<td>Free</td>
<td>03</td>
<td>05</td>
<td>20</td>
<td>200</td>
<td>128</td>
<td>72</td>
<td>0 Free</td>
<td>Suspicious</td>
</tr>
<tr>
<td>137</td>
<td>"</td>
<td>R.S. No 83</td>
<td>Nov.</td>
<td>Free</td>
<td>04</td>
<td>04</td>
<td>20</td>
<td>200</td>
<td>128</td>
<td>72</td>
<td>0 Free</td>
<td>Wholese</td>
</tr>
<tr>
<td>138</td>
<td>"</td>
<td>R.S. No 83</td>
<td>Nov.</td>
<td>Free</td>
<td>04</td>
<td>Free</td>
<td>17</td>
<td>17</td>
<td>9</td>
<td>8</td>
<td>0 "</td>
<td>Suspect</td>
</tr>
<tr>
<td>140</td>
<td>Moira, Sack</td>
<td>J.A.R.</td>
<td></td>
<td>07</td>
<td>10</td>
<td>400</td>
<td>126</td>
<td>496</td>
<td>4214</td>
<td>531</td>
<td>2 Trace</td>
<td>Free from pollution</td>
</tr>
<tr>
<td>141</td>
<td>Freleighsburg, Que.</td>
<td>F.A.A.</td>
<td></td>
<td>11</td>
<td>16</td>
<td>20</td>
<td>156</td>
<td>164</td>
<td>129</td>
<td>39</td>
<td>8 Free</td>
<td>Suspect</td>
</tr>
<tr>
<td>142</td>
<td>Cuming Pond, Alta.</td>
<td>A.B. C.</td>
<td></td>
<td>Free</td>
<td>12</td>
<td>30</td>
<td>126</td>
<td>496</td>
<td>4214</td>
<td>531</td>
<td>2 Trace</td>
<td>Free from pollution</td>
</tr>
<tr>
<td>143</td>
<td>Portsmouth, Ont.</td>
<td>H.E.B.</td>
<td></td>
<td>Free</td>
<td>09</td>
<td>14</td>
<td>450</td>
<td>154</td>
<td>281</td>
<td>1172</td>
<td>0 Trace</td>
<td>Suspect</td>
</tr>
<tr>
<td>144</td>
<td>Salmon Arm, B.C.</td>
<td>R.S.</td>
<td></td>
<td>Free</td>
<td>05</td>
<td>Trace</td>
<td>12</td>
<td>158</td>
<td>440</td>
<td>129</td>
<td>0 Free</td>
<td>Park and wholese</td>
</tr>
<tr>
<td>145</td>
<td>Russell, Ont.</td>
<td>S.S.</td>
<td></td>
<td>Free</td>
<td>05</td>
<td>Trace</td>
<td>12</td>
<td>159</td>
<td>440</td>
<td>129</td>
<td>0 Free</td>
<td>Polluted</td>
</tr>
<tr>
<td>146</td>
<td>Beausjour, Man</td>
<td>J.B.</td>
<td>Dec.</td>
<td>18</td>
<td>18</td>
<td>28</td>
<td>170</td>
<td>740</td>
<td>588</td>
<td>152</td>
<td>0 Trace</td>
<td>Contaminated</td>
</tr>
<tr>
<td>147</td>
<td>Matchison, B.C.</td>
<td>J.B.</td>
<td>Dec.</td>
<td>12</td>
<td>12</td>
<td>08</td>
<td>58</td>
<td>95</td>
<td>66</td>
<td>280</td>
<td>0 Trace</td>
<td>Suspicious</td>
</tr>
<tr>
<td>148</td>
<td>Strathroy, Ont.</td>
<td>A.P. D.</td>
<td></td>
<td>Free</td>
<td>03</td>
<td>Trace</td>
<td>12</td>
<td>158</td>
<td>440</td>
<td>129</td>
<td>0 Free</td>
<td>Wholese</td>
</tr>
<tr>
<td>149</td>
<td>Coquihana Lake, B.C.</td>
<td>R.S. No 83</td>
<td></td>
<td>06</td>
<td>06</td>
<td>09</td>
<td>10</td>
<td>37</td>
<td>25</td>
<td>11</td>
<td>8 Free</td>
<td>Polluted</td>
</tr>
<tr>
<td>150</td>
<td>"</td>
<td>No 88</td>
<td></td>
<td>Free</td>
<td>04</td>
<td>04</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>0 "</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>"</td>
<td>No 90</td>
<td></td>
<td>Free</td>
<td>03</td>
<td>03</td>
<td>27</td>
<td>27</td>
<td>16</td>
<td>10</td>
<td>4 "</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>North Augusta, Ont.</td>
<td>T.W.R.</td>
<td></td>
<td>17</td>
<td>17</td>
<td>03</td>
<td>Free</td>
<td>289</td>
<td>206</td>
<td>74</td>
<td>8 Free</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Ottawa, Ont.</td>
<td>D.E.G., No. 1</td>
<td></td>
<td>Free</td>
<td>12</td>
<td>12</td>
<td>Free</td>
<td>12</td>
<td>Free</td>
<td>28</td>
<td>0 "</td>
<td></td>
</tr>
</tbody>
</table>

ANALYSES OF WELL WATERS, 1912-13—Concluded.

Results Stated in Parts per Million.
<table>
<thead>
<tr>
<th>Sessional Paper No. 16</th>
<th>275</th>
</tr>
</thead>
</table>

Division of Chemistry

Pure and wholesome:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>trace</td>
<td>488.0</td>
</tr>
<tr>
<td>2</td>
<td>trace</td>
<td>368.0</td>
</tr>
<tr>
<td>3</td>
<td>trace</td>
<td>28.8</td>
</tr>
</tbody>
</table>

Contaminated:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>trace</td>
<td>329.0</td>
</tr>
<tr>
<td>5</td>
<td>trace</td>
<td>417.0</td>
</tr>
<tr>
<td>6</td>
<td>trace</td>
<td>639.0</td>
</tr>
</tbody>
</table>

Very suspicious:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>trace</td>
<td>213.0</td>
</tr>
<tr>
<td>8</td>
<td>trace</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Wholesome:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>trace</td>
<td>169.0</td>
</tr>
<tr>
<td>10</td>
<td>trace</td>
<td>123.0</td>
</tr>
<tr>
<td>11</td>
<td>trace</td>
<td>134.0</td>
</tr>
</tbody>
</table>

Pure and wholesome:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>trace</td>
<td>44.0</td>
</tr>
<tr>
<td>13</td>
<td>trace</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Suspect:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>trace</td>
<td>6.0</td>
</tr>
<tr>
<td>15</td>
<td>trace</td>
<td>1.9</td>
</tr>
<tr>
<td>16</td>
<td>trace</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Sodium peroxide:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>trace</td>
<td>1.9</td>
</tr>
<tr>
<td>18</td>
<td>trace</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Heavy:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>trace</td>
<td>3.0</td>
</tr>
<tr>
<td>20</td>
<td>trace</td>
<td>5.0</td>
</tr>
<tr>
<td>21</td>
<td>trace</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Suspended:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>trace</td>
<td>5.0</td>
</tr>
<tr>
<td>23</td>
<td>trace</td>
<td>1.0</td>
</tr>
<tr>
<td>24</td>
<td>trace</td>
<td>0.4</td>
</tr>
</tbody>
</table>
DOMINION OF CANADA
DEPARTMENT OF AGRICULTURE
DOMINION EXPERIMENTAL FARMS

REPORT
FROM

THE DIVISION OF HORTICULTURE

For the Year ending March 31, 1913

PREPARED BY

The Dominion Horticulturist, Central Farm, Ottawa. — — — — — — W. T. Macoun.

Superintendent—
Experimental Station, Charlottetown, P.E.I. — — — — — — J. A. Clark, B.S.A.
Experimental Farm, Napan, N.S. — — — — — — — R. Robertson.
Experimental Station, Kentville, N.S. — — — — — — — W. S. Blair.
Experimental Station, Ste. Anne de la Pocatière, Que. — — — Jos. Bégin.
Experimental Station, Cap Rouge, Que. — — — — — — — G. A. Langelier.
Experimental Farm, Brandon, Man. — — — — — — — W. C. McKillican, B.S.A.
Experimental Farm, Indian Head, Sask. — — — — — — Angus Mackay.
Experimental Station, Rosthern, Sask. — — — — — — — W. A. Munro, B.S.A.
Experimental Station, Scott, Sask. — — — — — — — R. E. Everest, B.S.A.
Experimental Station, Lethbridge, Alta. — — — — — — — W. H. Fairfield, M.S.
Experimental Station, Lacombe, Alta. — — — — — — — G. H. Hutton, B.S.A.
Experimental Farm, Agassiz, B.C. — — — — — — — P. H. Moore, B.S.A.

Experimentalists of Substations at Salmon Arm, B.C., Fort Vermilion, Grouard, Athabaska Landing and Forts Smith, Resolution and Providence, in northern Alberta.
REPORT FROM THE DIVISION OF HORTICULTURE.

Ottawa, March 31, 1913.

J. H. Grisdale, Esq., B.Agr.,
Director, Dominion Experimental Farms,
Ottawa.

Sir,—I have the honour to submit herewith the twenty-sixth Annual Report of the Horticultural Division, being the fifteenth since I became head of the Division.

Included herein will be found the reports which have been prepared by the Superintendents of the Experimental Farms and Stations at Napan, N.S.; Kentville, N.S.; Charlottetown, P.E.I.; Ste. Anne de la Pocatière, Que.; Cap Rouge, Que.; Brandon, Man.; Indian Head, Sask.; Rosthern, Sask.; Scott, Sask.; Lethbridge, Alta.; Lacombe, Alta.; and Agassiz, B.C.; also a report prepared by Mr. Thos. A. Sharpe, Salmon Arm, B.C., of experiments conducted on his farm. There are also reports from the Sub-stations at Fort Vermilion, Peace River district; from Grouard, Lesser Slave Lake; Athabaska Landing, Fort Smith, Fort Providence, and Fort Resolution, all in Northern Alberta. There is also at the end of the report for Lacombe a list prepared by me of fruits, vegetables, useful and ornamental trees and shrubs, climbers, herbaceous perennials, and annuals recommended for the prairie provinces.

HORTICULTURAL DIVISION.

The area of land in the Horticultural Division at the Central Experimental Farm, Ottawa, is 99 acres, divided as follows:—

<table>
<thead>
<tr>
<th>Description</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits and vegetables</td>
<td>46</td>
</tr>
<tr>
<td>Forest belts</td>
<td>21</td>
</tr>
<tr>
<td>Ornamental grounds</td>
<td>30</td>
</tr>
<tr>
<td>Nursery and rose garden</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
</tr>
</tbody>
</table>

On this land are grown tree fruits, small fruits, vegetables, forest trees, and ornamental trees, shrubs and herbaceous plants in more or less permanent plantations and in nursery rows. The lawns are extensive and require much care to keep them in good condition. Owing to the large number of experiments in progress, the work involved in giving the necessary attention to them on this ninety-nine acres is very heavy compared with what it would be on the same area under commercial crops, where the labour involved could be reduced to a minimum.

SUBDIVISIONS OF THE WORK.

The Horticultural Division may at present be divided into five parts or heads under which most of the work falls. These are as follows:—

1. Pomology,
2. Vegetable gardening,
3. Ornamental gardening,
4. Plant breeding,
5. Correspondence and office work.
In addition to these, or rather included in them, is the work in connection with the branch Farms, the forest belts planted both for ornamental purposes and to test the rate of tree growth; meetings attended; publications; and visits to the horticultural districts for the purpose of studying conditions in different parts of Canada.

POMOLOGY.

Under pomology is included the study of varieties of fruits for the purpose of learning their relative merits in regard to yield, season, quality, and profit. It also includes the identification, classification, and description, as well as the propagation, planting, and care of fruits, with experiments in cultural methods, including spraying. The exhibition and judging of fruits may also be grouped under pomology.

During the past year, this part of the work has received much attention. Many varieties have been described in detail on cards, which are filed for future reference and compilation. Varieties which have been sent in for identification have been named, and the information sent to the correspondents. Many new varieties were propagated for test on the Central and Branch Farms and for trial in other places, and a number of new ones have been planted out at Ottawa.

Fruit was exhibited at the Provincial exhibition, Quebec; the Central Canada exhibition, Ottawa; and the annual meeting of the Society for Horticultural Science, at Cleveland, Ohio. Fruit was also judged at several places by officers of the Horticultural Division. The general care of the orchards at the Central Experimental Farm also involved much work.

VEGETABLE GARDENING.

This includes the testing of varieties of vegetables for comparison of their relative merits as regards season, yield, quality, etc.; the comparison of different strains of the same variety; cultural methods, and spraying; and the study of commercial methods, both in the field and under glass. In 1912, especial attention was paid to potatoes, peas, and tomatoes, though all the principal kinds of vegetables were under experiment.

ORNAMENTAL GARDENING.

Under ornamental gardening comes the culture of ornamental trees, shrubs, and herbaceous plants; the study of their individual characteristics, such as height, form, colouring, and season of bloom, so that information will be available to Canadians to enable them to plant their places in such a way that the trees, shrubs and herbaceous plants will blend or be contrasted with one another to form pleasing landscape effects. The education of the people by lectures and bulletins on ornamental gardening and the encouragement of the beautifying of home surroundings, so much needed in Canada, is also a part of ornamental grading which received attention during the year. In addition, large collections of roses, irises, phloxes, peonies, lilacs, gladioli, geraniums and other ornamental plants have been got together to study. There was a fine display of these at the Central Farm in 1912 and visitors were much interested in them and pleased with the ornamental grounds as a whole.

The forest belts, planting in which was begun in 1888, furnish interesting data on the relative growth of the different timber trees and the merits of mixing the species or planting them in blocks of one kind. The annual measurements of a number of trees were taken in 1912, as in previous years.

PLANT BREEDING.

The improvements of fruits, vegetables and ornamental plants by cross-breeding and selection and the study of the laws of inheritance in different kinds and varieties
Comparison of Varieties of Lettuce to determine which remain in condition longest in Summer Weather, Central Experimental Farm, Ottawa.
SESSIONAL PAPER No. 16

of horticultural plants is, in brief, the field of work which is covered in plant breeding in the Horticultural Division. Up to comparatively recent years, Canada has had to depend almost entirely on other countries for her new varieties of fruits, vegetables, and ornamental plants, and while many of these succeed admirably in this country, it is felt that, if originated in a climate more nearly like where they are to be grown than has been the case in many instances in the past, those that show especial merit are likely to prove more useful than those introduced from climates very dissimilar. During the past twenty-five years, much attention has been paid to the breeding of horticultural plants at the Central Experimental Farm. Many varieties of hardy hybrid apples, crosses between the Siberian crab (Pyrus baccata) and the apple originated by Dr. Wm. Saunders, have already been introduced into the prairie provinces and have proven harder than any previously tested there. Second crosses made by Dr. Saunders with more blood of the larger apples and having fruit of good marketable size were propagated in 1912 for introduction. Many varieties of apples of handsome appearance and good quality have originated in the Horticultural Division and the best of these have been sent out for test to different parts of Canada to compare with those already in the market. More than two hundred of these new sorts have been propagated, and eighty-two of the best, named.

A large number of seedling strawberries has been raised in the Horticultural Division, and some of the best are being propagated for introduction. Special attention is being paid to the development of early strains of vegetables which will be of great value in the colder districts of Canada as well as in the more temperate parts. Good progress was made in this work in 1912, and provision has been made for greater efforts in plant breeding in the future.

New varieties of black currants and raspberries of much merit, which were also originated by Dr. Saunders, have been introduced.

CORRESPONDENCE AND OFFICE WORK.

The correspondence and other office work of the Horticultural Division grows each year, and in 1912 the number of letters received and despatched was greater than ever before, the number of letters received being 5,820 and the number despatched 6,930. Of these, a large proportion required technical information, and it is believed that, through correspondence, much aid is being rendered to those interested in horticulture in Canada. People who ask for information by letter are those who are most likely to put into practice the advice given. As this correspondence comes from all parts of Canada it is necessary to become familiar with the conditions from north to south and from east to west throughout the Dominion.

The card index system installed last year in the Horticultural Division for the purpose of filing the records of the Central Farm and branch Farms and Stations has also entailed a large amount of work, but is proving a very satisfactory means of getting at the records, as it enables one rapidly to find what is desired. The books were sent from the branch Farms to Ottawa at the close of the growing season of 1912 and the records which it was desired to put on the cards were transferred.

BRANCH FARMS.

The work of the Horticultural Division in relation to the branch Farms and Stations has grown rapidly. It is its aim to aid the Superintendents in as many ways as possible and to help them develop the horticultural work on the Farms of which they have charge, and also to help to so systematize the work that the results will be made of the greatest value to the people of Canada. During the past year much has
been done in the directions above mentioned. Material, consisting of plants, seeds, labels, record books and other things, has been furnished the branch Farms and Stations through the Horticultural Division, as in previous years.

The Experimental Farm, Napan, was visited by me on July 15, 1912, when the experimental work in horticulture was gone over with the Superintendent, and some suggestions made in regard to the keeping of records and of future work.

The Experimental Station, Charlottetown, P.E.I., was visited on July 16, 1912, for the same purpose, and notes were taken of matters which could be attended to by me for the Station. On July 18, I was at the Experimental Station, Kentville, N.S., and discussed with the Superintendent the situation of future plantations on the Farm, the positions of the roads through the horticultural part of the Farm, and the general plan of the planting.

In May, 1912, my assistant, Mr. T. G. Bunting, before the appointment of the Superintendent, went to the Kentville Station and planted about twenty-one acres of orchard with the trees which had been ordered by me the previous autumn.

I visited the Experimental Farm, Brandon, Man., on April 13 to 15, 1912, and again on August 29 to 30, 1912. A site was decided upon for a new bush fruit plantation, and the bushes were planted in the spring of 1912. It was also decided during my visit to remove every other box elder tree in the mixed avenue of this tree and white spruce, as the trees were crowding. The experimental work was discussed with the Superintendent and notes were made of things needful for the development of the horticultural work there.

My first visit to the Experimental Farm at Indian Head, Sask., in 1912 was on April 15 to 16, when I discussed with the Superintendent the horticultural experiments planned for the year, and planned the planting of the grounds near the Superintendent's house, the hedge which formerly enclosed the flower beds having been removed, at my suggestion, and the land ploughed and levelled in preparation for the planting of trees, shrubs, and flowers, and the making of a lawn. On August 28 to 29, when I made another visit, some further changes were planned, including the removal of every other tree in the avenue beginning at the entrance: the removal of trees and shrubs close to the Superintendent's house; the making of herbaceous borders to the west of the house and in the enclosure east of the house. It was also planned to remove the maples which formed a closely-planted avenue to the south of this enclosure. The experiments with fruits and vegetables were carefully gone over at this time.

I visited the Rostherm Experimental Station on April 28 to 30, 1912, and examined with the Superintendent the different plantations on the farm. I planned the arrangement of the sample hedges which were to be set out and did some further planting along the road leading from the entrance gate to the Superintendent's house. I was again at Rostherm on August 26 to 27, when perennial borders were planned, the arboretum borders gone carefully over, and many of the trees and shrubs named.

On April 24 to 27, 1912, I was at the Scott Experimental Station, where an addition of three acres to the orchard was planned; an arboretum for testing species and varieties of trees and shrubs was laid out, and also a long herbaceous border, extending from near the Superintendent's house to the railway. I also planned and did considerable planting on about five acres of lawn and ornamental grounds, and decided the arrangement of the sample hedges. The Scott Experimental Station was again visited on August 24, 1912, and notes were taken on horticultural experiments in progress.

The Experimental Station at Lethbridge, Alta., was visited on April 17 to 19, 1912, at which time I planted and assisted in the work of planting an area to be devoted to lawn and ornamental trees and shrubs west of the Superintendent's house. I also assisted in filling the vacancies in the arboretum with material from Ottawa,
and suggested—as I did also at the other branch Farms—the seeding down to grass of the land between the sample hedges, leaving a strip for cultivation close to the plants. The Lethbridge Station was again visited on August 19 to 21, 1912, and the experimental work in horticulture discussed with the Superintendent.

I spent April 20 to 23, 1912, at the Lacombe Experimental Station, and planned the planting of an area of about ten acres for lawn and ornamental grounds, and assisted in the planting. I also planned the planting of additional hedges. I examined the arboretum borders, orchard, and bush fruit plantations with the Superintendent, and explained the system of keeping records to the gardener, as at the other Farms. I again visited this Station on August 22-23, 1912, at which time I rendered what help I could in connection with the experimental work. I also planned a long perennial border to extend from near the Superintendent's house to the main gate.

On April 8 to 10, 1912, I was at Agassiz, B.C., and among other things planned the planting of a farmer's home fruit plantation of about three acres, to contain such kinds and varieties of fruits as it would be desirable for farmers to grow for home use. I later ordered the material for this plantation. I also planned a long perennial border and discussed with the Superintendent some changes which it seemed desirable to make in the ornamental grounds. I again visited Agassiz on August 6, 1912, and went over the experimental work in horticulture with the Superintendent.

On April 10 to 11, 1912, I visited the farm of Mr. Thos. A. Sharpe, at Salmon Arm, B.C., and examined the fruits in his orchard and other plantations and, on August 9, paid him another visit. Mr. Sharpe is testing a large number of varieties of apples, and, while the trees are yet young, the results should eventually be valuable.

PLACES VISITED.

On May 11, 1912, I left for England, having been appointed Canadian delegate to the Royal International Horticultural exhibition held in London on May 22 to 30. I reached London on May 22, and made my headquarters there throughout the period of the exhibition. The last previous International Horticultural exhibition held in England was in 1866. The exhibition of 1912 was the largest horticultural show ever held in any country, and I appreciated the opportunity of seeing it and of studying the many exhibits there. Many notes were taken which have already been put to good use. This exhibition also gave me the opportunity of meeting many horticulturists with a world-wide reputation. I visited the estates of Sir Trevor Lawrence, Burford Dorking; Sir Frank Crisp, Friar Park, Henley-on-Thames; Mr. Leopold de Rothschild, Gunnersbury Park, Acton, W.; Mr. H. J. Elwes, Colesborne, Cheltenham. At all of these beautiful places, I saw many things interesting and new to me. I also visited the South Eastern Agricultural College and Experimental Station at Wye, Kent; the Woburn Fruit Experimental Station, Ridgmont; the Royal Gardens, Kew; the Glasnevin Botanical Gardens, and the nursery of Amos Perry, Enfield, where much information was obtained.

While making my second journey to the western branch Farms in August, 1912, I visited orchards in the vicinity of Nelson, Grand Forks, and Trail, B.C. and got a very good idea of conditions in those parts of British Columbia. I also visited the Mitchell Nursery Co., at Coaldale and Lethbridge, Alta., and the Cloverdale Nurseries, near Edmonton, Alta.

On October 18, I left to attend the Dry Farming Congress at Lethbridge, Alta., and from there I went to British Columbia and made an examination of the stock of the Riverside nurseries, Grand Forks, and the Coldstream nurseries, Vernon; the Kelowna Land and Orchard Co's. nurseries, Kelowna; the Layritz nurseries, Kelowna;
the Royal nurseries, Vancouver; Brown Bros.’ nurseries, Vancouver; and the Layritz nurseries, Victoria.

My assistant, Mr. T. G. Bunting, on August 12-17, 1912, inspected fields of vegetables in the competition organized by the Ontario Vegetable Growers’ Association. On August 25-28 he judged the fruits and flowers at the Provincial exhibition, Quebec. On June 29 and August 29 he judged the gardens in a competition at Vankleek Hill, Ont., and between September 2 and 12 he attended the National exhibition, Toronto, and the Western fair, London, Ont.

My assistant in ornamental gardening, Mr. F. E. Buck, helped to judge the fruit and flowers at the Provincial exhibition, Quebec. He also attended the National exhibition, Toronto, and visited the Dale nurseries, Brampton, Ont., September 2-7, 1912, and the Ontario Fruit, Flower and Honey Show, Toronto, November 12-16, 1912.

My assistant in plant breeding, Mr. A. J. Logsdail, acted as judge at the Horticultural exhibition at Haileybury, Ont., on August 27-30, and at Vankleek Hill, Ont., September 19, 1912. He attended the Fruit, Flower and Honey Show and the meeting of the Ontario Fruit Growers’ Association on November 13-18, 1912.

Addresses.

I attended the meeting of the Ontario Fruit Growers’ Association and the meeting of the Ontario Horticultural Association, on November 13 to 16, 1912, and gave an address at the former on ‘The Best Varieties of Small Fruits,’ and at the latter on ‘Continuity of Bloom in Small Gardens.’ I also compiled and read the annual report of the Committee on Novelties of the Ontario Horticultural Association. At this meeting, my assistant in ornamental gardening, Mr. F. E. Buck, read a paper on ‘Everlasting Flowers.’ On December 4 and 5, I attended a meeting of the Quebec Pomological Society at Macdonald College, Que., for which I prepared an obituary of the late Prof. John Craig. As president of the Society for Horticultural Science in 1912, I delivered the presidential address at the annual meeting at Cleveland, Ohio, on December 31, 1912, my subject being ‘The Relation of Climate to Horticulture.’ On February 3 and 4, 1913, I attended the Short Course in Horticulture at Macdonald College, Que., gave a talk on ‘The Best Varieties of Fruits for the Province of Quebec,’ and also an illustrated address on ‘The Improvement of Home Surroundings.’ At this short course, Mr Buck gave an address on ‘Laying out Home Grounds.’ On February 25 to March 1, I attended the meeting of the Niagara Peninsula Fruit Growers’ Association, at Grimsby and St. Catharines, giving addresses on ‘The Influence of Temperature on Fruit and Fruit Trees’ and ‘The Best Varieties of Apples and Plums for Market.’ On March 18, Mr. Buck addressed the Smith’s Falls Horticultural Society. Mr. T. C. Bunting, one of my assistants, gave a talk on ‘Small Fruits for the City Garden’ before the Ottawa Horticultural Society, July 23, 1912.

Publications.

During the year, I prepared pamphlets on ‘Cabbage and Cauliflower Culture,’ ‘Tomato Culture,’ and on ‘Hardy Roses,’ also, a ‘Spraying Calendar,’ all of which were published. In addition to these, several articles were written for horticultural publications. These included an article on ‘Apple Culture in Canada,’ ‘Bush Fruits and Their Culture,’ and ‘Horticulture in Canada,’ for the new edition of Bailey’s Cyclopedia of American Horticulture. An article on ‘Fruit Growing in Canada’ was written for a book on ‘Commercial Canada,’ by F. Cook, and an article on ‘The Christmas Tree,’ for the December number of the Canadian Horticulturist.
SESSIONAL PAPER No. 16

The assistants in the Horticultural Division also prepared a number of articles for horticultural papers.

Donations During the Calendar Year 1912.

<table>
<thead>
<tr>
<th>SENDER</th>
<th>DONATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adney, Tapan, Upper Woodstock, N.B.</td>
<td>Seeds of selected Earliana tomato.</td>
</tr>
<tr>
<td>Armstrong, C.G., Orono, Ont.</td>
<td>Potatoes, Aroostook Wonder.</td>
</tr>
<tr>
<td>Billings, Miss B., Brockville, Ont.</td>
<td>Scions of Billings’ Red apple.</td>
</tr>
<tr>
<td>Courtice, W., Starbeck, Man.</td>
<td>Scions of Warren’s No. 1 plum.</td>
</tr>
<tr>
<td>Davis, Johannes, Maple Creek, Sask.</td>
<td>Squaw corn seed.</td>
</tr>
<tr>
<td>Havebrugs Experimental Station, København, Denmark.</td>
<td>Scions, Grey. A.W. Molke’s pear, Skofoferable and Elbeklund apples.</td>
</tr>
<tr>
<td>Hilborn, J.L., Leamington, Ont.</td>
<td>Seeds of selected Earliana tomato.</td>
</tr>
<tr>
<td>Hunt, A.S., Lawrence, N.S.</td>
<td>Scions of Schaffner’s special apples.</td>
</tr>
<tr>
<td>Gilbert, G.S., Burton, N.B.</td>
<td>Scions of Fameuse Seedling, Greenish Seedling, Peabody Early apple and Yellow crab apple.</td>
</tr>
<tr>
<td>Keen, Alfred, St. Mary’s Ferry, N.B.</td>
<td>Scions of Keen’s Crimson apple.</td>
</tr>
<tr>
<td>Moore, Sir Frederick, Royal Botanic Gardens, Glas.</td>
<td>Plants of herbaceous perennials.</td>
</tr>
<tr>
<td>O’nevin, Ireland</td>
<td>Trees and shrubs.</td>
</tr>
<tr>
<td>Rowe, N.W., Wonwood, Tavistock, England</td>
<td>Scion of Pocket apple.</td>
</tr>
<tr>
<td>Revestadel Ministerio de Obras, Bogota, Republica de Colombia.</td>
<td>Potatoes.</td>
</tr>
<tr>
<td>Sherrington, A.E., Walkerton, Ont.</td>
<td>Seeds of selected Early Detroit tomato.</td>
</tr>
<tr>
<td>Smith, Chas., Sandbeach, N.S.</td>
<td>Potatoes, No. 1, seedling.</td>
</tr>
<tr>
<td>Smith, W.H., Port Dover, Ont.</td>
<td>Scions of Red Seedling No. 3 apple.</td>
</tr>
<tr>
<td>Tribe, James, Inkster, Man.</td>
<td>Seeds of Tribe’s Magnum Bonum pea.</td>
</tr>
<tr>
<td>Waters, A.A., Peel, Ont.</td>
<td>Green beans.</td>
</tr>
</tbody>
</table>

Staff of the Horticultural Division.

W. T. Macoun, Dominion Horticulturist,
T. G. Bunting, B.S.A. (resigned November, 1912), Chief Assistant and Assistant in Pomology,
F. E. Buck, B.S.A., Assistant in Ornamental Gardening,
A. J. Logsdail, B.S.A., Assistant in Plant Breeding,
C. F. W. Drehor, B.S.A., Temporary Assistant in Vegetable Gardening,
J. F. Watson, Secretary,
H. Holz, Foreman,
Wm. Ellis, in charge of greenhouses,
H. J. Read, Assistant Foreman,
J. Taggart, Foreman of Ornamental Grounds,

Acknowledgments.

My chief assistant and assistant in pomology, Mr. T. G. Bunting, continued to render valuable services until he left in November, 1912, to become Professor of Horticulture at the Macdonald College, Que. Mr. F. E. Buck, my assistant in ornamental gardening, has spent much time during the past year in the study of the plants under his charge, and has proven himself to be devoted to his work. Mr. A. J. Logsdail, who was temporarily employed in charge of the plant breeding during the latter part of the year, and permanently appointed at the close, did good work. Mr. Wm. Drehor, also temporarily employed during the latter part of the year, was able
to render me considerable assistance in the work with vegetables. The secretary of the Horticultural Division, Mr. J. F. Watson, who has now been connected with the Division for twenty years, and who has become very familiar with the details connected with the correspondence, orders, accounts, and other work which a secretary’s office entails, has again efficiently discharged his duties. He is aided by Mr. M. D. MacCallum, who during the past year has satisfactorily written many of the letters in the general correspondence. Mr. H. Holz, who has been foreman of the Horticultural Division for fifteen years and associated with me as foreman for twenty years, has again looked after the outside work with diligence and thoroughness. Mr. Wm. T. Ellis has now been in charge of the greenhouses at the Central Experimental Farm for twenty-five years, and during the past year again rendered faithful service. Mr. Horace Read, assistant foreman, has satisfactorily assisted in the experimental work, as in previous years, by making many of the records, and has again devoted considerable time to the transferring of the horticultural records of the branch Farms to the central card system at Ottawa. Mr. James Taggart, as foreman of the ornamental grounds, continues to show much interest in his work, and in 1912 the grounds looked particularly well.

I again wish to express my appreciation of the faithful services of the other men employed in the Horticultural Division, who have most of the manual work to do.

My grateful acknowledgment is here recorded of the many kindnesses shown, and much assistance given me by the Superintendents of the branch Farms and Stations. By their ready co-operation in disseising suggestions made to them and in putting them into practice as far as was in their power, it has been possible for me to render considerable help in the development of the horticultural work under their immediate charge.

I have the honour to be, Sir,

Your obedient servant,

W. T. MACOUN,
Dominion Horticulturist.

CHARACTER OF SEASON.

Each year, for fourteen years, a record has been kept of the date when frost was out of the ground sufficiently to dig in certain parts of the horticultural grounds, the date in 1912 being April 10, and for the past fourteen years the average date is April 11.

April was a cool month. The highest temperature was on the 15th, when it was 67°F., and the lowest was on the 1st, when it was 7°F. The last spring frost was on April 30, when 32°F. was registered. Tree fruits and small fruits came through the winter well. The month of May was moderately warm to cool and showery. The highest temperature was 82°F. on the 28th, and the lowest 33°F. on the 14th. June was a moderately warm month with no hot days, and cool at nights. The early part of the month was showery and the latter part was dry. The highest temperature was 88-4°F. on the 24th, and the lowest 39-4°F. on the 7th. The only really hot spell during the growing season was from July 3 to July 10, which was very warm. The lowest maximum temperature of these days was 92-4°F., on the 4th, and the highest was 95-8°F. on the 7th, which was the hottest day of the year. It was 95°F. and over on the 6th, 7th, 8th and 9th. The warm weather continued
until the 15th, after which it was moderately warm to cool, and the remainder of the summer was unusually cool. The lowest temperature in July was 45.6°F. on the 31st. During August, the temperature was above 80°F. only three times, the warmest day being the 14th, when it was 81.5°F. The lowest temperature was 40.4°F. on the 30th. Showers were frequent in August. During September, the temperature reached 80°F. only once during the month, on the 7th. The first autumn frost was on the 30th, when the temperature dropped to 28.5°F., killing tender annuals, grape leaves, tomatoes, melons, squash, etc. September was a cool, showery month. October was fine but rather cool. The highest temperature was 75°F., on the 6th, the temperature rising above 70°F. only three times during the month. The lowest temperature was 26.2°F., on the 16th. Owing to the cool summer and autumn, the conditions were unfavourable for the ripening of melons and grapes, although a considerable quantity of these did mature.

Winter set in on November 25, in 1912, which is one day later than the average for the past fifteen years. About 21 inches of snow fell, a very heavy fall for the first. There was little or no frost in the ground. The coldest day in November was the 28th, when it was 3.2°F., and the warmest was on the 6th, when it was 58.4°F. December was very mild for that month, the temperature being above freezing on 17 days, but the weather was very changeable. It was down to zero and below only four times during the month, the lowest temperature being -4.2°F., on the 21st. By the end of the month, there was only three or four inches of snow on the ground. January, 1913, was another very mild month, the temperature rising above freezing on 16 days and being below zero on only 4 days. The lowest temperature was -16.8°F. on the 13th. The weather was very changeable during the month, with considerable rain. By the end of the month there were only about 3 inches of snow on the ground.

February was the coldest month of the winter, although the lowest temperature, which was -18°F. on the 25th, was the highest minimum temperature in any winter of recent years, and there were no continuous spells of very cold weather. It was below zero on fifteen days of the month. The highest temperature was 37.8°F. on the 21st, but it was above freezing only three days. Owing to the many thaws during the month of January and the frosty weather which followed them, there was much ice during February, making conditions very unfavourable for herbaceous plants, particularly strawberries. There was no heavy snowfall in February and at the end of the month there were only about ten inches of snow on the level, with ice beneath. The weather continued cold until March 10, at which time there was about eighteen inches of snow, the most there had been since early in December.

Bush fruits, low-growing plants, and roots of trees did not have the usual protection during the winter. By March 21, the ground was bare in many places, and by the 24th the snow was practically all gone except in drifts, and later light snows remained but a short time.

While the winter, on the whole, was a mild one, the many changes of temperature must have been hard on plants. It is noted that most of the fruit buds of cherries and European plums are dead.

FRUIT AND VEGETABLE CROPS IN CANADA, 1912.

The apple crop in most fruit districts of Canada in 1912 was scarcely a medium one, but in British Columbia it was good. In Eastern Canada, the fruit was comparatively free of apple scab in the early part of the season, became badly affected in many places in the latter part of summer owing, doubtless, to the damp weather. This reduced the grade and the prices, which for the best fruit were relatively low but were still lower for these poorer grades. In eastern Ontario and the southwestern part of the province of Quebec, the ravages of the tent caterpillars lessened the crop
very much where the trees were not thoroughly sprayed, and left the trees in bad condition for developing fruit buds for 1913.

Pears were a good crop in the warmer parts of Nova Scotia, but in Ontario the crop was below medium. In the upper country of British Columbia it was good, but rather light on the lower mainland and on Vancouver island. The same notes will apply to the plum crop as to the pear, except that along the lower St. Lawrence, especially in L'Islet county, where it was good. A noted feature of the plum crop there was that the bulk of it was canned locally and sold co-operatively.

The peach crop in Ontario was a medium to good one, but the prices obtained were not as high as usual. In the Okanagan district of British Columbia, where most of the peaches of that province are grown, the crop was good, but the prices obtained were low.

The grape, which is one of the most reliable fruits, gave a good average crop in Ontario, where it is chiefly produced.

Owing to the cool season almost everywhere in Canada, the tenderer kinds of vegetables, such as tomatoes, melons, squash, etc., did not ripen as well as usual; but vegetables, the foliage, roots or tubers of which are used, did well.

The potato crop was a particularly good one nearly everywhere in Canada where it is grown, but unfortunately, as is often the case when the yield is large, the price obtained was small.

At the Central Experimental Farm, the crop of apples was medium to good, and very free from scab and codling moth.

There were a few European plums and a good crop of the American varieties. The cherry crop was almost a total failure, as usual; the flower buds are nearly always injured by winter.

The grape crop was below medium, and the fruit did not ripen as thoroughly as in some years.

The crop of currants, gooseberries, and raspberries was light to medium, and the crops of strawberries good.

The potato crop was very good; tomatoes below medium, and ripe melons light. Most of the other vegetables did well.

SEEDLING FRUITS RECEIVED FOR EXAMINATION, 1911-12.

There were not so many seedlings as usual received during the past year and, of those sent in, there were few that were promising. Following is a list of the names of persons from whom seedlings were received, with the numbers under which these were recorded. A description is published of two apples and a plum, these being of most interest. Apples: 583, crab apple from H. W. Roberts, Clarendon, N.B.; 584, from J. F. Cloutier, Ste. Eugène la France, P.Q.; 585, from R. J. Wiggins, Elmside, P.Q.; 586, from Duncan Bell, Ottawa, Ont.; 587, small apple from John Dearness, London, Ont. (see full description); 588 and 589, No. 1 and No. 2 from A. E. Wilson, Clarence, Ont.; 590 and 591, No. 1 and No. 2 from C. L. Stephens, Orillia, Ont.; 592, seedling of Longfield from Robt. Moore, M.D., Fort Frances, Ont.; 593, Wain apple from Mrs. C. L. Wain, Kamloops, B.C. (see full description), 594, from Mrs. S. W. Handy, Cascade, B.C. Plum: 595, from A. E. Guay, Ville Marie, P.Q.

APPLE SEEDLING FROM JOHN DEARNESS, LONDON, ONT.

Size below medium to small, largest specimen 2½ by 2 inches, a smaller specimen, 2 by 1½ inches; form, oblong or oval; cavity narrow, medium depth, russeted; stem long, slender; basin open, shallow, wrinkled; colour pale yellow, well washed and splashed with attractive carmine; dots moderately numerous, pale, indistinct;
SESSIONAL PAPER No. 16

flesh white, crisp, tender, juicy; skin moderately thick, tough; core medium size, seeds medium size, broad, acute; quality above medium. Season evidently mid to late September. An attractive-looking apple of striking shape. Tree found growing wild near Hawthorn, Pyrus coronaria, and Amelanchier, suggestive of Chenango Strawberry which might, perhaps, be a parent of it. Specimens sent by John Dearness, London, Ont., who found it on a botanizing trip. Should make an attractive ornamental plant.

APPLE SEEDLING FROM MRS. C. L. WAIN, KAMLOOPS, B.C.

Size large; form conical slightly ribbed, rather abruptly and tapering near basin; cavity medium depth and width, russeted; stem medium length, stout; basin deep, medium width, wrinkled; calyx open; colour yellow washed with pinkish red on sunny side; predominant colour yellow; seeds medium size, acuminate; dots numerous, grey, distinct; skin thick, moderately tender; flesh dull white or yellowish; core medium; flesh crisp, rather coarse, juicy; flavour mildly subacid, pleasant; quality above medium; season probably October and November; tree a seedling. General notes: an attractive-looking apple but not good enough in quality for dessert and not acid enough for cooking. May be useful if very hardy.

PLUM SEEDLING FROM A. E. GUAY, VILLE MARIE, P.Q.

Size large; form nearly globular, irregular; cavity medium size, moderately shallow; suture no depression, clearly lined; apex rounded, swollen opposite suture; colour yellow overspread largely by bright crimson red; predominant colour crimson red; dots indistinct; bloom none to very slight; skin moderately thin, toughish; flesh yellow, very juicy, somewhat soft; flavour, sweet, but lacking character; quality medium to above medium; stone roundish, much flattened, large, cling. General notes: A handsome plum, but sample too ripe to give justice; to all appearance, a first-rate fruit.

A WEALTHY APPLE ORCHARD—CLOSELY PLANTED.

In 1896, a small orchard of Wealthy apple trees was planted at the Central Experimental Farm, consisting of 144 trees, 10 by 10 feet apart, or at the rate of 435 trees per acre. The original area occupied by the trees was about one-third, \(\frac{4}{121} \) of an acre, but this was reduced slightly in 1909, so that the area is now \(\frac{549}{1980} \) of acre, still nearly one-third of an acre.

While the trees were planted ten by ten feet apart, since then some have died and others have been removed from time to time to give those which remained sufficient room to develop. Those removed have, as far as possible, been the poorer yielding specimens, a record having been kept of the yields of each tree since 1899. Of the original 144 trees, there are now ninety-seven left. Since the last report of this orchard was published, eleven trees have been removed. The trees are pruned moderately every year. The trees are too close to cultivate, but, as the ground is well shaded by them, the sod does not become thick. The grass is cut and allowed to lie in the orchard. The trees are manured once in about three years.

A record has been kept of the yields, sales, and expenses in connection with this orchard, which have been given in the annual reports for 1902, 1904, 1905, 1908 and 1910.

Following is a statement of yields, sales, expenses, and profits from the time the orchard was planted to the end of 1912:—

16—19
Wealthy Orchard, 1896-1912

<table>
<thead>
<tr>
<th>Year</th>
<th>Net Profit per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1896</td>
<td>$487.16</td>
</tr>
<tr>
<td>1897</td>
<td>101.13</td>
</tr>
<tr>
<td>1898</td>
<td>112.89</td>
</tr>
<tr>
<td>1899</td>
<td>37.54</td>
</tr>
<tr>
<td>1900</td>
<td>180.34</td>
</tr>
<tr>
<td>1901</td>
<td>108.98</td>
</tr>
<tr>
<td>1902</td>
<td>105.47</td>
</tr>
<tr>
<td>1903</td>
<td>19.38</td>
</tr>
<tr>
<td>1904</td>
<td>399.44</td>
</tr>
<tr>
<td>1905</td>
<td></td>
</tr>
<tr>
<td>1906</td>
<td></td>
</tr>
<tr>
<td>1907</td>
<td></td>
</tr>
<tr>
<td>1908</td>
<td></td>
</tr>
<tr>
<td>1909</td>
<td></td>
</tr>
<tr>
<td>1910</td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td></td>
</tr>
</tbody>
</table>

Total net profit per acre, 1896-1912 (17 years) $1,568.24

Average net profit per acre from date of planting, 1896 to 1912: $88.72
Average net profit per acre from date of fruiting, 1899 to 1912: 106.73

Wealthy Orchard, 1910

<table>
<thead>
<tr>
<th></th>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit picked</td>
<td>296</td>
</tr>
<tr>
<td>Windfalls</td>
<td>3214</td>
</tr>
<tr>
<td>Total</td>
<td>3510</td>
</tr>
</tbody>
</table>

Sales of Fruit

<table>
<thead>
<tr>
<th>Baskets</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$4.50</td>
</tr>
<tr>
<td>185</td>
<td>253.89</td>
</tr>
<tr>
<td></td>
<td>41.10</td>
</tr>
<tr>
<td>215</td>
<td>$69.40</td>
</tr>
</tbody>
</table>

Expenses, 1910

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruning, 1 man 20 hours at 15 cents</td>
<td>$3.60</td>
</tr>
<tr>
<td>Mowing, 1 man 10 hours at 15 cents</td>
<td>1.50</td>
</tr>
<tr>
<td>Material used for spraying</td>
<td>1.29</td>
</tr>
<tr>
<td>Spraying 4 times</td>
<td>3.60</td>
</tr>
<tr>
<td>Cost of 215 baskets and covers at 4 cents</td>
<td>8.60</td>
</tr>
<tr>
<td>Putting on tree protectors, 1 man 10 hours at 15 cents</td>
<td>1.50</td>
</tr>
<tr>
<td>Rent of land</td>
<td>0.94</td>
</tr>
<tr>
<td>Commission on sales</td>
<td>2.83</td>
</tr>
<tr>
<td>Picking fruit and gathering windfalls, 61 hours at 16½ cents</td>
<td>10.17</td>
</tr>
<tr>
<td>Packing fruit, 29 hours at 16½ cents</td>
<td>3.83</td>
</tr>
<tr>
<td>Total expenses, 1910</td>
<td>$36.57</td>
</tr>
<tr>
<td>Net profits, 1910</td>
<td>32.83</td>
</tr>
<tr>
<td></td>
<td>$69.40</td>
</tr>
<tr>
<td></td>
<td>$17.13</td>
</tr>
<tr>
<td></td>
<td>105.15</td>
</tr>
</tbody>
</table>

Wealthy Orchard, 1911

<table>
<thead>
<tr>
<th></th>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit picked</td>
<td>330</td>
</tr>
<tr>
<td>Windfalls</td>
<td>129</td>
</tr>
<tr>
<td>Total</td>
<td>460</td>
</tr>
</tbody>
</table>

Sales of Fruit

<table>
<thead>
<tr>
<th>Baskets</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$0.50</td>
</tr>
<tr>
<td>153</td>
<td>43.89</td>
</tr>
<tr>
<td>155</td>
<td>$46.40</td>
</tr>
</tbody>
</table>

Estimated

<table>
<thead>
<tr>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>359</td>
</tr>
<tr>
<td>129</td>
</tr>
</tbody>
</table>

Estimated

<table>
<thead>
<tr>
<th>Acre</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1.60</td>
</tr>
<tr>
<td>147.01</td>
<td></td>
</tr>
</tbody>
</table>

Estimated

<table>
<thead>
<tr>
<th>Acre</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$148.61</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Expenses, 1911.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Estimated per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mowing, 1 man 10 hours at 16½ cents</td>
<td>$1.65</td>
<td>$5.28</td>
</tr>
<tr>
<td>Materials used for spraying</td>
<td>0.95</td>
<td>7.21</td>
</tr>
<tr>
<td>Spraying 3 times</td>
<td>2.25</td>
<td>3.08</td>
</tr>
<tr>
<td>Cost of 155 baskets at 4 cents</td>
<td>6.20</td>
<td>19.56</td>
</tr>
<tr>
<td>Putting on tree protectors, 1 man 10 hours at 16½ cents</td>
<td>1.65</td>
<td>5.29</td>
</tr>
<tr>
<td>Rent of land</td>
<td>0.94</td>
<td>3.09</td>
</tr>
<tr>
<td>Manure, 4 loads at 40 cents, teamster with team 81</td>
<td>5.00</td>
<td>17.94</td>
</tr>
<tr>
<td>Picking fruit and gathering windfalls, 49 hours at 17½ cents</td>
<td>8.58</td>
<td>27.48</td>
</tr>
<tr>
<td>Packing fruit, 18 hours at 17½ cents</td>
<td>3.15</td>
<td>10.09</td>
</tr>
<tr>
<td>Total expenses, 1911</td>
<td>$39.98</td>
<td>$99.23</td>
</tr>
<tr>
<td>Net profit, 1911</td>
<td>15.12</td>
<td>49.38</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$36.10</td>
<td>$118.61</td>
</tr>
</tbody>
</table>

Wealthy Orchard, 1912.

<table>
<thead>
<tr>
<th>Item</th>
<th>Gallons</th>
<th>Estimated per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit picked</td>
<td>1.686</td>
<td></td>
</tr>
<tr>
<td>Windfalls</td>
<td>964</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,650</td>
<td></td>
</tr>
</tbody>
</table>

Sales of Fruit.

<table>
<thead>
<tr>
<th>Baskets</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$25.00</td>
</tr>
<tr>
<td>369</td>
<td>39.72</td>
</tr>
<tr>
<td>145</td>
<td>39.72</td>
</tr>
<tr>
<td>199</td>
<td>64.67</td>
</tr>
<tr>
<td>101</td>
<td>35.35</td>
</tr>
</tbody>
</table>

| Total revenue, 1912 | $257.60 |

Expenses, 1912.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Estimated per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruning, 1 man 30 hours at 19½ cents</td>
<td>$5.85</td>
<td>$18.74</td>
</tr>
<tr>
<td>Mowing, 1 man 8 hours at 18½ cents</td>
<td>1.48</td>
<td>4.71</td>
</tr>
<tr>
<td>Lime sulphur and poison, 1 spraying</td>
<td>1.45</td>
<td>4.64</td>
</tr>
<tr>
<td>Bordeaux mixture and poison, 3 sprays</td>
<td>1.84</td>
<td>5.48</td>
</tr>
<tr>
<td>Spraying, 4 times</td>
<td>3.13</td>
<td>10.03</td>
</tr>
<tr>
<td>Putting on tree protectors, 1 man 10 hours at 18½ cents</td>
<td>1.85</td>
<td>5.93</td>
</tr>
<tr>
<td>Rent of land</td>
<td>0.94</td>
<td>3.09</td>
</tr>
<tr>
<td>884 baskets and covers at 4 cents</td>
<td>34.16</td>
<td>109.41</td>
</tr>
<tr>
<td>Picking fruit and gathering windfalls, 172 hours at 19½ cents</td>
<td>31.54</td>
<td>167.43</td>
</tr>
<tr>
<td>Packing fruit, 145 hours at 19½ cents</td>
<td>28.28</td>
<td>90.58</td>
</tr>
<tr>
<td>Commission on sales of fruit</td>
<td>21.17</td>
<td>67.81</td>
</tr>
<tr>
<td>Total expenses, 1912</td>
<td>$136.89</td>
<td>$25.64</td>
</tr>
<tr>
<td>Net profit, 1912</td>
<td>124.71</td>
<td>399.44</td>
</tr>
</tbody>
</table>

| | | |
| | $257.60 | $825.08 |

In the tables of revenue and expense given above, the estimates per acre are based on the sales actually made, assuming that the yields, prices, and cost of production would be in the same proportion per acre. It will be noticed that the proportion of windfalls is very high. Those acquainted with the Wealthy apple will know that this variety is very subject to dropping. Some of the windfalls were sold. The fruit was all sold on the local markets.

The rent of the land is low for orchard land, but fruit is not one of the main crops of the Ottawa district, and the rent is estimated on farm land.

16—19½
While it is of interest to record the returns from a closely-planted Wealthy orchard, and while the returns at the Central Experimental Farm have averaged well since the trees began to fruit, close-planting is not recommended to the average farmer, as, if some of the trees are not removed in good time, the others will suffer. In any case, only early-bearing varieties, such as Wealthy and Wagener, should be treated in this way. Twelve feet apart each way would have been a better distance than ten feet. Another method of planting suggested for the best apple districts, is to have the permanent trees thirty-six to forty feet apart each way, with early-bearing varieties between, and thus have the trees at first eighteen by thirty-six feet apart, having in view the cutting out of the early-bearing trees in from fifteen to twenty years. An additional row of trees of an early-bearing variety might be planted between the permanent rows, unless the space is utilized for vegetables or small fruits. A row of this kind, however, interferes with spraying before many years. When early-bearing varieties are planted closely in solid blocks spraying may be done with a long hose and a row is left out for a driveway about every 100 feet.

APPLES ORIGINATED IN THE HORTICULTURAL DIVISION, CENTRAL EXPERIMENTAL FARM.

SEEDLING VARIETIES.

Since 1903, there have been 1,148 apple trees which have fruited among those which have been raised from seed in the Horticultural Division without hand pollination, and of which only one parent is definitely known. Of these varieties one hundred and fifty-two fruited for the first time in 1912. Of the total of eleven hundred and forty-eight varieties which have fruited, eighty-one have been considered sufficiently promising to name and, of these, the descriptions of fourteen are now published all, but one, for the first time.

Ascot (Northern Spy seedling).—Fruit medium to large; form roundish; cavity medium depth and width, russeted at base; stem medium length, slender to moderately stout; basin deep, medium width, smooth; calyx closed or open; colour yellow well washed with crimson; predominant colour crimson; seeds medium size, acute; dots obscure; skin moderately thick, moderately tough; flavour subacid, pleasant but not high; core medium, open; flesh yellowish with traces of red, crisp, tender, juicy; quality good; season late November probably to February or later. General notes: Resembles Northern Spy a little in outward appearance and considerably in flesh and flavour.

Brisco (Langford Beauty seedling).—Fruit medium size; form roundish; cavity medium depth and width; stem medium to long, slender; basin deep, medium width, slightly wrinkled; calyx closed or partly open; colour greenish yellow washed with deep attractive crimson; predominant colour deep crimson; seeds medium size, acute; dots few, yellow, distinct; skin moderately thick, moderately tender; flesh yellowish, crisp, juicy; core above medium, open; flavour briskly subacid, pleasant, spicy; quality good; season late September to middle November. General notes: Resembles Langford Beauty somewhat in outward appearance, also resembles Jonathan a good deal in appearance and flavour.

Diana (Langford Beauty seedling).—Fruit medium size; form roundish; cavity medium depth and width; stem medium length, moderately stout; basin open, deep, wrinkled; calyx closed; colour yellow well washed with attractive crimson; predom-
SESSIONAL PAPER No. 16

inant colour attractive crimson; seeds medium size, acuminate; dots few, white, indistinct; bloom thin, pinkish; skin moderately thick, moderately tender; flesh white with traces of red, crisp, tender, juicy; core medium size, open; flavour briskly subacid, aromatic; equally good; season October and November probably. **General notes:** Resembles Langford Beauty somewhat in colour and character of apple. A handsome apple.

Epsom (Northern Spy seedling).—Fruit above medium to large; form roundish, conical; cavity medium depth and width, russeted; stem medium length, stout; basin deep, open, wrinkled; calyx open; colour pale yellow well washed and splashed with crimson; predominant colour crimson; seeds medium size, acute; dots few, small, white, distinct; bloom bluish; skin thick, moderately tough; flesh yellowish; tender moderately juicy; core above medium, open; flavour subacid, pleasant; quality good; season October to middle November. Much like Spy in shape, colour, flesh and flavour. Promising.

Galena (Langford Beauty seedling).—Fruit medium to above medium in size; form roundish; cavity medium depth and width; stem short to medium, moderately stout; basin deep, medium width, slightly wrinkled; calyx closed or partly open; colour pale greenish yellow well washed with deep crimson; predominant colour deep crimson; seeds medium size, acute; dots very few, yellow, distinct; skin moderately thick, tender; flesh white, with traces of red, tender, juicy; core medium size, open; flavour subacid, pleasant; quality good; season, October to late December. **General Notes:** Resembles Langford Beauty considerably in outward appearance and in flesh and flavour, also resembles McIntosh considerably in outward appearance.

Grover (McIntosh seedling).—Fruit medium size; form oblate, slightly ribbed; cavity medium depth, open; stem short, stout; basin medium depth and width, slightly wrinkled; calyx partly open; colour pale yellow well washed with deep crimson; predominant colour deep crimson; seeds large, broad, acute; dots few, white, distinct; bloom slight, bluish; skin moderately thick, tough; flesh white tinged with red, tender, juicy; core medium; flavour subacid, sprightly, pleasant, spicy; quality good; season December probably to middle winter or later. Probably later in season than McIntosh. Resembles McIntosh considerably in colour and in flesh, also somewhat about cavity. Promising.

Humber (Golden Russet seedling).—Fruit above medium in size; form oblate to roundish, flattened at ends; cavity open, medium depth, russeted; stem short, stout; basin open, deep, wrinkled; calyx open; colour yellow, washed with orange red, mostly on sunny side; seeds large, obtuse; dots moderately numerous, yellow, distinct; skin moderately thick, moderately tender; flesh dull white or yellowish, firm, rather coarse, moderately juicy; core small; flavour subacid, pleasant, spicy; quality, good; season January to late winter or spring. Resembles Golden Russet somewhat in flesh and flavour.

Manda (Salome seedling).—Fruit above medium size; form roundish; cavity open, medium depth; stem medium length, stout; basin medium depth and width, smooth; calyx open; colour, yellow washed, splashed and striped with carmine; predominant colour carmine; seeds below medium, acute; dots obscure; skin moderately thick, tender; flavour subacid, pleasant; core medium size; flesh dull white, crisp, tender moderately juicy; quality good; season November to February.

Moreno (Langford Beauty seedling).—Fruit medium to above; form oblate, conic; cavity narrow, medium depth; stem medium to long, moderately stout; basin
open, medium depth, wrinkled; calyx open or closed; colour pale yellow washed and splashed with carmine; predominant colour carmine; seeds medium size, broad, acute, dots obscure; skin thin, tender; flesh white, crisp and tender, juicy; core medium; flavour subacid, sprightly, pleasant; quality good; season October to mid-December.

Niobe (Northern Spy seedling).—Fruit above medium; form roundish, regular or slightly ribbed, conical; cavity deep, medium width; stem medium to long, slender to moderately stout; basin deep, medium width, smooth to slightly wrinkled; calyx partly open; colour greenish yellow washed and splashed with rather dull crimson; predominant colour rather dull crimson; seeds above medium; dots few, white, indistinct; bloom thin, pinkish; skin moderately thick, tough; flesh yellowish, crisp tender, rather coarse, moderately juicy; core medium, open; flavour mildly subacid, pleasant; quality good to very good; season December to late winter. Described in 1912, also.

Orlando (Northern Spy seedling).—Fruit medium size; form roundish, conical, ribbed; cavity deep, open; stem short, stout; basin deep, open, nearly smooth; calyx partly open; colour yellow washed with bright crimson; predominant colour bright crimson; seeds medium size, acute; dots few, white, indistinct; skin moderately thick, moderately tender; flesh yellow with traces of red, tender, juicy, crisp; core medium, open; flavour briskly subacid, sprightly, aromatic; quality good; season late September to December.

Pandora (Northern Spy seedling).—Fruit above medium; form roundish, slightly ribbed; cavity deep, open; stem short, stout; basin deep, open, nearly smooth; calyx partly open; colour yellow washed and splashed with light crimson; predominant colour light crimson; seeds medium size, acute; dots few, white, indistinct; skin moderately thick, tender; flesh dull white, crisp, tender, juicy; core medium size, open; flavour subacid, pleasant, not high; quality above medium to good; season November and December.

Pedro (McIntosh seedling).—Fruit above medium; form oblate to roundish, conic; cavity deep, open, nearly smooth; stem short to medium, stout; basin narrow, medium depth, smooth; calyx open; colour pale yellow washed with bright attractive crimson; predominant colour bright crimson; seeds medium, acute; dots obscure; skin moderately thick, tender; flesh dull white, tender, juicy; core medium size, open; flavour briskly subacid, pleasant; quality good; season November to January.

Ramona (Shiawassee Beauty seedling).—Fruit medium to above medium; form oblate; cavity deep, open, slightly russeted; stem short, stout; basin open, medium depth, wrinkled; calyx closed; colour pale yellow washed and splashed with carmine on sunny side; dots obscure; skin moderately thick, tender; flesh white, fine grained, tender, juicy; core medium to small; flavour subacid, pleasant; quality good; season late August to mid-September.

CROSS-BRED VARIETIES.

While the larger proportion of trees raised from seed have not been the result of hand pollination, cross-breeding has not been neglected, and there are now 701 trees growing as the result of such work. Of these twelve fruited in 1912 and two of them were considered sufficiently promising to name, and descriptions of them follow.

Rustler (McIntosh x Lawyer).—Fruit above medium; form roundish, slightly ribbed; cavity open, medium depth; stem medium length, stout; basin deep, medium
SESSIONAL PAPER No. 16

width, smooth; calyx open; colour yellow, almost or quite covered with crimson; predominant colour crimson; seeds medium size, acute; dots numerous, yellow, distinct; bloom bluish; skin thick, tough; flesh yellowish with traces of red, moderately juicy, firm but tender; core medium size; flavour subacid, pleasant; quality above medium to good; season, December probably to March or later.

Vermac (Lawyer x McIntosh).—Fruit below medium, almost small; form roundish; cavity medium, depth and width; stem medium length, moderately stout; basin shallow, medium width, wrinkled; calyx closed or partly open; colour yellow almost entirely covered with rich deep attractive crimson; dots small, indistinct; bloom traces, bluish; skin thick, tough; flesh white tinged with red and a bright red core line, tender, juicy; core above medium to large, open; flavour subacid, pleasant, good, with aroma of McIntosh; quality good; season probably early to mid-winter, decidedly later than McIntosh.

CROSS-BRED VARIETIES ORIGINATED BY DR. WM. SAUNDERS.

A large number of cross-bred varieties were originated outside the Horticultural Division at the Central Experimental Farm by Dr. Wm. Saunders, late Director, an account of which work was published by him in Bulletin 68 called 'Progress in the Breeding of Hardy Apples for the Canadian Northwest.' These crosses are now under the charge of the Dominion Horticulturist, and following are descriptions of the best of the second crosses which fruited in 1912, being the F1 generation from crosses between varieties of the F0 generation of the first cross and named varieties of larger apples. 'Dean,' for instance is P. baccata x Wealthy, and 'Angus' is Dean x Ontario. The best of the first crosses which were crosses between the wild Siberian crab apple Pyrus baccata and varieties of apples, gave fruit little larger than the best named crab apples, while the second crosses, which have a larger quota of apple blood, have given fruit 2½ inches in diameter, and, if they are sufficiently hardy, will prove very valuable.

Angus (Dean x Ontario).—Fruit below medium to medium in size, 2 by 2½ inches; form roundish, slightly ribbed; cavity narrow, medium depth; stem long, slender; basin open, medium depth, wrinkled; calyx partly open; colour yellow washed with pinkish red; predominant colour pinkish red; seeds medium size for an apple, acute; dots few, small, white, distinct; skin thin, tender; flesh, yellow, crisp, breaking, moderately juicy, core medium; flavour, briskly subacid; quality above medium; season October to middle November. General Votes: No marked resemblance to Ontario. Of good size. Flesh, skin and stem, crab-like; seeds apple-like.

Elkhorn (Jewel x Gideon).—Fruit large for a crab, small as an apple, 1½ by 2½ inches; form oblate to roundish; cavity open, medium depth; stem long, slender; basin open, wrinkled; calyx closed; colour yellow, well washed with crimson; predominant colour crimson; seeds small for an apple, acute; dots obscure; skin thin, tender; flesh yellowish, crisp, breaking, juicy; core above medium; flavour acid, pleasant; quality above medium; season late September and October. General Notes: This should make a good late crab apple for any part of Canada. No resemblance to Gideon. All marked characters are crab-like.

Gretna (Pioneer x Northern Spy).—Fruit large for a crab, small for an apple, 2 by 2½ inches; form oblate; cavity deep, open; stem medium to long, stout to moderately stout; basin open, medium depth, wrinkled; calyx open; colour yellow, washed and splashed with crimson; predominant colour crimson; seed below medium for an
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

apple, large for a crab, acute; dots few, white, distinct; skin moderately thick, tender; flesh yellowish, crisp, breaking, juicy; core medium; flavour briskly subacid, pleasant, sprightly; quality good; season November to January. General Notes: Resembles Northern Spy considerably in colour, flesh and flavour. Promising.

Martin (Pioneer x Ontario).—Fruit below medium 2½ by 2¾ inches; form roundish; cavity narrow, medium depth, russelsed; stem medium length, slender; basin medium depth and width to shallow almost smooth; calyx open; colour pale yellow washed with pinkish red; predominant colour pinkish red; seeds medium for an apple, acuminate; dots obscure; skin moderately thick, tender; flesh yellow, crisp, tender, juicy; core medium size, open; flavour subacid, pleasant; quality good; season October to mid-December.

Ruth (Pyrus prunifolia x Pewaukee).—Fruit small for an apple, but as large as Martha crab apple, 1½ by 1¾ inches to 1¾ by 1½ inches; form roundish conical; cavity open, medium depth; stem long, slender; basin deep, medium width, wrinkled; calyx open; colour yellow well covered with deep crimson; predominant colour deep crimson; dots moderately numerous, white, distinct; skin, thin, tender; flesh yellow, stained with red, tender juicy; core above medium; flavour subacid, pleasant, no astringency; quality good; season October to November.

Trail (Northern Queen x Rideau).—Fruit large for a crab, a little larger than Martha; form oblate, almost roundish; cavity medium depth and width; stem very long, slender; basin open, deep nearly smooth; calyx closed; colour pale yellow splashed and washed with orange red and crimson; predominant colour orange red; seeds below medium, acute; dots few, indistinct; bloom slight, pinkish, firm; skin thin, tender; flesh yellowish, crisp breaking; core medium; flavour subacid, sprightly, very pleasant; quality good to very good; season late August.

Wapella (Dean x Ontario).—Fruit below medium for an apple, very large for a crab 2½ by 2¾ inches; form roundish to oblong, ribbed; cavity medium depth and width; stem medium length, slender to moderately stout; basin open, deep, wrinkled; calyx partly open, or closed; colour yellow washed with red; predominant colour red; seeds medium size for an apple, obtuse; dots very few, indistinct; bloom pinkish, thin; skin moderately thick, moderately tender; flavour briskly subacid, pleasant; core medium; flesh yellowish with traces of red, crisp, breaking, juicy; quality above medium; season late December, probably to March or April.

PLUM SEEDLINGS.

The successful culture of the European or domestica plums is confined mainly to the warmest parts of Canada or where the winters are tempered by large bodies of water. The two native American species, Prunus nigra and Prunus americana, on the other hand, can be grown successfully where the winters are very severe. Many good varieties of these have been introduced and further improvement is being made. What is needed are early varieties of good quality for those parts where the growing season is short, and varieties with thinner skins for all parts. They should also, if possible, have good shipping qualities. At the Central Experimental Farm, a considerable number of good seedlings have been originated and some of the best have been named. The following five varieties were named in 1912. Four of these are seedlings of other Experimental Farm seedlings and are thought to be better than the parents. None of these is early enough for the prairie provinces, where only the earliest should be tried.

Corona (Caro seedling).—Large; oval; lopsided; cavity medium size, shallow; surface slightly depressed, lopsided; apex knobbled, irregular; greenish-yellow overspread with bright red; predominant colour red; dots indistinct; bloom moderate; skin thick, tough, slightly bitter, flesh yellow to greenish-yellow, firm, juicy meaty; sweet,
sprightly flavour; quality good; stone large, flattened, cling. Season late September. A very promising plum, large, of attractive appearance, of firm texture. Should prove to be a good shipper.

Firman (Consul seedling).—Large; oval, wedge, slightly lopsided; cavity medium to large, medium depth; suture indistinct; apex flattened; yellow, mottled and washed with carmine-red; predominant colour carmine-red; dots few, medium size, around apex; bloom moderate; skin medium thick; flesh yellow, firm, somewhat dry; sweet to insipid flavour; quality medium; stone large, bean shaped, flattened, free; season late September. A plum possessing pre-eminently the characteristics of a good shipping fruit. Ten fruits weighed 10 ounces.

Hazel (Gloria seedling).—Large; rounded ovate; cavity shallow, medium; suture indistinct, fairly clearly lined; apex rounded; yellow, generally entirely overspread with a dull, rich red; predominant colour dull, rich red; dots, medium to large, distinct, yellow, bloom moderate; skin thick, tough, but agreeable; flesh golden yellow, juicy, moderately firm; sweet flavour; good quality; stone large, elongated ovate, flattened. Season mid-September. A very attractive plum of considerable promise.

Rhoda (Cheney seedling).—Large; oval (regular); cavity broad, moderately deep to shallow; suture slightly depressed, faintly lined; apex rounded; dark red; predominant colour dark red; dots small, numerous, indistinct; bloom none to slight; skin fairly thin, tough, peels when ripe; flesh rich orange-yellow, firm, juicy; sweet, rich, pleasant flavour; good quality; stone broadly oval, dark colour, semi-free. Season mid-September. A good plum.

Vesta (Gloria seedling).—Large to very large, oval; cavity medium to large, shallow; suture slightly depressed, fairly clearly lined; apex swollen, opposite suture; yellow overspread by bright pink to dark carmine-red; predominant colour light carmine-red; dots medium to large, distinct, yellowish; bloom moderate; skin thick, slightly bitter; flesh yellow, juicy, firm, meaty, sweet, distinctive flavour; good quality; stone large, flattened, oval, nearly free. Season late September. One of the best. Ten fruits weighed 12 ounces. Attractive, large, firm, of good quality; skin somewhat tough.

SEEDLING STRAWBERRIES.

While seedling strawberries have not been grown on a very large scale at the Central Experimental Farm, a limited number of plants have been raised from seed, though none of these was hand pollinated. Of 650 seedlings which fruited in 1889, forty were saved at first and these were gradually reduced in numbers, but none was thought worthy of introduction. In 1897, about 1,400 seedlings were raised from some of the best named varieties. These were gradually reduced to thirty-four, among which were some of great promise. In the winter of 1905-6, these were practically all winter-killed, so that nothing came of this experiment. In 1906, seed was sown of Bubach, Wm. Belt, and Marshall, and while the number of these which fruited was small, there being only ninety seedlings of Bubach, seventy-three of Wm. Belt and seven of Marshall, the proportion of very promising varieties has been large. None of the Marshall seedlings, though good in quality, were productive, but so promising were the others that in 1912, there were still being grown thirty-seven Bubach seedlings and twenty-four Wm. Belt seedlings. Both Bubach and Wm. Belt would appear to be excellent mothers to use in breeding strawberries.

Twenty-one of the best of these sixty-one seedlings have been named as follows: Bianca, Cassandra, Celia, Cordelia, Desdemona, Francesca, Helena, Hermia, Julia, Lavinia, Lucetta, Mariana, Miranda, Octavia, Olivia, Ophelia, Portia, Silvia, Valeria, Viola, Virgilia, these being names of Shakespeare’s heroines. It is proposed to send these out to the branch Experimental Farms and other places for further test. Following are descriptions of thirteen of these varieties:
Cassandra (Bubach seedling), Imp.—Form roundish, wedge-shaped, regular; size large; external colour bright scarlet, glossy; colour of flesh deep salmon; core tender; texture juicy; flavour briskly subacid, pleasant; quality above medium to good; season medium to late; shipping quality moderately firm; plant vigorous; foliage good; a handsome variety of good size, form and colour. Productive.

Cordelia (Bubach seedling), Per.—Form roundish, wedge-shaped; size large; external colour bright red, glossy; colour of flesh deep salmon; seeds medium; core tender; texture juicy; flavour briskly subacid, pleasant; quality above medium to good; season medium to medium late; shipping quality, moderately firm; plant vigorous; foliage good; attractive in appearance of good size, and productive. Should make a good commercial berry.

Desdemona (Bubach seedling), Imp.—Form wedge-shaped; size medium to large; external colour dark red; colour of flesh dark red; seeds medium; core solid but tender; texture juicy; flavour briskly subacid, pleasant; quality above medium to good; season medium to late; shipping quality moderately firm to firm; plant vigorous, productive; foliage good; a good berry for home use.

Hermia (Wm. Belt seedling), Per.—Form conical to wedge conical; size medium to large; external colour bright deep red, glossy; colour of flesh deep red; seeds medium; core tender; texture juicy; flavour subacid, good; quality good; season medium; shipping quality firm; plant vigorous, productive; foliage good. A good berry, attractive in appearance.

Julia (Bubach seedling), Imp.—Form conical to somewhat wedge-shaped, fairly regular; size large; external colour bright to deep red, glossy; colour of flesh deep salmon; seeds medium; core tender; texture juicy; flavour briskly subacid, pleasant; quality above medium to good; season medium; shipping quality firm; plant vigorous, productive; foliage good. Ripens evenly to tip. Attractive in appearance. Should make a good market berry.

Lucetta (Bubach seedling), Per.—Form blunt, wedge-shaped; size large; external colour deep scarlet; colour of flesh red; seeds medium; core tender; texture juicy; flavour subacid; quality medium; season medium early; shipping quality moderately firm to firm; plant vigorous, moderately productive; foliage good. Attractive in appearance. Should ship well.

Mariana (Bubach seedling), Per.—Form wedge-shaped to roundish wedge-shaped; size large; external colour bright, deep scarlet, glossy; colour of flesh deep salmon; seeds medium; core tender; texture juicy; flavour subacid, pleasant; quality above medium to good; season medium to medium late; shipping quality moderately firm; plant vigorous, productive; foliage good; of good size and attractive appearance. Good for home market.

Miranda (Bubach seedling), Per.—Form roundish to wedge-shaped, somewhat irregular; size large; external colour bright deep red, glossy; colour of flesh red; seeds depressed; core tender; texture juicy; flavour briskly subacid; quality above medium to good; season medium early; shipping quality firm; plant vigorous, productive; foliage good. A large firm berry which should be desirable for market.

Ophelia (Wm. Belt seedling) Per.—Form long wedge-shaped, somewhat necked; size large; external colour bright scarlet, glossy; colour of flesh pale red; seeds medium; core tender; texture juicy; flavour briskly subacid; quality good; season medium late; shipping quality firm; plant vigorous, productive; foliage healthy. A large berry of good quality.
Portia (Wm. Belt seedling), Imp.—Form roundish conical to wedge conical; size large; external colour deep red, glossy; colour of flesh deep rich red; seeds very prominent; core tender; texture juicy; flavour briskly subacid, pleasant; quality good; season medium late to late; shipping quality firm; plant vigorous; foliage good. A late berry of good form and colour.

Silvia (Wm. Belt seedling).—Form roundish to wedge-shaped, blunt and flat at apex; size large; external colour deep red; colour of flesh deep salmon; seeds medium; core tender; flavour briskly subacid, pleasant; quality above medium to good; season medium late; shipping quality moderately firm; plant vigorous productive; foliage good. An attractive looking variety. Fruit ripens evenly and retains good size through the season.

Viola (Wm. Belt seedling), Imp.—Form conical to somewhat wedge-shaped; size large; external colour bright to dark red; colour of flesh deep rich red; seeds large, prominent; core tender; texture juicy; flavour briskly subacid, pleasant; quality good; season medium late, shipping quality firm; plant strong grower; foliage good. A large-fruited variety. Should make a good shipper.

Virginia (Wm. Belt seedling), Imp.—Form roundish to wedge-shaped; size large; external colour deep red; colour of flesh deep red; seeds medium; core tender; flavour subacid, pleasant; quality above medium to good; season medium; shipping quality moderately firm to firm; plant vigorous, productive; foliage good. An attractive looking berry, being of good size, colour and form.

VEGETABLES.

FARMERS' LIST OF BEST VEGETABLES.

The 'Farmers' List of Best Vegetables' which has been published from time to time in the annual report has been much appreciated. This list is really a summary of the variety tests, and gives, in a comparatively small space, the names of those vegetables which are considered the best. The following list has been revised up to the autumn of 1912:

Asparagus.—Palmetto is proving a better variety than Conover's Colossal for general planting, as it is not so subject to the disease known as Asparagus Rust. Argenteuil is also a good variety.

Beans.—Round Pod Kidney Wax and Wardwell's Kidney Wax are two of the best yellow-podded or wax bush beans, and are both early. Stringless Green Pod, Early Red Valentine and Early Refugee are three good, green-podded varieties. Refugee or Thousand to One is one of the best later sorts. Among Lima beans, the dwarf or bush forms are the most satisfactory.

Beets.—Meteor, Early Model, Electric, Egyptian and Eclipse are some of the best.

Borecole or Kale.—Dwarf Green Curled Scotch.

Broccoli.—White Cape.

Brussels Sprouts.—Improved Dwarf. The dwarf varieties have been found more satisfactory than the tall-growing ones.

Cabbage.—Early Jersey Wakefield, Copenhagen Market (early), Succession (medium), Danish Ballhead and Drumhead Savoy (late), Red Dutch (red) is a good
list. Houser has been found freer from disease than most. For extra early use, Parsi-
Market is desirable, being nearly a week earlier than Early Jersey Wakefield.

Cauliflower.—Early Dwarf Erfurt and Early Snowball.

Carrots.—Chantenay is one of the best, but if a good extra early sort is required, the Early Scarlet Horn can be planted with advantage. It is a small variety.

Celery.—Golden Self-Blanching (Paris Golden Yellow) (early), French Success, Noll's Magnificent, Perfection Heartwell, Triumph, Winter Queen are all good late varieties. London Red is a good red one. White Plume is desirable for the prairies.

Corn.—Malakoff, Peep O'Day (extra early), Early Fordhook, Early Cory (early), Crosby's Early, Golden Bantam, Metropolitan (second early), Perry's Hybrid, Early Evergreen and Black Mexican (medium) Stowell's Evergreen, Country Gentleman (late). In planting, the Country Gentleman should not be omitted, as it lengthens the season very considerably and is of fine quality. Golden Bantam is the best second early for home use. It is of excellent quality.

For the prairie provinces and other parts of Canada where the nights are cool, Squaw and Extra Early Adams, though not sweet varieties, develop better than others.

Cucumbers.—Peerless White Spine or White Spine, Davis Perfect, Cool and Crisp, and Giant Pera are some of the most satisfactory. Boston Pickling and Chicago Pickling are good picking sorts.

Lettuce.—Grand Rapids, Black-seeded Simpson (early curled), Iceberg, New York, Giant Crystal Head, Crisp as Ice, and Improved Hanson (curled cabbage), Improved Salamander (uncurled cabbage). Grand Rapids is the best variety for forcing. Iceberg remains headed longest in summer. Trianon and Paris are two of the best Cos varieties.

Melons, Musk.—Long Island Beauty and Hackensack are two of the earliest and best of the Nutmeg type. Montreal Market is later, but of larger size and finer flavour. Emerald Gem and Paul Rose are two of the best yellow-fleshed melons.

Melons, Water.—Cole's Early, Salzer's Earliest, Ice Cream, Phinney's Early are some of the most reliable.

Onions.—Yellow Globe Danvers and Large Red Wethersfield are two of the best and most reliable. Australian Brown is also good. Prize Taker is a good variety for transplanting.

Parsley.—Double Curled is as good as any.

Peppers.—Cayenne, Chili, Cardinal. The Early Neapolitan is one of the earliest of the large peppers.

Peas.—Gregory's Surprise (extra early), Thos. Laxton, Gradus, American Wonder, Nott's Excelsior, Sutton's Early Giant (early), Sutton's Excelsior, Premium Gem (second early), McLean's Advancer, Heroine and Stratagem (medium to late). The foregoing varieties, not being tall growers, may be grown without supports. Quite Content, Telephone and Champion of England are three of the best tall-growing sorts.

Potatoes.—Early: Rochester Rose, Early Ohio (pink), Irish Cobbler, Eureka Extra Early, Early Petoskey, New Early Standard (white), Bovee (pink and white). Main crop: Carman No. 1, Gold Coin, Factor, Dalmeny Beauty, Money Maker (white).

Rhubarb.—Linnaceus, Victoria.

Salsify.—Long White, Sandwich Islands.

Spinach.—Victoria, Thickleaved.

Squash.—White Bush Scalloped, Long White Bush, Summer Crook Neck. Late: Delicious, Hubbard.

Tomatoes.—Early: Sparks' Earliana, Chalk's Early Jewel, Bonny Best, Dominion Day (scarlet). Medium: Matchless, Trophy (scarlet), Livingston's Globe, Plentiful (purplish pink).

Turnips.—Early: Extra Early Milan, Red Top Strap Leaf.

Swedes.—Champion Purple Top, Skiving's Improved.

TOMATOES UNDER GLASS.

In the annual report for 1912, the results of a variety test of tomatoes in a small greenhouse at the Central Experimental Farm were recorded. During the past year, eighteen varieties and strains were again tested in the same house. This house is used for ornamental plants as well, and only part of the space was available for the tomato plants. The plants were set fifteen inches apart in a single row on the benches on each side of a central walk, sufficiently far back so that a row of begonias could be grown in front of them. As they grew, the plants were tied to wires and kept pruned to single stems. Four plants of each variety were used, two plants of each variety being on each side of the walk opposite each other. The seed was sown on June 12, 1912, germinated on June 18, the young plants were pricked out in a cold frame on June 24 and planted in the greenhouse on July 24. The plants made rapid growth and the first ripe fruit was picked on September 16 from Sparks Earliana No. 10 strain. Early in the season, the plants produced large clusters of flowers, the fruit set well and there were prospects of a good crop, but, during the months of August and September, there was much rain and dull weather, there being 99.0 hours less sunshine than the average during August, and 108.0 hours less than the average during September. As a result there was a poor setting of fruit during September. By the end of that month, the plants had reached the top of the house and, as there was practically no fruit on them except near the bottom, it was decided, as an experiment, to head them back to within three feet of the soil. This was done on September 28. Most of the plants, though checked severely, recovered from the effects of the heading-back and made medium growth again. On the new growth some moderately good fruit set, but the results obtained from such severe checking of the plants were not such as to warrant recommending it, as the different varieties did not recover equally well from the heading-back. The yields obtained in 1912-13 are not reliable, but, as indicating the varieties which are likely to give the largest yields in an unfavourable season, and under such treatment, the following record is given of the six most productive sorts, the varieties tested being Winter Beauty, Industry O.A.C. Selected 1910, Industry O.A.C. Selected 1910-11, Improved Express, Sutton's Satisfaction, Sparks Earliana No. 10, Bonny Best, Sparks Earliana (C.E.F. 712) Chalk's Early Jewel, Dobbie's Champion, Dominion Day, Wealthy, Sutton's A1, XXX Earliest Scarlet, Cox's Earliest, Greater Baltimore, Livingston's Globe.
<table>
<thead>
<tr>
<th>Name</th>
<th>Number of Plants</th>
<th>Date of First Picking</th>
<th>Date of Last Picking</th>
<th>Number of Pickings</th>
<th>Largest yield from single picking</th>
<th>Date of largest yield from single picking</th>
<th>Total yield of ripe fruit</th>
<th>Average yield per plant (lb. and oz.)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Beauty</td>
<td>4</td>
<td>Oct. 8, 1912</td>
<td>Feb. 10, 1913</td>
<td>9</td>
<td>2 2/3 oz.</td>
<td>Nov. 15, 1912</td>
<td>16 lb. 15 oz.</td>
<td>4 lb. 3 oz.</td>
<td>Roundish, smooth, slightly under medium size; flesh soft, watery, and slightly acid, of rather poor quality. Scarlet.</td>
</tr>
<tr>
<td>Improved Express</td>
<td>4</td>
<td>Sept. 26, 1912</td>
<td>Nov. 29, 1912</td>
<td>9</td>
<td>16 oz.</td>
<td>Nov. 24, 1912</td>
<td>16 lb. 5 oz.</td>
<td>1 lb. 1 oz.</td>
<td>Roundish, smooth, uniform, large; flesh firm, juicy, slightly acid. Scarlet.</td>
</tr>
<tr>
<td>Sparks Earliana (No. 10 Johnson)</td>
<td>4</td>
<td>Sept. 16, 1912</td>
<td>Nov. 10, 1913</td>
<td>8</td>
<td>23 oz.</td>
<td>Nov. 17, 1913</td>
<td>15 lb. 5 oz.</td>
<td>3 lb. 13 oz.</td>
<td>Irregular, angular, deeply corrugated and not at all uniform; flesh soft and watery. Scarlet. Not a desirable variety.</td>
</tr>
</tbody>
</table>

Remarks:

- **Winter Beauty**: Roundish, smooth, slightly under medium size; flesh soft, watery, and slightly acid, of rather poor quality. Scarlet.
- **Industry (O.A.C. selected 1910)**: Oval, smooth and uniform; flesh above medium in size, firm, juicy, acid. Good quality. Scarlet. One of the best varieties.
- **Improved Express**: Roundish, smooth, uniform, large; flesh firm, juicy, slightly acid. Scarlet.
- **Sutton's Satisfaction**: Roundish, smooth, uniform in size and colour; flesh firm, juicy, sweet. Deep scarlet. A good variety.
- **Sparks Earliana (No. 10 Johnson)**: Irregular, angular, deeply corrugated and not at all uniform; flesh soft and watery. Scarlet. Not a desirable variety.
- **Bonny Best**: Roundish, flattened, very smooth, uniform in size and colour; flesh firm, juicy, slightly acid. Deep scarlet.
Last year, in a test of twenty-one varieties and strains, the most productive six in order of yield were Industry (O.A.C. Selected 1910), Sutton's Satisfaction, Industry (O.A.C. Selected 1910-11), Livingston's Globe, Dobbie's Champion and Bonny Best. It will thus be seen that the three varieties which did best for the two years were Industry, Sutton's Satisfaction and Bonny Best, but Livingston's Globe and Dobbie's Champion are also two very good ones.

POTATOES.

The season of 1912 was a very favourable one for potatoes, and, at the Central Experimental Farm, the best crop for several years was harvested in the experimental plots. New stock was obtained of most varieties and many sorts not hitherto tested were tried. The potatoes from old stock were planted in a separate field, and the yields, while recorded, were not compared with the new stock, the twelve best-yielding varieties given below being all from the new stock. In these test plots there were one hundred and thirty-six varieties, of which sixty-six sets of each were planted. The ground, which had been in clover in 1911, was ploughed early in the autumn of that year and the sod was well rotted when the potatoes were planted on May 30, 1912. The sets were cut so that they would have at least three good eyes each and were dropped one foot apart in rows two and one-half feet apart. They were covered with the hoe to ensure greater uniformity. The ground was kept thoroughly cultivated during the growing season and the plants sprayed with Bordeaux mixture to control late blight, and with a mixture of eight ounces of Paris green and one and one-half pounds of arsenate of lead to a barrel of water to kill the potato beetles. The potatoes were dug on October 7. There was little evidence of rot.

TWELVE MOST PRODUCTIVE VARIETIES OF POTATOES IN UNIFORM TEST PLOTS—1912.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name of Variety</th>
<th>Total Yield per Acre</th>
<th>Yield per Acre Marketable</th>
<th>Yield per Acre Unmarketable</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dalmeny Hero</td>
<td>680 48</td>
<td>457 36</td>
<td>123 12</td>
<td>White</td>
</tr>
<tr>
<td>2</td>
<td>Eureka Extra Early</td>
<td>563 12</td>
<td>457 36</td>
<td>105 36</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>Table Talk</td>
<td>554 21</td>
<td>488 24</td>
<td>66 12</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>Conquering Hero</td>
<td>550 12</td>
<td>409 12</td>
<td>140 48</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>Rochester Rose</td>
<td>530 48</td>
<td>448 48</td>
<td>88 12</td>
<td>Pink</td>
</tr>
<tr>
<td>6</td>
<td>Delaware</td>
<td>528 12</td>
<td>492 48</td>
<td>35 12</td>
<td>White</td>
</tr>
<tr>
<td>7</td>
<td>Burpee's Extra Early</td>
<td>519 12</td>
<td>479 36</td>
<td>39 36</td>
<td>"</td>
</tr>
<tr>
<td>8</td>
<td>Dalhousie Seedling</td>
<td>519 12</td>
<td>378 24</td>
<td>140 43</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>Early Hebron</td>
<td>514 48</td>
<td>431 12</td>
<td>83 36</td>
<td>Pink and white</td>
</tr>
<tr>
<td>10</td>
<td>Carman No. 1</td>
<td>510 24</td>
<td>466 24</td>
<td>44 12</td>
<td>White</td>
</tr>
<tr>
<td>11</td>
<td>Heathen Rose</td>
<td>501 30</td>
<td>440 48</td>
<td>61 36</td>
<td>Pink</td>
</tr>
<tr>
<td>12</td>
<td>Clyde</td>
<td>490 24</td>
<td>448 48</td>
<td>50 36</td>
<td>White</td>
</tr>
</tbody>
</table>

SPRAYING EXPERIMENTS.

Lime Sulphur versus Bordeaux for Potatoes.

An interesting spraying experiment conducted in the Horticultural Division in 1912, was one made for the purpose of comparing the relative value of the lime sulphur wash with Bordeaux mixture in controlling late blight of the potato. Only one spraying was given in this experiment, the date being July 28, 1912. One row 33 feet long of each of the nine varieties, Canadian Standard, St. Patrick, Burpee's
Extra Early, Early Puritan, Emigrant, Rose of the North, Buckeye State, Early Ohio, Bermuda Early and Rochester Rose, was sprayed with a commercial brand of lime sulphur, 1 part in 35 parts of water and Bordeaux mixture made with 6 pounds copper sulphate, 4 pounds lime, to forty gallons water and, for comparison, the same area was sprayed with Paris green, an insecticide only.

RESULTS—Average of nine varieties.

<table>
<thead>
<tr>
<th></th>
<th>Total Yield</th>
<th>Yield of Marketable Tubers</th>
<th>Yield of Unmarketable Tubers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bordeaux mixture</td>
<td>229 12</td>
<td>169 12</td>
<td>57 12</td>
</tr>
<tr>
<td>Lime sulphur</td>
<td>163 36</td>
<td>105 26</td>
<td>58 14</td>
</tr>
<tr>
<td>Unsprayed</td>
<td>156 45</td>
<td>92 24</td>
<td>64 14</td>
</tr>
</tbody>
</table>

A difference in favour of Bordeaux mixture in the total yield of 62 bushels, 36 pounds per acre, and in yield of marketable potatoes of 63 bushels, 36 pounds per acre.

ORNAMENTAL GARDENING.

In previous annual reports of the Horticultural Division, and in bulletins, considerable information has been given by the writer in regard to trees, shrubs and herbaceous plants tested at the Central Experimental Farm. Short descriptions have in many cases been published of varieties considered best for ornamental planting and, in some cases, cultural directions based on experience at Ottawa have been given.

In 1897, lists were published of one hundred of the most ornamental hardy trees and shrubs, and also one hundred of the best herbaceous perennials. In 1898, an additional list of good perennials was given. In 1899, a list was published of some good low-growing flowering shrubs, and also an additional list of good perennials. In 1900 there was given a list of the best hardy, woody, and annual climbers. In 1902, a list of best spring flowering perennials. In 1903, a list of deciduous trees, shrubs and climbers with attractive foliage, bark and fruit. In 1904, a list of the genera of trees and shrubs in the arboretum, with the number of species of each; and, in 1899, there was published a catalogue of the trees and shrubs in the arboretum which had been tested up to that date, with notes regarding hardiness.

In the annual report for 1906 a list of thirty of the best hardy flowering shrubs was given, with short descriptions. In the annual report for 1909 was published a list of the best twenty-five hardy ornamental deciduous trees, a list of best twenty-five hardy evergreens, and a list of the best lilacs, with short descriptions. A descriptive list of the best philadelphus or mock orange appeared in the report for 1910. Finally, in 1912, an article on 'Hardy Roses and their Culture' was published in the annual report and also in bulletin form.

In 1911, Mr. F. E. Buck, B.S.A., was appointed to assist the writer in ornamental gardening and, during the past three seasons, considerable experimental work has been in progress which will be reported upon as rapidly as the material can be got into order. Especial attention has been paid to annuals, and following is an article prepared by Mr. Buck on 'Everlastings' which will no doubt be read with much interest:—
Everlasting Flowers

By

F. E. Buck, B.S.A., Assistant in Ornamental Gardening.

Amongst popular annual flowers grown in European countries, those known as 'Everlastings' hold a conspicuous place. They retain their shape, colours, etc., after being dried, and will last for months, even several years, when gathered at the right stage.

In France, the French Immortelles (Helichrysum arenarium, and the Xeranthemums) are used extensively in the manufacture of memorial wreaths and crosses. Large quantities of these and other varieties known under the same general name of 'Everlastings' are exported from both France and Germany to all parts of the world. In some instances, the flowers are bleached white and then dyed in various colours.

In 1912, a collection of the seed of these flowers was ordered from two well-known seed firms, and sown with the seeds of other annuals under test for that season. Amongst the collection of several hundred varieties of annual flowers, the 'Everlastings' grew as luxuriantly as most, gave more blossoms per plant than most, and continued in flower for a longer period than the majority of the others.

The varieties grown were as follows:

1. Helichrysum...

The 'Common Everlasting' of English and American gardens, Helichrysum bracteatum) selected varieties in six colours, viz., golden yellow, pink, scarlet or red, silver white, purple and cream or buff. It is generally considered that these do best in a sandy type of soil. They were planted (as were all the everlastings) in a sandy soil. A good supply of rain fell in 1912 and the Helichrysums not only grew taller than usual but bloomed most profusely during a period of two to three months. Repeated cutting encouraged further growth. The flowers of the Helichrysums are from one to two and a half inches across and resemble slightly the annual asters. Height, three feet to five feet.

2. Acroclinium.

These are 'Everlastings' somewhat resembling a large daisy. The plants grow about fifteen inches to eighteen inches high. They are to be had in two colours, white, and a pretty shade of rose pink. They are sold as singles and doubles, but at Ottawa nearly all the flowers have come either double or semi-double. The flowers are produced singly on stalks growing from the base of the plant. For this reason, it is easy to cut them with long stems and at the right stage for drying. They are less stiff-looking than the Helichrysums and quite pleasing in appearance as a cut flower in vases. They are also quite useful grown as ordinary flowers in borders and by picking off the old heads may be kept in bloom for ten weeks or more. The flowers vary from three-fourths of an inch to one and a half inches across.

3. Rhodanthe.

This little 'Everlasting' does not grow much over a foot high, but it has a European reputation because of its graceful habit of growth. The nodding heads, pink in colour, on long pedicels retain their grace when dried. The flowers are about three-quarters of an inch across. The blooming season is not so long as of the two former 'Everlastings,' about eight weeks being the limit. It does well, and looks well, grown in either borders or beds.

16—20
4. Ammobium.

Ammobium allum derives its varietal name from the broadly-winged branches which give it a distinctive appearance as a plant. The flowers are rather small and for that reason less valuable than the three former, and, since there are several to a branch, it is more difficult to cut the Ammobium at the right stage for drying. When cut at the right stage they may, however, be used to good advantage to mix in with other 'Everlastings.' The flowers are silvery-white, about three-quarters of an inch across, and somewhat like a small daisy. The plant is rather straggling in habit of growth.

5. Helipterum.

Helipterum Sandfordi is the least attractive of the 'Everlastings.' It is bright yellow in colour and in habit of growth somewhat resembles a dwarf type of 'Goldenrod.' It is useful for mixing in with the other 'Everlastings.' Height, about one foot.

The Gomphrenas are also 'Everlastings' and the only ones possessing a common name. They are known as 'Globe Amaranths,' and are to be had in about six colours, the most attractive of which are rosea, rubra and aurea superba. The flowers are globular in form and rather stiff-looking. Plants grow about one foot high. They are quite tender to frosts. As a greenhouse plant they do very well.

Botanical Note.—All of the above plants, with the exception of the last one, belong to the Composite. They are all natives of either South Africa or Australia. The genus Helichrysum contains several hundred species, but only those noted are of commercial value. Rhodanthe, Acrocliniums and Ammobiums are included in the genus Helipterum and have received these special horticultural names on account of the marked differences in the habits of the plants. The Ammobium is a sand-loving plant from Australia.

The Globe Amaranths (Gomphrena globosa) belong to the family Amaranthaceae, and are also sometimes called, with other plants, Bachelor's Buttons. The showy bracts hide the true flowers.

Xeranthemum and other Everlastings.

Note.—The well-known Xeranthemums (French Immortelles) are under test this year (1913) and promise to take a high place in the list of everlastings. Several of the ornamental grasses which may be used with good effect with most of the everlastings are also included in the 1913 trials. Other 'Everlastings,' including the native 'Pearly Everlasting' and 'Cudweed,' while not possessing commercial value, are sometimes grown. Such are under observation and if any are found worthy will be reported on later.

Notes on Culture.—The seed of these plants was sown in flats about the middle of April and the young plants put out the first week in June. By July 21, most were in flower and they continued to bloom till early in November, the Helichrysums withstood several degrees of frost. Seed may also be sown in the open ground the latter part of May. In such cases, the plants will not bloom till about the first week of August. The plants should be thinned out to about six inches apart.
EXPERIMENTAL STATION, CHARLOTTETOWN, P.E.I.

REPORT OF THE SUPERINTENDENT—J. A. CLARK, B.S.A.

AREA.

The area now devoted to horticulture, including wood-lots and avenues, is about twenty-one acres.

The wood-lots and avenues were cleared of much of the underbrush, a splendid picnic ground being prepared in the grove just north of the Station buildings. New avenues and roads were opened up as needed and kept in good condition by the occasional use of the split-log drag.

TREE FRUITS.

APPLES.

The season of 1912 was an off year with the most of the fruit trees in the old orchard at the Experimental Station, one section of a Red Quarrenden tree being an exception. This tree was stripped of its bloom on one side several years ago and has since that time produced a crop every year on alternate sides.

No fruit was borne in the new orchard that was set in the spring of 1910. These trees have made a strong, vigorous growth and have not been injured to any extent by insects or diseases, as shown by the small percentage of loss (5.6 per cent in three years) from all causes, including accidents. An addition of forty trees was made to the orchard early in May, 1912.

CHERRIES.

The cherry orchard gave profuse bloom, which was injured to some extent by frost. Quite a number of the trees bore fruit, but it was taken by the robins before it was fully ripe.

PLUMS.

The plum trees have made very strong, vigorous growth. The trees have been free from disease or insects. They have been sprayed regularly at the same time as the apples with lime-sulphur, and up to the present have been entirely free from black-knot, which has caused so much damage to plum trees throughout the province.

PEARS.

The pear trees have grown the best, and are the most thrifty trees at the Station. Only one tree has died since planting. It was killed by an accident. Two trees of the Lucrative variety were loaded with excellent fruit.

SMALL FRUITS.

The small fruit plantation gave highly satisfactory returns during the season.
GRAPES.

The grape vines that were set in 1910 were heavily loaded with fruit. Among these the Delaware and the Golden Drop matured before the others and were of good flavour. The Lindley and the Worden were much heavier yielders, the fruit being only fair quality.

Among the vines set in 1911, the Moyer ripened a small quantity of fruit. This variety is the earliest that has been tried at this Station, and gives promise of being the most satisfactory for this climate.

CURRANTS.

The red and white currants were loaded to the ground with fruit in 1912. There is no demand for this fruit in Prince Edward Island as it is scarcely used at all. A trial shipment was made to Nova Scotia, but the returns, after payment of freight, etc., were small. The Greenfield gave the best yield of red currants, and the Large White the best yield among the white varieties.

The black currants gave a fair yield. The bushes are strong and should be in full bearing next season. The demand is much greater than for either red or white, and they command a good price. The Saunders variety gave the largest yield; the fruit being of medium size and of good quality.

GOOSEBERRIES.

The gooseberry bushes grew well and gave a fair average crop of fruit. The currant worm appeared several times, but they were destroyed while in groups, before they spread over the bush. We did not find it necessary to use poison. The Houghton and Smith's Improved gave much the largest yields.

RASPBERRIES.

Among the varieties of raspberries tested, the Herbert (red) led in yield, with Shaffer (purple) a close second. The Columbian (purple) and the Cuthbert (red) are also two excellent varieties that gave large yields. The Golden Queen, a white variety, had a very long season, but gave rather a small total yield. The Black-cap varieties were all so badly infected with 'Anthracnose' that they were pulled up and destroyed.

DEWBERRIES.

Many of the Lucretia dewberry plants were injured by frost. Those which wintered gave good yields of most delicious fruit; the period of fruiting being almost as extended as that of the Golden Queen raspberry. This fruit was difficult to sell, as it was not known here. The plant is not nearly so hardy as the red raspberry.

BLACKBERRIES.

Three varieties of blackberries were set in 1910 but have been killed back every winter, so that, while the new canes grew strong and large, no old canes remained to produce fruit.

STRAWBERRIES.

The strawberries were the most satisfactory fruit grown at the Station during the season. Two dozen varieties were grown. With the exception of some fruit destroyed by continuous heavy rains, the fruit was harvested and marketed in excellent condition.
The Excelsior was the earliest fruit ripe, but gave rather a light crop of poor quality. The Warfield and Clyde were the leaders, the Warfield being an excellent shipping berry, along with its heavy yielding qualities. The Parker Earle was the latest to produce good fruit. Bedemwood and Splendid are two varieties that are recommended.

TREES AND SHRUBS.

The trees and shrubs on the lawns about the Station buildings and along the avenues made good growth during the summer, many of them being very showy. Among these might be mentioned *Daphne Mezereum*, blooming before the crocus; *Spiraea arguta*, which was a mass of white bloom during June, and *Hydrangea paniculata grandiflora* with its abundant bloom in the late autumn. The belt of land along the railway, that was planted to shrubs, was seeded down to lawn which improved the front of the Station very much.

VEGETABLES.

About 150 plots of garden vegetables were tested in 1912. Brief mention will be made of only a limited number of these. Club-root (*Plasmodiophora Brassicae* Worr.) injured both cabbage and cauliflower to some extent. The cutworms appeared in large numbers, but were controlled by scattering poisoned bran along the rows.

ASPARAGUS.

The early asparagus was killed back with frost on May 22, but came on well later and gave a fair crop.

BEETS.

The table beets all gave a return of more than 15.0 tons per acre. The Ruby Dulcet and Egyptian Dark Red turnip being ready for use before the others.

BEANS.

The wet season caused considerable anthracnose among the beans. While they produced a large quantity of green beans, they did not ripen evenly or well for shelling or seed purposes.

BRUSSELS SPROUTS.

The Brussels Sprouts grew splendid stalks covered with excellent heads. Many of the heads were infested with a small green worm similar to a cabbage worm.

CABBAGE.

Sixteen varieties of cabbage were grown. Early Paris Market and Early Jersey Wakefield were good for early market. The Improved Amager Danish Ballhead and the Extra Amager Danish Ballhead gave the largest yield of good heads.

CAULIFLOWER.

Except for the few that were injured with Club-root, the cauliflower gave good returns, the Early Snowball doing best.

CARROTS.

Three varieties of table carrots were grown, the Half Long Chantenay being the best.
The season was favourable to celery, and all the varieties did well. The Rose Ribbed Paris, though not producing as high a yield as some others, was the favourite. French Success, Paris Golden Yellow and Evans Triumph were the heaviest yielders.

Corn.

The corn grew well and formed many ears but owing to the most unfavourable weather for many years for corn, the great bulk of it did not mature. Not any ripened enough for seed. Early Evergreen, pulled September 2, was the first fit for use.

Cucumbers.

Among the three varieties tested, the Peerless White Spine was both earlier and more prolific than the others.

Lettuce.

The thirteen varieties of lettuce were all so good that it was impossible to state which was the best. The Grand Rapids and Wheeler’s Tom Thumb were favourites.

Onions.

Among the onions, the Large Red Wethersfield and Danvers Yellow Globe led. It was found best to leave the plants so close in the row that they crowded one another half out of the ground. This caused them to ripen more quickly.

Peas.

The early garden peas gave large returns; Heroine and Premium Gem leading a list of twelve.

Radish.

Both the Forcing Turnip Scarlet and the Turnip Early Scarlet White Tipped radish were satisfactory.

Rhubarb.

Ten varieties of rhubarb set in the autumn of 1911 made good growth and gave a fair crop.

Squash.

Of the seven varieties of squash tested the Long Vegetable Marrow and the Hubbard proved to be heavy yielders and the best keepers.

Salsify.

Salsify or Oyster Plant, which is a very promising vegetable, gave a splendid crop.

Tomatoes.

The dull wet season delayed the ripening of the tomatoes. A very good crop, however, was harvested. Bonny Best was slightly ahead of three strains of Sparks’ Earliana received from the Central Experimental Farm. Rennie’s XXX Earliest, though not so heavy a yielder, ripened as soon as the earliest strain of Sparks’ Earliana.

Potatoes.

The potato crop of 1912 was above the average. When dug, there was very little rot reported. They afterwards kept well. The seed was kept in the cellar of the Superintendent’s residence. The potato plants came up all right; shortly afterwards, however, it was noticed that many of the plants in certain varieties appeared stunted. They
remained stationary in growth. These affected plants did not produce any saleable tubers. Samples of the injured plants were sent from time to time to the Division of Botany, Central Experimental Farm, Ottawa, Canada, and Mr. Eastham made two personal visits during the season to the field. Upon investigation it was found that seed from this cellar had proved worthless for seed in former years. There were several inquiries from farmers describing a similar trouble in their potato fields. Nothing definite has yet been learned except that all of the seed potatoes obtained from other sources and planted at this Station were free from the trouble.

In the table that follows, the varieties of potatoes numbered from 1 to 8 were obtained from outside sources. Nos. 9 to 28 were all kept in the cellar referred to, at a low, almost constant, temperature. Conditions seemed as good as they could be made. It will be noticed that some varieties were much more resistant than others. The number of vigorous plants in each case is given, in the computed area. In the second part of the table the results are computed from 66 actual stalks, dug from a continuation of the same row, in order to obtain the number of vigorous plants there should have been in the measured area.

The seed was cut in four, being split from end to end and then across the middle of the potato. The plants were sprayed regularly every ten days throughout the growing season with Bordeaux containing Paris green.

The land was a sandy loam, well manured with stable manure, which was worked thoroughly into the land two weeks before the seed was planted. The yield per acre was computed from the weight of one row 66 feet long. The sets were planted on May 22, and the tubers dug on October 7. No rot was found in any of the varieties.

Potatoes.—Test of Varieties

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>No. of Vigorous Plants</th>
<th>Bush Lb</th>
<th>Bush Lb</th>
<th>Bush Lb</th>
<th>Bush Lb</th>
<th>Bush Lb</th>
<th>Bush Lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lion's Paw</td>
<td>59</td>
<td>519</td>
<td>28,484</td>
<td>68,35</td>
<td>556</td>
<td>19,519</td>
<td>45,56</td>
</tr>
<tr>
<td>2. Table Talk</td>
<td>42</td>
<td>519</td>
<td>16,130</td>
<td>75,70</td>
<td>483</td>
<td>22,600</td>
<td>19,88</td>
</tr>
<tr>
<td>3. Orwell Square</td>
<td>58</td>
<td>492</td>
<td>56,458</td>
<td>17,34</td>
<td>395</td>
<td>47,901</td>
<td>52,34</td>
</tr>
<tr>
<td>4. Fitzgerald</td>
<td>54</td>
<td>445</td>
<td>18,413</td>
<td>36,29</td>
<td>455</td>
<td>37,675</td>
<td>59,97</td>
</tr>
<tr>
<td>5. Wee McGregor</td>
<td>58</td>
<td>428</td>
<td>34,102</td>
<td>26,26</td>
<td>313</td>
<td>20,463</td>
<td>59,29</td>
</tr>
<tr>
<td>6. Green Mountain</td>
<td>54</td>
<td>421</td>
<td>90,378</td>
<td>82,48</td>
<td>874</td>
<td>41,63</td>
<td>14,19</td>
</tr>
<tr>
<td>7. Solana Burbank</td>
<td>46</td>
<td>407</td>
<td>41,363</td>
<td>56,13</td>
<td>465</td>
<td>28,445</td>
<td>38,49</td>
</tr>
<tr>
<td>8. White Rose</td>
<td>60</td>
<td>369</td>
<td>66,336</td>
<td>29,31</td>
<td>374</td>
<td>60,342</td>
<td>14,31</td>
</tr>
<tr>
<td>9. McIntyre</td>
<td>41</td>
<td>450</td>
<td>12,391</td>
<td>19,28</td>
<td>536</td>
<td>21,578</td>
<td>43,64</td>
</tr>
<tr>
<td>10. Gold Coin</td>
<td>44</td>
<td>442</td>
<td>28,110</td>
<td>22,23</td>
<td>630</td>
<td>06,595</td>
<td>33,30</td>
</tr>
<tr>
<td>11. Dree's Standard</td>
<td>54</td>
<td>639</td>
<td>90,393</td>
<td>97,66</td>
<td>913</td>
<td>12,439</td>
<td>62</td>
</tr>
<tr>
<td>12. Vick's Extra Early</td>
<td>47</td>
<td>416</td>
<td>21,856</td>
<td>41,29</td>
<td>400</td>
<td>50,467</td>
<td>22,33</td>
</tr>
<tr>
<td>13. Empire State</td>
<td>57</td>
<td>345</td>
<td>57,305</td>
<td>48,10</td>
<td>638</td>
<td>60,665</td>
<td>14,52</td>
</tr>
<tr>
<td>14. Ashleaf Kidney</td>
<td>31</td>
<td>344</td>
<td>41,310</td>
<td>38,33</td>
<td>556</td>
<td>03,568</td>
<td>45,18</td>
</tr>
<tr>
<td>15. Camman No. 1</td>
<td>49</td>
<td>335</td>
<td>46,244</td>
<td>29,57</td>
<td>173</td>
<td>02,134</td>
<td>34,18</td>
</tr>
<tr>
<td>16. Rochester Rose</td>
<td>31</td>
<td>373</td>
<td>25,227</td>
<td>01,46</td>
<td>248</td>
<td>33,335</td>
<td>65,46</td>
</tr>
<tr>
<td>17. Rural New Yorker</td>
<td>39</td>
<td>367</td>
<td>18,236</td>
<td>50,30</td>
<td>251</td>
<td>12,347</td>
<td>31,38</td>
</tr>
<tr>
<td>19. American Wonder</td>
<td>19</td>
<td>233</td>
<td>55,200</td>
<td>12,35</td>
<td>412</td>
<td>37,598</td>
<td>10,66</td>
</tr>
<tr>
<td>20. Irish Cobbler</td>
<td>21</td>
<td>232</td>
<td>38,185</td>
<td>04,47</td>
<td>348</td>
<td>50,299</td>
<td>53,48</td>
</tr>
<tr>
<td>21. Hard to Beat</td>
<td>29</td>
<td>222</td>
<td>20,172</td>
<td>54,89</td>
<td>276</td>
<td>58,211</td>
<td>28,55</td>
</tr>
<tr>
<td>22. Burbank's Seedling</td>
<td>24</td>
<td>184</td>
<td>47,144</td>
<td>53,39</td>
<td>163</td>
<td>60,336</td>
<td>11,66</td>
</tr>
<tr>
<td>23. Late Portion</td>
<td>20</td>
<td>168</td>
<td>42,155</td>
<td>22,18</td>
<td>226</td>
<td>45,667</td>
<td>38,59</td>
</tr>
<tr>
<td>24. Factor</td>
<td>25</td>
<td>168</td>
<td>26,117</td>
<td>01,51</td>
<td>290</td>
<td>24,213</td>
<td>63,75</td>
</tr>
<tr>
<td>25. Up to Date</td>
<td>43</td>
<td>168</td>
<td>18,101</td>
<td>58,66</td>
<td>217</td>
<td>36,168</td>
<td>18,104</td>
</tr>
<tr>
<td>26. Sutton's White City</td>
<td>23</td>
<td>146</td>
<td>34,110</td>
<td>49,35</td>
<td>459</td>
<td>59,199</td>
<td>18,51</td>
</tr>
<tr>
<td>27. Mon-ey Maker</td>
<td>14</td>
<td>123</td>
<td>20,109</td>
<td>36,13</td>
<td>426</td>
<td>13,388</td>
<td>21,29</td>
</tr>
<tr>
<td>28. Morgan's Seedling</td>
<td>9</td>
<td>119</td>
<td>04,77</td>
<td>49,41</td>
<td>80</td>
<td>48,189</td>
<td>51,89</td>
</tr>
</tbody>
</table>
All the experiments were more or less affected by the injury mentioned previously, so that the data should be considered relatively only.

An experiment was conducted with Rural New Yorker potatoes to determine the effect of certain fertilizers in conjunction with an application of barnyard manure, which was applied evenly on all the plots at the rate of 22 tons per acre.

Experiments with Potatoes.

Different Applications of Fertilizers.

<table>
<thead>
<tr>
<th>Row</th>
<th>Treatment, Pounds per Acre</th>
<th>Total Yield per Acre</th>
<th>Yield of Marketable per Acre</th>
<th>Yield of Unmarketable per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>...</td>
<td>350</td>
<td>200</td>
<td>289</td>
</tr>
<tr>
<td>b</td>
<td>250</td>
<td>350</td>
<td>200</td>
<td>356</td>
</tr>
<tr>
<td>c</td>
<td>...</td>
<td>175</td>
<td>100</td>
<td>516</td>
</tr>
<tr>
<td>d</td>
<td>125</td>
<td>175</td>
<td>100</td>
<td>335</td>
</tr>
<tr>
<td>e</td>
<td>400 pounds basic slag.</td>
<td>243</td>
<td>66</td>
<td>292</td>
</tr>
<tr>
<td>f</td>
<td>Check.</td>
<td>220</td>
<td>...</td>
<td>186</td>
</tr>
</tbody>
</table>

An experiment was conducted with Burbank's Seedling to determine the best date to plant potatoes.

Different Dates of Planting Potatoes.

<table>
<thead>
<tr>
<th>Row</th>
<th>Date of Seeding</th>
<th>Total Yield per Acre</th>
<th>Total Yield of Marketable</th>
<th>Total Yield of Potatoes, not Marketable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>May 23</td>
<td>319</td>
<td>...</td>
<td>292</td>
</tr>
<tr>
<td>b</td>
<td>June 6</td>
<td>248</td>
<td>36</td>
<td>198</td>
</tr>
<tr>
<td>c</td>
<td>June 13</td>
<td>303</td>
<td>36</td>
<td>265</td>
</tr>
<tr>
<td>d</td>
<td>June 20</td>
<td>114</td>
<td>36</td>
<td>133</td>
</tr>
<tr>
<td>e</td>
<td>June 27</td>
<td>185</td>
<td>30</td>
<td>78</td>
</tr>
</tbody>
</table>

An experiment was conducted to observe the effect of liming sets and not liming them; planting them at once and holding them for one week after cutting.

Different Dates of Planting Limed vs. Not Limed Sets.

<table>
<thead>
<tr>
<th>Row</th>
<th>Treatment</th>
<th>Yield per Acre</th>
<th>Yield per Acre of Marketable</th>
<th>Yield per Acre Unmarketable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Limed and planted May 23</td>
<td>274</td>
<td>68</td>
<td>223</td>
</tr>
<tr>
<td>b</td>
<td>Not limed, planted May 23</td>
<td>199</td>
<td>66</td>
<td>152</td>
</tr>
<tr>
<td>c</td>
<td>Limed and planted May 30</td>
<td>193</td>
<td>36</td>
<td>146</td>
</tr>
<tr>
<td>d</td>
<td>Not limed, planted May 30</td>
<td>214</td>
<td>30</td>
<td>166</td>
</tr>
</tbody>
</table>
Iris and Paeonies, Charlottetown, P. E. I.

Experimental Station, Charlottetown, P. E. I. Young orchard in distance.
FLOWERS.

The season of 1912 was most favourable for flowers. From early spring until the late autumn the grounds at the Experimental Station were adorned with a profusion of bloom. In the early spring the crocuses and squills unfolded almost in the snow; these were followed by great beds of tulips and narcissus, which bloomed to perfection in this moist climate. As the season advanced, irises in great clusters, then peonies, great balls of beauty, many coloured, came and went, their beautiful foliage lasting throughout the summer. The annuals all came into competition with the roses, whose period of bloom extended from July 4 until November 16. Each had its own particular beauty; the Perpetual roses being to many the greatest wonder. Eighty-one varieties of sweet peas that were sown April 17, began blooming July 7, and continued until November 4. The average height attained was over 8 feet. Among the many other flowers deserving special mention, the beautiful collection of carnations, which had wintered outside, should have first place. The perennial phlox and asters during their season were very attractive. In the pond to the west of the barn the Kentucky water lilies covered a portion of the surface with their beautiful glossy leaves intermingled with large pink and white blossoms.

Detailed records of all flowers grown were kept for reference.
EXPERIMENTAL FARM, NAPPAN, N.S.

REPORT OF THE SUPERINTENDENT—R. ROBERTSON.

Following will be found the Horticultural Report of the Experimental Farm, Nappan, N.S., for 1912-13.

The apple crop of 1912 was above that of 1911 in quantity, but the quality was about the same, this being mostly due to the very wet season and lack of sunshine, which has a tendency to cause a lack of rich flavour and high colour.

The trees in the commercial orchard, which was set in the spring of 1911, made good growth in 1912, having come through the winter very well, there being only four trees which had to be removed in the spring, namely: two Golden Russets, one McIntosh Red and one Blue Pearmain.

A close record has been kept of the cost of planting and care of this orchard, and the details of expenditures are given below.

Cost of Commercial Orchard, 1911-12.

<table>
<thead>
<tr>
<th>Date</th>
<th>Number of hours manual labour</th>
<th>Number of hours horse labour and teamster</th>
<th>Cost</th>
<th>Work engaged at</th>
</tr>
</thead>
<tbody>
<tr>
<td>1911</td>
<td></td>
<td></td>
<td>$8.00</td>
<td></td>
</tr>
<tr>
<td>April 12, '12 1 man 1 day at $1.70</td>
<td>1.70</td>
<td>1 horse 1 day at $2.70</td>
<td>$2.70</td>
<td>Spraying (lime wash).</td>
</tr>
<tr>
<td>May 1, '12 2 men ½</td>
<td>1.70</td>
<td>3.40</td>
<td>1 team 1 day at $3.40</td>
<td>$3.40</td>
</tr>
<tr>
<td>" 15, '12 2 " 1 "</td>
<td>1.70</td>
<td>3.40</td>
<td>1 team 1 day at $3.40</td>
<td>$3.40</td>
</tr>
<tr>
<td>" 30, '12</td>
<td>1.70</td>
<td>3.40</td>
<td>1 team 1 day at $3.40</td>
<td>$3.40</td>
</tr>
<tr>
<td>June 1, '12 1 man 1 day at $1.70</td>
<td>1.70</td>
<td>1 horse 1 day at $2.70</td>
<td>$2.70</td>
<td>Spraying (Bordeaux).</td>
</tr>
<tr>
<td>" 5, '12 2</td>
<td>1.70</td>
<td>3.40</td>
<td>2 teams 1 day at $3.40</td>
<td>$3.40</td>
</tr>
<tr>
<td>" 6, '12 7 bush, mixed grain.</td>
<td>1.70</td>
<td>3.40</td>
<td>1 team ½ day at $3.40</td>
<td>$3.40</td>
</tr>
<tr>
<td>" 15, '12</td>
<td>1.70</td>
<td>3.40</td>
<td>1 horse 1 day at $2.70</td>
<td>$2.70</td>
</tr>
<tr>
<td>July 2, '12 2 men 1 day at $1.70</td>
<td>1.70</td>
<td>3.40</td>
<td>1 horse 1 day at $2.70</td>
<td>$2.70</td>
</tr>
<tr>
<td>" 25, '12 1 man 1 "</td>
<td>1.70</td>
<td>2.70</td>
<td>1 horse 1 day at $2.70</td>
<td>$2.70</td>
</tr>
<tr>
<td>Sept. 28, '12 1 " 1 "</td>
<td>0.85</td>
<td>1.70</td>
<td>1 team ½ day at $3.40</td>
<td>$3.40</td>
</tr>
<tr>
<td>" 28, '12 2 men ½ "</td>
<td>1.70</td>
<td>1.70</td>
<td>1 horse 1 day at $2.70</td>
<td>$2.70</td>
</tr>
</tbody>
</table>

Total cost $83.25
SMALL FRUITS.

The small fruit plantation, which was set out in the spring of 1911, came through the winter well, all the currant bushes looking very healthy and yielding a fair crop this summer.

The yield of each variety was kept and is as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>No. of Bushes</th>
<th>Quality</th>
<th>Date</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climax</td>
<td>5</td>
<td>Good</td>
<td>July 31</td>
<td>8</td>
</tr>
<tr>
<td>Victoria</td>
<td>5</td>
<td>"</td>
<td>"</td>
<td>3</td>
</tr>
<tr>
<td>Collin's Prolific</td>
<td>5</td>
<td>"</td>
<td>"</td>
<td>3</td>
</tr>
<tr>
<td>Trophy</td>
<td>5</td>
<td>Medium</td>
<td>"</td>
<td>3</td>
</tr>
<tr>
<td>Ontario</td>
<td>5</td>
<td>Good</td>
<td>"</td>
<td>3</td>
</tr>
<tr>
<td>Buddenbergs</td>
<td>5</td>
<td>"</td>
<td>"</td>
<td>6</td>
</tr>
<tr>
<td>Saunders</td>
<td>5</td>
<td>Poor</td>
<td>"</td>
<td>4²</td>
</tr>
<tr>
<td>Kerry</td>
<td>5</td>
<td>Medium</td>
<td>"</td>
<td>1</td>
</tr>
<tr>
<td>Success</td>
<td>5</td>
<td>Good</td>
<td>"</td>
<td>4</td>
</tr>
<tr>
<td>Clipper</td>
<td>5</td>
<td>"</td>
<td>"</td>
<td>2½</td>
</tr>
<tr>
<td>Eagle</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

		Red		
Greenfield	5	Medium	August 1	2
Red Grape	5	Good	"	6
Cumberland	5	"	"	3
Red Dutch	5	Medium	"	2
Wilder	5	Good	"	2
Victoria	5	"	"	3
Rankin Red	5	"	"	1
Pomona	5	"	"	4
Fay	5	"	"	1

		White		
Large White	5	Good	August 1	3
White Cherry	5	"	"	2
White Grape	5	"	"	3
The strawberry crop of 1912 gave promise of being another large one and the yield was good up to the last two pickings, when the berries were practically ruined by rain storms.

The following are the yields of the twenty best varieties. Size of the plots 16½ feet by 5 feet, or one 528th part of an acre:

<table>
<thead>
<tr>
<th>Name</th>
<th>July 4</th>
<th>July 7</th>
<th>July 14</th>
<th>July 20</th>
<th>July 22</th>
<th>Yield per plot</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parker Earle</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>24</td>
<td>12,572</td>
</tr>
<tr>
<td>Crescent</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>22</td>
<td>11,615</td>
</tr>
<tr>
<td>Pearl</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>22</td>
<td>11,615</td>
</tr>
<tr>
<td>Lovena</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>21</td>
<td>11,088</td>
</tr>
<tr>
<td>Warfield</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>9,504</td>
</tr>
<tr>
<td>Paris King</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td></td>
<td>18</td>
<td>9,504</td>
</tr>
<tr>
<td>Capt. Jack</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td></td>
<td>18</td>
<td>9,504</td>
</tr>
<tr>
<td>Princess</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td>17</td>
<td>8,976</td>
</tr>
<tr>
<td>Carrie</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
<td>17</td>
<td>8,976</td>
</tr>
<tr>
<td>Beder Wood</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>17</td>
<td>8,976</td>
</tr>
<tr>
<td>Haverland</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td></td>
<td>17</td>
<td>8,976</td>
</tr>
<tr>
<td>Ida</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>16</td>
<td>8,488</td>
</tr>
<tr>
<td>G. H. Coughill</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>8,488</td>
</tr>
<tr>
<td>Early Beauty</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td></td>
<td>16</td>
<td>8,488</td>
</tr>
<tr>
<td>Splendid</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>16</td>
<td>8,488</td>
</tr>
<tr>
<td>Michel Early</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>8,488</td>
</tr>
<tr>
<td>Morgan Favorite</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td></td>
<td>15</td>
<td>7,920</td>
</tr>
<tr>
<td>John Little</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
<td>4</td>
<td>15</td>
<td>7,920</td>
</tr>
<tr>
<td>H. W. Beecher</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
<td>15</td>
<td>7,920</td>
</tr>
</tbody>
</table>

VEGETABLES.

Experiments with potatoes.

Nineteen varieties of potatoes were grown in uniform test plots of one-hundredth acre each, in rows thirty inches apart in the drill. The seed was cut with two strong eyes to the set, and planted in the rows one foot apart.

The soil was a sandy loam on which clover hay had been grown the previous year. A light dressing of manure was applied and ploughed under. The land was again ploughed and well harrowed, and complete fertilizer applied at the rate of 400 pounds per acre. The drills were harrowed down about the time the potatoes were coming up, and again rowed up.

The plants were sprayed three times during the season, with Bordeaux mixture, Paris green being added on two occasions to destroy potato beetles. Planted June 8, and dug October 3 and 4.
DIVISION OF HORTICULTURE

SESSIONAL PAPER No. 16

POTATOES.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Planted</th>
<th>Dug.</th>
<th>Total Yield per Acre</th>
<th>Yield per Acre of Marketable</th>
<th>Yield per Acre of Unmarketable</th>
<th>Form and Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ashleaf Kidney</td>
<td>June 8</td>
<td>Oct. 8 & 4</td>
<td>413 20</td>
<td>341 40</td>
<td>71 40</td>
<td>Flat round, white.</td>
</tr>
<tr>
<td>2. Wee McGregor</td>
<td>"</td>
<td></td>
<td>410 00</td>
<td>323 20</td>
<td>86 40</td>
<td>Oblong, white.</td>
</tr>
<tr>
<td>3. Table Talk</td>
<td>"</td>
<td></td>
<td>408 20</td>
<td>301 40</td>
<td>76 40</td>
<td>"</td>
</tr>
<tr>
<td>4. Rochester Rose</td>
<td>"</td>
<td></td>
<td>401 40</td>
<td>286 40</td>
<td>115 00</td>
<td>Round, red.</td>
</tr>
<tr>
<td>5. Vick's Extra Early</td>
<td>"</td>
<td></td>
<td>400 00</td>
<td>350 00</td>
<td>50 00</td>
<td>Long, white.</td>
</tr>
<tr>
<td>6. Everett</td>
<td>"</td>
<td></td>
<td>388 20</td>
<td>305 40</td>
<td>83 20</td>
<td>Pink.</td>
</tr>
<tr>
<td>7. Money Maker</td>
<td>"</td>
<td></td>
<td>385 00</td>
<td>288 20</td>
<td>96 40</td>
<td>Long, white.</td>
</tr>
<tr>
<td>9. Irish Cobbler</td>
<td>"</td>
<td></td>
<td>350 00</td>
<td>295 00</td>
<td>85 00</td>
<td>"</td>
</tr>
<tr>
<td>10. Reeve's Rose</td>
<td>"</td>
<td></td>
<td>333 20</td>
<td>280 00</td>
<td>83 20</td>
<td>Pink.</td>
</tr>
<tr>
<td>11. Empire State</td>
<td>"</td>
<td></td>
<td>333 20</td>
<td>281 40</td>
<td>71 40</td>
<td>Long, round, white.</td>
</tr>
<tr>
<td>12. American Wonder</td>
<td>"</td>
<td></td>
<td>330 00</td>
<td>233 20</td>
<td>96 40</td>
<td>"</td>
</tr>
<tr>
<td>13. Late Purple</td>
<td>"</td>
<td></td>
<td>326 40</td>
<td>223 20</td>
<td>73 20</td>
<td>"</td>
</tr>
<tr>
<td>14. Drees's Standard</td>
<td>"</td>
<td></td>
<td>321 40</td>
<td>228 20</td>
<td>75 20</td>
<td>"</td>
</tr>
<tr>
<td>15. Carman No. 1</td>
<td>"</td>
<td></td>
<td>308 20</td>
<td>230 00</td>
<td>78 20</td>
<td>Round, white.</td>
</tr>
<tr>
<td>17. Hard to Beat</td>
<td>"</td>
<td></td>
<td>240 00</td>
<td>200 00</td>
<td>40 00</td>
<td>Round, white.</td>
</tr>
<tr>
<td>18. Dalmeny Beauty</td>
<td>"</td>
<td></td>
<td>211 40</td>
<td>178 29</td>
<td>38 20</td>
<td>"</td>
</tr>
<tr>
<td>19. Factor</td>
<td>"</td>
<td></td>
<td>171 40</td>
<td>133 29</td>
<td>38 20</td>
<td>"</td>
</tr>
</tbody>
</table>

A further test was given to potatoes by planting in rows different distances apart, and dropping the sets different distances apart in the rows, with the following results:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Dug.</th>
<th>Distance apart of Rows</th>
<th>Distance apart of Sets</th>
<th>Yield per Acre</th>
<th>Yield Marketable</th>
<th>Yield Unmarketable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carman No. 1</td>
<td>Oct. 8</td>
<td>30 in.</td>
<td>12 in.</td>
<td>341 40</td>
<td>231 40</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>1</td>
<td>8</td>
<td>33 in.</td>
<td>14 in.</td>
<td>348 20</td>
<td>206</td>
<td>81 40</td>
</tr>
<tr>
<td>"</td>
<td>1</td>
<td>8</td>
<td>36 in.</td>
<td>15 in.</td>
<td>260 40</td>
<td>170</td>
<td>51 40</td>
</tr>
</tbody>
</table>

GARDEN VEGETABLES.

PEAS.

The seed was sown on the 3rd of June in two rows 32 feet long, one of which was allowed to ripen for seed and the other picked, of which a close record was kept.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fit for Use</th>
<th>Quality</th>
<th>Length of Pod</th>
<th>Size of Pod</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Laxton</td>
<td>July 13</td>
<td>Good</td>
<td>3-4 in.</td>
<td>Large</td>
<td>Total</td>
</tr>
<tr>
<td>Sutton's Excelsior</td>
<td>"</td>
<td>4-6 in.</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Telephone</td>
<td>"</td>
<td>3-6 in.</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Premium Gem</td>
<td>"</td>
<td>3 in.</td>
<td>Medium</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Stratagem</td>
<td>"</td>
<td>3-4 in.</td>
<td>Large</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Gradus</td>
<td>"</td>
<td>Medium</td>
<td>Small</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>American Wonder</td>
<td>"</td>
<td>3 in.</td>
<td>Medium</td>
<td>July 19</td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dates of Picking and Yield</th>
<th>Date</th>
<th>Lb.</th>
<th>Date</th>
<th>Lb.</th>
<th>Date</th>
<th>Lb.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutton's Excelsior</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Telephone</td>
<td>21</td>
<td>4-6 in.</td>
<td>27</td>
<td>11</td>
<td>Aug. 3</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>Premium Gem</td>
<td>21</td>
<td>3 in.</td>
<td>21</td>
<td>13</td>
<td>July 27</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>Stratagem</td>
<td>18</td>
<td>3-4 in.</td>
<td>19</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td>Aug. 3</td>
</tr>
<tr>
<td>Gradus</td>
<td>2</td>
<td>Medium</td>
<td>3</td>
<td>11</td>
<td>Aug. 6</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>American Wonder</td>
<td>12</td>
<td>3 in.</td>
<td>2</td>
<td>Medium</td>
<td>July 19</td>
<td>5</td>
<td>July 27</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

BEANS.

The beans were sown on the 3rd June, in duplicate rows 32 feet long, one of which was allowed to ripen for seed and the other picked, of which a close record was kept.

The row which was left to ripen did not get a chance to dry before cold weather.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fit for Use</th>
<th>Quality</th>
<th>Colour</th>
<th>Length of Pod.</th>
<th>Remarks</th>
<th>Dates of Pickings and Yields</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Refugee</td>
<td>June 23</td>
<td>Good</td>
<td>5</td>
<td>June 23</td>
<td></td>
<td>July 3</td>
<td>3</td>
</tr>
<tr>
<td>Wardell's Kidney</td>
<td>" 15 Very</td>
<td>"</td>
<td>5</td>
<td>" 17 10</td>
<td>" 23 7</td>
<td>" 29 3</td>
<td>20</td>
</tr>
<tr>
<td>Valentine</td>
<td>" 29 Good</td>
<td>"</td>
<td>4½</td>
<td>" 29 8 July 1</td>
<td>" 29 7 July 3</td>
<td>" 3 4</td>
<td>18</td>
</tr>
<tr>
<td>Dwarf Extra Early</td>
<td>July 3</td>
<td>"</td>
<td>4</td>
<td>" 23 11 Aug 3</td>
<td>" 7 4 7</td>
<td>" 3 4</td>
<td>15</td>
</tr>
<tr>
<td>Landreth's Double Barreled</td>
<td>June 30</td>
<td>Medium</td>
<td>5</td>
<td>Aug. 3</td>
<td>" 7 7 7</td>
<td>" 4 4</td>
<td>7</td>
</tr>
</tbody>
</table>

TOMATOES.

The seed was sown in the hotbeds on the 8th of April, they were pricked off into strawberry boxes the 1st of May, and remained there until the 20th of June, when they were transplanted into the open. Each plot consisted of ten strong plants, being set five feet apart each way, giving good room for cultivation and sunshine.

The season was not at all suitable for the ripening of fruit, the weather being too dull, but there was a very good set of fruit, which was nearly all harvested green. A record was kept of each plot, and is given below.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of Pickings and Yields</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matchless</td>
<td>Sept. 14 15</td>
<td>57 lb.</td>
</tr>
<tr>
<td>Livingston Globe</td>
<td>Sept. 19 20</td>
<td>55 lb.</td>
</tr>
<tr>
<td>Sparks' Earliana</td>
<td>" 22 10</td>
<td>34 lb.</td>
</tr>
<tr>
<td>Trophy</td>
<td>" 24 10</td>
<td>46 lb.</td>
</tr>
<tr>
<td>Banny Bost</td>
<td>" 26 10</td>
<td>19 lb.</td>
</tr>
<tr>
<td>Ronnie XXX</td>
<td>" 28 11</td>
<td>18 lb.</td>
</tr>
<tr>
<td>Chalk's Early Jewel</td>
<td>" 29 3</td>
<td>12 lb.</td>
</tr>
</tbody>
</table>

CABBAGE.

The cabbage was sown in the hotbeds on the 6th April and pricked off on the 29th April; where they remained until the 5th June, when they were transplanted to the open, in two rows 32 feet long and 3 feet between the rows.
SESSIONAL PAPER No. 16

Following is a record kept of the different yields:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date</th>
<th>Lb.</th>
<th>Date</th>
<th>Lb.</th>
<th>Date</th>
<th>Lb.</th>
<th>Date</th>
<th>Lb.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Jersey Wakefield</td>
<td>July 18</td>
<td>64</td>
<td>July 22</td>
<td>83</td>
<td>July 30</td>
<td>22</td>
<td></td>
<td></td>
<td>169 lb.</td>
</tr>
<tr>
<td>Early Paris Market</td>
<td>18</td>
<td>91</td>
<td>22</td>
<td>72</td>
<td>30</td>
<td>35</td>
<td></td>
<td></td>
<td>199 lb.</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>19</td>
<td>42</td>
<td>27</td>
<td>64</td>
<td>30</td>
<td>11</td>
<td></td>
<td></td>
<td>177 lb.</td>
</tr>
<tr>
<td>Danish Ballhead</td>
<td>22</td>
<td>42</td>
<td>30</td>
<td>61</td>
<td></td>
<td></td>
<td>Aug. 1</td>
<td>18</td>
<td>124 lb.</td>
</tr>
<tr>
<td>Large Low Flat Drumhead</td>
<td>3</td>
<td>42</td>
<td>7</td>
<td>64</td>
<td>15</td>
<td>71</td>
<td></td>
<td></td>
<td>117 lb.</td>
</tr>
<tr>
<td>Fottler's Imp'd. Brunswick</td>
<td>10</td>
<td>47</td>
<td>18</td>
<td>64</td>
<td>30</td>
<td>11</td>
<td></td>
<td></td>
<td>130 lb.</td>
</tr>
<tr>
<td>Small Lubeck</td>
<td>14</td>
<td>34</td>
<td>18</td>
<td>49</td>
<td>30</td>
<td>11</td>
<td></td>
<td></td>
<td>99 lb.</td>
</tr>
<tr>
<td>Small Erfurt</td>
<td>14</td>
<td>34</td>
<td>18</td>
<td>49</td>
<td>22</td>
<td>32</td>
<td></td>
<td></td>
<td>115 lb.</td>
</tr>
<tr>
<td>Winningstadt</td>
<td>22</td>
<td>64</td>
<td>30</td>
<td>22</td>
<td></td>
<td></td>
<td>Aug. 7</td>
<td>11</td>
<td>97 lb.</td>
</tr>
</tbody>
</table>

CAULIFLOWERS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date</th>
<th>Lb.</th>
<th>Date</th>
<th>Lb.</th>
<th>Date</th>
<th>Lb.</th>
<th>Date</th>
<th>Lb.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danish Giant</td>
<td>July 30</td>
<td>11</td>
<td>Sept. 10</td>
<td>22</td>
<td>Sept. 18</td>
<td>30</td>
<td></td>
<td></td>
<td>63 lb.</td>
</tr>
<tr>
<td>Early Snowball</td>
<td>27</td>
<td>31</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td>17</td>
<td></td>
<td></td>
<td>78 lb.</td>
</tr>
<tr>
<td>Extra Selected Early Erfurt Dwarf</td>
<td></td>
<td></td>
<td>5</td>
<td>11</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td>18 lb.</td>
</tr>
</tbody>
</table>

MUSK MELONS.

Musk melons were planted in the hotbeds on the 4th March and germinated very slowly. They were transplanted out in the open on the 3rd June where they grew very slowly, the melons only being about half size when the frost set in.

The following varieties were tried:

MUSK MELONS.

- Hackensack
- Hoodoo
- Montreal Market

EMERALD GEM, PAUL ROSY, EARLIEST Ripe.

WATER MELONS.

- Cole's Early
- Ice Cream

LETTUCE.

The lettuce was planted in the open on the 3rd June, and all producing good heads, with the exception of Grand Rapids which seemed to germinate slowly.

The following are the varieties which were planted:

- Cos Trianon
- Black Seeded Simpson
- All Heart
- Imp'd. Hanson

- Red Edge Victoria
- Grand Rapids
- Giant Crystal Heart
- Iceberg

CORN.

The corn was planted on the 5th June. It all germinated and made good growth until about the 22nd July, when the wet weather set in, retarding the growth so that none of the plots ripened. The following varieties are planted:
The celery was planted in flats in the hotbeds on the 4th April, and after being pricked out was allowed to harden off in cold frames, until the 30th May, when it was planted out in the open.

Trenches were dug about fourteen inches deep and six feet apart. In the bottom of each trench three to four inches of manure was put, and then covered with loose earth to the thickness of two inches, and into this we set the plants, one hundred in each row.

Notwithstanding the wet season there was a very good percentage of edible heads in the fall.

The following is the percentage of the different varieties:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris Golden Yellow</td>
<td>95</td>
</tr>
<tr>
<td>Giant Pascal</td>
<td>70</td>
</tr>
<tr>
<td>Rose Ribbed Paris</td>
<td>70</td>
</tr>
<tr>
<td>French Success</td>
<td>60</td>
</tr>
<tr>
<td>Nolls Magnificent</td>
<td>75</td>
</tr>
<tr>
<td>Evans Triumph</td>
<td>30</td>
</tr>
</tbody>
</table>

FLOWERS.

Both annuals and perennials gave very prolific bloom in 1912. The following are the annuals which do well with us:

- Asters
- Abronia
- Ageratum
- Brachycome
- Balsam
- Candytuft
- Clarkia
- Celosia
- Coreopsis
- Dianthus
- Gaillardia
- Larkspur
- Mignonette
- Nemisia
- Nicotiana
- Papaver
- Petunia
- Phlox
- Portulaca
- Stocks
- Nasturtium
- Zinnia

No additions have been made to the arboretum during the year. The trees and shrubs are a source of great interest to the visitors to the Farm. There has been satisfactory growth and no serious ravages from insects or other pests. The shrubs have, as usual, produced a wealth of bloom. Those worthy of special mention are: Tartarian honeysuckle, Caragana frutescens, common lilac, Japanese lilac, Josika's lilac and Spiraea Van Houttei.
Ravine, Experimental Station, Kentville, N.S.
EXPERIMENTAL STATION, KENTVILLE, N.S.

REPORT OF THE SUPERINTENDENT—W. S. BLAIR.

This is the first annual horticultural report of the Kentville Experimental Station.

APPLE ORCHARD.

In the spring of 1912 there were about 21 acres planted to apple trees, constituting the first orchard planted at the Station. Part of this orchard is comprised of a block of 41 acres planted 20 by 20 feet apart, the permanent trees being 40 feet apart each way. The varieties used as permanent trees are Blenheim, Ribston, Nonpareil, Hubbardston and Crimson Beauty. The fillers used in this block are Wagener, Wealthy, Milwaukee, Duchess, Ontario, Cox’s, Orange and Yellow Transparent.

It is proposed to adopt various methods in the removal of the fillers in this block to determine, if possible, how long fillers can be economically allowed to remain.

The remainder of the block was planted 40 by 40 feet apart, the following varieties being used: Northern Spy, Baldwin, R. I. Greening, Fallawater, Wellington, King, Gravenstein, Ben Davis, Gano, Banks, McIntosh, Fameuse, Wolf River, Yellow Bellflower (Bishop Pippin), Baxter, Red Astrachan and Dudley (North Star). The varieties Northern Spy, Baldwin, R. I. Greening, King, Ribston and Blenheim have been planted in equal numbers of Ontario and Nova Scotia grown nursery trees to determine the relative value of imported versus home grown trees for planting.

The planting included 114 each of Wealthy and Wagener; 58 each of Blenheim, Ribston, Northern Spy, Baldwin, R. I. Greening and King; 19 each of Ben Davis, Gano, Stark, Rome Beauty, McIntosh Red, Fameuse, Baxter, Wolf River, Red Astrachan, North Star, Cox’s Orange, Hubbardston, Duchess, Nonpareil, Milwaukee, Golden Russet, Crimson Beauty, Yellow Transparent, Ontario, Tolman, Fallawater, Wellington, Gravenstein and Bishop Pippin.

In addition to the above there were planted the following varieties of apples, from England, with number of trees of each: 2 each of Bramley Seedling, Lord Derby, Lane’s Prince Albert, Grenadier, Beauty of Bath, Gladstone, Early Julian, Lord Grosvenor, Early Victoria, Stirling Castle, Newton Wonder, Worcester Pearmain, King Pippin, Allington Pippin, Wellington, Gascoyne’s Scarlet, Warner’s King, Lord Suffield, Peasegood Nonsuch, Cox’s Pomona, Devonshire Quarrenden, Tower of Glamis, Summer Pippin, Ecklinville, Norfolk Beauty, Hector Macdonald, Edward VII, Langley Pippin, Ben’s Red, James Grieve, Baumanu’s Winter Reinette, The Houblen, Lady Sudeley, Charles Ross, Wm. Crump and Lord Stradbrooke; 1 each of St. Everard and Encore.

The seeds from a barrel each of King, Northern Spy, Blenheim, Baldwin and Ribston Pippin were sown in the autumn of 1911 with the object of obtaining seedling trees from which it is hoped to raise some good new seedling fruits. A large proportion of this seed germinated and the young trees made good growth in 1912.

SHIPMENT OF GRAVENSTEINS IN BOXES AND BARRELS.

A shipment of 45 boxes and 30 barrels of Gravensteins was made to London, England, during the past season. In order to make sure of the grade being the same 16—21
in each case, one-third of the apples from each tree were boxed and the other two-thirds were put into barrels. The shipment was made through the Berwick Fruit Co., Ltd.

The following statement was furnished by the Manager:

BERWICK, N.S., November 5, 1912.

Trial lot of apples shipped to London.

45 boxes packed by the Experimental Station.
30 barrels packed by the Berwick Fruit Co.

45 boxes sold for 5/6. Total, net, £7.11.10. (Equal to 51 cents per box, or $2.43 per barrel) $36.72
30 barrels sold for 12/6. Total $10/1 (equal to $1.62 per barrel) $48.74

Extra cost of box packing, including cost of boxes, paper, wrapping and extra handling, 15 cents per box; or barrel, 45 cents.

Packed in boxes, per barrel $2.43
Less extra cost 0.45

$1.98

Packed in barrels 1.62

Packed in boxes netted (cents per barrel more than those packed in barrels) 0.96

APPLE THINNING EXPERIMENT.

To determine whether any gain would result from removing some of the fruit from heavily laden trees, experiments were conducted during the season in an orchard in Berwick, N.S. The variety in this experiment was Gravenstein. The work of thinning was done on July 30. This was about two weeks after the June drop had occurred. The work should have been started ten days earlier for best results. The trees selected were as nearly alike as it was possible to get them and they had apparently the same set of fruit. From the thinned trees all spotted and ill-shaped fruits were removed, and only one apple was left to a fruit cluster. The apples were left from four to six inches apart and were evenly distributed over the tree.

After thinning, the ground under the thinned and unthinned tree was cleaned, and apples falling after that time were counted. This was done to find out whether thinning would prevent the excessive dropping which occurs in Gravensteins if they are heavily filled just before the fruit is mature, and also to get the number of apples each tree had on it to start with. A record was kept of the number of apples thinned from the tree.

It was found that the thinned tree had 3,137 apples and that the unthinned tree had 4,065 apples when thinning started.

Drops from thinned and unthinned trees.

<table>
<thead>
<tr>
<th>Per cent of total set removed by thinning</th>
<th>Tree Thinned</th>
<th>Tree not Thinned</th>
</tr>
</thead>
<tbody>
<tr>
<td>" which dropped after thinning</td>
<td>12.2</td>
<td>19.1</td>
</tr>
<tr>
<td>" harvested</td>
<td>69.3</td>
<td>80.9</td>
</tr>
</tbody>
</table>
It will be seen that 19 per cent of the total number of apples on the tree at the start dropped from the unthinned tree and that only 12 per cent fell from the thinned tree. There was a lessened drop of 7 per cent from thinning. This falling for the most part occurred from a little over a week before up to picking time. The fruit was picked on September 20, which was before any serious dropping had occurred. Apples which fell from the tree at picking time were not counted as drops.

Increase in Size.

<table>
<thead>
<tr>
<th></th>
<th>Thinned Tree</th>
<th>Unthinned Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples to the barrel from thinned tree</td>
<td>517</td>
<td>533</td>
</tr>
<tr>
<td>" "</td>
<td>70.00</td>
<td>23.80</td>
</tr>
<tr>
<td>Per cent increase in size from thinning</td>
<td>12.81</td>
<td>16.13</td>
</tr>
</tbody>
</table>

Grade of Fruit.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Thinned Tree</th>
<th>Unthinned Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>70.00</td>
<td>23.80</td>
</tr>
<tr>
<td>2</td>
<td>56.00</td>
<td>16.13</td>
</tr>
<tr>
<td>3</td>
<td>60.00</td>
<td>3.22</td>
</tr>
</tbody>
</table>

This table shows that the thinned tree gave an increase of No. 1 fruit of 28 per cent and thinning decreased the No. 3 fruit 10.53 per cent.

The thinned tree gave 23.29 per cent less crop than the unthinned tree. It will be seen, however, that at the start the unthinned tree had 22 per cent more apples on it. The actual loss from thinning was, therefore, only 1.29 per cent.

From an acre of 40 trees the gain from thinning as indicated by this experiment, at prices realized this year, would be as follows:

Yield and Value of Fruit per acre.

<table>
<thead>
<tr>
<th></th>
<th>Thinned.</th>
<th>Umithed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per cent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 1</td>
<td>70.00</td>
<td>23.80</td>
</tr>
<tr>
<td>No. 2</td>
<td>56.00</td>
<td>16.13</td>
</tr>
<tr>
<td>No. 3</td>
<td>60.00</td>
<td>3.22</td>
</tr>
<tr>
<td>Culls</td>
<td>478.68</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>218.74</td>
<td>221.00</td>
</tr>
</tbody>
</table>

This shows a total gain of $71.28. The cost of grading and thinning in the thinned tree was $1.25 cents per barrel. The cost of grading in the unthinned tree was 10 cents. The thinned fruit cost much less to grade, and, as is shown, the thinning in this experiment cost only 1.5 cents per barrel after extra cost of grading the unthinned is deducted. This made a total cost for thinning of $2.62 per acre, giving a net return of $68.66 per acre in favour of thinning.

Thinning Experiments with Ben Davis, Stark and Greening.

For this work a commercial block of trees nine years old was used. The orchard had trees of Rhode Island Greening and Stark in straight rows, lengthwise of the block, and Ben Davis were used as fillers. The block was divided into six plots, cross-16--21.5
wise, taking in trees of each variety in each plot. The area in each plot was as follows:

Plot 1.—General thinning, 1 acre.
Plot 2.—Thinned to 8 inches, ½ acre.
Plot 3.—Thinned leaving one fruit to a cluster, 1 acre.
Plot 4.—Thinned to 6 inches, ½ acre.
Plot 5.—Not thinned, 1 acre.
Plot 6.—Thinned to 4 inches, 1 acre.

All spotted and deformed fruit was removed from all plots thinned.

Plot No. 1, General thinning.—This consisted of removing all deformed or spotted fruit and thinning the fruit which was in clusters, to generally one fruit. No rule as to spacing was adhered to. Where the fruit was thick on a branch, fruit was removed, but where the set was light little was taken off.

Plot No. 2, Thinned to 8 inches.—Well-formed fruit was left 8 inches apart. All clusters of fruit were thinned to one apple to a fruit spur.

Plot 3.—The fruit clusters only were thinned, leaving only one apple to a fruit spur.

Plot 4, Thinned to 6 inches.—All clusters were thinned one apple to the fruit spur.

Plot 5, Not thinned.—Check plot.

Plot 6, Thinned to 4 inches apart.—All clusters were thinned one apple to a fruit spur.

The following data were secured in this experiment:

THINNING EXPERIMENTS with Ben Davis, Stark and Greening.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
<td>Thinning</td>
<td>One to</td>
<td>Thinned</td>
<td>Check</td>
<td>Thinned</td>
</tr>
<tr>
<td></td>
<td>thinning</td>
<td>to 8 in.</td>
<td>spur</td>
<td>to 6 in.</td>
<td>Unthinned</td>
<td>to 4 in.</td>
</tr>
</tbody>
</table>

Ben Davis.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples removed, per cent.</td>
<td>12.28</td>
<td>15.70</td>
<td>22.67</td>
<td>36.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Apples picked No.</td>
<td>5,351</td>
<td>5,628</td>
<td>5,868</td>
<td>3,833</td>
<td>7,089</td>
<td>3,449</td>
</tr>
<tr>
<td>Barrels, apples, No.</td>
<td>11.22</td>
<td>9.06</td>
<td>10.60</td>
<td>7.83</td>
<td>13.00</td>
<td>6.39</td>
</tr>
<tr>
<td>No. of apples to barrel</td>
<td>4.77</td>
<td>3.96</td>
<td>5.21</td>
<td>4.95</td>
<td>5.44</td>
<td>5.22</td>
</tr>
<tr>
<td>Increase in size over check, per cent.</td>
<td>12.31</td>
<td>27.20</td>
<td>1.00</td>
<td>9.00</td>
<td></td>
<td>4.00</td>
</tr>
</tbody>
</table>

Stark.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples, removed, per cent.</td>
<td>25.33</td>
<td>36.14</td>
<td>18.45</td>
<td>30.25</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Apples picked, No.</td>
<td>1,288</td>
<td>507</td>
<td>1,184</td>
<td>368</td>
<td>1,777</td>
<td></td>
</tr>
<tr>
<td>Barrels, apples, No.</td>
<td>2.93</td>
<td>1.26</td>
<td>3.05</td>
<td>1.02</td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td>No. of apples to barrel</td>
<td>415</td>
<td>402</td>
<td>388</td>
<td>360</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Increase in size over check, per cent.</td>
<td>7.77</td>
<td>10.66</td>
<td>13.20</td>
<td>20.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greening.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples removed, per cent.</td>
<td>18.75</td>
<td>32.29</td>
<td>19.78</td>
<td>29.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Apples picked, No.</td>
<td>3,662</td>
<td>1,265</td>
<td>2,000</td>
<td>964</td>
<td>2,718</td>
<td></td>
</tr>
<tr>
<td>Barrels, apples, No.</td>
<td>9.35</td>
<td>3.45</td>
<td>5.28</td>
<td>2.42</td>
<td>6.97</td>
<td></td>
</tr>
<tr>
<td>No. apples to barrel.</td>
<td>383</td>
<td>375</td>
<td>379</td>
<td>373</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Increase in size over check, per cent.</td>
<td>1.80</td>
<td>3.84</td>
<td>2.82</td>
<td>4.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From the above figures it will be easily seen that thinning in every case materially increased the size of the fruit and that the heavier thinnings as a rule, gave the largest apples.
SESSIONAL PAPER No. 16

There are, however, some instances where it appears that heavier thinning beyond a certain stage does not increase the size, as in the Ben Davis plots, where plot 1, with 12-28 per cent apples removed, gives larger apples than plots 3, 4 and 6 where 22-67, 36 and 23-78 per cent respectively were removed.

This is probably accounted for by the fact that a favourable variation in plot 1 gave apples which would have been larger in any case.

The other plots which were thinned produced apples, the size of which was governed by the amount of apples thinned from the trees.

In Stark, plot 4, with 30-95 per cent apples removed, produced the largest apples, showing an increase of 25 per cent in size over the check plot.

The size here, however, does not seem to show any relation to the amount of apples, but the fact that in the case of every thinned plot there is an increase in size over the check plot, shows that there is an increase in size from thinning in this variety.

Showing the results of Grading in the Different Plots in this Experiment.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General thinning.</td>
<td>Thinning to 8 in.</td>
<td>One apple to spar.</td>
<td>Thinned to 6 in.</td>
<td>Unthinned check.</td>
<td>Thinned to 4 in.</td>
</tr>
<tr>
<td>Ben Davis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apples removed, per cent.</td>
<td>12-28</td>
<td>38-70</td>
<td>22-67</td>
<td>36-00</td>
<td>66-00</td>
<td>28-78</td>
</tr>
<tr>
<td>No. 1, per cent.</td>
<td>49-15</td>
<td>65-00</td>
<td>50-43</td>
<td>49-22</td>
<td>31-22</td>
<td>44-42</td>
</tr>
<tr>
<td>No. 2, per cent.</td>
<td>41-65</td>
<td>53-44</td>
<td>41-18</td>
<td>35-89</td>
<td>40-00</td>
<td>40-71</td>
</tr>
<tr>
<td>Nos. 1 and 2, combined per cent.</td>
<td>90-80</td>
<td>90-41</td>
<td>91-61</td>
<td>87-02</td>
<td>71-22</td>
<td>85-11</td>
</tr>
<tr>
<td>No. 3, per cent</td>
<td>8-34</td>
<td>9-30</td>
<td>8-08</td>
<td>12-60</td>
<td>27-12</td>
<td>13-80</td>
</tr>
<tr>
<td>Culls, per cent</td>
<td>86</td>
<td>.26</td>
<td>.31</td>
<td>.38</td>
<td>1-66</td>
<td>1-10</td>
</tr>
<tr>
<td>Stark.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apples removed, per cent.</td>
<td>25-33</td>
<td>36-14</td>
<td>18-45</td>
<td>30-35</td>
<td>66-00</td>
<td></td>
</tr>
<tr>
<td>No. 1, per cent</td>
<td>80-85</td>
<td>79-25</td>
<td>76-58</td>
<td>89-63</td>
<td>51-88</td>
<td></td>
</tr>
<tr>
<td>No. 2, per cent</td>
<td>80-85</td>
<td>79-25</td>
<td>76-58</td>
<td>89-63</td>
<td>51-88</td>
<td></td>
</tr>
<tr>
<td>Nos. 1 and 2, combined, per cent.</td>
<td>81-27</td>
<td>90-57</td>
<td>89-11</td>
<td>87-61</td>
<td>74-88</td>
<td></td>
</tr>
<tr>
<td>No. 3, per cent</td>
<td>7-67</td>
<td>9-43</td>
<td>8-88</td>
<td>11-65</td>
<td>22-18</td>
<td></td>
</tr>
<tr>
<td>Culls, per cent</td>
<td>1-00</td>
<td>0-00</td>
<td>2-00</td>
<td>1-77</td>
<td>2-91</td>
<td></td>
</tr>
<tr>
<td>Greening.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apples removed, per cent.</td>
<td>18-75</td>
<td>32-20</td>
<td>19-78</td>
<td>20-00</td>
<td>60-00</td>
<td></td>
</tr>
<tr>
<td>No. 1, per cent</td>
<td>70-66</td>
<td>74-26</td>
<td>82-80</td>
<td>68-22</td>
<td>61-51</td>
<td></td>
</tr>
<tr>
<td>No. 2, per cent</td>
<td>10-81</td>
<td>12-67</td>
<td>8-01</td>
<td>10-58</td>
<td>4-57</td>
<td></td>
</tr>
<tr>
<td>Nos. 1 and 2, combined, per cent.</td>
<td>81-47</td>
<td>86-33</td>
<td>90-81</td>
<td>87-91</td>
<td>73-48</td>
<td></td>
</tr>
<tr>
<td>No. 3, per cent</td>
<td>17-21</td>
<td>12-75</td>
<td>7-51</td>
<td>11-90</td>
<td>24-01</td>
<td></td>
</tr>
<tr>
<td>Culls, per cent</td>
<td>1-32</td>
<td>1-92</td>
<td>1-68</td>
<td>2-29</td>
<td>2-51</td>
<td></td>
</tr>
</tbody>
</table>

It can readily be seen from this table that, in every case, thinning has had the result of increasing the per cent of No. 1's, increasing the per cent of combined No. 1 and No. 2 fruit, and greatly decreasing the per cent of No. 3's and culls.

In Ben Davis, there is an increase on an average of over 18 per cent in No. 1 fruit, and in plot 2, thinned to eight inches, an increase of nearly 24 per cent. In No. 5's in this variety there is a decrease on an average of approximately 17 per cent, and plot 3, with the lowest per cent of this grade, gives a decrease of 19-04 per cent.
In Stark are found the highest per cents of No. 1, and an increase of nearly 30 per cent from thinning. No. 3's have been lowered in the thinned plots from 22 per cent to 7.67 to 11 per cent, or an average decrease of 13 per cent. Of the varieties in this experiment, in the thinned plots Greening shows the least increase of No. 1. This may be accounted for by the fact that the trees were young, not heavily filled and in a very vigorous condition, as is shown by the fact that the unthinned plots gave 64.51 per cent of No. 1 fruit. In the per cents of combined No. 1 and No. 2 we have a decided increase in favour of the thinned plots and have as high as 90 per cent of these grades against 73 per cent in the check plot.
EXPERIMENTAL STATION, STE. ANNE DE LA POCATIERE, QUE.

REPORT OF THE SUPERINTENDENT—JOS. BEGIN.

The Experimental Station at Ste. Anne de la Pocatière, Que., is situated within three miles of the south shore of the St. Lawrence river, about seventy-three miles below Quebec and Lévis. While the winters are severe here, they are tempered somewhat by the nearness of the St. Lawrence river, which remains, in winter, a large body of open water. Because of this, fruits which will not succeed at Ottawa, for instance, do very well at Ste. Anne. An example is the European plum, of which many varieties succeed admirably here. It is proposed to test thoroughly many varieties of fruits, vegetables, and ornamental plants at Ste. Anne and to experiment with different methods of culture in order to determine which is the best for those parts of the province of Quebec where the climatic conditions are the same as at Ste. Anne.

In the autumn of 1912, about three and one-half acres of sandy loam soil were thoroughly prepared for fruit trees. The land, which had been in sod for several years, was ploughed in the summer and kept thoroughly harrowed until winter. In the autumn of 1912, the land was drained by laying parallel rows of three-inch tile, fifty feet apart and about three feet deep, from one end of the area to the other, giving them sufficient fall to carry off the water through a four-inch tile at the lower end. When putting in the tiles, it was planned to have them come midway between two rows of trees so that there would be little danger of the roots filling them.
EXPERIMENTAL STATION, CAP ROUGE, P. Q.

REPORT OF THE SUPERINTENDENT—G. A. LANGEILIER.

FRUIT.

APPLES.

Eight out of the twelve Yellow Transpareutse planted in 1911 produced fruit in 1912. Six Rochelles and twelve Baxters were added to the commercial orchard, whilst two trees of each of the following were put in for variety tests:

McIntosh seedlings (455), Sorel, Jacob Red, Swayzie seedlings (486), Swayzie seedlings (471), Walbridge x Northern Spy (515), McMahan x Scott Winter (509), Wealthy seedlings (489), seedlings from E. K. Leonard (625), No. 1 from J. J. Persons (632), Salome seedlings (462), Lawyer seedlings (490), Spencer Seedless (550), Trenton (489), Choirle (696), Swayzie seedlings (541), No. 3 from J. J. Persons (634), Transparent de Croncels (774), Crab-apple from C. N. Vroom (328), Crab-apple from J. D. Hodgson (644), McMahan x Scott Winter (515), Winter St. Lawrence seedlings (470), Lawyer x McIntosh (507), McIntosh seedlings (526), Swayzie seedlings (539), American Golden Russet seedlings (457), No. 1 from Wm. Chambers (629), Walbridge x Northern Spy (516), Linton (459), Russian seedling No. 1 (441), McMahan x Scott (514), Rufus (351), Lubsk Queen (573), Russian seedling (436), Fameuse seedling (488), Schoener von Nordhausen (494), Walbridge x Northern Spy (317), seedlings from Mr. Isenor (724), Walbridge x Northern Spy (517), Swayzie seedlings (476), Jewel (crab) (694), Burton (646), Hyslop (crab).

PLUMS.

One out of two Shropshire Damson, one out of two Snider Damson, one out of four Bixby, and the two Fitzroy, planted in 1911, produced fruit in 1912. The following trees were added to the plum orchard:

Togo (0-612), Mankato (0-614), Yellow European (0-658), Bonne Ste. Anne (0-666), Torry (0-659), Brackett (0-615), Bixby (0-668), Consul (671).

CHERRIES.

One of the six Large Montmorency, planted in 1911, produced fruit in 1912.

BLACK CURRANTS.

The varieties planted in 1911 gave the following yields, in pounds, per acre:

- Climax, 754;
- Boskoop Giant, 477½;
- Eagle, 275½;
- Eclipse, 261;
- Collins' Prolific, 232;
- Saunders, 174;
- Buddenberg, 145;
- Lee, 145;
- Kerry, 145;
- Victoria Black, 101½;
- Black Champion, 87;
- Clipper, 87;
- Topex, 87;
- Ontario, 58.

Success was the only one which did not bear.
Six Magnus were put in this year.

RED CURRANTS.

The varieties planted in 1911 gave the following yields in pounds, per acre:

- Red Grape, 812;
- Cherry, 1851;
- Victoria Red, 145;
- Greenfield, 101½;
- Red Dutch, 101½;
- Fay, 87;
- Wilder, 87;
- Cumberland, 58;
- Perfection, 14½;
- Pomona, 14½;
- Rankin's Red, 10.
SESSIONAL PAPER No. 16

Six bushes each of Red Cross and of Greenfield were added to the plantation this year.

WHITE CURRANTS.

The varieties planted in 1911 gave the following yields, in pounds, per acre:—

Large White, 145; White Cherry, 87; White Grape, 87.

GOOSEBERRIES.

The varieties planted in 1911 gave the following yields, in pounds, per acre:—

Mabel, 696; Downing, 551; Silvia, 304; Queen Anne, 275; Gibb, 261; Red Jacket, 203; Industry, 87; Josselyn, 87; Rideau, 87; Saunders, 72½.

Six Houghton, twelve Pearl, and eighteen Downing were planted this year.

RASPBERRIES.

The varieties planted in 1911 gave the following yields, in pounds, per acre:—

Columbian, 933½; Eaton, 762½; Herbert 624½; King, 500½; Heebner, 424; London, 266½; Sarah, 133½; Marlboro, 48½.

Twelve Cuthberts put in at the same time as above varieties in 1911, all died.

In 1912, 160 canes were planted: Brighton, 16; Count, 16; Cuthbert, 16; Eaton, 16; Herbert, 32; King, 32; London, 16; Marlboro, 16.

STRAWBERRIES.

The following varieties planted in 1911 yielded, in pounds, per acre:—Bisel, 2,904; New Globe, 2,006½; Grenville, 1,588.

Nettie and Uncle Jim, though put in at the same time, produced no fruit.

The following number of plants were added in 1912: Beder Wood, 50; Bisel, 25; Buster, 50; Clyde, 10; Dunlap, 50; Enhance, 40; Excelsior, 50; Glen Mary, 50; Grenville, 25; Nettie, 50; New Globe, 25; Parson, 50; Ruby, 50; Sample, 50; Splendid, 50; 3 W's, 50; Uncle Jim, 50; Wm. Belt, 50.

GRAPE.

The following number of vines were planted in 1912: Brant, 15; Brighton, 4; Campbell's Early, 2; Canada, 14; Champion, 2; Cottage, 4; Early Ohio, 5; Florence x Potter, 5; Golden Drop, 2; Hartford, 5; Lindley, 5; Manitou, 5; McTavish, 2; Merrimac, 5; Moore's Early, 5; Pattison, 3; Peabody, 5; Potter, 5; Potter x Florence, 2; Rogers, 17, 5; Wilkins, 5; Wyoming Red, 2; Yomago, 2.

VEGETABLES.

The past season was one of the most unfavourable in years, continuous wet weather until June 15 keeping back seeding operations, whilst a drought which followed right to the beginning of August delayed germination. The yields were thus exceedingly low. Besides the two hundred and fifteen varieties tested in trial plots, about two acres of vegetables were grown for market, also for seed to be distributed. These were raised between the trees, in the apple orchard.

The celeriac did not germinate; the celery, sown in the greenhouse on March 21 did not grow enough to make it worth while transplanting; the same thing happened to egg plants; all the musk melons and the water melons died after transplanting, and the same varieties sown in the open produced no fruit; the peppers did not produce anything, nor the squashes.
The following tables give comparative yield of some of the more important vegetables:

BEANS

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Ready for use</th>
<th>Yield in quarts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refuge, or 1,000 to 1 (Cap Rouge)</td>
<td>30 feet</td>
<td>Aug. 29</td>
<td>16</td>
</tr>
<tr>
<td>Keeney’s Rustless Wax</td>
<td></td>
<td>24</td>
<td>151</td>
</tr>
<tr>
<td>Old Homestead</td>
<td></td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Early Refuge</td>
<td></td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>Wardwell’s Kidney Wax</td>
<td></td>
<td>July 31</td>
<td>83</td>
</tr>
<tr>
<td>Stringless Green Pod</td>
<td></td>
<td>31</td>
<td>83</td>
</tr>
<tr>
<td>Davis Wax (Cap Rouge)</td>
<td></td>
<td>Aug. 12</td>
<td>8</td>
</tr>
<tr>
<td>Valentine</td>
<td></td>
<td>July 31</td>
<td>8</td>
</tr>
<tr>
<td>Challen’s Black Wax (G. E. F.)</td>
<td></td>
<td>28</td>
<td>3</td>
</tr>
</tbody>
</table>

BEET

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Yield in pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteor</td>
<td>30 feet</td>
<td>30</td>
</tr>
<tr>
<td>Ruby Delact</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Crimson Globe</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Early Blood Red Turnip</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Egyptian Blood Red Turnip</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Blood Red Ball</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

CABBAGE

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. of plants</th>
<th>Ready for use</th>
<th>Yield.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Express</td>
<td>40</td>
<td>July 7</td>
<td>40 173</td>
</tr>
<tr>
<td>Danish Summer Ballhead</td>
<td>40</td>
<td>Aug. 8</td>
<td>39 167</td>
</tr>
<tr>
<td>Early</td>
<td>40</td>
<td>24</td>
<td>37 193</td>
</tr>
<tr>
<td>Flat Swedish</td>
<td>30</td>
<td>Sept. 14</td>
<td>29 194</td>
</tr>
<tr>
<td>Winningstadt</td>
<td>40</td>
<td>Aug. 24</td>
<td>30 194</td>
</tr>
<tr>
<td>Improved Amager Danish Roundhead</td>
<td>30</td>
<td>Sept. 11</td>
<td>29 192</td>
</tr>
<tr>
<td>Early Jersey Wakefield</td>
<td>40</td>
<td>Aug. 17</td>
<td>39 193</td>
</tr>
<tr>
<td>" Paris Market</td>
<td>40</td>
<td>8</td>
<td>35 144</td>
</tr>
<tr>
<td>Large Late Flat Drumhead</td>
<td>30</td>
<td>Sept. 14</td>
<td>29 190</td>
</tr>
<tr>
<td>New Early Market</td>
<td>40</td>
<td>Aug. 8</td>
<td>36 138</td>
</tr>
<tr>
<td>Copenagen market</td>
<td>40</td>
<td>26</td>
<td>39 136</td>
</tr>
<tr>
<td>Extra Amager Ballhead</td>
<td>39</td>
<td>Sept. 19</td>
<td>27 136</td>
</tr>
<tr>
<td>Fodder’s Improved Brunswiek</td>
<td>39</td>
<td>5</td>
<td>28 121.4</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>30</td>
<td>14</td>
<td>29 121</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>40</td>
<td>Aug. 29</td>
<td>37 112.4</td>
</tr>
<tr>
<td>Small Erburt</td>
<td>40</td>
<td>24</td>
<td>40 110</td>
</tr>
<tr>
<td>Autumn King</td>
<td>30</td>
<td>Sept. 5</td>
<td>28 108.4</td>
</tr>
<tr>
<td>Lubeck</td>
<td>30</td>
<td>23</td>
<td>25 109</td>
</tr>
<tr>
<td>Danish Delicatasse Red</td>
<td>30</td>
<td>14</td>
<td>28 114</td>
</tr>
<tr>
<td>Red Danish Stonehead</td>
<td>30</td>
<td>11</td>
<td>29 114</td>
</tr>
</tbody>
</table>

CARROT

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Yield in Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Long Chantenay</td>
<td>30</td>
<td>July 7</td>
</tr>
<tr>
<td>Improved Nantes</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>French Horn</td>
<td>30</td>
<td>29</td>
</tr>
</tbody>
</table>
Cauliflower

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. of plants</th>
<th>Ready for use</th>
<th>Marketable Heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veitch's Autumn Giant</td>
<td>40</td>
<td>Sept. 9</td>
<td>30</td>
</tr>
<tr>
<td>Danish Giant</td>
<td>40</td>
<td>July 7</td>
<td>12</td>
</tr>
<tr>
<td>Extra Selected Early Erfurt Dwarf</td>
<td>40</td>
<td>" 15</td>
<td>7</td>
</tr>
<tr>
<td>Early Snowball</td>
<td>40</td>
<td>" 13</td>
<td>6</td>
</tr>
</tbody>
</table>

Corn

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. of hills</th>
<th>Number of Ears</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malakoff (Cap Rouge)</td>
<td>20</td>
<td>Sept. 10</td>
</tr>
<tr>
<td>Malakoff (C. E. F.)</td>
<td>20</td>
<td>" 14</td>
</tr>
<tr>
<td>Fordhook Early</td>
<td>20</td>
<td>Oct. 10</td>
</tr>
<tr>
<td>Pocahontas (Cap Rouge)</td>
<td>20</td>
<td>Sept. 19</td>
</tr>
<tr>
<td>Golden Bantam</td>
<td>20</td>
<td>" 21</td>
</tr>
<tr>
<td>Metropolitan</td>
<td>20</td>
<td>Oct. 10</td>
</tr>
<tr>
<td>Black Mexican</td>
<td>20</td>
<td>Sept. 19</td>
</tr>
<tr>
<td>Country Gentleman</td>
<td>20</td>
<td>" Not fit to use.</td>
</tr>
<tr>
<td>Early Evergreen</td>
<td>20</td>
<td>" "</td>
</tr>
<tr>
<td>Golden Rod</td>
<td>20</td>
<td>" "</td>
</tr>
<tr>
<td>Stowell’s Evergreen</td>
<td>20</td>
<td>" "</td>
</tr>
</tbody>
</table>

Cucumber

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. of Cucumbers</th>
<th>No. of Cucumbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant Pera</td>
<td>3</td>
<td>Aug. 31</td>
</tr>
<tr>
<td>Short Green (Cap Rouge)</td>
<td>3</td>
<td>Sept. 9</td>
</tr>
<tr>
<td>Chicago Pickling (Cap Rouge)</td>
<td>3</td>
<td>" 1</td>
</tr>
<tr>
<td>Cool and Crisp</td>
<td>3</td>
<td>" 1</td>
</tr>
<tr>
<td>Short Green (Cap Rouge)</td>
<td>3</td>
<td>" 1</td>
</tr>
<tr>
<td>Peerless White Spine</td>
<td>3</td>
<td>Not fit to use.</td>
</tr>
<tr>
<td>Chicago Pickling (Cap Rouge)</td>
<td>3</td>
<td>" "</td>
</tr>
<tr>
<td>Early White Spine (Cap Rouge)</td>
<td>3</td>
<td>" "</td>
</tr>
<tr>
<td>Long Green</td>
<td>3</td>
<td>" "</td>
</tr>
<tr>
<td>Short Green (Cap Rouge)</td>
<td>3</td>
<td>" "</td>
</tr>
</tbody>
</table>

Lettuce

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Marketable Heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Seeded Simpson</td>
<td>15</td>
<td>July 7</td>
</tr>
<tr>
<td>Grand Rapids</td>
<td>15</td>
<td>" 6</td>
</tr>
<tr>
<td>Improved Hanson</td>
<td>15</td>
<td>" 4</td>
</tr>
<tr>
<td>All Heart</td>
<td>15</td>
<td>" 6</td>
</tr>
<tr>
<td>Cos Trianon</td>
<td>15</td>
<td>" 9</td>
</tr>
<tr>
<td>Crisp as Ice</td>
<td>15</td>
<td>" 8</td>
</tr>
<tr>
<td>Dark Green Capucine</td>
<td>15</td>
<td>" 9</td>
</tr>
<tr>
<td>Iceberg</td>
<td>15</td>
<td>" 6</td>
</tr>
<tr>
<td>Big Boston</td>
<td>15</td>
<td>" 12</td>
</tr>
<tr>
<td>Red Edged Victoria (Cap Rouge)</td>
<td>15</td>
<td>" 6</td>
</tr>
<tr>
<td>Rowan’s Blond Winter</td>
<td>15</td>
<td>" 8</td>
</tr>
<tr>
<td>Giant Crystal Head</td>
<td>15</td>
<td>" 6</td>
</tr>
<tr>
<td>Unrivalled Summer</td>
<td>15</td>
<td>" 8</td>
</tr>
<tr>
<td>Red Edged Victoria</td>
<td>15</td>
<td>" 9</td>
</tr>
<tr>
<td>Wheeler’s Tom Thumb</td>
<td>15</td>
<td>" 12</td>
</tr>
</tbody>
</table>
ONION.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Ready for use</th>
<th>Yield in pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Red Wethersfield</td>
<td>30 feet</td>
<td>July 25</td>
<td>15.4</td>
</tr>
<tr>
<td>"</td>
<td>30 "</td>
<td>" 27</td>
<td>3.4</td>
</tr>
<tr>
<td>Prizetaker</td>
<td>30 "</td>
<td>" 29</td>
<td>9.4</td>
</tr>
<tr>
<td>Dark Red Beauty</td>
<td>30 "</td>
<td>" 29</td>
<td>7.4</td>
</tr>
<tr>
<td>Danvers Yellow Globe</td>
<td>30 "</td>
<td>" 29</td>
<td>7.4</td>
</tr>
</tbody>
</table>

PARSLEY.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Ready for use</th>
<th>Yield in pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Curled</td>
<td>30 feet</td>
<td>July 22</td>
<td>10.5</td>
</tr>
<tr>
<td>Carter's Fern Leaved</td>
<td>30 "</td>
<td>" 26</td>
<td>6.5</td>
</tr>
<tr>
<td>Emerald</td>
<td>30 "</td>
<td>" 29</td>
<td>4.5</td>
</tr>
</tbody>
</table>

PARSNIP

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Ready for use</th>
<th>Yield in pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Maltese</td>
<td>30 feet</td>
<td>Aug. 17</td>
<td>27.5</td>
</tr>
<tr>
<td>Hollow Crown</td>
<td>30 "</td>
<td>" 17</td>
<td>21.5</td>
</tr>
</tbody>
</table>

PEAS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Ready for use</th>
<th>Yield in quarts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutton's Excelsior</td>
<td>30 feet</td>
<td>July 15</td>
<td>17</td>
</tr>
<tr>
<td>Premium Gem</td>
<td>30 "</td>
<td>" 12</td>
<td>12</td>
</tr>
<tr>
<td>June</td>
<td>30 "</td>
<td>" 27</td>
<td>12</td>
</tr>
<tr>
<td>Heroine</td>
<td>30 "</td>
<td>" 25</td>
<td>12</td>
</tr>
<tr>
<td>McLean's Advance</td>
<td>30 "</td>
<td>" 15</td>
<td>12</td>
</tr>
<tr>
<td>Stratagem</td>
<td>30 "</td>
<td>" 25</td>
<td>12</td>
</tr>
<tr>
<td>American Wonder</td>
<td>30 "</td>
<td>" 12</td>
<td>12</td>
</tr>
<tr>
<td>Gradus</td>
<td>30 "</td>
<td>" 12</td>
<td>12</td>
</tr>
<tr>
<td>Gregory's Surprise</td>
<td>30 "</td>
<td>" 10</td>
<td>12</td>
</tr>
<tr>
<td>Telephone</td>
<td>30 "</td>
<td>" 22</td>
<td>12</td>
</tr>
<tr>
<td>Thos. Laxton</td>
<td>30 "</td>
<td>" 12</td>
<td>12</td>
</tr>
</tbody>
</table>
POTATOES.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Ready for use</th>
<th>Yield in pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Market-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ab.$$</td>
</tr>
<tr>
<td>Gold Coin (Napton)</td>
<td>66 feet</td>
<td>Aug. 8</td>
<td>68</td>
</tr>
<tr>
<td>Table Talk (Lacour)</td>
<td>60</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Late Puritan (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Rochester Rose (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Reeves' Rose (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Vick's Extra Early (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Money Maker (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Ashleaf Kidney (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Empire State (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Everett (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>American Wonder (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Deere's Standard (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Irish Cobbler (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Carman No. 1 (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Morgan Seedling (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Hard to Beat (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Factor (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
<tr>
<td>Dalmeny Beauty (Napton)</td>
<td>66</td>
<td>" 15</td>
<td>66</td>
</tr>
</tbody>
</table>

RADISH.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of row</th>
<th>Ready for use</th>
<th>Yield in dozens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 feet</td>
<td>June 15</td>
<td>21</td>
</tr>
<tr>
<td>French Breakfast (Cap Rouge)</td>
<td>30</td>
<td>" 15</td>
<td>19</td>
</tr>
<tr>
<td>Forcing Turnip Scarlet</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>White Ice (Cap Rouge a)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Forcing Turnip Scarlet (Cap Rouge-b)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>White Ice (Cap Rouge b)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Non plus ultra (Cap Rouge b)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>French Breakfast (Cap Rouge a)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>White Ice (Cap Rouge a)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Rosy Gem (Cap Rouge-a)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Turnip Early Scarlet (Cap Rouge-a)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>White Tipped Scarlet</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Turnip Early Scarlet (Cap Rouge-b)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Crimson Giant Turnip Rooted (Cap Rouge-a)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Forcing Turnip Scarlet (Cap Rouge-b)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Crimson Giant Turnip Rooted (Cap Rouge-c)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
<tr>
<td>Rosy Gem (Cap Rouge-b)</td>
<td>30</td>
<td>" 15</td>
<td>18</td>
</tr>
</tbody>
</table>
TOMATO.

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. of plants</th>
<th>Ready for use</th>
<th>Yield Green, Ripe, Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earliana (Cap Rouge)</td>
<td>5</td>
<td>Oct, 11</td>
<td>1 4/5</td>
</tr>
<tr>
<td>Bonny Best (Cap Rouge)</td>
<td>5</td>
<td>" 11</td>
<td>3 5/6</td>
</tr>
<tr>
<td>Rennie's X X X Earliest (Cap Rouge)</td>
<td>5</td>
<td>" 11</td>
<td>3 5/6</td>
</tr>
<tr>
<td>"</td>
<td>5</td>
<td>" 11</td>
<td>2 3/4</td>
</tr>
<tr>
<td>Florida Special</td>
<td>5</td>
<td>" 11</td>
<td>2 3/4</td>
</tr>
<tr>
<td>Chalk's Early Jewel (Cap Rouge)</td>
<td>5</td>
<td>" 11</td>
<td>2</td>
</tr>
<tr>
<td>Sparks' Earliana (Cap Rouge.)</td>
<td>5</td>
<td>" 11</td>
<td>1 1/2</td>
</tr>
<tr>
<td>" (C. E. F.)</td>
<td>5</td>
<td>" 11</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Chalk's Early Jewel (Cap Rouge).</td>
<td>5</td>
<td>" 11</td>
<td>1</td>
</tr>
<tr>
<td>Trophy</td>
<td>5</td>
<td>" 11</td>
<td>1</td>
</tr>
<tr>
<td>Earliest of All</td>
<td>5</td>
<td>" 11</td>
<td>1</td>
</tr>
<tr>
<td>Bonny Best (Cap Rouge)</td>
<td>5</td>
<td>" 11</td>
<td>1</td>
</tr>
<tr>
<td>Chalk's Early Jewel</td>
<td>5</td>
<td>" 11</td>
<td>1</td>
</tr>
<tr>
<td>Northern Adirondack Earliana (Cap Rouge)</td>
<td>5</td>
<td>" 11</td>
<td>1</td>
</tr>
<tr>
<td>Sparks' Earliana (C. E. F.)</td>
<td>5</td>
<td>" 11</td>
<td>1/2</td>
</tr>
<tr>
<td>First of All (Cap Rouge)</td>
<td>5</td>
<td>" 11</td>
<td>1/2</td>
</tr>
<tr>
<td>Matchless</td>
<td>5</td>
<td>" 11</td>
<td>1/2</td>
</tr>
<tr>
<td>" (Cap Rouge)</td>
<td>5</td>
<td>No fruit</td>
<td>Turned</td>
</tr>
<tr>
<td>Livingston's Globe</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TURNIP.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length of rows</th>
<th>Ready for use</th>
<th>Yield in pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple Top Milan</td>
<td>30 ft</td>
<td>July 12</td>
<td>53 3/4</td>
</tr>
<tr>
<td>Early White Flat Strapped</td>
<td>39 ft</td>
<td>July 15</td>
<td>51 5/6</td>
</tr>
</tbody>
</table>

FLOWERS.

A great deal of work was done during the year on the ornamental grounds which were laid out under the direction of Mr. F. E. Buck. Over three hundred varieties of annuals and perennials were grown, besides numbers of bulbs, shrubs, and hedges.

HEDGES.

It is important to learn what kinds of plants are most suitable for hedge purposes in the province of Quebec, and basing the kinds to be tested on those which were succeeding best at Ottawa, the following trees and shrubs were planted. Each variety of these was planted in one row fifty feet long, the plants being eighteen inches apart in the rows. The hedges are placed fifteen feet apart:

- Thunberg's Barberry (*Berberis Thunbergii*),
- Siberian Pea Tree (*Caragana arborescens*),
- Siberian Dogwood (*Cornus alba sibirica*),
- Cockspur Thorn (*Crataegus Crus-galli*),
- Irish Juniper (*Juniperus communis fastigiata*),
CONIFERÆ.

The following coniferæ were planted in the spring: Abies concolor, 2; Cupressus sphaeroidea ericoides, 2; Cupressus pisifera aurea, 2; Cupressus pisifera filifera, 4; Cupressus pisifera plumosa, 2; Juniperus communis fastigiata, 2; Larix europaea, 2; Picea alba, 2; Picea Alveckiana, 2; Picea excelsa, 2; Picea pungens glauca, 2; Pinus Laricio nigricans, 2; Pinus montana Magnus, 2; Pinus ponderosa, 2; Pinus resinosa, 2; Pinus Strobus, 2; Pinus sulrestris, 2; Pseudotsuga Douglasii, 2; Thuya occidentalis, 1; Thuya occidentalis Elwangeriana, 2; Thuya occidentalis Horeii, 2; Thuya occidentalis Wareana, 2; Thuya occidentalis compacta, 2; Thuya occidentalis Douglas Golden, 2.

DECIDUOUS TREES AND SHRUBS.

The following were planted in the spring of 1912: Acer tataricum Ginnula, 4; Aesculus Hippocastanum, 2; Berberis Thunbergii, 2; Caragana arborescens, 4; Caragana frutescens macrophylla, 4; Caragana grandiflora, 3; Catalpa Kaempferi, 2; Catalpa speciosa, 2; Cornus alba sibirica variegata, 2; Elaeagnus angustifolia, 2; Euonymus europaeus, 2; Hydrangea paniculata, 1; Hydrangea paniculata grandiflora, 24; Lespedeza bicolor, 2; Ligustrum amurense, 2; Lonicera Alberth, 2; Lonicera Morrowi, 3; Lonicera tatarica, 2; Lonicera tatarica flore rosea, 3; Lonicera tatarica grandiflora, 3; Lonicera tatarica virginalis alba, 3; Nectia opulifolia aurea, 3; Philadelphus coronarius, 2; Philadelphus coronarius foliis aureis, 2; Philadelphus grandiflorus speciosissimus, 2; Philadelphus nivalis, 6; Philadelphus speciosissimus, 2; Potentilla fruticosa, 1; Prunus Grayana, 2; Pyrus Aucuparia, 2; Pyrus angustifolia, 2; Prunus persica var. Persica, 2; Quercus palustris, 2; Rhamnus Frangula, 1; Ribes aureum, 2; Rosa Rugosa, 2; Salix rosmanifolia, 2; Sambucus nigra foliis aureis, 2; Spiraea callosa, 3; Spiraea japonica, 1; Spiraea sorbifolia, 1; Spiraea Van Houttei, 25; Symphoricarpus racemosus, 2; Syringa chinensis, 2; Syringa japonica, 2; Syringa villosa, 3; Syringa vulgaris Congo, 2; Syringa vulgaris Jacques Calot, 5; Syringa vulgaris Léon Simon, 2; Syringa vulgaris Ludwig Spath, 6; Syringa vulgaris Marc Micheli, 2; Syringa vulgaris Michel Buchner, 6; Syringa vulgaris Mlle Fernande Viger, 6; Viburnum dentatum, 3; Viburnum Molle, 3; Viburnum Opulus, 2; Viburnum Opulus sterile, 7.

The season was such a bad one, with continual rain until the middle of June followed by a drought which lasted until the beginning of August, that many annuals bloomed very late, whilst others did not bloom at all.
EXPERIMENTAL FARM, BRANDON, MANITOBA.

REPORT OF THE SUPERINTENDENT—W. C. MCKILLICAN, B.S.A.

Horticulture has been an important part of the work of the Experimental Farm at Brandon for the past twenty-three years, and during that time much useful information has been published which has assisted settlers in deciding what to plant, how to plant, and how to care for what they are trying to grow. In 1912 many varieties of fruit trees and bushes, ornamental trees and shrubs, vegetables, and herbaceous perennials and annuals were under test, and in the following report an account is given of the behaviour of some of them.

VEGETABLES.

The season was rather an unfavourable one for the vegetable garden. June was the driest in the history of the Farm, and the drought was combined with high temperatures. This interfered with the germination of late-sown seeds, and made it very difficult for newly transplanted plants to live. Following the drought came torrential rains, which washed out some plants and buried others. Finally, a cool, cloudy summer delayed the ripening of tomatoes, melons, and other crops that require much heat. The results obtained are as good as could be expected under the unfavourable weather conditions.

POTATOES.

Twenty-four varieties of potatoes were planted in uniform test rows on May 27, in black loam soil. One variety, Everett, was accidentally prevented from making full development, and is not included in the test. The remaining twenty-three varieties were dug on September 24. The following yields are calculated from the product of a 66-foot row, or one-two hundred and twentieth of an acre, of each variety.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>When Matured</th>
<th>Average Size</th>
<th>Quality</th>
<th>Total Yield per Acre</th>
<th>Yield per Acre of Marketable</th>
<th>Yield per Unmarketable</th>
<th>Bush Lb.</th>
<th>Bush Lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Talk</td>
<td>Late</td>
<td>Large</td>
<td>Good</td>
<td>715</td>
<td>663 40</td>
<td>51 20</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>Wee McGregor</td>
<td>Medium</td>
<td>Small</td>
<td></td>
<td>594</td>
<td>568 20</td>
<td>25 40</td>
<td>Oral, white</td>
<td></td>
</tr>
<tr>
<td>Woodbury's White Rose</td>
<td>Late</td>
<td>Large</td>
<td></td>
<td>579 20</td>
<td>564 40</td>
<td>14 40</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>Empire State</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>557 20</td>
<td>531 40</td>
<td>25 40</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Ashleaf Kidney</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>512 40</td>
<td>528 40</td>
<td>14 40</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Reeve's Rose</td>
<td>Medium</td>
<td>"</td>
<td>"</td>
<td>536</td>
<td>498 40</td>
<td>7 20</td>
<td>Pink, orange</td>
<td></td>
</tr>
<tr>
<td>Early Ohio</td>
<td>Early</td>
<td>"</td>
<td>"</td>
<td>553 20</td>
<td>476 40</td>
<td>58 40</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>American Wonder</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>459 20</td>
<td>462 40</td>
<td>18 20</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>Irish Cobbler</td>
<td>early</td>
<td>Medium</td>
<td>Medium</td>
<td>509 40</td>
<td>438 20</td>
<td>20 40</td>
<td>Round, white</td>
<td></td>
</tr>
<tr>
<td>Early Bovee</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>483 40</td>
<td>438 20</td>
<td>40 20</td>
<td>Long, pink & white</td>
<td></td>
</tr>
<tr>
<td>Late Puritan</td>
<td>Late</td>
<td>Large</td>
<td>Good</td>
<td>466</td>
<td>455 40</td>
<td>11 20</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>Money Maker</td>
<td>"</td>
<td>Medium</td>
<td>"</td>
<td>421 40</td>
<td>388 40</td>
<td>33 20</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Morgan Seedling</td>
<td>Large</td>
<td>"</td>
<td>"</td>
<td>396</td>
<td>383 11</td>
<td>11 20</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Peacock's Surprise</td>
<td>Medium</td>
<td>Medium</td>
<td>"</td>
<td>449 40</td>
<td>381 20</td>
<td>58 20</td>
<td>Long, russet</td>
<td></td>
</tr>
<tr>
<td>Early White Prize</td>
<td>Early</td>
<td>Small</td>
<td>"</td>
<td>407 40</td>
<td>392 55</td>
<td>55 20</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>Rochester Rose</td>
<td>Medium</td>
<td>"</td>
<td>"</td>
<td>392 20</td>
<td>341 51</td>
<td>51 20</td>
<td>Long, pink</td>
<td></td>
</tr>
<tr>
<td>Manitoba Wonder</td>
<td>Medium</td>
<td>Medium</td>
<td>"</td>
<td>370 20</td>
<td>330 40</td>
<td>40 20</td>
<td>pink and white</td>
<td></td>
</tr>
<tr>
<td>Sabeau Elephant</td>
<td>Late</td>
<td>Large</td>
<td>Good</td>
<td>339 40</td>
<td>232 40</td>
<td>7 20</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>Hamilton's Early</td>
<td>Medium</td>
<td>Medium</td>
<td>"</td>
<td>341 40</td>
<td>293 40</td>
<td>51 20</td>
<td>Oval, white</td>
<td></td>
</tr>
<tr>
<td>Carman No. 1</td>
<td>Medium</td>
<td>"</td>
<td>"</td>
<td>325 20</td>
<td>281 44</td>
<td>44 20</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Factor</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>229 40</td>
<td>25 20</td>
<td>14 40</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>Gold Coin</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>231 40</td>
<td>194 36</td>
<td>36 40</td>
<td>Oval, white</td>
<td></td>
</tr>
<tr>
<td>Hard to Beat</td>
<td>Small</td>
<td>"</td>
<td>"</td>
<td>196 40</td>
<td>156 31</td>
<td>31 20</td>
<td>Long, white</td>
<td></td>
</tr>
</tbody>
</table>
Thirteen of these varieties have been grown for the last five years, and six more have been grown for three years. The following are the average results obtained in these periods:—

<table>
<thead>
<tr>
<th>Variety</th>
<th>Average Earliness</th>
<th>Average Size</th>
<th>Average Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashleaf Kidney</td>
<td>Late</td>
<td>Large</td>
<td>517 22</td>
</tr>
<tr>
<td>Morgan Seedling</td>
<td>Medium</td>
<td>"</td>
<td>439 20</td>
</tr>
<tr>
<td>American Wonder</td>
<td>Late</td>
<td>"</td>
<td>456 46</td>
</tr>
<tr>
<td>Empire State</td>
<td>Medium</td>
<td>"</td>
<td>419 56</td>
</tr>
<tr>
<td>Reeve's Rose</td>
<td>Medium-Late</td>
<td>Medium</td>
<td>419 56</td>
</tr>
<tr>
<td>Late Puritan</td>
<td>Late</td>
<td>Large</td>
<td>439 26</td>
</tr>
<tr>
<td>Irish Cobbler</td>
<td>Medium-Early</td>
<td>Medium</td>
<td>435 36</td>
</tr>
<tr>
<td>Money Maker</td>
<td>Medium-Late</td>
<td>"</td>
<td>439 36</td>
</tr>
<tr>
<td>Early White Prize</td>
<td>Early</td>
<td>Small</td>
<td>429 44</td>
</tr>
<tr>
<td>Manitoba Wonder</td>
<td>Medium</td>
<td>Medium-Late</td>
<td>422 24</td>
</tr>
<tr>
<td>Carman No. 1</td>
<td>"</td>
<td>Large</td>
<td>401 34</td>
</tr>
<tr>
<td>Rochester Rose</td>
<td>Early</td>
<td>Small</td>
<td>397 40</td>
</tr>
<tr>
<td>Gold Coin</td>
<td>Late</td>
<td>Large</td>
<td>355 49</td>
</tr>
<tr>
<td>Woodbury's White Rose</td>
<td>Medium</td>
<td>Medium</td>
<td>501 05</td>
</tr>
<tr>
<td>(average of 3 years)</td>
<td>Early</td>
<td>Large</td>
<td>482 46</td>
</tr>
<tr>
<td>Hamilton's Early</td>
<td>Medium-Early</td>
<td>Medium</td>
<td>424 00</td>
</tr>
<tr>
<td>Factor</td>
<td>Late</td>
<td>Small</td>
<td>416 33</td>
</tr>
<tr>
<td>Hard to Beat</td>
<td>"</td>
<td>"</td>
<td>287 26</td>
</tr>
</tbody>
</table>

Commercial Fertilizers on Potatoes.

Three kinds of commercial fertilizers were tested separately on potatoes, and a combination of the three was also tried. Acid Phosphate was used as a representative of fertilizers containing phosphorous, muriate of potash was chosen as a typical potash manure, and sulphate of ammonia was used for nitrogen. The plots were ½ acre in size. The potatoes were planted on May 27 and dug on September 24.

<table>
<thead>
<tr>
<th>Fertilizer Used</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bush. Lb.</td>
</tr>
<tr>
<td>No fertilizer</td>
<td>441 50</td>
</tr>
<tr>
<td>Acid phosphate (600 pounds per acre)</td>
<td>352 09</td>
</tr>
<tr>
<td>Muriate of potash (320 pounds per acre)</td>
<td>460 19</td>
</tr>
<tr>
<td>Sulphate of ammonia (100 pounds per acre)</td>
<td>485 59</td>
</tr>
<tr>
<td>Acid phosphate (60) pounds per acre</td>
<td></td>
</tr>
<tr>
<td>Muriate of potash (320 pounds per acre)</td>
<td>564 40</td>
</tr>
<tr>
<td>Sulphate of ammonia (100 pounds per acre)</td>
<td></td>
</tr>
</tbody>
</table>

Each of these fertilizers costs about $9 or $10 per acre in the quantities used, exclusive of cost of application.
Cooking Test.

A cooking test was made of twenty-two varieties of potatoes. The following were the notes taken on their cooking qualities:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Character of Surface</th>
<th>Flavor</th>
<th>Texture</th>
<th>Dryness</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Talk</td>
<td>Smooth, shallow eyes</td>
<td>Good</td>
<td>Very good</td>
<td>Medium dry</td>
<td>Cooks quickly</td>
</tr>
<tr>
<td>McGregor Rose</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Woodbury’s White Rose</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Empire State</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Ashlea Kidney</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Reeve’s Rose</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Early Ohio</td>
<td>Smooth, deep eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>American Wonder</td>
<td>Smooth, shallow eyes</td>
<td>Very good</td>
<td>Very good</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Irish Cobbler</td>
<td>Deep eyes</td>
<td>Medium</td>
<td>Medium</td>
<td>Very smooth, shallow eyes</td>
<td>Medium</td>
</tr>
<tr>
<td>Early Bovee</td>
<td>Rather rough, rather deep eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Wet</td>
</tr>
<tr>
<td>Late Puritan</td>
<td>Smooth</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Money Maker</td>
<td>Very smooth, shallow eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Medium</td>
</tr>
<tr>
<td>Morgan Seedling</td>
<td>Smooth, medium eyes</td>
<td>Very good</td>
<td>Very good</td>
<td>"</td>
<td>Dry</td>
</tr>
<tr>
<td>Peacock’s Surprise</td>
<td>Very smooth, shallow eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Medium</td>
</tr>
<tr>
<td>Early White Prize</td>
<td>Medium smooth, medium shallow eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Rochester Rose</td>
<td>Medium smooth</td>
<td>Very good</td>
<td>"</td>
<td>"</td>
<td>Some red flesh</td>
</tr>
<tr>
<td>Manitoba Wonder</td>
<td>Medium shallow eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Salzer’s Wethersfield</td>
<td>Smooth, shallow eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Hamilton’s Early</td>
<td>Smooth, very shallow eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Cooks very quickly</td>
</tr>
<tr>
<td>Factor</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Gold Coin</td>
<td>Smooth, shallow eyes</td>
<td>Very good</td>
<td>Very good</td>
<td>Medium dry</td>
<td>Cooks quickly, yellowish flesh</td>
</tr>
<tr>
<td>Hard to Beat</td>
<td>Very smooth, shallow eyes</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

Onions.

Five varieties of seed onions and three kinds of sets were planted on April 19 and 20.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of ripening</th>
<th>Yield of one 60 foot row</th>
<th>lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Red Beauty</td>
<td>Sept. 16</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Large Red Wethersfield</td>
<td>" 16</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Ailsa Craig</td>
<td>" 16</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Denver’s Yellow Globe</td>
<td>" 16</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>Salzer’s Wethersfield</td>
<td>" 16</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Yellow Dutch Wethersfield</td>
<td>" 9</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Multiplier Sets</td>
<td>" 20</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>White Dutch Sets</td>
<td>" 9</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
BEETS.

Six varieties were sown in uniform test rows.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Ready for use</th>
<th>Yield of 66 foot row</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruby Dalest</td>
<td>Aug. 12</td>
<td>130</td>
<td>Good shape, large, good quality</td>
</tr>
<tr>
<td>Early Blood Red Turnip</td>
<td>Pulled, Sept. 16</td>
<td>129</td>
<td>Rather coarse.</td>
</tr>
<tr>
<td>Meteor</td>
<td>Aug. 12</td>
<td>118½</td>
<td>Good shape uniform size, good quality.</td>
</tr>
<tr>
<td>Egyptian Dark Red</td>
<td>Pulled, Sept. 16</td>
<td>102½</td>
<td>Rough, coarse, large.</td>
</tr>
<tr>
<td>Ronnie's Intermediate</td>
<td>Aug. 6</td>
<td>96½</td>
<td>Long but small, good quality.</td>
</tr>
</tbody>
</table>

CARROTS.

Three varieties were sown on May 5 in uniform test rows and were dug on September 18.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield of 66 foot row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Long Chantenay</td>
<td>69</td>
</tr>
<tr>
<td>Improved Nantes</td>
<td>57</td>
</tr>
<tr>
<td>French Horn</td>
<td>52</td>
</tr>
</tbody>
</table>

The French Horn carrots were the best quality for table use.

Parsnip.

One variety of parsnip, the Hollow Crown, was sown on May 16 and dug on September 9. A 66-foot row yielded 75 pounds.

SALSIFY.

One variety of salsify, the Long White, was sown on May 16 and dug on September 9. A 66-foot row yielded 33 pounds.

RADISH.

Two varieties of radish were sown on May 8. The Early Scarlet White Tipped Turnip was ready for use on June 7 and the Forcing Turnip Scarlet on June 10. Both yielded small radishes of good quality.

BEANS.

Seven varieties of beans were sown on May 20.

16—22½
Thirteen varieties of peas were planted. A uniform test was not obtained, as the dry weather in June caused poor germination of the late sown varieties. The Reliance was the variety which produced the finest quality of peas.

CORN.

Five varieties of table corn were planted on May 28.

TOMATOES.

Eleven varieties or strains of tomatoes were sown in a hotbed in April, and were planted out in the garden on June 6. Six plants of each kind were planted, three were pruned and three were left unpruned. The yield was as follows:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield of 3 plants pruned</th>
<th>Yield of 3 plants unpruned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ripe</td>
<td>Green</td>
</tr>
<tr>
<td>Spark's Earliana (C. E. F. strain No. 12-18)</td>
<td>11 05</td>
<td>23 00</td>
</tr>
<tr>
<td>Spark's Earliana (C. E. F. strain No. 12-23)</td>
<td>9 00</td>
<td>16 00</td>
</tr>
<tr>
<td>Rennie's XXX Earliest</td>
<td>3 07</td>
<td>20 00</td>
</tr>
<tr>
<td>Bonnie Best</td>
<td>2 15</td>
<td>20 00</td>
</tr>
<tr>
<td>Spark's Earliana (Burpee)</td>
<td>1 12</td>
<td>25 00</td>
</tr>
<tr>
<td>Spark's Earliana (C. E. F. strain)</td>
<td>1 12</td>
<td>14 00</td>
</tr>
<tr>
<td>Trophy</td>
<td>1 18</td>
<td>10 08</td>
</tr>
<tr>
<td>Livingston Globe</td>
<td>1 00</td>
<td>23 00</td>
</tr>
<tr>
<td>Matchless</td>
<td>1 00</td>
<td>3 00</td>
</tr>
<tr>
<td>Chalk's Early Jewel</td>
<td>8</td>
<td>13 08</td>
</tr>
<tr>
<td>Flora's Special</td>
<td>3 06</td>
<td>14 00</td>
</tr>
<tr>
<td>Average of 11 kinds</td>
<td>13</td>
<td>14 14</td>
</tr>
</tbody>
</table>
SPINACH.

One variety of spinach, the Victoria, was sown on May 8, it was ready for use on July 10, and went to seed when 12 inches high.

CELERY.

Six varieties of celery were sown in the hotbed on April 11, and were set out on May 27. They were destroyed by a deluge of rain in July which filled the trench with mud; hence no results are available.

PEPPERS.

Three varieties of peppers were grown, but all were destroyed by frost on September 20, without having fruited.

LETTUCE.

Thirteen varieties of lettuce were sown at various dates. Some of the later-sown varieties were very badly affected by the June drought, and failed to develop heads.

<table>
<thead>
<tr>
<th>Variety.</th>
<th>Weight of average head.</th>
<th>Remarks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cos Trianon</td>
<td></td>
<td>Medium quality.</td>
</tr>
<tr>
<td>All Heart</td>
<td>2 5</td>
<td>Good quality.</td>
</tr>
<tr>
<td>Crisp as Ice</td>
<td>1 9</td>
<td>Very good quality.</td>
</tr>
<tr>
<td>Giant Crystal Head</td>
<td>1 4</td>
<td>Good quality.</td>
</tr>
<tr>
<td>Iceberg</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Unrivalled Summer</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Wheeler’s Tom Thumb</td>
<td>11</td>
<td>Did not develop heads.</td>
</tr>
<tr>
<td>Grand Rapids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved Hanson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rousseau Blond Winter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Green Capucint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Seeded Simpson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Edged Seeded Simpson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Iceberg is recommended as a very satisfactory variety.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CABBAGE.

Fourteen varieties of cabbage were started in the hotbed on April 17. They were set out during the first week of June.

<table>
<thead>
<tr>
<th>Variety.</th>
<th>Ready for use.</th>
<th>Weight of Average Head.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Swedish</td>
<td>October 7...</td>
<td>19 04</td>
</tr>
<tr>
<td>Improved Amager Danish Roundhead</td>
<td>" 7...</td>
<td>15 00</td>
</tr>
<tr>
<td>Large Late Flat Drumhead</td>
<td>" 7...</td>
<td>14 00</td>
</tr>
<tr>
<td>Early Jersey Wakefield</td>
<td>August 2...</td>
<td>12 00</td>
</tr>
<tr>
<td>Brunswick or Short Stem</td>
<td>October 7...</td>
<td>11 00</td>
</tr>
<tr>
<td>Danish Summer Ballhead</td>
<td>" 7...</td>
<td>10 12</td>
</tr>
<tr>
<td>Copenhagen Market</td>
<td>August 12...</td>
<td>10 04</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>October 7...</td>
<td>10 00</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>" 20...</td>
<td>9 00</td>
</tr>
<tr>
<td>Small Erfurt</td>
<td>August 10...</td>
<td>9 00</td>
</tr>
<tr>
<td>Labeck</td>
<td>October 7...</td>
<td>8 00</td>
</tr>
<tr>
<td>Winningstadt</td>
<td>" 7...</td>
<td>8 00</td>
</tr>
<tr>
<td>Early Paris Market</td>
<td>July 23...</td>
<td>7 00</td>
</tr>
<tr>
<td>Extra Amager Danish Ballhead</td>
<td>October 7...</td>
<td>6 12</td>
</tr>
</tbody>
</table>
Three varieties of cauliflower were sown in the hotbed on April 20, and set out during the first week of June.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Ready for use</th>
<th>Weight of average head</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danish Giant or Dry Weather</td>
<td>Aug 20</td>
<td>9</td>
<td>Very tender, but lacked flavour.</td>
</tr>
<tr>
<td>Extra Selected Early Enfert Dwarf</td>
<td>" 27</td>
<td>8 4</td>
<td>Very tender, mild, fine.</td>
</tr>
<tr>
<td>Early Snowball</td>
<td>" 14</td>
<td>7 8</td>
<td>Very tender, good flavour.</td>
</tr>
</tbody>
</table>

SQUASH AND MARROWS.

Four kinds of squash and three varieties of vegetable marrow were grown this year. They were planted on June 7.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Ready for use</th>
<th>Weight of average specimens</th>
<th>Total weight from 12 plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammoth Whale Squash</td>
<td>September 24</td>
<td>21</td>
<td>223</td>
</tr>
<tr>
<td>Hubbard Squash</td>
<td>" 24</td>
<td>16 2</td>
<td>198</td>
</tr>
<tr>
<td>Summer Crookneck Squash</td>
<td>August 23</td>
<td>4</td>
<td>123</td>
</tr>
<tr>
<td>Debeba Squash</td>
<td>" 23</td>
<td>3</td>
<td>104</td>
</tr>
<tr>
<td>Long Vegetable Marrow</td>
<td>" 20</td>
<td>16 8</td>
<td>427</td>
</tr>
<tr>
<td>Long White Bush Marrow</td>
<td>" 16</td>
<td>11 8</td>
<td>291</td>
</tr>
<tr>
<td>Custard Marrow</td>
<td>" 14</td>
<td>6</td>
<td>55</td>
</tr>
</tbody>
</table>

MELONS.

Two varieties of water melon and one of musk melon were planted but did not fruit on account of the cool, backward season.

SMALL FRUITS.

A new plantation of fruit bushes was set out this season. The old plantation had become unsatisfactory for testing purposes as there were many bushes of old varieties that had shown themselves unsuitable, and either none at all or only single bushes of the most desirable varieties. The following varieties have been set out in the new plantation:

RED CURRANTS.

Six bushes each of Wilder, Red Cross, Red Grape, Cumberland Red, Cherry, Greenfield Red, Victoria Red, Red Dutch, Pomona, Rankin’s Red, Raby Castle, Perfection.

WHITE CURRANTS.

Six bushes each of Large White, White Cherry, White Grape.

BLACK CURRANTS.

Six bushes each of Topsy, Eagle, Success, Climax, Collins Prolific, Victoria, Eclipse, Saunders, Clipper, Buddenborg, Kerry, Magnus.
GOOSEBERRIES.

Eighteen bushes each of Houghton, Downing.

RASPBERRIES.

Twelve bushes of Herbert, six bushes of Sunbeam, twelve bushes of Caroline, six bushes of King, nine bushes of London, seven bushes of Miller, five bushes of Turner.

STRAWBERRIES.

The strawberry crop was rather disappointing this year. The June drought was at its severest just when they should have been bearing. The plantation is getting rather old; this, with the drought, made a light crop.

APPLES.

The apple orchard is, in the opinion of the present Superintendent, very poorly located. It is on a steep southern slope, where the bright sun in March and April causes the sap to flow too early; this is followed by heavy frost, and the trees are injured. Good locations for an apple orchard are scarcely to be found on this Farm, as the light land practically all slopes southward, and the bottom land is too heavy and rich.

It is still impossible to report success with standard apples. One tree, a numbered variety called No. 179, bore some fine, large, red apples of good flavour. Most of the standard apple trees are in an unthrifty condition.

The following varieties of crossbred or crab apples bore fruit: Silvia, Northern Queen, Ruby, Robin, Elsa, Prince, Alberta, Hyslop, Norman, Carleton, No. 171, Eastman, Jewel, Tony, Osman and Eve, and Ostrakoff a Russian variety of apple. Of these, Silvia is the most satisfactory, the tree is vigorous and hardy, the fruit is of good flavour, and is the size of a good crab apple. The fruit is early ripening and does not keep well. Other varieties that did well were: Northern Queen, a small-sized crab, but well flavoured and prolific; Robin, much like Silvia, but not bearing so well, Ruby and Tony. All the cross-bred varieties seem fairly hardy except Pioneer and Lang, which seem more subject to sunscald and blight.

A large number of trees, seedlings of cross-bred apples, are in the orchard. The fruit of most of these is quite inferior. However, two trees, both seedlings of Cluster, bore good crops of apples that compared favourably with the cross-bred apples.

Vacancies in the orchard have been filled up by planting young trees. The following varieties were obtained from A. P. Stevenson, of Dunstan, Man.: Gipsy Girl, Blushed Calville, Kluerkoe, Antonovka, Volga Auis, Anisette, Phillips, Lyman's Crab, Repka Kislaca, Simbirsk, Charlanooff and Hiberna. Trees of the following varieties were received from the Central Experimental Farm, Ottawa: Pioneer, Jewel, Columbia, Prince, Hiberna and Charles.

SEEDLINGS OF STANDARD APPLES.

A new departure in the testing of apple trees has been made this year. Heretofore the trees used have been two or three years old at the time they were received and planted out. They were planted in permanent locations and consequently took a great deal of room. This year, a large number of small seedlings, one year old, were obtained from the Central Experimental Farm and set out in nursery rows. They were planted in rows three feet apart, and are one foot apart in the row. Thus a large number can be tried in a small area. The object is to test the hardiness of the
plants before they are set out in permanent locations. Large numbers are used so that a greater selection is possible. By obtaining younger trees, they will be more thoroughly acclimatized by the time they reach bearing age. The young trees used are seedlings of some of the hardest standard apples. It is hoped that among the variations that will occur in growing so many seedlings, some trees will combine a greater hardiness than heretofore obtained with fruit of reasonably good size and quality. The following are the seedlings planted in the spring of 1912 and the number alive in the following autumn:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Number planted</th>
<th>Number alive in autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anis</td>
<td>458</td>
<td>371</td>
</tr>
<tr>
<td>Anisette</td>
<td>195</td>
<td>142</td>
</tr>
<tr>
<td>Antonovka</td>
<td>611</td>
<td>479</td>
</tr>
<tr>
<td>Beautiful Arche</td>
<td>483</td>
<td>424</td>
</tr>
<tr>
<td>Charlamoff</td>
<td>529</td>
<td>412</td>
</tr>
<tr>
<td>Hibernal</td>
<td>48</td>
<td>26</td>
</tr>
<tr>
<td>Tetofsky</td>
<td>227</td>
<td>183</td>
</tr>
<tr>
<td>Yellow Transparent</td>
<td>381</td>
<td>311</td>
</tr>
<tr>
<td>Total</td>
<td>2,942</td>
<td>2,948</td>
</tr>
</tbody>
</table>

This experiment will be continued in 1913 by planting seeds of Charlamoff, Blushed Calville, Repka Kislaga and Hibernal, obtained from apples grown in Manitoba in 1912 by Mr. A. P. Stevenson.

PLUMS.

A good crop of plums was harvested. The trees that are bearing are mostly native Manitoba plum trees. The fruit from these trees varies greatly; from some, it is very inferior; from others, of excellent quality. They vary also in earliness, in size of fruit and in the stage of maturity at which the fruit falls from the trees. Some of the better trees are well worth propagation. They are all quite hardy. Fruit was also borne by some seedlings of the Cheney variety. These plums are later than the native plum, but are larger. They vary in quality; the better ones are very good.

Young trees of the Cheney and Aitkin varieties and some selected plants of the native Manitoba plum were purchased from the Buchanan Nursery at Winnipeg. Also young trees of the following cross-bred varieties, originated by Professor N. E. Hansen of South Dakota: Opata, Hanska, Sapa and Skuya, were purchased. These trees were planted in vacancies in the plum orchard and in locations from which inferior trees were removed.

FLOWERS.

The herbaceous perennials have bloomed profusely as usual. The iris made a splendid display early in the season. The peonies bloomed abundantly, but the duration of the bloom was shortened by the drought and the heat of the last of June. Perennial larkspur, scarlet lychnis, autumn daisy, columbines, and other perennials did very well. A large number of varieties of roses bloomed.

Most of the annual flowers were started in a hotbed in April and set out early in June. The season was unfavourable, as the June drought was very hard on the
newly transplanted plants, and the cool, wet weather later on delayed blooming. However, even under these disadvantages, a good display was made, which attracted much attention.

A consignment of various kinds of bulbs for interior use in the winter and for early spring bloom in the garden was received from the Dominion Horticulturist. The tulips are the stand-by for the latter purpose; they made an excellent display this past spring.

The bulbs for house use were very satisfactory, and as this method of obtaining bloom in the winter months is considered of special importance the following brief article prepared on this subject is included herewith:

BULB CULTURE IN THE HOME.

Practically everyone plans to have a showing of flowers during summer months, but why should not the same precautions be taken in preparation for winter, when there is such a dearth of colour?

The practice of raising bulbs, e.g., hyacinths, daffodils, tulips, etc., for winter bloom should be more general. The work involved is comparatively trifling, and the results most gratifying. But, with this, as with many other things, just a little aside from the ordinary routine, people hesitate to make the start. Yet in reality, more time and care is frequently expended in coaxing into bloom a few sickly geraniums than would be necessary to produce a whole windowful of bright, cheery daffodils.

The first requisite, naturally, is a supply of good fresh bulbs, which should be obtainable of any reliable florist. These should be procured early in October, to insure bloom for Christmas, and should be potted in loose, sandy soil, provided with good drainage facilities.

In general, the bulbs should be put in at such a depth that their tops will be just below the surface of the soil, or, as in the case of the daffodils, slightly above it.

The arrangement of the bulbs in planting is a matter for individual taste to settle. One might have a long window box of tulips for example, with red or yellow in the centre, and a border of white; or pots, ranging in size from the four-inch size to those large, shallow fern pots, frequently used for hanging baskets. One precaution should be observed in combining different varieties, and that is, to be sure that those used together will bloom at the same time. A mass of bloom is certainly beautiful, but when one has a limited supply of bulbs to draw from, it is better to prolong the season of bloom, than to produce it all at once. Most bulbs do not object to crowding, in a seven inch pot one can put half a dozen daffodils, or tulips or Roman hyacinths, while fully a dozen and a half of crocus will find plenty of room in the same area. A very little practice will acquaint one with the habits of the different kinds of bulbs, which, once learned, will facilitate pleasing combinations in arrangement.

When the bulbs have been planted, they should be watered and set in a cool cellar, or dark room. This marks the first and most laborious stage of the work; all that then remains to be done, is to see that they are watered occasionally (say once a fortnight, or less frequently according to the dampness of the cellar) and not allowed to freeze.

The difficulty of knowing just when to bring the pots up to the light, may be overcome in this way. After watering the pot, tip it upside down on the hand, allowing the soil to leave the pot, (it will remain intact if carefully handled), and determine the amount of root development. If the pot seems to be full of roots, it is ready for the light, if not, even if the foliage seems well started, leave longer in darkness, as development of foliage cannot be taken as an indication of root growth.
The Dutch hyacinths can be successfully grown in water, but it is wiser to have plenty of stones in the water, that the roots may be less disturbed by handling. In this case, all that is necessary is to replenish the water as required—a small piece of charcoal is a good addition to the water.

With a very small expenditure of time, labour, and expense, there is no reason why anyone should not have continuous bloom from Christmas until May, when outside flowers are in evidence again.

Some of the varieties which might be suggested are:

- Roman hyacinth... Brought up December 5.
- Paper White narcissus... " December 18.
- Golden Spur daffodil... " December 18.
- Sir Watkin daffodil... " February 1.
- Dutch hyacinths... " January 12.
- Tulips (single)... " December 15.
- Crocus... " January 10.
- Emperor daffodils... " February 18.
- Empress daffodils... " February 18.
- Scilla Sibirica... " March 10.

These are merely suggestions as to dates for bringing up, the more reliable test will be that of examining the roots, described above, since cellar conditions will vary greatly in different homes.
EXPERIMENTAL FARM, INDIAN HEAD, SASKATCHEWAN

REPORT OF THE SUPERINTENDENT, ANGUS MACKAY.

In 1888, when the Experimental Farm at Indian Head was started, there was practically a bare prairie in that vicinity. Today, the forest plantations and the many species and varieties of ornamental trees and shrubs growing there show that great changes can be made where trees are planted and cared for, even on what was once open prairie. Within the shelter afforded by the windbreaks are grown crab apples, plums, small fruits, vegetables, and many herbaceous perennials and annual flowers. In the following report will be found the results of some of the horticultural experiments conducted during 1912.

VEGETABLES.

Vegetables all did well, with few exceptions. Frost overtook the beans before they were fully matured. Melons were a failure. Tomatoes had to be lifted and put in the hot-house before frost came. Corn, with the exception of the native varieties, did not ripen.

POTATOES.

The crop of potatoes in 1912 was a satisfactory one.

The seed was planted in rows thirty inches apart, and twelve inches apart in the row. The yield was taken from two rows, sixty-six feet long.

Potatoes.—Test of Varieties.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>Character of Soil</th>
<th>Date Planted</th>
<th>Date Lifted</th>
<th>Growth</th>
<th>Size</th>
<th>Yield per Acre Bush. Lb.</th>
<th>Form and Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>American Wonder</td>
<td>Clay loam</td>
<td>May 29</td>
<td>Sept. 26</td>
<td>Medium</td>
<td>Medium</td>
<td>576 12</td>
<td>Long, white.</td>
</tr>
<tr>
<td>2</td>
<td>Carman, No. 1</td>
<td></td>
<td>20</td>
<td>26</td>
<td>Strong</td>
<td>Large</td>
<td>486 36</td>
<td>Oval, white.</td>
</tr>
<tr>
<td>3</td>
<td>Dalmeny Beauty</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>437 48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Wee MacGregor</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>534 36</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Vick’s Extra Early</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>422 24</td>
<td>“ pink and white</td>
</tr>
<tr>
<td>6</td>
<td>Reeve’s Rose</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>433 21</td>
<td>Oval, red.</td>
</tr>
<tr>
<td>7</td>
<td>Everett</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>500 8</td>
<td>Long, pink.</td>
</tr>
<tr>
<td>8</td>
<td>Table Talk</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>588 8</td>
<td>Oval, white.</td>
</tr>
<tr>
<td>9</td>
<td>Rochester Rose</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>528 8</td>
<td>“ red.</td>
</tr>
<tr>
<td>10</td>
<td>Money Maker</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>479 36</td>
<td>Long, white.</td>
</tr>
<tr>
<td>11</td>
<td>Hard to Beat</td>
<td></td>
<td>20</td>
<td>26</td>
<td>Medium</td>
<td>Small</td>
<td>211 12</td>
<td>Oval, “</td>
</tr>
<tr>
<td>12</td>
<td>Late Puritan</td>
<td></td>
<td>20</td>
<td>26</td>
<td>Strong</td>
<td>Large</td>
<td>511 36</td>
<td>“</td>
</tr>
<tr>
<td>13</td>
<td>Morgan Seedling</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>486 8</td>
<td>Long, pink.</td>
</tr>
<tr>
<td>14</td>
<td>Gold Coin</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>580 36</td>
<td>Oval, white.</td>
</tr>
<tr>
<td>15</td>
<td>Irish Cobbler</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>552 24</td>
<td>Round, “</td>
</tr>
<tr>
<td>16</td>
<td>Ashleaf Kidney</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>515 36</td>
<td>Oval “</td>
</tr>
<tr>
<td>17</td>
<td>Dyer’s Standard</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td>535 36</td>
<td>“</td>
</tr>
<tr>
<td>18</td>
<td>Empire State</td>
<td></td>
<td>20</td>
<td>26</td>
<td>Medium</td>
<td></td>
<td>536 48</td>
<td>Round, “</td>
</tr>
<tr>
<td>19</td>
<td>Factor</td>
<td></td>
<td>20</td>
<td>26</td>
<td></td>
<td>Medium</td>
<td>273 42</td>
<td>“</td>
</tr>
<tr>
<td>20</td>
<td>New Queen</td>
<td></td>
<td>20</td>
<td>26</td>
<td>Medium</td>
<td></td>
<td>206 42</td>
<td>Oval, pink.</td>
</tr>
<tr>
<td>21</td>
<td>Hulston Rose</td>
<td></td>
<td>20</td>
<td>26</td>
<td>Strong</td>
<td>Large</td>
<td>430 12</td>
<td>“</td>
</tr>
<tr>
<td>22</td>
<td>Early Norther</td>
<td></td>
<td>20</td>
<td>26</td>
<td>Medium</td>
<td>Medium</td>
<td>377 12</td>
<td>“</td>
</tr>
<tr>
<td>23</td>
<td>Early Hebron</td>
<td></td>
<td>20</td>
<td>26</td>
<td>Small</td>
<td></td>
<td>370 42</td>
<td>“</td>
</tr>
</tbody>
</table>
ASPARAGUS.

A good crop was obtained from the old beds of Barr's Mammoth, Barr's Elmira, and Conover's Colossal. In use from May 15 to June 29.

BEANS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Seed from</th>
<th>In Use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wardwell's Kidney Wax</td>
<td>"</td>
<td>July 26</td>
<td>" " " " " "</td>
</tr>
<tr>
<td>Valentine</td>
<td>"</td>
<td>July 31</td>
<td>" " " " " "</td>
</tr>
<tr>
<td>Early Refugee</td>
<td>"</td>
<td>Aug. 29</td>
<td>" " " " " "</td>
</tr>
<tr>
<td>Challenge Black Wax</td>
<td>"</td>
<td>July 29</td>
<td>" " " " " "</td>
</tr>
<tr>
<td>Stringless Green Pod</td>
<td>"</td>
<td>Aug. 19</td>
<td>" " " " " "</td>
</tr>
<tr>
<td>Refugee or 1,600 to 1</td>
<td>"</td>
<td>"</td>
<td>" " " " " "</td>
</tr>
</tbody>
</table>

BEETS.

Sown May 9; pulled September 26.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In Use</th>
<th>Yield per Acre</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteor</td>
<td>July 10</td>
<td>1,360</td>
<td>20 Large</td>
</tr>
<tr>
<td>Black Red Ball</td>
<td>July 20</td>
<td>815</td>
<td>20 Small</td>
</tr>
<tr>
<td>Early Blood Red Turnip</td>
<td>July 10</td>
<td>1,260</td>
<td>20 Medium</td>
</tr>
<tr>
<td>Egyptian Dark Red Turnip</td>
<td>July 10</td>
<td>1,195</td>
<td>40 Large</td>
</tr>
<tr>
<td>Ruby Dukelet</td>
<td>July 10</td>
<td>1,585</td>
<td>" " " "</td>
</tr>
</tbody>
</table>

CAULIFLOWER

Sown in hothouse March 25; set out May 26.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In Use</th>
<th>Av. Weight per head</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danish Giant, or Dry Weather</td>
<td>Aug. 15</td>
<td>7</td>
<td>Medium crop</td>
</tr>
<tr>
<td>Early Snowball</td>
<td>Aug. 26</td>
<td>4</td>
<td>" " " "</td>
</tr>
<tr>
<td>Extra Selected Early Erfurt Dwarf</td>
<td>July 31</td>
<td>6</td>
<td>" " " "</td>
</tr>
<tr>
<td>Large Short Stemmed</td>
<td>Aug. 1</td>
<td>8</td>
<td>" " " "</td>
</tr>
</tbody>
</table>

CELERY.

Sown in hothouse March 25; planted out June 4, in trenches 18 inches deep, with 6 inches of manure in the bottom, and 4 inches of soil on top of the manure. The celery was given several good waterings during the season.
Varieties of Carrots

<table>
<thead>
<tr>
<th>Variety</th>
<th>Ready for Use</th>
<th>Weight per doz. heads</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris Golden Yellow</td>
<td>Sept. 13</td>
<td>13</td>
<td>Good crop.</td>
</tr>
<tr>
<td>Giant Pascal</td>
<td>"</td>
<td>17</td>
<td>" "</td>
</tr>
<tr>
<td>Rose Ribbed Paris</td>
<td>Aug. 30</td>
<td>10</td>
<td>" "</td>
</tr>
<tr>
<td>French Success</td>
<td>"</td>
<td>16</td>
<td>" "</td>
</tr>
<tr>
<td>Noll’s Magnificent</td>
<td>"</td>
<td>12</td>
<td>" "</td>
</tr>
<tr>
<td>Evans’ Triumph</td>
<td>Sept. 13</td>
<td>18</td>
<td>" "</td>
</tr>
<tr>
<td>White Plume</td>
<td>Aug. 27</td>
<td>10</td>
<td>" "</td>
</tr>
</tbody>
</table>

Sown May 9; pulled October 19.

Varieties of Cucumbers

<table>
<thead>
<tr>
<th>Variety</th>
<th>In Use</th>
<th>Yield per Acre</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>French Horn</td>
<td>July 20</td>
<td>580</td>
<td>Extra good crop.</td>
</tr>
<tr>
<td>Improved Nantes</td>
<td>" 25</td>
<td>599</td>
<td>20</td>
</tr>
<tr>
<td>Half Long Chantenay</td>
<td>" 25</td>
<td>792</td>
<td>40</td>
</tr>
</tbody>
</table>

Sown in hothouse April 20; set out in garden May 30.

Varieties of Corn

<table>
<thead>
<tr>
<th>Variety</th>
<th>Sown</th>
<th>In Use</th>
<th>Ripe</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fordhook Early</td>
<td>May 25</td>
<td></td>
<td></td>
<td>Did not mature.</td>
</tr>
<tr>
<td>Malakoff</td>
<td>" 25</td>
<td></td>
<td></td>
<td>" "</td>
</tr>
<tr>
<td>Golden Bantam</td>
<td>" 25</td>
<td></td>
<td></td>
<td>" "</td>
</tr>
<tr>
<td>White Squaw</td>
<td>" 25</td>
<td>Aug. 26</td>
<td>Sept. 15</td>
<td>Good crop.</td>
</tr>
<tr>
<td>Red Squaw</td>
<td>" 25</td>
<td>" 20</td>
<td>" 15</td>
<td>"</td>
</tr>
</tbody>
</table>

Sown.
CABBAGE.

Sown in hothouse March 25; set out May 26; taken up September 5.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In Use</th>
<th>Average Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Jersey Wakefield</td>
<td>July 24</td>
<td>6</td>
<td>Medium solid heads.</td>
</tr>
<tr>
<td>Early Paris Market</td>
<td>"</td>
<td>4½</td>
<td>Small</td>
</tr>
<tr>
<td>Large Late Flat Drumhead</td>
<td>Sept. 4</td>
<td>12</td>
<td>Large</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>July 24</td>
<td>4</td>
<td>Small</td>
</tr>
<tr>
<td>Fottler's Improved Brunswick</td>
<td>Aug. 14</td>
<td>13</td>
<td>Large</td>
</tr>
<tr>
<td>Lubeck</td>
<td>"</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>"</td>
<td>9</td>
<td>Medium</td>
</tr>
<tr>
<td>Small Erlinut</td>
<td>July 29</td>
<td>6</td>
<td>Small</td>
</tr>
<tr>
<td>Winnekegtadt</td>
<td>Sept. 4</td>
<td>8</td>
<td>Medium</td>
</tr>
<tr>
<td>Danish Delicatesse, Red</td>
<td>"</td>
<td>6</td>
<td>Small</td>
</tr>
<tr>
<td>Red Danish Stonehead</td>
<td>"</td>
<td>5</td>
<td>"</td>
</tr>
<tr>
<td>Danish Summer Ballhead</td>
<td>Aug. 14</td>
<td>12</td>
<td>Large</td>
</tr>
<tr>
<td>Flat Swedish</td>
<td>"</td>
<td>11</td>
<td>"</td>
</tr>
<tr>
<td>Improved Amager Danish Roundhead</td>
<td>Sept. 4</td>
<td>8</td>
<td>Medium</td>
</tr>
<tr>
<td>Extra Amager Danish Ballhead</td>
<td>"</td>
<td>7</td>
<td>Small</td>
</tr>
<tr>
<td>Copenhagen Market</td>
<td>Aug. 1</td>
<td>9</td>
<td>Medium</td>
</tr>
</tbody>
</table>

BRUSSELS SPROUTS.

Sown in hothouse March 25; set out May 26; ready for use September 13. Average weight, 7 pounds.

MUSK MELON.

One variety (Earliest Ripe) was tested. Sown in hothouse April 20, set out in garden May 30. No fruit matured.

ONIONS.

Sown in garden April 19; taken up September 18.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Bushels per Acre</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson's Dark Red Beauty</td>
<td>348</td>
<td>Good crop.</td>
</tr>
<tr>
<td>Salzer's Wethersfield</td>
<td>269 10</td>
<td>Medium crop.</td>
</tr>
<tr>
<td>Danver's Yellow Globe</td>
<td>309 20</td>
<td>Good crop.</td>
</tr>
<tr>
<td>Large Red Wethersfield</td>
<td>290</td>
<td>Medium crop.</td>
</tr>
<tr>
<td>Large Silverskin</td>
<td>212 40</td>
<td>"</td>
</tr>
</tbody>
</table>
GARDEN PEAS

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date Sown</th>
<th>In Use</th>
<th>Ripe</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregory's Surprise</td>
<td>May 24</td>
<td>July 10</td>
<td>Aug. 19</td>
<td>Medium</td>
</tr>
<tr>
<td>Gradus</td>
<td>June 21</td>
<td>July 15</td>
<td>Aug. 19</td>
<td>Large</td>
</tr>
<tr>
<td>American Wonder</td>
<td>June 21</td>
<td>July 23</td>
<td>Aug. 19</td>
<td>Medium</td>
</tr>
<tr>
<td>McLean's Advance</td>
<td>June 21</td>
<td>Aug. 11</td>
<td>Sept. 2</td>
<td>Medium</td>
</tr>
<tr>
<td>Heroine</td>
<td>June 21</td>
<td>Aug. 14</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Stratagem</td>
<td>June 21</td>
<td>Aug. 14</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Telephone</td>
<td>June 21</td>
<td>July 25</td>
<td>Aug. 19</td>
<td>Large</td>
</tr>
<tr>
<td>Thomas Laxton</td>
<td>June 21</td>
<td>July 20</td>
<td>Aug. 19</td>
<td>Large</td>
</tr>
<tr>
<td>Premium Gem</td>
<td>June 21</td>
<td>July 19</td>
<td>Aug. 19</td>
<td>Large</td>
</tr>
<tr>
<td>Nott's New Perfection</td>
<td>June 21</td>
<td>Aug. 20</td>
<td>Aug. 19</td>
<td>Medium</td>
</tr>
<tr>
<td>Sutton's Excelsior</td>
<td>June 21</td>
<td>Aug. 14</td>
<td>Aug. 19</td>
<td>Large</td>
</tr>
<tr>
<td>Juno</td>
<td>June 21</td>
<td>Aug. 14</td>
<td>Aug. 19</td>
<td>Large</td>
</tr>
</tbody>
</table>

PARSNIPS

Sown in garden May 19; taken up October 3.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In Use</th>
<th>Yield per acre</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow Crown</td>
<td>Aug. 28</td>
<td>773 20</td>
<td>Good crop</td>
</tr>
</tbody>
</table>

PARSLEY

Sown in garden May 19; in use July 20; pulled October 14. Variety, Double Curled, good crop.

PEPPERS

Three varieties were tried, Cayenne, Chili, and Early Neapolitan. These were sown in the hothouse March 25; set out in garden June 9. No fruit matured. Several plants of Early Neapolitan were allowed to remain in the hothouse during the summer and these gave a good crop of fruit, which ripened October 15.

RADISH

<table>
<thead>
<tr>
<th>Variety</th>
<th>Sown in garden</th>
<th>In Use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forcing Turnip Scarlet</td>
<td>May 29</td>
<td>June 10</td>
<td>Medium</td>
</tr>
<tr>
<td>Extra Early Scarlet White-tipped Turnip</td>
<td>June 9</td>
<td>June 10</td>
<td>Medium</td>
</tr>
</tbody>
</table>

SQUASH

Sown in hothouse April 20; transplanted in garden May 30.
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

-----|--------|----------------|------
Summer Crookneck | Aug. 2 | 3 | Good crop.
Delicata | " 15 | 3 | "
 Custard Marrow White bush. Scallop | Sept. 4 | 2 | "
 Long White Bush Marrow | Aug. 15 | 8 | "
 Long Vegetable Marrow | " 15 | 9 | "
 White Congo | Aug. 10 | 14 | Did not mature.
 Mammoth Whale | " 10 | 14 | Good crop.
 Hubbard | " 10 | 10 | "

LETTUCE.

-----|----------------|--------|------
Red Edged Victoria | May 13 | July 14 | Good crop.
Unrivalled Summer | " 13 | " 14 | "
 Wheeler's Tom Thumb | " 13 | " 14 | "
 Cos Trimoon | " 13 | " 14 | "
 All Heart | " 13 | " 14 | "
 Grand Rapids | " 13 | " 14 | "
 Giant Crystal Head | " 13 | " 14 | "
 Black Seeded Simpson | " 13 | " 14 | "
 Crisp As Ice | " 9 | " 10 | "
 Iceberg | " 9 | " 10 | "
 Improved Hanson | " 9 | " 10 | "
 Rousseau Blond Winter | " 9 | " 10 | "
 Dark Green Capitaine | " 9 | " 10 | "

PUMPKIN.

Sown in the hothouse April 20; transplanted in garden May 30.

-----|--------|----------------|------
Jumbo | Aug. 15 | 30 | Good crop.
Connecticut Field | " 15 | 14 | "
 Mammoth King | " 15 | 13 | "

SALSIFY.

One variety, Long White, was sown in the garden on May 13; ready for use on October 3. Gave a medium crop.

SPINACH.

One variety, Victoria, was sown in the garden May 9; ready for use June 14. Gave a good crop.

EGG PLANT.

One variety, New York Improved, was tested; sown in hothouse April 6; set out in garden June 4. No fruit matured.
Jewel Apple Tree, Experimental Farm, Indian Head, Sask.

Harvesting Potatoes on Irrigated Land, Lethbridge, Alberta.
TOMATOES.

Sown in hothouse March 25; transplanted in garden May 26. The yield is the number of pounds of fruit, both green and ripe, taken on September 10 from one plant of each variety set three feet apart.

<table>
<thead>
<tr>
<th>Variety</th>
<th>First Ripe</th>
<th>Yield</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparks Earliana (Sunnybrook Strain)</td>
<td>Sept. 9</td>
<td>7</td>
<td>Large</td>
</tr>
<tr>
<td>Chalk's Early Jewel</td>
<td>Aug. 28</td>
<td>4½</td>
<td>Small</td>
</tr>
<tr>
<td>Bonny Best</td>
<td>Sept. 4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Trophy</td>
<td>"</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Matchless</td>
<td>"</td>
<td>5</td>
<td>"</td>
</tr>
<tr>
<td>Livingston's Globe</td>
<td>"</td>
<td>10</td>
<td>Large</td>
</tr>
<tr>
<td>Bennie's XXX Earliest</td>
<td>"</td>
<td>10</td>
<td>Small</td>
</tr>
<tr>
<td>Florida Special</td>
<td>Aug. 28</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sparks Earliana, 12-23, C.E.F.</td>
<td>"</td>
<td>4</td>
<td>Medium</td>
</tr>
<tr>
<td>Sparks Earliana, 12-18, C.E.F.</td>
<td>Sept. 10</td>
<td>7</td>
<td>Large</td>
</tr>
<tr>
<td>Sparks Earliana, C.E.F.</td>
<td>"</td>
<td>6</td>
<td>"</td>
</tr>
<tr>
<td>Sparks Earliana, I.H.</td>
<td>Aug. 30</td>
<td>8</td>
<td>Medium</td>
</tr>
</tbody>
</table>

TABLE TURNIPS.

One variety, Early White Flat Strap Leafed, was sown in the garden May 19; ready for use July 12, giving a yield of 986 bushels per acre.

SUMMER SAVORY.

Sown in garden May 9; in use July 14; pulled September 11. Gave a good crop.

SAGE.

Sown in garden May 9; pulled September 11. Gave a good crop.

RHUBARB.

Old beds in use from May 15 up to September 4; made a good growth during the season. The following varieties were grown:—

- Myatt Linnaeus.
- Victoria.
- Fottler's Improved.
- Royal Linnaeus.
- Prince Albert.
- Scarlet Nonpareil.
- Strawberry.

FLOWERS.

The show of flowers last year has seldom been surpassed, both in quality and length of time in bloom. Asters, stocks, verbenas and petunias were never better. Sweet peas were sown in four collections and were remarkable for size and beauty. In perennials, peonies, tulips, gladioli, dahlias and canna were extra fine.

ROSES.

Except the single varieties, none of the roses was conspicuous. Nine double varieties bloomed, these being La France, pink; Magna Charta, pink; Mrs. R. G. Sharman Crawford, pink; Frau Karl Druschki, white; Margaret Dickson, white; Ulrich Brunner, Madame Gabriel Luizet, Mrs. John Laing and Captain Hayward, red. The third and last named are the finest.

16—23
FLOWERING SHRUBS.

Shrubs were conspicuous from the quantity of bloom. The lilacs, caragana and honeysuckle were extra good in this respect.

ANNUALS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Sown in Hothouse</th>
<th>Transplanted in garden</th>
<th>In Bloom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>Asters, 13 varieties</td>
<td>Mar. 25</td>
<td>May 29</td>
<td>July 29</td>
</tr>
<tr>
<td>Antirrhinum, 11 varieties</td>
<td>" 26</td>
<td>" 30</td>
<td>" 16</td>
</tr>
<tr>
<td>Balsam</td>
<td>" 25</td>
<td>" 29</td>
<td>Frozen off</td>
</tr>
<tr>
<td>Carnations</td>
<td>" 26</td>
<td>" 22</td>
<td>No bloom</td>
</tr>
<tr>
<td>Chrysanthemum</td>
<td>" 26</td>
<td>" 30</td>
<td>June 20</td>
</tr>
<tr>
<td>Kochia</td>
<td>" 26</td>
<td>" 29</td>
<td>Sept. 20</td>
</tr>
<tr>
<td>Lobelia</td>
<td>" 26</td>
<td>June 4</td>
<td></td>
</tr>
<tr>
<td>Nemesia, 9 varieties</td>
<td>April 5</td>
<td>May 31</td>
<td>June 20</td>
</tr>
<tr>
<td>Nasturtium</td>
<td>March 26</td>
<td>" 29</td>
<td>" 28</td>
</tr>
<tr>
<td>Phlox Drummondii, 7 varieties</td>
<td>" 26</td>
<td>" 2</td>
<td>2</td>
</tr>
<tr>
<td>Pansy, 3 varieties</td>
<td>" 26</td>
<td>" 30</td>
<td>2 Oct. 25</td>
</tr>
<tr>
<td>Petunia, 4 varieties</td>
<td>" 25</td>
<td>June 4</td>
<td>Aug. 26</td>
</tr>
<tr>
<td>Portulaca</td>
<td>" 25</td>
<td>July 7</td>
<td>Sept. 15</td>
</tr>
<tr>
<td>Stocks</td>
<td>" 25</td>
<td>July 28</td>
<td></td>
</tr>
<tr>
<td>Verbena, 8 varieties</td>
<td>" 25</td>
<td>June 25</td>
<td></td>
</tr>
<tr>
<td>Viola, 4 varieties</td>
<td>" 26</td>
<td>June 30</td>
<td>Oct. 28</td>
</tr>
</tbody>
</table>

ANNUALS—SOWN IN GARDEN.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Sown</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachycome, mixed</td>
<td>May 21</td>
<td>No bloom</td>
<td></td>
</tr>
<tr>
<td>Bachelor’s Button</td>
<td>" 21</td>
<td>June 7</td>
<td>Sept. 15</td>
</tr>
<tr>
<td>Calliopsis</td>
<td>" 21</td>
<td>Aug. 15</td>
<td>" 12</td>
</tr>
<tr>
<td>Celosia, mixed</td>
<td>" 21</td>
<td>July 10</td>
<td>" 12</td>
</tr>
<tr>
<td>Coreopsis</td>
<td>" 21</td>
<td>Aug. 15</td>
<td>" 12</td>
</tr>
<tr>
<td>Dimorphotheca, 3 varieties</td>
<td>" 21</td>
<td>July 10</td>
<td>" 12</td>
</tr>
<tr>
<td>Eschscholtzia, 2 varieties</td>
<td>" 21</td>
<td>" 14</td>
<td>" 12</td>
</tr>
<tr>
<td>Gaillardia</td>
<td>" 21</td>
<td>Aug. 5</td>
<td>Sept. 12</td>
</tr>
<tr>
<td>Godetia, dwarf mixed</td>
<td>" 21</td>
<td>" 15</td>
<td>" 19</td>
</tr>
<tr>
<td>Gypsophila</td>
<td>" 21</td>
<td>" 30</td>
<td>" 19</td>
</tr>
<tr>
<td>Larkspur, 3 varieties</td>
<td>" 21</td>
<td>" 15</td>
<td>" 20</td>
</tr>
<tr>
<td>Mignonette, sweet scented</td>
<td>" 21</td>
<td>July 10</td>
<td>" 12</td>
</tr>
<tr>
<td>Nicotiana affinis</td>
<td>" 21</td>
<td>" 24</td>
<td>" 15</td>
</tr>
<tr>
<td>Poppy, 3 varieties</td>
<td>" 21</td>
<td>Aug. 19</td>
<td>" 15</td>
</tr>
<tr>
<td>Papaver</td>
<td>" 21</td>
<td>July 25</td>
<td>" 15</td>
</tr>
<tr>
<td>Salpiglossis, mixed</td>
<td>" 21</td>
<td>" 15</td>
<td>" 15</td>
</tr>
<tr>
<td>Sweet peas</td>
<td>April 18</td>
<td>July 1</td>
<td>" 15</td>
</tr>
<tr>
<td>Sclerias, 3 varieties</td>
<td>May 21</td>
<td>July 15</td>
<td>" 15</td>
</tr>
<tr>
<td>Salvia</td>
<td>" 21</td>
<td>" 22</td>
<td></td>
</tr>
<tr>
<td>Sweet William</td>
<td>" 22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIVISION OF HORTICULTURE

SESSIONAL PAPER No. 16

PERENNIALS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Remarks</th>
<th>Variety</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea</td>
<td>Good</td>
<td>Larkspur</td>
<td>Good</td>
</tr>
<tr>
<td>Blue Squills</td>
<td>"</td>
<td>Oriental Poppy</td>
<td>"</td>
</tr>
<tr>
<td>Bleeding Heart</td>
<td>"</td>
<td>Peony, assorted varieties</td>
<td>"</td>
</tr>
<tr>
<td>Columbine</td>
<td>"</td>
<td>Phlox (perennial)</td>
<td>"</td>
</tr>
<tr>
<td>Comfrey</td>
<td>Medium</td>
<td>Shasta Daisy</td>
<td>"</td>
</tr>
<tr>
<td>Clematis</td>
<td>Good</td>
<td>African Daisy</td>
<td>"</td>
</tr>
<tr>
<td>German Iris</td>
<td>"</td>
<td>Tall White Iris</td>
<td>"</td>
</tr>
<tr>
<td>Golden Glow</td>
<td>Medium</td>
<td>Canterbury Bell</td>
<td>"</td>
</tr>
<tr>
<td>Gladioli</td>
<td>Good</td>
<td>Tulips (17 varieties)</td>
<td>"</td>
</tr>
<tr>
<td>Hellanthus</td>
<td>"</td>
<td>Dahlia (Prince Imperial)</td>
<td>"</td>
</tr>
<tr>
<td>Hemanocallis</td>
<td>"</td>
<td>Dahlia (33 varieties)</td>
<td>"</td>
</tr>
<tr>
<td>Iris sibirica</td>
<td>"</td>
<td>Canna (13 varieties)</td>
<td>"</td>
</tr>
<tr>
<td>Japanese Peonies</td>
<td>"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BULBS PLANTED IN FALL OF 1912.

Thirty-five varieties of tulip, narcissus and crocus were received from the Central Experimental Farm, Ottawa, and planted on October 28.

ROSES.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In Bloom.</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>La France</td>
<td>July 29</td>
<td>Aug. 4</td>
</tr>
<tr>
<td>Magna Charta</td>
<td>5</td>
<td>July 25</td>
</tr>
<tr>
<td>Mrs. E. G. Sharman Crawford</td>
<td>7</td>
<td>Aug. 7</td>
</tr>
<tr>
<td>Frau Karl Druschki</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Margaret Dickson</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Ulrich Brunner</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Madam Gabriel Luizet</td>
<td>21</td>
<td>Sept. 9</td>
</tr>
<tr>
<td>Mrs. John Laing</td>
<td>9</td>
<td>Aug. 1</td>
</tr>
<tr>
<td>Captain Hayward</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMALL FRUITS.

In small fruits, currants and raspberries were much more prolific than for years back. The insect which has destroyed the currants for the last few years was absent from the crop last season. Gooseberries had very little fruit, and strawberries were also a failure.

The following varieties of small fruits are grown on the Farm at present. When picking, a record was kept of the weight of fruit gathered from one of the bushes of each, and the weights are given below. The dates of picking were from July 23 to August 7.
RED CURRANTS

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fruit Picked</th>
<th>Variety</th>
<th>Fruit Picked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benwell</td>
<td>9</td>
<td>Moore's Early</td>
<td>4</td>
</tr>
<tr>
<td>Cherry</td>
<td>16</td>
<td>North Star</td>
<td>2</td>
</tr>
<tr>
<td>Cumberland</td>
<td>12</td>
<td>New Red Dutch</td>
<td>12</td>
</tr>
<tr>
<td>Early Bearet</td>
<td>2</td>
<td>Prince Albert</td>
<td>3</td>
</tr>
<tr>
<td>Fay's Prolific</td>
<td>4 1/2</td>
<td>Red Grape</td>
<td>6</td>
</tr>
<tr>
<td>Fertile d'Angers</td>
<td>6</td>
<td>Raby Castle</td>
<td>6</td>
</tr>
<tr>
<td>Greenfield</td>
<td>9 1/2</td>
<td>Rankin's Red</td>
<td>5 1/2</td>
</tr>
<tr>
<td>Houghton Castle</td>
<td>1 1/4</td>
<td>Red Jacket</td>
<td>2</td>
</tr>
<tr>
<td>London Red</td>
<td>2</td>
<td>Simcoe King</td>
<td>12</td>
</tr>
<tr>
<td>Large Red</td>
<td>5</td>
<td>Victoria</td>
<td>13 1/2</td>
</tr>
<tr>
<td>La Conde</td>
<td>9</td>
<td>Victoria Red</td>
<td>4</td>
</tr>
<tr>
<td>Long Bunch Holland</td>
<td>14</td>
<td>Versailles</td>
<td>2</td>
</tr>
</tbody>
</table>

WHITE CURRANTS

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fruit Picked</th>
<th>Variety</th>
<th>Fruit Picked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climax</td>
<td>2</td>
<td>White Dutch</td>
<td>5</td>
</tr>
<tr>
<td>Frauenhofer White</td>
<td>2 1/4</td>
<td>White Kaiser</td>
<td>2 1/2</td>
</tr>
<tr>
<td>Large White</td>
<td>10 1/4</td>
<td>White Cherry</td>
<td>14 1/2</td>
</tr>
<tr>
<td>Large White Brandenburg</td>
<td>10</td>
<td>White Pearl</td>
<td>8 1/2</td>
</tr>
<tr>
<td>Verrieres White</td>
<td>10 1/4</td>
<td>White Grape</td>
<td>6 1/2</td>
</tr>
<tr>
<td>White Imperial</td>
<td>5</td>
<td>Wentworth Leviathan</td>
<td>3 1/2</td>
</tr>
</tbody>
</table>

BLACK CURRANTS

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fruit Picked</th>
<th>Variety</th>
<th>Fruit Picked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black English</td>
<td>22</td>
<td>Mattie</td>
<td>4</td>
</tr>
<tr>
<td>Beauty</td>
<td>20 1/2</td>
<td>Merveille de la Giroude</td>
<td>17</td>
</tr>
<tr>
<td>Black Grape</td>
<td>18 1/2</td>
<td>Magnus</td>
<td>12 1/2</td>
</tr>
<tr>
<td>Crandall's Missouri</td>
<td>4 1/2</td>
<td>Ogden</td>
<td>5 1/2</td>
</tr>
<tr>
<td>Clipper</td>
<td>3</td>
<td>Ontario</td>
<td>14</td>
</tr>
<tr>
<td>Climax</td>
<td>22 1/2</td>
<td>Oxford</td>
<td>4</td>
</tr>
<tr>
<td>Dominion</td>
<td>33</td>
<td>Perry</td>
<td>2 1/2</td>
</tr>
<tr>
<td>Eclipse</td>
<td>6</td>
<td>Perth</td>
<td>3</td>
</tr>
<tr>
<td>Ethel</td>
<td>13 1/2</td>
<td>Stirling</td>
<td>21</td>
</tr>
<tr>
<td>Eagle</td>
<td>18 1/2</td>
<td>Stewart</td>
<td>22</td>
</tr>
<tr>
<td>Ismay's Prolific</td>
<td>2 1/2</td>
<td>Star</td>
<td>4</td>
</tr>
<tr>
<td>Kerry</td>
<td>18</td>
<td>Standard</td>
<td>2 1/2</td>
</tr>
<tr>
<td>Lewis</td>
<td>5</td>
<td>Saunders</td>
<td>12</td>
</tr>
<tr>
<td>Lee's Prolific</td>
<td>17 1/4</td>
<td>Topsy</td>
<td>20 1/2</td>
</tr>
<tr>
<td>Winona</td>
<td>16 1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RASPBERRIES.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Remarks</th>
<th>Variety</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunbeam</td>
<td>Large crop</td>
<td>Herbert</td>
<td>Large crop</td>
</tr>
<tr>
<td>Columbian</td>
<td>Medium</td>
<td>King</td>
<td>Medium</td>
</tr>
<tr>
<td>Cuthbert</td>
<td>"</td>
<td>Marlboro</td>
<td>Large</td>
</tr>
<tr>
<td>Cardinal</td>
<td>Small</td>
<td>Ruby</td>
<td>Medium</td>
</tr>
<tr>
<td>Dr. Reider</td>
<td>Large</td>
<td>Turner</td>
<td>Large</td>
</tr>
<tr>
<td>Golden Queen</td>
<td>Poor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BLACK RASPBERRIES.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Remarks</th>
<th>Variety</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conrath</td>
<td>Medium crop</td>
<td>Olders</td>
<td>Poor crop</td>
</tr>
<tr>
<td>Hilborn Black Cap</td>
<td>"</td>
<td>Palmer</td>
<td>No fruit</td>
</tr>
<tr>
<td>Mungers</td>
<td>No fruit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of gooseberries growing in the bush fruit plantation:—

LARGE FRUITS.

Although crab-apple bloom was abundant, frost killed a large part before the fruit set, and the crop was light. The varieties that fruited are given, with yields.

CROSS-BRED APPLES.

When picking the crop of cross-bred apples a record was kept of the weight of fruit gathered from some of the best trees, and the weights are given below. The date of picking was September 9.
<table>
<thead>
<tr>
<th>Orchard</th>
<th>Row</th>
<th>No.</th>
<th>Name</th>
<th>Year Planted</th>
<th>Began Fruiting</th>
<th>Weight of Fruit, 1912</th>
<th>Average Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>231</td>
<td>Tony</td>
<td>1904</td>
<td>1909</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>235</td>
<td>Tony</td>
<td>1904</td>
<td>1909</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>243</td>
<td>Eve</td>
<td>1904</td>
<td>1910</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>244</td>
<td>Eve</td>
<td>1904</td>
<td>1910</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>245</td>
<td>Aurora</td>
<td>1904</td>
<td>1909</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>250</td>
<td>Progress</td>
<td>1902</td>
<td>1906</td>
<td>114</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>268</td>
<td>Prairie Gem</td>
<td>1902</td>
<td>1907</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>286</td>
<td>Aurora</td>
<td>1902</td>
<td>1907</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>325</td>
<td>Charles</td>
<td>1902</td>
<td>1906</td>
<td>14½</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>335</td>
<td>Hunter</td>
<td>1903</td>
<td>1907</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>404</td>
<td>Cavan</td>
<td>1901</td>
<td>1905</td>
<td>24½</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>405</td>
<td>Cavan</td>
<td>1901</td>
<td>1904</td>
<td>62½</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>407</td>
<td>Aurora</td>
<td>1901</td>
<td>1905</td>
<td>10½</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>415</td>
<td>Wealthy x P. baccata</td>
<td>1901</td>
<td>1906</td>
<td>18½</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>419</td>
<td>Progress</td>
<td>1903</td>
<td>1907</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>439</td>
<td>Charles</td>
<td>1903</td>
<td>1907</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>497</td>
<td>Cavan</td>
<td>1903</td>
<td>1908</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>800</td>
<td>Sankey</td>
<td>1905</td>
<td>1906</td>
<td>73½</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>874</td>
<td>Northern Queen</td>
<td>1905</td>
<td>1910</td>
<td>12½</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>893</td>
<td>Pioneer</td>
<td>1905</td>
<td>1909</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>911</td>
<td>Eve</td>
<td>1905</td>
<td>1909</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>929</td>
<td>Alberta</td>
<td>1905</td>
<td>1910</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>983</td>
<td>Prince</td>
<td>1908</td>
<td>1912</td>
<td>8½</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1,033</td>
<td>Jewel</td>
<td>1908</td>
<td>1911</td>
<td>84½</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1,056</td>
<td>Jewel</td>
<td>1905</td>
<td>1910</td>
<td>74½</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1,082</td>
<td>Prince</td>
<td>1905</td>
<td>1909</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>1,104</td>
<td>Eve</td>
<td>1905</td>
<td>1910</td>
<td>33½</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1,190</td>
<td>Jewel</td>
<td>1908</td>
<td>1911</td>
<td>16½</td>
<td>15</td>
</tr>
</tbody>
</table>

PLUMS.

Wild varieties gave a fair crop but, like the crab-apples, the blossoms were injured by the frost, and only a few varieties bore fruit.

Three cross-bred varieties, Aitkin, Assiniboine, and Owanka, received from Prof. Hanson in 1908, fruited the past season. The trees being small the crop was not heavy but the fruit was large and of good flavour.

APPLE TREES.

Some three thousand seedling apple trees were planted last spring, in nursery rows, and made a strong growth. No doubt many of them will be killed, but it is hoped that some may survive and bear fruit.

FRUIT TREES PLANTED IN 1912.

Hybrid apple trees received from the Central Experimental Farm, Ottawa, and used to fill up the blanks in the different orchards: 50 Charles, 66 Prince, 100 Jewel, 45 Silvia, 5 Columbia, 62 Pioneer.

The following yearling apple seedlings were received from the Central Experimental Farm, Ottawa, and planted in nursery rows: 600 Anis seedlings, 550 Antonovka seedlings, 525 Beautiful Aracad seedlings, 55 Hibernal seedlings, 220 Tetofsky seedlings, 160 Duchess seedlings, 450 Charlamoff seedlings, 350 Yellow Transparent seedlings.
EXPERIMENTAL STATION, ROSTHERN, SASKATCHEWAN

REPORT OF THE SUPERINTENDENT, W. A. MUNRO, B.A., B.S.A.

Although the Experimental Station at Rosthern is comparatively new, already information has been obtained which should prove of value to those living in this part of Saskatchewan, and the experiments conducted in 1912, while not as extensive as it is hoped they will be in the near future, give some indication of what is being done.

VEGETABLES.

As there was no regular gardener at Rosthern in 1912 the results in vegetables and flowers have not been so satisfactory as it is hoped they will be in the future. Then, too, the wind-breaks have not developed sufficiently to afford good protection to flowers and vegetables. There was a small garden in 1912 in an enclosure sheltered by a wind-break that had been established previous to the purchase of the farm by the Government. The contrast of results from the attempt at gardening in this enclosure as compared with a similar attempt in the open was very marked, the garden in the enclosure being quite satisfactory, whereas that in the open was much injured by winds.

The attempt to grow corn, tomatoes, melons, squash and cucumbers did not meet with success, for nothing ripened.

Following are the results of the other vegetables under experiment:

CABBAGE.

There were under test this year, sixteen varieties of cabbage, with yields as follows:

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. of Heads</th>
<th>Weight</th>
<th>Average Weight per Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copenhagen Market</td>
<td>20</td>
<td>224</td>
<td>11.2</td>
</tr>
<tr>
<td>Improved Danish Roundhead</td>
<td>21</td>
<td>210</td>
<td>10.0</td>
</tr>
<tr>
<td>Flat Swedish</td>
<td>25</td>
<td>234</td>
<td>9.3</td>
</tr>
<tr>
<td>Small Erfurt</td>
<td>11</td>
<td>95</td>
<td>8.9</td>
</tr>
<tr>
<td>Winningstadt</td>
<td>23</td>
<td>192</td>
<td>8.3</td>
</tr>
<tr>
<td>Danish Summer Ballhead</td>
<td>23</td>
<td>191</td>
<td>8.3</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>19</td>
<td>149</td>
<td>7.8</td>
</tr>
<tr>
<td>Lubeck</td>
<td>26</td>
<td>198</td>
<td>7.6</td>
</tr>
<tr>
<td>Improved Brunswick</td>
<td>27</td>
<td>205</td>
<td>7.6</td>
</tr>
<tr>
<td>Large Flat Drumhead</td>
<td>24</td>
<td>169</td>
<td>7.0</td>
</tr>
<tr>
<td>Danish Ballhead</td>
<td>19</td>
<td>134</td>
<td>7.0</td>
</tr>
<tr>
<td>Early Jersey Wakefield</td>
<td>24</td>
<td>149</td>
<td>5.8</td>
</tr>
<tr>
<td>Early Paris Market</td>
<td>15</td>
<td>64</td>
<td>4.3</td>
</tr>
<tr>
<td>Danish Delicatessse Red</td>
<td>29</td>
<td>116</td>
<td>4.0</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>11</td>
<td>40</td>
<td>3.6</td>
</tr>
<tr>
<td>Red Danish Stonehead</td>
<td>22</td>
<td>76</td>
<td>3.4</td>
</tr>
</tbody>
</table>
These were weighed as they were pulled, a number of the outside leaves being left on. The difference in the average weight per head between the large and the small would show still greater if the cabbage had been stripped of all the loose leaves, because the small heads had a larger number of loose leaves than the large heads, some of the largest heads in fact being almost stripped enough to use.

CAULIFLOWERS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. of Heads</th>
<th>Weight (Lb.)</th>
<th>Average Weight per Head (Lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfurt Dwarf</td>
<td>14</td>
<td>32(\frac{1}{2})</td>
<td>2.3</td>
</tr>
<tr>
<td>Danish Giant</td>
<td>23</td>
<td>38</td>
<td>1.6</td>
</tr>
<tr>
<td>Early Snowball</td>
<td>14</td>
<td>18(\frac{1}{2})</td>
<td>1.3</td>
</tr>
</tbody>
</table>

CARROTS.

The following weights are, in each case, for a row thirty feet long:

- Half Long Chantenay: 51\(\frac{1}{2}\) lb.
- Improved Nantes: 46 lb.
- French Horn: 44 lb.

PARSNIPS.

Hollow Crown: 71\(\frac{1}{2}\) lb.

ONIONS.

- Large Red Wethersfield: 27 lb.
- Danver's Yellow Globe: 22 lb.
- Salzer's Wethersfield: 16 lb.
- Johnson's Dark Red Beauty: 9 lb.

SALISFY.

Long White (Oyster Plant): 131 lb.

BEETS.

- Meteor: 21\(\frac{1}{2}\) lb.
- Early Blood Red Turnip: 17 lb.
- Ruby Dulce: 15 lb.
- Egyptian Dark Red Turnip: 11 lb.
- Black Red Ball: 4\(\frac{1}{2}\) lb.

POTATOES.

The yields are the largest obtained in four years' experience at this Station. The seed cut to two eyes and, in the case of the varieties, was planted 12 inches apart in the row with rows 30 inches apart. They were planted with a plough to a depth of 4 inches. The yields given are for both 1911 and 1912. The discrepancy in the order of the yields is one of those unexplainable things that are the bane of experimental work. For instance, in last year's yield Empire State was the highest and Morgan's Seedling sixth. This year Empire State comes eleventh and Morgan Seedling first. This explains why the yield from an experiment should not be taken as very reliable until it has been repeated for at least five years. The yields are computed in each case from the weight of one average row of potatoes 78 feet long. The total
SESSIONAL PAPER No. 16

weight of potatoes from .54 acre of these mixed varieties yielded 370.17 bushels, which works out at the rate of 685.5 bushels per acre.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Bush. per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan Seedling</td>
<td>848</td>
</tr>
<tr>
<td>Dreer’s Standard</td>
<td>840</td>
</tr>
<tr>
<td>Everett</td>
<td>824</td>
</tr>
<tr>
<td>Money Maker</td>
<td>822</td>
</tr>
<tr>
<td>Rochester Rose</td>
<td>807</td>
</tr>
<tr>
<td>Ashleaf Kidney</td>
<td>804</td>
</tr>
<tr>
<td>Dalmeny Beauty</td>
<td>744</td>
</tr>
<tr>
<td>Late Puritan</td>
<td>699</td>
</tr>
<tr>
<td>Reeves’ Rose</td>
<td>639</td>
</tr>
<tr>
<td>Vick’s Extra Early</td>
<td>625</td>
</tr>
<tr>
<td>Empire State</td>
<td>590</td>
</tr>
<tr>
<td>Irish Cobbler</td>
<td>573</td>
</tr>
<tr>
<td>Carman No. 1</td>
<td>536</td>
</tr>
<tr>
<td>Hard to Beat</td>
<td>535</td>
</tr>
<tr>
<td>American Wonder</td>
<td>349</td>
</tr>
<tr>
<td>Factor</td>
<td>316</td>
</tr>
</tbody>
</table>

Of those varieties that have been tried for the two years the Irish Cobbler is the outstanding potato for quality, but this is the only desirable characteristic it has. It is a comparatively low yielder both years, is round and has very deep eyes. The following four new varieties have not been tried:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Bushels per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple Nuts</td>
<td>526</td>
</tr>
<tr>
<td>Up-to-date</td>
<td>778</td>
</tr>
<tr>
<td>Wee MacGregor</td>
<td>774</td>
</tr>
<tr>
<td>Table Talk</td>
<td>659</td>
</tr>
</tbody>
</table>

The above were under test in 1912 for the first time. As well as the test of varieties, considerable was done this year by way of cultural work. Four plots of six rows each planted on similar ground at different depths; at depths of 2 inches, 4 inches, 6 inches, and one plot to a depth of 4 inches, but the plough was followed by a subsoil attachment which loosened the ground to a still further depth of 4 inches, that is to say, the plot which was subsoiled was planted 4 inches deep but the earth was made loose to a depth of 8 inches. The evidence from this year’s experiment goes to show the importance of deep planting. The yield of 565 bushels per acre for that planted at 2 inches deep does not represent the whole yield because, in every case, the sunburned or frozen potatoes have not been harvested and there were many such left on the ground.

<table>
<thead>
<tr>
<th>Depth and Subsoil</th>
<th>Bushels per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 inches deep</td>
<td>789</td>
</tr>
<tr>
<td>6 inches deep</td>
<td>775</td>
</tr>
<tr>
<td>4 inches deep</td>
<td>659</td>
</tr>
<tr>
<td>2 inches deep</td>
<td>453</td>
</tr>
</tbody>
</table>

A similar experiment was carried on to determine the value of hilling potatoes. The two plots were given the same cultivation until July, when one plot was ridged. A similar experiment conducted in 1909 showed a difference of 50 bushels per acre in favour of level cultivation. This result is quite in accord with similar experiments conducted in Ontario and England. In Ontario it is found that the hilled potatoes give a larger yield than the unhilled in a wet season, but the reverse is the case in a dry season. In England, where the climate is moist, the yield is in favour of the hilled potatoes.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bushels per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unhilled</td>
<td>615</td>
</tr>
<tr>
<td>Hilled</td>
<td>620</td>
</tr>
</tbody>
</table>

An experiment was conducted to determine the distance apart to plant potatoes. One plot was planted with the potatoes 12 inches apart in the row and 30 inches between rows, another plot with the potatoes 14 inches apart in the row and 33 inches
between the rows, and another plot 15 inches apart in the row and 36 inches between the rows. In this experiment the yield from one row was greater where the distance apart was greater, but when consideration is given to the area the yield per acre was the reverse.

The following were the results:

- Seed 12 inches apart, rows 30 inches apart 657 bushels per acre.
- Seed 14 inches apart, rows 33 inches apart 669 "
- Seed 15 inches apart, rows 36 inches apart 570 "

One experiment was conducted to determine the value of the different parts of the potato for seed. One plot was planted with whole tubers. For the other two plots the tuber was divided across the middle and one plot was planted with the seed end of the tuber and the other plot with the stem end. The following are the results:

- Whole tubers.......................... 867 bushels per acre.
- Seed end............................... 763 "
- Stem end............................... 615 "

This is the only experiment in which several varieties were used. All the other experiments were conducted with Irish Cobbler.

One plot of potatoes was planted on land that had been summer-fallowed in 1911 and received a coating of manure at the rate of 12 tons per acre in the autumn of the same year. Another was planted on land that had grown a crop of peas in 1911 which was ploughed under in July of that year. The following are the results:

- Summer-fallow, with manure.............. 657 bushels per acre.
- Pea ground................................ 563 "

FLOWERS.

Heretofore the flower garden has been in exceedingly cramped quarters and the display was unsatisfactory from the standpoint of arrangement, but there was a good opportunity to observe the development of the different varieties; Asters, antirrhinium, coreopsis, larkspur, mignonette, nicotiana, phlox, poppy, pansy, petunia, portulaca, stocks, salpiglossis, verbena, dianthus, sweet peas and zinnia. All came to full bloom and when grown in artistic arrangement in a large border will make a splendid showing.

A border was prepared in 1912, twelve feet wide and extending completely around the lawns, to a length of about one-quarter mile. This was ploughed in the autumn of 1912 to a depth of four inches and subsoiled to a further depth of four inches. In this will be planted both perennial and annual herbaceous plants.

In the autumn of 1912 more than three thousand tulip and other bulbs were received direct from Holland. These were planted in well-worked, rich soil to a depth of about five inches, eight inches apart in the rows, and eight inches between rows. The holes for planting the bulbs were made with a blunt spade handle. After planting, a layer of straw was put on the bed, and they were left in this condition until spring. For the past three years, tulips planted in this way have bloomed for from two to three weeks in May, and added very much to the appearance of the surroundings.

BULBS FOR THE HOUSE.

Several hundred bulbs of tulips, narcissi and hyacinths, were potted in November, well watered, and left in a dark, cool cellar until the winter. Beginning about Christmas time these were taken up to a warm room and allowed to bloom. All the varieties of bulbs attempted in this way forced well and came to good bloom, with
the result that they supplied a continuous display of splendid flowers from Christmas until April. The soil for potting was made up of rich, black prairie mould and coarse sand in the proportion of one of each. The condition of the bulbs in the cellar is carefully watched, and as the soil begins to dry they are watered. There is no other method as good of obtaining inexpensive and satisfactory winter-blooming house plants as with bulbs.

FRUITS.

APPLES.

Of about seven hundred apple trees received in 1909, 1910 and 1911, from various sources, nearly three hundred were in good condition in the spring of 1912, and, with the exception of the winter-killing of some of the tips, showed prospects of continued development. Two thousand nine hundred year-old seedlings were planted one foot apart in the spring of 1912. These were seedlings of Anis, Antonovka, Beautiful Arcad, Charlamoff, Duchess, Hibernial, Tetofsky, Yellow Transparent.

In the autumn of 1912, four boxes of apples were received from Mr. A. P. Stevenson, Dunstan, Manitoba, the varieties being Antonovka, Blushed Calville, Charlamoff and Hibernial. The seeds of these were sown and mulched, and the seedlings will be used with the possibility of developing a variety hardy to this district.

A number of varieties of native plums, gooseberries, raspberries, and black, red and white currants have been planted and are all doing well, but have not yet started to bear fruit.

TREES AND SHRUBS.

Toward the end of 1911 forty-one spruce trees varying from 12 to 30 inches in height were secured about seven miles north of Duck lake. The trees were promptly planted, and occasionally watered through the summer. In 1912 forty of these trees were alive and doing well. Early in June, 1912, 157 more trees were secured. Up to the approach of winter only two of these had died and the remainder showed good prospect of continuing to thrive. The success with these native-grown spruce has been much better than that with similar trees obtained from nurseries. There is one great advantage in securing trees locally in this way, that they are planted the day following their being dug, whereas trees received from a nursery are oftentimes more than two weeks out of the ground.

An insect pest was discovered on spruce trees last year, the spruce budworm, which is doing considerable damage throughout the district. It was found that spraying with any of the common insecticides is quite effective, but the spraying is considered to be quite an expensive operation for large ornamental trees.

A quantity of maple, ash and caragana seeds was sown in the spring of 1912 and the seedlings attained good growth during the season. These ought to develop into good plants for transplanting by the spring of 1914.

Plum stones obtained from local orchards and planted in the fall of 1911 did not do so well, but cuttings from Russian poplar obtained locally made growths in some cases of two feet. This supply of nursery stock will constitute the first ornamental material for distribution, and will be ready in the spring of 1914.
HEDGES.

The following twenty-one hedges, each 50 feet in length, with thirty-four plants to the hedge, were started in the spring of 1912. They all made good growth and went into the winter in good condition:

Salix laurifolia—Laurel-leaved Willow.
Rhamnus catharticus—Buckthorn.
Rhamnus Frangula—Alder Buckthorn.
Elaeagnus angustifolia—Russian Olive.
Fraxinus pennsylvanica lanceolata—Green Ash (Native Ash).
Crataegus Crus-galli—Cockspur Thorn.
Neillia Opulifolia aurea—Golden-leaved Spiraea.
Salix—Siberian Hedge Plant.
Acer tararica Ginnala—Ginnalian Maple.
Syringa vulgaris—Common Lilac.
Caragana arborescens—Siberian Pea Tree.
Cornus alba sibirica—Siberian Dogwood.
Shepherdia canadensis—Buffalo Berry.
Picea canadensis—Native white Spruce.
Lonicera tatarica grandiflora—Tartarian Honeysuckle.
Syringa Josikaea—Josika’s Lilac.
Syringa amurensis—Tree Lilac.
Prunus americana—Native Plum (Brandon).
Caragana frutescens—Caragana.
Acer Negundo—Manitoba Maple.
Corylus rostrata—Hazel (native).

The ornamental border of the driveway from the entrance to the Superintendent’s house, which was begun in 1911, was still added to in 1912, and gives good promise of exhibiting results in an artistic arrangement of ornamental shrubs.
EXPERIMENTAL STATION, SCOTT, SASKATCHEWAN.

REPORT OF THE SUPERINTENDENT, R. E. EVEREST, B.S.A.

The Experimental Station at Scott is situated on a bare prairie without a tree in sight, except those which have been planted at the Station. Exposed as it is to the wintry winds, it is not expected that the experiments with some things will be very satisfactory until protection is afforded by the trees and shrubs which have been planted for that purpose. Still, in 1912, some information was obtained which should be useful to settlers coming into this part of Canada, and it is hoped that year by year the results will be increasingly valuable.

VEGETABLES.

EXPERIMENTS WITH POTATOES.

Nineteen varieties of potatoes were planted on the 25th of May in drills thirty inches apart, sets twelve to fourteen inches apart in the drills. After the crop was up the ground was harrowed and frequent cultivation given during the season. The last time through with the single cultivator, the moulds were turned to throw a little earth toward the rows. The potatoes were taken up on the 8th of October, and were a very satisfactory crop for size and quality, and in the majority of varieties the total yield was good.

POTATOES—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Planting</th>
<th>Date of Lifting</th>
<th>Size</th>
<th>Yield per Acre</th>
<th>Form and Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Morgan Seedling</td>
<td>May 25.</td>
<td>Oct. 8.</td>
<td>Large</td>
<td>513 42</td>
<td>Long and white</td>
</tr>
<tr>
<td>2</td>
<td>Ashleaf Kidney</td>
<td>" 25.</td>
<td>" 8.</td>
<td></td>
<td>438 50</td>
<td>Kidney shape, white</td>
</tr>
<tr>
<td>3</td>
<td>Wee McGregor</td>
<td>" 25.</td>
<td>" 8.</td>
<td></td>
<td>409 12</td>
<td>Oval, smooth, white</td>
</tr>
<tr>
<td>4</td>
<td>Table Talk</td>
<td>" 25.</td>
<td>" 8.</td>
<td></td>
<td>372 54</td>
<td>Oval, white</td>
</tr>
<tr>
<td>5</td>
<td>Money Maker</td>
<td>" 25.</td>
<td>" 8. Medium</td>
<td>369 36</td>
<td>Oval, white</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Rochester Rose</td>
<td>" 25.</td>
<td>" 8. Large</td>
<td>331 6</td>
<td>Oval, white</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Empire State</td>
<td>" 25.</td>
<td>" 8. Medium</td>
<td>315 42</td>
<td>''</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Everest</td>
<td>" 25.</td>
<td>" 8. Large</td>
<td>298 6</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Lake Puritan</td>
<td>" 25.</td>
<td>" 8. Medium</td>
<td>293 42</td>
<td>Oval, white</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Reeves' Rose</td>
<td>" 25.</td>
<td>" 8. Large</td>
<td>160 36</td>
<td>Long, white</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Hard to Beat</td>
<td>" 25.</td>
<td>" 8. Medium</td>
<td>144 6</td>
<td>Round, white with pink eye</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>American Wonder</td>
<td>" 25.</td>
<td>" 8. Medium</td>
<td>103 24</td>
<td>Oval, white</td>
<td></td>
</tr>
</tbody>
</table>

VEGETABLE TESTS.

The results in vegetable tests, though not large, are encouraging indications as to what may be accomplished in the growth of garden produce. A number of the summer vegetables came in quickly and gave an abundant growth of good table quality.
BEANS.

Sown in garden May 31. Did not ripen.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In use.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenney's Rustless Wax</td>
<td>Aug. 25</td>
<td>A good green crop.</td>
</tr>
<tr>
<td>Wardwell's Kidney Wax</td>
<td>" 14</td>
<td>"</td>
</tr>
<tr>
<td>Valentine</td>
<td>" 25</td>
<td>"</td>
</tr>
<tr>
<td>Early Refugee</td>
<td>" 25</td>
<td>"</td>
</tr>
<tr>
<td>Stringless Green Pod</td>
<td>Sept. 1</td>
<td>"</td>
</tr>
<tr>
<td>Refugee or 1,000 to 1</td>
<td></td>
<td>"</td>
</tr>
<tr>
<td>Challenge Black Wax, (C.E.F.)</td>
<td>Aug. 17</td>
<td>"</td>
</tr>
</tbody>
</table>

BEETS.

Sown April 24; pulled October 15.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In use.</th>
<th>Yield per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
</tr>
<tr>
<td>Ruby Dulce.</td>
<td>July 15</td>
<td>929</td>
</tr>
<tr>
<td>Egyptian Dark Red Turnip.</td>
<td>" 15</td>
<td>464</td>
</tr>
<tr>
<td>Early Blood Red Turnip</td>
<td>" 15</td>
<td>309</td>
</tr>
<tr>
<td>Meteor</td>
<td>" 15</td>
<td>271</td>
</tr>
<tr>
<td>Black Red Ball.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CABBAGE.

Sown in hotbed in April 12; set out in open June 1; taken up October 15. Owing to the work of worms in early part of the season, resettings were necessary at different times, which made the growth very irregular, and the yield light.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In use.</th>
<th>Average Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lb.</td>
<td></td>
</tr>
<tr>
<td>Danish Summer Ballhead</td>
<td>Aug. 15</td>
<td>5</td>
<td>Solid.</td>
</tr>
<tr>
<td>Improved Amager Danish Roundhead</td>
<td>" 15</td>
<td>2§</td>
<td>"</td>
</tr>
<tr>
<td>Large Late Flat Drumhead</td>
<td>" 15</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Copenhagen Market</td>
<td>" 15</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Early Jersey Wakefield</td>
<td>" 1</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Flat Swedish</td>
<td>" 15</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Fottler's Improved Brunswick or Short Stem</td>
<td>" 15</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Winningstadt</td>
<td>" 15</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>" 15</td>
<td>4 ²/₃</td>
<td>Soft.</td>
</tr>
<tr>
<td>Early Paris Market</td>
<td>" 1</td>
<td>2 ¹/₃</td>
<td>Medium solid.</td>
</tr>
<tr>
<td>Small Erfurt</td>
<td>" 15</td>
<td>2</td>
<td>Soft.</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>" 15</td>
<td>2</td>
<td>Medium solid.</td>
</tr>
<tr>
<td>Lubeck</td>
<td>" 15</td>
<td>2</td>
<td>Soft.</td>
</tr>
<tr>
<td>Extra Amager Danish Ballhead</td>
<td></td>
<td></td>
<td>Failure.</td>
</tr>
<tr>
<td>Red Danish Stonehead</td>
<td></td>
<td></td>
<td>"</td>
</tr>
</tbody>
</table>
LETTUCE.

Sown in garden May 15; in use July 27.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Green Capucine...</td>
<td>Fair heads.</td>
</tr>
<tr>
<td>Rousseau Blond Winter</td>
<td>"</td>
</tr>
<tr>
<td>Imp. Hanson...</td>
<td>Good heads.</td>
</tr>
<tr>
<td>Iceberg...</td>
<td>"</td>
</tr>
<tr>
<td>Crisp as Ice...</td>
<td>Fair heads.</td>
</tr>
<tr>
<td>Giant Crystal Head...</td>
<td>Small firm heads.</td>
</tr>
<tr>
<td>All Heart...</td>
<td>Large heads.</td>
</tr>
<tr>
<td>Cos Trianon...</td>
<td>Small good heads.</td>
</tr>
<tr>
<td>Wheeler's Tag. Thumb</td>
<td>Good heads.</td>
</tr>
<tr>
<td>Red Edged Victoria...</td>
<td>"</td>
</tr>
<tr>
<td>Unrivalled Summer...</td>
<td>Fair heads.</td>
</tr>
<tr>
<td>Black Seeded Simpson...</td>
<td>Good heads.</td>
</tr>
<tr>
<td>Grand Rapids...</td>
<td></td>
</tr>
</tbody>
</table>

GARDEN PEAS.

Sown April 24.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>In use.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heroine...</td>
<td>July 16</td>
<td>Splendid crop.</td>
</tr>
<tr>
<td>Premium Gem...</td>
<td>" 16</td>
<td>"</td>
</tr>
<tr>
<td>Juno...</td>
<td>" 25</td>
<td>"</td>
</tr>
<tr>
<td>Stratagem...</td>
<td>" 1</td>
<td>"</td>
</tr>
<tr>
<td>American Wonder.</td>
<td>" 14</td>
<td>"</td>
</tr>
<tr>
<td>McLean's Advancer.</td>
<td>" 16</td>
<td>"</td>
</tr>
<tr>
<td>Telephone...</td>
<td>" 3</td>
<td>"</td>
</tr>
<tr>
<td>Gradus...</td>
<td>" 4</td>
<td>"</td>
</tr>
<tr>
<td>Gregory's Surprise.</td>
<td>" 4</td>
<td>"</td>
</tr>
<tr>
<td>Sutton's Excelso.</td>
<td>" 18</td>
<td>"</td>
</tr>
<tr>
<td>Thos. Laxton...</td>
<td>" 16</td>
<td>"</td>
</tr>
</tbody>
</table>

CAULIFLOWER.

Three varieties of cauliflower were sown in the hotbed on April 12, and were set out in the open June 1. Of these, the Danish Giant or Dry Weather, was the only one to produce heads, which, on the 15th of August were ready for use.

CELERY.

Three varieties of celery were sown in the hotbed on the 15th of April, and were set in the open June 15. Of these, the variety Giant Pascal gave the best return, and on the 15th of October was in use.

CARROTS.

Three varieties of carrots were sown in the open on May the 29th, and were pulled on the 15th of October. The average yield was 329 bushels and 14 lbs. per acre.
CUCUMBERS.

A good return was obtained from cucumber vines, which were allowed to occupy the hotbed frame after the transplanting of other varieties had been completed. A number of large cucumbers, as well as a quantity of small picklers, were produced.

ONIONS.

Four varieties of onions were sown in the garden, April 17. The seed germinated well, but perished immediately on account of dry weather.

PARSNIPS.

One variety of parsnips was sown in the open the 29th of May, and were dug on October the 15th. The name of the variety was Hollow Crown, and the yield was 183 bushels and 40 pounds per acre.

RADISH.

Two varieties of radish were sown in the open on the 15th of May, and were in use June the 27th. Both varieties gave a favourable return.

TURNIPS.

One variety of turnip was sown in the open on the 24th of April, and was pulled on October the 15th. The roots were ready for use on the 15th of July, and gave a yield of 745 bushels and 37 pounds per acre.

Vegetables that did not mature and number of varieties of which seed was sown:

- Tomatoes—Eleven varieties.
- Peppers—Three varieties.
- Egg Plant—One variety.
- Squash—Seven varieties.
- Corn—Three varieties.
- Water Melons—Two varieties.

THE FLOWER BORDER.

A flower border, 12 feet in width and 550 feet in length, running north and south on the inner border of the lawn, was an outstanding feature. Commencing the 24th of June, and continuing until the first serious frost, the 15th of September, bloom was to be seen; at times throughout August the entire border was a mass of variegated beauty. Seed was sown in hotbed on April 15 and 16. Transplanting into open took place from June 7 to 11.
DIVISION OF HORTICULTURE

SESSIONAL PAPER No. 16

<table>
<thead>
<tr>
<th>Name</th>
<th>No. of Varieties</th>
<th>In Bloom From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antirrhinum</td>
<td>9</td>
<td>Aug. 1</td>
<td>Oct. 1</td>
</tr>
<tr>
<td>Artemisia</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aster</td>
<td>13</td>
<td>Aug. 10</td>
<td>Sept. 15</td>
</tr>
<tr>
<td>Balsam</td>
<td>1</td>
<td>July 1</td>
<td>Oct. 1</td>
</tr>
<tr>
<td>Calliopsis</td>
<td>1</td>
<td>July 5</td>
<td>Sept. 15</td>
</tr>
<tr>
<td>Candytuft</td>
<td>1</td>
<td>June 25</td>
<td>Oct. 1</td>
</tr>
<tr>
<td>Celosia</td>
<td>3</td>
<td>Aug. 15</td>
<td>1</td>
</tr>
<tr>
<td>Chrysanthemum</td>
<td>1</td>
<td>July 20</td>
<td>Oct. 1</td>
</tr>
<tr>
<td>Dianthus</td>
<td>7</td>
<td>June 26</td>
<td>Sept. 15</td>
</tr>
<tr>
<td>Dimorphotheca</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eschscholtzia</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaillardia</td>
<td>1</td>
<td>Aug. 15</td>
<td>Oct. 1</td>
</tr>
<tr>
<td>Lobelia</td>
<td>2</td>
<td>Sept. 1</td>
<td>Sept. 15</td>
</tr>
<tr>
<td>Mignonette</td>
<td>8</td>
<td>June 27</td>
<td>" 15</td>
</tr>
<tr>
<td>Nemesia</td>
<td>1</td>
<td>" 24</td>
<td>" 15</td>
</tr>
<tr>
<td>Portulaca</td>
<td>1</td>
<td>Aug. 5</td>
<td>" 15</td>
</tr>
<tr>
<td>Pansies</td>
<td>5</td>
<td>July 20</td>
<td>Oct. 1</td>
</tr>
<tr>
<td>Petunia</td>
<td>4</td>
<td>" 10</td>
<td>" 1</td>
</tr>
<tr>
<td>Phlox</td>
<td>7</td>
<td>" 20</td>
<td>" 1</td>
</tr>
<tr>
<td>Poppies</td>
<td>3</td>
<td>Aug. 1</td>
<td>Sept. 15</td>
</tr>
<tr>
<td>Sweet Sultan</td>
<td>1</td>
<td>July 15</td>
<td>" 15</td>
</tr>
<tr>
<td>Sweet Peas</td>
<td>55</td>
<td>" 20</td>
<td>" 15</td>
</tr>
<tr>
<td>Sweet William</td>
<td>1</td>
<td>Aug. 15</td>
<td>" 15</td>
</tr>
<tr>
<td>Tagetes</td>
<td>1</td>
<td>July 25</td>
<td>Oct. 1</td>
</tr>
<tr>
<td>Verbena</td>
<td>8</td>
<td>" 20</td>
<td>" 1</td>
</tr>
<tr>
<td>Viola</td>
<td>4</td>
<td>" 15</td>
<td>" 1</td>
</tr>
<tr>
<td>Zinnia</td>
<td>1</td>
<td>" 25</td>
<td>Sept. 15</td>
</tr>
<tr>
<td>Perennial—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet William</td>
<td>1</td>
<td>June 25</td>
<td>Aug. 25</td>
</tr>
</tbody>
</table>

* Did not bloom.

FRUIT TREES.

Eleven more varieties of apples were added to the orchard list. In addition to this tree planting, over 2,800 seedlings were placed in the nursery row, and in autumn seeds from four varieties of apples ripened in Manitoba were planted in a protected frame. In these ways a strong effort is being made toward the production of hardy apple stock suited to this part of Saskatchewan.

TREES AND SHRUBS.

At the rear of the lawn an arboretum was started, comprising trees of known hardihood, and many that have not been proved in this district. Three hundred and ninety trees, including one hundred and seventy-two varieties, were planted in the arboretum. Some results as to their suitability will soon be available.
EXPERIMENTAL STATION, LETHBRIDGE, ALBERTA.

REPORT OF THE SUPERINTENDENT, W. H. FAIRFIELD, M.S.

The Lethbridge Experimental Station is the only one of the prairie Farms or Stations where part of the land is irrigated. The climate of southern Alberta is dry and many things succeed much better when the land is irrigated than they otherwise would do. Apple trees are succeeding better at Lethbridge than at any other of the prairie Farms or Stations. Small fruits succeed well, and vegetables, especially when irrigated, succeed admirably. Owing to the dry winds, the protection of trees is greatly needed, and the native cottonwood, known as the Alberta cottonwood, has proved one of the best trees for wind-breaks.

THE SEASON.

The season of 1912 resembled that of 1911 in that the rainfall during the early part was deficient, while during the latter part the usual amount was received.

The results of the crops on the Station during the summer of 1912 have been interesting, although, in many instances, somewhat disappointing. The season opened up in a most propitious manner. Work on the land began on March 28, and the first seeding was done on April 1, although it would have been possible to have begin a little earlier. The soil was left moist from the fall of 1911, and the land was in excellent shape to work in the spring, consequently all crops planted were put in under exceedingly favourable conditions where land had been prepared the summer or fall previous. However, the rainfall during April, May and until the end of June in the immediate vicinity of Lethbridge was extremely light. Germination on land that was not so treated was not good.

The rainfall was very light indeed until the last few days in June; from then on, during July, August and September, it was above normal. On account of this light rainfall during the first part of the growing season all early-sown crops suffered acutely. Crops that looked extremely promising early in the season gave but low yields. Late-sown crops, on the other hand, did much better providing they ripened before the frost.

The yields of all the crops on the non-irrigated portion of the Station were rather low, with the exception of peas and such late-growing crops as turnips, potatoes, etc.

On the irrigated portion of the Station, however, where water was applied in June, and in some cases even in May, the yields were very much more satisfactory.

VEGETABLES.

EXPERIMENTS WITH POTATOES (NON-IRRIGATED.)

Seventeen varieties were planted on summer-fallowed land, in rows thirty inches apart, on May 13. The potatoes for planting were cut in pieces with two or three eyes in each, although medium rather than large-sized potatoes were selected, so as to avoid cutting as much as possible. They were dug September 27, and the yield was computed from one hundred and fortieth of an acre.
Potatoes from irrigated land vs. seed from non-irrigated land.

In 1911 an experiment was started to see whether seed potatoes grown on the dry land were better than seed grown on irrigated land, and the experiment was again carried on this season.

Three rows, each 126 feet long, rows thirty inches apart, were planted with Ashleaf Kidney potatoes grown on non-irrigated land the previous season. Alongside, three more rows the same length were planted with seed grown on irrigated land the season previous.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>Total Yield per Acre</th>
<th>Yield per Acre Marketable</th>
<th>Yield per Acre Unmarketable</th>
<th>Form and Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dalmeny Beauty</td>
<td>403 40</td>
<td>345 20</td>
<td>58 20</td>
<td>Round, white</td>
</tr>
<tr>
<td>2</td>
<td>Gold Coin</td>
<td>394 20</td>
<td>375 40</td>
<td>18 40</td>
<td>Round, oval, white</td>
</tr>
<tr>
<td>3</td>
<td>Ashleaf Kidney</td>
<td>386 40</td>
<td>364 40</td>
<td>30 20</td>
<td>Oval, white</td>
</tr>
<tr>
<td>4</td>
<td>American Wonder</td>
<td>375 40</td>
<td>336 30</td>
<td>39 40</td>
<td>Oval, white</td>
</tr>
<tr>
<td>5</td>
<td>Late Puritan</td>
<td>354 40</td>
<td>322 30</td>
<td>32 40</td>
<td>Oval, white</td>
</tr>
<tr>
<td>6</td>
<td>Carman No. 1</td>
<td>354 40</td>
<td>315 30</td>
<td>39 40</td>
<td>Oval, white</td>
</tr>
<tr>
<td>7</td>
<td>Empire State</td>
<td>354 40</td>
<td>308 30</td>
<td>36 40</td>
<td>Oval, white</td>
</tr>
<tr>
<td>8</td>
<td>Deer's Standard</td>
<td>343 30</td>
<td>319 30</td>
<td>33 20</td>
<td>Round, white</td>
</tr>
<tr>
<td>9</td>
<td>Factor</td>
<td>338 20</td>
<td>308 20</td>
<td>30 20</td>
<td>White</td>
</tr>
<tr>
<td>10</td>
<td>Morgan Seedling</td>
<td>338 20</td>
<td>303 20</td>
<td>35 20</td>
<td>Irregular, pink</td>
</tr>
<tr>
<td>11</td>
<td>Vick's Extra Early</td>
<td>305 40</td>
<td>277 40</td>
<td>28 20</td>
<td>Flat, white</td>
</tr>
<tr>
<td>12</td>
<td>Everett</td>
<td>303 20</td>
<td>266 20</td>
<td>37 20</td>
<td>Oval, pink</td>
</tr>
<tr>
<td>13</td>
<td>Money Maker</td>
<td>301 20</td>
<td>263 20</td>
<td>32 40</td>
<td>Flat, oval, white</td>
</tr>
<tr>
<td>14</td>
<td>Irish Cobbler</td>
<td>296 20</td>
<td>259 20</td>
<td>37 20</td>
<td>Round, white</td>
</tr>
<tr>
<td>15</td>
<td>Reeves' Rose</td>
<td>263 40</td>
<td>219 20</td>
<td>44 20</td>
<td>Oval, pink</td>
</tr>
<tr>
<td>16</td>
<td>Rochester Rose</td>
<td>217 20</td>
<td>198 20</td>
<td>18 40</td>
<td>Oval, pink</td>
</tr>
<tr>
<td>17</td>
<td>Hard to Beat</td>
<td>191 20</td>
<td>168 20</td>
<td>23 20</td>
<td>White</td>
</tr>
</tbody>
</table>

Potatoes planted at different distances apart.

Potatoes were planted in rows 2½, 3, 3½ and 4 feet apart and the sets were put on one-half the rows two feet apart and on the other half one foot apart. The following results were obtained:
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

POATOES PLANTED AT DIFFERENT DISTANCES APART (NON-IRRIGATED).

<table>
<thead>
<tr>
<th>Distance apart of Rows.</th>
<th>Sets put two feet apart.</th>
<th>Sets put one foot apart.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount of Seed used per Acre</td>
<td>Yield in 1912 per Acre</td>
</tr>
<tr>
<td>3</td>
<td>588</td>
<td>296 43</td>
</tr>
<tr>
<td>4</td>
<td>588</td>
<td>234 31</td>
</tr>
<tr>
<td>5</td>
<td>644</td>
<td>164 31</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH POTATOES (IRRIGATED).

Test of Varieties.

Eighteen varieties of potatoes were planted on land on which grain had been grown last year. They were planted on May 14 in rows thirty inches apart, the sets being placed one foot apart in the rows. The potatoes for planting were cut into pieces with two or three eyes in each, although medium rather than large-sized potatoes were selected so as to avoid cutting as much as possible. The crop was irrigated twice, on July 31 and August 7. They were dug September 28, and the yield was computed from one hundredth of an acre.

Potatoes.—Test of Varieties (Irrigated), Lethbridge, 1912; Sown May 14; Dug September 28.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety.</th>
<th>Total Yield per Acre</th>
<th>Yield per Acre Marketable.</th>
<th>Yield per Acre Unmarketable.</th>
<th>Form and Colour.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table Talk</td>
<td>720 666 40</td>
<td>53 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>We McGregor</td>
<td>650 646 40</td>
<td>33 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dryer’s Standard</td>
<td>655 628 20</td>
<td>26 40</td>
<td>Round, white.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dalmeny Beauty</td>
<td>643 616 40</td>
<td>26 40</td>
<td>Round, white.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Factor</td>
<td>626 606 40</td>
<td>20 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>American Wonder</td>
<td>620 603 20</td>
<td>18 40</td>
<td>Oval, pink.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Reeve’s Rose</td>
<td>591 588 20</td>
<td>32 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Gold Coin</td>
<td>576 566 40</td>
<td>20 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Morgan Seedling</td>
<td>561 538 20</td>
<td>23 20</td>
<td>Irregular, pink.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Money Maker</td>
<td>531 525 20</td>
<td>26 40</td>
<td>Flat, white.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Late Puntan</td>
<td>530 520 20</td>
<td>10 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Carmun No. 1</td>
<td>526 503 20</td>
<td>23 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Empire State</td>
<td>523 508 20</td>
<td>15 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Ashleaf Kidney</td>
<td>516 498 20</td>
<td>13 20</td>
<td>Oval, white.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Irish Cobbler</td>
<td>501 498 20</td>
<td>13 20</td>
<td>Round, white.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Everett</td>
<td>468 450 20</td>
<td>15 20</td>
<td>Oval, pink.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Vick’s Extra Early</td>
<td>435 410 20</td>
<td>25 20</td>
<td>Flat, pink and white.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Rochester Rose</td>
<td>393 378 20</td>
<td>15 20</td>
<td>Oval, pink.</td>
<td></td>
</tr>
</tbody>
</table>

Potatoes from New York (Irrigated).

Five varieties of early potatoes were received from Honeoye Falls, New York, U.S.A., to be tested out, and they were sown on land that had been in hoed crops the year previous. They received two irrigations on July 28 and August 8. They were
dug September 23. The plots varied in size, but in most cases the yield was computed from one row 115.5 feet long.

Potatoes from New York.—Test of Varieties (Irrigated), Lethbridge, 1912, Planted June 6; Dug September 23.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>Total Yield per Acre</th>
<th>Yield per Acre, Marketable</th>
<th>Yield per Acre, Unmarketable</th>
<th>Form and Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Early Northern</td>
<td>518 25</td>
<td>498 18</td>
<td>20 8</td>
<td>Oval, pink</td>
</tr>
<tr>
<td>2</td>
<td>Irish Cobbler</td>
<td>517 11</td>
<td></td>
<td></td>
<td>Oval, white</td>
</tr>
<tr>
<td>3</td>
<td>Houlton Rose</td>
<td>359 53</td>
<td>342 16</td>
<td>17 37</td>
<td>Oval, pink</td>
</tr>
<tr>
<td>4</td>
<td>Early Hebron</td>
<td>258 27</td>
<td>246 50</td>
<td>11 37</td>
<td>Oval</td>
</tr>
<tr>
<td>5</td>
<td>New Queen</td>
<td>185 37</td>
<td></td>
<td></td>
<td>Oval, pink</td>
</tr>
</tbody>
</table>

Potatoes from Irrigated Land vs. Seed from Non-irrigated Land.

<table>
<thead>
<tr>
<th></th>
<th>Total Yield per Acre</th>
<th>Yield per Acre, Marketable</th>
<th>Average Yield for 2 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed from non-irrigated land</td>
<td>511 13</td>
<td>477 57</td>
<td>544 33</td>
</tr>
<tr>
<td>Seed from irrigated land...</td>
<td>514 15</td>
<td>494 53</td>
<td>486 3</td>
</tr>
</tbody>
</table>

FRUITS.

The various kinds of fruit obtained on the Station during the past season consisted of red, white and black currants, raspberries and strawberries.

There were blooms on half a dozen or so apple trees, but the heavy frost on June 6 destroyed all the apples that were set, with the exception of a single specimen of Florence crab, which matured, so this crab has the distinction of being the first apple tree to produce fruit on the Lethbridge Station.

CURRANTS.

Of the small fruits there is probably none hardier or easier to raise than currants, red, white, and black. A shelter from the west wind of some kind should be provided. In the following tables are given the results of the different kinds of currants we have under test. There are three plants of each variety planted 6 feet apart each way. The yields given are not at all large, particularly in the case with the black currants, but the plantation has not been set out long and this is the first year that they have produced fruit. To give some idea of the yield it might be interesting to point out that the New Red Dutch, which produced 13 pounds 9 ounces on the three plants, yielded at the rate of 5,465 pounds per acre.
RED CURRANTS.—Test of Varieties.

WHITE CURRANTS (Irrigated).—Test of Varieties.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of first ripe fruit</th>
<th>Date of last picking</th>
<th>Actual yield</th>
<th>Size of berry</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Red Dutch</td>
<td>July 1</td>
<td>July 30</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Large Red</td>
<td>6</td>
<td>24</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Red English</td>
<td>6</td>
<td>24</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Cumberland</td>
<td>6</td>
<td>31</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Victoria Red</td>
<td>6</td>
<td>24</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>La Conde</td>
<td>6</td>
<td>31</td>
<td>9</td>
<td>3½</td>
</tr>
<tr>
<td>Moore’s Seedling</td>
<td>6</td>
<td>24</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Greenfield</td>
<td>6</td>
<td>31</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Pomona</td>
<td>6</td>
<td>31</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Red Dutch</td>
<td>6</td>
<td>31</td>
<td>7</td>
<td>13½</td>
</tr>
<tr>
<td>Raby Castle</td>
<td>6</td>
<td>31</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Prince Albert</td>
<td>6</td>
<td>31</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Red Grape</td>
<td>6</td>
<td>31</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Wilder</td>
<td>6</td>
<td>31</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Frauentorfer</td>
<td>6</td>
<td>31</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Long Bunch Holland</td>
<td>6</td>
<td>31</td>
<td>2</td>
<td>12½</td>
</tr>
<tr>
<td>Rankin’s Red</td>
<td>6</td>
<td>31</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Champagne</td>
<td>6</td>
<td>24</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Fay’s Prolific</td>
<td>6</td>
<td>24</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

WHITE CURRANTS (Irrigated).—Test of Varieties.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of first ripe fruit</th>
<th>Date of last picking</th>
<th>Actual yield</th>
<th>Size of berry</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Cherry</td>
<td>July 1</td>
<td>July 31</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>White Brandenburg</td>
<td>6</td>
<td>31</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>White Kaiser</td>
<td>6</td>
<td>23</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>White Pearl</td>
<td>6</td>
<td>31</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Large White</td>
<td>6</td>
<td>23</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>White Grape</td>
<td>6</td>
<td>31</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Verrieres White</td>
<td>6</td>
<td>24</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Climax</td>
<td>6</td>
<td>23</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Wentworth Leviathan</td>
<td>6</td>
<td>24</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

BLACK CURRANTS (Irrigated).—Test of Varieties.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of first ripe fruit</th>
<th>Date of last picking</th>
<th>Actual yield</th>
<th>Size of berry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beauty</td>
<td>July 1</td>
<td>July 31</td>
<td>4</td>
<td>10½</td>
</tr>
<tr>
<td>Eagle</td>
<td>6</td>
<td>23</td>
<td>3</td>
<td>6½</td>
</tr>
<tr>
<td>Climax</td>
<td>6</td>
<td>23</td>
<td>2</td>
<td>5½</td>
</tr>
<tr>
<td>Ontario</td>
<td>6</td>
<td>23</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Saunders</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Bang Up</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>10½</td>
</tr>
<tr>
<td>Norton</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>7½</td>
</tr>
<tr>
<td>Monarch</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Magnus</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>12½</td>
</tr>
<tr>
<td>Winoma</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Eclipse</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Topsy</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>6½</td>
</tr>
<tr>
<td>Merveille de la Gironde</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
RASPBERRIES.

These did not yield quite so well this year as they did in 1911. The stand is not perfect in all cases so that the yields reported are not comparable and do not do justice to the different varieties. The plantation was arranged for twenty plants of each variety, the rows 7 feet apart and two rows of each variety with ten plants in each row. In very few cases were there enough plants to fill the space and although, as has been said, the comparative yields are not reliable they are of sufficient interest to warrant reporting. The yield of the Marlboro computed per acre would be 3,068 boxes.

Test of Varieties.—(Irrigated).

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date of first ripe fruit</th>
<th>Date of last picking</th>
<th>Actual yield</th>
<th>Size of berry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marlboro</td>
<td>July 5</td>
<td>Aug. 22</td>
<td>294 pts.</td>
<td>Large</td>
</tr>
<tr>
<td>Early King</td>
<td>" 5</td>
<td>" 15</td>
<td>27½ pts.</td>
<td>Medium</td>
</tr>
<tr>
<td>Loudon</td>
<td>" 18</td>
<td>" 30</td>
<td>214 pts.</td>
<td>Large</td>
</tr>
<tr>
<td>Senbeau</td>
<td>" 13</td>
<td>" 30</td>
<td>18 pts.</td>
<td>Medium</td>
</tr>
<tr>
<td>Herbert</td>
<td>" 27</td>
<td>" 19</td>
<td>9½ pts.</td>
<td>Small</td>
</tr>
<tr>
<td>Cuthbert</td>
<td>" 13</td>
<td>" 12</td>
<td>9 pts.</td>
<td>Medium</td>
</tr>
<tr>
<td>Sarah</td>
<td>" 27</td>
<td>" 19</td>
<td>5½ pts.</td>
<td>Large</td>
</tr>
<tr>
<td>Ruby</td>
<td>" 5</td>
<td>July 20</td>
<td>14 pts.</td>
<td>Medium</td>
</tr>
</tbody>
</table>

In the growing of raspberries here it has been found that it is absolutely necessary to bend the canes down and cover them with earth in the fall before heavy frosts set in and then uncover them in the spring about the time the buds start to swell. To cover with earth it is necessary that the rows be put 7 or 8 feet apart so that there is room for a ditch from which to get the material. Covering with straw or manure has not been satisfactory, because we do not get enough snow to protect the canes during the winter when they are dried out with our drying winds.

Strawberries (Irrigated).

The strawberry crop from a commercial standpoint was a failure this year. The writer has raised strawberries in the Lethbridge district in his own garden for the last twelve years and this is the first year that the blooms have been seriously affected with frost. The low temperature that did the damage was on June 6. It destroyed all the fruit that was set at that time and injured the blooms, the result being that the fruit which followed was inferior and mis-shaped. Considerable fruit was obtained, of course, but it was small and irregular in shape.

A new plantation was set out consisting of twenty-eight varieties. An excellent stand was obtained and the prospects are bright for a good crop this coming season.

Strawberries are an easy fruit to grow in southern Alberta. Heavy mulching in the winter appears to be necessary; for this purpose, old straw or hay in which the weed seeds have been destroyed by spraying is the best. If there are any spots on the patch from which this material blows off during the winter they should be re-covered. Barnyard manure or litter does not do well as a substitute for the straw or hay as it is apt to settle down too closely and sometimes smother the plants. The period of blossoming can be retarded a week or ten days by leaving the mulch on as long as it appears to be safe. By so doing a damaging frost may be avoided.
VEGETABLES (IRRIGATED).

Between the slow and poor germination caused by the dry weather, and attacks by cutworms, the vegetable garden did not give the results that might otherwise have been the case.

BEANS.

Seven varieties were tested. They were planted May 16. A good crop was produced but none was matured at the time of killing frost.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date first ready for use for string beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refugee or 1,000 to 1</td>
<td></td>
</tr>
<tr>
<td>Challenge Black Wax</td>
<td></td>
</tr>
<tr>
<td>Early Refugee</td>
<td></td>
</tr>
<tr>
<td>Valentine</td>
<td>August 18</td>
</tr>
<tr>
<td>Stringless Green Pod</td>
<td>" 4</td>
</tr>
<tr>
<td>Wardwell’s Kidney Wax</td>
<td>" 4</td>
</tr>
<tr>
<td>Keeney’s Rustless Wax</td>
<td>" 8</td>
</tr>
</tbody>
</table>

BEETS.

Three varieties, Meteor, Early Blood Red Turnip and Ruby Dulcet, were planted April 10. The first of these ready for use was the Meteor on July 20. Only a poor stand was obtained owing to the dry weather and the cutworms.

CABBAGE.

Sixteen varieties were tested. The seed was sown in the hotbed April 16. The plants were set out in the garden May 30. Two rows, each 30 feet long; 30 plants, 24 inches apart in the rows; rows, 30 inches apart, were planted of each variety. The first variety that was ready for use was the Early Paris Market on July 27.

<table>
<thead>
<tr>
<th>Name</th>
<th>Yield in pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winningstadt</td>
<td>110</td>
</tr>
<tr>
<td>Fottler’s Improved Brunswick</td>
<td>240</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>105</td>
</tr>
<tr>
<td>Lubeck</td>
<td>240</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>177</td>
</tr>
<tr>
<td>Danish Summer Ballhead</td>
<td>150</td>
</tr>
<tr>
<td>Extra Amager Danish Ballhead</td>
<td>200</td>
</tr>
<tr>
<td>Copenhagen Market</td>
<td>150</td>
</tr>
<tr>
<td>Improved Amager Danish Roundhead</td>
<td>325</td>
</tr>
<tr>
<td>Small Erfurt</td>
<td>190</td>
</tr>
<tr>
<td>Flat Swedish</td>
<td>109</td>
</tr>
<tr>
<td>Large Late Flat Drumhead</td>
<td>200</td>
</tr>
<tr>
<td>Early Paris Market</td>
<td>243</td>
</tr>
<tr>
<td>Red Danish Stone Head</td>
<td>150</td>
</tr>
<tr>
<td>Danish Delicatesse Red</td>
<td>100</td>
</tr>
<tr>
<td>Early Jersey Wakefield</td>
<td>195</td>
</tr>
</tbody>
</table>
CAULIFLOWER.

Three varieties, Early Dwarf Erfurt, Danish Giant and Early Snowball, were tested. The seed was sown in the hotbed April 16, and the plants were set out May 30. Some plants in each variety were ready for use August 1. One head of the Early Dwarf Erfurt weighed 20 pounds.

CARROTS.

Three varieties were planted April 10, but a poor stand was obtained.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date ready for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>French Horn...</td>
<td>August 16.</td>
</tr>
<tr>
<td>Half Long Chantenay...</td>
<td>" 12.</td>
</tr>
<tr>
<td>Improved Nantes...</td>
<td>" 20.</td>
</tr>
</tbody>
</table>

CELERY.

The following six varieties were tested: Noll’s Magnificent, French Success, Rose Ribbed Paris, Giant Pascal, Evans Triumph and Paris Golden Yellow. The seed was sown in the hotbed March 23. They all gave quite satisfactory results.

CORN.

Five varieties of corn were tested, Fordhook Early, Golden Bantam, Malakoff, Squaw and an unnamed variety of sweet corn. They were planted May 17. The first three varieties did not mature roasting ears before frost. The Squaw ripened practically all the ears, while the last variety, which was of excellent quality, partially ripened an occasional ear.

CUCUMBER.

Three varieties were tested. Seeds were planted of each in pots on April 16, in the hotbeds, and were set out in the garden June 22, with the following results:

<table>
<thead>
<tr>
<th>Name</th>
<th>Date ready for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peerless White Spine...</td>
<td>August 29.</td>
</tr>
<tr>
<td>Giant Pera...</td>
<td>September 6.</td>
</tr>
<tr>
<td>Cool and Crisp...</td>
<td>" 6.</td>
</tr>
</tbody>
</table>

Seeds of each of these varieties were planted in the open May 14, but they germinated very slowly and poorly, so were too late to produce anything.

LETTUCE.

Thirteen varieties were planted on April 9. The stand obtained was very uneven, owing to poor germination on account of the dry weather. The first varieties ready for use were the All Heart and the Crisp As Ice, on June 2.

MUSK MELON.

One variety, Early Ripe, was planted, but none of the crop matured before frost.

WATERMELONS.

Two early varieties were tested, but neither matured melons before frost.

ONIONS.

The following varieties of onions were planted April 19; they germinated slowly on account of the dry weather, and did not mature before frost: Salzer’s
Wethersfield, Johnson's Dark Red Beauty, Large Red Wethersfield and Danver's Yellow Globe.

Parsley.

Double Curled was planted in the garden April 9, and was ready for use June 10.

Parsnip.

Hollow Crown was planted April 10, and 112 pounds was produced from 30 feet of the row.

Pepper.

Two varieties of peppers were planted, Chili and Cayenne, in the hotbed March 23, and put out June 21, but were frosted before they matured.

Peas.

Eleven varieties were planted on April 10. A fairly good stand was obtained. One row 30 feet long was planted of each variety. The rows were 3 feet apart.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date First Ready for use.</th>
<th>Total Yield (not shelled).</th>
<th>Gallons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heroine</td>
<td>July 15</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Sutton’s Excelsior</td>
<td>"</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Telephone</td>
<td>"</td>
<td>3i</td>
<td></td>
</tr>
<tr>
<td>Stratagem</td>
<td>"</td>
<td>21</td>
<td>5i</td>
</tr>
<tr>
<td>June</td>
<td>"</td>
<td>16</td>
<td>5i</td>
</tr>
<tr>
<td>Gradus</td>
<td>June 27</td>
<td>27</td>
<td>4i</td>
</tr>
<tr>
<td>Thomas Laxton</td>
<td>"</td>
<td>27</td>
<td>3i</td>
</tr>
<tr>
<td>Gregory’s Surprise</td>
<td>"</td>
<td>27</td>
<td>1i</td>
</tr>
<tr>
<td>McLean’s Advance</td>
<td>"</td>
<td>28</td>
<td>1i</td>
</tr>
<tr>
<td>Premium Gem</td>
<td>"</td>
<td>28</td>
<td>1i</td>
</tr>
<tr>
<td>American Wonder</td>
<td>"</td>
<td>28</td>
<td>2</td>
</tr>
</tbody>
</table>

Radish.

Two varieties, Forcing Turnip Scarlet and Extra Early Scarlet White Tipped, were tested. They were planted in the garden April 9, and were both ready for use May 20.

Salsify.

Long White was planted April 17, but only small to medium sized roots were developed.

Spinach.

One variety, Victoria, was planted April 16, and was ready for use June 19.

Egg Plant.

One variety, New York Improved, was planted in the hotbed March 23, and was put out in the open June 21, but was frosted before it had matured.

Squash.

The following varieties were planted May 13, but were frosted before any of the crop was thoroughly matured; Hubbard, Delicata, Summer Crookneck, Long Vegetable Marrow, Long White Bush Marrow, Custard Marrow, White Bush Scallop, and Mammoth Whale.

Tomatoes.

Eleven varieties were tested but very little fruit was ripened, as a killing frost came on the morning of the 15th of September.
DIVISION OF HORTICULTURE

SESSIONAL PAPER No. 16

<table>
<thead>
<tr>
<th>Name</th>
<th>Date first fruit ripened.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trophy</td>
<td>September 11</td>
</tr>
<tr>
<td>Florida Special</td>
<td>" 11</td>
</tr>
<tr>
<td>Chalk's Early Jewel</td>
<td>" 8</td>
</tr>
<tr>
<td>Matchless</td>
<td>" 11</td>
</tr>
<tr>
<td>Bonny Best</td>
<td>" 8</td>
</tr>
<tr>
<td>Rennies' XXX Earliest</td>
<td>" 11</td>
</tr>
<tr>
<td>Livingston's Globe</td>
<td>" 11</td>
</tr>
<tr>
<td>Sparks Earliana (Sunnybrook strain)</td>
<td>" 8</td>
</tr>
<tr>
<td>Sparks Earliana (C.E.F. 12/18)</td>
<td>" 11</td>
</tr>
<tr>
<td>Sparks Earliana (C.E.F. 12/23)</td>
<td>" 8</td>
</tr>
<tr>
<td>Sparks Earliana (C.E.F. most productive and uniform)</td>
<td>None ripened before fro-t</td>
</tr>
</tbody>
</table>

TURNIP.

Early White Flat Strap Leaf was planted April 9, and was ready for use June 24.

FLOWERS.

The bulbs, the first of all flowers, did extremely well. The crocus, scilla and chianodoxa started to bloom from April 20 to 22, and were in full bloom by the 25th to the 27th. The earlier varieties of tulips started to bloom May 7. All the varieties of tulips tested, some nineteen in all, wintered well, and produced large, well-shaped flowers. Where the beds were sheltered somewhat from the strong west winds, the stems were much longer and the blooms were more nearly perfect.

The annuals did not do as well as usual. But few of the varieties produced blooms when the seed was planted in the open. This was due to the fact of the slow germination caused by the dry weather. The plants grown in the hotbeds, and transplanted bloomed, but the relatively cool weather during the latter part of July and August was not conducive to a very luxuriant growth.

The perennials, such as the peonies, irises, phlox, etc., as usual, made the most satisfactory display of all.

A number of roses were successfully flowered.
EXPERIMENTAL STATION, LACOMBE, ALBERTA.

REPORT OF THE SUPERINTENDENT, G. H. HUTTON, B.S.A.

At this Station the conditions are quite different from those at any of the other prairie Farms or Stations. The elevation is high, the season is fairly moist, and the nights are usually quite cool in the growing season.

Woody plants do not mature as well here as in places where the elevation is lower and the season drier. The tree fruits are not succeeding very well as yet, although, when better protection is afforded, it is hoped they will do better. Small fruits succeed well, and many kinds of vegetables also. The climate is particularly favourable for most annual flowers, which bloom very profusely here, as they do in most places on the prairies.

The following report will give some idea of some of the things which were under test in 1912, and the results obtained.

VEGETABLES.

POTATOES.

Twenty-eight varieties of potatoes were planted in 1912, on land ploughed out of sod in August of 1911, and fall worked. The seed was planted on May 21, in rows two and one-half feet apart; with cuttings, one to two eyes to the cutting, twelve to fourteen inches apart in the row. Shallow cultivation was practised throughout the season. The potatoes were dug on September 23. There was no rot apparent.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Planted</th>
<th>Dug</th>
<th>Average Size</th>
<th>Total Yield per Acre</th>
<th>Total Yield, Marketable</th>
<th>Total Yield, Unmarketable</th>
<th>Form and Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rochester Rose</td>
<td>May 21</td>
<td>Sept 23 Medium</td>
<td>407 00</td>
<td>325 47</td>
<td>71 13</td>
<td>Pink, long.</td>
<td></td>
</tr>
<tr>
<td>Wm McGregor</td>
<td>" 21</td>
<td>Large</td>
<td>400 24</td>
<td>370 22</td>
<td>80 29</td>
<td>White, smooth, oval.</td>
<td></td>
</tr>
<tr>
<td>Houlton Rose</td>
<td>June 4</td>
<td>Medium</td>
<td>396 00</td>
<td>344 31</td>
<td>61 29</td>
<td>Red, smooth, long.</td>
<td></td>
</tr>
<tr>
<td>Ashleaf Kidney</td>
<td>May 21</td>
<td>Large</td>
<td>338 48</td>
<td>334 35</td>
<td>89 23</td>
<td>Pink, oval.</td>
<td></td>
</tr>
<tr>
<td>Early Norther</td>
<td>June 4</td>
<td>" 23 Medium</td>
<td>339 24</td>
<td>350 28</td>
<td>88 56</td>
<td>Red, fairly smooth, long.</td>
<td></td>
</tr>
<tr>
<td>Early Hebron</td>
<td>" 4</td>
<td>Medium</td>
<td>382 48</td>
<td>325 33</td>
<td>57 15</td>
<td>Pink, "</td>
<td></td>
</tr>
<tr>
<td>Epicure</td>
<td>May 21</td>
<td>23 "</td>
<td>369 36</td>
<td>295 41</td>
<td>73 55</td>
<td>Deep eyes, red round,</td>
<td></td>
</tr>
<tr>
<td>Carman No. 1</td>
<td>" 21</td>
<td>Large</td>
<td>338 36</td>
<td>322 44</td>
<td>35 52</td>
<td>White, oval. [little flat.</td>
<td></td>
</tr>
<tr>
<td>Late Puritan</td>
<td>" 21</td>
<td>23 "</td>
<td>356 24</td>
<td>347 29</td>
<td>8 55</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Empire State</td>
<td>" 21</td>
<td>" 23</td>
<td>344 18</td>
<td>335 42</td>
<td>8 26</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Morgan Seedling</td>
<td>" 21</td>
<td>" 23</td>
<td>338 48</td>
<td>331 23</td>
<td>25 25</td>
<td>Pink, long.</td>
<td></td>
</tr>
<tr>
<td>Table Talk</td>
<td>" 21</td>
<td>Medium</td>
<td>330 00</td>
<td>252 27</td>
<td>77 33</td>
<td>White, oval.</td>
<td></td>
</tr>
<tr>
<td>Deers Standard</td>
<td>" 21</td>
<td>23 "</td>
<td>317 21</td>
<td>238 1</td>
<td>79 20</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Irish Cobbler (U. S. seed)</td>
<td>June 4</td>
<td>23 Small</td>
<td>310 12</td>
<td>228 00</td>
<td>82 12</td>
<td>White, round.</td>
<td></td>
</tr>
<tr>
<td>Gold Coin</td>
<td>May 21</td>
<td>Medium</td>
<td>302 30</td>
<td>264 41</td>
<td>37 49</td>
<td>White, oval.</td>
<td></td>
</tr>
<tr>
<td>Everett</td>
<td>" 21</td>
<td>23 "</td>
<td>293 9</td>
<td>214 31</td>
<td>58 38</td>
<td>Red, oval.</td>
<td></td>
</tr>
<tr>
<td>Reeves' Rose</td>
<td>" 21</td>
<td>" 23</td>
<td>292 36</td>
<td>223 48</td>
<td>67 18</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>American Wonder</td>
<td>" 21</td>
<td>23</td>
<td>284 21</td>
<td>213 15</td>
<td>71 6</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>King Edward VII</td>
<td>" 21</td>
<td>Small</td>
<td>261 36</td>
<td>183 2</td>
<td>94 54</td>
<td>Round, pink, quite deep</td>
<td></td>
</tr>
<tr>
<td>Money Maker</td>
<td>" 21</td>
<td>23 "</td>
<td>274 00</td>
<td>163 41</td>
<td>100 19</td>
<td>White, long. [eyes.</td>
<td></td>
</tr>
<tr>
<td>Factor</td>
<td>" 21</td>
<td>Large</td>
<td>256 30</td>
<td>195 7</td>
<td>41 23</td>
<td>Round, white.</td>
<td></td>
</tr>
<tr>
<td>Irish Cobbler (Home grown seed)</td>
<td>" 21</td>
<td>" 23</td>
<td>231 00</td>
<td>190 35</td>
<td>40 25</td>
<td>White, round.</td>
<td></td>
</tr>
<tr>
<td>Hard-to-Beat</td>
<td>" 21</td>
<td>Small</td>
<td>191 31</td>
<td>110 3</td>
<td>81 21</td>
<td>Flat, white.</td>
<td></td>
</tr>
<tr>
<td>Longworthy</td>
<td>" 21</td>
<td>Large</td>
<td>189 12</td>
<td>156 5</td>
<td>33 7</td>
<td>White, irregular.</td>
<td></td>
</tr>
<tr>
<td>Vick's Extra Early</td>
<td>" 21</td>
<td>Small</td>
<td>162 48</td>
<td>113 58</td>
<td>43 50</td>
<td>White, oval.</td>
<td></td>
</tr>
<tr>
<td>Dalmeny Beauty</td>
<td>" 21</td>
<td>" 23</td>
<td>150 21</td>
<td>87 59</td>
<td>42 22</td>
<td>White, long.</td>
<td></td>
</tr>
<tr>
<td>New Queen</td>
<td>June 4</td>
<td>23 "</td>
<td>115 30</td>
<td>92 00</td>
<td>83 30</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>
Beans were planted on May 20, in rows thirty inches apart and two inches in the rows. Plants were up on June 9 and commenced to bloom on July 15. Valentine and Wardwell's Kidney Wax took first and second place respectively, as regards yield, while Keeney's Rustless Wax led as to quality, as shown by the following table:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Height</th>
<th>In use</th>
<th>Yield per acre</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wardwell's Kidney Wax</td>
<td>16</td>
<td>" 10</td>
<td>68</td>
<td>58</td>
</tr>
<tr>
<td>Valentine</td>
<td>16</td>
<td>" 21</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Early Refugee</td>
<td>17</td>
<td>" 24</td>
<td>58</td>
<td>5</td>
</tr>
<tr>
<td>Challenge Black Wax 1912</td>
<td>13</td>
<td>" 7</td>
<td>62</td>
<td>19</td>
</tr>
<tr>
<td>Stringless Green Pod</td>
<td>16</td>
<td>" 22</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Refuge or 1000 to 1</td>
<td></td>
<td>No Crop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wardell's Kidney Wax, Valentine and Challenge Black Wax, were all more or less troubled with anthracnose.

Beets.

Beets were sown on April 30, five varieties being tested, as shown by the following table:

<table>
<thead>
<tr>
<th>Variety</th>
<th>In use</th>
<th>Yield per acre</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteor</td>
<td></td>
<td></td>
<td>Aug. 12</td>
<td>145</td>
</tr>
<tr>
<td>Ruby Dulce</td>
<td></td>
<td></td>
<td>" 12</td>
<td>348</td>
</tr>
<tr>
<td>Black-Red Ball</td>
<td></td>
<td></td>
<td>" 12</td>
<td>145</td>
</tr>
<tr>
<td>Early Blood-Red Turnip</td>
<td></td>
<td></td>
<td>" 15</td>
<td>396</td>
</tr>
<tr>
<td>Egyptian Dark-Red Turnip</td>
<td></td>
<td></td>
<td>" 6</td>
<td>300</td>
</tr>
</tbody>
</table>

Brussels Sprouts.

Seed was sown on April 15 in the frame, but did not do well enough to make it worth while transplanting. Seed was re-sown on May 8 and the plants were transplanted on June 25, but the crop was ultimately a complete failure.

Cabbage.

Seed was sown on April 15, pricked out on May 24 and planted in the field on June 14. The following varieties were tested and the crop was harvested on October 21:
Variety. | In use. | Average weight per head. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Jersey Wakefield</td>
<td>Aug. 23</td>
<td>5 lb.</td>
</tr>
<tr>
<td>Early Paris Market</td>
<td>" 10</td>
<td>4</td>
</tr>
<tr>
<td>Large Late Flat Drumhead</td>
<td>Oct. 1</td>
<td>6</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>Aug. 10</td>
<td>3</td>
</tr>
<tr>
<td>Fottler's Improved Brunswick or Short Stem</td>
<td>Sept. 15</td>
<td>5 lb.</td>
</tr>
<tr>
<td>Lubbeck</td>
<td>" 12</td>
<td>5 lb.</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>Oct. 2</td>
<td>5 lb.</td>
</tr>
<tr>
<td>Small Erfurt</td>
<td>Sept. 10</td>
<td>4</td>
</tr>
<tr>
<td>Winningenstadt</td>
<td>" 13</td>
<td>5</td>
</tr>
<tr>
<td>Danish Delicatess (Red)</td>
<td>Oct. 21</td>
<td>4</td>
</tr>
<tr>
<td>Red Danish Stonehead</td>
<td>Sept. 10</td>
<td>7</td>
</tr>
<tr>
<td>Danish Summer Ballhead</td>
<td>" 9</td>
<td>7</td>
</tr>
<tr>
<td>Flat Swedish</td>
<td>Oct. 21</td>
<td>11</td>
</tr>
<tr>
<td>Improved Amager Danish Romdhead</td>
<td>" 21</td>
<td>11</td>
</tr>
<tr>
<td>Extra Amager Danish Ballhead</td>
<td>" 21</td>
<td>11</td>
</tr>
</tbody>
</table>

CAULIFLOWER.

No crop was harvested, as all the plants were destroyed by the cabbage maggot.

CUCUMBERS.

Three varieties, Giant Pera, Peerless White Spine, and Cool and Crisp, were tried but no fruit set.

LETTUCE.

Thirteen varieties of lettuce were planted, all of which grew vigorously. The varieties excelling as to table quality were Improved Hanson and Black Seeded Simpson for curled-leaf sorts, and Cos Trianon and Capucine for smooth-leaf sorts. The curled-leaf varieties were found to be better than the smooth-leaf as a class.

CARROTS.

Seed was sown on April 30, thinned out on July 17, and dug on October 18. Seed was sown in rows thirty inches apart and plants were thinned to one and one-half inches in the rows.
CELERY.

Seed was sown in the frame April 10 and transplanted July 6 into trenches. The varieties grown are shown in the following table. The crop was taken up October 26.

<table>
<thead>
<tr>
<th>Variety</th>
<th>In Use</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
</tr>
<tr>
<td>French Horn</td>
<td>August 6</td>
<td>667</td>
</tr>
<tr>
<td>Improved Nantes</td>
<td>" 10</td>
<td>475</td>
</tr>
<tr>
<td>Half Long Chantenay</td>
<td>" 15</td>
<td>290</td>
</tr>
</tbody>
</table>

SWEET CORN.

Four varieties of sweet corn were planted on May 6. The following table gives the results:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Number Heads Weighed</th>
<th>Average Weight</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lb.</td>
<td>Extra good, good size, tender and tasty.</td>
</tr>
<tr>
<td>Paris Golden Yellow</td>
<td>25</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Giant Pascal</td>
<td>27</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Rose Ribbed Paris</td>
<td>28</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>French's Success</td>
<td>28</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Noll's Magnificent</td>
<td>28</td>
<td>34</td>
<td>A good variety.</td>
</tr>
<tr>
<td>Evans' Triumph</td>
<td>30</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

ONIONS.

Four varieties of onions were sown on April 17 and harvested October 11, Danvers Yellow Globe giving the largest yield per acre and being the nearest ripe at time of digging.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date Sown</th>
<th>Date Harvested</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bush.</td>
</tr>
<tr>
<td>Dark Red Beauty</td>
<td>April 17</td>
<td>Oct. 11</td>
<td>473</td>
</tr>
<tr>
<td>Salzer's Wethersfield</td>
<td>" 17</td>
<td>" 11</td>
<td>746</td>
</tr>
<tr>
<td>Danvers' Yellow Globe</td>
<td>" 17</td>
<td>" 11</td>
<td>1,127</td>
</tr>
<tr>
<td>Large Red Wethersfield</td>
<td>" 17</td>
<td>" 11</td>
<td>969</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

PARSNIPS.

Seed of the Hollow Crown parsnip was sown April 30, in rows 30 inches apart, and thinned June 3 to 2 inches in the rows. Crop was dug October 18 and yielded at the rate of 493 bushels 41 pounds to the acre.

PARSLEY.

Double Curled Parsley was sown on April 30 and grew well, attaining a height of 11 inches and being ready for use on July 30.

PEAS.

Seed was sown in rows three feet apart and 1 inch apart in the rows, on May 8, of the following varieties:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Height</th>
<th>In Use</th>
<th>Yield per Acre</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregory’s Surprise</td>
<td>3 1</td>
<td>July 14</td>
<td>148 14</td>
<td>On July 17, sweet, good quality.</td>
</tr>
<tr>
<td>Gradus</td>
<td>5 6</td>
<td>20</td>
<td>177 14</td>
<td>On Aug. 8, splendid flavour.</td>
</tr>
<tr>
<td>American Wonder</td>
<td>2 4</td>
<td>22</td>
<td>158 19</td>
<td>On Aug. 6, fair.</td>
</tr>
<tr>
<td>McLean’s Advancer</td>
<td>3 0</td>
<td>27</td>
<td>179 29</td>
<td></td>
</tr>
<tr>
<td>Heroine</td>
<td>3 7</td>
<td>Aug. 10</td>
<td>76 38</td>
<td>Aug. 24, excellent.</td>
</tr>
<tr>
<td>Stratagem</td>
<td>3 4</td>
<td>10</td>
<td>29 16</td>
<td></td>
</tr>
<tr>
<td>Telephone</td>
<td>6 0</td>
<td>July 31</td>
<td>156 48</td>
<td></td>
</tr>
<tr>
<td>Thomas Laxton</td>
<td>3 7</td>
<td>22</td>
<td>112 66</td>
<td>One of the best tested.</td>
</tr>
<tr>
<td>Premium Gem</td>
<td>2 10</td>
<td>17</td>
<td>156 53</td>
<td>July 18, very sweet.</td>
</tr>
<tr>
<td>Sutton’s Excelsior</td>
<td>2 11</td>
<td>24</td>
<td>103 52</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>3 9</td>
<td>Aug. 10</td>
<td>160 50</td>
<td></td>
</tr>
</tbody>
</table>

RADISHES.

Seed was planted on May 8 and July 11, respectively. Varieties used were: forcing Turnip Scarlet and Early Scarlet White Tipped Turnip. A very good crop was obtained of each variety from the first sowing, but the second was totally destroyed by the maggot.

SQUASH.

Seed was planted on May 4 and May 20, respectively, in hills, nine feet apart each way. No results were obtained from the first planting, but the following table shows the results of the second:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Ready to Use</th>
<th>Date of Blooming</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Crookneck</td>
<td></td>
<td>Aug. 7</td>
<td>Tons. 106</td>
</tr>
<tr>
<td>White Bush Scallop</td>
<td></td>
<td>Sept. 12</td>
<td>100 11</td>
</tr>
<tr>
<td>Long Vegetable</td>
<td></td>
<td>Sept. 12</td>
<td>3 1,787</td>
</tr>
<tr>
<td>Marrow, harvested on</td>
<td></td>
<td>Aug. 24</td>
<td>3 1,160</td>
</tr>
<tr>
<td>Sept. 16</td>
<td></td>
<td>July 19</td>
<td></td>
</tr>
</tbody>
</table>

 TOMATOES.

Seed of eleven varieties were sown in the hotbed on April 10 and were transplanted June 15 to the open field. Eight varieties fruited this year, as against two
last year, which is encouraging. Varieties fruiting were, in the order of productive ability: Sparks EARLIANA 12-18, Sparks EARLIANA (Sunnybrook strain), Sparks EARLIANA 12-23, Bonny Best, Chalk's Early Jewel, Trophy, Sparks EARLIANA (C.E.F. strain), and Rennie's XXX Easiest.

TURNOIPS.

One variety, Early White Flat Strap Leaf, was sown on April 30 and was ready for use June 28. Plants and rows 15 inches apart and 2 inches in the rows, when dug on October 18, 2,981 bushels 26 pounds. The table quality of these turnips in the early part of the season was fairly good.

SALSIFY.

Long White Salsify was sown April 30 and was dug on October 18, yielding 145 bushels 12 pounds per acre.

FLOWER GARDEN.

The following varieties of annuals were sown in the hotbed on the 10th of April, and set out in the open on the 20th of May.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Bloomed from date</th>
<th>Bloomed to date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asters, 13 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antirrhinum, 11 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachycome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candytuf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coreopsis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimorphotheca aurantiaca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eschscholtzia, 2 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobelia Erinus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larkspur, 3 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mignonette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotiana affinis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemesis, 8 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlox Drummondii, 7 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pansy, 5 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petunia, 3 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portulaca, 2 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Sultan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scabiosa, 3 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salpiglossis, 2 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbena, 8 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viola, 4 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia sacrorum viridis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calliopsis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysanthemum, 2 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dianthus, 8 varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaillardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liparia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papaver Danebrog</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tagetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinnia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tulips

<table>
<thead>
<tr>
<th>Variety</th>
<th>Commenced to bloom</th>
<th>Variety</th>
<th>Commenced to bloom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artus</td>
<td>May 17</td>
<td>Vermilion Brilliant</td>
<td>May 14</td>
</tr>
<tr>
<td>Chrysolora (single)</td>
<td>" 16</td>
<td>Conronne d'Or (double)</td>
<td>" 16</td>
</tr>
<tr>
<td>Cottage Maid</td>
<td>" 19</td>
<td>Imperator Ruborum</td>
<td>" 17</td>
</tr>
<tr>
<td>Duchess de Parma</td>
<td>" 18</td>
<td>Murillo</td>
<td>" 20</td>
</tr>
<tr>
<td>Joost van Vondel (red)</td>
<td>" 17</td>
<td>Darwin (late single)</td>
<td>June 6</td>
</tr>
<tr>
<td>Joost van Vondel (white)</td>
<td>" 16</td>
<td>Gesneriana Spathulata</td>
<td>" 5</td>
</tr>
<tr>
<td>Keizers-kroon</td>
<td>" 16</td>
<td>Isabella</td>
<td>" 1</td>
</tr>
<tr>
<td>Le Reine</td>
<td>" 19</td>
<td>La Candeur</td>
<td>" 3</td>
</tr>
<tr>
<td>Pottebakker (scarlet)</td>
<td>" 15</td>
<td>La Merveille</td>
<td>" 7</td>
</tr>
<tr>
<td>" (white)</td>
<td>" 14</td>
<td>Picotee</td>
<td>" 7</td>
</tr>
<tr>
<td>Proserpine</td>
<td>" 19</td>
<td>Yellow Rose</td>
<td>" 6</td>
</tr>
</tbody>
</table>

Daffodils

<table>
<thead>
<tr>
<th>Variety</th>
<th>Commenced to bloom</th>
<th>Variety</th>
<th>Commenced to bloom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barri Consipicus (single)</td>
<td>June 1</td>
<td>Incomparabilis Sir Watkin</td>
<td>" 28</td>
</tr>
<tr>
<td>Bicolor Empress</td>
<td>May 30</td>
<td>Pictes</td>
<td>No bloom</td>
</tr>
<tr>
<td>" Victoria</td>
<td>" 30</td>
<td>" Ornatus</td>
<td>No bloom</td>
</tr>
<tr>
<td>Emperor</td>
<td>" 28</td>
<td>" Princeps</td>
<td>May 25</td>
</tr>
<tr>
<td>" Gilbe Sper</td>
<td>" 29</td>
<td>" Iris nigleia</td>
<td>No bloom</td>
</tr>
<tr>
<td>Incomparabilis Cynosure</td>
<td>" 28</td>
<td>" Hispanica</td>
<td>July 20</td>
</tr>
<tr>
<td>" Figaro</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crops

<table>
<thead>
<tr>
<th>Variety</th>
<th>Commenced to bloom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed varieties</td>
<td>Bloomed May 4</td>
</tr>
</tbody>
</table>

Small Fruits

Fifty-five varieties of sweet peas were sown April 19. The first to bloom was Helen Grosvenor. All varieties bloomed profusely until well into August. Soil and climate are well adapted to the production of bloom of superior merit.

Sweet Peas

While black, red and white currants fruited freely, it is perhaps well to defer another year the publication of the table of standing of the varieties being tested. Of the varieties of black currants under test, Beauty led with a yield of 13,209 pounds to the acre, while Bang Up, though not a heavy yielder, produced the choicest fruit.

Among the red currants, Albert led with a yield of 9,985 pounds to the acre, while the fruit was large and of excellent quality.
SESSIONAL PAPER No. 16

As regards white currants, White Grape was first with a yield of 5,193 pounds to the acre, while Large White Brandenburg produced the best fruit.

Gooseberries did not fruit at all. Of the raspberries, the red sorts alone fruited; Sunbeam and Early King producing the most fruit, while Herbert gave berries of splendid quality and size.

The order of merit according to yield of strawberries was Warfield, Wm. Belt and Tennessee.

ORCHARD.

The apple trees came through the winter fairly well. Winter-killing was in evidence with many of the standard varieties. The cross-bred and crab-apples, as a class, are hardy, while such standard varieties as Hibernial, Charlamoff and Antonovka, give promise of success. Fruit formed on three trees of Eve, a cross-bred variety, but was blown off before mature.

Two thousand nine hundred and ten yearling seedlings were set out in the spring of 1912. These were grown from seed of the following varieties: Anis, Antonovka, Beautiful Arcad, Hibernial, Tetofsky, Duchess, Charlamoff, and Yellow Transparent. A large proportion of the trees secured by the growing of these seedlings should be hardy, while a fair proportion of these hardy trees should produce a good quality of fruit.

Mr. A. P. Stevenson, of Dunstan, Manitoba, supplied this Station with the following varieties of apples, from which seed was taken: Blushed Calville, Antonovka, Charlamoff and Hibernial. These seeds were planted in a frame in October and trees will be produced from this northern-grown stock and handled in the same manner as outlined above. This system affords the quickest solution to the problem of securing hardy trees for this country, and varieties of satisfactory quality.

TREE PLANTING.

The principal tree planting of the year consisted in planting groups of trees and shrubs in the grounds, between the Calgary and Edmonton trail and the Superintendent’s residence. It is proposed to complete this work in the spring of 1913, and when done, the grounds will be most attractive. The testing of these varieties of trees and shrubs will afford visitors a good opportunity of comparing varieties and making selections for their own grounds.

LISTS OF BEST VARIETIES OF FRUITS, VEGETABLES, USEFUL AND ORNAMENTAL TREES AND SHRUBS, HERBACEOUS PERENNIALS, CLIMBERS, AND ANNUALS FOR THE PRAIRIE PROVINCES.

So much money is lost by settlers in the Prairie Provinces from buying plants which are unsuitable, that it has been thought desirable to publish a list of those recommended for planting. There is a great difference in the hardiness of plants. Many trees and shrubs which succeed in eastern Canada will not succeed on the prairies. This is particularly true of varieties of fruits, but it is also true in regard to other trees as well. It is important in the case of ornamental trees or trees for forest belts or wind-breaks to obtain trees grown from northern stock. In the case of those marked “native” in the following list it is very desirable to obtain trees.
grown from native stock, as the same species from the southern part of their range would not prove hardy in many cases.

FRUITS RECOMMENDED FOR PRAIRIE PROVINCES.

Apples, in the Most Favourable Situations.—Blushed Calville, Hibernal, Anisette, Duchess, Charlanoff, Antonovka, Patten’s Greening, Lowland Raspberry, Beautiful Arcad.

Crab-apples.—Transcendent, Virginia, Hyslop, Florence.

Saunders’ Hybrid Apples.—Jewel, Charles, Silvia, Prince, Tony, Robin, and Elsa. These are about the size of other named crab apples, but hardier.

Plums.—Cheney, Aitkin, Odegard, Assiniboine, and best early seedlings of the native plum of Manitoba, which are to be preferred above all others if earliest and best are obtained. In southern Manitoba, and possibly in very favoured locations in other provinces, the Sand and Compass cherries, which are more like plums than cherries, will succeed. There are a number of promising varieties among Hansen’s hybrid plums, including Etopa, Hanska, Opata, Kaga, Owanka, and Sapa.

Currents, Red.—Raby Castle, Stewarts, Red Dutch.

Currents, White.—White Grape, White Dutch.

Currents, Black.—Beauty, Naples, Lee’s Prolific, Saunders, Victoria.

Gooseberries.—Houghton.

Raspberries, Red.—King, Loudon, Turner, Sunbeam.

Raspberries, Purple.—Columbian.

Raspberries, Black.—Older. The black raspberries are not very satisfactory. Raspberries should be covered with soil in winter in many places.

Strawberries.—Senator Dunlap, Beder Wood, Crescent, Lovett, Enhance, and Pocomoke. The Senator Dunlap has proved the most satisfactory for general planting. Strawberries need the protection of a straw mulch in winter.

VEGETABLES RECOMMENDED FOR THE PRAIRIE PROVINCES.

Asparagus.—Conover’s Colossal, Palmetto, Argenteuil.

Beans.—Round Pod Kidney Wax, Wardwell’s Kidney Wax, among yellow-podded or wax, bush beans; and Stringless Green Pod, Early Red Valentine and Early Refugee, among green-podded varieties.

Beets.—Meteor, Early Model, Blood Red Ball, Egyptian, Eclipse.

Cabbage.—Paris Market (extra early); Early Jersey Wakefield, and Copenhagen Market (early), Danish Ballhead and Drumhead Savoy (late) and Red Dutch (red).

Cauliflowers.—Early Dwarf Erfurt and Early Snowball.

Carrots.—Early Scarlet Horn, for early; and Chantenay for main crop.

Celery.—White Plume (the earliest) and Golden Self Blanching (Paris Golden Yellow).

Corn.—Squaw (flint), Early Adams (flint), Early Malakoff (sweet), Golden Bantam (sweet).

Cucumbers.—Peerless White Spine or White Spine and Davis Perfect.
Lettuce.—Grand Rapids (early curled); Iceberg, Giant Crystal Head, Crisp as Ice, and Improved Hanson (curled cabbage); Trianon and Paris are two of the best Cos varieties. Iceberg is one of the best for summer use.

Melons, Musk.—Hackensack and Emerald Gem, under specially favourable circumstances.

Onions.—Early Flat Red, Large Red Wethersfield, and Yellow Globe Danvers. Barletta, White Queen and White Pearl are other early small white varieties, all much alike.

Parsley.—Double Curled.

Peas.—Gregory’s Surprise, Thos. Laxton, Gradus, American Wonder, Nott’s Excelsior. Sutton’s Early Giant (early); Sutton’s Excelsior, Premium Gem (second early); Reliance, McLean’s Advance, Heroine, Stratagem (medium to late); Telephone, Champion of England and Quite Content are three fine, tall varieties.

Potatoes, early.—Early Ohio, Rochester Rose, Reeves’ Rose (pink), Bovee (pink and white). The Early Ohio is not as productive as some, but is very early and dry. Irish Cobbler and Early White Prize (white). Main Crop.—Table Talk, Gold Coin, Carman No. 1, Wee McGregor (white), Ashleaf Kidney, Empire State.

Radishes, Scarlet.—White Tipped Turnip, Rosy Gem, French Breakfast, Icele.

Rhubarb.—Victoria, Linnaeus, Strawberry.

Tomatoes.—Sparks’ Earliana; the best strains of this variety are the most reliable, such as North Adirondack and Sunnybrook. Other good varieties not quite as early are: Chalk’s Early Jewel, and Bonny Best.

Turnips—Early.—Extra Early Milan.

Turnips—Swedes.—Champion Purple Top, Skirving’s Improved.

TREES AND SHRUBS RECOMMENDED FOR THE PRAIRIE PROVINCES.

Deciduous. For Forest Plantation and Windbreak.

Box Elder or Manitoba maple (native), Acer Negundo; Green Ash (native), Fraxinus pennsylvanica lanceolata; American Elm (native), Ulmus americana; Paper or Canoe birch (native), Betula papyrifera; Cottonwood (native Alberta), Populus deltoides; Balsam Poplar (native), Populus balsamifera; Mossy Cup or Burr oak (native), Quercus macrocarpa, for southern Manitoba, especially; Hackberry or Nettle Tree (native), Celtis occidentalis; Russian poplar, Populus petrovskyana; Laurel-leaved willow, Salix pendula, (S. laurifolia); Voronesh or Golden Willow, Salix Voronesh; Sharp-leaved willow, Salix daphnoides acutifolia; Basswood (native), Tilia americana, for southern Manitoba, mainly; Silver or Soft maple (native), Acer saccharinum (dasyacarpum), for southern Manitoba, mainly.

Evergreens and Conifers

White spruce (native), Picea canadensis (alba); Black spruce (native), Picea mariana; Tamarack (native), Larix laricina; Lodgepole pine (native), Pinus contorta Murrayana; Riga pine. Pinus sylvestris rigaensis; and the Scotch pine, Pinus sylvestris, which is not quite so hardy; Jack pine (native), Pinus Banksiana; Colorado or Rocky Mountain Blue spruce, Picea pungens.
Ornamental Trees and Shrubs.

All of the above trees are ornamental, but in addition there are:

Evergreen Trees.—White cedar or Arbor Vite, *Thuja occidentalis*. There are many varieties of this, the hardiest being *Thuja occidentalis* Wareana, known as Siberian Arbor Vite; Swiss Stone pine, *Pinus Cembra*; Dwarf Mountain pine, *Pinus Montana Magnif.* Savin or Juniper, *Juniperus horizontalis* (Sabina). The last two named are really shrubs.

Roses.—Japanese rose, *Rosa rugosa* and hybrids and several native species; also Persian Yellow and Old English Moss. Hybrid Perpetual roses should be protected by covering with soil in winter, and if so treated the following should succeed:—Madame Plantier (white), *Rosa Karl Druschki* (white), Magna Charta (bright rose), General Jacqueminot (crimson scarlet), Mrs. John Laing (soft pink), Ulrich Brunner (cherry crimson), Baronne de Ronstetten (velvety blackish-crimson), Mrs. R. G. Sharman Crawford (deep, rosy pink), Madame Joly (pink), John Hopper (rose pink), Prince Camille de Rohan (deep velvety crimson), Pierre Notting (deep crimson).

Climbing Plants.—Virginia Creeper, *Amelopsis quinquefolia*; Native Clematis, *Clematis ligusticifolia*, a very desirable native species; Frost-grape, *Vitis vulpina*, native of southern Manitoba, but not adapted to the open prairie; Climbing Bittersweet (native), *Celastrus scandens*; Wild hop.

Herbaceous Perennials.—Many species and varieties of herbaceous perennials succeed in the prairie provinces. Among the most desirable are peonies, German iris, perennial phlox, oriental and Iceland poppies, bleeding heart, coreopsis, yellow day lilies (*Hemerocallis*), delphiniums, campanulas, platycodon. For lists of varieties, see the bulletin on Herbaceous Perennials, which can be obtained free on application to the Central Experimental Farm, Ottawa.

Annuals.—Annuals succeed admirably in the Prairie Provinces, and many kinds can be grown successfully. Among the most satisfactory are the sweet pea, pansy, stocks, petunia, aster, verbena, pink, nemesia, poppy, phlox Drummondii, and lobelia, but many more might be named. Geraniums, cannas, dahlias and gladioli, if started early, succeed well.
EXPERIMENTAL FARM, AGASSIZ, BRITISH COLUMBIA.

REPORT OF THE SUPERINTENDENT, P. H. MOORE, B.S.A.

Horticulture is not now receiving the special attention here that it did for many years, as the situation of this Farm was found not to be very suitable for fruit trees. Some attention is, however, paid to this part of the work, and following will be found a report on some experiments conducted in 1912.

VEGETABLES.

Potatoes.

Thirty-one varieties of potatoes were grown in 1912, on land similar to that which grew roots and corn and treated very much in the same manner, with the exception of artificial fertilizer. They were planted in rows two and one-half feet apart and from a foot to a foot and one-half apart in the drills. An accident happened to three varieties so that the following list contains only twenty-eight.

All potatoes were somewhat touched with blight, but the percentage of rot at digging time was not very great in any case.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield per Acre</th>
<th>Planted</th>
<th>Harvested</th>
<th>Rotten</th>
<th>Small</th>
<th>Marketable</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Wonder</td>
<td>10, 584</td>
<td>May 7</td>
<td>Sept. 9</td>
<td>5</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>Early Envoy</td>
<td>9, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Money Maker</td>
<td>9, 1,272</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,272</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Everett</td>
<td>9, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Empire State</td>
<td>9, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Dearer's Standard</td>
<td>8, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Dalmeny Beauty</td>
<td>8, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Burnaby Mammoth</td>
<td>8, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Morgan Seedling</td>
<td>8, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Late Puritan</td>
<td>8, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Gold Corn</td>
<td>7, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Early St. George</td>
<td>7, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Viick's Extra Early</td>
<td>7, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Rochester Rose</td>
<td>7, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Rochester Rose (Lacombe Seed)</td>
<td>7, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Irish Cobbler</td>
<td>7, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Early Rose</td>
<td>6, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Ashleaf Kidney</td>
<td>6, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>20th Century</td>
<td>6, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Hillcrest</td>
<td>6, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Reeves' Rose (Lacombe Seed)</td>
<td>5, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Reeves' Rose</td>
<td>5, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Early Potentate</td>
<td>5, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Dove</td>
<td>5, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Wee McGregor</td>
<td>4, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Hard to Beat</td>
<td>4, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Table Talk</td>
<td>3, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>Factor</td>
<td>3, 1,276</td>
<td>Sept. 9</td>
<td>10</td>
<td>1,276</td>
<td>25</td>
<td>102</td>
</tr>
</tbody>
</table>
A fertilizer experiment was carried on with potatoes, the fertilizer being supplied by the German Potash Syndicate. Three-quarters of an acre of land was used in this experiment, and the following are the results of the different plots:

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Fertilizer Applied per Acre</th>
<th>Planted</th>
<th>Harvested</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Check)</td>
<td></td>
<td>1912</td>
<td>May 9</td>
<td>1912</td>
</tr>
<tr>
<td>2</td>
<td>200 pounds sulphate of potash</td>
<td>9</td>
<td>Oct. 26</td>
<td>11 tons, 600 pounds.</td>
</tr>
<tr>
<td></td>
<td>140 nitrate of soda.</td>
<td></td>
<td>26</td>
<td>13 160</td>
</tr>
<tr>
<td>3</td>
<td>400 superphosphate.</td>
<td>9</td>
<td>26</td>
<td>12 1,420</td>
</tr>
<tr>
<td></td>
<td>140 nitrate of soda.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not being able to secure enough of one variety of seed to plant the three-quarters of an acre, we were forced to use Dakota Reds. The seed planted was very large and rough, and the crop harvested could also be described in the same way. The market value of same was not very high.

During the season a large variety of seeds were tested under conditions here. The land was a light, sandy soil and not very rich; the season being a dark and cool one. Such vegetables as require a warm, bright summer did not come to maturity. In the case of radishes, turnips, Brussels sprouts, cabbage, and cauliflower, the real comparative value of the variety tests was much interfered with by the cabbage maggots, as on these vegetables several different mixtures were tried for the prevention of the maggots and this made these plots not of a comparative nature.

BEETS.

Five varieties of beets were grown during the season with the following results. The weight of the crops is taken from two drills thirty feet long. They were harvested when fit for table use as a market garden product.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Harvested</th>
<th>Weight of Crop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egyptian Dark Red Turnip</td>
<td>May 6, 1912</td>
<td>Oct. 9, 1912</td>
<td>8 pounds.</td>
</tr>
<tr>
<td>Meteor</td>
<td>"</td>
<td>"</td>
<td>10 "</td>
</tr>
<tr>
<td>Ruby Delaware</td>
<td>"</td>
<td>"</td>
<td>55 "</td>
</tr>
<tr>
<td>Early Blood Red Turnip</td>
<td>"</td>
<td>"</td>
<td>17 "</td>
</tr>
<tr>
<td>Black-red Ball</td>
<td>"</td>
<td>"</td>
<td>18 "</td>
</tr>
</tbody>
</table>

PARSNIPS.

One variety of this vegetable was grown and gave a good return. The weight is taken from two thirty-foot drills.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Harvested</th>
<th>Weight.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow Crown</td>
<td>April 13, 1912</td>
<td>Oct. 9, 1912</td>
<td>92½ pounds.</td>
</tr>
</tbody>
</table>
DIVISION OF HORTICULTURE

SESSIONAL PAPER No. 16

SALSIFY.

One variety of this was tested and it gave the following results:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Harvested</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long White</td>
<td>April 13, 1912</td>
<td>Oct. 9, 1912</td>
<td>47 pounds</td>
</tr>
</tbody>
</table>

PEAS.

There were eleven varieties of peas grown, one variety, Stratagem, germinated badly and the moles attacked other varieties, but the general results were as follows. All were harvested for table use. Weights are taken from one drill thirty feet long.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Ready for use</th>
<th>Weight of Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Laxton</td>
<td>April 12, 1912</td>
<td>June 19, 1912</td>
<td>5'10 lbs.</td>
</tr>
<tr>
<td>Gregory's Surprise</td>
<td>"</td>
<td>June 16, 1912</td>
<td>6'14 "</td>
</tr>
<tr>
<td>Gradus</td>
<td>"</td>
<td>June 19, 1912</td>
<td>8'7 "</td>
</tr>
<tr>
<td>Telephone</td>
<td>"</td>
<td>June 7, 1912</td>
<td>13'13 "</td>
</tr>
<tr>
<td>Stratagem</td>
<td>"</td>
<td>July 12, 1912</td>
<td>8'2 "</td>
</tr>
<tr>
<td>McLean Advance</td>
<td>"</td>
<td>July 12, 1912</td>
<td>11'8 "</td>
</tr>
<tr>
<td>Sutton's Excedior</td>
<td>"</td>
<td>June 25, 1912</td>
<td>11'13 "</td>
</tr>
<tr>
<td>American Wonder</td>
<td>"</td>
<td>June 21, 1912</td>
<td>14'5 "</td>
</tr>
<tr>
<td>Jino</td>
<td>"</td>
<td>July 13, 1912</td>
<td>10'3 "</td>
</tr>
<tr>
<td>Premium Gem</td>
<td>"</td>
<td>June 22, 1912</td>
<td>15' "</td>
</tr>
<tr>
<td>Heroine</td>
<td>17</td>
<td>July 15, 1912</td>
<td>20' "</td>
</tr>
</tbody>
</table>

CUCUMBERS.

Three varieties of cucumbers were grown and the weights in the following table were taken from an average of three hills and taken at a time when fit for market use. The Peerless White Spine was the most prolific yielder, but the quality of all three varieties was excellent.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool and Crisp</td>
<td>May 25, 1912</td>
<td>19 lbs.</td>
</tr>
<tr>
<td>Peerless White Spine</td>
<td>25, 1912</td>
<td>27 lbs.</td>
</tr>
<tr>
<td>Giant Pera</td>
<td>25, 1912</td>
<td>22 lbs.</td>
</tr>
</tbody>
</table>

MUSKMELONS AND WATERMELONS.

Many varieties of melons have been tried for the past two years but without success in ripening any of them. In some cases fruit formed but it was always too small to be of use.

Of muskmelons, the following varieties were tested: Earliest Ripe, Paul Rose, Montreal Market, Hoodoo, Hackensack, Emerald Gem; and two kinds of watermelons were also grown, namely Salzer's Earliest and Thennings.
CORN.

Eight varieties of sweet corn were tested with results as tabulated below. The weights were taken from an average of ten hills. Stowell's Evergreen which is reported as a failure, was so on account of poor seed and non-germination of same; what few plants did grow were weakly and sick. All corn was harvested in the roasting stage or fit for table use.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Evergreen</td>
<td>April 25, 1912</td>
<td>47½ lbs.</td>
</tr>
<tr>
<td>Fordhook Early</td>
<td>" 25, 1912</td>
<td>42 "</td>
</tr>
<tr>
<td>Henderson’s Metropolitan</td>
<td>" 25, 1912</td>
<td>39 "</td>
</tr>
<tr>
<td>Country Gentleman</td>
<td>" 25, 1912</td>
<td>36 "</td>
</tr>
<tr>
<td>Black Mexican</td>
<td>May 5, 1912</td>
<td>34½ "</td>
</tr>
<tr>
<td>Malakoff</td>
<td>April 25, 1912</td>
<td>30 "</td>
</tr>
<tr>
<td>Golden Hantam</td>
<td>" 25, 1912</td>
<td>21½ "</td>
</tr>
<tr>
<td>Stowell’s Evergreen</td>
<td>" 25, 1912</td>
<td>Failure</td>
</tr>
</tbody>
</table>

SQUASH.

Seven varieties of squash were grown and all were harvested while in the growing stage. The weights given are taken from three average hills. The long Vegetable Marrow has proven the most prolific this season, but all the others had a good quality of vegetable.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Vegetable Marrow</td>
<td>April 15, 1912</td>
<td>392 lbs.</td>
</tr>
<tr>
<td>Delicata</td>
<td>" "</td>
<td>223 "</td>
</tr>
<tr>
<td>Hubbard</td>
<td>" "</td>
<td>220 "</td>
</tr>
<tr>
<td>Custard Marrow White Bush Scallop</td>
<td>" "</td>
<td>202½ "</td>
</tr>
<tr>
<td>Mammoth White</td>
<td>" "</td>
<td>202½ "</td>
</tr>
<tr>
<td>Long White Bush Marrow</td>
<td>" "</td>
<td>12½ "</td>
</tr>
<tr>
<td>Summer Crookneck</td>
<td>" "</td>
<td>6½ "</td>
</tr>
</tbody>
</table>

CABBAGE.

These varieties of cabbages came through after having been planted several times and having had several different treatments for cabbage maggot, therefore the results are not considered at all comparable. The weights were taken from average hills.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted.</th>
<th>Weights.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Swedish</td>
<td>March 29, 1912</td>
<td>82 pounds</td>
</tr>
<tr>
<td>Large Late Flat Drumhead</td>
<td>" 29, 1912</td>
<td>79 "</td>
</tr>
<tr>
<td>Luebeck</td>
<td>" 29, 1912</td>
<td>68 "</td>
</tr>
<tr>
<td>Extra Amager Danish Ballhead</td>
<td>" 29, 1912</td>
<td>58½ "</td>
</tr>
<tr>
<td>Red Danish Stonehead</td>
<td>" 29, 1912</td>
<td>47½ "</td>
</tr>
<tr>
<td>Copenhagen Market</td>
<td>" 29, 1912</td>
<td>45 "</td>
</tr>
<tr>
<td>Potter’s Improved Brunswick</td>
<td>" 29, 1912</td>
<td>41½ "</td>
</tr>
<tr>
<td>Improved Amager Roundhead</td>
<td>" 29, 1912</td>
<td>40 "</td>
</tr>
<tr>
<td>Danish Delicatess Red</td>
<td>" 29, 1912</td>
<td>36½ "</td>
</tr>
<tr>
<td>Danish Summer Ballhead</td>
<td>" 29, 1912</td>
<td>36 "</td>
</tr>
<tr>
<td>Extra Early Midsummer Savoy</td>
<td>" 29, 1912</td>
<td>28½ "</td>
</tr>
<tr>
<td>Winningsdt</td>
<td>" 29, 1912</td>
<td>25 "</td>
</tr>
<tr>
<td>Small Erfurt</td>
<td>" 25, 1912</td>
<td>20½ "</td>
</tr>
<tr>
<td>Early Jersey Wakefield</td>
<td>" 29, 1912</td>
<td>20½ "</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>" 25, 1912</td>
<td>30 "</td>
</tr>
<tr>
<td>Early Paris Market</td>
<td>" 25, 1912</td>
<td>14 "</td>
</tr>
</tbody>
</table>
LETTUCE.

Fourteen varieties of this vegetable were grown and they were weighed when in a stage fit for market use. The weights were taken from fifteen foot drills.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant Crystal Head</td>
<td>March 25, 1912</td>
<td>63 pounds</td>
</tr>
<tr>
<td>"</td>
<td>" 29, 1912</td>
<td>" 50 "</td>
</tr>
<tr>
<td>Dark Green Capucine</td>
<td>" 29, 1912</td>
<td>" 51 "</td>
</tr>
<tr>
<td>Grand Rapids</td>
<td>" 29, 1912</td>
<td>" 45 "</td>
</tr>
<tr>
<td>Cos Trianon</td>
<td>" 29, 1912</td>
<td>" 45 "</td>
</tr>
<tr>
<td>Black Seeded Simpson</td>
<td>" 29, 1912</td>
<td>" 39 "</td>
</tr>
<tr>
<td>Improved Hanson</td>
<td>" 29, 1912</td>
<td>" 36 "</td>
</tr>
<tr>
<td>Rousseau Blond Winter</td>
<td>" 29, 1912</td>
<td>" 18 "</td>
</tr>
<tr>
<td>Crisp as Ice</td>
<td>" 29, 1912</td>
<td>" 16 "</td>
</tr>
<tr>
<td>Unrivalled Summer</td>
<td>" 29, 1912</td>
<td>" Seeded ear y</td>
</tr>
<tr>
<td>Iceberg</td>
<td>" 29, 1912</td>
<td>"</td>
</tr>
<tr>
<td>Wheeler’s Tom Thumb</td>
<td>" 29, 1912</td>
<td>"</td>
</tr>
<tr>
<td>Red Edged Victoria</td>
<td>" 29, 1912</td>
<td>"</td>
</tr>
</tbody>
</table>

BEANS.

Seven varieties of beans were grown; they were all harvested in the green bean condition, and the weights were taken from one drill forty feet long.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keeney’s Rustless Wax</td>
<td>April 17, 1912</td>
<td>30 pounds</td>
</tr>
<tr>
<td>Early Refugee</td>
<td>" 17, 1912</td>
<td>" 37 2 "</td>
</tr>
<tr>
<td>Challenge Black Wax</td>
<td>" 17, 1912</td>
<td>" 30 "</td>
</tr>
<tr>
<td>Referee or 1,000 to 1</td>
<td>" 17, 1912</td>
<td>" 28 "</td>
</tr>
<tr>
<td>Valentine</td>
<td>" 17, 1912</td>
<td>" 40 "</td>
</tr>
<tr>
<td>Wardwell’s Kidney Wax</td>
<td>" 17, 1912</td>
<td>" 24 6 "</td>
</tr>
<tr>
<td>Stringless Green Pod</td>
<td>" 17, 1912</td>
<td>" 32 "</td>
</tr>
</tbody>
</table>

ARTICHOKEs.

One variety of this vegetable was grown, and the result was as follows. The weights were taken from one drill sixty feet long, wherein the plants were two feet apart.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>New White</td>
<td>April 5, 1912</td>
<td>278 1/2 pounds</td>
</tr>
</tbody>
</table>

ONIONS.

Four varieties of these were planted, but the land was not rich enough to grow a good crop of them, and what spoiled our experiment was the moles getting in and rooting out the plants, which made the results of the onions not comparable in any way.
TOMATOES.

Eleven varieties of tomatoes were grown, and the weight of the yield was taken from five average plants. The hop flea gave the plants a severe check at one time of the season, but, by judicious pruning, all the tomatoes were ripened, and the quality, in almost every case, was good. The following results were obtained from ripened tomatoes:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Planted</th>
<th>Weights (Five plants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparks Earlana, (Sunnybrook Strain)</td>
<td>March 26, 1912</td>
<td>Lbs. oz.</td>
</tr>
<tr>
<td>Sparks Earlana (C. E. F)</td>
<td></td>
<td>22 3/4</td>
</tr>
<tr>
<td>Reenie's XXX Earliest</td>
<td></td>
<td>21 2</td>
</tr>
<tr>
<td>Florida Special</td>
<td></td>
<td>21 1</td>
</tr>
<tr>
<td>Sparks Earlana 12-8 Strain (C. E. F)</td>
<td></td>
<td>19 1/2</td>
</tr>
<tr>
<td>Sparks Earlana 12-8 Strain (C. E. F).</td>
<td></td>
<td>13 1/2</td>
</tr>
<tr>
<td>Bonny Best</td>
<td></td>
<td>11 6</td>
</tr>
<tr>
<td>Livingston's Globe</td>
<td></td>
<td>11 3/4</td>
</tr>
<tr>
<td>Trophy</td>
<td></td>
<td>10 1/2</td>
</tr>
<tr>
<td>Chalk's Early Jewel</td>
<td></td>
<td>9 9/10</td>
</tr>
<tr>
<td>Matchless</td>
<td></td>
<td>21 3/4</td>
</tr>
</tbody>
</table>
REPORT OF EXPERIMENTS ON THE FRUIT FARM OF
THOS. A. SHARPE, SALMON ARM, B. C.

The soil on this farm is mostly gravelly loam and, with proper preparation, is excellent for the production of clover and alfalfa, and of suitable varieties of apples, plums, prunes, sour cherries and all small fruits.

Potatoes were exceptionally good in quality this year.

In 1908 thirty-nine varieties of plums and prunes were planted.

APPLES.

Of the apples, nineteen varieties fruited in 1912; of these, Longfield, Jonathan, Ira and Newtown Pippin fruited freely, and are all valuable varieties. The others produced only a few specimens not sufficient to judge of their quality or productiveness.

There were also fifty-eight varieties of apples planted in the experimental orchard in 1911 and 1912, and nearly thirty varieties either in nursery on the Farm or ordered for this spring's planting.

CHERRIES.

Two varieties were planted, Olivet and Planchoury. Both produced good crops of fine fruit, of excellent quality for shipping and canning, as well as for eating out of hand. Two varieties are planted in nursery and about twenty ordered for this spring's planting.

PLUMS AND PRUNES.

All the varieties of plums and prunes fruited. German prune, Shropshire damson and Primate were the best in quality and productiveness, Purple being a good second. These are all good shippers. Two varieties of Reine Claude fruited, but ripened so late that they are evidently not adapted to this district.

About twelve varieties of plums have been ordered for this season's planting.

PEARS.

There are thirty-eight varieties planted in the orchard, and several sorts in the nursery.

SMALL FRUITS.

Blackberries.—Eldorado, Snyder, and Stone's Hardy. These have grown vigorously and fruited well without winter protection.

Red Raspberries.—Cuthbert, Pauline, Columbian and King. These have proved vigorous and fruitful, also without protection.
Grapes.—Saunders' Seedling, Delaware, Brighton and Worden. These were all vigorous growers and ripened their fruit.

Many of the above-mentioned varieties of fruit are selected sorts, got from British and European nurseries for the Experimental Farm at Agassiz, B.C., and proved as being tested there, to be of sufficient merit to justify the test in the Salmon Arm district.

New varieties of merit will be added as opportunity offers. The annual rainfall in this district is light, but, as there is seldom any frost in the ground during the winter, the melting snows sink into the soil, and this carries the growth well on into June, when, as a rule, there is a fair amount of precipitation in the form of gentle rains. There is, thus, quite sufficient moisture to enable the crops to mature, and a failure has not been recorded for over twenty years. On the uplands there are seldom late spring or early autumn frosts, tomatoes, garden corn, muskmelons and watermelons ripening well.
EXPERIMENTAL SUB-STATION, FORT VERMILION.
PEACE RIVER DISTRICT, ALBERTA.

This station is situated in the valley of the Peace river in latitude 58° 23'. It is over 300 miles north of Edmonton, and is in charge of Mr. Robert Jones, who has prepared the following report:

The spring of 1912 opened very early, the snow starting to thaw during the early part of April. Seeding was begun on April 29, but was not general until May 2. May opened very dry and continued so throughout the month, and, as a result, growth was very slow. June was very dry and hot, with only 0.160 of an inch of rain during the whole month. This gave the crops a permanent set-back which all the rains of July could not remedy. The crops that were not ploughed under were very light.

July opened showery and cold, a slight frost occurring on the nights of the 9th, 14th and 19th, which did considerable damage. The first part of August was showery, and the ripening period was prolonged. From the 13th to the 24th, however, the weather was good, and considerable cutting was done on the experimental plots. Frost occurred three times towards the end of the month.

VEGETABLES.

Seeds sown in hotbeds April 19 to 21, transplanted to the open ground May 20 to 26.

ASPARAGUS.

Conovers' Colossal, one year old plants, in use May 22; large and good.

BEANS, GARDEN.

Sown May 2 in drills 30 inches apart: Stringless Green Pod, fit for table August 26; Challenge Black Wax, in use August 17. Neither of these did ripen.

BEETS, TABLE.

Early Blood Red Turnip, sown May 6, in use July 15. Egyptian Dark Red Flat, sown May 6, taken up September 11. Early Dark Red Egyptian Turnip, sown May 6, very long, all very large.

CABBAGE.

Early Jersey Wakefield, in use July 29; average weight, August 29, 14.5 pounds. Danish Ballhead, average weight, August 29, 4.5 pounds. Kildonan, very good and firm; average weight August 29, 6 pounds. Red Rock, very fine and solid; average weight, August 29, 5.5 pounds.

CARROTS.

Early Horn, sown May 6; fit for use June 29; fine flavour. Half Long Chantenay, sown May 6; fit for use July 5; very fine, very large when pulled on September 11; yield, 720 pounds.
CAULIFLOWER

Early Snowball, in use July 15; average weight, August 29, 12 pounds. Early Dwarf Erfurt, in use July 10; average weight, August 29, 10 pounds.

CELERY.

White Plume, in use August 29; very large and crisp. Evans Triumph, in use September 5; medium in size but fine. Golden Self Blanching, in use September 15; small.

CUCUMBER.

Peerless White Spine, Cool and Crisp; some of the cucumbers were about 4 inches long when picked, very small. Both these varieties were considerably cut by frost in July.

LETTUCE.

Sown May 2; 1 row each of following varieties: Wheeler's Tom Thumb, Unrivalled Summer, Cos Trianon, All Heart; in use May 28; very fine and crisp.

MUSKMELON.

Miller's Cream Nutmeg, killed by frost in July.

PARSLEY.

Moss Curled, sown May 6; in use from early part of June.

Parsnip.

Hollow Crown, sown May 6; fine and large when taken up September 11.

PEAS, GARDEN.

Sown May 2, 1912; the peas sown in drills thirty inches apart. Henderson's First of All, vines 22 inches long, pods 3 inches long, peas of a fine flavour; fit for the table July 8; ripe August 1. Gregory's Surprise, vine 24 inches long, pods of medium length containing from four to six medium large peas of a very fine quality; fit for use, July 22; ripe, August 1. Witham Wonder, vines 24 to 30 inches long and productive; pod 3 inches long; peas very fine; fit for table, July 10; ripe, August 5. Gradus, vines 34 inches long and moderately productive, pods 3½ inches and well filled with large peas of a good quality; fit for table, July 29; ripe, August 26. Premium Gem, vines 15 inches to 20 inches long, pod of a medium weight; in use, July 5; ripe, August 20. Stratagem, vines 36 inches long, pods long (4 inches), containing from six to nine large sweet peas of very fine quality; fit for table, July 15; ripe, August 3. American Wonder, vines of a medium length and very productive, pods 3½ inches long, filled with peas of good size and fine quality; fit for table, July 1; ripe, August 3. Admiral Dewey, vines from 18 to 20 inches long, pods from 3 to 4 inches long; peas of a delicious quality; fit for use, July 25; ripe, July 27.

RADISH.

RHUBARB.

Victoria; in use, May 27.
Plates XIV

Flowers at the Fort Vermilion, Sub-Station, 1912.

Apple Orchard at the Fort Vermilion Sub-Station, 1912.
DIVISION OF HORTICULTURE

SESSIONAL PAPER No. 16

SPINACH.

Broad Thick Leaved, sown May 6; in use June 1.

SQUASH AND MARROWS.

Four hills of each of the following, sown May 8, planted 6 feet apart each way: Mammoth Whale, average weight at the end of August, 16 pounds; Summer Crookneck, average weight at the end of August, 2 pounds; English Vegetable Marrow, average weight at the end of August, 6 pounds; Hubbard, average weight at the end of August, 4 pounds; Boston, fit for use July 25, average weight when picked August 31, 5 pounds. White Bush Scallop, very small when picked. White Congo, seeds of this did not germinate.

TURNIP, TABLE.

Extra Early White Milan, sown May 21, fit for use June 19; from plot of one-sixtieth acre the yield was 720 pounds when pulled September 11; very large turnips.

TOMATO.

One small package each of following varieties sown under glass April 23; transplanted to the open ground May 29:—Sparks Earliana, C. E. F. strain, 1911; Most productive and early strain, 7-21; Atlantic Prize. Of these different kinds, 135 plants were transplanted and these were doing very well up to July 14, when there was a severe frost and they were cut right down. There were just a very few small ones, and very green, on September 1.

POTATOES.—Test of Varieties.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Variety.</th>
<th>1st Plot Sown.</th>
<th>1st Plot Pulled.</th>
<th>Yield per acre 1st Plot.</th>
<th>Description of Variety.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Irish Cobbler</td>
<td>May 1</td>
<td>Sept. 20</td>
<td>Bush. 96</td>
<td>Round, white, very small.</td>
</tr>
<tr>
<td>2</td>
<td>Gold Coin</td>
<td>" 1</td>
<td>" 20</td>
<td>Lb. 168</td>
<td>White, small.</td>
</tr>
<tr>
<td>3</td>
<td>Carman No. 1</td>
<td>" 2</td>
<td>" 20</td>
<td>288</td>
<td>Oval, white, medium.</td>
</tr>
<tr>
<td>4</td>
<td>Early Rose</td>
<td>" 4</td>
<td>" 18</td>
<td>220</td>
<td>Pink, medium.</td>
</tr>
<tr>
<td>5</td>
<td>Rochester Rose</td>
<td>June 6</td>
<td>" 21</td>
<td>*</td>
<td>Pink, medium.</td>
</tr>
</tbody>
</table>

* From 5 pounds; yield, when dug on September 21, 60 pounds.

INDIAN CORN.—Test of Varieties.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Variety.</th>
<th>Date Sown.</th>
<th>Date Cut.</th>
<th>Height.</th>
<th>Condition when Cut.</th>
<th>Weight of Green Fodder per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table Corn.</td>
<td></td>
<td></td>
<td></td>
<td>In tassel Aug. 15, just coming in silk when cut.</td>
<td>Tons. 1,920.</td>
</tr>
<tr>
<td>1</td>
<td>Early C. E. F. Malakoff</td>
<td>May 4</td>
<td>Sept. 6</td>
<td>28</td>
<td>Just coming into tassel.</td>
<td>6 1,920.</td>
</tr>
<tr>
<td>2</td>
<td>E. E. W. Cory</td>
<td>" 6</td>
<td>" 6</td>
<td>38</td>
<td></td>
<td>8 1,920.</td>
</tr>
<tr>
<td>3</td>
<td>Dwarf, Semi-sweet</td>
<td>" 4</td>
<td>" 6</td>
<td>24</td>
<td></td>
<td>4 789.</td>
</tr>
</tbody>
</table>

The plot of one-sixtieth of an acre of a dwarf semi-sweet corn seed sent me by Mr. R. C. Phipps from Colorado. This variety was in tassel August 6, in silk, August 20, Corn was formed but very green until cut.

16—26
Flower Garden.—Test of Varieties.

Sown in open garden from May 20 to May 21.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>When in Bloom</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Helichrysum</td>
<td>August 8</td>
<td>Double, very good.</td>
</tr>
<tr>
<td>2</td>
<td>Portulaca</td>
<td>" 19</td>
<td>Mixed colours, large and fine.</td>
</tr>
<tr>
<td>3</td>
<td>Gaillardia</td>
<td>" 24</td>
<td>Very good.</td>
</tr>
<tr>
<td>4</td>
<td>Mignonette</td>
<td>July 15</td>
<td>Good.</td>
</tr>
<tr>
<td>5</td>
<td>Clarkia</td>
<td>August 3</td>
<td>Very good.</td>
</tr>
<tr>
<td>6</td>
<td>Phlox Drummondii</td>
<td>" 20</td>
<td>Good.</td>
</tr>
<tr>
<td>7</td>
<td>Godeia</td>
<td>" 9</td>
<td>Large and very good.</td>
</tr>
<tr>
<td>8</td>
<td>Salpiglossis</td>
<td>" 14</td>
<td>Very good.</td>
</tr>
<tr>
<td>9</td>
<td>Scabiosa</td>
<td>" 27</td>
<td>Good.</td>
</tr>
<tr>
<td>10</td>
<td>Brachycome</td>
<td>" 1</td>
<td>Very good.</td>
</tr>
<tr>
<td>11</td>
<td>Orceopia</td>
<td>" 30</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Stocks</td>
<td>" 12</td>
<td>Large.</td>
</tr>
<tr>
<td>13</td>
<td>Abronia umbellata</td>
<td>July 31</td>
<td>Good.</td>
</tr>
<tr>
<td>14</td>
<td>California Poppy</td>
<td>June 18</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Shirley Poppy</td>
<td>July 25</td>
<td>Good.</td>
</tr>
<tr>
<td>17</td>
<td>White Swan Poppy</td>
<td>July 13</td>
<td>" 18</td>
</tr>
<tr>
<td>18</td>
<td>Double Annual Poppy</td>
<td>" 27</td>
<td>Good.</td>
</tr>
<tr>
<td>19</td>
<td>Ageratum</td>
<td>August 7</td>
<td>Very good, colour pink.</td>
</tr>
<tr>
<td>20</td>
<td>Scabiosa Branching Aster</td>
<td>July 23</td>
<td>Many colours, very good.</td>
</tr>
<tr>
<td>21</td>
<td>Sweet Greens, 6 varieties</td>
<td>June 19</td>
<td>Large and very good.</td>
</tr>
<tr>
<td>22</td>
<td>Candytuft, Empress White</td>
<td>July 8</td>
<td>Good.</td>
</tr>
<tr>
<td>23</td>
<td>Dianthus or Pinks</td>
<td>" 11</td>
<td>Very good.</td>
</tr>
<tr>
<td>24</td>
<td>Single Poppy</td>
<td>" 24</td>
<td>Very large and pink.</td>
</tr>
<tr>
<td>25</td>
<td>Primula</td>
<td>June 30</td>
<td>Very good.</td>
</tr>
<tr>
<td>26</td>
<td>Delphinium</td>
<td>August 9</td>
<td>Good.</td>
</tr>
<tr>
<td>27</td>
<td>Centaurea or Dusty Miller</td>
<td>" 1</td>
<td>Very good.</td>
</tr>
<tr>
<td>28</td>
<td>Nasturtium, tall</td>
<td>" 1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>" dwarf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All in bloom until the frost, September 23.

Sown in hotbed, April 20 to 25; planted in open, May 18 to 22.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>When in Bloom</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antirrhinum</td>
<td>July 29</td>
<td>Good, many colours.</td>
</tr>
<tr>
<td>2</td>
<td>Asters, 4 varieties</td>
<td>" 29</td>
<td>Good.</td>
</tr>
<tr>
<td>3</td>
<td>Brachycome</td>
<td>June 25</td>
<td>Very brilliant.</td>
</tr>
<tr>
<td>4</td>
<td>Stocks</td>
<td>July 20</td>
<td>These could not be better.</td>
</tr>
<tr>
<td>5</td>
<td>Balsam</td>
<td>" 19</td>
<td>Very good.</td>
</tr>
<tr>
<td>6</td>
<td>Zinnia, dwarf, scarlet.</td>
<td>" 12</td>
<td>Good.</td>
</tr>
<tr>
<td>7</td>
<td>Pansies, 8 varieties</td>
<td>June 5</td>
<td>The finest ever produced here.</td>
</tr>
<tr>
<td>8</td>
<td>Verbena, Manuhoor White</td>
<td>July 10</td>
<td>Could not be better.</td>
</tr>
<tr>
<td>9</td>
<td>Phlox mixed</td>
<td>" 22</td>
<td>Very good.</td>
</tr>
<tr>
<td>10</td>
<td>Lavatera, Rosa Sper dens</td>
<td>" 30</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Chrysanthemum, Eclipse</td>
<td>" 5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Celosia</td>
<td>August 1</td>
<td>Good.</td>
</tr>
<tr>
<td>13</td>
<td>Marigold, dwarf</td>
<td>July 1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alyssum</td>
<td>June 6</td>
<td>Very good.</td>
</tr>
</tbody>
</table>

Ornamental Trees and Shrubs Under Test.

2 *Acer tataricum Ginnala* (Ginnalian maple), doing well.

2. *Acer saccharinum (dasyarputm)*, (Silver maple), doing well.

4. *Acer Negundo* (Box elder or Manitoba maple), doing well.
SESSIONAL PAPER No. 16

4 Acer tataricum, doing fine.
2 Acer pictum, good.
2 Picea excelsa Remontii, good.
2 Amelanchier vulgaris, doing well.
2 Betula alba laciniata (Cut-leaved birch), doing well.
4 Berberis Thunbergii (Thunberg’s barberry), doing very well.
1 Clematis montana, doing well.
2 Picea excelsa Remontii, good.
2 Amelanchier vulgaris, doing well.
2 Betula alba laciniata (Cut-leaved birch), doing well.
4 Berberis Thunbergii (Thunberg’s barberry), doing very well.
1 Clematis montana, doing well.
2 Caragana arborescens (Siberian pea tree), doing well; in bloom May 21.
2 Caragana grandiflora, doing very well; in bloom May 30, 1912.
2 Caragana frutescens, doing well; in bloom May 28, 1912.
2 Caragana pygmaea, doing well; in bloom May 28.
2 Caragana frutescens, doing well; in bloom May 28, 1912.
2 Caragana grandiflora, doing very well; in bloom May 30, 1912.
2 Caragana frutescens, doing well; in bloom May 28.
2 Caragana arborescens (Siberian pea tree), doing well;
2 Caragana grandiflora, doing very well; in bloom May 30, 1912.
2 Caragana frutescens, doing well; in bloom May 28, 1912.
2 Caragana pygmaea, doing well; in bloom May 28.
2 Caragana frutescens, doing well; in bloom May 28, 1912.
2 Caragana grandiflora, doing very well; in bloom May 30, 1912.
2 Caragana frutescens, doing well; in bloom May 28.
2 Caragana arborescens (Siberian pea tree), doing well;
2 Caragana grandiflora, doing very well; in bloom May 30, 1912.
2 Caragana frutescens, doing well; in bloom May 28, 1912.
2 Caragana pygmaea, doing well; in bloom May 28.
2 Caragana frutescens, doing well; in bloom May 28, 1912.
2 Caragana grandiflora, doing very well; in bloom May 30, 1912.
2 Caragana frutescens, doing well; in bloom May 28.
2 Caragana arborescens (Siberian pea tree), doing well;
2 Lilac Mdme. Abel Chatenay, doing fairly well.
2 Spirea arguta, only medium.
2 Salix Voronesh (golden willow), doing very well.
6 Thuya occidentalis, doing well.
2 Thuya occidentalis globosa, doing well.
1 Thuya occidentalis, Hoveyi, doing well.
1 Viburnum molle, doing very well.
1 Syringa chinensis (rothomagensis), doing well.
1 Lilac, no name, doing well, in bloom June 17, 1912.
1 Hippophae rhamnoides (sea buckthorn), doing well.
1 Rose d'licata, doing well.
1 Rose rugosa alba, doing well; in bloom July 9, 1912.
1 Spirea sorbifolia, doing very well; in bloom June 22, 1912.
3 Amelanchier (June berries), doing well; did not bloom this spring.

FRUITS UNDER TEST.

Cross-bred Apples.—Behaviour of Trees.

2 Alberta.—September 1, 1912, doing well.
2 Charles.—Have done very well.
2 Tony.—Doing only fairly well.
2 Prince.—Doing fairly well.
2 Golden.—Doing well.
2 Magnus.—Has done well.
2 Silvia.—Quite good.
2 Robin.—Only fair.
2 Pioneer.—Good.

Seedlings of Cross-bred Apples.

2 Seedling of Alberta.—Doing very well.
2 Seedling of Golden.—Quite good.
2 Seedling of Jewel.—Good.
2 Seedling of Silvia.—Have made good growth.

Russian Apple Seedlings.

1 Varna.—Very good.
1 Charlamoff.—Doing fairly well.
1 Morden.—Doing very well.

Plums.

1 Cheney.—Doing poorly.
1 Aitkin.—Doing poorly.

Raspberries.

75 Herbert.—These have made very strong growth; 4 pints of fruit.
75 Heebner.—Have done well; 2 pints of fruit, picked August 5, 1912.

BLACK CURRANTS.

All of the black currants were in bloom from May 25 to June 1, and were picked August 3; medium in size.
Black Currents.—Varieties Tested and Yields.

2 Bang Up, 7 pints.
2 Norton, 3½ pints.
2 Kerry, 10 pints.
Climax, 7 pints.
Topsy, 5 pints.
Eclipse, 7 pints.

2 Magnus, 6½ pints.
2 Saunders, 10 pints.
Ethel, 11 pints.
Ontario, 8 pints.
Eagle, 7 points.

RED CURRANTS.

In bloom May 22; picked July 29, 1912.

2 Simcoe, 2 pints.
2 Rankin’s Red, 3 pints.
Greenfield, medium in size, 7 pints.
Moore’s Seedling, 4½ pints.
Goliath, 6 pints.

Red Dutch 10½ pints.
Large Red, 3 pints.
Long Bunch Holland, 8 pints.
Cumberland Red, 5 pints.

WHITE CURRANTS.

2 Large White, in bloom May 20, 1 pint.
2 White Grape, picked July 30, 1 pint.
2 White Cherry, very small in size, 1 pint.
2 White Kaiser, 1 pint.
2 White Dutch, 1 pint.
EXPERIMENTAL SUB-STATION, GROUARD, LESSER SLAVE LAKE, ALTA. (Lat. 55° 31').

The Fathers of the Mission were the first to practise farming at this point, on a large scale. Having begun agricultural operations in the district some eighteen years ago, they are now fairly in a position to give an exact report on the possibility of growing cereals, such as wheat, barley and oats, as well as roots and vegetables near Lesser Slave lake.

The village of Grouard is situated at the northwest end of Lesser Slave lake, and is bounded by the forest on the east side, with very little open ground between that and the lake. The arable land here is limited in area, but here and there one finds clear spaces for cultivation. The land bordering on the lake is very sandy. To extend the cultivated area it was necessary to clear the forest and, accordingly, about ten acres of new land was made. This work was commenced in 1894. The forest land is generally good, with four or five inches of humus on the surface. The subsoil is of friable clay. Grain does well on this land, but it has been little grown. Potatoes and vegetables being sown in preference.

The success obtained in growing cereals and potatoes has been decided enough in spite of some temporary set-backs from drought and frost (the latter rarely, twice in eighteen years) to encourage the breaking of new land in order to practise rotations as far as required. These rotations allowed the sowing of some eighty acres in grain for several years without growing the same crop on the same land oftener than once in three years.

Currants fruitéd freely in 1912 and a tree of Pyrus baccata produced fruit which was harvested September 11.

FLOWER GARDEN.

Sown in hotbed April 3; transplanted in garden June 12. All flowered freely until frost came October 1: Alyssum, ageratum, antirrhinum, 2 varieties; asters, 3 varieties; balsam, phlox Drummondii, stocks, 4 varieties; godetias, 4 varieties; clarkias, 4 varieties; chrysanthemums, 2 varieties; marigold.

In addition to the above, many varieties were sown in the autumn, on October 21, 1914, including godetia, clarkia, pansies, sweet peas, phlox, poppies, and larkspur. All these varieties commenced to flower the first week in July.

PERENNIALS.

Achillea, cumbine, campanula, calycanthus. Delphinium Belladonna, Delphinium formosa hybrida.

All these flowered well throughout the season.

Note on sowing flower seeds in Autumn.

Any land, preferably a little dry, will do. The plants are more vigorous than those sown in the spring. Some varieties are as far advanced as if sown in the hotbeds in spring. The seed should be sown only at the approach of severe frost. They may be sown in their permanent places or in the nursery for replanting in the spring. They do better in early spring if trenches are made around the beds to carry off the streams of water when the snow melts.
VEGETABLES.

Early Rose potatoes were sown May 18 and dug September 26. The field of three acres yielded 600 bushels, or about one-third of the return from a field of the same size in 1911.

Two varieties each of carrots, beets, onions and celery gave good returns. Cabbage, garden peas, beans, tomatoes, lettuce, radish, turnips, pumpkins and squashes, without exception, gave very satisfactory crops of properly-matured vegetables.

The culture of the latter being specially under my charge, I will give the details of the results obtained this year.

Potatoes.—Early Rose. Three acres were planted in rows 3 feet apart. They were planted May 18 and dug September 26, the crop being 600 bushels, just one-third of the previous year.

Carrots.—Ox-heart and Chantenay, sown in garden April 26; good crop.

Beets.—Half-long and Eclipse, sown April 30.

Onions.—Yellow Danvers and Red Wethersfield, sown in the autumn, October 21. Both varieties yielded well.

CABBAGE.

Lenormand, Paris Semi-hard, Snowball, Express, Etampes, Spring, Succession, Quinto; transplanted in garden end of May. All did well.

PEAS.

Alaska, sown April 29; ready for use July 4; good quality. Nott's Excelsior, sown May 7; very good quality. Thomas Laxton, sown May 7; very good quality.

BEANS.

Wardwell Kidney Wax, sown June 1; very good quality.

TOMATOES.

Sparks Earlana, Trophy, Dominion Day; sown in greenhouse March 14, like the other varieties, and transplanted in garden June 5; first gathering August 15.

LETTUCE.

May King, a good quality; Boston, a good quality; Nonpareil, the best tested.

RADISH.

Round Scarlet, sown first week in May; a good variety. Scarlet Half Long White Tipped, the best tested.

TURNIPS.

Field.—Mammoth Clyde; very poor crop this year.

Table Turnips.—Round White; good crop.
SUB-STATION, ATHABASKA LANDING.

It is much to be regretted that the pressure of other duties has compelled Bishop Robins to give up much of his experimental work at Athabaska Landing. In a letter received from him, he reports briefly on the character of the season of 1912 as follows:

'The summer of last year was very dry at Athabaska Landing, and all garden industries suffered, by being dwarfed and late. Then, when rain came and a late spurt resulted, the August frost cut down all tender growth, including tomatoes, cucumbers, squash, and such things. The potato crop was very satisfactory. Green peas were late and yielded for a shorter time than usual, the taller varieties again doing better than the dwarfs. Beets and onions were light; indeed, the root products of the garden suffered most from lack of moisture.

'The cut worm troubled cabbages, and I did not know of the Paris green method of destruction at the time.

'The fruit trees have not shown their possibilities yet. You will remember, I received a new consignment. The currants among them flowered and fruited at once, but the others had no opportunity, as growth follows quickly after the planting season. They will prove themselves better this year.'
REPORTS OF EXPERIMENTS AT FORT SMITH, FORT RESOLUTION AND FORT PROVIDENCE, MACKENZIE DISTRICT.

Owing to the very poor success in the experimental work at the above points last year, it was thought advisable to discontinue the work for the present. However, the Fathers in charge of the Missions at these Forts have reported on their work for the season of 1912. The results, as a whole, are more encouraging than those of 1911, especially at Forts Resolution and Providence.

FORT SMITH (Latitude 60°).

At Fort Smith the season was a bad one in every respect. The snow had completely disappeared by April 20, but the land could not be worked before May 8. On the 9th and 10th some grain was sown and vegetable seeds, such as White Flat Strap-leaf Turnip, Swedes. Half-long Chantenay and French Horn Carrots. Early Blood Red and Egyptian-Red Beets, and Red Wethersfield Onions; Alaska, Cleveland’s First and Best, McLean’s Advance and Gregory’s Surprise Peas; also cabbages, radishes and lettuce.

On the 17th there was a slight snowfall, followed by a frost (26 degrees). This was followed by a drought, lasting throughout June, which did a lot of injury. In July, hail fell, and this was followed by a frost. In August there was frost again, which was especially injurious to the potato crop.

In brief, this has been the second consecutive year quite unfavourable for crops. It is thought, however, that better results will be obtained as more clearing is done. The nearness of the woods retains the moisture, so that, at the least fall in temperature there is a frost. Every year, near the woods, there is a frost, while in the clear space near the river there is none. The land in the latter locality is not good, however, being very sandy, and will only produce a crop when well manured.

In the garden near the house, in a sandy soil, turnips were grown weighing up to 8 pounds each; carrots did well, many weighing 1½ pounds each; beets up to 3 pounds, but a large proportion had too many roots. Onions did not do well; few germinated, and these were very small. Peas did very well, though much later than the preceding year, not being ready for use until the end of July. They did not commence to ripen until the beginning of September. The Caractacus variety of pea seems still the best for this country, being earlier and more hardy. After these come Gregory’s Surprise and Alaska; McLean’s Advance and Cleveland’s First and Best are productive, but later. In another garden, some distance away, English Wonder and American Wonder peas were sown, but both sorts were frosted, owing to their nearness to the woods. The same happened to the tomatoes and beans. Squash produced a few flowers, but nothing afterwards.

FORT RESOLUTION.

Fort Resolution is situated on the Great Slave Lake, latitude 61° 14'. At this sub-station the results, as a whole, were good. The condition and variety of the field and garden crops were a surprise to travellers from the more settled districts.
The early part of June was dry, but there was a light rainfall on the 10th, and a heavy one on the 30th. July was cold. Rain during the latter part of August was of great benefit to the potato crop.

On September 15 there was a heavy storm from the north, the temperature fell rapidly and the weather thereafter remained cold.

Onions did not yield a crop this year. Carrots and beets, sown May 17, were pulled September 18.

Four varieties of cabbage tested were all destroyed by dogs. Three varieties of lettuce, sown May 18, were in use July 12 to 15. Turnips, sown May 20, were fit for use July 30, and four varieties of peas, sown May 14, were in use July 30. Gregory's Surprise ripened September 15.

Some cross-bred apple seeds, sown in the greenhouse, March 18, produced plants ten to eleven inches high. Apple seeds sown in the open did not come up. The two-year-old apple trees are some three feet high.

Ten varieties of flowers, sown in the greenhouse and transplanted May 14 to 20, bloomed from July 31 to August 31.

FORT PROVIDENCE.

The work at Fort Providence, which is at latitude 61° 16', was not reported on very fully this year, as it was not well understood how much detail was required. Following are some notes on the results obtained:

Lettuce, sown May 6, was above ground on June 3, and was fit for use June 22. Best varieties, Cos Trianon and Grand Rapids, both of which were cut four times.

Radishes were sown May 7, and were up on June 6; fit for use June 20 to 25.

Garden peas were sown May 7, and were up on June 6. Pods were formed on July 15, and the crop was harvested September 4.

Cauliflowers, sown May 10 gathered August 7; one weighed 2 pounds and another 1½ pounds.

Cabbages, sown in March in boxes in the house: planted in garden, May 15: harvested September 15, to the number of 212, weighing from 4 to 5 pounds each. The heaviest was 6½ pounds.

Table beets were, as a rule, small. Carrots were of fair size, but a light crop. The potato crop totalled 1,014 barrels.

The last spring frost was on June 2. There was a slight frost on July 23, and the first frost of autumn occurred on August 31.

Flowers were not a success this year.
REPORT

FROM

THE CEREAL DIVISION

For the Fiscal Year ending March 31, 1913

PREPARED BY

Dominion Cerealist, Ottawa, Ont. - - - - - - - Chas. E. Saunders, B.A., Ph.D.
 Superintendent—
 Experimental Station, Charlottetown, P.E.I. - - - J. A. Clark, B.S.A.
 Experimental Farm, Napan, N.S. - - - - - - - R. Robertson.
 Experimental Station, Cap Rouge, Que. - - - - - Gus. A. Langelier.
 Experimental Farm, Brandon, Man. - - - - - - W. C. McKillican, B.S.A.
 Experimental Farm, Indian Head, Sask. - - - - - Angus Mackay.
 Experimental Station, Rosthern, Sask. - - - - - Wm. A. Munro, B.A., B.S.A.
 Experimental Station, Scott, Sask. - - - - - - - R. E. Everest, B.S.A.
 Experimental Station, Lethbridge, Alta. - - - - - W. H. Fairfield, M.S.
 Experimental Station, Lacombe, Alta. - - - - - G. H. Hutton, B.S.A.
 Experimental Station, Fort Vermilion, Alta. - - - - In charge of Robt. Jones.
 Superintendent of Experimental Station, Agassiz, B.C. - P. H. Moore, B.S.A.
REPORT FROM THE CEREAL DIVISION

Ottawa, March 31, 1913.

J. H. Grisdale, Esq., B. Agr.,
Director, Dominion Experimental Farms,
Ottawa.

Sir,—I have the honour to submit the tenth Annual Report of the Cereal Division. This report is intended as a brief review only of the more important features of the work carried on between April 1, 1912, and March 31, 1913.

The season of 1912 was distinctly unfavourable for cereals over almost the whole of Canada. During the early part of the summer, drought and intense heat were prevalent; and these conditions were followed by months of wet, cool weather, about as unfavourable for the ripening and harvesting of grain as could well be imagined. Under such conditions, normal crops could not be expected, and the injury done to grain intended for seed purposes was very great. In some districts the heat and drought of early summer caused the young plants of cereals to produce a small number of heads rather prematurely. Later on, when wet weather came, standing of the plants occurred and a considerable crop of late heads was produced. There was not time, as a rule, for these to ripen; but they grew to a good height and often quite overshadowed the earlier heads; so that when the first heads were ready for harvesting they were almost hidden beneath a mass of green stalks. Under conditions such as these it was quite impossible to make as accurate observations as usual on the dates of ripening of the various cereals. The yields obtained were also rather misleading, especially owing to the fact that the early-maturing varieties suffered most, because they were farther advanced when the wet weather set in, and were therefore less capable of recuperating.

The first severe frosts came rather later in autumn than usual. The results of the season were therefore less disastrous than might have been expected. The quality of the grain was, however, considerably lowered in most districts, while in some localities sprouting of the seed in the stocks occurred to a very serious extent.

Cereal investigations and the propagation of new and approved varieties for distribution and sale could not make very good progress in such an adverse season, but some valuable observations were made, and on some of the Experimental Farms a considerable quantity of seed grain of good germination was harvested.

VISITS TO BRANCH FARMS AND STATIONS.

The eastern Farms were visited in July and those in the west in August and September. The conditions affecting cereals were carefully studied, and plans were made, by consultation with the Superintendents, for modifications and improvements in the work whenever such seemed practicable.

At Cap Rouge the very unfavourable wet spring had been followed almost immediately by hot dry weather. Under such abnormal conditions the prospects for grain crops were very poor. At Charlottetown and Nappan the grain was in a much healthier state and gave promise of reasonably good yields.

Harvesting was in progress—between showers—at the western Farms when these were visited in August. While, for the reasons already explained, the season was
an unfavourable one for early-maturing varieties of grain, general satisfaction was found to prevail in regard to the harvest prospects for the early varieties of wheat, Marquis and Prelude. In most instances the high expectations were fully justified by the weight of grain threshed.

While the varieties of cereals under cultivation in some of the older-settled portions of Manitoba and Saskatchewan are satisfactory, and the need of new and improved kinds is not now very great, the condition of affairs is quite otherwise in northern districts and over a large portion of Alberta, where the early-maturing varieties of wheat hitherto introduced, including Marquis, cannot be depended on to ripen every season, especially when sown on summer-fallowed land. For these conditions, Prelude wheat will be of enormous value but tests are also required of a large number of the new cross-bred sorts produced by the Dominion Cerealist at Ottawa, and now available for trial elsewhere.

MARQUIS WHEAT.

Marquis wheat was so fully discussed in the report of last year that a passing reference will be sufficient on this occasion. The year 1912 has been another ‘Marquis year,’ owing to the conditions being rather unfavourable for the growing of Red Fife. Not only did Marquis give yields which, as usual, surpassed Red Fife on the great majority of farms, but the winning of the highest award at the International Dry-Farming Congress at Lethbridge last autumn attracted again the attention of the whole world to this variety. Marquis is now being grown by so many farmers in almost all parts of the western country that there has been no difficulty in securing good seed this winter. While any attempt to estimate the probable acreage of Marquis for this coming season will no doubt be quite inaccurate, it appears that at least one million acres of this variety will be sown. The widespread popularity of Marquis is all the more noteworthy when we recall that this variety was introduced into Saskatchewan in 1907, when about half a bushel of seed was sent from Ottawa for trial on the Experimental Farm at Indian Head. Almost the whole of the seed now in the farmers’ hands traces back to that first shipment, very little seed grown at Ottawa having since been sent out.

Many excellent yields of Marquis wheat were reported last season, the most remarkable being on the Indian Head Farm, where a plot of one-fourth of an acre gave a crop at the rate of over 81 bushels per acre. This is probably a world’s record for spring wheat.

PRELUDE WHEAT.

Preliminary tests at Ottawa and at some of the branch Experimental Farms having clearly demonstrated the great value of this new variety, a few small samples were sent last spring to farmers in Saskatchewan and Alberta, so that a better idea might be obtained as to its adaptability to various districts. The tests on the branch farms were also increased in number and in acreage. The season was particularly unfavourable for varieties which develop rapidly, because excessive heat and drought prevailed during the early part of the summer, conditions which proved very trying to all grains which were moderately well advanced. Those sorts which develop slowly were not so seriously injured. In one or two cases, small plots of Prelude wheat were almost entirely destroyed during this period; but, on the whole, the record made by the new variety was most satisfactory, the yields in some instances being really remarkable.

Two special cases deserve mention. Mr. E. B. Cay, of Beatty (near Melfort), Sask., sowed five pounds of Prelude wheat on one-fifth of an acre of land, and threshed 603 pounds. Mr. W. J. Borton, of Bottrel, Alberta, sowed one pound of seed on a relatively large piece of land and secured 129 pounds of clean grain.
course in this case the wheat did not ripen so early as it would have done had it been sown more thickly. One would not advise extremely thin seeding under ordinary circumstances, but it is perhaps justifiable when only a very small quantity of seed can be obtained, and when its value is (as in the present instance) quite beyond any ordinary scale of prices.

The conclusions to be drawn from the experience of this past season confirm those of previous years. Prelude wheat can be unhesitatingly recommended as the best variety available for districts where extreme carliness is necessary and where there is a tendency toward the production of long straw. For dry districts, where straw is apt to be short, Prelude cannot be recommended. The Dominion Cerealist hopes to introduce a very early-maturing sort in the near future which, though not quite so early in ripening as Prelude, will produce somewhat longer straw. A very early-maturing wheat with decidedly long straw may perhaps be an impossibility.

The regular distribution of Prelude wheat in five-pound samples was commenced this winter. As there was on hand only a very small stock of seed, compared with the amount asked for, it was necessary to refuse most of the applications which were received, especially those from districts where the need of this particular variety was not so very great. More than 200 samples were sent out, chiefly to northern localities in what may be roughly described as the settled areas of Saskatchewan and Alberta. Provision has been made for a good acreage of Prelude on the Experimental Farms this season, so that there may be a large stock for distribution, and perhaps some seed for sale also next winter.

DISTRIBUTION OF SEED GRAIN BY MAIL.

The annual free distribution of seed grain and potatoes, which is now in progress, is being carried on in a manner similar to that of the previous year. The grain for distribution was grown chiefly on the Experimental Farms at Indian Head and Brandon. Some Ottawa seed is also being used; and the stock of potatoes has been obtained entirely from a field grown on the Central Experimental Farm under the supervision of the Dominion Botanist. In spite of the unfavourable character of the season, both the yield and quality of these potatoes were unusually good.

All grain for distribution is grown with the greatest care, so as to be free from admixture with other varieties, and after threshing it is thoroughly cleaned by the best obtainable grain-cleaning machinery and, finally, it is hand-picked if necessary to remove any remaining impurities. By these precautions we are able to send out seed of the very highest type, distinctly superior, as a rule, to the best commercial stocks. While the adoption of so high a standard makes it impossible to distribute as large amounts as in years gone by, there is no doubt of the advantages of the present system. Reasonable regulations are now being enforced so that samples of seed are only sent to those applicants whose requests give evidence of some thought. Those who have failed to send a report on a sample received in a previous season are not eligible for further samples.

In any free distribution carried on under Government auspices some dissatisfaction is sure to arise; but, considering its inherent difficulties, the claim may fairly be made that this distribution is now managed in such a way as to give general satisfaction. Undoubtedly it is proving of immense value to Canada.

The principal varieties distributed this season are as follows:

Barley.—Manchurian (6-row), Canadian Thorpe (2-row).

Oats.—Banner, Abundance, Ligowo, Daubeny.

Peas.—Arthur, Golden Vine.

Potatoes.—Irish Cobbler, Gold Coin, Carmen No. 1, Delaware.
MILLING AND BAKING TESTS.

A large series of milling and baking tests has been carried on during the past winter. These have included many new cross-bred varieties produced at Ottawa by the Dominion Cerealist, and some of the standard, old varieties as well. The samples tested were chiefly grown at Ottawa, last season, but samples from some of the branch Experimental Farms were included; as it is important to study the variations which occur in baking qualities when varieties of wheat are grown under different conditions.

Attention is being given to problems in connection with the making of bread, both from a baker's point of view and a housekeeper's; and the laboratory is now prepared to investigate any cases of contaminated, spoiled or suspicious flour which may be submitted.

No detailed report of the tests of this winter will be made at present, as it is intended to publish a bulletin on this subject as soon as practicable, giving an account of most of the work which has been done along these lines for several years.

EXPERIMENTS WITH VARIETIES OF GRAIN AT OTTAWA.

On the Central Experimental Farm last season there were grown four principal series of plots:—

1. Very small plots of unfixed types, produced in the second and later generations, from cross-bred seeds.
2. Small propagation plots in which the new cross-bred sorts which have shown themselves to be fixed in character are increased until enough seed is available for a plot of one-sixtieth of an acre. A few named (commercial) sorts are also grown in these plots, as well as selected strains from named varieties (commercial or otherwise).
3. The regular series of plots of one-sixtieth of an acre each, in which the comparative tests of varieties are carried on.
4. Larger plots of varying size where those varieties which have given evidence of special merit are propagated on as large a scale as the limited amount of land (and sometimes of seed) permits. Seed from the best of these plots is sent to the branch Experimental Farms the following year for more extended trial.

The following figures will give an idea of the extent of this work, last season, at Ottawa:—

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very small plots of cross-bred sorts, not yet fixed</td>
<td>470</td>
</tr>
<tr>
<td>Small propagation plots</td>
<td>271</td>
</tr>
<tr>
<td>Plots of one-sixtieth of an acre</td>
<td>431</td>
</tr>
<tr>
<td>Larger propagation plots</td>
<td>45</td>
</tr>
<tr>
<td>Total plots</td>
<td>1,150</td>
</tr>
</tbody>
</table>

There were grown at Ottawa, last season, the following numbers of varieties of wheat, emmer, oats, barley, peas, rye, beans and flax:—

<table>
<thead>
<tr>
<th>Variety Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>New cross-bred varieties, under numbers</td>
<td>426</td>
</tr>
<tr>
<td>Cross-bred varieties, named</td>
<td>53</td>
</tr>
<tr>
<td>Selected strains from commercial sorts</td>
<td>58</td>
</tr>
<tr>
<td>Commercial sorts, unselected</td>
<td>53</td>
</tr>
<tr>
<td>Total varieties and selections</td>
<td>695</td>
</tr>
</tbody>
</table>

The above figures would have been somewhat larger if there had been enough land available for the Cereal Division to make possible the sowing of all the varieties
Prelude Wheat "in blossom". Marquis wheat not yet in Head. Central Farm, July 2, 1912.
which were on hand. Unfortunately a large number of barley plots had to be omitted on account of the shortage of land.

In view of the great amount of material which is being studied, it should be explained that the object in view is to test a multitude of varieties and finally to reject almost all of them, retaining, however, everything which has shown outstanding merit. To the public there will be introduced only a few of the very best sorts. The great disadvantage of introducing too many varieties for the use of the farming community is fully recognized, and any such error is being carefully guarded against. Very short lists of varieties recommended for cultivation in the different provinces are published from time to time, for the guidance of farmers.

CROSS-BREEDING AND SELECTING CEREALS AT OTTAWA.

Cross-breeding and selection have been continued as in other years. An interesting new beardless barley, called 'Arlington Awnless,' which has recently been introduced by the Department of Agriculture at Washington, furnished an opportunity of making some promising new crosses for the production of still better beardless sorts. Crosses were also made last summer between Marquis and Prelude wheats, for the purpose of combining as far as possible the splendid qualities of these two varieties. Other crosses, in wheat and oats, were effected.

The amount of material now on hand is very great, but it is felt that some new crosses should be made from time to time; so that Canada may not lose the high position she now holds by the remarkably successful efforts which have been made here for the improvement of cereals.

During the past year some changes in the staff of the Cereal Division have occurred. My assistant, Mr. H. Sirett, B.S.A., resigned his position towards the close of the summer, and took up other work which offered much better remuneration. A long delay occurred before the vacancy was filled, and the work of the Division suffered considerably. This month, however, Mr. R. Newton, B.S.A., was appointed assistant, and an effort is being made to overtake as much of the work as possible before seeding time puts an end to the winter's operations.

My thanks are due to all the members of my staff who have co-operated with me in endeavouring to push forward the work of the Division. The past season was in some respects particularly difficult, but fair progress was made nevertheless. I wish to thank my stenographer, Miss Gertrude Ker, for her good work throughout the year, and my foreman, Mr. Geo. J. Fixter, for his care in the management of the field work and the distribution of seeds, and Mr. Wm. Ellis for his reports on the germination tests of the various grains he has examined for me.

In the following pages will be found tables giving particulars in regard to the annual distribution of free samples of seed grain, vitality tests, and the plot tests of varieties at Ottawa. Short lists of recommended sorts of grain are also given, as well as other information bearing on the cultivation of cereals.

Following my own report will be found the reports on cereal work written by the Superintendents of the various branch Farms and Stations, throughout the Dominion.

I have the honour to be, sir,

Your obedient servant.

CHARLES E. SAUNDERS.
Dominion Cerealist.

16—27
DISTRIBUTION OF SAMPLES OF SEED GRAIN AND POTATOES.

The weather last season was so unfavourable for the ripening and harvesting of grain that great difficulty was experienced in securing a good supply of suitable seed for the distribution. Many applications which might otherwise have been accepted could not be filled on account of the shortage of suitable material.

The seed grain distributed was grown chiefly at Indian Head, Sask., Brandon, Man., and Ottawa, Ont.

The potatoes were grown at Ottawa under the direction of the Dominion Botanist. By using land on which potatoes had not been grown for many years, and by repeated spraying with fungicides and insecticides throughout the summer, a large crop of excellent quality was obtained.

The number of applications for samples was very large, but a considerable proportion of them could not be accepted, as they did not give the required information in regard to the conditions on the applicant's farm and his previous experiences with the kind of crop asked for. Many applications also arrived too late to be filled.

Farmers who desire to secure samples from this free distribution should apply not later than January, and preferably in December, and must give a clear statement of their needs so that a suitable variety may be sent.

Applicants for potatoes from other provinces than Ontario and Quebec are supplied from the branch Experimental Farms.

The following tables show the number of samples distributed from Ottawa:

DISTRIBUTION—Classified by Varieties.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Number of Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oats</td>
<td></td>
</tr>
<tr>
<td>Banner</td>
<td>763</td>
</tr>
<tr>
<td>Thousand Dollar</td>
<td>300</td>
</tr>
<tr>
<td>Daubenev</td>
<td>248</td>
</tr>
<tr>
<td>Ligowo</td>
<td>59</td>
</tr>
<tr>
<td>Abundance</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>1,396</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Number of Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley (six-row)</td>
<td></td>
</tr>
<tr>
<td>Manchurian</td>
<td>1,204</td>
</tr>
<tr>
<td>O.A.C. No. 21</td>
<td>26</td>
</tr>
<tr>
<td>Odessa</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1,266</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Number of Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley (two-row)</td>
<td></td>
</tr>
<tr>
<td>Canadian Thorpe</td>
<td>42</td>
</tr>
<tr>
<td>Hannchen</td>
<td>11</td>
</tr>
<tr>
<td>Invincible</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1,323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Number of Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Rye</td>
<td></td>
</tr>
<tr>
<td>Mammoth White</td>
<td>4</td>
</tr>
<tr>
<td>Thousandfold</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Number of Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Wheat</td>
<td></td>
</tr>
<tr>
<td>Marquis</td>
<td>1,225</td>
</tr>
<tr>
<td>White Fife</td>
<td>356</td>
</tr>
<tr>
<td>Prelude</td>
<td>228</td>
</tr>
<tr>
<td>Red Fife</td>
<td>129</td>
</tr>
<tr>
<td>Huron</td>
<td>100</td>
</tr>
<tr>
<td>Preston</td>
<td>69</td>
</tr>
<tr>
<td>Bobs</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>2,499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Number of Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peas</td>
<td></td>
</tr>
<tr>
<td>Arthur</td>
<td>19</td>
</tr>
<tr>
<td>Golden Vine</td>
<td>501</td>
</tr>
<tr>
<td>Prussian Blue</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>1,323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Number of Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potatoes</td>
<td></td>
</tr>
<tr>
<td>Gold Coin</td>
<td>1,114</td>
</tr>
<tr>
<td>Irish Cobbler</td>
<td>420</td>
</tr>
<tr>
<td>Carman No. 1</td>
<td>292</td>
</tr>
<tr>
<td>Delaware</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>1,754</td>
</tr>
</tbody>
</table>
TESTS OF VITALITY OF SEED GRAIN GROWN IN 1912 AT THE CENTRAL EXPERIMENTAL FARM, OTTAWA, AND AT THE BRANCH EXPERIMENTAL FARMS.

The following table, prepared by Mr. Wm. T. Ellis, gives the results of the germination tests of the seed grain produced at the various Experimental Farms in 1912:

CENTRAL EXPERIMENTAL FARM, OTTAWA.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>225</td>
<td>100.0</td>
<td>9.0</td>
<td>82.7</td>
<td>3.5</td>
<td>86.2</td>
</tr>
<tr>
<td>Barley</td>
<td>106</td>
<td>100.0</td>
<td>13.0</td>
<td>81.8</td>
<td>4.7</td>
<td>86.6</td>
</tr>
<tr>
<td>Oats</td>
<td>71</td>
<td>100.0</td>
<td>22.0</td>
<td>86.6</td>
<td>2.6</td>
<td>88.2</td>
</tr>
<tr>
<td>Peas</td>
<td>47</td>
<td>100.0</td>
<td>12.0</td>
<td>93.6</td>
<td>4.0</td>
<td>97.6</td>
</tr>
<tr>
<td>Rye</td>
<td>2</td>
<td>98.0</td>
<td>96.0</td>
<td>93.6</td>
<td>4.0</td>
<td>97.6</td>
</tr>
<tr>
<td>Beans</td>
<td>5</td>
<td>92.0</td>
<td>66.0</td>
<td>94.0</td>
<td>4.0</td>
<td>84.4</td>
</tr>
<tr>
<td>Flax</td>
<td>21</td>
<td>94.0</td>
<td>34.0</td>
<td>94.0</td>
<td>4.0</td>
<td>84.4</td>
</tr>
</tbody>
</table>

CHARLOTTETOWN, P.E.I.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>15</td>
<td>90.0</td>
<td>41.0</td>
<td>87.4</td>
<td>3.3</td>
<td>90.7</td>
</tr>
<tr>
<td>Barley</td>
<td>18</td>
<td>98.0</td>
<td>75.0</td>
<td>88.5</td>
<td>3.3</td>
<td>91.8</td>
</tr>
<tr>
<td>Oats</td>
<td>20</td>
<td>95.0</td>
<td>73.0</td>
<td>89.2</td>
<td>3.3</td>
<td>83.6</td>
</tr>
<tr>
<td>Peas</td>
<td>2</td>
<td>12.0</td>
<td>4.0</td>
<td>8.0</td>
<td>1.3</td>
<td>8.0</td>
</tr>
</tbody>
</table>

NAPPPAN, NOVA SCOTIA.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>14</td>
<td>96.0</td>
<td>83.0</td>
<td>87.0</td>
<td>2.2</td>
<td>89.2</td>
</tr>
<tr>
<td>Barley</td>
<td>16</td>
<td>98.0</td>
<td>87.0</td>
<td>87.0</td>
<td>2.2</td>
<td>89.2</td>
</tr>
<tr>
<td>Oats</td>
<td>16</td>
<td>98.0</td>
<td>88.0</td>
<td>89.6</td>
<td>3.3</td>
<td>82.1</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

TESTS OF VITALITY OF SEED GRAIN, ETC.—Continued.

CAP ROUGE, QUEBEC.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>14</td>
<td>87.0</td>
<td>72.0</td>
<td>77.7</td>
<td>1.5</td>
<td>79.2</td>
</tr>
<tr>
<td>Barley</td>
<td>10</td>
<td>90.0</td>
<td>51.0</td>
<td>68.8</td>
<td>2.3</td>
<td>71.1</td>
</tr>
<tr>
<td>Oats</td>
<td>8</td>
<td>95.0</td>
<td>70.0</td>
<td>81.1</td>
<td>2.2</td>
<td>83.3</td>
</tr>
</tbody>
</table>

BRANDON, MANITOBA.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>20</td>
<td>95.0</td>
<td>65.0</td>
<td>82.6</td>
<td>2.2</td>
<td>84.9</td>
</tr>
<tr>
<td>Barley</td>
<td>20</td>
<td>95.0</td>
<td>63.0</td>
<td>82.5</td>
<td>2.3</td>
<td>85.5</td>
</tr>
<tr>
<td>Oats</td>
<td>22</td>
<td>99.0</td>
<td>77.0</td>
<td>86.9</td>
<td>2.8</td>
<td>89.7</td>
</tr>
<tr>
<td>Peas</td>
<td>12</td>
<td>82.0</td>
<td>62.0</td>
<td></td>
<td></td>
<td>67.8</td>
</tr>
<tr>
<td>Flax</td>
<td>8</td>
<td>85.0</td>
<td>52.0</td>
<td></td>
<td></td>
<td>72.3</td>
</tr>
</tbody>
</table>

INDIAN HEAD, SASK.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>21</td>
<td>99.0</td>
<td>91.0</td>
<td>94.4</td>
<td>1.6</td>
<td>95.4</td>
</tr>
<tr>
<td>Barley</td>
<td>29</td>
<td>100.0</td>
<td>83.0</td>
<td>98.4</td>
<td>3.4</td>
<td>94.3</td>
</tr>
<tr>
<td>Oats</td>
<td>16</td>
<td>100.0</td>
<td>84.0</td>
<td>91.7</td>
<td>2.4</td>
<td>94.1</td>
</tr>
<tr>
<td>Peas</td>
<td>12</td>
<td>84.0</td>
<td>42.0</td>
<td></td>
<td></td>
<td>65.5</td>
</tr>
</tbody>
</table>

ROSTHORN, SASK.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>29</td>
<td>97.0</td>
<td>64.0</td>
<td>85.8</td>
<td>2.6</td>
<td>88.5</td>
</tr>
<tr>
<td>Barley</td>
<td>21</td>
<td>99.0</td>
<td>51.0</td>
<td>93.3</td>
<td>1.5</td>
<td>95.8</td>
</tr>
<tr>
<td>Oats</td>
<td>16</td>
<td>97.0</td>
<td>82.0</td>
<td>87.3</td>
<td>3.2</td>
<td>90.7</td>
</tr>
<tr>
<td>Peas</td>
<td>11</td>
<td>86.0</td>
<td>30.0</td>
<td></td>
<td></td>
<td>53.6</td>
</tr>
</tbody>
</table>

SCOTT, SASK.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>14</td>
<td>99.0</td>
<td>56.0</td>
<td>89.5</td>
<td>2.5</td>
<td>92.0</td>
</tr>
<tr>
<td>Barley</td>
<td>14</td>
<td>99.0</td>
<td>78.0</td>
<td>87.3</td>
<td>2.6</td>
<td>89.9</td>
</tr>
<tr>
<td>Oats</td>
<td>12</td>
<td>97.0</td>
<td>80.0</td>
<td></td>
<td></td>
<td>82.5</td>
</tr>
<tr>
<td>Peas</td>
<td>7</td>
<td>66.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td>42.5</td>
</tr>
</tbody>
</table>

LACOMBE, ALBERTA.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>24</td>
<td>81.0</td>
<td>34.0</td>
<td>52.2</td>
<td>4.2</td>
<td>56.5</td>
</tr>
<tr>
<td>Barley</td>
<td>22</td>
<td>92.0</td>
<td>48.0</td>
<td>73.5</td>
<td>4.5</td>
<td>78.0</td>
</tr>
<tr>
<td>Oats</td>
<td>18</td>
<td>87.0</td>
<td>16.0</td>
<td>51.7</td>
<td>7.2</td>
<td>59.1</td>
</tr>
<tr>
<td>Peas</td>
<td>7</td>
<td>76.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td>26.6</td>
</tr>
</tbody>
</table>

LETHBRIDGE, ALBERTA.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>31</td>
<td>99.0</td>
<td>84.0</td>
<td>89.6</td>
<td>2.7</td>
<td>92.3</td>
</tr>
<tr>
<td>Barley</td>
<td>21</td>
<td>100.0</td>
<td>83.0</td>
<td>84.4</td>
<td>9.6</td>
<td>94.0</td>
</tr>
<tr>
<td>Oats</td>
<td>16</td>
<td>99.0</td>
<td>67.0</td>
<td>73.6</td>
<td>7.6</td>
<td>81.2</td>
</tr>
<tr>
<td>Peas</td>
<td>19</td>
<td>76.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td>41.3</td>
</tr>
<tr>
<td>Buckwheat</td>
<td>4</td>
<td>100.0</td>
<td>67.0</td>
<td></td>
<td></td>
<td>64.3</td>
</tr>
</tbody>
</table>

FORT VERMILION, ALBERTA.

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Number of Tests</th>
<th>Highest Percentage</th>
<th>Lowest Percentage</th>
<th>Average Percentage of Strong Growth</th>
<th>Average Percentage of Weak Growth</th>
<th>Average Total Vitality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>8</td>
<td>100.0</td>
<td>32.0</td>
<td>97.1</td>
<td>1.2</td>
<td>98.3</td>
</tr>
<tr>
<td>Barley</td>
<td>4</td>
<td>98.0</td>
<td>75.0</td>
<td>87.5</td>
<td>1.0</td>
<td>88.5</td>
</tr>
<tr>
<td>Oats</td>
<td>3</td>
<td>99.0</td>
<td>49.0</td>
<td>85.0</td>
<td>6.3</td>
<td>68.3</td>
</tr>
<tr>
<td>Peas</td>
<td>1</td>
<td>84.0</td>
<td>84.0</td>
<td></td>
<td></td>
<td>84.0</td>
</tr>
</tbody>
</table>

(Signed) WILLIAM T. ELLIS.
EXPERIMENTS WITH CEREALS, ETC., ON THE CENTRAL EXPERIMENTAL FARM, OTTAWA.

In the following tables will be found the results of the tests of varieties of grain at Ottawa in the season of 1912. The work here reported upon is carried out under the immediate supervision of the Dominion Cerealist.

WEATHER AT OTTAWA.

The spring of 1912 was rather wet, so that seeding was interrupted and delayed to a serious extent. Later on, in early summer, a succession of exceptionally hot days occurred, which injured crops somewhat, especially on any land that was easily dried out. This hot period was followed by almost continuous wet weather until about the first of October. All the grain was injured by the wet, and in some stooks a good deal of sprouting occurred. The unfavourable conditions caused a large amount of extra work and seriously lowered the yield and quality of all grain crops.

UNIFORM TEST PLOTS OF CEREALS, ETC., AT OTTAWA.

The regular test plots of grain at Ottawa are one-sixtieth of an acre each. The number of these plots during the past season was as follows:—Spring wheat 201, emmer and spelt 20, oats 55, six-row barley 88, two-row barley 1, peas 49, spring rye 3, field beans 7, flax 19, making a total of 443 plots and representing about 420 varieties and selected strains.

Owing to the shortage of land for the Cereal Division, the variety tests of winter wheat, winter rye and two-row barley had to be omitted.

The tests of field roots and fodder corn, formerly carried on in this Division, have been transferred to the Division of Forage Plants.

In the following tables a discrepancy will be observed in some cases between the figure given as the number of days maturing and that which is obtained by counting the days between the date of sowing and the date of ripening. When any varieties have been sown later than the others, it has been found necessary to introduce a correction, because, owing to the great difference between spring and mid-summer temperatures, a delay of a few days in sowing does not produce a corresponding delay in ripening.

SPRING WHEAT.

The regular test plots of spring wheat were sown on April 30 to May 2, the seed being used at the rate of about one and one-half bushels to the acre. The durum wheats were sown at the rate of about one and three-quarter bushels per acre.

The following table includes only the named varieties. Those varieties which have a letter after the name are new strains propagated at Ottawa from single selected plants.

Most of the varieties under test have been bred by the Dominion Cerealist, and are without names, being recorded by numbers. As soon as the value of these new sorts has been determined, names will be given to such of them as possess sufficient merit to warrant their introduction to the public.

The yield per acre is expressed in pounds, and also in 'bushels' of sixty pounds.
The character of the straw is indicated by marks on a scale of ten points, according to the proportion of the plot standing erect at harvest time.

Named varieties and selected strains produced at the Central Experimental Farm are marked with an asterisk (*).

The following varieties were sown on such inferior soil (suitable land not being available) that the yields obtained from them give no indication of their relative productiveness, and the figures are therefore omitted. The varieties in question are: Huron Selected, Omega A, Pringle's Champlain C, Red Fern B, Red Fern C.

Spring Wheat.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw including head</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Early Russian*</td>
<td>Apr. 30</td>
<td>Aug. 14</td>
<td>106</td>
<td>45, 6</td>
<td>3.5</td>
<td>3,000</td>
</tr>
<tr>
<td>2</td>
<td>Marquis*</td>
<td>30</td>
<td>14</td>
<td>106</td>
<td>42, 6</td>
<td>3.5</td>
<td>2,560</td>
</tr>
<tr>
<td>3</td>
<td>Chelsea*</td>
<td>30</td>
<td>11</td>
<td>106</td>
<td>42, 9</td>
<td>4.0</td>
<td>2,320</td>
</tr>
<tr>
<td>4</td>
<td>Early Red Fife*</td>
<td>30</td>
<td>14</td>
<td>106</td>
<td>45, 10</td>
<td>3.7</td>
<td>2,450</td>
</tr>
<tr>
<td>5</td>
<td>Garton's No. 46</td>
<td>30</td>
<td>14</td>
<td>106</td>
<td>45, 10</td>
<td>3.5</td>
<td>2,400</td>
</tr>
<tr>
<td>6</td>
<td>White Russian D*</td>
<td>30</td>
<td>17</td>
<td>109</td>
<td>50, 7</td>
<td>4.2</td>
<td>2,400</td>
</tr>
<tr>
<td>7</td>
<td>Goose*</td>
<td>30</td>
<td>14</td>
<td>106</td>
<td>41, 8</td>
<td>2.5</td>
<td>2,310</td>
</tr>
<tr>
<td>8</td>
<td>White Russian C*</td>
<td>30</td>
<td>17</td>
<td>109</td>
<td>50, 5</td>
<td>4.2</td>
<td>2,310</td>
</tr>
<tr>
<td>9</td>
<td>Kubanka B*</td>
<td>30</td>
<td>21</td>
<td>113</td>
<td>44, 9</td>
<td>2.5</td>
<td>1,920</td>
</tr>
<tr>
<td>10</td>
<td>Alpha Selected*</td>
<td>30</td>
<td>11</td>
<td>103</td>
<td>40, 10</td>
<td>3.5</td>
<td>1,890</td>
</tr>
<tr>
<td>11</td>
<td>Kubanka A*</td>
<td>30</td>
<td>21</td>
<td>113</td>
<td>44, 9</td>
<td>2.5</td>
<td>1,830</td>
</tr>
<tr>
<td>12</td>
<td>Prelude (150 B)*</td>
<td>May 1</td>
<td>1</td>
<td>93</td>
<td>40, 10</td>
<td>2.2</td>
<td>1,680</td>
</tr>
<tr>
<td>13</td>
<td>White Fife C*</td>
<td>30</td>
<td>21</td>
<td>113</td>
<td>44, 10</td>
<td>3.7</td>
<td>1,650</td>
</tr>
<tr>
<td>14</td>
<td>Bishop*</td>
<td>51</td>
<td>18</td>
<td>103</td>
<td>40, 10</td>
<td>3.5</td>
<td>1,500</td>
</tr>
<tr>
<td>15</td>
<td>Roumanian*</td>
<td>Apr. 30</td>
<td>22</td>
<td>114</td>
<td>48, 9</td>
<td>2.7</td>
<td>1,500</td>
</tr>
<tr>
<td>16</td>
<td>Stanley A*</td>
<td>30</td>
<td>14</td>
<td>106</td>
<td>42, 10</td>
<td>3.7</td>
<td>1,440</td>
</tr>
<tr>
<td>17</td>
<td>Hungar'n White B*</td>
<td>30</td>
<td>19</td>
<td>111</td>
<td>42, 7</td>
<td>4.5</td>
<td>1,290</td>
</tr>
<tr>
<td>18</td>
<td>Red Fife H*</td>
<td>30</td>
<td>21</td>
<td>113</td>
<td>42, 9</td>
<td>4.0</td>
<td>850</td>
</tr>
<tr>
<td>19</td>
<td>Kubanka C*</td>
<td>30</td>
<td>21</td>
<td>113</td>
<td>44, 9</td>
<td>2.5</td>
<td>870</td>
</tr>
<tr>
<td>20</td>
<td>Preston H*</td>
<td>30</td>
<td>14</td>
<td>106</td>
<td>40, 10</td>
<td>4.0</td>
<td>840</td>
</tr>
<tr>
<td>21</td>
<td>Red Fife M*</td>
<td>30</td>
<td>21</td>
<td>113</td>
<td>42, 10</td>
<td>4.0</td>
<td>660</td>
</tr>
<tr>
<td>22</td>
<td>Hungar'n White D*</td>
<td>30</td>
<td>19</td>
<td>111</td>
<td>42, 8</td>
<td>4.5</td>
<td>600</td>
</tr>
</tbody>
</table>

Recommended Varieties of Spring Wheat.

For **Ontario and Quebec.**—Huron and Preston, very productive early ripening bearded wheats, giving flour of fair baking strength. Marquis and Early Red Fife, early ripening beardless sorts, giving flour of very high baking strength. Red Fife and White Fife, beardless varieties, giving flour of very high baking strength.

For **the Maritime Provinces**, the old varieties, Red Fife and White Fife, are excellent. If early sorts are required, Huron and Preston are among the best. Marquis also does well. White Russian is a popular variety. It gives a large crop, but is rather late in ripening and is of poor quality for bread-making.

For **Manitoba, Saskatchewan and Alberta.**—Marquis is the best variety for most districts. Red Fife is excellent for localities where there is no danger of early frosts. For districts where extreme earlyness is required and where there is sufficient rainfall to produce a good length of straw, the new variety Prelude is most highly recommended.

For **British Columbia.**—Preston, Huron and Stanley give large yields. Red Fife and Marquis may not generally give quite such large crops, but they are better bread-making varieties.
WINTER WHEAT.

No suitable land was available for the winter wheat plots at Ottawa in the autumn of 1911. They were therefore omitted.

RECOMMENDED VARIETIES OF WINTER WHEAT.

The climate of Ottawa being too severe for the regular production of good crops of winter wheat, the average yields obtained here would scarcely serve as a satisfactory guide for farmers in southern Ontario. Some recommendations in regard to varieties of winter wheat may, however, be given.

One of the best varieties in the field is Dawson's Golden Chaff (beardless). It has the disadvantage, however, of giving flour which is low in baking strength, and therefore suitable for crackers, cakes, etc., but not for light bread. The gluten content of this variety is not high enough to make it quite satisfactory for the production of rolled wheat and other similar cereal products, though it is used for these purposes.

Turkey Red (bearded) yields the strongest flour, but does not as a rule give, in Ontario, as large a yield of grain per acre as some of the other sorts.

Egyptian Amber (bearded) and Tasmania Red (bearded) give good yields of grain and produce very good flour for bread-making.

Imperial Amber (bearded) is another variety which can also be recommended both for its high yield and the very fair strength of its flour.

EMMER AND SPELT.

The plots of Emmer and Spelt were sown on May 3, the seed being used at the rate of about one hundred and twenty pounds (or four bushels by measure) to the acre.

Common Emmer (often incorrectly called 'Speltz') is one of the best varieties, being less coarse and containing a larger proportion of kernel than most of the other sorts.

Only the named sorts are here reported upon. Many new varieties under numbers are also being tested.

OATS.

In addition to the named varieties here reported upon, twenty plots of new cross-bred sorts under numbers, were tested. These are chiefly crosses having the Chinese Naked oat as one parent. They have inherited from that variety the peculiarity of threshing out free from hull, and may prove valuable on that account.
The oat plots were sown on May 9 and 10, the seed being used at the rate of about two bushels per acre for most varieties, but in greater quantities whenever the oats were of unusually large size.

The yield per acre is expressed in pounds, and also in 'bushels' of thirty-four pounds.

Named varieties and selected strains produced at the Central Experimental Farm are marked with an asterisk.

Oats.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw Including Head</th>
<th>Strength of Straw on a Scale of 10 Points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre after Cleaning</th>
<th>Weight per meared bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>American Beauty C*</td>
<td>May 9</td>
<td>Aug. 21</td>
<td>104</td>
<td>50</td>
<td>7</td>
<td>8</td>
<td>2,390</td>
<td>88 8</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>B*</td>
<td>9</td>
<td>21</td>
<td>104</td>
<td>50</td>
<td>5</td>
<td>8</td>
<td>2,390</td>
<td>97 32</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Abundance D*</td>
<td>9</td>
<td>22</td>
<td>105</td>
<td>50</td>
<td>10</td>
<td>9</td>
<td>3,180</td>
<td>33 18</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Abundance, Garton's</td>
<td>Regenerated</td>
<td>9</td>
<td>22</td>
<td>105</td>
<td>50</td>
<td>8</td>
<td>3,090</td>
<td>88 8</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Gold Rain</td>
<td>9</td>
<td>18</td>
<td>101</td>
<td>48</td>
<td>7</td>
<td>8</td>
<td>3,090</td>
<td>88 8</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Ergs</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>48</td>
<td>10</td>
<td>7</td>
<td>2,190</td>
<td>86 16</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Excelsior</td>
<td>9</td>
<td>16</td>
<td>99</td>
<td>42</td>
<td>10</td>
<td>7</td>
<td>2,880</td>
<td>83 28</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>Swedish Select</td>
<td>9</td>
<td>16</td>
<td>39</td>
<td>48</td>
<td>10</td>
<td>9</td>
<td>2,820</td>
<td>82 32</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Abundance A*</td>
<td>9</td>
<td>22</td>
<td>105</td>
<td>50</td>
<td>10</td>
<td>9</td>
<td>2,750</td>
<td>80 10</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Green Mountain</td>
<td>9</td>
<td>23</td>
<td>105</td>
<td>50</td>
<td>6</td>
<td>10</td>
<td>2,750</td>
<td>80 10</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>Irish Victor</td>
<td>9</td>
<td>19</td>
<td>102</td>
<td>48</td>
<td>8</td>
<td>8</td>
<td>2,750</td>
<td>79 14</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>Siberian</td>
<td>9</td>
<td>20</td>
<td>103</td>
<td>48</td>
<td>8</td>
<td>8</td>
<td>2,760</td>
<td>79 14</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>Thousand Dollar</td>
<td>9</td>
<td>18</td>
<td>161</td>
<td>48</td>
<td>10</td>
<td>8</td>
<td>2,640</td>
<td>77 22</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>Improved American</td>
<td>9</td>
<td>19</td>
<td>102</td>
<td>45</td>
<td>10</td>
<td>7</td>
<td>2,580</td>
<td>75 30</td>
<td>29 2</td>
</tr>
<tr>
<td>15</td>
<td>Tartar King</td>
<td>9</td>
<td>16</td>
<td>99</td>
<td>44</td>
<td>10</td>
<td>7</td>
<td>2,520</td>
<td>74 4</td>
<td>31</td>
</tr>
<tr>
<td>16</td>
<td>Victory</td>
<td>9</td>
<td>23</td>
<td>106</td>
<td>50</td>
<td>8</td>
<td>8</td>
<td>2,520</td>
<td>74 4</td>
<td>31</td>
</tr>
<tr>
<td>17</td>
<td>Ligowo, Swedish</td>
<td>9</td>
<td>16</td>
<td>99</td>
<td>40</td>
<td>10</td>
<td>8</td>
<td>2,490</td>
<td>73 8</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>Banner L*</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>40</td>
<td>10</td>
<td>7</td>
<td>2,400</td>
<td>70 29</td>
<td>29</td>
</tr>
<tr>
<td>19</td>
<td>Twentieth Century</td>
<td>9</td>
<td>21</td>
<td>100</td>
<td>40</td>
<td>8</td>
<td>8</td>
<td>2,350</td>
<td>69 2</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>Banner K*</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>49</td>
<td>10</td>
<td>7</td>
<td>2,250</td>
<td>66 8</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>Alpine</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>50</td>
<td>8</td>
<td>8</td>
<td>2,220</td>
<td>66 10</td>
<td>32</td>
</tr>
<tr>
<td>22</td>
<td>Pioneer</td>
<td>9</td>
<td>16</td>
<td>99</td>
<td>42</td>
<td>10</td>
<td>8</td>
<td>1,950</td>
<td>57 12</td>
<td>35</td>
</tr>
<tr>
<td>23</td>
<td>Banner M*</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>40</td>
<td>10</td>
<td>7</td>
<td>1,920</td>
<td>56 16</td>
<td>32</td>
</tr>
<tr>
<td>24</td>
<td>Banner J*</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>40</td>
<td>10</td>
<td>7</td>
<td>1,830</td>
<td>53 28</td>
<td>31 5</td>
</tr>
<tr>
<td>25</td>
<td>Swedish Black</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>50</td>
<td>8</td>
<td>9</td>
<td>1,710</td>
<td>50 10</td>
<td>31</td>
</tr>
<tr>
<td>26</td>
<td>Daubeney Selected</td>
<td>9</td>
<td>4</td>
<td>87</td>
<td>32</td>
<td>10</td>
<td>7</td>
<td>1,650</td>
<td>49 14</td>
<td>31</td>
</tr>
<tr>
<td>27</td>
<td>Banner B*</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>40</td>
<td>10</td>
<td>7</td>
<td>1,500</td>
<td>46 26</td>
<td>31</td>
</tr>
<tr>
<td>28</td>
<td>Early Ripe G*</td>
<td>9</td>
<td>3</td>
<td>86</td>
<td>38</td>
<td>9</td>
<td>6</td>
<td>1,580</td>
<td>46 26</td>
<td>31</td>
</tr>
<tr>
<td>29</td>
<td>Black Mes-Slag</td>
<td>9</td>
<td>4</td>
<td>87</td>
<td>38</td>
<td>10</td>
<td>7</td>
<td>1,470</td>
<td>43 8</td>
<td>34 5</td>
</tr>
<tr>
<td>30</td>
<td>Danish Island</td>
<td>9</td>
<td>17</td>
<td>100</td>
<td>38</td>
<td>10</td>
<td>7</td>
<td>1,440</td>
<td>42 12</td>
<td>29</td>
</tr>
<tr>
<td>31</td>
<td>Eighty Day*</td>
<td>9</td>
<td>1</td>
<td>84</td>
<td>37</td>
<td>10</td>
<td>6</td>
<td>1,350</td>
<td>40 20</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>Early Blonde</td>
<td>9</td>
<td>23</td>
<td>106</td>
<td>42</td>
<td>9</td>
<td>8</td>
<td>1,390</td>
<td>39 24</td>
<td>27</td>
</tr>
<tr>
<td>33</td>
<td>Early Ripe E*</td>
<td>9</td>
<td>3</td>
<td>86</td>
<td>38</td>
<td>10</td>
<td>6</td>
<td>1,110</td>
<td>32 22</td>
<td>31</td>
</tr>
<tr>
<td>34</td>
<td>Early Ripe F*</td>
<td>9</td>
<td>3</td>
<td>86</td>
<td>38</td>
<td>9</td>
<td>6</td>
<td>1,050</td>
<td>30 30</td>
<td>28</td>
</tr>
</tbody>
</table>

RECOMMENDED VARIETIES OF OATS.

Among the most productive varieties of white oats, Banner is especially recommended. Abundance is another excellent sort. Ligowo is somewhat earlier in ripening but does not generally give quite so large a yield as Banner or Abundance. Gold Rain is a very productive yellow oat. Black oats are not recommended, but Pioneer and Excelsior may be mentioned as two of the best varieties.

Farmers who require an extremely early-ripening variety should try Eighty Day, Orloff, or Sixty Day. The name Sixty Day is misleading, as this oat is not earlier than the other two. Somewhat less early, but probably more satisfactory, as a rule, are Daubeney and Tartar King. The latter is a very coarse variety.
The plots were sown on May 8 and 9, the seed being used at the rate of about two bushels to the acre. The land on which it was necessary to place the plots varied somewhat in character, so that the yields given in the following table are not very trustworthy for purposes of comparison.

The yield per acre is expressed in pounds, and also in 'bushels' of forty-eight pounds.

Only the named varieties and selections are reported on. Many new cross-bred beardless and hulless sorts, produced by the Dominion Cerealist were also tested.

Named varieties and selected strains produced at the Central Experimental Farm are marked with an asterisk.*

Six-row Barley.—Test of Varieties

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing.</th>
<th>Date of Ripening.</th>
<th>No. of Days Maturing.</th>
<th>Average Length of Straw, Including Head.</th>
<th>Average Length of Head.</th>
<th>Yield of Grain per Acre.</th>
<th>Yield of Grain per Acre.</th>
<th>Weight per measured bushel after cleaning.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Odessa D*</td>
<td>May 9</td>
<td>Aug 6</td>
<td>92</td>
<td>40</td>
<td>10</td>
<td>3.5</td>
<td>2,310</td>
<td>48 6</td>
</tr>
<tr>
<td>2</td>
<td>Odessa F*</td>
<td>9</td>
<td>6 92</td>
<td>40</td>
<td>9</td>
<td>3.5</td>
<td>2,250</td>
<td>46 42</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Stella C*</td>
<td>6</td>
<td>9 92</td>
<td>38</td>
<td>9</td>
<td>3.2</td>
<td>2,200</td>
<td>46 12</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Stella G*</td>
<td>6</td>
<td>9 92</td>
<td>38</td>
<td>3</td>
<td>2.2</td>
<td>2,050</td>
<td>45 24</td>
<td>44 3</td>
</tr>
<tr>
<td>5</td>
<td>Taganrog A*</td>
<td>9</td>
<td>6 92</td>
<td>34</td>
<td>10</td>
<td>2.1</td>
<td>2,000</td>
<td>45 20</td>
<td>44 3</td>
</tr>
<tr>
<td>6</td>
<td>Triumph</td>
<td>9</td>
<td>19 105</td>
<td>38</td>
<td>10</td>
<td>2.1</td>
<td>2,150</td>
<td>44 18</td>
<td>40 2</td>
</tr>
<tr>
<td>7</td>
<td>Manchurian G*</td>
<td>8</td>
<td>6 93</td>
<td>30</td>
<td>13</td>
<td>3.5</td>
<td>2,130</td>
<td>44 42</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Stella A*</td>
<td>9</td>
<td>6 92</td>
<td>38</td>
<td>8</td>
<td>3.2</td>
<td>2,050</td>
<td>44 18</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Manchurian A*</td>
<td>8</td>
<td>6 93</td>
<td>30</td>
<td>8</td>
<td>3.5</td>
<td>1,950</td>
<td>40 30</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>Success B*</td>
<td>9</td>
<td>July 21</td>
<td>79</td>
<td>41</td>
<td>7</td>
<td>1,850</td>
<td>40 30</td>
<td>38</td>
</tr>
<tr>
<td>11</td>
<td>Odessa C*</td>
<td>9</td>
<td>Aug 6 92</td>
<td>35</td>
<td>10</td>
<td>3.5</td>
<td>1,800</td>
<td>39 18</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>Esconergren</td>
<td>8</td>
<td>5 92</td>
<td>34</td>
<td>9</td>
<td>3</td>
<td>1,800</td>
<td>38 36</td>
<td>45 3</td>
</tr>
<tr>
<td>13</td>
<td>Manchurian H*</td>
<td>8</td>
<td>6 93</td>
<td>32</td>
<td>9</td>
<td>3.5</td>
<td>1,800</td>
<td>38 36</td>
<td>46 3</td>
</tr>
<tr>
<td>14</td>
<td>Black Japan</td>
<td>8</td>
<td>5 92</td>
<td>26</td>
<td>10</td>
<td>2.5</td>
<td>1,710</td>
<td>35 30</td>
<td>45 3</td>
</tr>
<tr>
<td>15</td>
<td>Albert*</td>
<td>8</td>
<td>6 93</td>
<td>32</td>
<td>10</td>
<td>3.5</td>
<td>1,650</td>
<td>34 18</td>
<td>46</td>
</tr>
<tr>
<td>16</td>
<td>Guy Mayle</td>
<td>8</td>
<td>July 30</td>
<td>86</td>
<td>28</td>
<td>2.5</td>
<td>1,440</td>
<td>30 15</td>
<td>61 3</td>
</tr>
<tr>
<td>17</td>
<td>Oderbruch</td>
<td>9</td>
<td>Aug 9 95</td>
<td>30</td>
<td>10</td>
<td>2.7</td>
<td>1,400</td>
<td>30 15</td>
<td>45</td>
</tr>
<tr>
<td>18</td>
<td>Nugent*</td>
<td>9</td>
<td>9 95</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>1,200</td>
<td>26 12</td>
<td>44 4</td>
</tr>
<tr>
<td>19</td>
<td>O. A. C. No. 21</td>
<td>8</td>
<td>9 96</td>
<td>28</td>
<td>10</td>
<td>2.7</td>
<td>1,200</td>
<td>28 12</td>
<td>44 3</td>
</tr>
<tr>
<td>20</td>
<td>Blue-Short Head A*</td>
<td>8</td>
<td>19 106</td>
<td>22</td>
<td>10</td>
<td>2</td>
<td>1,050</td>
<td>22 14</td>
<td>42 2</td>
</tr>
<tr>
<td>21</td>
<td>Blue Short Head C*</td>
<td>8</td>
<td>19 106</td>
<td>22</td>
<td>10</td>
<td>2</td>
<td>1,050</td>
<td>21 12</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>Early Indian*</td>
<td>8</td>
<td>July 20</td>
<td>76</td>
<td>23</td>
<td>1.7</td>
<td>650</td>
<td>14 18</td>
<td>41</td>
</tr>
</tbody>
</table>

Recommended Varieties of Six-row Barley.

Among the most productive six-row barleys are Manchurian and Odessa. Manchurian is a selection from Mensusry. Ontario Agricultural College No. 21 is also a very good selection, similar in character to Manchurian.

The beardless (or 'hooded') types of barley at present available in commerce are not very satisfactory. Success and Champion are two of the best kinds. They are both early in ripening; but their straw is not very strong, and they generally give rather a small yield.

The common sorts of hulless barley are Hulless White (beardless) and Hulless Black (bearded). These are characterized by weak straw.

It is expected that some of the new cross-bred beardless and hulless types will prove more satisfactory than any of the older varieties. These will be introduced as soon as they have been thoroughly studied.
TWO-ROW BARLEY.

It was not possible to sow the plots of two-row barley in 1912, as the land allotted to the use of the Cereal Division is insufficient.

RECOMMENDED VARIETIES OF TWO-ROW BARLEY.

Among the best sorts are Duckbill, Canadian Thorpe, Standwell, Swan’s Neck, Hannchen and the different strains of Chevalier.

FIELD PEAS.

The plots of peas were sown May 20 and 21, the seed being used at the rate of two or three bushels to the acre, according to the size of the pea.

The very wet weather was favourable for the development of fungous diseases among the peas. The results of the season are very unsatisfactory. The following varieties were so badly diseased that they gave scarcely any crop at all: Black-eye Marrowfat, Golden Vine, Mackay. Only the named varieties are reported on. Many new cross-bred sorts under numbers were also grown.

The yield per acre is expressed in pounds and also in ‘bushels’ of sixty pounds. Named varieties and selected strains produced at the Central Experimental Farm are marked with an asterisk.*

Peas—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Size of Pea</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average Length of Straw.</th>
<th>Average Length of Pod.</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured Bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solo</td>
<td>Large</td>
<td>May 20</td>
<td>Sept. 8</td>
<td>111</td>
<td>60</td>
<td>2-2</td>
<td>1,830</td>
<td>30 30 61</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Picton*</td>
<td>Medium</td>
<td>"</td>
<td>108</td>
<td>56</td>
<td>2-2</td>
<td>1,440</td>
<td>24 61-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>English Grey</td>
<td>"</td>
<td>"</td>
<td>113</td>
<td>72</td>
<td>2-2</td>
<td>1,290</td>
<td>21 30 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>White Marrowfat</td>
<td>Large</td>
<td>"</td>
<td>111</td>
<td>70</td>
<td>2-2</td>
<td>990</td>
<td>16 30 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Prussian Blue</td>
<td>Medium</td>
<td>"</td>
<td>113</td>
<td>75</td>
<td>2-2</td>
<td>960</td>
<td>16 61-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Chancellor</td>
<td>Small</td>
<td>"</td>
<td>108</td>
<td>72</td>
<td>2-2</td>
<td>950</td>
<td>15 30 62-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Wisconsin Blue</td>
<td>Medium</td>
<td>"</td>
<td>113</td>
<td>56</td>
<td>2</td>
<td>870</td>
<td>14 30 62-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Prince*</td>
<td>Large</td>
<td>"</td>
<td>111</td>
<td>50</td>
<td>2</td>
<td>840</td>
<td>14 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Daniel O’Rourke</td>
<td>Small</td>
<td>"</td>
<td>113</td>
<td>75</td>
<td>2-2</td>
<td>720</td>
<td>12 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Arthur Selected *</td>
<td>Medium</td>
<td>"</td>
<td>106</td>
<td>48</td>
<td>2-2</td>
<td>650</td>
<td>11 30 63-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Paragon*</td>
<td>"</td>
<td>"</td>
<td>113</td>
<td>72</td>
<td>2-5</td>
<td>690</td>
<td>11 30 64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDED VARIETIES OF PEAS.

Prussian Blue, Arthur and Chancellor are among the most productive sorts, and are also early in ripening. The Marrowfat varieties and Golden Vine are somewhat later in maturing. Most of these varieties can be obtained from seedsmen in Canada.

Arthur is particularly desirable on account of its high yield and earliness in maturing.

SPRING RYE.

The plots of spring rye were sown on May 3, the seed being used at the rate of about one and one-half bushels to the acre.

The yield per acre is expressed in pounds and also in ‘bushels’ of fifty-six pounds.
DIVISION OF CEREALS

SESSIONAL PAPER No. 16

SPRING RYE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Strength of straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of grain per Acre</th>
<th>Yield of grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ottawa Select</td>
<td>May 3</td>
<td>Aug. 14</td>
<td>103</td>
<td>60</td>
<td>3</td>
<td>3:3</td>
<td>2,610</td>
<td>46 34</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>Common</td>
<td>May 3</td>
<td>Aug. 14</td>
<td>103</td>
<td>60</td>
<td>3</td>
<td>3:3</td>
<td>2,370</td>
<td>42 18</td>
<td>57:3</td>
</tr>
</tbody>
</table>

WINTER RYE.

No plots of winter rye could be sown in the autumn of 1911, as there was no land available for the purpose.

FIELD BEANS.

Seven plots of beans, one-sixtieth of an acre each, were sown on May 23. All of the varieties sown were selected strains of field beans or of early-maturing garden sorts which may prove useful in localities where it is desired to obtain ripe seed in a short season.

Two of the varieties which have been tested for several years, Marrowfat and White Field, failed to ripen. As these varieties have proved too late for the climate of Ottawa in previous seasons their cultivation has been discontinued.

The varieties here reported upon were all sown in rows 16 inches apart.

The yield per acre is expressed in pounds and also in 'bushels' of sixty pounds.

FIELD BEANS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average Length of Plants</th>
<th>Average Length of Pod</th>
<th>Yield of Seed per Acre</th>
<th>Yield of Seed per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Norwegian Brown Selected</td>
<td>May 23</td>
<td>Aug. 27</td>
<td>96</td>
<td>12</td>
<td>5:0</td>
<td>3,270</td>
<td>54 30</td>
<td>61:9</td>
</tr>
<tr>
<td>2</td>
<td>Golden Wax Selected</td>
<td>"</td>
<td>Sept. 12</td>
<td>112</td>
<td>12</td>
<td>3:5</td>
<td>2,820</td>
<td>47 ..</td>
<td>65:0</td>
</tr>
<tr>
<td>3</td>
<td>California Pea Selected</td>
<td>"</td>
<td>23</td>
<td>123</td>
<td>18</td>
<td>4:5</td>
<td>2,370</td>
<td>39 30</td>
<td>64:6</td>
</tr>
<tr>
<td>4</td>
<td>Stringless Kidney Wax Selected</td>
<td>"</td>
<td>19</td>
<td>110</td>
<td>14</td>
<td>4:9</td>
<td>1,960</td>
<td>32 30</td>
<td>60:0</td>
</tr>
<tr>
<td>5</td>
<td>Challenge Black Wax Selected</td>
<td>Aug. 27</td>
<td>96</td>
<td>12</td>
<td>3:5</td>
<td>1,500</td>
<td>25 ..</td>
<td>57:5</td>
<td></td>
</tr>
</tbody>
</table>

FLAX.

Eighteen selected strains from various commercial sorts of flax were grown in sixtieth-acre plots. The seed was sown on May 25 at the rate of 60 pounds to the acre.

The very wet weather of August and September was unfavourable for the flax, and made the yields from the plots irregular and unsatisfactory.
The yield of seed per acre is expressed in pounds and also in 'bushels' of fifty-six pounds.

Flax—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Plants</th>
<th>Yield of seed per Acre</th>
<th>Yield of seed per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Novarossick B</td>
<td>May 25</td>
<td>Aug. 27</td>
<td>94</td>
<td>22</td>
<td>1,410</td>
<td>25 10</td>
<td>46 3</td>
</tr>
<tr>
<td>2</td>
<td>La Plata C</td>
<td>" 25</td>
<td>" 27</td>
<td>94</td>
<td>18</td>
<td>1,080</td>
<td>19 16</td>
<td>49 3</td>
</tr>
<tr>
<td>3</td>
<td>Russian A</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>30</td>
<td>1,050</td>
<td>18 12</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>La Plata A</td>
<td>" 25</td>
<td>" 27</td>
<td>94</td>
<td>25</td>
<td>930</td>
<td>16 31</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>La Plata B</td>
<td>" 25</td>
<td>" 27</td>
<td>94</td>
<td>18</td>
<td>870</td>
<td>15 30</td>
<td>52 3</td>
</tr>
<tr>
<td>6</td>
<td>Yellow Seed C</td>
<td>" 25</td>
<td>Sept. 5</td>
<td>103</td>
<td>30</td>
<td>810</td>
<td>15 16</td>
<td>50 5</td>
</tr>
<tr>
<td>7</td>
<td>Common D</td>
<td>" 25</td>
<td>Aug. 19</td>
<td>86</td>
<td>24</td>
<td>810</td>
<td>14 26</td>
<td>53 5</td>
</tr>
<tr>
<td>8</td>
<td>White Flowering A</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>24</td>
<td>810</td>
<td>11 25</td>
<td>55 3</td>
</tr>
<tr>
<td>9</td>
<td>White Flowering B</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>24</td>
<td>810</td>
<td>11 25</td>
<td>55 3</td>
</tr>
<tr>
<td>10</td>
<td>Riga C</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>28</td>
<td>630</td>
<td>12 18</td>
<td>48 3</td>
</tr>
<tr>
<td>11</td>
<td>Yellow Seed A</td>
<td>" 25</td>
<td>Sept. 5</td>
<td>103</td>
<td>30</td>
<td>630</td>
<td>12 18</td>
<td>51</td>
</tr>
<tr>
<td>12</td>
<td>Yellow Seed B</td>
<td>" 25</td>
<td>" 5</td>
<td>103</td>
<td>30</td>
<td>630</td>
<td>12 18</td>
<td>51 3</td>
</tr>
<tr>
<td>13</td>
<td>Common S</td>
<td>" 25</td>
<td>Aug. 19</td>
<td>86</td>
<td>32</td>
<td>630</td>
<td>11 14</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Riga B</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>28</td>
<td>600</td>
<td>10 40</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td>Common C</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>30</td>
<td>510</td>
<td>9 6</td>
<td>49 3</td>
</tr>
<tr>
<td>16</td>
<td>Russian B</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>34</td>
<td>510</td>
<td>9 6</td>
<td>45</td>
</tr>
<tr>
<td>17</td>
<td>Common B</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>30</td>
<td>360</td>
<td>6 24</td>
<td>49</td>
</tr>
<tr>
<td>18</td>
<td>Common A</td>
<td>" 25</td>
<td>" 19</td>
<td>86</td>
<td>30</td>
<td>270</td>
<td>4 46</td>
<td>44 3</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, CHARLOTTETOWN, P.E.I.

J. A. CLARK, B.S.A., Superintendent.

The uniform test plots of wheat and oats were sown in duplicate on May 15 and 16, 1912, on land broken the previous autumn for the first time since possession was taken of this property. The land was a sandy loam which had been manured on the sod with barnyard manure at the rate of eight tons per acre during the summer of 1911, immediately after a crop of timothy hay had been removed. The soil was far from uniform. The plots and paths were seeded down with a mixture of 10 pounds common red clover, 3 pounds Alsike, and 1 pound of White Dutch per acre. An immense growth of clover, that at harvest stood to the bands of the sheaves, must have reduced the yield of grain. The clover on the paths was cut for hay in July.

EXPERIMENTS WITH SPRING WHEAT.

The average of the duplicate plots for the season of 1912 is here given, except Marquis and Red Eife. The seed for the plot of Early Red Fife was grown at Ottawa, and that for the extra plot of Marquis was grown at Indian Head. The other plots of named varieties were sown with seed grown in 1911 at this Station.

Three new varieties under numbers were also tested, the seed having been grown at Ottawa.

Spring Wheat.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Average Strength of Straw on 10 Heads</th>
<th>Average Yield of Grain per Acre</th>
<th>Yield of Grain per Bushel after Cleaning</th>
<th>Weight per bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marquis</td>
<td>May 15</td>
<td>Aug. 21</td>
<td>93</td>
<td>37</td>
<td>10</td>
<td>3</td>
<td>1,522</td>
<td>25.22</td>
</tr>
<tr>
<td>2</td>
<td>Stanley</td>
<td>" 15</td>
<td>Sept. 2</td>
<td>116</td>
<td>32</td>
<td>10</td>
<td>2.3</td>
<td>1,501</td>
<td>23.1</td>
</tr>
<tr>
<td>3</td>
<td>Huron</td>
<td>" 15</td>
<td>Aug. 26</td>
<td>103</td>
<td>36</td>
<td>10</td>
<td>3</td>
<td>1,385</td>
<td>23.5</td>
</tr>
<tr>
<td>4</td>
<td>Chelsea</td>
<td>" 15</td>
<td>Sept. 3</td>
<td>99</td>
<td>34</td>
<td>10</td>
<td>2.6</td>
<td>1,276</td>
<td>21.16</td>
</tr>
<tr>
<td>5</td>
<td>White Fife C.B.G.A</td>
<td>" 15</td>
<td>Sept. 3</td>
<td>111</td>
<td>36</td>
<td>10</td>
<td>3</td>
<td>1,295</td>
<td>21.5</td>
</tr>
<tr>
<td>6</td>
<td>White Russian</td>
<td>" 15</td>
<td>Aug. 21</td>
<td>98</td>
<td>37</td>
<td>10</td>
<td>2.3</td>
<td>1,208</td>
<td>20.8</td>
</tr>
<tr>
<td>7</td>
<td>" (Ottawa)</td>
<td>" 15</td>
<td>Aug. 21</td>
<td>98</td>
<td>37</td>
<td>10</td>
<td>2</td>
<td>1,199</td>
<td>18.39</td>
</tr>
<tr>
<td>8</td>
<td>Goose (J. Lapp)</td>
<td>" 15</td>
<td>Aug. 21</td>
<td>101</td>
<td>36.5</td>
<td>10</td>
<td>2.3</td>
<td>1,083</td>
<td>17.49</td>
</tr>
<tr>
<td>9</td>
<td>Marquis (extra plot for chemist)</td>
<td>" 15</td>
<td>Aug. 21</td>
<td>101</td>
<td>36.5</td>
<td>10</td>
<td>2.3</td>
<td>1,083</td>
<td>17.49</td>
</tr>
<tr>
<td>10</td>
<td>Early Red Fife</td>
<td>" 15</td>
<td>Sept. 3</td>
<td>111</td>
<td>32</td>
<td>10</td>
<td>2.3</td>
<td>1,063</td>
<td>18.13</td>
</tr>
<tr>
<td>11</td>
<td>Red Fife</td>
<td>" 15</td>
<td>Sept. 3</td>
<td>111</td>
<td>32</td>
<td>10</td>
<td>2.3</td>
<td>1,063</td>
<td>17.49</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH OATS.

The cold backward weather that followed the sowing of the oats gave them a set-back. In June they suffered for want of moisture and then were nearly drowned out by the excessive rains in July. Oats sown the first week in June on adjoining lands gave heavier yields, which shows the unusual conditions which prevailed during the growing season.

The average of the duplicate plots is here given. The seed used was grown on this station in 1911, except one plot, Old Island Black.
EXPERIMENTS WITH BARLEY.

Experiments were conducted in duplicate with 16 varieties of barley (8 six-row and 8 two-row) in plots of one-sixtieth of an acre each. They were sown on land that had been in turnips the previous year without any further fertilizing. The plots of six-row barley were sown on May 31 and the two-row on June 1. These plots, with the exception of a few damp places, were on land somewhat more uniform in character than the wheat and oat plots. A mixture of 8 pounds common red clover, 3 pounds Alsike, 1 pound White Dutch and 10 pounds timothy seed per acre was sown on the plots and paths. The grass on all the paths about the plots was allowed to grow. It was cut in July.

The average of the duplicate plots is here given except for Albert, Nugent, Beaver and Clifford. One plot of each of these was injured by damp places in the plots.

SIX-ROW BARLEY.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including head</th>
<th>Strength of straw at base of 10 plants</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oderbruch</td>
<td>May 31</td>
<td>Sept. 5</td>
<td>98</td>
<td>38</td>
<td>10</td>
<td>3</td>
<td>3.962</td>
<td>67</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>Manchurian</td>
<td>31</td>
<td>4</td>
<td>97</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>3.214</td>
<td>66</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>O.A.C. No. 21</td>
<td>31</td>
<td>4</td>
<td>97</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>2.905</td>
<td>66</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Odessa</td>
<td>31</td>
<td>4</td>
<td>97</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>3.136</td>
<td>66</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Trooper</td>
<td>31</td>
<td>Aug. 31</td>
<td>93</td>
<td>43</td>
<td>10</td>
<td>22</td>
<td>3.065</td>
<td>63</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>Stella</td>
<td>31</td>
<td>Sept. 4</td>
<td>93</td>
<td>43</td>
<td>10</td>
<td>22</td>
<td>2.899</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Nugent</td>
<td>31</td>
<td>4</td>
<td>97</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>2.900</td>
<td>54</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Albert</td>
<td>31</td>
<td>5</td>
<td>98</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>2.468</td>
<td>51</td>
<td>40</td>
</tr>
</tbody>
</table>
DIVISION OF CEREALS

SESSIONAL PAPER No. 16

TWO-ROW BARLEY.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Days Maturing</th>
<th>Average Length of Straw, inches</th>
<th>Strength of Head, points</th>
<th>Average Length of Head, inches</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Bushel</th>
<th>Weight per bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English Cavalier</td>
<td>June 1</td>
<td>Sept. 10</td>
<td>102</td>
<td>37, 10</td>
<td>3½</td>
<td>3,250</td>
<td>67, 44</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Swedish Cavalier</td>
<td>1</td>
<td>10</td>
<td>92</td>
<td>36, 10</td>
<td>3½</td>
<td>2,922</td>
<td>66, 34</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hannchen</td>
<td>1</td>
<td>5</td>
<td>97</td>
<td>36, 10</td>
<td>2½</td>
<td>2,300</td>
<td>62, 16</td>
<td>52.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Canadian Thorpe</td>
<td>1</td>
<td>4</td>
<td>96</td>
<td>41, 10</td>
<td>2½</td>
<td>2,994</td>
<td>61, 26</td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Standwell</td>
<td>1</td>
<td>Aug. 31</td>
<td>92</td>
<td>44, 10</td>
<td>3½</td>
<td>2,757</td>
<td>57, 21</td>
<td>52.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Invincible</td>
<td>1</td>
<td>Sept. 10</td>
<td>102</td>
<td>42, 10</td>
<td>3</td>
<td>2,842</td>
<td>52, 46</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Clifford</td>
<td>1</td>
<td>Aug. 31</td>
<td>92</td>
<td>44, 10</td>
<td>3</td>
<td>2,813</td>
<td>49, —</td>
<td>52.1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Beaver</td>
<td>1</td>
<td>31</td>
<td>92</td>
<td>48, 10</td>
<td>4½</td>
<td>2,220</td>
<td>46, 12</td>
<td>49.1</td>
<td></td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH PEAS.

Ten varieties of peas were sown, at the rate of about 2 bushels per acre, in duplicate, on one-sixtieth acre plots, on June 1. The wet season caused the peas, with the exception of the Arthur, to bloom very late into the autumn. On September 14 they were cut, and before they were dry enough to bunch a gale of wind rolled them every way, mixing all but the Arthur into one another so that the yields could not be ascertained.

PEAS.—Test of varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Size of Pea</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average length of straw</th>
<th>Average length of pod</th>
<th>Yield of grain per acre</th>
<th>Yield of grain per bushel</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arthur Selected</td>
<td>Large</td>
<td>June</td>
<td>1 Sept. 14</td>
<td>106</td>
<td>70, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black-eye Marrowfat</td>
<td>Medium</td>
<td>1</td>
<td>1 Sept. 14</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chancellor</td>
<td>Small</td>
<td>1</td>
<td>1 Sept. 14</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English Grey</td>
<td>Large</td>
<td>1</td>
<td>1 Sept. 14</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Golden Vine</td>
<td>Small</td>
<td>1</td>
<td>1 Sept. 14</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paragon</td>
<td>Medium</td>
<td>1</td>
<td>1 Sept. 14</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Picton</td>
<td></td>
<td>1</td>
<td>1</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prince</td>
<td></td>
<td>1</td>
<td>1</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Russian Blue</td>
<td></td>
<td>1</td>
<td>1</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White Marrowfat</td>
<td>Large</td>
<td>1</td>
<td>1</td>
<td>106</td>
<td>85, 2½</td>
<td>945</td>
<td>15, 45</td>
<td>61.1</td>
<td></td>
</tr>
</tbody>
</table>
CO-OPERATIVE TESTS OF OATS.

In order to get accurate information regarding the suitability of different varieties of oats to different localities in the province, three representatives of the leading types of oats, namely, Banner, Ligowo and Old Island Black were tested in duplicate on one-sixtieth acre plots on farms in the eastern section of the province. Seven men undertook to conduct these tests for five years, under the direct supervision of Mr. Garnet LeLacheur, seed inspector, who gave the work very careful attention and who furnished me with many valuable notes. The best seed obtainable was supplied to these men, 1 pound 63 ounces for each plot. The grain was threshed and weighed at the Experimental Station. The farmer was asked to sow plots of the oats he had been growing alongside, for a check.

Oats.—Co-operative Experiments in Kings and Queens Counties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Farmer</th>
<th>Post Office</th>
<th>County</th>
<th>Variety</th>
<th>Average by Farms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 Bush.</td>
</tr>
<tr>
<td>1</td>
<td>Owen Sullivan</td>
<td>Vernon</td>
<td>Queens</td>
<td>Banner</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>James Simpson</td>
<td>Bay View</td>
<td>Queens</td>
<td>O. L. Black</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>Robert Furness</td>
<td>Vernon</td>
<td>Queens</td>
<td>Ligowo</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Vernon Shaw</td>
<td>Montagne</td>
<td>Kings</td>
<td>Check.</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>M. A. Stewart</td>
<td>Belle River</td>
<td>Kings</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>Edgar Geddings</td>
<td>Abney</td>
<td>Kings</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>A. E. Simpson</td>
<td>Bristol</td>
<td>Kings</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

Average of plots harvested: 53 24 49 6 46 27 45 26
Average of the 36 plots from seed sent out: 50 19
Grand average: 49 20

Mr. A. E. Simpson's plots at Bristol were so badly damaged by hail that it was impossible to do anything with them, as fully one-half of the grain was threshed when in the milik stage. I examined them carefully after the storm and noted that Old Island Black was the worst down but the least threshed. The Banner had apparently led in these plots. From the above returns we can say that Banner oats, from apparently the poorest sample of seed, has led for 1912. Old Island Black, though a little weak in the straw, came second. Ligowo in three instances was higher than the check, and in the other three was below the check.

The area of land available for multiplying pure seed is limited at this Station; however, thirteen lots of oats and two lots of wheat were sold at current prices. A blank form was sent to each applicant, asking him to agree to make a 3-year test of the variety sent with the variety that he had been growing previously on his farm. The replies received, when averaged up after a few years, will provide valuable information.
EXPERIMENTAL FARM, NAPPAH, N. S.

R. ROBERTSON, SUPERINTENDENT.

EXPERIMENTS WITH SPRING WHEAT.

Eleven varieties of spring wheat were sown in uniform test plots of one-fortieth acre each, the land being a heavy clay loam on which roots had been grown the previous year, and manure applied. This was ploughed in the fall of 1911, well worked up in the following spring and sown May 13 at the rate of 1 1/2 bushels per acre: 10 pounds clover and 12 pounds timothy seed per acre were also sown with this crop.

The following were the yields obtained from the named varieties. Three new sorts, under numbers, were also tested.

Spring Wheat.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of days Meaning</th>
<th>Average Length of Straw, including Head</th>
<th>Strength of straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Huron</td>
<td>May 13</td>
<td>Sept. 9</td>
<td>119</td>
<td>44</td>
<td>10</td>
<td>3</td>
<td>2160</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>Red Fife</td>
<td>May 13</td>
<td>12</td>
<td>122</td>
<td>42</td>
<td>10</td>
<td>3</td>
<td>1880</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>3.</td>
<td>White Fife</td>
<td>May 13</td>
<td>12</td>
<td>122</td>
<td>41</td>
<td>10</td>
<td>3</td>
<td>1840</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>4.</td>
<td>Early Red Fife</td>
<td>May 13</td>
<td>12</td>
<td>12</td>
<td>46</td>
<td>10</td>
<td>3</td>
<td>1560</td>
<td>26</td>
<td>60</td>
</tr>
<tr>
<td>5.</td>
<td>Marquis</td>
<td>May 13</td>
<td>10</td>
<td>120</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>1480</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>Boba</td>
<td>May 13</td>
<td>5</td>
<td>115</td>
<td>36</td>
<td>10</td>
<td>3</td>
<td>1460</td>
<td>23</td>
<td>60</td>
</tr>
<tr>
<td>7.</td>
<td>Stanley</td>
<td>May 13</td>
<td>10</td>
<td>120</td>
<td>42</td>
<td>10</td>
<td>3</td>
<td>1390</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>8.</td>
<td>Bishop</td>
<td>May 13</td>
<td>5</td>
<td>115</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>1260</td>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

FIELD CROPS OF WHEAT.

Three varieties of spring wheat were grown in half-acre lots.

The land was similar to and received the same treatment as that which was devoted to the test plots. These field plots were sown May 15 and 16.

The following yields were obtained: White Fife, 23 bushels 14 pounds; Huron, 19 bushels; Red Fife, 17 bushels 30 pounds per acre.

EXPERIMENTS WITH OATS.

Twelve varieties of oats were sown in uniform test plots of one-fortieth acre each, the land being a heavy clay loam on which roots had been grown the previous year, and manure applied for that crop. They were sown on May 15, at the rate of two to two and a half bushels per acre; 10 pounds clover and 12 pounds timothy per acre were sown with this crop.
The following were the yields obtained:—

OATS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Strength of Straw on a Scale of 10 Points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per Measured Bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danish Island</td>
<td>May 15 Aug. 30</td>
<td>106</td>
<td>42</td>
<td>7-5</td>
<td>3,329</td>
<td>35-5</td>
<td>97-22</td>
<td>35-5</td>
<td>97-22</td>
</tr>
<tr>
<td>2</td>
<td>Swedish Select</td>
<td>15 Sept. 3</td>
<td>111</td>
<td>44</td>
<td>5</td>
<td>8</td>
<td>3,246</td>
<td>35-10</td>
<td>36-5</td>
<td>36-10</td>
</tr>
<tr>
<td>3</td>
<td>Gold Rain</td>
<td>15 Aug. 31</td>
<td>108</td>
<td>46</td>
<td>7-5</td>
<td>3,200</td>
<td>36-4</td>
<td>94-9</td>
<td>34-6</td>
<td>94-9</td>
</tr>
<tr>
<td>4</td>
<td>Thousand Dollar</td>
<td>15 Sept. 3</td>
<td>111</td>
<td>44</td>
<td>5</td>
<td>8</td>
<td>3,145</td>
<td>36-18</td>
<td>34-5</td>
<td>36-18</td>
</tr>
<tr>
<td>5</td>
<td>Banner</td>
<td>15 Aug. 30</td>
<td>107</td>
<td>44</td>
<td>5</td>
<td>8</td>
<td>3,258</td>
<td>36-21</td>
<td>35-4</td>
<td>36-21</td>
</tr>
<tr>
<td>6</td>
<td>Twentieth Century</td>
<td>15 Sept. 3</td>
<td>111</td>
<td>44</td>
<td>6</td>
<td>8</td>
<td>3,000</td>
<td>35-20</td>
<td>35</td>
<td>35-20</td>
</tr>
<tr>
<td>7</td>
<td>Victory</td>
<td>15 Aug. 31</td>
<td>108</td>
<td>46</td>
<td>7-5</td>
<td>3,000</td>
<td>38-14</td>
<td>87-2</td>
<td>35-5</td>
<td>87-2</td>
</tr>
<tr>
<td>8</td>
<td>Abundance (Garton's Regenerated)</td>
<td>15 Aug. 30</td>
<td>107</td>
<td>43</td>
<td>7</td>
<td>2,960</td>
<td>36-4</td>
<td>85-3</td>
<td>35-4</td>
<td>85-3</td>
</tr>
<tr>
<td>9</td>
<td>Lincoln</td>
<td>15 Aug. 31</td>
<td>108</td>
<td>44</td>
<td>2</td>
<td>8</td>
<td>2,950</td>
<td>35-3</td>
<td>34</td>
<td>35-3</td>
</tr>
<tr>
<td>10</td>
<td>Pioneer</td>
<td>15 Aug. 23</td>
<td>108</td>
<td>46</td>
<td>6</td>
<td>8</td>
<td>2,900</td>
<td>36-10</td>
<td>35-5</td>
<td>36-10</td>
</tr>
<tr>
<td>11</td>
<td>Tagawa</td>
<td>15 Aug. 30</td>
<td>111</td>
<td>43</td>
<td>7</td>
<td>2,880</td>
<td>36-5</td>
<td>84-14</td>
<td>35-5</td>
<td>84-14</td>
</tr>
<tr>
<td>12</td>
<td>Siberian</td>
<td>15 Aug. 31</td>
<td>108</td>
<td>45</td>
<td>8</td>
<td>2,800</td>
<td>37-12</td>
<td>82-12</td>
<td>34</td>
<td>82-12</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH BARLEY.

Twelve varieties of barley, six each of two-row and six-row, were sown in uniform test plots of one-tenth of an acre each, the land being a heavy clay loam on which roots had been grown the previous year, and manure applied for that crop. This was ploughed in the fall of 1911 and well worked up in the spring and was sown May 15, at the rate of two bushels per acre; 10 pounds clover and 12 pounds timothy seed per acre were also sown with this crop.

The following were the yields obtained:—

Barley, Six-row.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including head</th>
<th>Strength of Straw on a Scale of 10 Points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per Measured Bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O. A. C. No. 21</td>
<td>May 15 Aug. 23</td>
<td>107</td>
<td>35</td>
<td>8</td>
<td>2-7</td>
<td>2,840</td>
<td>40-8</td>
<td>48</td>
<td>40-8</td>
</tr>
<tr>
<td>2</td>
<td>Oderbruch</td>
<td>15 Aug. 23</td>
<td>103</td>
<td>35</td>
<td>8</td>
<td>2-7</td>
<td>2,790</td>
<td>47-24</td>
<td>48</td>
<td>47-24</td>
</tr>
<tr>
<td>3</td>
<td>Nugent</td>
<td>15 Aug. 23</td>
<td>105</td>
<td>35</td>
<td>8</td>
<td>2-7</td>
<td>2,560</td>
<td>47-16</td>
<td>49</td>
<td>47-16</td>
</tr>
<tr>
<td>4</td>
<td>Odessa</td>
<td>15 Aug. 23</td>
<td>105</td>
<td>35</td>
<td>8</td>
<td>2-7</td>
<td>2,500</td>
<td>46-16</td>
<td>49</td>
<td>46-16</td>
</tr>
<tr>
<td>5</td>
<td>Stella</td>
<td>15 Aug. 23</td>
<td>107</td>
<td>35</td>
<td>10</td>
<td>2-7</td>
<td>2,240</td>
<td>48-12</td>
<td>49</td>
<td>48-12</td>
</tr>
<tr>
<td>6</td>
<td>Manchurian</td>
<td>15 Aug. 23</td>
<td>109</td>
<td>37</td>
<td>6</td>
<td>3-2</td>
<td>1,920</td>
<td>40-0</td>
<td>48</td>
<td>40-0</td>
</tr>
</tbody>
</table>

Barley, Two-row.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including head</th>
<th>Strength of Straw on a Scale of 10 Points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per Measured Bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>French Chevalier</td>
<td>May 15 Aug. 29</td>
<td>106</td>
<td>34</td>
<td>3</td>
<td>4</td>
<td>3,000</td>
<td>42-24</td>
<td>51</td>
<td>42-24</td>
</tr>
<tr>
<td>2</td>
<td>Swedish Chevalier</td>
<td>15 Aug. 29</td>
<td>106</td>
<td>35</td>
<td>5</td>
<td>4</td>
<td>2,960</td>
<td>41-32</td>
<td>50</td>
<td>41-32</td>
</tr>
<tr>
<td>3</td>
<td>Hannchen</td>
<td>15 Aug. 29</td>
<td>107</td>
<td>35</td>
<td>2</td>
<td>3-2</td>
<td>2,790</td>
<td>57-24</td>
<td>49</td>
<td>57-24</td>
</tr>
<tr>
<td>4</td>
<td>Beaver</td>
<td>15 Aug. 29</td>
<td>106</td>
<td>37</td>
<td>6</td>
<td>3-5</td>
<td>2,120</td>
<td>44-8</td>
<td>50</td>
<td>44-8</td>
</tr>
<tr>
<td>5</td>
<td>Canadian Thorpe</td>
<td>15 Aug. 29</td>
<td>106</td>
<td>36</td>
<td>10</td>
<td>2-7</td>
<td>2,040</td>
<td>42-24</td>
<td>48</td>
<td>42-24</td>
</tr>
<tr>
<td>6</td>
<td>Invincible</td>
<td>15 Aug. 29</td>
<td>108</td>
<td>42</td>
<td>10</td>
<td>3</td>
<td>2,000</td>
<td>41-32</td>
<td>49</td>
<td>41-32</td>
</tr>
</tbody>
</table>
DIvision of cereals

SESSIONAL PAPER No. 16

EXPERIMENTS WITH PEAS.

Ten varieties of peas were sown in uniform plots of one-fortieth acre each. The land was in a fair state of fertility, having been in corn the previous year. They were sown on June 5, at the rate of one and one-half to two bushels per acre, according to the size of the pea. Owing to continued wet weather this crop was not harvested until September 24, and was almost a failure, some of the plots being so badly damaged that we could not get seed from them.

The following yields were obtained:

Peas.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Size of Pea</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw</th>
<th>Average Length of Pod</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White Marrowfat</td>
<td>Large</td>
<td>June 5</td>
<td>Sept. 24</td>
<td>111</td>
<td>38</td>
<td>3</td>
<td>1,040</td>
<td>17 20</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Arthur, Selected</td>
<td>Medium</td>
<td>5</td>
<td>20</td>
<td>107</td>
<td>34</td>
<td>2</td>
<td>1,000</td>
<td>16 40</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Chancellor</td>
<td>Small</td>
<td>5</td>
<td>20</td>
<td>107</td>
<td>35</td>
<td>2</td>
<td>880</td>
<td>14 40</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Picton</td>
<td>Medium</td>
<td>5</td>
<td>22</td>
<td>109</td>
<td>36</td>
<td>2</td>
<td>800</td>
<td>13 20</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>Mackay</td>
<td>Small</td>
<td>5</td>
<td>22</td>
<td>109</td>
<td>36</td>
<td>2</td>
<td>660</td>
<td>11 20</td>
<td>57 5</td>
</tr>
<tr>
<td>6</td>
<td>Russian Blue</td>
<td>Medium</td>
<td>5</td>
<td>20</td>
<td>107</td>
<td>36</td>
<td>2</td>
<td>560</td>
<td>9 20</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>Daniel O'Rourke</td>
<td>Small</td>
<td>5</td>
<td>20</td>
<td>107</td>
<td>34</td>
<td>2</td>
<td>540</td>
<td>9 20</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>English Grey</td>
<td>Medium</td>
<td>5</td>
<td>20</td>
<td>107</td>
<td>35</td>
<td>2</td>
<td>520</td>
<td>8 40</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>Golden Vine</td>
<td>Small</td>
<td>5</td>
<td>20</td>
<td>107</td>
<td>38</td>
<td>2</td>
<td>480</td>
<td>8 40</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>Prince</td>
<td>Medium</td>
<td>5</td>
<td>22</td>
<td>109</td>
<td>37</td>
<td>2</td>
<td>440</td>
<td>7 20</td>
<td>58</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH BUCKWHEAT.

Five varieties of buckwheat were sown in uniform test plots of one-fortieth of an acre each. The land was a clay loam, on which roots had been grown the previous year, and on which manure had been applied at the rate of 20 tons per acre.

The following yields were obtained:

Buckwheat.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tartarian</td>
<td>June</td>
<td>Sept. 4</td>
<td>91</td>
<td>40</td>
<td>5</td>
<td>2,250</td>
<td>47 24</td>
</tr>
<tr>
<td>2</td>
<td>Japanese</td>
<td>5</td>
<td>4</td>
<td>91</td>
<td>36</td>
<td>10</td>
<td>2,200</td>
<td>45 40</td>
</tr>
<tr>
<td>3</td>
<td>Rye</td>
<td>5</td>
<td>4</td>
<td>91</td>
<td>38</td>
<td>5</td>
<td>2,120</td>
<td>44 8</td>
</tr>
<tr>
<td>4</td>
<td>Silverhull</td>
<td>5</td>
<td>2</td>
<td>89</td>
<td>42</td>
<td>5</td>
<td>2,040</td>
<td>42 24</td>
</tr>
<tr>
<td>5</td>
<td>Grey</td>
<td>5</td>
<td>2</td>
<td>89</td>
<td>40</td>
<td>7</td>
<td>2,000</td>
<td>41 32</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, CAP ROUGE, QUEBEC.

GUS. A. LANGEILIER, SUPERINTENDENT.

CEREALS.

There were fourteen varieties of wheat, eleven of peas, six of 2-row barley, seven of 6-row barley and eleven of oats under test. There were also five plots of oats and barley mixed.

The season was one of the worst, if not the worst, for the last twenty-five years. It rained on fourteen different days from May 7 to 31, and on thirteen from June 1 to 18. Nothing was sown in the test plots until this latter date, which was followed by a drought lasting until the end of July. It is no wonder that the yields were very low and that some varieties did not mature. The peas were so seriously injured by insects that no crop was obtained.

All the test plots were of one-sixtieth acre. There are paths, four feet wide, between plots, and alleys of eighteen feet between ranges.

A permanent location was chosen for the test plots. The area is divided in three equal parts, on one of which Indian corn and field roots will be grown, whilst cereals come on the next, and clover on the last. Thus, a three-year rotation will be followed. The piece of ground chosen for the test of varieties is the most uniform on the farm, though of a poor quality. There are seventy-eight plots available for cereals.

SPRING WHEAT.

Ten named varieties were grown, and four new sorts under numbers. Only the named varieties are here reported on.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of days. Maturing</th>
<th>Average length of straw head</th>
<th>Strength of straw on scythe of 10 points</th>
<th>Average length of Grain per head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain Per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preston</td>
<td>June 18 Oct. 2</td>
<td>106</td>
<td>Ins.</td>
<td>27.5</td>
<td>2.5</td>
<td>720</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Marquis</td>
<td>" 18 " 2</td>
<td>112</td>
<td>Ins.</td>
<td>27.7</td>
<td>10</td>
<td>650</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>White Fife</td>
<td>" 18 " 16</td>
<td>129</td>
<td>Ins.</td>
<td>30.7</td>
<td>10</td>
<td>660</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bishop</td>
<td>" 18 " 2</td>
<td>106</td>
<td>Ins.</td>
<td>30.5</td>
<td>7</td>
<td>660</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Huron</td>
<td>" 18 " 8</td>
<td>112</td>
<td>Ins.</td>
<td>25</td>
<td>6</td>
<td>540</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Yellow Cross</td>
<td>" 18 Sept 23</td>
<td>97</td>
<td>Ins.</td>
<td>19.7</td>
<td>5</td>
<td>480</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Red Fife</td>
<td>" 18 Oct. 16</td>
<td>120</td>
<td>Ins.</td>
<td>25.5</td>
<td>7</td>
<td>420</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bobe</td>
<td>" 18 " 2</td>
<td>106</td>
<td>Ins.</td>
<td>24.5</td>
<td>10</td>
<td>350</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Early Red Fife ...</td>
<td>" 18 " 8</td>
<td>112</td>
<td>Ins.</td>
<td>26.5</td>
<td>7</td>
<td>360</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Alpha Selected ...</td>
<td>" 18 " 8</td>
<td>112</td>
<td>Ins.</td>
<td>23.7</td>
<td>5</td>
<td>380</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
OATS.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. Days Maturing</th>
<th>Average Length of Straw, including head</th>
<th>Average Length of head</th>
<th>Strength of straw on scales of 10 points</th>
<th>Yield of Grain per Acre</th>
<th>Smut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Garton's Abundance</td>
<td>June 18</td>
<td>Oct. 16</td>
<td>120</td>
<td>43</td>
<td>10</td>
<td>7</td>
<td>1,609</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>Gold Rain</td>
<td>n 18</td>
<td>n 16</td>
<td>120</td>
<td>48</td>
<td>10</td>
<td>6</td>
<td>1,620</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>Ligowo, Swedish</td>
<td>n 18</td>
<td>n 16</td>
<td>120</td>
<td>46</td>
<td>10</td>
<td>7</td>
<td>1,620</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Thousand Dollar</td>
<td>n 18</td>
<td>n 16</td>
<td>120</td>
<td>42</td>
<td>10</td>
<td>6</td>
<td>1,620</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Twentieth Century</td>
<td>n 18</td>
<td>n 16</td>
<td>120</td>
<td>40</td>
<td>9</td>
<td>6</td>
<td>1,620</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Eighty Day</td>
<td>n 18</td>
<td>Sept. 25</td>
<td>100</td>
<td>29.5</td>
<td>10</td>
<td>1.5</td>
<td>900</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>Siberian</td>
<td>n 18</td>
<td>Oct. 16</td>
<td>120</td>
<td>44</td>
<td>9</td>
<td>7</td>
<td>900</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>Daubeney</td>
<td>n 18</td>
<td>166</td>
<td>35</td>
<td>10</td>
<td>5</td>
<td>840</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Banner</td>
<td>n 18</td>
<td>Did not ripen</td>
<td></td>
<td>44</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Banner (from general crop)</td>
<td>n 18</td>
<td>n n</td>
<td></td>
<td>44</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Victory</td>
<td>n 18</td>
<td>n n</td>
<td></td>
<td>42</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Clydesdale</td>
<td>n 18</td>
<td>n n</td>
<td></td>
<td>41</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIX-ROW BARLEY.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including head</th>
<th>Average Length of head</th>
<th>Yield of grain per Acre</th>
<th>Yield of grain per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stella</td>
<td>June 18</td>
<td>Sept. 26</td>
<td>100</td>
<td>27.5</td>
<td>10</td>
<td>2.5</td>
<td>1,200</td>
</tr>
<tr>
<td>2</td>
<td>Odessa</td>
<td>n 18</td>
<td>100</td>
<td>27</td>
<td>2</td>
<td>10</td>
<td>2.7</td>
<td>1,850</td>
</tr>
<tr>
<td>3</td>
<td>Success</td>
<td>n 18</td>
<td>17</td>
<td>91</td>
<td>26.7</td>
<td>10</td>
<td>2.3</td>
<td>1,800</td>
</tr>
<tr>
<td>4</td>
<td>Manchurian</td>
<td>n 18</td>
<td>26</td>
<td>100</td>
<td>24.2</td>
<td>10</td>
<td>2.3</td>
<td>1,620</td>
</tr>
<tr>
<td>5</td>
<td>O.A.C. No. 21</td>
<td>n 18</td>
<td>23</td>
<td>97</td>
<td>22.5</td>
<td>10</td>
<td>2.5</td>
<td>900</td>
</tr>
<tr>
<td>6</td>
<td>Eversevaron</td>
<td>n 18</td>
<td>Oct. 16</td>
<td>106</td>
<td>24.1</td>
<td>10</td>
<td>2.5</td>
<td>600</td>
</tr>
<tr>
<td>7</td>
<td>Black Japan</td>
<td>n 18</td>
<td>Sept. 23</td>
<td>97</td>
<td>16</td>
<td>10</td>
<td>2.5</td>
<td>600</td>
</tr>
</tbody>
</table>

TWO-ROW BARLEY.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including head</th>
<th>Average Length of head</th>
<th>Yield of grain per Acre</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Early Chevalier</td>
<td>June 18</td>
<td>Sept. 25</td>
<td>100</td>
<td>27</td>
<td>10</td>
<td>3</td>
<td>1,350</td>
</tr>
<tr>
<td>2</td>
<td>Hennchen</td>
<td>n 18</td>
<td>Oct. 16</td>
<td>120</td>
<td>28</td>
<td>10</td>
<td>3</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>Swan's Neck</td>
<td>n 18</td>
<td>16</td>
<td>120</td>
<td>23</td>
<td>10</td>
<td>3</td>
<td>420</td>
</tr>
<tr>
<td>4</td>
<td>Beaver</td>
<td>n 18</td>
<td>Did not ripen</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Duckbill</td>
<td>n 18</td>
<td>n n</td>
<td>100</td>
<td>27.5</td>
<td>9</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Swedish Chevalier</td>
<td>n 18</td>
<td>n n</td>
<td>100</td>
<td>27.5</td>
<td>9</td>
<td>2.5</td>
<td>1-10 green</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARMS

PEAS.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Size of Pea.</th>
<th>Date of sowing</th>
<th>Date of ripening</th>
<th>Number of days maturing</th>
<th>Average length of straw</th>
<th>Average length of pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chancellor</td>
<td>Small</td>
<td>June 18</td>
<td>Oct. 8</td>
<td>112</td>
<td>25.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>Golden Vine</td>
<td>"</td>
<td>8</td>
<td>"</td>
<td>112</td>
<td>22</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>Prussian Blue</td>
<td>Medium</td>
<td>8</td>
<td>"</td>
<td>112</td>
<td>18</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>Black-eye Marrowfat</td>
<td>Large</td>
<td>18</td>
<td>16</td>
<td>120</td>
<td>32.5</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>Arthur Selected</td>
<td>Medium</td>
<td>18</td>
<td>16</td>
<td>120</td>
<td>27.5</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>Maclay</td>
<td>"</td>
<td>18</td>
<td>16</td>
<td>120</td>
<td>27.2</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>Wisconsin Blue</td>
<td>"</td>
<td>18</td>
<td>16</td>
<td>120</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Paragon</td>
<td>"</td>
<td>18</td>
<td>16</td>
<td>120</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>White Marrowfat</td>
<td>Large</td>
<td>18</td>
<td>16</td>
<td>120</td>
<td>21.7</td>
<td>1.7</td>
</tr>
<tr>
<td>10</td>
<td>English Grey</td>
<td>Medium</td>
<td>18</td>
<td>16</td>
<td>120</td>
<td>18.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

OATS AND BARLEY.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety and Seeing.</th>
<th>Date of sowing</th>
<th>Date of ripening</th>
<th>Number of days maturing</th>
<th>Average length of straw, including head</th>
<th>Strength of straw on 10 bushels</th>
<th>Average length of head</th>
<th>Yield of grain per acre</th>
<th>Smut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thousand Dollar and Swedish Chevalier</td>
<td>June 19</td>
<td>Oct. 16</td>
<td>119</td>
<td>Oats 38</td>
<td>9</td>
<td>6</td>
<td>1,020</td>
<td>Much.</td>
</tr>
<tr>
<td>2</td>
<td>Daubeney and Swedish Chevalier</td>
<td>19</td>
<td>2</td>
<td>165</td>
<td>Oats 46</td>
<td>9</td>
<td>2</td>
<td>900</td>
<td>Very little.</td>
</tr>
<tr>
<td>3</td>
<td>Daubeney and Early Chevalier</td>
<td>19</td>
<td>8</td>
<td>111</td>
<td>Oats 36</td>
<td>10</td>
<td>2</td>
<td>840</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>Gold Rain and Swan's Neck</td>
<td>19</td>
<td>16</td>
<td>119</td>
<td>Oats 36</td>
<td>10</td>
<td>2</td>
<td>840</td>
<td>Much.</td>
</tr>
<tr>
<td>5</td>
<td>Banner and Duckbill</td>
<td>Did not ripen</td>
<td></td>
<td></td>
<td>Oats 36</td>
<td>9</td>
<td>2</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

SEED GRAIN FOR SALE.

Arrangements are being made, for future years, to grow an acre or more of at least one variety of wheat, oats, barley and peas, so that a certain amount of seed may be available to sell to farmers who wish to secure a bushel or two of pure seed of the best varieties.
EXPERIMENTAL FARM, BRANDON, MAN.

W. C. McKILLICAN, B.S.A., SUPERINTENDENT.

SPRING WHEAT.

Four named varieties of spring wheat were tested in uniform test plots of one-fortieth acre each. The seed was sown on May 7, at the rate of 1½ bushels per acre. The land was sandy loam and was well summer-fallowed the previous year. The extreme drought in June injured the grain, particularly Prelude, on account of it being headed out at this time. Wet weather, later in the season, made a poor sample of grain.

SPRING WHEAT.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Type of Head</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Growth of Straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marquis</td>
<td>Bald</td>
<td>May 7</td>
<td>Aug. 22</td>
<td>107</td>
<td>33</td>
<td>10</td>
<td>2.7</td>
<td>36.00</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Red Fife</td>
<td>Bald</td>
<td>" 7</td>
<td>" 23</td>
<td>113</td>
<td>37</td>
<td>10</td>
<td>2.7</td>
<td>36.00</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Garten's No. 46</td>
<td>Bearded</td>
<td>" 7</td>
<td>" 26</td>
<td>111</td>
<td>38</td>
<td>10</td>
<td>3.5</td>
<td>33.20</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Prelude</td>
<td>Bearded</td>
<td>" 7</td>
<td>2</td>
<td>87</td>
<td>26</td>
<td>8</td>
<td>2.2</td>
<td>14.00</td>
<td>61</td>
</tr>
</tbody>
</table>

FIVE-YEAR AVERAGES.

Two of these varieties, Marquis and Red Fife, have been grown for five years. For Manitoba conditions, these varieties are recommended. The following are the average results for five years:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Average Stiffness of Straw</th>
<th>Average No. of days Maturing</th>
<th>Average Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bush, Lb.</td>
</tr>
<tr>
<td>Marquis</td>
<td>Stiff</td>
<td>106</td>
<td>43</td>
</tr>
<tr>
<td>Red Fife</td>
<td>Stiff</td>
<td>112</td>
<td>40</td>
</tr>
</tbody>
</table>

NEW VARIETIES.

In addition to the named varieties, ten new varieties, recently produced by the Dominion Cerealist, were tested, under numbers. These varieties were tested under the same conditions as the other four. They suffered badly in the June drought and sent out many late shoots in the subsequent wet weather. This year's results do not indicate that any of these will be serious rivals of Marquis or Red Fife for Manitoba use.
In order to test the purity, yielding power, carliness, etc., of different strains of Red Fife, seed was obtained from a number of the seed houses and also from farmers who are well known as growers of Red Fife of quality. The following results were obtained:

<table>
<thead>
<tr>
<th>Strain of Red Fife</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw including head</th>
<th>Strength of straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>No. of foreign heads per thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandon Experimental Farm</td>
<td>May 8</td>
<td>Aug. 31</td>
<td>115</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Dow Bros. "Registered"</td>
<td>" 8"</td>
<td>" 3"</td>
<td>115</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>W. H. English "Registered"</td>
<td>" 8"</td>
<td>" 3"</td>
<td>115</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>A. E. McKenzie Co. "Gold Standard"</td>
<td>" 8"</td>
<td>" 3"</td>
<td>118</td>
<td>41</td>
<td>10</td>
<td>3</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Thos. Thompson "Registered"</td>
<td>" 8"</td>
<td>" 3"</td>
<td>118</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>39</td>
<td>20</td>
</tr>
<tr>
<td>Wm. Laughlin "Prizewinning"</td>
<td>" 8"</td>
<td>" 5"</td>
<td>120</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>Wm. Rennie Co.</td>
<td>" 8"</td>
<td>" 6"</td>
<td>121</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>41</td>
<td>20</td>
</tr>
<tr>
<td>J. T. Maynard's "Prizewinning"</td>
<td>" 8"</td>
<td>" 7"</td>
<td>122</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

Oats.

Sixteen varieties of oats were sown in uniform test plots. They were sown on May 9 at the rate of two and one-half bushels per acre. The land was sandy loam, and had been well summer-fallowed the previous year. The extreme drought, followed by extreme wet, caused a large amount of second growth, which was late in ripening.

Oats.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw including head</th>
<th>Strength of straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Banner</td>
<td>May 9</td>
<td>Sept. 3</td>
<td>117</td>
<td>42</td>
<td>9</td>
<td>8</td>
<td>105</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Twentieth Century</td>
<td>9</td>
<td>6</td>
<td>120</td>
<td>46</td>
<td>9</td>
<td>8</td>
<td>104</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Improved American</td>
<td>9</td>
<td>3</td>
<td>117</td>
<td>42</td>
<td>9</td>
<td>8</td>
<td>104</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Thomas Dollar</td>
<td>9</td>
<td>6</td>
<td>120</td>
<td>46</td>
<td>1</td>
<td>8</td>
<td>102</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Gold Rain (yellow)</td>
<td>9</td>
<td>3</td>
<td>117</td>
<td>48</td>
<td>6</td>
<td>7</td>
<td>101</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Newmarket</td>
<td>9</td>
<td>7</td>
<td>121</td>
<td>46</td>
<td>5</td>
<td>8</td>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td>7</td>
<td>Siberian</td>
<td>9</td>
<td>5</td>
<td>119</td>
<td>42</td>
<td>7</td>
<td>8</td>
<td>98</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>Swedish Select</td>
<td>9</td>
<td>5</td>
<td>119</td>
<td>46</td>
<td>2</td>
<td>8</td>
<td>98</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Victory or Seger</td>
<td>9</td>
<td>7</td>
<td>117</td>
<td>41</td>
<td>9</td>
<td>6</td>
<td>96</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>Lig wo (Swedish)</td>
<td>9</td>
<td>7</td>
<td>117</td>
<td>46</td>
<td>3</td>
<td>8</td>
<td>96</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>Irish Victor</td>
<td>9</td>
<td>3</td>
<td>117</td>
<td>42</td>
<td>9</td>
<td>8</td>
<td>91</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>Orloff (yellow)</td>
<td>9</td>
<td>Aug. 23</td>
<td>111</td>
<td>40</td>
<td>8</td>
<td>6</td>
<td>91</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Victor (black)</td>
<td>9</td>
<td>Sept. 3</td>
<td>119</td>
<td>50</td>
<td>7</td>
<td>13</td>
<td>90</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>Daubney</td>
<td>9</td>
<td>Aug. 31</td>
<td>114</td>
<td>48</td>
<td>8</td>
<td>5</td>
<td>88</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>Garten's No. 22</td>
<td>9</td>
<td>Sept. 5</td>
<td>119</td>
<td>48</td>
<td>6</td>
<td>8</td>
<td>71</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>Regenerated Abundance</td>
<td>9</td>
<td>7</td>
<td>121</td>
<td>46</td>
<td>3</td>
<td>8</td>
<td>69</td>
<td>14</td>
</tr>
</tbody>
</table>
Banner still holds its own as the best all-round variety for Manitoba. The storms at harvest time tested the strength of the straw of the different varieties, and made very interesting comparisons. Some varieties stood up well, while others were very badly lodged. The common idea that stiff coarse-strawed varieties will stand up best was not upheld by this test. Finer-strawed sorts seemed to have more elasticity and to be able to bend before the wind, without breaking. The varieties which stood up best were the Banner and Improved American, which are probably identical, and the new Swedish variety, Victory.

FIVE YEAR AVERAGES.

Nine of these varieties have been grown for five years continuously, and the average yields are reported herewith. Two others have been grown four years, and two more for three years.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Average Strength of Straw</th>
<th>Average No. of Days Maturing</th>
<th>Average Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved American</td>
<td>Stiff</td>
<td>101</td>
<td>103</td>
</tr>
<tr>
<td>Banner</td>
<td>Medium</td>
<td>102</td>
<td>96</td>
</tr>
<tr>
<td>Twentieth Century</td>
<td>Medium</td>
<td>101</td>
<td>96</td>
</tr>
<tr>
<td>Swedish Select</td>
<td>Stiff</td>
<td>101</td>
<td>95</td>
</tr>
<tr>
<td>Irish Victor</td>
<td>Fairly stiff</td>
<td>101</td>
<td>94</td>
</tr>
<tr>
<td>Siberian</td>
<td>Fairly stiff</td>
<td>101</td>
<td>89</td>
</tr>
<tr>
<td>Thousand Dollar</td>
<td>Stiff</td>
<td>94</td>
<td>77</td>
</tr>
<tr>
<td>Ligowo</td>
<td>Fairly stiff</td>
<td>103</td>
<td>92</td>
</tr>
<tr>
<td>Daubeney</td>
<td>Fairly stiff</td>
<td>103</td>
<td>88</td>
</tr>
<tr>
<td>Regenerated Abundance (average of 4 years)</td>
<td>Fairly stiff</td>
<td>103</td>
<td>88</td>
</tr>
<tr>
<td>Ornoff (average of 4 years)</td>
<td>Fairly stiff</td>
<td>103</td>
<td>88</td>
</tr>
<tr>
<td>Gold Rain (average of 3 years)</td>
<td>Fairly stiff</td>
<td>103</td>
<td>88</td>
</tr>
<tr>
<td>Victory (average of 3 years)</td>
<td>Fairly stiff</td>
<td>103</td>
<td>88</td>
</tr>
</tbody>
</table>

INFLUENCE OF LOCATION ON SEED OATS.

In co-operation with two of the American Experiment Stations, an experiment is being tried to compare the results obtained in sowing seed oats from different parts of the continent. The seed came originally from the same source in 1910. One lot was grown in Wisconsin, one in Ohio and one at Brandon in 1911. Seed from the three sources was sown on uniform test plots under the same conditions as the tests of varieties of oats with the following results:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw including head</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swedish Select (Brandon seed)</td>
<td>May 9</td>
<td>Sept. 5</td>
<td>119</td>
<td>46</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Swedish Select (Ohio seed)</td>
<td>"</td>
<td>9</td>
<td>120</td>
<td>46</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Swedish Select (Wisconsin seed)</td>
<td>"</td>
<td>9</td>
<td>120</td>
<td>46</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
SIX-ROW BARLEY.

Ten varieties of six-row barley were tested in uniform test plots. They were sown on May 20, at the rate of two bushels per acre. The land was sandy loam and was summer-fallowed the previous year. Most of the plots were badly lodged, some of the earlier sorts alone escaping.

SIX-ROW BARLEY.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw including head</th>
<th>Strength of Ear (10 points)</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O.A.C. No. 21</td>
<td>May 20</td>
<td>Aug. 26</td>
<td>98</td>
<td>36</td>
<td>7</td>
<td>2.5</td>
<td>87</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Garton’s No. 68</td>
<td>"</td>
<td>"</td>
<td>102</td>
<td>34</td>
<td>5</td>
<td>2.2</td>
<td>86</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Manchurian</td>
<td>"</td>
<td>"</td>
<td>100</td>
<td>38</td>
<td>7</td>
<td>3</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Odessa</td>
<td>"</td>
<td>"</td>
<td>103</td>
<td>33</td>
<td>3</td>
<td>2.5</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Mensery</td>
<td>"</td>
<td>"</td>
<td>100</td>
<td>37</td>
<td>6</td>
<td>2.7</td>
<td>79</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Silver King</td>
<td>"</td>
<td>"</td>
<td>102</td>
<td>31</td>
<td>4</td>
<td>2</td>
<td>74</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Mansfield</td>
<td>"</td>
<td>"</td>
<td>101</td>
<td>38</td>
<td>8</td>
<td>2.5</td>
<td>73</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Yale</td>
<td>"</td>
<td>"</td>
<td>98</td>
<td>37</td>
<td>6</td>
<td>2.7</td>
<td>71</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>Guy Mayle (hullless)</td>
<td>"</td>
<td>"</td>
<td>93</td>
<td>29</td>
<td>10</td>
<td>2.5</td>
<td>67</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Success (beardless)</td>
<td>"</td>
<td>"</td>
<td>90</td>
<td>27</td>
<td>10</td>
<td>2.2</td>
<td>65</td>
<td>40</td>
</tr>
</tbody>
</table>

O. A. C. No. 21 and Manchurian are recommended as the best sorts of six-row barley at present under test.

FIVE YEAR AVERAGES.

Five of these varieties have been grown for five years with the following average results:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Average Stiffness of Straw</th>
<th>Average No. of days Maturing</th>
<th>Average yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. A. C., No. 21</td>
<td>Stiff</td>
<td>86</td>
<td>67</td>
</tr>
<tr>
<td>Mensery</td>
<td>Fairly stiff</td>
<td>87</td>
<td>66</td>
</tr>
<tr>
<td>Odessa</td>
<td>Medium</td>
<td>88</td>
<td>64</td>
</tr>
<tr>
<td>Yale</td>
<td>Fairly stiff</td>
<td>87</td>
<td>63</td>
</tr>
<tr>
<td>Mansfield</td>
<td>Fairly stiff</td>
<td>87</td>
<td>60</td>
</tr>
</tbody>
</table>

TWO-ROW BARLEY.

Seven varieties of two-row barley were tested in uniform test plots. They were sown on May 20, at the rate of two bushels per acre. The land was sandy loam, summer-fallowed the previous year. Nearly all varieties were very badly lodged by the storms at harvest time.
TWO-ROW BARLEY.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of days Maturing</th>
<th>Average length of Straw, in inches</th>
<th>Average strength of Straw, on a scale of 1 point</th>
<th>Average length of head, in inches</th>
<th>Yield of Grain per acre</th>
<th>Weight per bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hannchen</td>
<td>May 20.</td>
<td>Sept. 4.</td>
<td>107</td>
<td>35</td>
<td>2</td>
<td>2.5</td>
<td>73</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Brewer</td>
<td>" 20.</td>
<td>" 6.</td>
<td>109</td>
<td>39</td>
<td>1</td>
<td>3.0</td>
<td>73</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Clifford</td>
<td>" 20.</td>
<td>" 2.</td>
<td>105</td>
<td>41</td>
<td>6</td>
<td>3.5</td>
<td>65</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Gold</td>
<td>" 20.</td>
<td>" 5.</td>
<td>108</td>
<td>35</td>
<td>1</td>
<td>3.0</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Beaver</td>
<td>" 20.</td>
<td>" 6.</td>
<td>109</td>
<td>44</td>
<td>8</td>
<td>5.0</td>
<td>62</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>Canadian Thorpe</td>
<td>" 20.</td>
<td>" 3.</td>
<td>106</td>
<td>38</td>
<td>2</td>
<td>3.5</td>
<td>62</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Swedish Chevalier</td>
<td>" 20.</td>
<td>" 6.</td>
<td>109</td>
<td>36</td>
<td>0</td>
<td>3.5</td>
<td>56</td>
<td>32</td>
</tr>
</tbody>
</table>

Two-row barleys, as a class, are not as well suited to this climate as six-row varieties. They are lighter-yielding, later and more inclined to lodge.

FIVE YEAR AVERAGES.

Four of these varieties have been grown for five years, and one more has been grown for three years. The following are the average results of these tests:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Average No. of days Maturing</th>
<th>Average Strength of Straw</th>
<th>Average Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Thorpe</td>
<td>92</td>
<td>Medium</td>
<td>Bush. Lb. 59 5</td>
</tr>
<tr>
<td>Swedish Chevalier</td>
<td>90</td>
<td>Weak</td>
<td>Bush. Lb. 56 26</td>
</tr>
<tr>
<td>Clifford</td>
<td>89</td>
<td>Fairly stiff</td>
<td>Bush. Lb. 51 10</td>
</tr>
<tr>
<td>Beaver</td>
<td>92</td>
<td>"</td>
<td>Bush. Lb. 50 10</td>
</tr>
<tr>
<td>Hannchen (average of 3 years)</td>
<td>95</td>
<td>Medium</td>
<td>Bush. Lb. 67 12</td>
</tr>
</tbody>
</table>

FLAX.

Eight varieties of flax were tested in uniform test plots. They were sown on June 8, at the rate of one-half bushel per acre. The land was sandy loam, summer-fallowed the previous year. On account of their being sown so late, and the latter part of the summer being cool and wet, all varieties were more or less injured by frost.
FLAX.—Test of Varieties.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Strength of Straw on a scale of 10 points</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured Bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.D.R. No. 114</td>
<td>June 8</td>
<td>Sept. 24</td>
<td>108</td>
<td>24</td>
<td>8</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>N.D.R. No. 52</td>
<td>" 8</td>
<td>" 26</td>
<td>110</td>
<td>24</td>
<td>3</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>N.D.R. No. 73</td>
<td>" 8</td>
<td>" 29</td>
<td>113</td>
<td>25</td>
<td>2</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>White Flowering</td>
<td>" 8</td>
<td>" 29</td>
<td>113</td>
<td>22</td>
<td>6</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>Primost</td>
<td>" 8</td>
<td>Oct. 2</td>
<td>115</td>
<td>24</td>
<td>3</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>La Plata</td>
<td>" 8</td>
<td>" 3</td>
<td>117</td>
<td>18</td>
<td>7</td>
<td>17</td>
<td>48</td>
</tr>
<tr>
<td>Common</td>
<td>" 8</td>
<td>Sept. 23</td>
<td>109</td>
<td>26</td>
<td>7</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Russian</td>
<td>" 8</td>
<td>" 23</td>
<td>110</td>
<td>30</td>
<td>5</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

The three numbered varieties were obtained from Professor Bolley, of the North Dakota Agricultural College. This is the first year they have been tested here, and they have made a good showing. If further tests confirm this one, these varieties may prove of value.

FIELD PEAS.

Ten varieties of field peas were sown on May 8, at from two to three bushels per acre, depending on the size of the pea. The land was sandy loam, summer-fallowed the previous year.

PEAS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Size of Pea</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of days Maturing</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured Bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo</td>
<td>Medium</td>
<td>May 8</td>
<td>Sept. 23</td>
<td>126</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>Arthur Selected</td>
<td>"</td>
<td>" 8</td>
<td>" 16</td>
<td>119</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Prussian Blue</td>
<td>"</td>
<td>" 8</td>
<td>" 29</td>
<td>131</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Arthur</td>
<td>"</td>
<td>" 8</td>
<td>Oct. 1</td>
<td>134</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Mackay</td>
<td>"</td>
<td>" 8</td>
<td>Oct. 1</td>
<td>131</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Prince</td>
<td>"</td>
<td>" 8</td>
<td>Oct. 1</td>
<td>131</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>English Grey</td>
<td>"</td>
<td>" 8</td>
<td>Oct. 1</td>
<td>131</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Chancellor</td>
<td>Small</td>
<td>" 8</td>
<td>Sept. 30</td>
<td>133</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>Paragon</td>
<td>Medium</td>
<td>" 8</td>
<td>Oct. 1</td>
<td>134</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Golden Vine</td>
<td>Small</td>
<td>" 8</td>
<td>Oct. 1</td>
<td>133</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

The earlier varieties did the best this year on account of the cool wet summer. Solo, a new variety from Sweden, seems to be very promising.
DIVISION OF CEREALS

SESSIONAL PAPER No. 16

FIVE YEAR AVERAGES.

Eight of these varieties have been under test for five years with the following average results:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Average number of days maturing</th>
<th>Average Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mackay</td>
<td>120</td>
<td>44 15</td>
</tr>
<tr>
<td>Prince</td>
<td>122</td>
<td>43 27</td>
</tr>
<tr>
<td>Paragon</td>
<td>122</td>
<td>41 25</td>
</tr>
<tr>
<td>English Grey</td>
<td>133</td>
<td>40 39</td>
</tr>
<tr>
<td>Arthur</td>
<td>120</td>
<td>39 39</td>
</tr>
<tr>
<td>Golden Vine</td>
<td>125</td>
<td>37 42</td>
</tr>
<tr>
<td>Prussian Blue</td>
<td>120</td>
<td>37 37</td>
</tr>
<tr>
<td>Chancellor</td>
<td>119</td>
<td>36 15</td>
</tr>
</tbody>
</table>

FIELDS OF SEED GRAIN.

Fields of several varieties of pure seed grain were grown, for the purpose of supplying the Dominion Cerealist with seed for free distribution, to have a supply of clean seed for general use on the Farm, and to be able to sell small quantities to Manitoba farmers who wished to purchase. The following were the lots grown:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Preparation of land</th>
<th>Acres</th>
<th>Yield per acre</th>
<th>Total Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marquis wheat</td>
<td>Sod,broken and back-set</td>
<td>13</td>
<td>44 00</td>
<td>572 00</td>
</tr>
<tr>
<td>Prelude</td>
<td>Corn and root land</td>
<td>3</td>
<td>19 36</td>
<td>14 42</td>
</tr>
<tr>
<td>No. 363 El</td>
<td>"</td>
<td>11</td>
<td>27 12</td>
<td>34 00</td>
</tr>
<tr>
<td>Banner oats</td>
<td>Summer fallow</td>
<td>6</td>
<td>85 00</td>
<td>510 00</td>
</tr>
<tr>
<td>Abundance oats</td>
<td>"</td>
<td>21</td>
<td>79 33</td>
<td>179 00</td>
</tr>
<tr>
<td>Thousand Dollar oats</td>
<td>Clover sod, spring ploughed</td>
<td>10</td>
<td>75 24</td>
<td>757 00</td>
</tr>
<tr>
<td>Daubeny oats</td>
<td>Summer fallow</td>
<td>2</td>
<td>85 00</td>
<td>170 00</td>
</tr>
<tr>
<td>Manchurian barley</td>
<td>"</td>
<td>25</td>
<td>57 27</td>
<td>158 00</td>
</tr>
<tr>
<td>Arthur peas</td>
<td>"</td>
<td>14</td>
<td>19 00</td>
<td>28 30</td>
</tr>
</tbody>
</table>

In addition to this a supply of pure Red Fife wheat, O. A. C. No. 21 barley and Arthur peas was grown on the fields devoted to the rotation experiments and reported under the department of Field Husbandry.
EXPERIMENTAL FARM, INDIAN HEAD, SASK.

ANGUS MACKAY, SUPERINTENDENT.

SPRING WHEAT.

Three named varieties and ten new kinds under numbers were tested on one-fortieth acre plots. The land was summer-fallowed the previous year, and the seed was sown at the rate of one and one-half bushels per acre. As will be noticed, Prelude wheat ripened very early.

Only the named varieties are reported on, as the tests of the numbered sorts are regarded as merely preliminary.

SPRING WHEAT.—Test of Varieties.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average length of Straw, including Head</th>
<th>Strength of Straw on a scale of 10 points</th>
<th>Average length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per acre after cleaning</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marquis</td>
<td>Apr. 10</td>
<td>Aug. 3</td>
<td>129</td>
<td>47</td>
<td>10</td>
<td>3.3</td>
<td>4.640</td>
<td>77</td>
<td>63</td>
</tr>
<tr>
<td>Marquis (special plot for chemist)</td>
<td>" 10.</td>
<td>" 17</td>
<td>129</td>
<td>44</td>
<td>10</td>
<td>3.5</td>
<td>4.880</td>
<td>81</td>
<td>63</td>
</tr>
<tr>
<td>Prelude</td>
<td>" 10.</td>
<td>" 17</td>
<td>115</td>
<td>29</td>
<td>10</td>
<td>2.5</td>
<td>2.655</td>
<td>44</td>
<td>63.5</td>
</tr>
<tr>
<td>Red Fife H</td>
<td>" 10.</td>
<td>" 24</td>
<td>138</td>
<td>47</td>
<td>10</td>
<td>3.5</td>
<td>3.840</td>
<td>64</td>
<td>61</td>
</tr>
</tbody>
</table>

FIELD TEST.

In a field test of Prelude and Marquis, side by side on similar land, Prelude ripened in 111 days, and gave a yield of 42 bushels 18 pounds per acre, the grain weighing 63.5 pounds to the measured bushel. Marquis required 126 days, gave 47 bushels 6 pounds per acre, and weighed 63 pounds per bushel.

FIVE YEARS' COMPARISON OF FIELD LOTS.

The average yield per acre and the time taken to mature of two varieties of wheat grown in field lots under similar conditions for the past five years, are given below:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Average Days to Mature</th>
<th>Average Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marquis</td>
<td>125.2</td>
<td>40 11</td>
</tr>
<tr>
<td>Red Fife</td>
<td>137</td>
<td>37 43</td>
</tr>
</tbody>
</table>
FALL WHEAT.

Alberta Red fall wheat was sown on September 16, 1911, on fallowed land. It was ripe on August 21, and gave a yield of 33 bushels and 20 pounds per acre.

Three varieties received from D. H. Ross, Canadian Commissioner, Melbourne, Australia, were also sown on the same date, but were entirely winter or spring killed.

OATS.

Twelve varieties of oats were sown on fallowed land at the rate of two bushels of seed per acre. All gave very large yields. A second growth came up in all varieties; grain was badly lodged.

Oats.—Test of Varieties.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw Including Head</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre after Cleaning</th>
<th>Weight per Measured Bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance</td>
<td>May 1</td>
<td>Aug. 25</td>
<td>116</td>
<td>50</td>
<td>10</td>
<td>8.5</td>
<td>4,532</td>
<td>128 00</td>
</tr>
<tr>
<td>Regenerated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauner</td>
<td></td>
<td>29</td>
<td>120</td>
<td>50</td>
<td>10</td>
<td>9</td>
<td>5,512</td>
<td>156 08</td>
</tr>
<tr>
<td>Danish Island</td>
<td></td>
<td>23</td>
<td>114</td>
<td>51</td>
<td>10</td>
<td>8</td>
<td>5,572</td>
<td>163 10</td>
</tr>
<tr>
<td>Daubeney</td>
<td></td>
<td>14</td>
<td>105</td>
<td>42</td>
<td>10</td>
<td>8</td>
<td>4,602</td>
<td>119 06</td>
</tr>
<tr>
<td>Eighty Day</td>
<td></td>
<td>14</td>
<td>105</td>
<td>39</td>
<td>10</td>
<td>6</td>
<td>4,192</td>
<td>123 10</td>
</tr>
<tr>
<td>Gold Rain</td>
<td></td>
<td>28</td>
<td>114</td>
<td>59</td>
<td>10</td>
<td>9</td>
<td>4,602</td>
<td>138 00</td>
</tr>
<tr>
<td>Ligowo, Swedish</td>
<td></td>
<td>25</td>
<td>116</td>
<td>50</td>
<td>10</td>
<td>8</td>
<td>4,512</td>
<td>132 24</td>
</tr>
<tr>
<td>Siberian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swedish Select</td>
<td></td>
<td>22</td>
<td>113</td>
<td>51</td>
<td>10</td>
<td>9</td>
<td>4,602</td>
<td>145 22</td>
</tr>
<tr>
<td>Thousand Dollar</td>
<td></td>
<td>22</td>
<td>113</td>
<td>49</td>
<td>10</td>
<td>8</td>
<td>5,080</td>
<td>149 14</td>
</tr>
<tr>
<td>Twentieth Century</td>
<td></td>
<td>23</td>
<td>114</td>
<td>50</td>
<td>10</td>
<td>7.5</td>
<td>3,950</td>
<td>116 06</td>
</tr>
<tr>
<td>Victory</td>
<td></td>
<td>23</td>
<td>114</td>
<td>50</td>
<td>10</td>
<td>8</td>
<td>5,520</td>
<td>162 12</td>
</tr>
</tbody>
</table>
BARLEY.

Seven varieties of six-row and eight varieties of two-row sorts were sown on fallowed land at the rate of two bushels of seed per acre. All sorts were badly lodged but gave large yields, and rains, after grain was in the stock, coloured the grain.

TWO-ROW BARLEY.—Test of Varieties.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw (heads per head)</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Thorpe</td>
<td>April 27</td>
<td>Aug. 22</td>
<td>117</td>
<td>41</td>
<td>5</td>
<td>4,200</td>
<td>87</td>
<td>24</td>
</tr>
<tr>
<td>Clifford</td>
<td>27</td>
<td>15</td>
<td>110</td>
<td>44</td>
<td>5</td>
<td>4,352</td>
<td>73</td>
<td>16</td>
</tr>
<tr>
<td>Danish Chevalier</td>
<td>27</td>
<td>12</td>
<td>122</td>
<td>40</td>
<td>5</td>
<td>4,000</td>
<td>83</td>
<td>16</td>
</tr>
<tr>
<td>Early Chevalier</td>
<td>27</td>
<td>18</td>
<td>113</td>
<td>45</td>
<td>5</td>
<td>3,300</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Hanriken</td>
<td>27</td>
<td>22</td>
<td>117</td>
<td>38</td>
<td>5</td>
<td>4,900</td>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td>Invincible</td>
<td>27</td>
<td>25</td>
<td>120</td>
<td>42</td>
<td>5</td>
<td>4,164</td>
<td>93</td>
<td>16</td>
</tr>
<tr>
<td>Standwell</td>
<td>27</td>
<td>22</td>
<td>120</td>
<td>38</td>
<td>5</td>
<td>3,750</td>
<td>78</td>
<td>16</td>
</tr>
<tr>
<td>Swedish Chevalier</td>
<td>27</td>
<td>27</td>
<td>122</td>
<td>38</td>
<td>5</td>
<td>3,750</td>
<td>78</td>
<td>16</td>
</tr>
</tbody>
</table>

SIX-ROW BARLEY.—Test of Varieties.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mansfield</td>
<td>April 27</td>
<td>Aug. 9</td>
<td>104</td>
<td>30</td>
<td>10</td>
<td>2.7</td>
<td>3,550</td>
<td>74</td>
</tr>
<tr>
<td>Manchurian</td>
<td>27</td>
<td>12</td>
<td>107</td>
<td>41</td>
<td>8</td>
<td>3.3</td>
<td>4,000</td>
<td>85</td>
</tr>
<tr>
<td>O.A.C. No. 21</td>
<td>27</td>
<td>12</td>
<td>107</td>
<td>40</td>
<td>8</td>
<td>4.9</td>
<td>4,000</td>
<td>85</td>
</tr>
<tr>
<td>Oldenburgh</td>
<td>27</td>
<td>9</td>
<td>104</td>
<td>40</td>
<td>8</td>
<td>3.9</td>
<td>3,550</td>
<td>72</td>
</tr>
<tr>
<td>Stella</td>
<td>27</td>
<td>9</td>
<td>104</td>
<td>40</td>
<td>8</td>
<td>3.5</td>
<td>3,750</td>
<td>78</td>
</tr>
<tr>
<td>Trooper</td>
<td>27</td>
<td>10</td>
<td>105</td>
<td>38</td>
<td>10</td>
<td>2.5</td>
<td>3,480</td>
<td>72</td>
</tr>
</tbody>
</table>

PEAS.

Ten varieties of peas were sown on fallowed land, at the rate of two bushels of small, and three bushels per acre of large varieties. The plots were one-fortieth acre each.

All were late in ripening, and were overtaken by frost before fully matured.

PEAS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Name of Variety</th>
<th>Size of Pea</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of days Maturing</th>
<th>Average Length of Straw</th>
<th>Average Length of Pod</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthur</td>
<td>Medium</td>
<td>April 25</td>
<td>Sept. 5</td>
<td>133</td>
<td>50</td>
<td>2.5</td>
<td>2,480</td>
<td>41</td>
<td>20</td>
</tr>
<tr>
<td>Chancellor</td>
<td>Small</td>
<td>25</td>
<td>6</td>
<td>134</td>
<td>50</td>
<td>3</td>
<td>2,760</td>
<td>46</td>
<td>09</td>
</tr>
<tr>
<td>English Gray</td>
<td>Medium</td>
<td>25</td>
<td>6</td>
<td>134</td>
<td>60</td>
<td>2.5</td>
<td>2,800</td>
<td>46</td>
<td>09</td>
</tr>
<tr>
<td>Golden Vine</td>
<td>Small</td>
<td>25</td>
<td>6</td>
<td>134</td>
<td>60</td>
<td>2.5</td>
<td>2,800</td>
<td>46</td>
<td>09</td>
</tr>
<tr>
<td>Gregory</td>
<td>Medium</td>
<td>25</td>
<td>12</td>
<td>140</td>
<td>60</td>
<td>2.5</td>
<td>2,250</td>
<td>45</td>
<td>09</td>
</tr>
<tr>
<td>Paragon</td>
<td>25</td>
<td>13</td>
<td>141</td>
<td>60</td>
<td>2.5</td>
<td>2,350</td>
<td>56</td>
<td>00</td>
<td>61</td>
</tr>
<tr>
<td>Prince</td>
<td>Large</td>
<td>25</td>
<td>13</td>
<td>141</td>
<td>60</td>
<td>2.5</td>
<td>2,550</td>
<td>54</td>
<td>09</td>
</tr>
<tr>
<td>Prussian Blue</td>
<td>Large</td>
<td>25</td>
<td>13</td>
<td>141</td>
<td>60</td>
<td>2.5</td>
<td>2,480</td>
<td>41</td>
<td>20</td>
</tr>
<tr>
<td>Solo</td>
<td>Large</td>
<td>25</td>
<td>10</td>
<td>138</td>
<td>48</td>
<td>2.5</td>
<td>2,640</td>
<td>44</td>
<td>00</td>
</tr>
<tr>
<td>Mackay</td>
<td>Medium</td>
<td>25</td>
<td>12</td>
<td>140</td>
<td>65</td>
<td>2.5</td>
<td>3,320</td>
<td>55</td>
<td>20</td>
</tr>
</tbody>
</table>
Plate XVII

Prelude Wheat in Stook. Experimental Farm Indian Head, Sask.

Cutting Prelude Wheat on Farm of E. B. Cay, Beatty, Sask.
FLAX EXPERIMENTS.

Five varieties of flax were sown on May 15 on fallowed land: Common, Improved Russian, White Flowering, Yellow Seed and Premost. Premost gave twenty-two bushels per acre. The seed of the other four varieties was old, and did not germinate over one-third, and the yields were not kept. The seed intended to be sown was destroyed by fire.

TARES.

Tares were sown on the 15th of May on fallowed land, but did not ripen before frost came, and were so badly injured that, although cut, were not threshed, and were useless for hay. Frost came on the 15th of September.

FIELDS OF GRAIN.

A large quantity of seed grain is raised every year on this Farm for the free distribution carried on from the Central Farm at Ottawa, and also for sale from Indian Head to farmers in Saskatchewan.

The following table gives a summary of the results from these fields this past season.

It should be noted that part of the Marquis wheat, ordinary stock, Red Fife wheat and Banner oats was sown on stubble land. The yields of these varieties cannot, therefore, be fairly compared with the others.

Summary of Returns from Fields of Grain grown for Seed.

<table>
<thead>
<tr>
<th></th>
<th>Total area.</th>
<th>Total Yield.</th>
<th>Average Yield per acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush.</td>
<td>Lb.</td>
</tr>
<tr>
<td>Spring Wheat—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marquis, ordinary stock</td>
<td>30.8</td>
<td>1,090</td>
<td>35 23</td>
</tr>
<tr>
<td>Marquis, Special Registered</td>
<td>2.0</td>
<td>94</td>
<td>47 6</td>
</tr>
<tr>
<td>Red Fife</td>
<td>38.3</td>
<td>1,299</td>
<td>42 56</td>
</tr>
<tr>
<td>Prelude</td>
<td>1.1</td>
<td>46</td>
<td>35 18</td>
</tr>
<tr>
<td>Variety not named</td>
<td>1.15</td>
<td>58</td>
<td>54 26</td>
</tr>
<tr>
<td>Oats—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banner</td>
<td>28.26</td>
<td>1,837</td>
<td>68 18</td>
</tr>
<tr>
<td>Abundance</td>
<td>26.59</td>
<td>2,118</td>
<td>73 22</td>
</tr>
<tr>
<td>Ligowo, Swedish</td>
<td>2.22</td>
<td>241</td>
<td>108 20</td>
</tr>
<tr>
<td>Barley—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchurian</td>
<td>19.68</td>
<td>1,275</td>
<td>65 7</td>
</tr>
<tr>
<td>Mensury</td>
<td>10.5</td>
<td>379</td>
<td>36 6</td>
</tr>
<tr>
<td>O. A. C. No. 21</td>
<td>2.5</td>
<td>81</td>
<td>32 33</td>
</tr>
<tr>
<td>Canadian Thorpe</td>
<td>2.44</td>
<td>136</td>
<td>55 40</td>
</tr>
<tr>
<td>Hannchen</td>
<td>2.42</td>
<td>137</td>
<td>57 60</td>
</tr>
<tr>
<td>Peas—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthur</td>
<td></td>
<td></td>
<td>36 51</td>
</tr>
<tr>
<td>Golden Vine</td>
<td></td>
<td></td>
<td>50 49</td>
</tr>
<tr>
<td>Flax—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premost</td>
<td></td>
<td>15</td>
<td>47</td>
</tr>
</tbody>
</table>

16—29
EXPERIMENTAL STATION, ROSTHERN, SASK.

WM. A. MUNRO, B.A., B.S.A., SUPERINTENDENT.

SPRING WHEAT.

The following are the results of the yields of spring wheat in 1912, together with the number of days maturing. All these plots were sown on April 17. There will also be seen the yields of this grain for 1911.

In addition to the named varieties, seven new cross-bred sorts, under numbers, were tested.

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Number of Days Maturing</th>
<th>Average Length of Straw</th>
<th>Average Length of Head</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inches</td>
<td>Inches</td>
<td>1912</td>
</tr>
<tr>
<td>1</td>
<td>Marquis</td>
<td>133</td>
<td>40</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>Huron</td>
<td>143</td>
<td>48</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Chelsea</td>
<td>133</td>
<td>53</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Stanley</td>
<td>143</td>
<td>56</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Bobs (Seager Wheeler)</td>
<td>127</td>
<td>34</td>
<td>3.5</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>Bobs (Ottawa)</td>
<td>127</td>
<td>44</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Bishop</td>
<td>143</td>
<td>44</td>
<td>2.7</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Preston (Seager Wheeler)</td>
<td>143</td>
<td>46</td>
<td>3.5</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Pringle's Champlain</td>
<td>143</td>
<td>40</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Red Fife (G. L. Smith)</td>
<td>137</td>
<td>48</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>Riga</td>
<td>135</td>
<td>52</td>
<td>3.5</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>Prelude</td>
<td>117</td>
<td>32</td>
<td>1.5</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>Early Red Fife</td>
<td>139</td>
<td>48</td>
<td>3.5</td>
<td>27</td>
</tr>
<tr>
<td>14</td>
<td>White Fife</td>
<td>139</td>
<td>48</td>
<td>3.5</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Not ripe when cut</td>
<td>52</td>
<td>4.5</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>Red Fife regenerate-d</td>
<td>143</td>
<td>52</td>
<td>3.5</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>Yellow Cross</td>
<td>125</td>
<td>38</td>
<td>2.5</td>
<td>16</td>
</tr>
</tbody>
</table>

OATS.

Sixteen varieties of oats were under test in 1912. These were seeded on April 22. The Eighty Day is a selection by Dr. Chas. Saunders made from the Sixty-day White, and proved the most satisfactory of all early oats. The yield of 63 bushels per acre does not represent the total yield, because this plot was considerably injured by the crows.
Varieties of Barley

<table>
<thead>
<tr>
<th>Variety</th>
<th>Number of Days Maturing</th>
<th>Average Length of Straw including Head</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance</td>
<td>132</td>
<td>57</td>
<td>8</td>
<td>94 (125)</td>
</tr>
<tr>
<td>Victory</td>
<td>132</td>
<td>54</td>
<td>8</td>
<td>83 (109)</td>
</tr>
<tr>
<td>Thousand Dollar</td>
<td>138</td>
<td>64</td>
<td>5</td>
<td>60 (116)</td>
</tr>
<tr>
<td>Sixty Day White</td>
<td>109</td>
<td>42</td>
<td>5</td>
<td>76 (106)</td>
</tr>
<tr>
<td>Irish Victor</td>
<td>133</td>
<td>52</td>
<td>5</td>
<td>75 (128)</td>
</tr>
<tr>
<td>Danish Island</td>
<td>134</td>
<td>57</td>
<td>9</td>
<td>75 (130)</td>
</tr>
<tr>
<td>Improved American</td>
<td>132</td>
<td>52</td>
<td>6</td>
<td>74 (127)</td>
</tr>
<tr>
<td>Abundance regenerated</td>
<td>134</td>
<td>56</td>
<td>6</td>
<td>71 (121)</td>
</tr>
<tr>
<td>Swedish Select</td>
<td>133</td>
<td>54</td>
<td>5</td>
<td>71 (117)</td>
</tr>
<tr>
<td>Banner</td>
<td>133</td>
<td>56</td>
<td>8</td>
<td>70 (131)</td>
</tr>
<tr>
<td>Ligowo</td>
<td>139</td>
<td>52</td>
<td>6</td>
<td>69 (121)</td>
</tr>
<tr>
<td>Daubeney</td>
<td>109</td>
<td>31</td>
<td>10</td>
<td>68 (101)</td>
</tr>
<tr>
<td>Twentieth Century</td>
<td>134</td>
<td>56</td>
<td>8</td>
<td>68 (128)</td>
</tr>
<tr>
<td>Siberian</td>
<td>136</td>
<td>54</td>
<td>7</td>
<td>63 (109)</td>
</tr>
<tr>
<td>Eighty Day</td>
<td>109</td>
<td>41</td>
<td>10</td>
<td>63 (109)</td>
</tr>
<tr>
<td>Gold Rain</td>
<td>135</td>
<td>54</td>
<td>7</td>
<td>61 (127)</td>
</tr>
</tbody>
</table>

Barny.

Fifteen varieties of barley were sown on uniform trial plots. These were seeded on April 26.

Unfortunately, the yield of Early Indian for 1912 cannot be given. This is the earliest of all the barleys, is very short in the straw, and in 1911 gave very poor results. In 1912, however, the crop was more promising, but just before harvest it was almost totally destroyed by crows, which prevents the possibility of our giving the yield. If the yield of Early Indian can be shown to be nearly up to that of other varieties it will be a great boon to the northern climates, and to those conditions where late sowing is a necessity.

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw including Head</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Japan</td>
<td>122</td>
<td>34</td>
<td>10</td>
<td>70 (40)</td>
</tr>
<tr>
<td>Swan's Neck</td>
<td>124</td>
<td>38</td>
<td>3</td>
<td>66 (32)</td>
</tr>
<tr>
<td>Duke Bill</td>
<td>123</td>
<td>52</td>
<td>4</td>
<td>61 (32)</td>
</tr>
<tr>
<td>Taganrog</td>
<td>131</td>
<td>36</td>
<td>4</td>
<td>59 (8)</td>
</tr>
<tr>
<td>Mencury</td>
<td>125</td>
<td>48</td>
<td>5</td>
<td>58 (16)</td>
</tr>
<tr>
<td>O. A. O. 21</td>
<td>127</td>
<td>49</td>
<td>3</td>
<td>57 (4)</td>
</tr>
<tr>
<td>Manchurian</td>
<td>125</td>
<td>50</td>
<td>5</td>
<td>55 (40)</td>
</tr>
<tr>
<td>Swedish Chevalier</td>
<td>136</td>
<td>40</td>
<td>3</td>
<td>55 (40)</td>
</tr>
<tr>
<td>Early Chevalier</td>
<td>122</td>
<td>48</td>
<td>8</td>
<td>54 (28)</td>
</tr>
<tr>
<td>Success</td>
<td>164</td>
<td>36</td>
<td>10</td>
<td>49 (8)</td>
</tr>
<tr>
<td>Stella</td>
<td>121</td>
<td>51</td>
<td>8</td>
<td>49 (8)</td>
</tr>
<tr>
<td>Hannchen</td>
<td>127</td>
<td>34</td>
<td>3</td>
<td>47 (24)</td>
</tr>
<tr>
<td>Odessa</td>
<td>124</td>
<td>41</td>
<td>5</td>
<td>44 (8)</td>
</tr>
<tr>
<td>Beaver</td>
<td>124</td>
<td>41</td>
<td>8</td>
<td>38 (16)</td>
</tr>
<tr>
<td>Early Indian</td>
<td>101</td>
<td>23</td>
<td>10</td>
<td>38 (16)</td>
</tr>
</tbody>
</table>

16—294
The yields of 11 varieties of peas are shown herewith, together with those of 1911. All our pea crops were much more satisfactory in 1912 than in 1911 because of the better opportunity of ripening, due to delay of early frosts. All the varieties under test ripened in good condition.

The Arthur Selected, although showing eighth in point of yield in 1912, is considered the most satisfactory of all the varieties owing to the fact that it was the only one of all that fully ripened in the season of 1911.

<table>
<thead>
<tr>
<th>Variety</th>
<th>1912 No. of days Maturing</th>
<th>Average length of Straw</th>
<th>Average length of Pod</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inches</td>
<td>Inches</td>
<td>Bus Lb</td>
</tr>
<tr>
<td>Paragon</td>
<td>146</td>
<td>72</td>
<td>3</td>
<td>43 20</td>
</tr>
<tr>
<td>Prussian Blue</td>
<td>142</td>
<td>76</td>
<td>3</td>
<td>39 20</td>
</tr>
<tr>
<td>Mackay</td>
<td>146</td>
<td>70</td>
<td>2</td>
<td>48 ..</td>
</tr>
<tr>
<td>Chancellor</td>
<td>135</td>
<td>60</td>
<td>2 2</td>
<td>36 40</td>
</tr>
<tr>
<td>Gregory</td>
<td>146</td>
<td>60</td>
<td>2 2</td>
<td>33 20</td>
</tr>
<tr>
<td>Wisconsin Blue</td>
<td>146</td>
<td>65</td>
<td>2</td>
<td>32 ..</td>
</tr>
<tr>
<td>Golden Vine</td>
<td>134</td>
<td>54</td>
<td>1 7</td>
<td>31 20</td>
</tr>
<tr>
<td>Arthur, selected</td>
<td>132</td>
<td>40</td>
<td>2</td>
<td>29 20</td>
</tr>
<tr>
<td>Black Eye Marrowfat</td>
<td>Half ripe when cut</td>
<td>Half ripe when cut</td>
<td>Half ripe when cut</td>
<td>Half ripe when cut</td>
</tr>
<tr>
<td>White Marrowfat</td>
<td>146</td>
<td>68</td>
<td>2 5</td>
<td>26 40</td>
</tr>
<tr>
<td>English Grey</td>
<td>135</td>
<td>58</td>
<td>3</td>
<td>25 20</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, SCOTT, SASK.

R. E. EVEREST, B.S.A., SUPERINTENDENT.

SPRING WHEAT.

Eleven varieties of spring wheat, including six unnamed sorts produced by the Dominion Cerealist, were sown on the 13th of April in plots of one-fortieth acre each at the rate of one and three-quarter bushels per acre.

The weather was fine during seeding, and, the land being in good condition, the grain came up evenly.

Hot, dry weather in June dwarfed the growth of early varieties. Later sorts gave a moderate yield. The season being long permitted all varieties to mature. The sample harvested was somewhat uneven on account of a second growth, which had been encouraged by late rains.

Spring Wheat.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Strength of straw, on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Huron Selected</td>
<td>April 13, Sept 3</td>
<td>142</td>
<td>37</td>
<td>10</td>
<td>3</td>
<td>2,300</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Red Fife</td>
<td>" 13, " 3</td>
<td>142</td>
<td>39</td>
<td>10</td>
<td>3</td>
<td>2,525</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Marquis</td>
<td>" 13, Aug. 30</td>
<td>138</td>
<td>32</td>
<td>10</td>
<td>3</td>
<td>1,574</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Alpha Selected</td>
<td>" 13, Sept. 3</td>
<td>142</td>
<td>38</td>
<td>10</td>
<td>3</td>
<td>1,440</td>
<td>24</td>
<td>00</td>
</tr>
<tr>
<td>5</td>
<td>Prelude (135 B)</td>
<td>" 13, Aug. 6</td>
<td>115</td>
<td>26</td>
<td>10</td>
<td>2 3</td>
<td>820</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Spring Rye</td>
<td>" 15, " 31</td>
<td>139</td>
<td>30</td>
<td>8</td>
<td>3 7</td>
<td>1,140</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Ottawa Select</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OATS.

Ten varieties were sown on the 23rd of April on land which had been summer-fallowed the previous year. Two and one-quarter bushels of seed were sown per acre. All gave heavy yields of grain and large crops of straw, which was badly lodged by wind and rain.

It was difficult for the oat plots to ripen owing to their lodged condition, but a subsequent test of the threshed grain reveals good germinating power in all varieties.
OATS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Strength of straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Victory</td>
<td>April 23</td>
<td>Sept. 12</td>
<td>142</td>
<td>54</td>
<td>6</td>
<td>7.5</td>
<td>5,146</td>
<td>151 12</td>
</tr>
<tr>
<td>2</td>
<td>Lisowo Swedish</td>
<td>23</td>
<td>11 141</td>
<td>58</td>
<td>5</td>
<td>8</td>
<td>4.791</td>
<td>4.758</td>
<td>139 32</td>
</tr>
<tr>
<td>3</td>
<td>Gold Rain</td>
<td>23</td>
<td>11 141</td>
<td>56</td>
<td>6</td>
<td>7</td>
<td>4.758</td>
<td>139 32</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Abundance, Garton's Regenerated</td>
<td>23</td>
<td>11 141</td>
<td>54</td>
<td>5</td>
<td>6.5</td>
<td>4.600</td>
<td>133 10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tartar King</td>
<td>23</td>
<td>11 141</td>
<td>70</td>
<td>8</td>
<td>14</td>
<td>4.152</td>
<td>122 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Banner</td>
<td>23</td>
<td>11 141</td>
<td>62</td>
<td>5</td>
<td>10.5</td>
<td>4.110</td>
<td>120 20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Twentieth Century</td>
<td>23</td>
<td>11 141</td>
<td>54</td>
<td>4</td>
<td>7</td>
<td>3.875</td>
<td>115 33</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Eighty Day</td>
<td>23</td>
<td>11 141</td>
<td>44</td>
<td>5</td>
<td>6.5</td>
<td>3.722</td>
<td>110 12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Daubeney</td>
<td>23</td>
<td>12 142</td>
<td>50</td>
<td>4</td>
<td>6</td>
<td>3.400</td>
<td>100 00</td>
<td></td>
</tr>
</tbody>
</table>

BARLEY.

Five varieties of six-row and three varieties of two-row barley were sown on the 22nd of April, at the rate of two bushels of seed per acre, on plots of one-fortieth acre each. The land was summer-fallowed the previous year.

Two varieties of six-row, Manchurian and O. A. C. No. 21, were very fair standing crops, and gave good returns. The two-row barleys, although giving the larger yields, were not so desirable as the six-row, for the following reason: The two-row barleys were so weak in the straw that harvesting was made a difficult operation.

Six-row Barley.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Strength of straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manchurian</td>
<td>April 22</td>
<td>Sept. 7</td>
<td>138</td>
<td>41</td>
<td>5</td>
<td>3</td>
<td>3,129</td>
<td>63 00</td>
</tr>
<tr>
<td>2</td>
<td>D.A.C. No. 21</td>
<td>22</td>
<td>4 135</td>
<td>30</td>
<td>5</td>
<td>2</td>
<td>3,021</td>
<td>64 19</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Black Japan</td>
<td>22</td>
<td>7 138</td>
<td>20</td>
<td>6</td>
<td>2</td>
<td>1,810</td>
<td>37 34</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Success</td>
<td>22</td>
<td>Aug. 6</td>
<td>106</td>
<td>8</td>
<td>2.2</td>
<td>520</td>
<td>10 40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Early Indian</td>
<td>22</td>
<td>July 29</td>
<td>98</td>
<td>18</td>
<td>10</td>
<td>100</td>
<td>2 4</td>
<td></td>
</tr>
</tbody>
</table>

Two-row Barley.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Strength of straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Duckbill</td>
<td>April 22</td>
<td>Sept. 4</td>
<td>135</td>
<td>24</td>
<td>4</td>
<td>3</td>
<td>4,223</td>
<td>87 47</td>
</tr>
<tr>
<td>2</td>
<td>Hannchen</td>
<td>22</td>
<td>11 142</td>
<td>29</td>
<td>4</td>
<td>3.5</td>
<td>3,683</td>
<td>75 13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Early Chevalier</td>
<td>22</td>
<td>4 135</td>
<td>36</td>
<td>4</td>
<td>3</td>
<td>2,489</td>
<td>51 41</td>
<td></td>
</tr>
</tbody>
</table>
DIVISION OF CEREALS

SESSIONAL PAPER No. 16

PEAS.

Six varieties were sown on the 6th of May on fallowed land. Each plot was one-fortieth of an acre in area, and the seed was sown at the rate of two and one-half bushels per acre.

Growth throughout the season was favourable, the earlier varieties producing matured grain of good quality. The Arthur pea, in germination test, as well as in yield, heads the list.

PEAS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Size of Pea</th>
<th>Character of Growth</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arthur</td>
<td>May 6</td>
<td>Sept. 24</td>
<td>141</td>
<td>Medium</td>
<td>Strong</td>
<td>2,270</td>
<td>37 50</td>
</tr>
<tr>
<td>2</td>
<td>Golden Vine</td>
<td>6. Oct. 9</td>
<td>156</td>
<td>Small</td>
<td>1,800</td>
<td>30 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Chancellor</td>
<td>6. Oct. 9</td>
<td>156</td>
<td>Medium</td>
<td>1,680</td>
<td>28 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Prussian Blue</td>
<td>6. Oct. 9</td>
<td>156</td>
<td>Medium</td>
<td>1,290</td>
<td>21 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>English Grey</td>
<td>6. Sept. 24</td>
<td>141</td>
<td>"</td>
<td>1,110</td>
<td>18 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>White Marrowfat</td>
<td>6. Oct. 9</td>
<td>156</td>
<td>Large</td>
<td>610</td>
<td>10 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, LETHBRIDGE, ALBERTA.

W. H. FAIRFIELD, M.S., SUPERINTENDENT.

THE SEASON.

The season of 1912 resembled that of 1911 in that the rainfall during the early part was deficient, while during the latter part the usual amount was received.

The results of the crops on the Station during the summer of 1912 have been interesting, although in many instances somewhat disappointing. The season opened up in a most propitious manner. Work on the land began on March 28 and the first seeding was done on April 1, although it would have been possible to begin a little earlier. The soil was left moist from the fall of 1911 and the land was in excellent shape to work in the spring, consequently the grain crops, in fact all crops planted, were put in under exceedingly favourable conditions where land had been prepared the summer or fall previous. However, the rainfall during April, May and until the end of June, in the immediate vicinity of Lethbridge, was extremely light. Grain sown on summer-fallowed land and on very early spring ploughing, where the land was cultivated immediately afterwards, came up well, because it was possible to place the seed in moisture. Germination on land that was not so treated was not good.

On account of the previous season closing up so early in the fall of 1911 it was impossible for the farmers in southern Alberta to do much fall ploughing, the result being that a great deal of grain was ' stubbled ' in this past spring, and most of this, in the Lethbridge district, germinated poorly.

The rainfall was very light indeed until the last few days in June, but from then on, during July, August and September, it was above normal. On account of this light rainfall during the first part of the growing season, all early-sown crops, and especially winter wheat, suffered acutely. Crops that looked extremely promising early in the season gave but low yields. Late-sown crops, on the other hand, did much better, providing they ripened before the frost.

The yields of all the crops on the non-irrigated portion of the Station were rather low, with the exception of peas and such late growing crops as turnips, potatoes, etc.

On the irrigated portion of the Station, however, where water was applied in June, and in some cases even in May, the yields were very much more satisfactory. In the case of hay, however, especially alfalfa, we found the rainy season rather difficult to operate in, as it was hard to get it cured properly. Alfalfa usually makes its most rapid growth when supplied with the necessary moisture during the hot weather of July and August, but this year, on account of the many showers during this period, the weather was not as hot as it ordinarily is, so the alfalfa fields did not produce quite as much as they usually do.
PART I.—THE NON-IRRIGATED FARM.

EXPERIMENTS WITH WINTER WHEAT (NON-IRRIGATED).

Eight varieties of winter wheat and one of emmer were tested. These were sown on summer-fallowed land on one-sixtieth acre plots. A good stand was obtained in each case in the fall, but the drought of May and June affected them materially.

WINTER WHEAT.—Test of Varieties (Non-irrigated).

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Average Length of Straw including head</th>
<th>Average Length of Head</th>
<th>Weight of Straw</th>
<th>Yield per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No. 17 Wyoming</td>
<td>Sept. 1</td>
<td>July 22</td>
<td>26 inches</td>
<td>2.7 inches</td>
<td>1,530 Lb</td>
<td>31 Bush.</td>
<td>64.5 Lb</td>
</tr>
<tr>
<td>2</td>
<td>Ghirka</td>
<td>Aug. 31</td>
<td>July 24</td>
<td>28 inches</td>
<td>2.7 inches</td>
<td>3,780 Lb</td>
<td>30 Bush.</td>
<td>65 Lb</td>
</tr>
<tr>
<td>3</td>
<td>Egyptian Amber</td>
<td>"</td>
<td>July 27</td>
<td>34.5 inches</td>
<td>4.5 inches</td>
<td>2,370 Lb</td>
<td>28 Bush.</td>
<td>65.5 Lb</td>
</tr>
<tr>
<td>4</td>
<td>Dawson's Golden Chaff</td>
<td>"</td>
<td>July 25</td>
<td>30.5 inches</td>
<td>3.5 inches</td>
<td>1,620 Lb</td>
<td>26 Bush.</td>
<td>64.5 Lb</td>
</tr>
<tr>
<td>5</td>
<td>Tasmania Red</td>
<td>"</td>
<td>July 26</td>
<td>31 inches</td>
<td>3 inches</td>
<td>2,040 Lb</td>
<td>24 Bush.</td>
<td>64.5 Lb</td>
</tr>
<tr>
<td>6</td>
<td>Azima</td>
<td>"</td>
<td>July 24</td>
<td>32.5 inches</td>
<td>4 inches</td>
<td>1,740 Lb</td>
<td>19 Bush.</td>
<td>65 Lb</td>
</tr>
<tr>
<td>7</td>
<td>Kharkov</td>
<td>"</td>
<td>July 24</td>
<td>29.5 inches</td>
<td>2.5 inches</td>
<td>1,260 Lb</td>
<td>19 Bush.</td>
<td>65 Lb</td>
</tr>
<tr>
<td>8</td>
<td>Kansas Red</td>
<td>"</td>
<td>July 24</td>
<td>27 inches</td>
<td>2.5 inches</td>
<td>960 Lb</td>
<td>17 Bush.</td>
<td>64.5 Lb</td>
</tr>
<tr>
<td></td>
<td>Winter Emmer (Buffum)</td>
<td>Sept. 2</td>
<td>Aug. 24</td>
<td>38.5 inches</td>
<td>3 inches</td>
<td>1,290 Lb</td>
<td>1,080 Bush.</td>
<td>35 Lb</td>
</tr>
</tbody>
</table>

FIELD LOTS OF WINTER WHEAT (NON-IRRIGATED).

The following fields of Kharkov winter wheat were sown on summer-fallowed land on September 2, 1911, on land ploughed the different depths indicated in the table.

<table>
<thead>
<tr>
<th>Area.</th>
<th>Depth ploughed.</th>
<th>Date Ripe</th>
<th>Yield of Grain per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.02</td>
<td>6</td>
<td>July 21</td>
<td>23 32</td>
</tr>
<tr>
<td>1.06</td>
<td>5</td>
<td>July 21</td>
<td>20 55</td>
</tr>
<tr>
<td>1.02</td>
<td>4</td>
<td>July 21</td>
<td>18 33</td>
</tr>
</tbody>
</table>

On September 12, 1911, we sowed 3.32 acres of Ghirka winter wheat on summer-fallowed land. This was ripe on July 30, and yielded at the rate of 26 bushels per acre.
SPRING WHEAT.

Sixteen varieties were tested, including five un-named sorts which are not inserted in the table. These were sown on summer-fallowed land at the rate of about a bushel and a peck per acre.

SPRING WHEAT.—Test of Varieties (Non-irrigated).

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including head</th>
<th>Average Length of Grain per acre</th>
<th>Yield per acre</th>
<th>Weight per measured bushel after cleaning</th>
<th>Average yield per acre for 4 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Huron</td>
<td>April 3</td>
<td>August 8</td>
<td>127</td>
<td>25</td>
<td>3</td>
<td>31</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Stanley</td>
<td>3</td>
<td>6</td>
<td>125 and 128</td>
<td>25 and 25</td>
<td>3</td>
<td>31</td>
<td>63</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Red Pife</td>
<td>3</td>
<td>9</td>
<td>128</td>
<td>28</td>
<td>3</td>
<td>31</td>
<td>64</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Preston</td>
<td>3</td>
<td>7</td>
<td>126</td>
<td>284</td>
<td>3.5</td>
<td>31</td>
<td>64</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Marquis (special plot for chemist)</td>
<td>3</td>
<td>3</td>
<td>122</td>
<td>264</td>
<td>3</td>
<td>29</td>
<td>65</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Marquis</td>
<td>3</td>
<td>4</td>
<td>129</td>
<td>27</td>
<td>2.7</td>
<td>28</td>
<td>63</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>Early Red Fife</td>
<td>3</td>
<td>9</td>
<td>128</td>
<td>264</td>
<td>3</td>
<td>26</td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Early Russian</td>
<td>8</td>
<td>2</td>
<td>121</td>
<td>26</td>
<td>2.5</td>
<td>26</td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Bobs</td>
<td>8</td>
<td>1</td>
<td>120</td>
<td>26</td>
<td>2.5</td>
<td>26</td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>Yellow Cross</td>
<td>3</td>
<td>2</td>
<td>121</td>
<td>26</td>
<td>2.5</td>
<td>26</td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Prelude (135 B)</td>
<td>3</td>
<td>July 25</td>
<td>113</td>
<td>25</td>
<td>2.5</td>
<td>20</td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Common Emmer</td>
<td>4</td>
<td>Aug. 10</td>
<td>128</td>
<td>29</td>
<td>2</td>
<td>1,320</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD LOTS OF SPRING WHEAT.

A field of Marquis wheat, 2.06 acres in area, was sown on summer-fallowed land on April 8. It yielded at the rate of 20 bushels and 4 pounds per acre.

EXPERIMENTS WITH OATS.

Eleven varieties were sown on April 16 on one-sixtieth acre plots on summer-fallowed land.

OATS.—Test of Varieties (Non-irrigated).

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including head</th>
<th>Average Length of Head</th>
<th>Weight per measured bushel after cleaning</th>
<th>Average Yield for 4 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Victory</td>
<td>Apr. 16</td>
<td>Aug. 17</td>
<td>123</td>
<td>40.5</td>
<td>6</td>
<td>4,860</td>
<td>37.5</td>
</tr>
<tr>
<td>2</td>
<td>Danish Island</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>36</td>
<td>5.5</td>
<td>3,120</td>
<td>26.5</td>
</tr>
<tr>
<td>3</td>
<td>Improved American</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>35.5</td>
<td>5.5</td>
<td>3,000</td>
<td>26.5</td>
</tr>
<tr>
<td>4</td>
<td>Gold Rain</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>37</td>
<td>6</td>
<td>3,180</td>
<td>26.5</td>
</tr>
<tr>
<td>5</td>
<td>Irish Victor</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>37</td>
<td>6</td>
<td>3,060</td>
<td>26.5</td>
</tr>
<tr>
<td>6</td>
<td>Abundance, Gar-</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>36</td>
<td>5.5</td>
<td>3,200</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>ton's regenerated</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>35</td>
<td>5.5</td>
<td>3,050</td>
<td>26.5</td>
</tr>
<tr>
<td>7</td>
<td>Banner</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>35</td>
<td>5.5</td>
<td>3,000</td>
<td>26.5</td>
</tr>
<tr>
<td>8</td>
<td>Lincoln</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>35</td>
<td>5.5</td>
<td>2,540</td>
<td>26.5</td>
</tr>
<tr>
<td>9</td>
<td>Thousand Dollar</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>35</td>
<td>5.5</td>
<td>3,000</td>
<td>26.5</td>
</tr>
<tr>
<td>10</td>
<td>Ligowo Swedish</td>
<td>16</td>
<td>17</td>
<td>123</td>
<td>35</td>
<td>5.5</td>
<td>1,710</td>
<td>26.5</td>
</tr>
<tr>
<td>11</td>
<td>Daubeney</td>
<td>16</td>
<td>July 24</td>
<td>123</td>
<td>35</td>
<td>5.5</td>
<td>1,710</td>
<td>26.5</td>
</tr>
</tbody>
</table>

* Average for two years only.
SESSIONAL PAPER No. 16

FIELD LOTS OF OATS.

A field of Banner oats, 15-73 acres in size, was sown on land on which grain had been grown the year previous. It was sown on April 24 and ripe on August 23. The field yielded at the rate of 45 bushels and 25 pounds per acre, but was considerably damaged by the cutworms.

EXPERIMENTS WITH BARLEY.

Seven varieties of six-row and five varieties of two-row barley were grown on summer-fallowed land. They were all sown on one-sixtieth acre plots at the rate of one bushel and three pecks per acre.

SIX-ROW BARLEY.—Test of Varieties. (Non-Irrigated.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, in inches</th>
<th>Average Length of Head, in inches</th>
<th>Weight of Straw, Lb.</th>
<th>Yield per Acre</th>
<th>Weight per measured bushel after cleaning, Lb.</th>
<th>Average yield for 4 years, Bus. Lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Odessa</td>
<td>Apr. 18</td>
<td>Aug. 3</td>
<td>107</td>
<td>22</td>
<td>2</td>
<td>1,830</td>
<td>34</td>
<td>18</td>
<td>50.5</td>
</tr>
<tr>
<td>2</td>
<td>Cole</td>
<td>18</td>
<td>18</td>
<td>109</td>
<td>21.5</td>
<td>2</td>
<td>2,010</td>
<td>30</td>
<td>30</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>Claude</td>
<td>18</td>
<td>5</td>
<td>109</td>
<td>21.5</td>
<td>1.7</td>
<td>2,250</td>
<td>28</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>O. A. C. No. 21</td>
<td>18</td>
<td>5</td>
<td>109</td>
<td>20.5</td>
<td>2</td>
<td>1,710</td>
<td>28</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Guy Mayle</td>
<td>18</td>
<td>July 24</td>
<td>97</td>
<td>22.5</td>
<td>2</td>
<td>2,250</td>
<td>28</td>
<td>6</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>Mansfield</td>
<td>18</td>
<td>Aug. 18</td>
<td>109</td>
<td>22.5</td>
<td>2</td>
<td>2,250</td>
<td>27</td>
<td>24</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>Manchurian</td>
<td>18</td>
<td>5</td>
<td>109</td>
<td>21</td>
<td>2</td>
<td>2,550</td>
<td>23</td>
<td>6</td>
<td>49</td>
</tr>
</tbody>
</table>

* Average for two years only.

TWO-ROW BARLEY.—Test of Varieties. (Non-Irrigated.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, in inches</th>
<th>Average Length of Head, in inches</th>
<th>Weight of Straw, Lb.</th>
<th>Yield per Acre</th>
<th>Weight per measured bushel after cleaning, Lb.</th>
<th>Average yield for 4 years, Bus. Lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Invincible</td>
<td>April 18</td>
<td>Aug. 19</td>
<td>123</td>
<td>24.5</td>
<td>2</td>
<td>2,760</td>
<td>42</td>
<td>24</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>Swedish Chevalier</td>
<td>18</td>
<td>8</td>
<td>112</td>
<td>23</td>
<td>5</td>
<td>2,760</td>
<td>41</td>
<td>12</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Hannchen</td>
<td>18</td>
<td>3</td>
<td>107</td>
<td>19.5</td>
<td>2</td>
<td>2,100</td>
<td>38</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Clifford</td>
<td>18</td>
<td>21</td>
<td>125</td>
<td>20.5</td>
<td>2</td>
<td>2,320</td>
<td>30</td>
<td>00</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>Early Chevalier</td>
<td>18</td>
<td>July 29</td>
<td>102</td>
<td>20.5</td>
<td>5</td>
<td>1,140</td>
<td>23</td>
<td>36</td>
<td>54</td>
</tr>
</tbody>
</table>

*Average for two years only.
EXPERIMENTS WITH BUCKWHEAT.

Three varieties of buckwheat were grown on summer-fallowed land on one-sixtieth acre plots.

BUCKWHEAT.—Test of Varieties. (Non-Irrigated.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Japanese</td>
<td>May 31</td>
<td>Sept. 14</td>
<td>106</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Silver Hull (western seed)</td>
<td>" 31</td>
<td>" 14</td>
<td>106</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Silver Hull (eastern seed)</td>
<td>" 31</td>
<td>" 14</td>
<td>106</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH PEAS.

Ten varieties of peas were sown on summer-fallowed land. The plots were one-sixtieth of an acre in size. They were sown on April 8 at the rate of about two or two and one-half bushels per acre, depending upon the size of the pea.

PEAS. (Non-Irrigated.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average length of Straw</th>
<th>Weight of Straw</th>
<th>Yield per Acre</th>
<th>Average Yield for four years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Paragon</td>
<td>Apr. 8</td>
<td>Aug. 22</td>
<td>136</td>
<td>20</td>
<td>2,420</td>
<td>48 00</td>
<td>25 22</td>
</tr>
<tr>
<td>2</td>
<td>Mackay</td>
<td>8</td>
<td>24</td>
<td>138</td>
<td>20</td>
<td>2,340</td>
<td>46 00</td>
<td>25 00</td>
</tr>
<tr>
<td>3</td>
<td>Prince</td>
<td>8</td>
<td>28</td>
<td>140</td>
<td>19</td>
<td>2,940</td>
<td>45 00</td>
<td>27 42</td>
</tr>
<tr>
<td>4</td>
<td>English Grey</td>
<td>8</td>
<td>23</td>
<td>137</td>
<td>19</td>
<td>2,460</td>
<td>43 00</td>
<td>25 54</td>
</tr>
<tr>
<td>5</td>
<td>Prussian Blue</td>
<td>8</td>
<td>25</td>
<td>139</td>
<td>20</td>
<td>2,460</td>
<td>42 00</td>
<td>27 35</td>
</tr>
<tr>
<td>6</td>
<td>Picton</td>
<td>8</td>
<td>23</td>
<td>137</td>
<td>24</td>
<td>2,400</td>
<td>41 00</td>
<td>27 20</td>
</tr>
<tr>
<td>7</td>
<td>Golden Vine</td>
<td>8</td>
<td>23</td>
<td>137</td>
<td>18</td>
<td>2,580</td>
<td>38 00</td>
<td>25 00</td>
</tr>
<tr>
<td>8</td>
<td>White Marrowfat</td>
<td>8</td>
<td>27</td>
<td>141</td>
<td>24</td>
<td>2,550</td>
<td>37 30</td>
<td>22 12</td>
</tr>
<tr>
<td>9</td>
<td>Arthur</td>
<td>8</td>
<td>23</td>
<td>137</td>
<td>21</td>
<td>2,790</td>
<td>36 30</td>
<td>24 19</td>
</tr>
<tr>
<td>10</td>
<td>Chancellor</td>
<td>8</td>
<td>23</td>
<td>137</td>
<td>20</td>
<td>2,320</td>
<td>33 00</td>
<td>22 28</td>
</tr>
</tbody>
</table>

* Average for five years. † Average for three years only.

EXPERIMENTS WITH WINTER RYE.

A small plot of one-sixtieth of an acre of winter rye was sown August 31, 1911, on summer-fallow. It was ripe on July 24. The length of straw, including head, was 45 inches. It yielded at the rate of 33 bushels and 12 pounds per acre.

SPRING RYE.

A small plot of one-sixtieth of an acre of spring rye was sown on May 11 on summer-fallowed land. It was ripe September 10. The length of straw including head was 35½ inches. It yielded at the rate of 19 bushels and 16 pounds per acre.
PART II.—THE IRRIGATED FARM.

WINTER WHEAT.

A small field of winter wheat, 1.56 acres, was sown on summer-fallowed land on September 1, 1911. It was irrigated on May 14 and 15. It was ripe on July 31 and, when threshed, yielded at the rate of 54 bushels and 28 pounds per acre.

EXPERIMENTS WITH SPRING WHEAT.

Five varieties of spring wheat were grown on spring-ploughed alfalfa sod, in plots of one-sixtieth acre each. They were sown on April 3. They received one irrigation on June 5.

SPRING WHEAT.—Test of Varieties. (Irrigated.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of days Maturing</th>
<th>Average Length of Head</th>
<th>Average Length of Straw</th>
<th>Weight of Straw per Acre</th>
<th>Weight per Bushel after Cleaning</th>
<th>Average for 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red Fife</td>
<td>Apr. 3</td>
<td>Aug. 20</td>
<td>139</td>
<td>47</td>
<td>3.5</td>
<td>4,080</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>Preston</td>
<td>Apr. 3</td>
<td>Aug. 7</td>
<td>126</td>
<td>44</td>
<td>4</td>
<td>4,680</td>
<td>54</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>Huron</td>
<td>Apr. 8</td>
<td>Aug. 27</td>
<td>127</td>
<td>36.5</td>
<td>3.5</td>
<td>3,750</td>
<td>50</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>Marquis (from Ottawa)</td>
<td>Apr. 12</td>
<td>Aug. 27</td>
<td>127</td>
<td>42</td>
<td>4.2</td>
<td>3,900</td>
<td>50</td>
<td>64.5</td>
</tr>
<tr>
<td>5</td>
<td>Stanley</td>
<td>Apr. 3</td>
<td>Aug. 7</td>
<td>126</td>
<td>47</td>
<td>3.5</td>
<td>4,830</td>
<td>44</td>
<td>63.5</td>
</tr>
<tr>
<td>6</td>
<td>Marquis (home-grown)</td>
<td>Apr. 3</td>
<td>Aug. 7</td>
<td>126</td>
<td>36</td>
<td>3.5</td>
<td>3,700</td>
<td>43</td>
<td>33.5</td>
</tr>
</tbody>
</table>

NOTE.—"Average for three years only.

EXPERIMENTS WITH OATS.

Five varieties of oats were grown on spring-ploughed alfalfa sod in plots of one-sixtieth acre each. They were sown on April 16. One irrigation was given on June 5.

OATS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of days Maturing</th>
<th>Length of Straw including head</th>
<th>Length of Head</th>
<th>Weight of Straw per Acre</th>
<th>Weight per bushel after cleaning</th>
<th>Average yield for 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Banner</td>
<td>April 16</td>
<td>Aug. 10</td>
<td>116</td>
<td>47·5</td>
<td>7·0</td>
<td>4,500</td>
<td>145</td>
<td>38·9</td>
</tr>
<tr>
<td>2</td>
<td>Improved American</td>
<td>16</td>
<td>Aug. 11</td>
<td>117</td>
<td>49·5</td>
<td>7·0</td>
<td>4,200</td>
<td>142</td>
<td>38·5</td>
</tr>
<tr>
<td>3</td>
<td>Irish Victor</td>
<td>16</td>
<td>Aug. 11</td>
<td>116</td>
<td>48·5</td>
<td>6·5</td>
<td>4,500</td>
<td>141</td>
<td>39·5</td>
</tr>
<tr>
<td>4</td>
<td>Danish Island</td>
<td>16</td>
<td>Aug. 10</td>
<td>116</td>
<td>49·0</td>
<td>6·0</td>
<td>4,470</td>
<td>141</td>
<td>39·5</td>
</tr>
<tr>
<td>5</td>
<td>Gar. Reg. Abund’ce</td>
<td>16</td>
<td>Aug. 14</td>
<td>120</td>
<td>44·0</td>
<td>6·0</td>
<td>4,380</td>
<td>165</td>
<td>35·0</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

FIELD LOTS OF OATS.

The following field lots of oats were grown in 1912:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Area</th>
<th>Preparation of land</th>
<th>Date Sown</th>
<th>Date Ripen.</th>
<th>Date Irrigated</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner</td>
<td>6.12</td>
<td>Spring ploughed alfalfa sod</td>
<td>April 15</td>
<td>Sept. 13</td>
<td>June 4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.32</td>
<td>Land on which grain was grown in 1911</td>
<td></td>
<td>17 Aug. 21</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>2.64</td>
<td>Summer fallow</td>
<td></td>
<td>6</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5.39</td>
<td>Grain in 1911</td>
<td></td>
<td>27</td>
<td>27</td>
<td>67</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH BARLEY.

Five varieties of six-row and five varieties of two-row barley were grown on spring ploughed alfalfa sod. They were sown on April 18, in plots one-sixtieth of an acre each. One irrigation was given on June 5.

SIX-ROW BARLEY.—Test of Varieties (irrigated).

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average Length of Straw including Head</th>
<th>Average Length of Head</th>
<th>Weight of Straw</th>
<th>Yield per Acre</th>
<th>Weight per bushel after cleaning</th>
<th>Average Yield for 5 yrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Claus...</td>
<td>Apr. 18</td>
<td>Aug. 8</td>
<td>112</td>
<td>34</td>
<td>2.7</td>
<td>3,660</td>
<td>81</td>
<td>30</td>
<td>50.5</td>
<td>65.37</td>
</tr>
<tr>
<td>2 Odessa</td>
<td>" 18 "</td>
<td>" 5 "</td>
<td>109</td>
<td>37</td>
<td>2.8</td>
<td>4,020</td>
<td>80</td>
<td>26</td>
<td>54</td>
<td>56.12</td>
</tr>
<tr>
<td>3 Manchurian</td>
<td>" 18 "</td>
<td>" 6 "</td>
<td>110</td>
<td>40</td>
<td>3.2</td>
<td>4,050</td>
<td>78</td>
<td>43</td>
<td>51</td>
<td>59.43</td>
</tr>
<tr>
<td>4 O. A. C. No. 21</td>
<td>" 18 "</td>
<td>" 6 "</td>
<td>110</td>
<td>39.5</td>
<td>2.7</td>
<td>3,270</td>
<td>76</td>
<td>42</td>
<td>49</td>
<td>75.15</td>
</tr>
<tr>
<td>5 Mansfield</td>
<td>" 18 "</td>
<td>" 7 "</td>
<td>111</td>
<td>39</td>
<td>2.5</td>
<td>3,870</td>
<td>61</td>
<td>42</td>
<td>53.5</td>
<td>53.38</td>
</tr>
</tbody>
</table>

TWO-ROW BARLEY.—Test of Varieties (irrigated).

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average Length of Straw including Head</th>
<th>Average Length of Head</th>
<th>Weight of Straw</th>
<th>Yield per Acre</th>
<th>Weight per bushel after cleaning</th>
<th>Average Yield for 4 yrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Swedish Chevalier</td>
<td>Apr. 18</td>
<td>Aug. 18</td>
<td>122</td>
<td>35</td>
<td>3</td>
<td>4,140</td>
<td>77</td>
<td>24</td>
<td>55.5</td>
<td>166.12</td>
</tr>
<tr>
<td>2 Invincible</td>
<td>" 18 "</td>
<td>" 20 "</td>
<td>124</td>
<td>44</td>
<td>3</td>
<td>4,710</td>
<td>69</td>
<td>18</td>
<td>55</td>
<td>52.29</td>
</tr>
<tr>
<td>3 Hannchen</td>
<td>" 18 "</td>
<td>" 6 "</td>
<td>110</td>
<td>39</td>
<td>3</td>
<td>3,900</td>
<td>66</td>
<td>42</td>
<td>48</td>
<td>...</td>
</tr>
<tr>
<td>4 Clifford</td>
<td>" 18 "</td>
<td>" 7 "</td>
<td>111</td>
<td>42</td>
<td>3</td>
<td>5,040</td>
<td>55</td>
<td>18</td>
<td>54</td>
<td>...</td>
</tr>
<tr>
<td>5 Early Chevalier</td>
<td>" 18 "</td>
<td>" 5 "</td>
<td>109</td>
<td>43</td>
<td>3.5</td>
<td>3,900</td>
<td>52</td>
<td>39</td>
<td>51</td>
<td>...</td>
</tr>
</tbody>
</table>

* Yield for two years only.
† Average for five years.
The following fields of barley were grown in 1912:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Area</th>
<th>Condition of Land, 1911</th>
<th>Date Sown</th>
<th>Date Ripe</th>
<th>Date Irrigated</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swedish Chevalier</td>
<td>.087</td>
<td>In peas</td>
<td>April 29</td>
<td>August 9</td>
<td>June 11</td>
<td>57 46</td>
</tr>
<tr>
<td>Mansfield</td>
<td>.46</td>
<td>In peas</td>
<td>" 29</td>
<td>" 8</td>
<td>" 11</td>
<td>37 28</td>
</tr>
<tr>
<td>Odessa</td>
<td>.29</td>
<td>In peas</td>
<td>" 29</td>
<td>" 6</td>
<td>" 11</td>
<td>50 2</td>
</tr>
<tr>
<td>Claude</td>
<td>.65</td>
<td>In peas</td>
<td>" 29</td>
<td>" 7</td>
<td>" 11</td>
<td>50 20</td>
</tr>
<tr>
<td>O.A.C. No. 21</td>
<td>.037</td>
<td>In alfalfa</td>
<td>" 26</td>
<td>" 6</td>
<td>" 5</td>
<td>49 26</td>
</tr>
<tr>
<td>Swedish Chevalier</td>
<td>.22</td>
<td>Hoed crops</td>
<td>" 29</td>
<td>" 20</td>
<td>" 8</td>
<td>99 34</td>
</tr>
<tr>
<td>Clifford</td>
<td>.4</td>
<td>Summer-fallow.</td>
<td>" 29</td>
<td>" 20</td>
<td>" 11</td>
<td>88 31</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH BUCKWHEAT.

Three varieties of buckwheat were sown on spring ploughed alfalfa sod on plots one-sixtieth of an acre in size. They received one irrigation on June 5. They were sown on May 31.

BUCKWHEAT.—Test of Varieties (irrigated).

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of days Maturing</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Silver Hull (Eastern seed)</td>
<td>May 31</td>
<td>Sept. 11</td>
<td>103</td>
<td>63 36</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>Japanese</td>
<td>" 31</td>
<td>" 14</td>
<td>106</td>
<td>45 00</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Silver Hull (Western seed)</td>
<td>" 31</td>
<td>" 14</td>
<td>106</td>
<td>43 36</td>
<td>56</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARMS

EXPERIMENTS WITH PEAS.

Nine varieties of peas were sown in plots of one-sixtieth of an acre each on land on which hoed crops had been grown the year previous. They were sown on April 2, at the rate of about two or two and one-half bushels per acre, depending on the size of the peas. The crop received one irrigation on June 5.

Peas.—Irrigated.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of days Maturing</th>
<th>Average length of Straw.</th>
<th>Weight of Straw</th>
<th>Yield per Acre.</th>
<th>Average yield for five years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prince</td>
<td>April 2.</td>
<td>Aug. 30.</td>
<td>150</td>
<td>33</td>
<td>4,320</td>
<td>30</td>
<td>38 30</td>
</tr>
<tr>
<td>2</td>
<td>Paragon</td>
<td>" 2</td>
<td>" 30.</td>
<td>150</td>
<td>42</td>
<td>4,000</td>
<td>71</td>
<td>43 00</td>
</tr>
<tr>
<td>3</td>
<td>Mackay</td>
<td>" 2</td>
<td>" 30.</td>
<td>150</td>
<td>42</td>
<td>4,020</td>
<td>70</td>
<td>39 01</td>
</tr>
<tr>
<td>4</td>
<td>English Grey</td>
<td>" 2</td>
<td>" 23.</td>
<td>143</td>
<td>33</td>
<td>3,720</td>
<td>65</td>
<td>35 56</td>
</tr>
<tr>
<td>5</td>
<td>Picton</td>
<td>" 2</td>
<td>" 30.</td>
<td>150</td>
<td>49</td>
<td>3,540</td>
<td>64</td>
<td>33 27</td>
</tr>
<tr>
<td>6</td>
<td>Prussian Blue</td>
<td>" 2</td>
<td>" 30.</td>
<td>150</td>
<td>42</td>
<td>3,600</td>
<td>57</td>
<td>31 30</td>
</tr>
<tr>
<td>7</td>
<td>Golden Vine</td>
<td>" 2</td>
<td>" 30.</td>
<td>150</td>
<td>48</td>
<td>3,450</td>
<td>55</td>
<td>31 16</td>
</tr>
<tr>
<td>8</td>
<td>Arthur Selected</td>
<td>" 2</td>
<td>" 20.</td>
<td>140</td>
<td>25</td>
<td>3,000</td>
<td>49</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>Chancellor</td>
<td>" 2</td>
<td>" 21.</td>
<td>141</td>
<td>33</td>
<td>3,600</td>
<td>45</td>
<td>29 28</td>
</tr>
</tbody>
</table>

FIELD LOTS OF PEAS.

The following field lots of peas were grown in 1912:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Area.</th>
<th>Date Sown.</th>
<th>Date Ripe.</th>
<th>Date Irrigated.</th>
<th>Condition of Land in 1911.</th>
<th>Yield per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mackay</td>
<td>049</td>
<td>" 2.</td>
<td>" 14.</td>
<td>" 5.</td>
<td>Grain.</td>
<td>74 50</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, LACOMBE, ALBERTA.

G. H. HUTTON, B.S.A., SUPERINTENDENT.

EXPERIMENTS WITH SPRING WHEAT.

Sixteen varieties of spring wheat were tested in 1912. A number of these varieties are comparatively new and are recorded under numbers only and are not yet available for general distribution. Several of these new wheats stood very well here this year, in comparison with older wheats. Further trials are necessary before they can be definitely recommended, but judging from this year's results, a number of them are well worth further trial. All varieties of spring wheat were seeded on black loam soil, which had been summer-fallow in 1911. One-fortieth acre plots were used and seed was sown on April 15, at the rate of two and one-quarter bushels per acre. Only the named varieties are mentioned in the table.

Spring Wheat—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Average Strength of straw on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yields of Grain per Acre</th>
<th>Yields of Grain per Acre after cleaning</th>
<th>Weight per measured bushel after cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Huron</td>
<td>Apr. 15</td>
<td>Sept. 11</td>
<td>149</td>
<td>48</td>
<td>10</td>
<td>3.7</td>
<td>3.260</td>
<td>54.56</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>Bishop</td>
<td>" 15</td>
<td>" 8</td>
<td>146</td>
<td>46</td>
<td>9</td>
<td>3.2</td>
<td>3.620</td>
<td>50.29</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Bobs</td>
<td>" 15</td>
<td>" 7</td>
<td>145</td>
<td>39</td>
<td>10</td>
<td>3.2</td>
<td>3.010</td>
<td>50.10</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Red Fife</td>
<td>" 15</td>
<td>" 14</td>
<td>152</td>
<td>45</td>
<td>9.7</td>
<td>3.5</td>
<td>2.520</td>
<td>42.00</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>Early Russian</td>
<td>" 15</td>
<td>" 9</td>
<td>147</td>
<td>46</td>
<td>5</td>
<td>3.5</td>
<td>2.440</td>
<td>40.40</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>Prelude</td>
<td>" 15</td>
<td>Aug. 28</td>
<td>135</td>
<td>36</td>
<td>10</td>
<td>2.2</td>
<td>2.360</td>
<td>39.10</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>Marquis</td>
<td>" 15</td>
<td>Sept. 12</td>
<td>150</td>
<td>43</td>
<td>10</td>
<td>3.5</td>
<td>1.880</td>
<td>33.00</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>Yellow Cross</td>
<td>" 15</td>
<td>" 7</td>
<td>115</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>1.250</td>
<td>21.30</td>
<td>60</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH WINTER WHEAT.

All the varieties of winter wheat were spring-killed, and no report can be given upon them.

EXPERIMENTS WITH RYE.

One plot of fall rye was sown on September 5, 1911, on summer-fallow, but for the first time on record here, fall rye also spring-killed. A plot of spring rye was sown on April 26 on land that was summer-fallow in 1911.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Date Ripened</th>
<th>No. of days Maturing</th>
<th>Length of Straw in Inches</th>
<th>Character of Straw</th>
<th>Length of Head in Inches</th>
<th>Weight of Straw</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring rye</td>
<td>Sept. 12</td>
<td>139</td>
<td>49</td>
<td>10</td>
<td>3.5</td>
<td>7,540</td>
<td>65</td>
</tr>
</tbody>
</table>

16—30
EXPERIMENTS WITH OATS.

Fourteen varieties of oats were tested in 1912. The plots were one-fortieth acre in size and were seeded on April 25, on land that was summer-fallowed in 1911. Seed was used at the rate of two and one-half to three bushels per acre.

OATS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Meaning</th>
<th>Average Length of Straw including Head</th>
<th>Average Length of Grain on a scale of 10 points</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Bushel</th>
<th>Weight per Measured bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Victory</td>
<td>April 25</td>
<td>Sept. 7</td>
<td>135</td>
<td>57</td>
<td>10</td>
<td>6</td>
<td>6.4</td>
<td>136.4</td>
</tr>
<tr>
<td>2</td>
<td>Irish Victor</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>54</td>
<td>10</td>
<td>7</td>
<td>3.8</td>
<td>114.4</td>
</tr>
<tr>
<td>3</td>
<td>Siberian</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>53</td>
<td>4.5</td>
<td>7.2</td>
<td>3.5</td>
<td>102.2</td>
</tr>
<tr>
<td>4</td>
<td>Banner</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>55</td>
<td>8</td>
<td>7.5</td>
<td>3.4</td>
<td>101.6</td>
</tr>
<tr>
<td>5</td>
<td>Daubevery</td>
<td>July 7</td>
<td>July 7</td>
<td>129</td>
<td>46.5</td>
<td>6.5</td>
<td>6.5</td>
<td>2.9</td>
<td>85.3</td>
</tr>
<tr>
<td>6</td>
<td>Reg. Abundance</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>51</td>
<td>8.5</td>
<td>6.7</td>
<td>2.8</td>
<td>83.8</td>
</tr>
<tr>
<td>7</td>
<td>MelDugal Scott</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>57.5</td>
<td>10</td>
<td>7</td>
<td>2.8</td>
<td>82.2</td>
</tr>
<tr>
<td>8</td>
<td>Ligar, Swedish</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>53</td>
<td>10</td>
<td>7</td>
<td>2.7</td>
<td>81.4</td>
</tr>
<tr>
<td>9</td>
<td>Gold Rain</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>54</td>
<td>7.5</td>
<td>7</td>
<td>2.1</td>
<td>63.8</td>
</tr>
<tr>
<td>10</td>
<td>Tartar King</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>54</td>
<td>7</td>
<td>7</td>
<td>2.0</td>
<td>59.1</td>
</tr>
<tr>
<td>11</td>
<td>Danish Island</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>54</td>
<td>7</td>
<td>6.5</td>
<td>1.9</td>
<td>57.2</td>
</tr>
<tr>
<td>12</td>
<td>Swedish Select</td>
<td>July 7</td>
<td>July 7</td>
<td>135</td>
<td>54.5</td>
<td>10</td>
<td>5.2</td>
<td>1.1</td>
<td>34.4</td>
</tr>
<tr>
<td>13</td>
<td>Eighty Day</td>
<td>Aug. 24</td>
<td>July 7</td>
<td>135</td>
<td>52</td>
<td>10</td>
<td>6.5</td>
<td>1.0</td>
<td>31.2</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH BARLEY.

The test of varieties of barley was conducted on black clay loam soil which had been summer-fallowed in 1911. The plots were all one-fortieth acre in size and were seeded on April 25, seed being used at the rate of two and one-quarter bushels per acre.

SIX-ROW BARLEY.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Meaning</th>
<th>Average Length of Straw including Head</th>
<th>Average Length of Grain on a scale of 10 points</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Bushel</th>
<th>Weight per Measured bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mansfield</td>
<td>Aug. 21</td>
<td>Aug. 21</td>
<td>121</td>
<td>41</td>
<td>7.5</td>
<td>2</td>
<td>3.8</td>
<td>79.2</td>
</tr>
<tr>
<td>2</td>
<td>O. A. C. No. 21</td>
<td>July 7</td>
<td>July 7</td>
<td>124</td>
<td>47</td>
<td>7</td>
<td>2.5</td>
<td>3.8</td>
<td>79.1</td>
</tr>
<tr>
<td>3</td>
<td>Odessa</td>
<td>July 7</td>
<td>July 7</td>
<td>134</td>
<td>47</td>
<td>8.5</td>
<td>3.2</td>
<td>3.8</td>
<td>75.2</td>
</tr>
<tr>
<td>4</td>
<td>Mauchurian</td>
<td>July 7</td>
<td>July 7</td>
<td>134</td>
<td>49</td>
<td>8</td>
<td>3.2</td>
<td>3.3</td>
<td>63.8</td>
</tr>
<tr>
<td>5</td>
<td>Stella</td>
<td>Aug. 26</td>
<td>Aug. 23</td>
<td>123</td>
<td>44</td>
<td>5</td>
<td>5</td>
<td>3.0</td>
<td>62.1</td>
</tr>
<tr>
<td>6</td>
<td>Guy Mayle</td>
<td>July 26</td>
<td>July 23</td>
<td>123</td>
<td>28.5</td>
<td>10</td>
<td>2</td>
<td>2.4</td>
<td>59.6</td>
</tr>
<tr>
<td>7</td>
<td>Success</td>
<td>July 26</td>
<td>July 23</td>
<td>129</td>
<td>36</td>
<td>10</td>
<td>3</td>
<td>1.7</td>
<td>36.2</td>
</tr>
<tr>
<td>8</td>
<td>Early Indian</td>
<td>July 26</td>
<td>July 23</td>
<td>129</td>
<td>36</td>
<td>8.5</td>
<td>1.7</td>
<td>3.8</td>
<td>12.4</td>
</tr>
</tbody>
</table>
Two-row Barley.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw Including Head</th>
<th>Strength of Straw on a scale of 10</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hannchen</td>
<td>Apr. 25</td>
<td>Sept. 7</td>
<td>135</td>
<td>38 inches</td>
<td>5</td>
<td>3</td>
<td>3,660</td>
<td>76 12 50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Swan's Neck</td>
<td>" 25</td>
<td>" 7</td>
<td>135</td>
<td>46 inches</td>
<td>7</td>
<td>2.7</td>
<td>3,620</td>
<td>75 20 52</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Swedish Chevalier</td>
<td>" 25</td>
<td>" 7</td>
<td>135</td>
<td>44 inches</td>
<td>5</td>
<td>3.5</td>
<td>3,220</td>
<td>67 4 49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Invincible</td>
<td>" 25</td>
<td>" 7</td>
<td>135</td>
<td>47 inches</td>
<td>8</td>
<td>3</td>
<td>3,130</td>
<td>65 10 50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Early Chevalier</td>
<td>Aug. 23</td>
<td>120</td>
<td></td>
<td>47 inches</td>
<td>8</td>
<td>3</td>
<td>2,710</td>
<td>56 22 54</td>
<td></td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH PEAS.

Seven varieties of Canadian field peas were tested in 1912. The seed was sown on April 25, at the rate of two and one-half to three bushels per acre, on one-fortieth acre plots. The soil had been summer-fallowed in 1911, and was a black clay loam on clay sub-soil.

Peas.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>Number of days Matur ing</th>
<th>Average Length of Pod</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chancellor</td>
<td>April 25</td>
<td>Sept. 3</td>
<td>131</td>
<td>2.2</td>
<td>1,770</td>
<td>29 30 65</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Arthur</td>
<td>" 25</td>
<td>" 3</td>
<td>131</td>
<td>2.2</td>
<td>1,600</td>
<td>28 10 64</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mackay</td>
<td>" 25</td>
<td>" 3</td>
<td>131</td>
<td>2.7</td>
<td>1,650</td>
<td>28 00 48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Paragon</td>
<td>" 25</td>
<td>" 3</td>
<td>131</td>
<td>2.5</td>
<td>1,400</td>
<td>23 20 61</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Golden Vine</td>
<td>" 25</td>
<td>" 3</td>
<td>131</td>
<td>2</td>
<td>1,310</td>
<td>21 50 61</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>English Grey</td>
<td>" 25</td>
<td>" 3</td>
<td>131</td>
<td>2.7</td>
<td>1,300</td>
<td>21 40 60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Prussian Blue</td>
<td>" 25</td>
<td>" 3</td>
<td>131</td>
<td>2.5</td>
<td>890</td>
<td>14 50 64</td>
<td></td>
</tr>
</tbody>
</table>
EXPERIMENTS AT ST. BERNARD MISSION, GROUARD, ALTA.

(IN CHARGE OF REV. BRO. LAURENT.)

Arrangements have been made for carrying on experiments in cereals at this location; but it was not possible, after the arrangements had been completed, to procure the necessary grains in good time for sowing.

The following varieties were sown on June 1, as soon as practicable after the seed arrived:

Spring wheat.—Marquis, 5 pounds sown; cut September 21; yield, 78 pounds.

Spring wheat.—Preston, 10 pounds sown; cut September 21; yield, 298 pounds.

Oats.—Ligowo, 12 pounds sown; cut September 21; yield, 204 pounds.

Barley.—Manchurian, 8 pounds sown; cut September 12; yield, 183 pounds.

Another sample of Marquis wheat, which had been received during the winter from the Dominion Cerealist, was sown May 2, cut September 5, and yielded 135 pounds. This was sown on new breaking.
EXPERIMENTAL STATION, FORT VERMILION, ALTA.

(IN CHARGE OF ROBERT JONES.)

EXPERIMENTS WITH CEREALS.

Eight varieties of spring wheat, four of oats, five of barley, and one of peas, were tested in plots. The plots of Excelsior oats and Champion barley failed, on account of the injury from cut-worms and drought.

SPRING WHEAT.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Head</th>
<th>Strength of stem, on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preston</td>
<td>Apr. 30</td>
<td>Aug. 26</td>
<td>119</td>
<td>44</td>
<td>3.7</td>
<td>4.140</td>
<td>69</td>
<td>30</td>
<td>64.3</td>
</tr>
<tr>
<td>2</td>
<td>Ladoga</td>
<td>21</td>
<td>19</td>
<td>113</td>
<td>42</td>
<td>6</td>
<td>8,300</td>
<td>55</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Marquis</td>
<td>28</td>
<td>Sept. 3</td>
<td>128</td>
<td>42</td>
<td>6</td>
<td>3,900</td>
<td>50</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Riga</td>
<td>30</td>
<td>Aug. 17</td>
<td>110</td>
<td>45</td>
<td>8</td>
<td>3,900</td>
<td>50</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Stanley</td>
<td>20</td>
<td>21</td>
<td>115</td>
<td>41</td>
<td>8</td>
<td>2,820</td>
<td>47</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bishop</td>
<td>20</td>
<td>22</td>
<td>118</td>
<td>42</td>
<td>9</td>
<td>2,730</td>
<td>45</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Red Fife</td>
<td>29</td>
<td>Sept. 2</td>
<td>127</td>
<td>43</td>
<td>10</td>
<td>2,610</td>
<td>43</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Kubanka</td>
<td>30</td>
<td>5</td>
<td>129</td>
<td>40</td>
<td>9</td>
<td>2,040</td>
<td>34</td>
<td>63.2</td>
<td></td>
</tr>
</tbody>
</table>

OATS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Head</th>
<th>Strength of stem, on a scale of 10 points</th>
<th>Average Length of Head</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
<th>Weight per measured bushel after Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ligowo</td>
<td>May 7</td>
<td>Sept. 4</td>
<td>120</td>
<td>53</td>
<td>6</td>
<td>10</td>
<td>2,480</td>
<td>72</td>
<td>38.3</td>
</tr>
<tr>
<td>2</td>
<td>Tartar King</td>
<td>7</td>
<td>4</td>
<td>120</td>
<td>59</td>
<td>6</td>
<td>9</td>
<td>2,150</td>
<td>63</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Banner</td>
<td>7</td>
<td>3</td>
<td>119</td>
<td>47</td>
<td>10</td>
<td>9</td>
<td>2,040</td>
<td>60</td>
<td>34</td>
</tr>
</tbody>
</table>
Barley.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, in inches</th>
<th>Average Length of Head, in inches</th>
<th>Average Yield of Grain per Acre, Lb.</th>
<th>Yield of Grain per Acre, Bush.</th>
<th>Weight measured bushel after cleaning, Lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mensury</td>
<td>May 10</td>
<td>Aug. 23</td>
<td>105</td>
<td>39</td>
<td>8</td>
<td>3.5</td>
<td>3,630</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Claude</td>
<td>May 11</td>
<td>Aug. 15</td>
<td>97</td>
<td>40</td>
<td>6</td>
<td>3.5</td>
<td>3,040</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>Canadian Thorpe</td>
<td>May 11</td>
<td>Aug. 20</td>
<td>101</td>
<td>38</td>
<td>8</td>
<td>3</td>
<td>2,820</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Sidney</td>
<td>May 11</td>
<td>Sept. 2</td>
<td>115</td>
<td>41</td>
<td>6</td>
<td>4</td>
<td>2,670</td>
<td>55</td>
</tr>
</tbody>
</table>

Field peas, Arthur, plot one-sixtieth of an acre, sown April 30, cut September 5. Length of vine, 4 feet; length of pod, 3 inches; quite green when cut. Yield per acre, 24 bushels. Weight per measured bushel, after cleaning, 65 pounds.
EXPERIMENTAL FARM, AGASSIZ, B.C.

P. H. MOORE, B.S.A., SUPERINTENDENT.

GRAIN CROPS.

This year we grew at the Farm here twelve varieties of wheat, fourteen varieties of oats, seven varieties of two-row barley, eight varieties of six-row barley, and thirteen varieties of peas. These varieties were tested in plots of one-sixtieth acre each.

All of the grain, with the exception of the peas, was sown on land upon which corn had been grown in 1911. The land was a light, sandy loam underlaid with gravel, with the gravel cropping through in some places, but the cultivation was thorough.

The peas were sown on fall-ploughed land with a couch-grass soil that had been ploughed early the fall before, and an attempt made to have the couch-grass cleaned out. Late in the season of 1912 the couch-grass got a start and somewhat reduced the yield of peas.

The harvest weather in this section was most abominable, and all grain, except that which had been head selected, got wet many times and the quality was very low.

SPRING WHEAT.

Of the twelve varieties sown this year, the Marquis headed the list, but the yield of all of them was low and the quality poor. Two of the varieties, which have not yet been named, are omitted from the table.

Spring Wheat.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Scutellum Head</th>
<th>Average Length of Fijon of Heads</th>
<th>Strength of Straw on a Scale of 10 Points</th>
<th>Average Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marquis</td>
<td>April 17</td>
<td>Aug. 5</td>
<td>110</td>
<td>40</td>
<td>8</td>
<td>3</td>
<td>1,380</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Alpha Selected</td>
<td>17</td>
<td>8</td>
<td>113</td>
<td>41</td>
<td>8</td>
<td>3</td>
<td>1,380</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Bobs</td>
<td>17</td>
<td>9</td>
<td>114</td>
<td>38</td>
<td>8</td>
<td>3</td>
<td>1,200</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Bishop</td>
<td>17</td>
<td>12</td>
<td>117</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>1,080</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Pringle’s Champlain</td>
<td>17</td>
<td>9</td>
<td>114</td>
<td>38</td>
<td>8</td>
<td>3 1/2</td>
<td>1,080</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Preston</td>
<td>17</td>
<td>5</td>
<td>111</td>
<td>41</td>
<td>9</td>
<td>2</td>
<td>1,020</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Stanley</td>
<td>17</td>
<td>7</td>
<td>110</td>
<td>40</td>
<td>9</td>
<td>7</td>
<td>760</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Early Red Fife</td>
<td>17</td>
<td>9</td>
<td>114</td>
<td>40</td>
<td>8</td>
<td>3 1/2</td>
<td>840</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Red Fife</td>
<td>17</td>
<td>6</td>
<td>111</td>
<td>41</td>
<td>8</td>
<td>3</td>
<td>720</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Huron</td>
<td>17</td>
<td>6</td>
<td>111</td>
<td>41</td>
<td>8</td>
<td>3</td>
<td>720</td>
<td>13</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARMS

4 GEORGE V., A. 1914

OATS.

The result of the fourteen varieties of oats will be seen in the following table. They are listed in order of merit from the standpoint of yield for this year.

OATS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average length of Straw, including Head.</th>
<th>Strength of straw on a scale of 10 points.</th>
<th>Average length of Head.</th>
<th>Yield of Grain Per Acre Lb.</th>
<th>Yield of Grain Per Acre Bus. Lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Irish Victor</td>
<td>Apr. 17</td>
<td>Aug. 6</td>
<td>111</td>
<td>41</td>
<td>9</td>
<td>9</td>
<td>2530</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>Danish Island</td>
<td>Apr. 17</td>
<td>7</td>
<td>112</td>
<td>43</td>
<td>8</td>
<td>9</td>
<td>2190</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>Improved Ligowia</td>
<td>Apr. 17</td>
<td>6</td>
<td>111</td>
<td>40</td>
<td>9</td>
<td>9</td>
<td>2160</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Daubeney</td>
<td>Apr. 17</td>
<td>July 22</td>
<td>102</td>
<td>38</td>
<td>9</td>
<td>7</td>
<td>2010</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Phaner</td>
<td>Apr. 17</td>
<td>Aug. 5</td>
<td>110</td>
<td>42</td>
<td>9</td>
<td>9</td>
<td>1920</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>Regenerated Abundance</td>
<td>Apr. 17</td>
<td>5</td>
<td>110</td>
<td>43</td>
<td>9</td>
<td>9</td>
<td>1890</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>Eighty Day</td>
<td>Apr. 17</td>
<td>July 18</td>
<td>98</td>
<td>38</td>
<td>8</td>
<td>8</td>
<td>1800</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>Lincoln</td>
<td>Apr. 17</td>
<td>July 8</td>
<td>112</td>
<td>42</td>
<td>10</td>
<td>10</td>
<td>1770</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>Twentieth Century</td>
<td>Apr. 17</td>
<td>3</td>
<td>108</td>
<td>41</td>
<td>10</td>
<td>10</td>
<td>1740</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>Siberian</td>
<td>Apr. 17</td>
<td>3</td>
<td>110</td>
<td>42</td>
<td>9</td>
<td>9</td>
<td>1740</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>Improved American</td>
<td>Apr. 17</td>
<td>12</td>
<td>117</td>
<td>42</td>
<td>10</td>
<td>10</td>
<td>1620</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>Swedish Select</td>
<td>Apr. 17</td>
<td>12</td>
<td>117</td>
<td>40</td>
<td>9</td>
<td>9</td>
<td>1560</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>Gold Rain</td>
<td>Apr. 17</td>
<td>10</td>
<td>115</td>
<td>41</td>
<td>9</td>
<td>9</td>
<td>1500</td>
<td>44</td>
</tr>
<tr>
<td>14</td>
<td>Thousand Dollar</td>
<td>Apr. 17</td>
<td>12</td>
<td>117</td>
<td>43</td>
<td>8</td>
<td>10</td>
<td>1380</td>
<td>40</td>
</tr>
</tbody>
</table>

BARLEY.

The two-row barley, as a class, yields better in this Lower Fraser country than does the six-row barley. Following are the results of each:

BARLEY, SIX-ROW.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average length of Straw, including Head.</th>
<th>Strength of straw on a scale of 10 points.</th>
<th>Average length of Head.</th>
<th>Yield of Grain Per Acre Lb.</th>
<th>Yield of Grain Per Acre Bus. Lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oderbruch.</td>
<td>April 17</td>
<td>July 22</td>
<td>96</td>
<td>44</td>
<td>10</td>
<td>3</td>
<td>1,980</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>Manchurian</td>
<td>April 17</td>
<td>27</td>
<td>101</td>
<td>41</td>
<td>8</td>
<td>3</td>
<td>1,980</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>Odessa</td>
<td>April 17</td>
<td>22</td>
<td>96</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>1,869</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Mansfield</td>
<td>April 17</td>
<td>27</td>
<td>101</td>
<td>41</td>
<td>10</td>
<td>3</td>
<td>1,869</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Success (Aless)</td>
<td>April 17</td>
<td>12</td>
<td>86</td>
<td>36</td>
<td>8</td>
<td>2</td>
<td>1,800</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>Yale</td>
<td>April 17</td>
<td>29</td>
<td>103</td>
<td>42</td>
<td>10</td>
<td>3</td>
<td>1,740</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>O. A. C., No. 21</td>
<td>April 17</td>
<td>24</td>
<td>98</td>
<td>42</td>
<td>10</td>
<td>3</td>
<td>1,680</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>Trooper</td>
<td>April 17</td>
<td>27</td>
<td>101</td>
<td>38</td>
<td>9</td>
<td>3</td>
<td>1,620</td>
<td>35</td>
</tr>
</tbody>
</table>

BARLEY, TWO-ROW.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average length of Straw, including Head.</th>
<th>Strength of straw on a scale of 10 points.</th>
<th>Average length of Head.</th>
<th>Yield of Grain Per Acre Lb.</th>
<th>Yield of Grain Per Acre Bus. Lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hannchen</td>
<td>April 17</td>
<td>Aug. 3</td>
<td>108</td>
<td>45</td>
<td>10</td>
<td>4</td>
<td>2,100</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>Swedish Chevalier</td>
<td>April 17</td>
<td>5</td>
<td>110</td>
<td>45</td>
<td>8</td>
<td>4</td>
<td>2,250</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Canadian Thorpe</td>
<td>April 17</td>
<td>July 31</td>
<td>103</td>
<td>46</td>
<td>10</td>
<td>4</td>
<td>2,220</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Invincible</td>
<td>April 17</td>
<td>Aug. 6</td>
<td>111</td>
<td>48</td>
<td>9</td>
<td>3</td>
<td>2,160</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Beaver</td>
<td>April 17</td>
<td>July 29</td>
<td>108</td>
<td>40</td>
<td>9</td>
<td>3</td>
<td>2,160</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>Danish Chevalier</td>
<td>April 17</td>
<td>Aug. 8</td>
<td>103</td>
<td>44</td>
<td>7</td>
<td>4</td>
<td>1,960</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Clifford</td>
<td>April 17</td>
<td>July 29</td>
<td>103</td>
<td>42</td>
<td>8</td>
<td>3</td>
<td>1,630</td>
<td>35</td>
</tr>
</tbody>
</table>
PEAS.

The following is the result from the fifteen varieties of seed. The English Gray, which was received from Lacombe, Alta., was the largest yielder this year, but the results of all the plots were very low on account of the bad harvest weather and the great amount of shelling.

PEAS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Date of Sowing</th>
<th>Date of Ripening</th>
<th>No. of Days Maturing</th>
<th>Average Length of Straw, including Head</th>
<th>Average Length of Pod</th>
<th>Yield of Grain per Acre</th>
<th>Yield of Grain per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English Gray (Lacombe stock)</td>
<td>Apr. 22</td>
<td>Aug. 12</td>
<td>117</td>
<td>50 inches</td>
<td>3 inches</td>
<td>1,440 Lb</td>
<td>24 Bush</td>
</tr>
<tr>
<td>2</td>
<td>Chancellor</td>
<td>" 22</td>
<td>" 10</td>
<td>115</td>
<td>48 inches</td>
<td>2-5 inches</td>
<td>1,350 Lb</td>
<td>23 Bush</td>
</tr>
<tr>
<td>3</td>
<td>Mackav</td>
<td>" 22</td>
<td>" 13</td>
<td>118</td>
<td>52 inches</td>
<td>3-5 inches</td>
<td>1,250 Lb</td>
<td>21 Bush</td>
</tr>
<tr>
<td>4</td>
<td>Daniel O'Rourke</td>
<td>" 22</td>
<td>" 10</td>
<td>115</td>
<td>46 inches</td>
<td>2-5 inches</td>
<td>1,150 Lb</td>
<td>20 Bush</td>
</tr>
<tr>
<td>5</td>
<td>Black-eye Marrowfat</td>
<td>" 22</td>
<td>" 14</td>
<td>119</td>
<td>53 inches</td>
<td>3 inches</td>
<td>1,050 Lb</td>
<td>19 Bush</td>
</tr>
<tr>
<td>6</td>
<td>White Marrowfat</td>
<td>" 22</td>
<td>" 12</td>
<td>117</td>
<td>53 inches</td>
<td>3 inches</td>
<td>950 Lb</td>
<td>16 Bush</td>
</tr>
<tr>
<td>7</td>
<td>Golden Vine</td>
<td>" 22</td>
<td>" 14</td>
<td>119</td>
<td>42 inches</td>
<td>2-5 inches</td>
<td>840 Lb</td>
<td>14 Bush</td>
</tr>
<tr>
<td>8</td>
<td>Paragon</td>
<td>" 22</td>
<td>" 13</td>
<td>118</td>
<td>50 inches</td>
<td>3 inches</td>
<td>750 Lb</td>
<td>15 Bush</td>
</tr>
<tr>
<td>9</td>
<td>Prince</td>
<td>" 22</td>
<td>" 13</td>
<td>118</td>
<td>48 inches</td>
<td>3-5 inches</td>
<td>650 Lb</td>
<td>14 Bush</td>
</tr>
<tr>
<td>10</td>
<td>Arthur Selected</td>
<td>" 22</td>
<td>" 12</td>
<td>117</td>
<td>50 inches</td>
<td>3 inches</td>
<td>560 Lb</td>
<td>16 Bush</td>
</tr>
<tr>
<td>11</td>
<td>Prussian Blue</td>
<td>" 22</td>
<td>" 14</td>
<td>119</td>
<td>52 inches</td>
<td>3 inches</td>
<td>460 Lb</td>
<td>15 Bush</td>
</tr>
<tr>
<td>12</td>
<td>Wisconsin Blue</td>
<td>" 22</td>
<td>" 13</td>
<td>118</td>
<td>50 inches</td>
<td>3 inches</td>
<td>360 Lb</td>
<td>14 Bush</td>
</tr>
<tr>
<td>13</td>
<td>Picton</td>
<td>" 22</td>
<td>" 12</td>
<td>117</td>
<td>52 inches</td>
<td>3 inches</td>
<td>260 Lb</td>
<td>14 Bush</td>
</tr>
</tbody>
</table>
REPORT

FROM

THE DIVISION OF BOTANY

For the Fiscal Year Ending March 31, 1913

PREPARED BY

The Dominion Botanist. H. T. Gössow
REPORT

OF THE

DIVISION OF BOTANY.

J. H. Grisdale, Esq., B.Agr.,
Director, Dominion Experimental Farms,
Ottawa.

Sir,—I have the honour to submit herewith the report of the Division of Botany for the year ending March 31, 1913, being the fourth annual report of this Division.

The present report is an account of that part of the work carried on by the various members of the staff of the Division, which is considered to be of more general interest. It is a bulletin of miscellaneous botanical information and appears in a somewhat changed form, inasmuch as it is partially prepared by the several members of the staff under their own names instead of, as heretofore, by the Dominion Botanist.

While all work in the Division is carried on under the direction or with the approval of the Dominion Botanist, the varied character of that work renders it necessary that individual members of the staff devote themselves largely to different lines of work or the solution of special problems. It is hoped that by reserving the credit for original work done by them, and thus stimulating them to acquire a scientific reputation of their own, the present arrangement will encourage such work and thus contribute to the raising of the standard of the report from both the scientific and the practical standpoints.

The work of the Division has extended considerably and progressed satisfactorily during the past year and I am pleased in this place to acknowledge the ever-ready assistance rendered by the members of my staff.

I have the honour to be, sir,
Your obedient servant,

H. T. Gussow,
Dominion Botanist.
MILK BACTERIOLOGICAL INVESTIGATIONS.

During the year the Division conducted an inquiry into the bacterial contents of the milk produced by the Farm herd. It was first necessary to examine the bacterial contents of the natural milk, and also to inquire into the sources of any bacterial contamination with a view to eliminating, as much as possible, impurities of such character.

The investigations required much time and thought, since, as they progressed further, new phases of work had to be taken up; partly because of the limitation of space in this report, and partly because the experiments will be continued, we only give a brief progress report here and reserve the publication of all details for an exhaustive report to be published later.

In order to familiarize the manual staff of stable and dairy with the meaning of bacteria, the Director requested the Dominion Botanist to give a series of demonstrations and addresses before these men, which were well attended and which resulted in establishing the deeper interest of the men in the various experiments which became necessary. Owing to the interest manifested, the series of addresses proved a real pleasure to the lecturer.

Because of the scientific nature of such work, some very elementary explanations became necessary, and the nature, development and significance of bacteria were carefully gone into.

The work itself may be divided into three main groups:—

1st. Experiments made with a view to discovering and eliminating sources of bacterial contamination of milk.

2nd. Quantitative examination of milk before and after certain measures suggested for improvement.

3rd. Comparative quantitative examination of bacterial contents of milk, as produced by hand milking and machine milking.

SIGNIFICANCE OF BACTERIA IN MILK.

Before giving an account of the various phases of the work carried on, a few remarks as to the meaning of bacteria in milk may be welcome.

The bacterial content of milk varies naturally according to the health of the animal from which the milk is obtained, and the treatment and care the milk receives thereafter. For the examination of the bacterial contents, a small quantity of milk is generally sufficient. One cubic centimeter (or 1 'cc.' in its usual form of abbreviation) is commonly examined. This quantity is taken from an average, representative sample by means of an absolutely clean and sterile graduated pipette or glass tube, the capacity of which is accurately measured. This is dipped in the milk and the latter drawn up by gentle suction. According to the size of the pointed mouth of such a pipette one cubic centimeter will 'drop' from 20 to 25 single drops of milk. Hence, a cubic centimeter is equal to a quantity of from about 20 to 25 drops of the liquid examined. There are 568.34 cubic centimeters in the imperial pint.

Bacteria are amongst the smallest organisms of plant life and owing to their purpose in nature are most abundant where dirt and filth accumulate and where the conditions are generally unsanitary. They are principally scavengers of nature and cause the decomposition and final disappearance of any kind of vegetable or animal matter. In this respect they are decidedly useful, but no one would consider them a useful addition to the milk or food consumed. They must in such place be considered as impurities and in the nature of contamination.
SESSIO.
From the above ten days quoted in detail, the average daily counts for the milking machine are 15,155 organisms per cubic centimeter, and 1,590 organisms per cubic centimeter for the hand milk. The average for another similar period gave 174,693 organisms per 'cc.' in machine milk and 2,706 organisms per 'cc.' in hand milk. A third average computed from a period of twenty days again decided in favour of hand milking; the results obtained for machine milk were 22,112 per 'cc.,' and for hand milk, 9,358 per 'cc.'

The average bacterial contents of milk obtained by machine and by hand of all tests made, were as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Machine Milk</th>
<th>Hand Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25,146 bacteria per "cc"</td>
<td>2,750 bacteria per "cc"</td>
</tr>
<tr>
<td>February 24</td>
<td>20,880</td>
<td>6,579</td>
</tr>
<tr>
<td>" 25</td>
<td>2,188</td>
<td>1,455</td>
</tr>
<tr>
<td>" 26</td>
<td>6,214</td>
<td>1,098</td>
</tr>
<tr>
<td>March 6</td>
<td>22,163</td>
<td>1,760</td>
</tr>
<tr>
<td>" 7</td>
<td>19,134</td>
<td>1,769</td>
</tr>
<tr>
<td>" 8</td>
<td>12,141</td>
<td>350</td>
</tr>
<tr>
<td>April 1</td>
<td>21,427</td>
<td>391</td>
</tr>
<tr>
<td>" 2</td>
<td>7,859</td>
<td>847</td>
</tr>
</tbody>
</table>

The experiments are being continued and finally a complete report will be issued. At the present we are able to state that the bacterial contents of the milk have been reduced after six months' work from 18,000 organisms per cc. at the beginning to some 500 organisms towards the end. Thus the milk at the Central Experimental Farm may be classed among the purest natural milks produced anywhere on the continent of America.

THE STORAGE ROT OF POTATOES.

For some months past, an inspection of stored potatoes has been carried on by the Division of Botany, especially of potatoes among which the presence of powdery scab was suspected. During this work it was recalled that the losses from the various 'rots' affecting stored potatoes were considerable, and of far greater economic importance than is generally realized. In some instances from thirty to forty per cent of the potatoes had become quite useless, owing to various forms of dry or wet rots. This observation made early in the season was a bad outlook for the safe-keeping over winter of the remaining potatoes. 'Storage rots' of potatoes may be induced by a variety of agents. To begin with, it must be understood that a perfectly 'ripe' potato providing, of course, it is free from blight or other diseases, is less liable to be affected by rot than those harvested too early. This statement raises the question: When are potatoes ripe, i.e., in the best condition to dig? Digging potatoes depends largely upon individual conditions prevailing at the
various farms; in wet land it is advisable to dig them earlier than on dry land; they will also have to be dug at a later date when badly affected by blight, in order to show the disease in the tubers, so that they may be removed, than if they were free from it; but in general potatoes are ready for digging, under normal conditions, when the stalks have died down and hence no longer take an active part in the manufacture of the reserve food which is stored in the tubers. Here it is where the psychological moment may be missed, for there are potato diseases such as late blight, early blight, rhizoctonia, or even the attacks of the flea beetle or potato bug, which may cause the premature death of the stalks, and which may be mistaken for their normal 'death.' Where these conditions prevail, the potatoes underground are not 'ripe,' and, what is more important, there is no chance of their becoming ripe, however long they are left in the soil.

A ripe potato has all its cells well supplied with food material, i.e., starch, and the skin adheres firmly to the tuber when the finger or thumb is applied to the surface with a firm, rubbing movement. When the skin is easily detached 'during this operation, the tubers are not ripe and should be left in the ground, providing the tops are free from disease. It is an unfortunate fact, however, that the largest percentage of potato fields are attacked by late blight and the stalks are killed prematurely. In this case the tubers will also have become infected and are liable to decay in the pit or cellar, unless certain precautions are exercised.

The second fact favouring, and indeed inviting decay, is where potatoes are lying too close to the surface of the ground in the field. Such tubers are easily touched by frost, and, if not separated at once from those unaffected, they are sure to decay when placed in storage.

Another prominent source of rot in storage is the apparently unavoidable injuries during harvesting of potatoes, especially when a potato digger is used. However slightly a potato may appear to be damaged, as soon as the injury extends below the skin, the tissues rich in available food are open to an invasion by spores of fungi and bacteria, which find in such wounds a very suitable feeding ground. A large number of such injured potatoes are picked up, notwithstanding every care, and are finally deposited in the bins or pits.

The above mentioned factors, involving more or less mechanical or physical features, deserve, nevertheless, to be taken into careful consideration. The conditions described on the potatoes themselves, which may be regarded as factors weakening the power of resistance towards storage rots, and what is more, their exposure in their impaired condition of 'health' to the favourable conditions for the development of bacteria and fungi which are ever present in bins, pits or the places of storage, should certainly be regarded as the most prominent factors responsible for the largest amount of losses occurring during storage.

What is necessary to start into action the myriads of fungus spores and bacteria present everywhere, and so destructive to stored vegetable matter of any kind? Is it not the moisture, warmth, absence of ventilation and light that encourage decay and rot, and are not these conditions fairly constant in all pits, bins, etc., where potatoes are stored? Besides the excellent food in the potato is ready prepared for the use of the ravenously feeding organisms of decay. Giving these lines a moment's thought and consideration, will the majority of readers not own that these very conditions prevail in their own cases? Have your potatoes been dug at the right time, were they quite ripe? Were none touched by frost or damaged by the digger? Is your cellar or pit well ventilated? If so, you have nothing to fear from storage rot, for then you are no doubt awake to the necessity of preventing late blight and other diseases. But those who must own up to one or more similar 'sins of omission' had better turn to their potatoes at once and start hand-picking them over, taking out all potatoes that show any of these signs.

16—31
The question is frequently asked by farmers sending samples of potatoes affected with storage rot, whether there is any treatment to prevent it from spoiling the potatoes. We are afraid there is nothing to be done to stop the decay once it has set in, beyond hand-picking them, removing all damaged, frozen or diseased potatoes, providing good ventilation and using for storage a cool place.

In the preceding lines we have spoken about the result to be expected from unripe, frozen or damaged potatoes, and have pointed out that, without being actually diseased, they are liable to suffer considerable losses. But how much more quickly will the decay set in when the tubers have been attacked by late blight and other diseases, eventually finding their way into the tuber.

There are a number of distinct parasitic diseases of the growing potato which will start a 'storage rot,' and which will spread by contact from diseased to sound tubers. Late blight (Phytophthora infestans) is the worst offender in this respect. The amount of late blight present in a field largely depends upon the successful and rapid control of the potato bug. When the potato bug has been allowed to gain a foothold, even if only for a short period, the vines are generally so much injured that it is almost impossible to keep the late blight from playing havoc.

In some potato experiments carried out at the Central Experimental Farm, with the view of producing potatoes as free from disease as possible under practical farming conditions, we secured from the four acres grown 1,770 bushels, which averages about 440 bushels per acre, by no means a light yield; but, notwithstanding careful spraying, the potato bug had done enough damage before it was controlled, so that late blight appeared and still caused far too much loss. Unless spraying is begun very early in the season late blight is difficult to control, and often about August and September the potato tops have been killed. Thus, not only is the manufacture of the reserve food to be stored in the tuber discontinued and the tubers remain unripe, but the disease spreads into the tubers. When this has taken place, the potatoes may be left in the ground for a week or so longer, when the rot will be more apparent, but when digging the potatoes, they should be hilled up on the field, covered lightly with straw and earth until they have dried up well. Before taking them in, the potatoes should be carefully hand-picked to remove all diseased or injured potatoes.

It is hardly necessary here to mention other diseases affecting the potato plant, for whatever their nature, as soon as the tubers become affected it amounts to the same thing, they must be picked out to prevent storage rot. Diseases like potato rosette or little potatoes (generally known as Rhizoctonia), fusarium rot and others which may affect the potato tubers must be controlled or prevented by the use of good sound seed. When the potato tuber is once affected it is very liable to decay after being stored.

I have included in the term 'storage rot' the various forms known to the plant pathologist and caused by a number of different organisms. There are a number of different bacteria producing a soft or wet rot, and also scores of fungi, which find the prevailing conditions suitable for their growth and development, and produce dry rots and decay of various forms. Whatever form of rot may be developing in storage the prevention of losses will be the same in every case, and may be summarized in the following suggestions:—

1. Sound, ripe and undamaged potatoes will keep in this condition unless brought into contact with tubers showing signs of decay.

2. The prevention of losses in storage must begin in the field, where the growing plants should be regularly sprayed to prevent diseases likely to affect the tubers.

3. Potatoes should be dug when ripe if possible. Care should be exercised to prevent damaging tubers when digging. Frozen and damaged potatoes, as well as those showing signs of disease (with the exception of common scab) should not be placed in storage with sound ones, but must be carefully picked out.
SESSIONAL PAPER No. 16

4. Bins, pits, cellars should be cool, not above 40 degrees at any time, and good ventilation should be provided.

5. The stored tubers should be overhauled at intervals, and any potatoes showing signs of disease should be removed.

If the above suggestions are carried out not only will the losses in storage be wholly prevented, but the chances of carrying certain diseases over to next year, by the use of unsound tubers, will be eliminated.

EXPERIMENTS IN GROWING POTATOES

The Director of Experimental Farms instructed the Dominion Botanist to take charge of the growing of four leading varieties of potatoes on four acres of land, principally for the purpose of producing 'as large and as profitable a crop as possible; free from disease or as free from disease as possible under conditions such as exist in Canada to-day.'

The opportunity for demonstrating the effectiveness of spraying potatoes under field conditions was very welcome and after laying out the experiments, the first results are herewith reported. The practical work concerning planting, cultivation and harvesting was carried out under the direction of the Farm Foreman, Mr. D. D. Gray.

The plan of the experiment was briefly this:

THE LAND.

Four statute acres of land in field E 1 of the Agriculturist's part of the Farm were used. The land was the year before under sod and had not been used for potatoes previously. Like all the land of the Central Farm, the soil varied in some parts, but was generally speaking fairly even and in suitable condition for potato growing. It was divided into four lots of one acre each, the dividing lines running cast and west.

VARIETIES, QUANTITY USED, DATE OF PLANTING, ETC.

The following four varieties were chosen: Carman No. 1, Irish Cobbler, Gobi Coin, and Early Delaware. Date of planting, May 31st. Planted by machine, single sets, 14 inches between sets, not more than five inches deep. Rows, partly 30, partly 32 inches apart.

SPRAYING FOR POTATO BEETLES AND DISEASES.

As soon as the plants were about six inches high, spraying was begun. A four-row double cylinder sprayer was used throughout the experiments. The four-row spraying attachment as sent out by the manufacturers did not give good satisfaction; the spray pump, however, was found very satisfactory. We have carefully studied the mechanics of this attachment and suggested a number of improvements to the manufacturers which they have agreed to carry out, and next year the new attachment will be used. The objections to the present attachment were that the nozzles could not possibly spray the plants from every side. Thus some rows were only half sprayed, and the potato beetles, which were present in countless numbers, fed ravenously on the unsprayed portions of the plants and did considerable damage.

The spray solutions used were:

No. 1—6:4:40 Bordeaux mixture + 5 lbs. of Arsenate of lead.
No. 2—6:4:40 " " + 5 lbs. Arsenite of soda.
No. 3—5:5:40 " " + 5 lbs. Arsenate of lead.
No. 4—5:5:40 " " + 5 lbs. Arsenite of soda.

16—31½
The spray solutions were carefully tested by the potassium ferro-cyanide method and thus every danger from deficiency of lime and leaf-burning in consequence removed. The spray rows run across the varieties so that each quarter of an acre of each variety received a different kind of spray.

Spraying began July 6th. It required 50 gallons of spray per acre, and took $2\frac{1}{2}$ hours' time for the four acres. It was arranged to spray once a week, but, owing to incessant rain, the application had to be repeated at shorter intervals, the rain washing off the spray at various times. Up to the end of August, eight applications were given. In September the vines had grown so closely together that too much injury would have resulted from further sprayings. Blight appeared during the first week in September to some extent. On September 29th the vines were cut down by frost.

It was found that while both solutions (arsenate of lead and arsenite of soda) finally destroyed the potato beetles, their action was too slow to prevent a good deal of defoliation. Arsenate of lead adhered better and longer to the foliage.

The yield of potatoes was excellent, the quality fair and fairly sound, no scab, but a slight amount of late blight spots in tubers.

The following is the statement of yields per statute acre:

- **Carman No. 1**: 444.31 bushels
- **Early Delaware**: 471.33 “
- **Irish Cobbler**: 455.83 “
- **Gold Coin**: 411.48 “

No advantage of any one spray solution over the other could be observed.

Considerable quantities rotted in storage; insufficient ventilation and injury in digging were thought to account for this. The experiments will be continued for several years, when a more detailed account will be prepared.

AN EXPERIMENT WITH RHIZOCTONIA DISEASE OF POTATOES.

A rectangular area of land about $\frac{1}{3}$ acre in extent had the preceding year borne a crop of peas very badly affected with rhizoctonia. It was decided to see what results would accrue from the planting of this with potatoes and incidentally to try the effect of various treatments against this disease. One-half of the area was given a dressing of lime at the rate of three tons per acre early in the year, and the other half left untreated. Four varieties of potatoes were used, viz. — Gold Coin. Carman No. 1, Empire State, Rochester Rose. The seed used showed both scab and rhizoctonia, and was treated as follows:

1. Check, untreated.
2. Soaked in corrosive sublimate $\frac{1}{2}9000$ for 3 hours.
3. Dipped in gycerine (1:10 in water) and rolled in flowers of sulphur.
4. Soaked ten minutes in 2 oz. lime-sulphur concentrate (Niagara Brand) to 6 quarts of water.

The land was laid out in thirty-two equal plots in such a way that the eight plots of each variety ran the whole length of the area, four being on the limed and four on the unlimed portion, while the tests in seed treatment extended across the four varieties and were duplicated on the limed and unlimed portions. Each plot was planted with sixty uncut tubers May 28th to May 30th. The plants were sprayed three times with arsenicals alone and then six times with Bordeaux mixture plus arsenicals, the season being exceedingly wet.
SESSIONAL PAPER No. 16

The plots were carefully watched during the season and records made, and finally the crop was lifted October 18th.

Careful examination of the crops showed that while there was considerable variation in the yield from the different plots, owing mainly to the variable quality of the soil, there were no constant differences between the plots differently treated in regard to seed or on limed or unlimed soil respectively. The only constant differences seemed to be in varietal freedom from and resistance to disease. Carman No. 1 being almost free from rhizoctonia on the tubers, Rochester Rose showing only a very little, and Empire State and Gold Coin showing little and a good deal respectively. In the standing crop no differences between the different varieties were observed in the matter of susceptibility to the disease.

POTATO SCAB EXPERIMENTS.

Another series of experiments carried on with a view to controlling the common scab of the potato were outlined and given in charge of my chief assistant, Mr. J. W. Eastham, B.Sc, who herewith reports the results in detail:

The problem of treating land infected with the organism of potato scab in such a way that the disease will be prevented or much reduced, has for many years engaged the attention of experimenters. So far, however, no method has been found for giving such a complete or partial sterilization to the soil, as would, at the same time, be applicable and remunerative under field conditions. In view, however, of the severe attacks of scab in many parts of the Dominion, and the frequency of inquiries regarding it, an experiment was undertaken to test one or two recommendations that have been made, and to try one or two substances not previously employed in this connection, although known to be of value in controlling certain other plant diseases. It seemed that the most promising substance in this category was chloride of lime (bleaching powder), a substance which, being manufactured on a large scale for use as a disinfectant, can be purchased comparatively cheaply (2c. per lb. in 400 lb. barrels). It has, moreover, given good results on a small scale in the treatment of Club Root, (Plasmodiophora) of Crucifers and certain other soil troubles. In the experiments mentioned, it was applied at the rate of half a pound to a square yard, either mixed with water or worked into the soil, which was then very liberally watered. The hypochlorite, which is the active component of the bleaching powder, rapidly undergoes chemical change with the production of substances harmless to plant life, and plants may be put into the treated ground two weeks or so after treatment. As the application of the substance in suspension or semi-solution in water, or even the copious watering of the ground after its application in the dry state, would involve an amount of labour prohibitive under field conditions in most cases, it was decided simply to mix the dry powder as thoroughly as possible with the surface soil.

Sawdust sown over the ‘seed’ in the drills at the rate of 5,000 lbs. per acre has been stated to be very successful in preventing scab (Experiments at Leeds University, Eng., quoted by J. B. Pole-Evans in Agr. Jour. S. Africa 1: 692-3.) As sawdust is generally easy to procure, it was thought worth while to test its value.

As sulphur has also been found of value, it was decided to use it on one plot in the usual way, i.e., in the form of a fine powder sown with the sets, and also in the form of concentrated lime-sulphur solution.

The land selected for the purpose of the experiment was located at Orwell, P.E.I. The soil was loamy, in a high state of cultivation and tolerably uniform in character over the area employed. Scab had been very severe in the potato crop raised on this land the preceding season, many tubers being completely covered with the excrescences and, in the words of the proprietor, bearing more resemblance to ‘toads’ than to potatoes. Scab is, moreover very bad in many parts of the district owing partly to the
extensive application of 'mussel-mud,' a deposit highly calcareous from the presence of numerous shells and their remains.

A set of twelve plots was laid out, each 24 yds. by 10, and having an area of one-twentieth of an acre. They were laid out in two parallel series with a path 2 yds. wide between adjacent plots and 7 yds. wide between the two series. The variety of potatoes used was Carman No. 1. Sound seed was selected and treated with formalin solution, (1 lb. in 30 gallons of water) for two hours, except where otherwise stated. It was planted at the rate of 20 bushels per acre, i.e., 1 bushel per plot. Soil treatment took place on the 24th and 25th of May, except when the substance was sown with the seed and planting took place on June 5. This gives an interval of only 12 days between the two operations. This might naturally be expected to exert an injurious influence on the crop, although it could hardly vitiate the results from the point of view of scab control. Certain other matters had unfortunately prevented the soil treatment from being carried out earlier as had been intended and it was not thought advisable to defer planting till after the date mentioned. No fertilizer was applied to any of the plots.

The following are the details of the individual plots:

1. Check. Untreated soil planted with untreated very scabby tubers.
2. 250 lbs. sawdust (i.e., 5,000 lbs. per acre) sown over sets in drills at time of planting.
3. 15 lbs. sulphur (i.e., 300 lbs. per acre) sown like fertilizer during planting.
4. 12 gallons commercial lime-sulphur solution diluted with water to 40 gallons and applied to the surface of the soil by sprinkling cart May 24th.
5. 24 gallons commercial lime-sulphur solution diluted to 120 gallons applied similarly, May 24th.
6. Check. Sound seed treated two hours with 1 in 1,000 mercuric chloride (corrosive sublimate) solution. Soil untreated.
7. 50 lbs. chloride of lime, i.e., 1,000 lbs. per acre. Applied May 25th.
8. 80 " " " " 1,600 " " " "
9. 120 " " " " 2,400 " " " "
10. 150 " " " " 3,000 " " " "
11. 200 " " " " 4,000 " " " "

As chloride of lime is in the form of an exceedingly fine, dry powder, intensely irritating to the mucous membrane of the nose and throat, and also to the eyes, its application proved a somewhat disagreeable operation. It was found most convenient to use buckets, determine by weighing how much they would contain, and then fill them from the barrel. Water was sprinkled over the surface of the chloride in the bucket to prevent the wind from blowing it, and the bucket taken to the plot and emptied out on the ground. More water was at once sprinkled over it, and it was then mixed with soil and spread with a shovel. As soon as all the plots were thus dealt with the chloride was worked into the soil with a 6ooth-harrow. Very little rain occurred between treating and planting.

The crop was raised on September 20th, with the following result:

Check Plot 6. Yield 7½ bushels. Exceedingly scabby, no clean tubers being found, and many tubers covered with scab. The amount of scab in this plot was taken for a standard of comparison as 100.
Check Plot 1. Yield 6½ bushels. Scableness about 80.
Check Plot 11. Yield 7½ bushels. Scableness 80.
2. Sawdust. Foliage exceptionally green compared with other plots. Yield 7½ bushels. The sawdust was apparently in the same condition as when applied, no decomposition being visible. A few clean tubers, but most very scabby. Scabbiness 75.
8. Yield 3½ bushels, otherwise much like the last.
10. Yield 2 bushels. Scabbiness about the same.
12. Yield 2 bushels. Scabbiness about the same. Stand very uneven.
9. Yield 3½ bushel. Very few plants properly developed, and long bare spaces present in the rows where plants had not come up. Scabbiness over 80.

In examining these results, it will be noticed that the sawdust had little effect, the amount of scab being almost as high as on the best check plot. Presumably any beneficial effect it could have would be due to its decomposition, perhaps by its decomposition increasing the acidity of the soil, and therefore could hardly be looked for when so little alteration had taken place.

While no benefit was obtained from powdered sulphur there was a marked improvement where the soil was sprayed with lime-sulphur solution. The plot which received the double quantity showed rather less scab, but also a considerably diminished yield. As applied, the lime-sulphur was much diluted with water, which would, of course, increase the labour and cost of application, and no test was made with the undiluted substance, but even if the latter were just as effective, an application at the rate of 200 gallons or more per acre would be too expensive for ordinary purposes. There is also the objection that this result was obtained from a single experiment and might be due to a variation in the degree of infection of the soil or some other factor not accounted for, although, as far as could be judged, the conditions were uniform. The experiment at any rate would seem to be worth repeating.

With respect to chloride of lime, it is evident that even a comparatively small amount (200 lb. per acre) applied twelve days before planting exercised a markedly injurious action on the crop, while, on the other hand, when applied in such quantities as to render growth almost impossible, such tubers as are found are almost as badly scabbed as those on the check plots. It is, however, to be noted that little or no rain fell between the time of application of the chloride and that of planting. This would probably affect the results adversely in two ways. In the first place the germicidal constituent would not be so extensively and intimately diffused through the soil and therefore its effect on the scab organisms present would be restricted, and secondly its alteration into substances harmless to the crop would probably be slower. While the labour and cost of applying this substance in sufficient quantity in a state of suspension in water would seem to be prohibitive under field conditions, it would still seem to be necessary to try the effect of applications similar to those here given, made in the autumn instead of late spring, before concluding that it has no value in reducing scab.

It will be noticed that disinfection of the seed tubers whether with formalin or corrosive sublimate, produced no improvement in the scabbiness of the crop. This was naturally to be expected when the soil was so badly infected with the disease, but as this fact is, even now, not always recognized, it may not be amiss to call attention to it.

J. W. EASTHAM.
ERGOT.

Claviceps purpurea (Fr) Tul.

This fungus (together with one or two closely-related specimens which for our purpose need not be distinguished from it), is of importance to the agriculturist, not so much because it causes injury to the plants on which it grows, but because the resting bodies, or 'ergots,' contain substances highly injurious to the health of animals.

If a careful examination be made in late summer or fall of the ears of rye, wheat or barley, or of many grasses, *e.g.*, couch, particularly if these are growing in damp situations, it may be noticed that in some of the florets the 'seed' is replaced by a spur-like or rounded, hard, purplish body, which is much larger than the grain would be, and consequently projects beyond the chaffy scales of the ear. These bodies are masses of resting mycelium (*sclerotia*) of the fungus and are known commonly as 'ergots.' In size they vary according to the plant on which they occur, reaching a length of an inch or more on rye and being very small on such a grass as red top (*Agrostis*). Many species of grasses are liable to be attacked, whilst among cereals rye is most commonly affected, and to a less degree, wheat and barley. Unless harvested with the host plant, the sclerotia finally drop off and fall to the ground. Such of these as have been subjected to the right conditions undergo a new development in the following spring or early summer. From each, one to several rather stout stalks grow up into the air, reaching perhaps a length of an inch or more, each stalk terminating in a rounded purplish 'head' (*stroma*), whose surface is roughened with numerous small projections. These projections terminate in minute openings, each communicating with a separate chamber or cavity (*perithecium*) in the 'head.' At the base of each cavity is a dense tuft of elongated, somewhat club-shaped, spore-sacs (*asci*) in each of which eight threadlike spores are found. Ultimately these spores are liberated from the *sacs* enclosing them, and forced out through the opening of the *perithecium* into the air, to be dispersed by the wind. Should one of these spores be carried into the open flower of a susceptible grass or cereal and reach the ovary it is capable of producing a mycelium which develops in and around the ovary and which gives rise externally to large numbers of minute spores (*conidia*) together with a sweet, sticky liquid. The latter attracts certain insects to which the conidia adhere and are thus carried to other flowers. Each conidium is able to reproduce this stage of the disease, should it be brought into contact with the ovary of a susceptible plant at the right stage of development. This phase of the life-history of the fungus is so unlike the 'ergot' and the structures developed from it, that before the full life-history had been followed it was considered as belonging to a distinct species of fungus and given the generic name *Sphacelia*. It is still referred to as the Sphacelia or sphacelial stage. The mycelium, however, still continues to increase in quantity and becomes contracted, forming a mass replacing the ovary, but to the tip of which the withered-up stigmas and upper part of the ovary remain attached for some time. Conidia are no longer produced, and the outer layers of mycelium develop into a comparatively hard protective layer, the outer walls of which assume a dark purplish colour. This is now the sclerotium or 'ergot' stage similar to that with which we started.

The conditions which determine the germination of the sclerotia have not yet been fully determined, but apparently one very important factor is the degree of 'drying-out' to which they have been subjected. A completely dried-out sclerotium is commonly believed to be incapable of germination. Hence sclerotia a year or more old rarely germinate, while those kept even for a few months under ordinary warm con-
ditions appear to lose this power. This fact, no doubt, explains why, under natural conditions, ergot occurs to a much greater extent in low-lying, damp situations and in wet seasons. When the matter has been more fully investigated it may be found to have valuable practical results, since it may be possible to so treat seeds containing ‘ergots’ that the germinating power of these may be destroyed without injuring that of the seeds. In one of our experiments to test and study the germination of ergot that appeared in a barley plot on the Farm, the sclerotia were kept in a paper bag in the warm laboratory from harvest time (September) to May following. They were then placed in moist sand and not until October next could we observe signs of germination. The germination after this period of rest appears interesting in comparison with the above mentioned results of other investigators, who claim these grains do not germinate after completely drying-out. We also take this opportunity to place on record that we found the ascospores of this species to show three distinct septa, very prominent after careful staining. We do not know of any other record concerning this observation, which, however, is of scientific interest only. Ergot grains were submitted several times during the year and we collected some ourselves on rye, barley and wheat in the West.

As previously stated, the economic importance of ergot depends on the action upon the animal organism of certain chemical principles contained in the sclerotia. In large doses these produce contraction of the smaller blood vessels and also strong muscular contraction, which in the case of pregnant animals is liable to result in abortion. Taken for a period of time in smaller quantities the effects are very serious, among them being debility, muscular spasms and tremblings, gangrene, and the sloughing-off of portions of the extremities. Such results in the case of human beings are occasionally recorded over wide areas, where, as in parts of Continental Europe, rye-bread is an important article of food. On the other hand, various preparations of ergot find employment in medicine, its medicinal value for certain purposes being universally recognized.

Control Measures.—Seed containing ergots should not be sown, indeed the sale of such seed is an infringement of the Canadian Seed Control Act. Since only plants which are allowed to flower can become infected, it is important that the grass by road sides, etc., should be cut at intervals. If already infested with sclerotia it should be raked together when dry and burned. Since cough or twitch grass is very commonly affected, we have, in this fact, additional grounds for taking measures for the eradication of this weed. The roadsides all around Summerland, B.C., are overgrown with a tall sand grass (Elymus condensatus, Presl.) which we have observed to be considerably infected with ergot each year.

Where pastures have been found liable to extensive infection it would be well to cut the standing flowering-stems at intervals to prevent the development of sclerotia. Where these are already present, ‘burning-over’ when possible, will destroy many or most of them. It is advisable to remove stock from badly infe ted land, and hay or grain containing any considerable quantity of it should be destroyed rather than used for feeding purposes. The statement that ergot completely dried out has lost all vitality would be important, if true, as regards preventing its recurrence. Seed-wheat or other grain hardly suffers in vitality after two or three years’ storage; in that time, no doubt, all ergot grains have lost their vitality.

BITTER PIT INVESTIGATION.

In previous reports attention has been called to the nature of this disease and its presence in Canada. In our report for last year, two papers by Dr. Jean White and Prof. A. J. Ewart, respectively, dealing with researches into this subject were noted, and it was also stated that the Commonwealth Government of Australia had taken up the matter and appointed Mr. D. McAlpine, the well-known pathologist, to devote himself
entirely to the investigation of this problem. Mr. McAlpine's first report on the work done now lies before us in the shape of a handsome quarto volume,* containing some 200 pages of text and descriptive letter press, and 35 plates with 133 illustrations of great excellence, mostly from original photographs. The work summarized included a detailed histological study of the Pome fruits, particularly with respect to the vascular system, the characteristics of the disease, a critical review of the literature on the history, distribution and hypotheses advanced in explanation of its occurrence, an analysis of the replies to a series of questions submitted to growers regarding more particularly the contributing factors, and an outline of experiments carried out and in progress. It is impossible to attempt in this place an adequate review of the phases of work taken up, but a few of the more interesting points may be noticed.

The form of the disease termed 'crinkle,' or confluent bitter pit, which is characterized by the surface of the fruit being thrown into rough folds with large cavities in the underlying tissues, is new to us, and according to the author has apparently been recorded outside of Australia only from California.

As regards the causes of the trouble, Mr. McAlpine considers that the evidence is entirely in favour of the hypothesis that it is due to irregularities in the factors influencing the balance between transpiration and water supply, and not to poisoning of cells, e.g., by arsenical sprays. Both the recorded history of the disease and its presence on unsprayed trees are against the latter hypothesis. It was also found experimentally that fruit of an unsprayed tree protected from any possible contact with spray material from other parts of the orchard by being enclosed in calico bags as soon as the fruit had set was quite as badly affected as the exposed fruit of the same tree. The author sums up the matter of poisoning from the exterior as follows:

'After testing the effects of various chemical substances applied to the skin of the apple, I cannot emphasize it too strongly that all this production of external spots and smears has nothing to do with Bitter Pit. This disease originates from within and the action of an external agent on the skin is something totally different.'

The principal contributing factors are given as follows:

1. Intermittent weather conditions, when the fruit is at a critical period of growth.
2. Amount and rapidity of transpiration.
3. Sudden checking of the transpiration at night when the roots are still active owing to the heat of the soil.
4. Failure of supplies at the periphery of the fruit followed by spasmodic and irregular recovery.
5. Irregularity of growth, so that the vascular network controlling the distribution of nutritive material is not regularly formed.
6. Fluctuations in temperature when fruit is in store, and

The question of storage conditions is particularly important since the disease usually develops to a large extent in storage. It was found, however, that 'even with very susceptible varieties the development of Bitter Pit was retarded by keeping them at an even temperature of 30° — 32° F.' It is recommended 'that the apples should be picked . . . just when they have reached their full size, and on the green side, and placed in cold storage without delay.'

We congratulate Mr. McAlpine on the work he has already accomplished and shall look forward with increased interest for the results of his experiments directed towards the control of the trouble in the growing fruit.

*Bitter Pit Investigation, The past history and present position of the Bitter Pit question, by D. McAlpine. First Progress Report 1911-12.
A 'STORAGE' SPOT OF THE APPLE.

Apples in storage are liable to a variety of maladies which often give serious trouble and result in much depreciation in value. A case of spotting of stored apples was brought to the notice of the Division during the year and investigated by Mr. Eastham who contributes the following account:—

In the Fall of 1912 a correspondent sent in some Gravenstein apples from North Sydney, N.S., affected by a peculiar spotting, with the enquiry whether this could be due to the use of arsenate of lead as an insecticide. Later, this correspondent sent apples similarly affected from his own orchard, together with the following statement:—

'The lime-sulphur I used was made by the Niagara Spray Co., Kentville, N.S., and tests almost 32.5B. Swift’s arsenate of lead was also used, about 6 lbs. to 100 gallons. As far as I know all trees were sprayed in the same way. The weather conditions were noteworthy in this respect, that following a very hot spell for ten days the 1st of July we then for the next six weeks had one of the wettest seasons on record, and consequently a very great growth of Black Spot. Only the late sprayed and well sprayed orchards escaped. You will notice no Black Spot on sample sent. I have not noticed this injury on any other apple except the Gravenstein.

I first noticed the injury in Montreal at The manager had just opened some barrels of N. S. Gravensteins. He said the apples were not keeping well and he had put the price down 50 cents a barrel in consequence. I asked to see them and found the apples in the top of the barrel that had stood opened the day before as a sample, covered with this rusty injury. This did not extend to the fruit further down in the barrel, and on opening other barrels it was not found, but the manager said if exposed to the air they would show it in twenty-four hours. These apples were only just beginning to ripen. The injury did not appear on my own apples home for six weeks to two months afterwards.' It was also stated that six sprays were given.

The spots varied in size from ¼ m.m. up to 5 m.m. in diameter, those of the latter size being circular, triangular or irregular. They were depressed, brown in colour, darkest in the centre round what, in many cases, appeared to be a lenticel. The smaller spots were by far the more numerous, as many as thirty-five being counted to the square centimeter but more commonly five to ten. In the case of the very smallest spots, the injury did not appear to go through the skin, the underlying tissue being sound. In the other spots, however, the underlying tissue was brown. The spots were much less plentiful and less conspicuous on the side of the apple exposed to the sun, being often hardly observable on the ‘coloured’ area. They seemed to be slightly more abundant at the calyx end. Where they were very numerous there was a tendency for the entire surface to show discolouration.

On December 3rd, after the apples had been placed in cold storage twenty-four hours, two similar ones were taken out and treated as follows: On one a circle 15 m.m. in diameter, was drawn in ink enclosing twenty spots, none more than half a m.m. in diameter. This apple was placed under a bell-jar and kept at the ordinary laboratory temperature which varied between 60° and 80° F. The other was similarly marked with a circle about 12 m.m. in diameter, and enclosing fifteen spots of a size similar to those of the first specimen. This apple was placed in cold storage. On December 23, none of the spots in the areas marked showed any appreciable enlargement in either of the apples. However, both apples by this time, but especially the one kept at room temperature, were badly rotted, although the rot had not extended into the areas marked. Whether the rot had started from similar spots as well as from bruises and abrasions could not be positively determined, although I think it likely.

Cultures were next made as follows: The apple was wiped, immersed for one minute in 1-1000 mercuric chloride and then rinsed in sterile water and
allowed to drain for a moment. Portions of the spotted skin were removed with sterile forceps, and the tissue underlying the spots transferred by means of sterile forceps or sculpted to Petri dishes. Tissue transfers were made from all sizes of spots from the smallest to the largest. In the former, as already mentioned, the discolouration did not always go through the skin and therefore some cultures were also made with portions of the spotted skin. One or two large spots which had been observed to be enlarging were also used, as they seemed to have started from the typical spots. Plates were poured with nutrient agar and 20 per cent potato agar. After six days the cultures taken from the enlarging spots showed a plentiful growth of mould (Penicil- lium). Those in which the skin of the apple had been used showed in some cases a growth of moulds; presumably the sterilization of the surface had not been complete. None of the other cultures, however, showed the presence of any organism nor did any develop later.

It seemed therefore from the non-enlargement of the spots when kept either at room temperatures or just above 0° C, together with the failure to develop organisms from them, that the cause was not a parasite. At the same time it seemed probable that saprophytic fungi could obtain entrance through these spots and set up rapid decay. Our correspondent evidently suspected arsenate of lead as a possible cause, and an account of a spotting of apples suspected to be due to this cause has been published. (A new fruit spot of apple by W. M. Scott, Phytopathology L., 32-34.) As compared with the spotting described by Scott, it would seem that the case under consideration differs in the much greater number of the spots, their small size and their absence from the 'blush' side instead of being concentrated there. If, however, the spotting is due to soluble arsenical compounds in the spray mixture, it is rather to be expected that the effect, as in this case, would be greater on the side away from the sun as evaporation would be slower and the chemical have a longer time to act. The spots being so small, a reliable comparative analysis of spotted and unspotted portions of the skin would have been somewhat difficult but an analysis of the skin as a whole, kindly made by the Dominion Chemist, Mr. Shutt, showed arsenic to be present to an average extent of 0.0005 milligrams per apple.

It may seem at first sight that a spotting of the fruit which has developed in storage can hardly be due to the use of arsenical sprays applied when the fruit is not yet mature. It was shown, however, as stated, that arsenic was present on the skin of the apples when examined. It is possible, therefore, that the changes undergone by the apple in the process of after ripening may result as Waite* has suggested in the excretion of organic acids which have dissolved enough of the adherent arsenic to kill the adjacent cells. On the other hand Ewart** has shown that the pulp cells of an apple become increasingly sensitive to minute quantities of certain poisons as the fruit matures, and that the cells on the shaded side are more sensitive than those on the side exposed to the sun. He has, therefore, suggested the possibility of poisons being absorbed in minute quantities into the tissue of young apples but not producing any effect until the cells have been rendered more sensitive in the process of maturation.

At all events, while the cause of the spotting has not been demonstrated, it would seem to be of non-parasitic and external origin and to have much in common with the so-called 'Jonathan spot' which is suspected to be due to the use of arsenate of lead as an insecticide.

* Quoted by W. H. Scott, i.e.
DIVISION OF BOTANY

SESSIONAL PAPER No. 16

SYSTEMATIC BOTANY.
(F. Fyles, B.A.)

IDENTIFICATION OF PLANTS.

The numerous inquiries received year by year and the ever increasing number of plants sent in for classification, are sufficient evidence that the work of this branch of the Division is being appreciated by the general public. The number of specimens identified during the past fiscal year was four times that of the year ending March 31, 1910.

A large proportion of these specimens were plants of the woods in the spring and early summer, as it is very natural that such plants should attract attention. Many medicinal and poisonous plants were also received, with requests for information or literature regarding their identity and qualities. But the greater part of them consisted of weeds sent in by farmers seeking advice as to the best methods for their eradication.

WEEDS.

Those weeds most frequently sent in were:—Canada Fleabane, Sow Thistles, Field Cress, Toadflax, Orange Hawkweed, Campions, Couch-grass, Biennial Wormwood, Barnyard Grass and Cinquefoil.

The Prairie Cone-flower (Lepachys columnaris (Sims) T. and G.) and the Western Gum Weed (Grindelia squarrosa (Pursh) Dunal.), were reported from Toronto. Although this is not the first time that the latter has been found in Ontario, it is well to point out that these undesirable weeds are spreading. No doubt their increase is largely due to the transportation of commercial seeds. Such was the case in the appearance of Bromus arvensis L. (Field Brome Grass) and Polygagon monspeliensis (L.) Desf. (Beard Grass) at St. Thomas, Ont., and in regard to Tussilago Farfara L. (Coltsfoot) reported from St. John, N.B.

A WEED NEW TO CANADA.

The Thorny Amaranth (Amaranthus spinosus L.)

The Thorny Amaranth, which as far as we know, made its first appearance in Canada at St. Thomas, Ontario, last summer, is a coarse annual plant belonging to the Pigweed Family (Amaranthaceae). It is a native of tropical America and has become naturalized in the north-eastern United States, where it has caused considerable damage. Like its allied species, Red-root Pigweed (Amaranthus retroflexus L.) and Tumble-weed (A. grecizans L.), the Thorny Amaranth produces annually a large quantity of small, black, highly polished, leus-shaped seeds, and by this means of propagation spreads rapidly. The plant, which grows to a height of three feet or more, is very bushy in general appearance, often having as many as six stout branches from the base of the stem, varying in diameter from one-half to three-quarters of an inch. Being of rank and succulent growth, it deprives useful plants in its proximity of necessary moisture and nourishment. Farmers are advised to make a point of destroying this weed on its first appearance. It is easily distinguished from the other species of Pigweed by the rigid spines at the base of each leaf-stalk. These measure from one-
quarter to one-half an inch in length. (See illustration, plate XXI, fig. 1.) The Thorny Amaranth, like the Russian Thistle and other plants possessing sharp spines, is likely to cause much irritation to horses and to labourers working in the fields. When cut and dried with the hay and afterwards eaten by cattle and horses, the spines penetrate the mucous membrane and may cause serious inflammation.

Acroptilon Picris DC.

The bright white seeds found in Turkestan alfalfa, which have been identified as _Acroptilon picris_ DC., and of which there is a short description in Bulletin 86, issued by the Seed Branch, are familiar to all seed merchants and others handling Turkestan alfalfa. But it is not so well known that this seed will produce a vigorous perennial plant, capable of withstanding the winters at Ottawa. The plant produces a long, horizontal, underground rootstock which sends up new shoots at each node. From six to ten new plants are produced by the parent plant in this manner. The stem and leaves are covered with a hoary pubescence, which gives to the plant a dull whitish-green colour. The lower leaves are long, narrow and deeply pinnatifid. The upper leaves are more sparingly and less deeply cut.

Hieracium aurantiacum L. (Orange Hawkweed) and Allied Species.

On the 27th of June, 1912, there was issued by this Division, a circular on 'Orange Hawkweed.' This circular was printed in the form of a card with a coloured illustration of the weed. A brief account of the life history of the weed, together with the best methods for its eradication, was printed in large type on the card. Forty thousand copies of these cards were published and distributed, chiefly in the Province of Quebec, where the weed is most prevalent. The difficulty of eradicating this pest may be overcome with the co-operation of the farmers. Most farmers will agree that is more readily destroyed than Couch or Twitch Grass. Paint-brush will not long exist on well cultivated and well fertilized land. Shallow ploughing, harrowing and thorough cultivation repeatedly practised throughout the autumn, followed by a rotation of crops into which hoed crops largely enter, will keep it under control. The weed thrives best on poor land and in rocky pastures which cannot be cultivated. In this case sheep will eat it close to the ground. There is no portion of Canada better suited to sheep-raising than the hilly sections of the Eastern Townships. Salt, if applied in hot, dry weather, is another sure means of killing it.

The bright red-orange flowers of this species are easily distinguished from the yellow flowers of the Many-flowered Hawkweed, and the King Devils which, although not so abundant, are, in themselves, none the less troublesome. The many-flowered Hawkweed (H. _floribundum_ Wimm. and Grab.) produces leafy secondary flowering shoots as well as stolons or runners. The King Devils (H. _pratense_, H. _praetum_ var. _decipiens_) are of similar growth, that is, they are reproduced both by runners and seeds. The same method of treatment as recommended in the case of _H. aurantiacum_ will exterminate these.

The Mouse-ear Hawkweed (H. _Pilosella_ L.), which is a troublesome weed on lawns, is a shorter and smaller species. It bears a solitary, pale yellow flower somewhat resembling a small dandelion, but the close mat of small, entire leaves at the base of the flowering stalk as well as its runners, proclaim it to be a Hawkweed. Several patches of this weed in the arboretum were entirely destroyed by a single application of coarse salt.

The following weeds were sprayed with a solution of iron sulphate, 2 lb. per gallon of water:—Ox-eye Daisy, Field Bindweed, Heal-all, Dandelion and Sedum. After the third application these weeds were still living, although much of the foliage was destroyed. As the injury to the surrounding grass was greater than that to the weeds, the spraying was discontinued.
BOTANIC GARDENS.

The labelling of the native trees and shrubs in the Arboretum has been completed, and the task of re-naming and re-labeling the indigenous herbaceous perennials has been begun, fifty-two different species being already designated by the new labels with names according to Engler and Prantl—the nomenclature adopted in Gray's New Manual of Botany, the standard manual of students. This work will be particularly valuable to teachers and students, who frequently visit the gardens to study rare species and species from distant parts of Canada, which otherwise it might be impossible to examine except from dried material.

An alphabetical list of all the plants in the North and South borders was compiled with the corresponding numbers of the row and square in which each plant is to be found. It is hoped that in time a similar list may be made of the trees and shrubs.

SEED EXCHANGE.

In the summer and autumn of 1912, 433 different species of seeds were collected in the Arboretum and Botanic Garden. A list of these seeds was sent to different parts of the world, preferably to those Botanic Gardens in climates similar to our own. On request, we sent out 385 different species, and received 351 in return.

DRUG PLANTS.

As our correspondence increases, the interest in the cultivation of certain drug plants in Canada becomes more evident.

Although the cultivation of drug plants is certainly an interesting undertaking and may be a profitable one under favourable conditions, it is necessary to point out that, before entering upon any extensive work in this direction, the expenses entailed should be carefully considered. As long as the price of land and the cost of efficient labour continue to be so high, it is doubtful whether, from a commercial standpoint, it will prove successful in Canada.

Since we are frequently requested to supply information in regard to Golden Seal, the following account of it will be of service.

GOLDEN SEAL (Hydrastis canadensis L.).

Hydrastis canadensis L., commonly known as Golden Seal, is a low perennial herb belonging to the Buttercup family (Ranunculaceae). It is found growing wild in rich woods in the western peninsula of Ontario. It has a thick and knotted yellow rootstock, which sends up in the early spring one radical leaf, and a simple hairy stem with two leaves near the summit, and an inconspicuous, solitary, greenish-white flower. When in bloom the plant is about twelve inches high. The leaves have not at that time reached their full expansion. At maturity they measure six to eight inches across. They are palmately 5-7 lobed, with toothed margins. The flower, which opens during the month of May, lasts but a short time. It has no petals but three sepals which soon drop off, leaving the numerous stamens and the pistils unprotected. The fruit matures in July or August. The head of small scarlet berries somewhat resembles a raspberry. The rootstock is marked by seal-like impressions made by the shoots of the previous years. These scars and its bright yellow colour have obtained for it the name of 'Golden Seal.'

Both the yellow roots and rootstock contain the valuable drug known on the market as 'hydrastin.' They are carefully washed and thoroughly dried before they are sent to market. They lose their colour and become inferior in quality with age.
Hydrastis is easily cultivated. Any good garden soil into which leaf mould has been well worked, and a shady situation will answer its requirements. It has been successfully grown on a small scale in the shade of a row of shrubs and trees in our Botanic Garden. When it is grown for commercial purposes it is better to give it artificial shade by a framework of lath such as is used in the cultivation of Ginseng.

Golden Seal is sometimes confused with Gold Thread (Coptis trifolia (L.) Salisb.), another perennial of the woods belonging to the same family. But, as the rootstock of Golden Seal is short, thick and knotted and that of the Gold Thread is long, slender and smooth, they are easily distinguished by these points alone, apart from other dissimilarities of growth. (See illustration Plate XXI, Figs. 2 and 3). The rootstock of Gold Thread extends horizontally near the surface of the soil thus making its deep, yellow colour conspicuous. Although Gold Thread is very bitter, it is not unpleasant and has no odour, while Golden Seal has a distinctly disagreeable odour and an unpleasantly bitter taste.

Seed Collection and Herbarium.

The seed collection and the herbarium have been added to from time to time as opportunity permitted. About 500 specimen sheets were added during the year. Specimens of the Painted Trillium (Trillium undulatum Willd.) were brought from Prince Edward Island, which is a new locality for this rather rare species.

Several different kinds of seeds and plants of particular interest in the seed collection and greenhouse were brought from Bermuda.
Fig. 1—Thorny Amaranth.
Fig. 2—Golden Seal.
Fig. 3—Golden Thread.
Fig. 4—Golden Seal in flower.

(Half natural size).

Drawn by F. Fyles.
FIRST REPORT FROM THE BRANCH LABORATORY OF THE DIVISION OF BOTANY, ST. CATHARINES, ONT.

BY

W. A. McCUBBIN, M.A., assistant in charge of Field Laboratory of Plant Pathology, St. Catharines, Ont.

This laboratory was established by the Division of Botany for the study of plant diseases in the Niagara District and was opened August 1, 1912.

In the beginning of this year's work, some time was necessarily consumed in fitting up the building, apparatus, and supplies, and in becoming acquainted with the conditions in the neighbourhood. For this purpose the greater part of the Niagara peninsula was visited, and every opportunity taken, of laying before the fruit-growers and farmers the purposes of the station and endeavouring to enlist their co-operation. Advantage was taken of meetings held in Grimsby, McNab, Queenston and Louth Township, by Mr. Caesar of Guelph, for demonstrating the symptoms of 'Yellows,' and 'Little Peach,' and at each of these the aims and objects of the Station were presented in a short address.

Throughout the season, a study of local diseases was carried on as fully as possible. Collections of over one hundred specimens of various diseases were made and numerous observations recorded for reference and for future experiments. An exhibit of some of the commoner and more destructive of these diseases was set up at the St. Catharines Horticultural Show in September.

Owing to the lateness of the season, experimental work was necessarily limited, but several experiments were begun, the results of which will not be apparent till next summer at earliest.

A large number of peach cankers were treated in various ways and with different materials in order to find out a cheap, simple, and effective method of dealing with this trouble, which has become quite a nuisance in several orchards here.

The currant polyergus (Pyropolyergus ribis), found in quite large numbers in one field, was treated with several fungicides. As far as can be ascertained as yet, formalin, copper sulphate, salt and ashes are effective in killing this fungus, which, though not common, seems to be serious enough once it infests a field.

Considerable attention was given to the 'mosaic' disease of tomatoes, which appeared in many places in this region during the summer. Certain features about the cases seen here tend to locate the trouble in the soil. Seeds of affected plants were collected and will be grown next year to make certain that, as has been claimed, the disease is not transmitted through the seed.

A series of experiments on the treatment of Yellows and Little Peach, begun last year by the Dominion Botanist, were carried on more fully this year. Conclusive results from these experiments cannot be looked for for another year at least.

About 2,000 peach stones from trees affected by Little Peach were collected, and will be planted next year to determine the germinating capacity. This work is done jointly with Mr. Caesar, Provincial Entomologist and Pathologist.

16—32
As raspberry cane blight is rather prevalent and destructive in some parts of the district, an experiment was begun on the control of this disease by spraying. All the dead and diseased canes were removed and late in the autumn the field was sprayed with Bordeaux. This spraying will be continued next spring.

A fatal case of mushroom poisoning in the city of St. Catharines and reports of several others in the vicinity led to the investigation of the cause. There appears to be an exceptionally large number of the very poisonous *Amanita phalloides* in all the surrounding woods, and this is sometimes mistaken for the edible *Lepiota naucina*, also very abundant. In order to point out the distinguishing features of these, an exhibit of them, along with other edible and poisonous fungi, was placed in a shop window with very satisfactory results.

All the meetings of the Local Fruit-Growers’ Association in December and March were attended, and at each a short address was given, setting forth the work the Station purposes to carry on, and dealing with some diseases of timely interest. An address was also given in November to the Teachers’ Convention at St. Catharines on the nature of plant diseases and their treatment.

W. A. McCUBBIN,
Assistant in Plant Pathology.
REPORT

FROM

THE DIVISION OF ENTOMOLOGY

For the Fiscal Year Ending March 31, 1913

PREPARED BY

The Dominion Entomologist. - - - - - - - - - C. Gordon Hewitt, D.Sc.
REPORT

FROM THE

DIVISION OF ENTOMOLOGY

C. Gordon Hewitt, D.Sc., Dominion Entomologist.

Ottawa, March 31, 1913.

J. H. Grisdale, Esq., B. Agr.,
Director, Dominion Experimental Farms.
Department of Agriculture, Ottawa.

SIR,—I have the honour to submit herewith my fourth Annual Report of the work of the Division of Entomology covering the year beginning April 1, 1912, and ending March 31, 1913. A summary of the chief lines of work upon which we have been engaged during the above period has been submitted to you separately and in the present report a more detailed account of our investigations and of the depredations of those insects which were unusually abundant and injurious is given for the use of those desiring more information on the subject.

The most notable advance in our work during the past year has been the extension of our sphere of investigation and assistance by the establishment of field laboratories in certain of the provinces. The existence of many pressing problems which could only be investigated in the regions in which they occurred, rendered this development necessary. The expansion of our organization in this direction has not only enabled us to commence a series of thorough investigations on certain insect pests, which will be specified later, but it has placed the Division in direct contact with the farmer and the fruit grower with the result that our officers located at the field laboratories are able personally to advise enquirers in regard to injuries due to insect pests, and by their attendance at meetings to interest farmers in methods of insect control. Still more important is the fact that on the receipt of reports of serious injuries we are able in many cases to instruct our field officer in the particular district to visit the farmer, investigate and if possible advise. The value of such immediate and personal contact between the Division and the farmer is only too evident; it is the most helpful form of assistance we can render. The appreciation with which this extension of our work has been met and the valuable results already obtained indicate the desirability of a continued development of the policy.

For the sake of convenience the report of our work may be considered under the following sections:

1. The Administration of the Destructive Insect and Pest Act, including:
 (a) Inspection and fumigation of imported nursery stock, etc.
 (b) Field work against the Brown-tail Moth and parasite work.
2. Insects affecting field crops.
3. Insects affecting fruit crops.
4. Insects affecting forest and shade trees.
5. Insects affecting domestic animals and man.
6. Insects affecting garden and greenhouse.
7. Apiculture.
8. Miscellaneous.
1.—ADMINISTRATION OF THE DESTRUCTIVE INSECT AND PEST ACT.

(a.)—The Inspection and Fumigation of Imported Nursery Stock.

During the importation season of 1911-12 over 3,800,000 trees and plants imported into Canada were inspected. In order to indicate the importance of this inspection work and the need for constant vigilance I may mention the discovery by our officer at Vancouver during the inspection work, early in 1912, of eight egg masses of the Gipsy Moth (Porthetria dispar) in an evergreen (Thuja) from Japan. Before the egg masses reached the Department several hundred of the larvae had emerged. European shipments, we are pleased to note, are remarkably free from Brown-tail Moth infestation owing largely, no doubt, to the marked improvement in the inspection of the nurseries in Europe. Scale insects, woolly aphis and certain other species of insects are still too common on imported nursery stock, and there are several serious pests from which we are as yet free but by which we are menaced. These demand that careful attention shall be paid to our imported trees and plants.

On learning of the wide distribution and prevalence of the Mediterranean Fruit Fly (Ceratitis capitata) in the Hawaiian Islands, from which fruit is imported into Canada, a full inquiry was made as to the possibility of its introduction into Canada, and being convinced that its presence in those islands constituted a menace, the importation of all non-canned fruit from the Hawaiian Islands was prohibited by the passing, on April 19, 1912, of Regulation No. 16, under the Destructive Insect and Pest Act.

For some time considerable apprehension had existed concerning the possibility of the importation of the egg masses of the Gipsy Moth on forest plant products, such as logs, rough-timber, etc., from the infested New England States. No regular inspection service existed there, but upon the organization of the Federal Horticultural Board of the United States Department of Agriculture and the enactment by the Board of a regulation requiring the inspection of such forest plant products, the following Regulation No. 17 was passed in December, 1912, a slight amendment being made in February, 1913:

Regulation 17.—Forest plant products, including logs, tan bark, posts, poles, railroad ties, cordwood and lumber originating in any one of the States of Maine, Massachusetts, New Hampshire, Connecticut and Rhode Island, five of the United States of America, shall not be admitted into Canada unless such forest plant products shall be accompanied by a certificate showing that they have been inspected by the United States Department of Agriculture and found free from the Gipsy Moth. Each shipment shall be accompanied by such an inspection certificate, and the certificate shall accompany the bill of lading, way-bills or other memoranda pertaining to such shipments.

The importation of coniferous trees, such as spruce, fir, hemlock, pine, juniper (cedar) and arbor-vite (white cedar) or foliage thereof, and decorative plants such as holly and laurel known and described as “Christmas greens” or greenery, from the States of Maine, Massachusetts, New Hampshire, Connecticut and Rhode Island, is prohibited.

The prohibition of the importation of coniferous trees from the infested States was rendered necessary owing to the practical impossibility of inspecting them with any degree of certainty.

(b.)—Field Work Against the Brown-tail Moth and Parasite Work.

In my last annual report I referred to the increased area of infestation of the Brown-tail Moth in New Brunswick. The scouting work in New Brunswick, of which Mr. J. D. Tothill had charge and which was concluded in the spring, but after
the beginning of the present fiscal year, showed that seven counties, namely, Charlotte, Carleton, York, Sunbury, Queens, Kings and St. John, were included in the infested area. The area of infestation had increased from about 400 square miles, in 1910, to approximately 6,400 square miles in 1911. The light character of the infestation may be gathered from the fact that over this area only 2,452 winter webs of the Brown-tail Moth were found. The distribution of the webs were as follows:

<table>
<thead>
<tr>
<th>County</th>
<th>Webs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte county</td>
<td>1,812</td>
</tr>
<tr>
<td>Carleton county</td>
<td>16</td>
</tr>
<tr>
<td>York county</td>
<td>300</td>
</tr>
<tr>
<td>Sunbury county</td>
<td>256</td>
</tr>
<tr>
<td>Queens county</td>
<td>58</td>
</tr>
<tr>
<td>Kings county</td>
<td>8</td>
</tr>
<tr>
<td>St. John county</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>2,452</td>
</tr>
</tbody>
</table>

The following list indicates the distribution of the winter webs on the food plants in New Brunswick during the season 1911:

<table>
<thead>
<tr>
<th>Food Plant</th>
<th>Webs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>2,186</td>
</tr>
<tr>
<td>Bilberry</td>
<td>89</td>
</tr>
<tr>
<td>Thorn</td>
<td>73</td>
</tr>
<tr>
<td>Choke cherry</td>
<td>43</td>
</tr>
<tr>
<td>Elm</td>
<td>15</td>
</tr>
<tr>
<td>Plum</td>
<td>13</td>
</tr>
<tr>
<td>Pennsylvania cherry</td>
<td>12</td>
</tr>
<tr>
<td>Maple</td>
<td>11</td>
</tr>
<tr>
<td>Oak</td>
<td>2</td>
</tr>
<tr>
<td>Beech</td>
<td>2</td>
</tr>
<tr>
<td>Pear</td>
<td>1</td>
</tr>
<tr>
<td>Willow</td>
<td>1</td>
</tr>
<tr>
<td>Poplar</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>2,452</td>
</tr>
</tbody>
</table>

The discovery of winter webs on low-growing vegetation, such as bilberry, thorn and choke cherry, increases the difficulties of our control work in New Brunswick, where the topographical and other conditions differ very materially from those occurring in Nova Scotia. In New Brunswick it was found that birds had directly and indirectly contributed to the destruction of hibernating larvae, directly by the actual destruction of the larvae and indirectly by opening the winter webs and thereby subjecting the young larvae to the weather conditions from which they are usually more protected. The distribution of the agricultural lands in the southern section of New Brunswick affects the distribution of the moth. The infestations occur on the cultivated high lands, or ridges, the intervening valleys being wooded. This is shown by the nature of the chief food plants, apple on the farms, and bilberry, thorn and choke cherry on the cultivated portions of high lands. A count which Mr. Tothill made of the larvae contained in 121 winter webs gave an average of 175-8 larvae per web. This is less than the average.

Mr. G. E. Sanders had charge of the scouting work in Nova Scotia, and the infested region was covered by three parties of men with the co-operation of the provincial Department of Agriculture, as was also the case in New Brunswick. It was found that the area of infestation has spread eastward, a single nest being found at Brooklyn, Kings county. Altogether, 7,703 webs were collected, as compared with 4,490 collected in the season 1910-11. Considerable improvement had resulted in certain sections from the thorough scouting work which had been done in the previous season, 1910-11. In Weymouth, 562 webs were collected, as compared with 1,511 in the previous season. On the other hand, one or two localities showed an increase. In Bridgetown, 1,362 webs were collected; in 1910-11, 601 webs had been found. It should be pointed out, however, that the number of webs collected may not accurately indicate the infestation, as in many cases the webs are collected and destroyed by the owners of the properties. An increase in the number in any locality might be due to the neglect of the owners of the infected trees to remove the nests.
During the spring, the notice reprinted on the next page, was sent to all post offices, and copies printed on cotton were posted in prominent places throughout the infested territory in Nova Scotia and New Brunswick.

The following list indicates the distribution of the winter webs on various food plants in Nova Scotia during the season 1911-12:

<table>
<thead>
<tr>
<th>Plant</th>
<th>Web Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>6,842</td>
</tr>
<tr>
<td>Plum</td>
<td>274</td>
</tr>
<tr>
<td>Thorn</td>
<td>263</td>
</tr>
<tr>
<td>Pear</td>
<td>181</td>
</tr>
<tr>
<td>Wild pear</td>
<td>68</td>
</tr>
<tr>
<td>Elm</td>
<td>32</td>
</tr>
<tr>
<td>Maple</td>
<td>18</td>
</tr>
<tr>
<td>Oak</td>
<td>16</td>
</tr>
<tr>
<td>Quince</td>
<td>13</td>
</tr>
</tbody>
</table>

Total: 7,703

IMPORTATION OF PARASITES, ETC., OF THE BROWN-TAIL AND GIPSY MOTH.

The arrangements forecasted in my last annual report for the establishment of a field station in New Brunswick for the purpose of introducing and colonizing certain of the natural enemies of the Brown-tail and Gipsy Moths were completed, and the University of New Brunswick not only most kindly allowed us the use of the site for our laboratory in the university grounds at Fredericton, N.B., but also permitted us to occupy one of their large laboratories during the summer vacation, which greatly facilitated our work at a time when additional space for the breeding trays was required. Dr. L. O. Howard, Chief of the United States Bureau of Entomology again most courteously permitted us to obtain supplies of the Tachinid parasite Compsilura concinna Meign, and the predaceous beetle Calosoma sycophanta.

Mr. J. D. Tothill, who had charge of the parasite work in New Brunswick, visited Massachusetts in July, 1912, and collected over 12,000 caterpillars of the Gipsy Moth, from which 2,395 specimens of Compsilura were obtained. This lot of material was used to establish two strong colonies of the insect, one near Fredericton and the other near St. Stephen, N.B., both colonies being liberated under excellent conditions. Subsequent examination of the puparia indicated that about seventy-five per cent of the flies had successfully emerged. In the case of the Fredericton colony, Mr. Tothill made an observation of considerable interest and value. Collections were made later in the season of the caterpillars of the Fall Webworm (Hyphantria cunea) and the larvae of the Tachinid Compsilura were obtained from caterpillars of H. cunea, collected at a point three miles, as the crow flies, from the point where the parasites were liberated, demonstrating that the female Tachinid in flying this distance had crossed the river St. John, three-quarters of a mile wide. This discovery would appear to augur well for the future dispersal of the species.

Through the kindness of Mr. A. F. Burgess, in charge of the Gipsy Moth parasite work in the New England States, a collection of eighty adult Calosoma beetles was made in Massachusetts and sent to our laboratory at Fredericton. They were received in excellent condition, and Mr. Tothill immediately commenced breeding work, but was handicapped by the cold and wet season which rendered the large amount of food supply, consisting of living caterpillars, difficult to obtain. However, Mr. Tothill was successful in rearing a sufficient number of Calosoma larvae to enable an experiment to be made with a view to ascertaining whether the pupal stage of Calosoma is able to pass the winter under New Brunswick conditions. Adults were also allowed to go into hibernation at Fredericton, and a small colony of about fifteen pairs of adults was liberated at St. Stephen, N.B. If encouraging results are obtained from these experiments during the coming spring, it is proposed
Dominion Entomological Field Station, Agassiz, B. C.

Dominion Entomological Field Station, Bridgetown, N. S.
In view of the alarming increase of
THE BROWN-TAIL MOTH

in this region, and the necessity of taking immediate steps to control this most serious pest of orchard, shade and forest trees, the attention of all farmers, fruit growers, and other occupiers of premises upon which fruit and other trees exist is called to the following Regulation issued under "The Destructive Insect and Pest Act":

REGULATION 8. "Any inspector entering any lands, nursery or other premises where there is reason to believe that any of the insects, pests or diseases hereinafter specified are or may be present, shall give instructions for the treatment or destruction of any tree, bush, crop or other vegetation or vegetable matter or the containers thereof, which may be found or suspected to be infested with any of the insects, pests or diseases hereinafter specified, and such instructions shall be carried out by the owner or lessee of the infected or suspected vegetation, vegetable matter, or containers thereof, and such remedial treatment shall be carried out and continued until the insect, pest or disease shall be deemed by the inspector to have been exterminated."

Under this Regulation it will be necessary for all owners of trees, upon which nests of the Brown-tail Moth occur, to remove such nests and burn them and, in the case of heavily infested trees and vegetation, to spray such trees or vegetation in strict accordance with the instructions given by the Department's Inspectors.

PENALTY:

Section 8 of the Act states:

"Every person who contravenes any provision of this Act, or any regulation made thereunder, shall be liable, upon summary conviction, to a fine not exceeding one hundred dollars, or to imprisonment for a term not exceeding six months, or to both fine and imprisonment."

GEO. F. O'HALLORAN,
Deputy Minister of Agriculture.

Ottawa.
to conduct more extensive breeding experiments at the Fredericton laboratory during next summer (1913).

In addition to the aforementioned work, Mr. Tohill commenced an exhaustive study of the parasitism of the Forest Tent Caterpillar (Malacosoma disstria) and the Fall Webworm (Hyphantria cunea), one of the chief objects of which was to discover what facultative parasite of the Brown-tail and Gipsy Moths were attacking these common native insects. It is also proposed to make a study from year to year of these native parasites of these common insects with a view to elucidating some of the complex problems associated with the important subject of the natural control of insects. A large amount of valuable information was obtained in the short season during which the work was carried on.

II.—INSECTS AFFECTING FIELD CROPS.

CUTWORMS.

The most serious of the insects affecting field crops during 1912 have undoubtedly been cutworms of various species. In southern Alberta their depredations were very extensive and unusually severe. With a view to ascertaining the extent of the injuries and of the infested territory in Alberta, inquiries were addressed to farmers and individuals reporting injuries, and the co-operation of the crop-reporting agencies of the Census and Statistics Branch of the Dominion Department of Trade and Commerce, the Department of Agriculture, of Alberta, and of the Commission of Conservation was secured. Mr. W. H. Fairfield, Superintendent of the Experimental Farm at Lethbridge, also very kindly collected statistics. From all these sources it was found that between 30,000 and 35,000 acres of grain were actually destroyed by cutworms in southern Alberta during 1912. The most seriously infested districts appeared to have been Lethbridge, Macleod, Monarch, Pincher Station and Claresholm. The infested area was found to extend, approximately, from Claresholm in the northwest to Wagner in the southwest, and from Spring Coulee in the southwest to Turin on the northeast. They were particularly destructive to garden crops, including cabbages, turnips, onions, peas, beets and carrots, and in addition to destroying wheat, which was the chief crop attacked, they ate oats, barley and timothy. The damage was reported to have commenced about the middle of April and to have extended into the middle of June. The most destructive species appeared to be Prosagrotis delorata Sm. and Euxoa ochrogaster Gn. The ordinary remedial measures for cutworms did not prove effectual, and on this account, together with the fact that one of the species (P. delorata) was a new pest, arrangements have been made for a thorough investigation into the outbreak. For this purpose a field officer (Mr. E. H. Strickland) has been appointed, and an entomological laboratory will be established at Lethbridge.

CHINCH BUG INVESTIGATION.

Owing to the extensive damage by the Chinch Bug (Blissus leucopterus Say) in Middlesex county, Ontario, during 1911, to which reference was made in my last annual report, and the possibility of this very injurious pest of staple grains spreading from the infested area in western Ontario, a careful investigation was carried on by Mr. H. F. Hudson at a temporary field station at St. Ives, Middlesex county, Ont.

In the early part of the year, our field officer, Mr. G. E. Sanders, visited the region and made observations on the insects in winter quarters. Mr. Hudson commenced work about the middle of May, when the bugs were mating. A study of their life-history and habits was made. The infested region is largely devoted to
pasture, with some hay land; it covered about five square miles, embracing about 1,800 acres. Meadow grasses suffered most, particularly timothy. Wheat, corn and oats were slightly injured, but only where such crops were adjacent to a meadow or pasture. The restricted nature of the infestation appeared to be due to the scarcity of grain crops and the succulent nature of the grasses. The value of regular systems of crop rotation was demonstrated by the scarcity of Chinch Bugs in such land compared with their abundance on the grass farms. Under the present system of grass farming, which appears to be the result of economic conditions rather than desire, the Chinch Bug injury is likely to increase unless the region should be favoured with an open winter or a wet summer, as heavy rains occurring during the time the bugs are hatching is inimical to the progress of the pest. The season of 1912, fortunately, materially reduced their numbers. It was also found that the white fungus Sporotrichum globuliferum appeared in September after the wet season and killed off about twenty-five per cent of the bugs. Experiments on this fungus were carried out. The most important measures to be adopted are clean farming and the adoption of regular rotations. Clean farming includes the destruction of rubbish, the cleaning up of fences, etc., and the burning over of waste places as late as possible in the fall to destroy the hibernating places and to expose the bugs to the rigours of winter. It is intended to publish the results of the investigation as soon as may be practicable.

During the year, Mr. G. E. Sanders has found the Chinch Bug sparingly in the Annapolis valley in Nova Scotia, where, however, it is unlikely to become a pest.

EELWORMS.

In September, 1912, injured wheat plants were received from Raymond, Alta. In these plants no sign of insect or fungus injury could be discovered. A microscopic examination, however, disclosed the presence of numerous nematodes, commonly called Eelworms, at the base and along the lengths of the stems of the plants. So far as we are aware, this is the first record of injury to staple crops by these pests in North America. While they are not insects, but belong to the large family of worms, the entomologist is usually called upon to give them his attention. They are microscopic, thread-like, transparent creatures measuring, when full-grown, about one twenty-fifth of an inch in length. Further inquiries were made and it was found that Eelworms were present in other districts in southern Alberta, their injuries having been attributed to other obscure causes such as climatic or soil conditions. Winter wheat was chiefly affected. In Europe, where the Stem Eelworm, Tylenchus devastatrix, is responsible for serious injury to crops, such as wheat, oats, clover, hops and onions, when it occurs in numbers, infestation of wheat is not common and spring wheat is most frequently attacked. In oats, a condition known as ‘tulip root’ is produced.

As these pests will undoubtedly spread, and are very difficult to control, careful attention is being given to their occurrence with a view to planning a detailed investigation as soon as practicable. In Europe, the control measures usually recommended are the careful selection of rotations, the sowing of a crop which appears to be immune, such as barley, the planting of trap crops, the use of fertilizers, such as sulphate of potash and nitrate of soda, the dressing of the land with lime, salt, etc., deep ploughing and the destruction of infested crops. Many control measures practised in England, France and Germany are impracticable in Alberta, and the whole problem will demand careful investigation and experiment under our western conditions.
White Grubs (Lachnosterna) were very abundant in certain parts of Ontario. This was expected, as the adult beetles occurred in enormous swarms in the spring of 1911, in which year the eggs would be laid. One correspondent reported as many as thirty grubs from one hill of potatoes, and fifteen to twenty grubs were quite common.

Wireworms were reported from every province. They destroyed potatoes and root crops universally; in Ontario, Manitoba and Alberta they destroyed both winter and spring wheat, and oats and clover were also attacked. Mr. H. F. Hudson, our field officer in western Ontario, was instructed to study their habits and depredations with a view to future work. The Seed Corn Maggot (Pegonmia fusciceps) was unusually injurious in Ontario.

Our investigations on the control of Root Maggots were again continued in the insectary grounds at Ottawa.

III.—INSECTS AFFECTING FRUIT CROPS.

The establishment, during the past summer, of field laboratories in most of the provinces has enabled us to begin investigations on the more important of the insect pests affecting both orchard trees and small fruits.

INVESTIGATIONS IN NOVA SCOTIA.

In Nova Scotia, a laboratory (illustrated herewith) has been established at Bridgetown, N.S., with Mr. G. E. Sanders in charge. A ten-acre orchard has been placed at our disposal for experimental work in spraying by Mr. R. S. Eaton, for whose co-operation we are indebted, at Kentville, N.S., where a series of experiments on the control of the Bud-moth, Spilonota ocellana, was begun; conjointly, the control of the Codling Moth and of the Green Fruit Worm, Xyлина spp., is being studied. It has been found that more than one species of Budmoth occurs, and that the spray usually recommended for this insect does not control it. A larger species, Olethreutes frigidana Pack., not previously regarded as of economic importance, was found to be injurious. The value of spraying and cultivation in the control of the Green Fruit Worms, Xyлина spp., chiefly X. lethanai, was investigated. In certain sections these insects are responsible for a marked proportion of damaged fruit. The first occurrence of the Apple Maggot, or Railroad Worm (Rhagoletis pomonella), in Nova Scotia, was discovered at Smith’s Cove, N.S. It appears to be localized, and the infestation in the affected orchard is light.

SAN JOSÉ SCALE IN NOVA SCOTIA.

Not the least important of Mr. Sanders’ work was the discovery, for the first time, of living San José Scale (Aspidiotus perniciosus) in Nova Scotia on nursery stock imported from Ontario. The first case was discovered in the spring of 1912, at Aylesford, N.S., during the Brown-tail Moth scouting work. We immediately notified Prof. M. Cumming, Secretary for Agriculture for Nova Scotia, of the fact, and arrangements were made without delay for the inspection by the Provincial Government of all Ontario nursery stock planted during the years 1910, 1911 and 1912, and Mr. Sanders had charge of the provincial force of inspectors. Regulations were passed by the Provincial Government under their Insect Pest and Plant Disease Act to meet the requirements of the situation, and practically the whole of the west-
SESSIONAL PAPER No. 16

The fruit belt was inspected, from Hants county in the east to Yarmouth county in the west. The infected properties were scattered over about 175 miles of territory. The following indicates the extent and result of the work:

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of properties inspected</td>
<td>1,758</td>
</tr>
<tr>
<td>Number of trees inspected (over)</td>
<td>157,065</td>
</tr>
<tr>
<td>Number of properties infested with scale, living or dead</td>
<td>785</td>
</tr>
<tr>
<td>Number of trees of 1910 planting destroyed</td>
<td>7</td>
</tr>
<tr>
<td>1911</td>
<td>345</td>
</tr>
<tr>
<td>1912</td>
<td>311</td>
</tr>
<tr>
<td>Total of trees destroyed</td>
<td>693</td>
</tr>
</tbody>
</table>

Living scale was found as follows:

On trees of 1910 planting, on 3 properties.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1911</td>
<td>71</td>
</tr>
<tr>
<td>1912</td>
<td>127</td>
</tr>
</tbody>
</table>

The fact that, altogether, living scale was found on 201 properties, on trees planted from 1910 to 1912, indicates the great importance of this discovery and the wisdom of taking immediate action. In October, 1912, the Provincial Government of Nova Scotia passed regulations requiring certificates that the nurseries from which Canadian* nursery stock imported into the province had been inspected between June 15 to September 15, and the regulations further provided that such nursery stock should be fumigated in fumigation houses established at Truro, N.S., and Digby, N.S. Most of the Canadian nursery stock imported into Nova Scotia originates in Ontario nurseries. Under the regulations of the Ontario Government, the fumigation and inspection of nursery stock is already provided for, so that the regulations of Nova Scotia will facilitate the enforcement of such necessary requirements. The Provincial Government of Nova Scotia proposes to make a thorough inspection of the entire fruit belt during the coming summer (1913). It is not improbable that the immediate steps which are thus being taken to eradicate the infection will prevent the scale from spreading and in the end, prove successful.

INVESTIGATIONS IN QUEBEC.

A field laboratory was established, after consultation with the Quebec Pomological Society, at Covey Hill, Quebec, in the orchard of Mr. G. B. Edwards, for whose co-operation and interest we are indebted. As it was not possible to commence work until the latter part of July, little more than a beginning could be made. Nevertheless, Mr. C. E. Petch, our field officer who was placed in charge, succeeded in initiating one or two investigations on important fruit insects in that region, in addition to collecting a good deal of information of a miscellaneous character on the insects affecting fruit and fruit trees. The four most important orchard pests in the district are the Apple Maggot (Rhagoletis pomonella), Codling Moth (C. pomonella), Plum Curculio (Conotrachelus neumachus) and the Apple Curculio (Anthonomus quadrigibbus). Owing to the fact that our knowledge of the last-named insect, A. quadrigibbus, which is a serious apple pest in European countries, has received little attention on this continent compared with the other insects mentioned, it was decided to pay particular attention to a study of its life-history and control, concurrent

*Nursery stock imported into the province from countries outside Canada is already governed by the Dominion Regulations under The Destructive Insect and Pest Act.
vations being made on *R. pomonella* and *C. neumaphar*. The chief injuries of the Apple Curculio are inflicted by oviposition and feeding. The egg punctures cause hard green core-formations extending sometimes to the centre of the apple. The egg punctures are responsible for malformed apples. A good beginning was made in the study of the life-history and feeding habits, and of the varieties attacked.

Investigations in Ontario.

At the entomological station at Jordan Harbour, Ont., the establishment of which was mentioned in my last annual report, Mr. W. A. Ross, the officer in charge, continued his investigations on the Apple Maggot (*Rhagoletis pomonella*). In this work, Mr. Charles Good, working under the direction of Mr. L. Caesar, Provincial Entomologist, co-operated with Mr. Ross. In spite of the very adverse weather conditions during the summer, an extended series of valuable observations was made on the following: Emergence and behaviour of adults, oviposition and incubation of eggs, mortality of eggs and larvae, the relative value of various baits and repellants, spraying with sweetened arsenicals, cultural methods of control, the use of soil fumigants, the varieties of apples affected and the emergence of larvae from different varieties as affecting the destruction of fallen fruit, and natural hosts, etc. Many of the experiments gave indifferent results, but the unreliability of ploughing under pupae, among other things, was clearly demonstrated. An interim report of this work is being published (in the Forty-third Annual Report, Ent. Soc. Ontario), and the investigations will be continued during the coming season (1913).

Investigations in British Columbia.

During the summer, Mr. R. C. Treherne was located at a temporary field station at Hatzic, B.C., in the Fraser valley. Mr. A. Brealey, of Hatzic, most kindly provided us with working accommodation and facilities for experimental work. An investigation was undertaken of the life-history and control of the Strawberry Root Weevil (*Otiorhynchus ovatus*) which is one of the most injurious of the small fruit pests in that region of the province, where it is abundant. The death of the plants is caused by the girdling of their roots by the larvae. As a rule, the strawberry fields do not suffer until the spring of the second year after planting. Extended observations were made on the biology of the weevil. The inability of the beetle to fly suggested methods of preventing their migration to uninfested plots, and a number of obstructive devices are under trial. The effect of crop rotation and cultural methods are also being studied in conjunction with the prevailing local cultural practices. Mr. Treherne made observations on a number of the insects, injurious locally, and answered enquiries in regard to the same. The Western Tent Caterpillar (*Malacosoma eosa*) was responsible for extensive defoliation of apple trees in the Fraser valley. *Elater* beetles appear to be responsible for injuries to the buds and blossoms of apples. A large number of insects of economic importance are awaiting study, and the varied climatic and soil conditions in the province will provide us with abundant material for investigation.

As headquarters for our entomological work in British Columbia, an entomological laboratory (illustrated herewith) has been built on the Experimental Farm at Agassiz. It contains a working laboratory, insectary, living room and store-room, lavatory, etc., all of which will provide us with much needed accommodation for our work and for the officer in charge.
IV.—INSECTS AFFECTING FOREST AND SHADE TREES.

The appointment of Mr. J. M. Swaine as Assistant Entomologist to take charge of Forest Insect Investigations enabled us to extend our studies in this most important branch, and Mr. Swaine has devoted his whole attention to this work, studying, in particular, the Bark Beetles (Ipsidae) which constitute the most deadly and widespread enemies of our forests. In May, 1912, Mr. Swaine visited the Riding Mountain Forest Reserve in Manitoba. The primary object of his visit was to colonize a large collection of the cocoons of the Larch Sawfly, Nematus crichsonii, containing its parasite Mesoleius tentredinius. These cocoons had been collected in the English Lake district, which I visited with that object, as mentioned in my last annual report. The weather conditions were not very favourable; nevertheless, the parasitized cocoons were distributed by Mr. Swaine in two large tamarack swamps in the Riding Mountains east of Clear lake. It was found that bark beetles were present in the reserve in great numbers in fire-injured timber and in slash from cuttings. Dendroctonus murrayanae Hopk. had destroyed some timber. D. simplex was very numerous in dead and standing larches, and is no doubt serious as a co-detructive agency with the Larch Sawfly. Ips perturbatus Eichh. and I. caelatus Eichh. were abundant in fire areas south of Clear lake, occurring chiefly in white spruce which was badly injured by fire. Polygraphus rufipennis Kirby was found common everywhere in dying bank of spruce, larch and jack pine. These were the chief species of bark beetles found and they are able to kill weakened or injured trees which might otherwise recover. Timber beetles of several species were plentiful, the most common being the Poplar Timber Beetle Trypodendron retusus Lec. and the Spruce Timber Beetle T. lineadas Ratz. in spruce and pine. The effect of Pissodes injury was very noticeable in numerous, “double tops” on the spruce.

A visit was made by Mr. Swaine to Algonquin Park, Ont., in July. Abundant evidence of serious injury by bark beetles was found. Observations on the habits and life histories and collections were made of the following: Dryocoetes eichoffi Hopk. on birch, Dendroctonus and Dryocoetes in white spruce. Polygraphus rufipennis in white and black spruce, Ips balsameus on balsam, Monochamus scutellatus, etc. The timber limits of the Canada Paper Co., at Stoke, Que., were also visited and important observations were made on the bark beetles and other forest insects prevalent in this important forest region of Quebec.

TENT CATERPILLARS.

Malacosoma americana and M. disstria were very abundant in certain parts of Ontario, Quebec and New Brunswick, and particularly in the districts around Ottawa and Montreal. M. disstria was responsible for extensive defoliation of forest trees in the Gatineau region, north of Ottawa. The caterpillars were so numerous that the trains on the Gatineau branch of the Canadian Pacific Railway were held up on certain of the grades, in spite of double engines and mechanical devices for clearing the rails. Very few parasites were found, and, although the bacterial diseases were evident, the countless numbers of moths which deposited their egg masses thickly on the trees indicate a more serious visitation next year, and a circular on Tent Caterpillars has been prepared by Mr. Swaine, and is now in the press.

The Spruce Budworm, Tortrix fumiferana, appears to be gradually spreading eastward, as more reports have been received from the region south and east of the St. Lawrence, and it is more in evidence in New Brunswick. Districts in Quebec, north of Ottawa, which were seriously defoliated in 1909, appear to have recovered
from the attacks, and no cases of fatal injury have been discovered which could be ascribed to this insect, which is still under investigation.

Various species of scale insects have been recorded as injurious and are under observation, *Chermes similis* Gillette and *C. obietis* Chol. have been destructive to shade trees and are very common locally in spruce forests. *C. pinicorticis* Fitch is common and destructive throughout eastern Canada. *C. strobilobius* Kalt, was particularly abundant at Ottawa on both European and American larches. *Gossyparia spuria* Mod. is proving injurious to elms at Ottawa.

In Nova Scotia, the Larch Case-bearer, *Coleophora laricella*, is still very abundant; at Ottawa it was particularly prevalent on American and European larches.

Among other insects affecting forest and shade trees which were more noticeably abundant, and reported during the year of 1912, were the following: *Galerucella decorata*, stripping willow and poplar in Manitoba, Saskatchewan and British Columbia; *Podosesia syringae* Harris destroyed stems of lilac at Ottawa; *Cyllene robiniae* Forst. was destructive to acacias in Southern Ontario; *Elaphidion villosum* was responsible for extensive injuries to oaks in some of the St. Lawrence Island parks. *Supercita* spp., including *S. calcarata*, a very destructive enemy of poplar, were responsible for numerous complaints from Ontario and Manitoba. *Agrilus anicu* still continues to be a very destructive enemy to imported white birches around Ottawa, and in certain other eastern cities, where it is gradually killing the finest trees.

V.—INSECTS AFFECTING DOMESTIC ANIMALS AND MAN.

ROCKY MOUNTAIN SPOTTED FEVER TICK, Dermacentor Venustus Banks.

The occurrence of this tick in the Western States of the Union just south of the international boundary, and an isolated record of its capture at Kaslo, B.C., made it extremely desirable that a study of its distribution in Canada should be made, in view of the fact that it is the potential carrier of the fatal disease, from which it takes its name, especially prevalent in the Bitter Root valley, Montana. Accordingly, in November, 1911, through the co-operation of the Veterinary Director General, a letter was addressed to all the western veterinary inspectors, to the Farmer’s Institutes, to local entomologists, and others, requesting the collection of ticks. Mr. J. W. Cockle, of Kaslo, B.C., was particularly active on our behalf, and rendered valuable assistance. As a result of this inquiry an excellent quantity of material was received from southern British Columbia, and also from Pincher Creek, Alta. The chief area of distribution of this species appears to be the Kootenay region, where they are found on the mountain sides; specimens received were taken from horses, grizzly bears, and man; they were also found on forest undergrowth, on which account they have no doubt received the popular name “wood ticks,” which name also includes *D. albipictus*. Evidence collected indicates that this species may be responsible for paralytic symptoms in children and somewhat obscure petechial outbreaks. Observations were made in the laboratory on the oviposition, but attempts to get the ticks to feed on chipmunk and guinea pigs failed, and my absence in England resulted in the death of the seed ticks. The fact that the bites of these ticks undoubtedly have serious results, points to the necessity of avoiding their bites in the infested region.

THE STABLE FLY, Stomoxys Calcitrans.

On account of the possible relation of this biting fly to poliomyelitis, or infantile paralysis, which the experiments of Drs. Rosenau, Brues, Anderson and Frost have recently indicated, and also its character as an occasional pest of domestic animals,
SESSIONAL PAPER No. 16

the experiments, which I began originally in 1906, were resumed. Not only was the
life history studied, but special attention was paid to the feeding habits of the adult,
several flies being fed entirely on human blood.

WARBLE AND BOT FLIES.

During the summer of 1912, Dr. S. Hadwen, of the Health of Animals Branch
of this department, carried out a valuable series of experiments on the Warble fly
Hypoderma bovis de Geer, the account of which has been published in Bulletin No.
16 of that branch. The chief interest in Dr. Hadwen’s study lies in the fact that
previously it had generally been supposed that this European species was not posi-
tively known to occur in North America, but that our only species of Ox Warble fly,
or Bot fly, as Hypoderma lineata de Villiers. At Agassiz, in British Columbia, Dr.
Hadwen found H. bovis was the common species. In going over the collections in
the Division, I find that we received this species in July, 1911, from St. Henri de Lévis,
Que., an adult specimen having been taken from the hoof of an ox. We have also
received the larvae of H. bovis from Saskatchewan. These facts would indicate that
H. bovis is generally distributed through Canada.
The Sheep Nasal Fly (Oestrea oris) was reported as becoming a pest on Salt
Spring Island, B.C. Specimens of the larvae of O. oris were also received from the
biological laboratory of the Health of Animals Branch; they had been taken from
the head of a sheep received from Quebec in April, 1912.

VI.—INSECTS AFFECTING GARDEN AND GREENHOUSE.

Mr. W. A. Ross is carrying on at the present time at London, Ont., a series
of experiments on the control of Sow bugs (Oniscus sp.) which are particularly
injurious to florists’ stock in greenhouses. Various kinds of repellents and poisoned
baits are being tried, and the effect of soil fumigation and sterilization of the soil
is being studied. One of the most important factors in the control, and one which
is apparently least observed, is cleanliness and tidiness in and around the greenhouse
and the benches.
A series of experiments on the fumigation of greenhouses for the control of
White fly (Aleyrodes) is also being carried out.

VII.—APICULTURE.

Until the end of September, 1912, the apiary was under the care of Mr. J. J.
Beaulne, who had managed the practical apiculture in a satisfactory and successful
manner since the summer of 1910. The necessity of extending the apiculture work,
and the great need for experimental work on the breeding and nesting of varieties
and strains of bees suited to our varied conditions and resistant to disease, resulted
in the appointment of Mr. F. W. L. Sladen, as Assistant Entomologist for Apicul-
ture, who arrived in Canada from England in September.
The bees in our apiary were brought out of the cellar on March 27th to 29th.
Thirty colonies were put into winter quarters and twenty-seven were taken out,
three having been lost, owing to rats, exhaustion of stores and queenlessness, respec-
tively. The average weight of the colonies on being brought out was 33 pounds, and
the average loss in weight during the winter was 14 pounds. The summer was
unusually wet and cold; nevertheless, the number of colonies was increased to forty-
seven by swarming and dividing, and 882 pounds of honey were taken, an average of
16—33
32.66 pounds per hive, spring count. There were 750 pounds of extracted honey, the rest being comb honey. Basswood yielded honey for the first time in several years. Traces of European Foul Brood were found in two colonies in June, and the presence of this disease in the Ottawa district necessitated constant vigilance. A demonstration was given by the Provincial Apiarist, Mr. Morley Pettit, in June, and throughout the summer visits were paid to the apiary by farmers and others seeking practical advice.

As a basis for the future breeding work, arrangements were made for Mr. Sladen to bring with him six pure Italian queens from Bologna, belonging to a strain which had been found to be resistant to European Foul Brood in England. Five of these were successfully introduced at the end of September. Further queens are being imported from Italy, Italian Switzerland and the Southern States.

WINTERING OUT-OF-DOORS.

An experiment in wintering bees out-of-doors in special wintering cases was commenced. Three large winter cases, each capable of holding four hives, with a space of 2 to 5 inches around the sides, 4 inches underneath and 10 inches on top, for packing material, were constructed out of 1-inch pine. Owing to the fact that bees consume more food when wintered out-of-doors than they do when wintered in the cellar, especially heavy colonies were selected for the out door wintering, their average weight being 81.5 pounds. Four of the colonies were packed in shavings, four in cut straw and four in clover chaff. Each hive had its cover removed, the frames being covered with a quilt. The winter cases were raised well above the ground and supported on four wooden hive stands.

The placing of the hives in the winter cases and the packing were completed during the second week in November. The bees had a good flight on November 5, a still and sunny day, with temperature 55° F. A fair number flew on November 21, another still and sunny day, with temperature 50° F. On December 9 the flight holes of the winter cases were reduced on the outside to an L-shaped aperture 1\(\frac{1}{2}\) inches high, and 4 inches long, each arm being from \(\frac{3}{4}\) to \(\frac{1}{2}\) inches wide. Such an entrance, while protecting the bees as much as possible from cold winds, cannot easily be choked by dead bees. The winter was unusually mild. A few bees were seen flying from some of the hives on 14th and 18th February, some of them dropping and dying in the snow. On 11th and 12th March, the bees were flying rather freely, especially from the entrances facing the sun; they returned well, very few being lost, though the ground was covered with snow. Up to the time of writing, March 31, the colonies have not been examined, but indications point to the probability that the bees have wintered well.

The thirty-five remaining colonies were put into the cellar on November 8. Their average weight was then 51 pounds. On March 13 the bees appeared to be wintering well, and all the colonies were found to be alive except one, which had no food in its combs, its weight having dropped from 47 pounds on November 8, to 28 pounds, a loss of 19 pounds. No queen could be found among the dead bees.

APICULTURE ON THE BRANCH EXPERIMENTAL FARMS.

Apiculture has been continued on certain of the chief farms of this branch, and the following observations are made in the reports received from Nappan, N.S., and Agassiz, B.C., respectively:—

Nappan, N.S.—Fifteen colonies were taken out of the cellar and put on their summer stands on April 2, 1912. Brood rearing had begun. Until July 22 there was promise of a good season, and some fine clover honey was secured;
SESSIONAL PAPER No. 16

After that date, however, owing to the excessive wet weather, no honey was gathered. Twenty-five colonies were put into the cellar in December. At date of writing (March 31, 1913) ten colonies have been placed on their summer stands.

Agassiz, B.C.—The ten hives are all in good condition, being quite strong, both in stores and in bees. During the past season an average of 25 pounds of honey per hive was secured. Nine of the hives were wintered out-of-doors, and, with the exception of two, came through in excellent shape. The one hive which has been wintered inside for two years does not seem to have any advantage over those wintered out-of-doors. There has been an abundance of food for the bees; the chief honey plant seems to be the white clover, which is more or less constant from the first of June until the first of September. Fair success was obtained this year in keeping down swarms; this, it is believed, was brought about by always allowing plenty of room and fresh air and by occasionally splitting the brood nest.

During the coming year, it is intended to organize and co-ordinate the apicultural work on the Experimental Farms with a view to ultimately maintaining an apiary on each of the Branch Farms. The extension of bee-keeping in western Canada is especially important, and special attention will be paid to this work and its possibilities. In order to stimulate bee-keeping in Canada, and to guide beginners, a bulletin entitled 'The Honey Bee' was written and published during the year, and has already proved extremely useful.

VIII.—MISCELLANEOUS.

COLLECTIONS.

During the year we have continued to name collections of insects for individuals and teaching institutions. Considerable progress has been made in the arrangement of our now rapidly increasing collection of Canadian insects, to which duty Mr. Germain Beaulein has assiduously devoted himself, with satisfactory results. The Hemiptera have been arranged, and special attention has been devoted to several orders of the Coleoptera. Mr. Beaulein has undertaken a careful study of the Elaterid beetles, which includes the various species of wireworms. Mr. Sladen has been placed in charge of the Aculeate Hymenoptera and has made marked progress in arranging this group. Special attention is being paid to the _Bombi_, on account of the economic importance of certain species.

In the determination of new material, Dr. L. O. Howard, Chief of the United States Bureau of Entomology, and his scientific assistants in the Bureau and in the National Museum at Washington, have again placed us under a debt of gratitude by their kind assistance, and our very cordial thanks are extended to other specialists who, in like manner, have so willingly assisted us in our work.

An extensive exhibit of injurious and useful insects and their work was made at the Dominion Exhibition, held at Ottawa, in September.

CORRESPONDENCE.

The increase in the work and in the staff of the Division has naturally resulted in an increase in the correspondence. The number of letters received from April 1, 1912, to March 31, 1913, was 5,105, and the number of letters sent out during the same period was 6,938, compared with 3,993 letters received and 5,465 sent out during the previous fiscal year.

16—331
Visits have been made to the various provinces for the purpose of organizing and inspecting the field work, and to give lectures and addresses. In May, I visited Nova Scotia, New Brunswick and Massachusetts in connection with our work against the Brown-tail Moth. At the end of July, I left for England and attended the International Congress of Entomology, which was held at Oxford from August 6 to August 10. On August 12, as Canadian representative, I attended a conference called by the Secretary of State for the Colonies at the Colonial Office to work out a scheme for Imperial co-operation in preventing the spread, and furthering the investigation, of insect pests. This conference and a previous conference held in June, 1911, has resulted in the establishment of the Imperial Bureau of Entomology, to which reference is made in the next section. Lectures and addresses have been given at Halifax, St. John, N.B., Toronto, Winnipeg, and other places. In February, a visit was made to North Portal, Sask., and Winnipeg, Man., in connection with the establishment of a fumigation station in southern Saskatchewan, and the annual meeting of the Manitoba Horticulatural and Forestry Association at Winnipeg was addressed. Mr. Arthur Gibson lectured at a short course held at Charlottetown, P.E.I., in January, and has addressed other meetings. As I have already stated, Mr. J. M. Swaine has visited different provinces studying forest insect depredations. Mr. F. W. L. Sladen conducted a short course in apiculture at the Nova Scotia Agricultural College in January, and subsequently addressed meetings and studied apicultural conditions in Nova Scotia and New Brunswick.

IMPERIAL BUREAU OF ENTOMOLOGY.

Through the co-operation of the self-governing British Dominions and colonies and the Colonial Office, an Imperial Bureau of Entomology has been established, at the beginning of the present year, in London, England. It is an expansion of the Entomological Research Committee of the Colonial Office, which was established in 1909, and was concerned with the furthering of entomological research in the British possessions in tropical and sub-tropical Africa, especially in so far as it is related to such human diseases as sleeping sickness and malaria, etc. By securing co-operation and financial support of the self-governing Dominions and Colonies, the Colonial Office has been enabled to broaden the work by the formation of this Bureau which is managed by an honorary committee of experts in Entomology, in tropical and veterinary medicine; the chief entomologist of each of the self-governing Dominions is ex-officio a member of the committee.

The functions of the Bureau are as follows:—

1. A general survey of the noxious insects of the world and the collection and co-ordination of information relating thereto, so that any British country may learn by inquiry what insect pests it is likely to import from other countries, and the best methods of preventing their introduction and spread.

2. The authoritative identification of insects of economic importance submitted by the Departments of Agriculture and Public Health throughout the Empire.

3. The publication of a monthly journal, giving concise and useful summaries of all the current literature which has a practical bearing on the investigation and control of noxious insects. This journal, entitled *The Review of Applied Entomology*, commenced in January, 1913. It appears in two parts: Series A, Agricultural, and Series B, Medical and Veterinary. As supporters of, and adherents to, the Bureau, we receive a number of copies of this journal each month and these are distributed to the Provincial Departments of Agri-
culture, the Provincial Entomologists and the libraries of the Universities and Agricultural Colleges. In addition to the Review, the Bureau is continuing to publish The Bulletin of Entomological Research, containing scientific papers embodying the results of original investigations carried on in the British Colonies.

The problem of the prevention of the spread and also control of insect pests is fundamentally one for international action and co-operative effort. It is, indeed, a most fortunate thing that the British countries have been able in this matter to take advantage of their mutual attachment and interests and to organize in a manner which must ultimately be adopted by all countries of the world, as the prevention of the spread of insect pests with the minimum interference in the interchange of natural products can only be brought about by international co-operation. This is now becoming more generally realized as indicated by the proposal of the International Institute of Agriculture at Rome to form an International Commission to consider the whole subject.

PUBLICATIONS.

The different officers of the Division, both at headquarters and in the field, have contributed scientific papers to entomological and other journals, and more popular articles to the agricultural press. In addition, the following bulletins have been published during the year:—

'The Honey Bee. A guide to Apiculture in Canada,' by C. Gordon Hewitt, 45 pp., 14 figs., (Bull. 60, of the Experimental Farms Branch).

'Cutworms and Armyworms,' by Arthur Gibson. 29 pp., 10 figs., 1 pl. (Bull. No. 70 of the Experimental Farms Branch).

'The Large Larch Sawfly,' with an account of its parasites and other natural enemies and means of control,' by C. Gordon Hewitt. 42 pp., 21 figs., 4 pls. (Bull. No. 10, Second Series, of the Experimental Farms Branch).

'Legislation in Canada to prevent the Introduction and Spread of Insect Pests and Diseases destructive to vegetation, with Regulations regarding importation of vegetation into Canada,' by C. Gordon Hewitt. 36 pp. (Bull. No. 11, Second Series, of the Experimental Farms Branch).

STAFF.

The continued increase in our work, and necessary expansion, has necessarily required an increase in the staff of the Division, and the following additions have been made during the past year:—

Mr. F. W. L. Sladen has been appointed Assistant Entomologist for Apiculture. Mr. Sladen was one of the foremost bee-keepers in England and has previously visited Canada and the United States; he has also studied the bees in India. His work on queen-rearing has given him an international reputation and, in addition to his book on Queen rearing in England, of which a second edition is now being published, he has published a number of important papers on the pollen collecting habits, etc., of the bees. He has also made extensive studies of the wild bees or Bombi, so important in the fertilization of certain of our clovers, and the results of his investigations have been recently published in volume form in his book, The Humble-bee, its Life History and how to domesticate it, with descriptions of all British species of Bombus and Psithyrus (Macmillan & Co.). Mr. Sladen's appointment has
given very great satisfaction to Canadian bee-keepers and the great necessity for the extension of apiculture in Canada affords him an unrivaled field for good work.

Mr. H. F. Hudson, B.S.A., has been appointed a field officer of the Division. Mr. Hudson was born in England and graduated at the Ontario Agricultural College, Guelph. Subsequently he joined the staff of Dr. S. A. Forbes, State Entomologist of Illinois, in which position he remained up to the time of his appointment to our service.

Mr. C. E. Petch, B.S.A., was appointed a field officer of the Division in June, 1912. Mr. Petch graduated at the Ontario Agricultural College.

Mr. E. H. Strickland was appointed field officer of the Division in March, 1913. He received his entomological and agricultural training at the Southeastern Agricultural College, Wye, England. In 1910, he was selected by the Colonial Office as a Carnegie Scholar, and spent the years 1910-11 in the United States studying the methods of insect control, under the United States Bureau of Entomology, and carrying on special studies at the Bussy Institution of Harvard University, under Dr. W. M. Wheeler. He will undertake cutworm investigations in Alberta.

The progress and success of the work of the Division has been due to the loyal assistance which all the officers of the Division, both at headquarters and in the field, have rendered. To my chief assistant, Mr. Arthur Gibson, who has had charge of the Division during my absence and has superintended the fumigation and inspection work in addition to the general work of the Division, my especial thanks and acknowledgments are due. Miss J. McInnes and Mr. J. A. Letourneau, with temporary assistance, have conducted the secretarial work to my great satisfaction. It would be impossible to find a staff more devoted to their work than the one I have the privilege to direct, and their zeal is a great inspiration. The territory which we have to cover is only equalled in extent by the infinite variety of problems requiring attention. Gradually, we are taking hold of the more pressing matters for investigation and, as the service is extended, the utility of our work and the assistance we are able to render increases in a greater proportion. I only regret that we cannot directly answer more of the calls for assistance.

I have the honour to be, sir,
Your obedient servant,

C. GORDON HEWITT
Dominion Entomologist.
REPORT

FROM

THE DIVISION OF ANIMAL HUSBANDRY

ON

BEEF CATTLE, DAIRY CATTLE AND DAIRYING, HORSES, SHEEP AND SWINE

For the Year ending March 31, 1913

PREPARED BY

The Dominion Animal Husbandman, Ottawa, Ont. E. S. Archibald, B.A., B.S.A.
Supt. Experimental Station, Charlottetown, P.E.I. J. A. Clark, B.S.A.
Supt. Experimental Farm, Napan, N.S. R. Robertson.
Supt. Experimental Station, Kentville, N.S. W. S. Blair.
Supt. Experimental Station, Cap Rouge, P.Q. Gus. A. Langelier.
Supt. Experimental Farm, Brandon, Man. W. C. McKillican, B.S.A.
Supt. Experimental Farm, Indian Head, Sask. Angus Mackay.
Supt. Experimental Station, Lacombe, Alta. G. H. Hutton, B.S.A.
Supt. Experimental Station, Lethbridge, Alta. W. H. Fairfield, M.S.
Supt. Experimental Farm, Agassiz, B.C. P. H. Moore, B.S.A.
Note: (1) Light provided; (2) Roof cellar under driveway; (3) Ventilation intakes and outlets.
REPORT

FROM THE

DIVISION OF ANIMAL HUSBANDRY.

J. H. Grisdale, Esq., B.Agr.
Director Dominion Experimental Farms,
Ottawa.

Sir,—I have the honour to submit herewith reports upon the beef cattle, dairy cattle and dairying operations, horses, sheep and swine on the Central Experimental Farm and branch Farms and Stations which have come under my supervision during the past year.

At the commencement of the fiscal year 1912-13, the Animal Husbandry work was made into a division separate from Field Husbandry. Immediately after my appointment in July, 1912, I took up duties at Ottawa. The appointment of an assistant to the Dominion Animal Husbandman was made in August, 1912, when Mr. G. B. Rothwell, B.S.A., was named to the position.

A natural result of the readjustment of work, making of new appointments and much necessary changing and construction, has been a somewhat smaller amount of investigation work with all branches of live stock during the past year.

In the future, however, it is hoped that much more experimental work, both at Ottawa and on the branch Farms and Stations, will be started, and the usefulness of the Division proportionately increased.

In the preparation and compiling of a large amount of the data contained in the text of the Central Farm report, I am indebted to Mr. G. B. Rothwell. The conducting of work and compiling results of such work on the branch Farms and Stations have been in the hands of the Superintendents of those Farms and Stations.

In work with swine, both breeding and feeding, on the Central Experimental Farm, Mr. D. D. Gray, Farm Foreman, deserves special credit for the very efficient manner in which he conducted the various operations and retained careful and accurate results of same.

The work of registration, maintaining, breeding and sales records, and the like, for the Central Experimental Farm has been most efficiently conducted by Mr. G. B. Rothwell.

To Mr. Meilleur, the dairymen at the Central Farm, I am indebted for the excellent work and careful records of his department. Under my supervision he has again found it possible to introduce some new lines of work in the Farm dairy, some details of which will be found in the body of this report.

I regret to report another change of herdsman at the Central Farm. Mr. J. Haining, who has given efficient service during the past three years resigned in January, 1913. However, the position was at once most satisfactorily filled by Mr. Robt. Cunningham. To both must be given credit for interest and assistance
in new work, as well as the satisfactory execution of the routine work in connection with all classes of cattle.

To Miss L. Dean, and also to the Dominion Botanist, Mr. H. T. Güssow, I am indebted for much careful dairy bacteriological research work, which has materially strengthened the dairy experiments. The body of this work will appear as a separate report as soon as sufficient data have been collected.

During the year I have attended several meetings, and judged at various exhibitions, in addition to my regular duties on the Central Experimental Farm. I have also visited, at least once, each of the branch Farms and Stations in the system, where live stock work is being conducted or is anticipated. By this means of consultation and co-operation with the branch Farm Superintendents, it is hoped that the Animal Husbandry work of the Experimental Farm system may be facilitated and consolidated.

I have the honour to be, sir,

Your obedient servant,

E. S. ARCHIBALD,

Dominion Animal Husbandman.
BEEF CATTLE.

CENTRAL EXPERIMENTAL FARM, OTTAWA, ONT.

REPORT OF THE DOMINION ANIMAL HUSBANDMAN
E. S. ARCHIBALD, B.A., B.S.A.

BEEF CATTLE.

No beef breeding work has been conducted on the Central Experimental Farm since the removal, in 1911, of the Shorthorn herd from this Farm to the branch Farm at Brandon, Man. With our present limited land area available for the raising of forage (particularly alfalfa), and the almost complete absence of pasture, it is impossible to carry on such work. Nevertheless, the need of data as to the most economical methods of maintaining breeders and raising stockers and feeders, is appreciated by this Division, and with a Farm extension, would receive prompt attention.

In the meantime, experimental work along the lines of steer feeding has been continued.

BEEF EXPERIMENTAL FEEDING.

The experiment conducted with beef cattle this year was that of a comparison of yearlings of different beef breeds. However, although the majority of the steers in lots I, II, III and IV were just one year of age at the start, yet some of the steers, especially in lot V were several months younger, which added to the inconclusiveness of the test.

The following details of the experiment and deductions from same are instructive as to the profits or losses which may be expected from such methods.

All lots were fed alike as to the kinds and proportions of roughage and grain.
Ensilage or a mixture of ensilage and roots was fed throughout the entire year.
Both were valued at $2 per ton.
Mixed clover and timothy hay was fed from January 20, 1912, to June 1, 1912, and from October 5, 1912, to January 5, 1913. This was valued at $7 per ton.
Green feed, consisting of mixed peas and oats, was fed green during June, and as cured hay during July and August, 1912, both valued at $3 per ton.
The meal mixtures for the different periods valued at 1½ cents per pound as follows:

From January 13, 1912, to May 11, 1912, a mixture of—
- Bran... 400 pounds.
- Ground oats.. 200 "
- Gluten meal... 100 "

From May 11, 1912, to January 5, 1913, a mixture of—
- Bran... 600 pounds.
- Gluten meal.. 300 "
- Banner feed.. 300 "

All lots were stall-fed throughout the year, as no pasture was available.
Lot I—Shorthorns.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steers in lot</td>
<td>5</td>
</tr>
<tr>
<td>First weight, gross, January 13, 1912</td>
<td>2,955 lb.</td>
</tr>
<tr>
<td>First weight, average</td>
<td>896 lb.</td>
</tr>
<tr>
<td>Finished weight, gross, January 4, 1913</td>
<td>3,580 lb.</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>1,176 lb.</td>
</tr>
<tr>
<td>Number of days in test</td>
<td>875 days</td>
</tr>
<tr>
<td>Total gain in 356 days</td>
<td>2,925 lb.</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>593</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>1.64</td>
</tr>
<tr>
<td>Daily gain per lot</td>
<td>8.20</td>
</tr>
<tr>
<td>Gross cost of feed for period</td>
<td>$214.33</td>
</tr>
<tr>
<td>Cost of 1 pound gain per lot</td>
<td>7.32 cts.</td>
</tr>
<tr>
<td>Cost, original, January 13, 1912, at $6.17 per cwt.</td>
<td>$182.32</td>
</tr>
<tr>
<td>Total cost, January 4, 1913</td>
<td>$396.65</td>
</tr>
<tr>
<td>Selling price, January, 1913, less 5 per cent shrinkage, at $7.75 per cwt.</td>
<td>$432.91</td>
</tr>
<tr>
<td>Profit per lot</td>
<td>$36.26</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>$7.25</td>
</tr>
<tr>
<td>Average valuation per steer to start, January 13, 1913</td>
<td>$30.46</td>
</tr>
<tr>
<td>Average sale price per steer at finish, January 4, 1913</td>
<td>$86.53</td>
</tr>
<tr>
<td>Average increase in value</td>
<td>$50.12</td>
</tr>
<tr>
<td>Average cost of feed per steer</td>
<td>$12.86</td>
</tr>
<tr>
<td>Amount of meal eaten</td>
<td>8,170 lb.</td>
</tr>
<tr>
<td>Amount of ensilage and roots eaten</td>
<td>50.57 ct.</td>
</tr>
<tr>
<td>Amount of hay eaten</td>
<td>14,350 lb.</td>
</tr>
<tr>
<td>Amount of straw eaten</td>
<td>3,081 lb.</td>
</tr>
<tr>
<td>Amount of green feed eaten</td>
<td>3,500 lb.</td>
</tr>
</tbody>
</table>

X.B.—These were well-bred grade Shorthorns and were the most uniform lot as to age and weight, which may partially account for their more rapid and more economical gains.

Lot II—Aberdeen Angus.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steers in lot</td>
<td>5</td>
</tr>
<tr>
<td>First weight, gross, January 13, 1912</td>
<td>3,065 lb.</td>
</tr>
<tr>
<td>First weight, average</td>
<td>613 lb.</td>
</tr>
<tr>
<td>Finished weight, gross, January 4, 1913</td>
<td>5,820 lb.</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>1,164 lb.</td>
</tr>
<tr>
<td>Number of days in test</td>
<td>875 days</td>
</tr>
<tr>
<td>Total gain in 356 days</td>
<td>2,755 lb.</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>551</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>1.55</td>
</tr>
<tr>
<td>Daily gain per lot</td>
<td>7.75</td>
</tr>
<tr>
<td>Gross cost of feed for period</td>
<td>$215.68</td>
</tr>
<tr>
<td>Cost of 1 pound gain per lot</td>
<td>7.82 cts.</td>
</tr>
<tr>
<td>Cost, original, January 13, 1912, at $6.17 per cwt.</td>
<td>$189.11</td>
</tr>
<tr>
<td>Total cost, January 4, 1913</td>
<td>$401.79</td>
</tr>
<tr>
<td>Selling price, January, 1913, less 5 per cent shrinkage, at $7.75 per cwt.</td>
<td>$428.49</td>
</tr>
<tr>
<td>Profit per lot</td>
<td>$25.70</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>$4.74</td>
</tr>
<tr>
<td>Average valuation per steer to start, January 13, 1912</td>
<td>$37.82</td>
</tr>
<tr>
<td>Average sale price per steer at finish, January 4, 1913</td>
<td>$53.69</td>
</tr>
<tr>
<td>Average increase in value</td>
<td>$47.87</td>
</tr>
<tr>
<td>Average cost of fed per steer</td>
<td>$83.13</td>
</tr>
<tr>
<td>Amount of meal eaten</td>
<td>7,837 lb.</td>
</tr>
<tr>
<td>Amount of ensilage and roots eaten</td>
<td>48,610 lb.</td>
</tr>
<tr>
<td>Amount of hay eaten</td>
<td>17,665 lb.</td>
</tr>
<tr>
<td>Amount of straw eaten</td>
<td>2,891 lb.</td>
</tr>
<tr>
<td>Amount of green feed eaten</td>
<td>1,120 lb.</td>
</tr>
</tbody>
</table>

X.B.—Although heavier than the Shorthorns at the start these grade and pure-bred Aberdeen Angus did not make as rapid or as economical gains.

Lot III—Galloways.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steers in lot</td>
<td>5</td>
</tr>
<tr>
<td>First weight, gross, January 13, 1912</td>
<td>2,135 lb.</td>
</tr>
<tr>
<td>First weight, average</td>
<td>427 lb.</td>
</tr>
<tr>
<td>Finished weight, gross, January 4, 1913</td>
<td>4,730 lb.</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>916 lb.</td>
</tr>
<tr>
<td>Number of days in test</td>
<td>875 days</td>
</tr>
<tr>
<td>Total gain in 356 days</td>
<td>2,595 lb.</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>519</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>1.16</td>
</tr>
<tr>
<td>Daily gain per lot</td>
<td>7.30</td>
</tr>
</tbody>
</table>
Sessional Paper No. 16

Division of Animal Husbandry

<table>
<thead>
<tr>
<th>Gross cost of feed for period</th>
<th>lb.</th>
<th>214.42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of 1 pound gain per lot</td>
<td>cts.</td>
<td>8.22</td>
</tr>
<tr>
<td>Cost, original, January 13, 1912, at $6.17 per cwt.</td>
<td>$</td>
<td>131.78</td>
</tr>
<tr>
<td>Total cost, January 4, 1913.</td>
<td>$</td>
<td>346.14</td>
</tr>
<tr>
<td>Selling price, January, 1913, less 5 per cent shrinkage, at $7.75 per cwt.</td>
<td>$</td>
<td>338.28</td>
</tr>
<tr>
<td>Profit per lot</td>
<td>$</td>
<td>2.14</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>$</td>
<td>0.43</td>
</tr>
<tr>
<td>Average valuation per steer to start, January 13, 1912.</td>
<td>$</td>
<td>26.34</td>
</tr>
<tr>
<td>Average sale price per steer at finish, January 4, 1913.</td>
<td>$</td>
<td>39.85</td>
</tr>
<tr>
<td>Average increase in value</td>
<td>$</td>
<td>43.51</td>
</tr>
<tr>
<td>Average cost of feed per steer</td>
<td>$</td>
<td>42.88</td>
</tr>
<tr>
<td>Amount of meal eaten</td>
<td>lb.</td>
<td>7.752</td>
</tr>
<tr>
<td>Amount of ensilage and roots eaten</td>
<td>$</td>
<td>852.10</td>
</tr>
<tr>
<td>Amount of hay eaten</td>
<td>$</td>
<td>17.665</td>
</tr>
<tr>
<td>Amount of straw eaten</td>
<td>$</td>
<td>2.891</td>
</tr>
<tr>
<td>Amount of green feed eaten</td>
<td>$</td>
<td>1.120</td>
</tr>
</tbody>
</table>

N.B.— These Galloways did not have the size, uniformity or breeding of the Shorthorns, Angus or Herefords, and made the lowest net profit of any breed or lot.

Lot IV—Herefords.

<table>
<thead>
<tr>
<th>Number of steers in lot</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>First weight, gross, January 13, 1912.</td>
<td>lb.</td>
</tr>
<tr>
<td>First weight, average</td>
<td></td>
</tr>
<tr>
<td>Finished weight, gross, January 4, 1913.</td>
<td>"</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>"</td>
</tr>
<tr>
<td>Number of days in test</td>
<td>days.</td>
</tr>
<tr>
<td>Total gain in 356 days</td>
<td>lb.</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>$</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>$</td>
</tr>
<tr>
<td>Daily gain per lot</td>
<td>$</td>
</tr>
<tr>
<td>Gross cost of feed for period</td>
<td>$</td>
</tr>
<tr>
<td>Cost of 1 pound gain per lot</td>
<td>cts.</td>
</tr>
<tr>
<td>Total cost, January 4, 1913.</td>
<td>$</td>
</tr>
<tr>
<td>Selling price, January, 1913, less 5 per cent shrinkage, at $7.75 per cwt.</td>
<td>$</td>
</tr>
<tr>
<td>Profit per lot</td>
<td>$</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>$</td>
</tr>
<tr>
<td>Average valuation per steer to start, January 13, 1912.</td>
<td>$</td>
</tr>
<tr>
<td>Average sale price per steer at finish, January 4, 1913.</td>
<td>$</td>
</tr>
<tr>
<td>Average increase in value</td>
<td>$</td>
</tr>
<tr>
<td>Average cost of feed per steer</td>
<td>$</td>
</tr>
<tr>
<td>Amount of meal eaten</td>
<td>lb.</td>
</tr>
<tr>
<td>Amount of ensilage and roots eaten</td>
<td>$</td>
</tr>
<tr>
<td>Amount of hay eaten</td>
<td>$</td>
</tr>
<tr>
<td>Amount of straw eaten</td>
<td>$</td>
</tr>
<tr>
<td>Amount of green feed eaten</td>
<td>$</td>
</tr>
</tbody>
</table>

N.B.— Although not having the size or the quality of breeding as found in lots I and II, these grade Herefords compared very favourably with those lots as to daily gains and net profits.

Lot I—Mixed Breeds.

<table>
<thead>
<tr>
<th>Number of steers in lot</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>First weight, gross, January 13, 1912.</td>
<td>lb.</td>
</tr>
<tr>
<td>First weight, average</td>
<td></td>
</tr>
<tr>
<td>Finished weight, gross, January 4, 1913.</td>
<td>"</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>"</td>
</tr>
<tr>
<td>Number of days in test</td>
<td>days.</td>
</tr>
<tr>
<td>Total gain in 356 days</td>
<td>lb.</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>$</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>$</td>
</tr>
<tr>
<td>Daily gain per lot</td>
<td>$</td>
</tr>
<tr>
<td>Gross cost of feed for period</td>
<td>$</td>
</tr>
<tr>
<td>Cost of 1 pound gain per lot</td>
<td>cts.</td>
</tr>
<tr>
<td>Total cost, January 4, 1913.</td>
<td>$</td>
</tr>
<tr>
<td>Selling price, January, 1913, less 5 per cent shrinkage, at $7.75 per cwt.</td>
<td>$</td>
</tr>
<tr>
<td>Profit per lot</td>
<td>$</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>$</td>
</tr>
<tr>
<td>Average valuation per steer to start, January 13, 1912.</td>
<td>$</td>
</tr>
<tr>
<td>Average sale price per steer at finish, January 4, 1913.</td>
<td>$</td>
</tr>
<tr>
<td>Average increase in value</td>
<td>$</td>
</tr>
<tr>
<td>Average cost of feed per steer</td>
<td>$</td>
</tr>
</tbody>
</table>
Amount of meal eaten ... lb. 8,812
Amount of ensilage and roots eaten 57,318
Amount of hay eaten .. 18,746
Amount of straw eaten .. 3,758
Amount of green feed eaten ... 1,008

N.B.—This lot contained two steers each of the breeding of lots I and II, and one each of lots III and IV. This was intended as a check on lots I, II, III and IV.

Deductions.—Very few deductions of a definite nature can be drawn from this experiment, owing to the small numbers representing each breed, the difficulty in obtaining the best type in grade Herefords and Galloways, and the lack of uniformity in the ages of individuals in the different breeds.

However, there are a few points of value to be noticed, which are as follows:—
1. Stall feeding of young steers during summer months is too expensive. This was shown during the heat of July and again during the first of September, when all steers lost weight.
2. Long feeding of steers, with present high prices for meals, and particularly in the absence of pasture and alfalfa hay, leaves but a small margin of profit, even with a spread between buying and selling prices of over $1.50 per cwt.
3. The best bred steers of most uniform size and quality almost invariably give the greatest profit over the value of food stuff consumed; at the same time command the best market price.

Lot I, Shorthorns, and lot II, Angus, killed particularly well and made choice carcasses, while some individuals in lots III, IV and V made good carcasses, and the remainder only fair.

FINANCIAL STATEMENT.

Below are submitted inventories and returns for the beef cattle on the Central Experimental Farm during the year April 1, 1912, to March 31, 1913:

<table>
<thead>
<tr>
<th></th>
<th>April 1, 1912</th>
<th>April 1, 1913</th>
<th>Returns</th>
<th>Gross returns made up of increase in value of products and value of animals sold.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steers</td>
<td>No. 29 $1,139 76</td>
<td>No. 5 $380 91</td>
<td>$2,129 33</td>
<td>$1,370 48</td>
</tr>
</tbody>
</table>

Returns.

Gross returns, including value of sales, and increased value of reserve $1,370 48
Manure, 300 tons at $1 per ton 300 00

Gross returns .. $1,670 48

Expenditures.

To feed consumed .. $1,104 00
To labour .. 269 00

Total expenditures .. $1,373 00

Net balance from steer feeding $ 300 48.
EXPERIMENTAL STATION, CHARLOTTETOWN, P.E.I.

REPORT OF THE SUPERINTENDENT—J. A. CLARK, B.S.A.

Owing to the limited land area available for pasture and the raising of roughages, no breeding beef herd has been established on this Farm.

In consequence, the beef cattle work has been limited to steer feeding.

STEER FEEDING.

A number of steers and heifers were fed to demonstrate possible profits from short-keep steers or heifers of good and of poor flesh. These were purchased and marketed at the ruling market prices.

The meal mixture cost $25 per ton, and was made up as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oats (ground)</td>
<td>100 pounds</td>
</tr>
<tr>
<td>Barley (ground)</td>
<td>100 "</td>
</tr>
<tr>
<td>Peas (ground)</td>
<td>100 "</td>
</tr>
<tr>
<td>Bran</td>
<td>300 "</td>
</tr>
</tbody>
</table>

Roots and ensilage were valued at $2 per ton.

Hay (mixed clover and timothy) was valued at $7 per ton.

The following is a detailed statement of the different lots fed:

These were steers of the dairy type. They were purchased in poor condition.

At the date of the sale these were about three years old.

Beef Production—Lot I.

<table>
<thead>
<tr>
<th>Item</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steers in lot</td>
<td>2</td>
</tr>
<tr>
<td>First weight, gross</td>
<td>1750 lb</td>
</tr>
<tr>
<td>First weight, average</td>
<td>665 "</td>
</tr>
<tr>
<td>Finished weight, gross</td>
<td>1674 "</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>1167 "</td>
</tr>
<tr>
<td>Total gain in 12 days</td>
<td>585 "</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>292.5 "</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>2.21 "</td>
</tr>
<tr>
<td>Daily gain per lot</td>
<td>4.42 "</td>
</tr>
<tr>
<td>Gross cost of feed</td>
<td>$ 45.63</td>
</tr>
<tr>
<td>Cost of 1 pound gain</td>
<td>7.7 cents</td>
</tr>
<tr>
<td>Value of beef at beginning of experiment</td>
<td>$ 70.90</td>
</tr>
<tr>
<td>Total cost at end of experiment</td>
<td>$ 115.63</td>
</tr>
<tr>
<td>Selling price at 50 cents per pound</td>
<td>$ 131.34</td>
</tr>
<tr>
<td>Profit</td>
<td>$ 16.31</td>
</tr>
<tr>
<td>Average valuation per steer at start</td>
<td>$ 35.00</td>
</tr>
<tr>
<td>Average selling price per steer at finish</td>
<td>$ 65.67</td>
</tr>
<tr>
<td>Average increase in value</td>
<td>$ 30.67</td>
</tr>
<tr>
<td>Average cost of feed per steer</td>
<td>$ 22.51</td>
</tr>
<tr>
<td>Amount of meal eaten by lot</td>
<td>18.376 lb</td>
</tr>
<tr>
<td>Amount of roots and ensilage</td>
<td>1.476 "</td>
</tr>
</tbody>
</table>

This was a grade heifer that was sold, after a short period of feeding, to make room for the Hereford steers.
Beef Production—Lot II.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steers in lot</td>
<td>1</td>
</tr>
<tr>
<td>First weight</td>
<td>lb. 729</td>
</tr>
<tr>
<td>Finished weight</td>
<td>lb. 890</td>
</tr>
<tr>
<td>Total gain in 77 days</td>
<td>lb. 14.94</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>$ 5.37</td>
</tr>
<tr>
<td>Gross cost of feed</td>
<td>$ 6.69</td>
</tr>
<tr>
<td>Value of beef at beginning of experiment at 4 cents per pound</td>
<td>$ 28.90</td>
</tr>
<tr>
<td>Total cost at end of experiment</td>
<td>$ 34.15</td>
</tr>
<tr>
<td>Selling price, at 4½ cents per pound</td>
<td>$ 35.21</td>
</tr>
<tr>
<td>Profit</td>
<td>$ 1.09</td>
</tr>
<tr>
<td>Increase in value</td>
<td>$ 6.44</td>
</tr>
<tr>
<td>Amount of meal eaten by lot</td>
<td>lb. 135</td>
</tr>
<tr>
<td>Amount of ensilage eaten</td>
<td>" 2,310</td>
</tr>
<tr>
<td>Amount of hay eaten</td>
<td>" 385</td>
</tr>
</tbody>
</table>

Lot III.

The steers in this lot were fairly smooth Shorthorn grades, coming two and three years old. They were in a thrifty condition, though carrying very little fat at the commencement. These steers were dehorned before the test began.

Beef Production—Lot III.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steers in lot</td>
<td>4</td>
</tr>
<tr>
<td>First weight, gross</td>
<td>lb. 3,705</td>
</tr>
<tr>
<td>First weight, average</td>
<td>lb. 926</td>
</tr>
<tr>
<td>Finished weight, gross</td>
<td>" 4,525</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>" 1,131</td>
</tr>
<tr>
<td>Total gain in 120 days</td>
<td>" 820</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>" 2.65</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>" 1.694</td>
</tr>
<tr>
<td>Daily gain per lot</td>
<td>" 6.777</td>
</tr>
<tr>
<td>Gross cost of feed</td>
<td>$ 50.51</td>
</tr>
<tr>
<td>Cost of 1 pound gain</td>
<td>cts. 9.81</td>
</tr>
<tr>
<td>Value of beef at beginning of experiment</td>
<td>$ 133.39</td>
</tr>
<tr>
<td>Total cost at end of experiment</td>
<td>$ 223.89</td>
</tr>
<tr>
<td>Selling price, at 6 cents per pound</td>
<td>" 271.50</td>
</tr>
<tr>
<td>Profit</td>
<td>$ 37.50</td>
</tr>
<tr>
<td>Average valuation per steer to start</td>
<td>$ 9.40</td>
</tr>
<tr>
<td>Average selling price per steer at finish</td>
<td>$ 38.34</td>
</tr>
<tr>
<td>Average increase in value</td>
<td>$ 67.87</td>
</tr>
<tr>
<td>Average cost of feed per steer</td>
<td>$ 29.21</td>
</tr>
<tr>
<td>Average cost of feed per lot</td>
<td>$ 20.12</td>
</tr>
<tr>
<td>Amount of meal eaten by lot</td>
<td>lb. 2,821</td>
</tr>
<tr>
<td>Amount of ensilage and roots eaten</td>
<td>" 28,025</td>
</tr>
<tr>
<td>Amount of hay eaten</td>
<td>" 3,389</td>
</tr>
</tbody>
</table>

Lot IV.

These steers were of th dairy typ and not in as thrifty a condition, when bought as Lot 3. They were dehorned before the test began.

Beef Production—Lot IV.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steers in lot</td>
<td>4</td>
</tr>
<tr>
<td>First weight, gross</td>
<td>lb. 3,632</td>
</tr>
<tr>
<td>First weight, average</td>
<td>lb. 913</td>
</tr>
<tr>
<td>Finished weight, gross</td>
<td>" 4,353</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>" 1,084</td>
</tr>
<tr>
<td>Total gain in 121 days</td>
<td>" 683</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>" 1.04</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>" 1.141</td>
</tr>
<tr>
<td>Daily gain per lot</td>
<td>" 5.814</td>
</tr>
<tr>
<td>Gross cost of feed</td>
<td>$ 75.88</td>
</tr>
<tr>
<td>Cost of 1 pound gain</td>
<td>cts. 11.11</td>
</tr>
<tr>
<td>Value of beef at beginning of experiment</td>
<td>$ 131.19</td>
</tr>
<tr>
<td>Total cost at end of experiment</td>
<td>$ 227.07</td>
</tr>
<tr>
<td>Selling price, at 6 cents per pound</td>
<td>$ 260.10</td>
</tr>
</tbody>
</table>
Lot IV.

These grade Shorthorn heifers were in good condition when started and were fed and disposed of as quickly as possible, as they proved to be in calf. These heifers were dehorned before the test began.

Beef Production—Lot IV (a).

<table>
<thead>
<tr>
<th>Number of heifers in lot</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>First weight, gross lb.</td>
<td>869</td>
</tr>
<tr>
<td>Finished weight</td>
<td>980</td>
</tr>
<tr>
<td>Total gain in 46 days lb.</td>
<td>126</td>
</tr>
<tr>
<td>Daily gain per heifer</td>
<td>2.61</td>
</tr>
<tr>
<td>Gross cost of feed $</td>
<td>5.79</td>
</tr>
<tr>
<td>Cost of 1 pound gain cents</td>
<td>4.82</td>
</tr>
<tr>
<td>Value of beef at beginning of experiment $</td>
<td>35.00</td>
</tr>
<tr>
<td>Total cost at end of experiment $</td>
<td>49.79</td>
</tr>
<tr>
<td>Selling price $</td>
<td>63.69</td>
</tr>
<tr>
<td>Profit $</td>
<td>2.90</td>
</tr>
<tr>
<td>Valuation of heifer at start $</td>
<td>35.00</td>
</tr>
<tr>
<td>Valuation of heifer at finish $</td>
<td>63.69</td>
</tr>
<tr>
<td>Increase in value $</td>
<td>8.69</td>
</tr>
<tr>
<td>Cost of feed $</td>
<td>5.79</td>
</tr>
<tr>
<td>Amount of meal eaten by lot lb.</td>
<td>233</td>
</tr>
<tr>
<td>Amount of roots and ensilage eaten lb.</td>
<td>496</td>
</tr>
<tr>
<td>Amount of hay eaten</td>
<td>232</td>
</tr>
</tbody>
</table>

Beef Production—Lot IV (b).

<table>
<thead>
<tr>
<th>Number of steers in lot</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>First weight, gross lb.</td>
<td>2,185</td>
</tr>
<tr>
<td>First weight, average</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Lot VI.

Two Hereford steers were purchased at the Maritime Winter Show, when in a finished condition. As the difference between the purchase and the sale price was only ½ cent per pound, the resultant gains very little more than paid for the food consumed. These steers were used for demonstration purposes which no doubt interfered to a certain extent with their feeding.

Beef Production—Lot VI.

<table>
<thead>
<tr>
<th>Number of steers in lot</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>First weight, gross lb.</td>
<td>2,185</td>
</tr>
<tr>
<td>First weight, average</td>
<td>1.22</td>
</tr>
</tbody>
</table>
Finished weight, gross ... lb. 2,795
Finished weight, average ... " 1,397½
Total gain in 100 days ... " 310
Average gain per steer ... " 155
Daily gain per steer .. " 1-55
Daily gain per lot .. " 3-1
Gross cost of feed ... $ 38 51
Cost of 1 pound gain .. cts. 12 42
Value of beef at beginning of experiment $ 173 35
Total cost at end of experiment $ 212 46
Selling price, at 7½ cents per pound $ 216 75
Profit ... $ 4 29
Profit per steer ... $ 2 11
Average valuation per steer to start $ 16 96½
Average selling price at finish $ 108 37½
Average increase in value .. $ 21 10
Average cost of feed per steer $ 19 25½
Amount of meal eaten by lot lb. 1,631½
Amount of roots and ensilage eaten " 12,220
Amount of hay eaten .. " 1,660

Deductions.—No deductions of a definite nature can be drawn from a feeding test where the types, condition, sexes, and number of days on test were so lacking in uniformity. Nevertheless, it is interesting to note the following:—

1. There is a good margin of profit in finishing steers when the feeding period is not extended over a too great a time.

2. That the type of steer commonly found throughout this province, although more of dairy than of beef conformation, may be profitably finished by stall feeding on a short keep.

3. Finished steers will continue to make gains, but at a much smaller margin of profit than formerly.

These and other phases of steer feeding will be taken up more extensively during the coming years, and it is hoped that valuable and conclusive data may be obtained.
EXPERIMENTAL STATION, KENTVILLE, N.S.

REPORT OF THE SUPERINTENDENT—W. S. BLAIR.

Although it is not proposed to specialize along Animal Husbandry lines at this Farm, yet in every fruit section farmers need to keep more or less live stock.

It is proposed, therefore, on this particular farm to run a small Shorthorn herd of somewhat mixed dairy and beef lines such as might be advisable for the average fruit-growing farmer of this part of Nova Scotia.

During the past fiscal year accommodation was provided, in the shape of a barn, for the necessary farm horses and a moderate-sized beef herd.

Twenty-two steers were purchased during the fall of 1912, but as these have not been marketed at the time of writing they will be reported on next year.
EXPERIMENTAL FARM, NAPPAH, N.S.

REPORT OF THE SUPERINTENDENT—R. ROBERTSON.

It is regrettable to note that on this Farm there is such a shortage of pasture and field area that beef breeding stock cannot be kept. However, there are many problems in steer feeding and finishing applicable to this and other parts of Eastern Canada which demand attention. These are being handled as quickly as time and equipment will allow.

STEER FEEDING.

On making my report on March 31, 1912, forty-five steers under feeding experiment were on hand. The experiment was of a comparative nature, and the results from the different methods followed are instructive. The forty-five steers were divided into three lots of fifteen steers each, and termed lot I, lot II and lot III.

The different lots at the commencement of test were fed as follows:—

Lot I.—Tied. Roots, 40 pounds, and good hay.
Lot II.—Tied. Roots, 80 pounds, and poor hay.
Lot III.—Loose. Roots, 80 pounds, and poor hay.

Roots were decreased and meal increased from time to time during the feeding period.

The meal ration consisted of crushed oats 1 part, crushed barley 1 part, bran 2 parts, cottonseed meal 1 part and oil cake 1 part. This mixture cost 1½ cents per pound.

Roots and ensilage are valued at $2 per ton.
Good hay is valued at $8 and poor hay at $7 per ton.

Below is the report on the different lots for the entire feeding period.

STEER FEEDING EXPERIMENT, JANUARY 1, 1912, TO APRIL 30, 1912.

Lot I.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total live weight of 15 steers, January 1, 1912</td>
<td>15,210</td>
</tr>
<tr>
<td>Total live weight of 15 steers, April 30, 1912</td>
<td>18,133</td>
</tr>
<tr>
<td>Increase to April 30, 1912</td>
<td>2,925</td>
</tr>
<tr>
<td>Original weight of 15 steers, 15,210 pounds at 4-75 cents per pound</td>
<td></td>
</tr>
<tr>
<td>Weight at finish of 15 steers, 18,133 pounds at 6-50 cents per pound</td>
<td>1,775</td>
</tr>
<tr>
<td>Gross profit</td>
<td>585</td>
</tr>
<tr>
<td>Amount of hay consumed</td>
<td>28,413</td>
</tr>
<tr>
<td>Amount of meal consumed</td>
<td>7,719</td>
</tr>
<tr>
<td>Amount of roots and ensilage consumed</td>
<td>52,050</td>
</tr>
<tr>
<td>Cost of feed for lot 120 days</td>
<td>287</td>
</tr>
<tr>
<td>Net profit</td>
<td>163</td>
</tr>
<tr>
<td>Daily rate of gain per steer</td>
<td>1-625</td>
</tr>
<tr>
<td>Cost of 1 pound gain per steer</td>
<td>9-84</td>
</tr>
<tr>
<td>Cost of feed per day per steer</td>
<td>15-99</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>11-23</td>
</tr>
</tbody>
</table>

Lot II.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total live weight of 15 steers, January 1, 1912</td>
<td>16,560</td>
</tr>
<tr>
<td>Total live weight of 15 steers, April 30, 1912</td>
<td>19,483</td>
</tr>
<tr>
<td>Increase to April 30, 1912</td>
<td>2,925</td>
</tr>
</tbody>
</table>
SESSIONAL PAPER No. 16

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original weight of 15 steers, 18,500 lbs</td>
<td>18,500</td>
<td>lb.</td>
<td>$788.60</td>
</tr>
<tr>
<td>Weight at finish of 15 steers, 19,485 lbs</td>
<td>19,485</td>
<td>lb.</td>
<td>$1,206.63</td>
</tr>
<tr>
<td>Gross profit</td>
<td></td>
<td></td>
<td>$479.93</td>
</tr>
<tr>
<td>Amount of hay consumed</td>
<td></td>
<td>lb.</td>
<td>$28.185</td>
</tr>
<tr>
<td>Amount of meal consumed</td>
<td></td>
<td>lb.</td>
<td>$7.710</td>
</tr>
<tr>
<td>Amount of roots and ensilage consumed</td>
<td></td>
<td>lb.</td>
<td>$104.100</td>
</tr>
<tr>
<td>Cost of feed for lot 120 days</td>
<td></td>
<td></td>
<td>$337.67</td>
</tr>
<tr>
<td>Net profit</td>
<td></td>
<td></td>
<td>$142.26</td>
</tr>
<tr>
<td>Daily rate of gain per steer</td>
<td></td>
<td>lb.</td>
<td>1.625</td>
</tr>
<tr>
<td>Cost of 1 pound gain</td>
<td></td>
<td>cts.</td>
<td>11.54</td>
</tr>
<tr>
<td>Cost of feed per day per steer</td>
<td></td>
<td></td>
<td>18.76</td>
</tr>
<tr>
<td>Profit per steer</td>
<td></td>
<td></td>
<td>9.48</td>
</tr>
</tbody>
</table>

Lot III.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total live weight of 15 steers, January 1, 1912</td>
<td></td>
<td>lb.</td>
<td>12,345</td>
</tr>
<tr>
<td>Total live weight of 15 steers, April 30, 1912</td>
<td></td>
<td>lb.</td>
<td>17,145</td>
</tr>
<tr>
<td>Increase to April 30, 1912</td>
<td></td>
<td></td>
<td>4,890</td>
</tr>
<tr>
<td>Original weight of 15 steers, 12,345 lbs</td>
<td>12,345</td>
<td>lb.</td>
<td>$586.38</td>
</tr>
<tr>
<td>Weight at finish of 15 steers, 17,145 lbs</td>
<td>17,145</td>
<td>lb.</td>
<td>$1,114.43</td>
</tr>
<tr>
<td>Gross profit</td>
<td></td>
<td></td>
<td>$528.65</td>
</tr>
<tr>
<td>Amount of hay consumed</td>
<td></td>
<td>lb.</td>
<td>$28.185</td>
</tr>
<tr>
<td>Amount of meal consumed</td>
<td></td>
<td>lb.</td>
<td>$7.710</td>
</tr>
<tr>
<td>Amount of roots and ensilage consumed</td>
<td></td>
<td>lb.</td>
<td>$104.100</td>
</tr>
<tr>
<td>Cost of feed for lot 120 days</td>
<td></td>
<td></td>
<td>$337.67</td>
</tr>
<tr>
<td>Net profit</td>
<td></td>
<td></td>
<td>$142.26</td>
</tr>
<tr>
<td>Daily rate of gain per steer</td>
<td></td>
<td>lb.</td>
<td>1.625</td>
</tr>
<tr>
<td>Cost of 1 pound gain</td>
<td></td>
<td>cts.</td>
<td>11.54</td>
</tr>
<tr>
<td>Cost of feed per day per steer</td>
<td></td>
<td></td>
<td>18.76</td>
</tr>
<tr>
<td>Profit per steer</td>
<td></td>
<td></td>
<td>9.48</td>
</tr>
</tbody>
</table>

Deductions.—Although no definite conclusions can be drawn from this single experiment, yet the results of this trial point to the following facts:

1. In comparing lots I and II it is found that half the roots may be dispensed with when good hay is available and yet the same daily gain per steer be maintained.

2. When the finishing period is of short duration, then the high-quality food stuffs and the narrower ration containing a higher per cent of dry matter, give greater profits.

3. In a comparison of lots II and III, the fact is again demonstrated that, on the same food-stuffs, steers will make greater and more economical gains when in loose boxes than when tied in stalls. Nor does this take into account the facts that less labour is expended and more manure of a higher quality is procured when the steers are in loose boxes.

STEER FEEDING EXPERIMENT, 1912-13.

A smaller number of steers than usual were fed this past winter. Thirty-four (34) grade Shorthorn steers were bought in November, dehorned and put up in feeding lots on December 16. The plan of the experiment was the feeding of ten steers (six heavy and medium fat and four of average weight and thin) on 50 per cent more meal and roots than was fed the other twenty-four. Each steer received the same amount of hay, which averaged for ninety days 13 pounds per steer per day. Beginning December 16, lot I was fed 60 pounds roots and 3 pounds meal per steer per day. On account of making ready for an Easter market, the meal ration was increased rather more rapidly than usual, so that by February 28 it reached 12 pounds per steer per day. The root ration meanwhile was gradually dropped to 30 pounds per steer per day. Lot II, during this time, received 50 per cent less meal and roots than lot I.

A very satisfactory sale having been made for Easter delivery, this experiment was concluded on March 15.

Meal mixture consisted of bran, crushed oats and oil cake meal in proportions of 2: 2: 1, and valued at 1 1/4 cents per pound. Roots were valued at $2 per ton and hay at $8 per ton.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total live weight of 10 steers, December 15, 1912</td>
<td>12,140</td>
</tr>
<tr>
<td>Total live weight of 10 steers, March 15, 1913</td>
<td>14,170</td>
</tr>
<tr>
<td>Increase to March 15, 1913</td>
<td>2,030</td>
</tr>
<tr>
<td>Weight at finish of 10 steers, 11,370 pounds, at 61 cents per pound</td>
<td>9,957</td>
</tr>
<tr>
<td>Gross profit</td>
<td>111.53</td>
</tr>
<tr>
<td>Amount of hay consumed</td>
<td>13,690</td>
</tr>
<tr>
<td>Amount of meal consumed</td>
<td>7,650</td>
</tr>
<tr>
<td>Amount of roots consumed</td>
<td>3,430</td>
</tr>
<tr>
<td>Net profit</td>
<td>176.13</td>
</tr>
<tr>
<td>Total live weight of 10 steers, December 15, 1912</td>
<td>29,520</td>
</tr>
<tr>
<td>Total live weight of 10 steers, March 15, 1913</td>
<td>25,495</td>
</tr>
<tr>
<td>Increase to March 15, 1913</td>
<td>4,025</td>
</tr>
<tr>
<td>Weight at finish of 24 steers, 23,920 pounds, at 67.5 cents per pound</td>
<td>1,992.50</td>
</tr>
<tr>
<td>Gross profit</td>
<td>1,992.50</td>
</tr>
<tr>
<td>Original weight of 10 steers, March 15, 1913</td>
<td>25,495</td>
</tr>
<tr>
<td>Cost of feed for lot, 90 days</td>
<td>32.50</td>
</tr>
<tr>
<td>Cost of meal consumed</td>
<td>215.10</td>
</tr>
<tr>
<td>Net profit</td>
<td>176.13</td>
</tr>
<tr>
<td>Daily rate of gain per day per steer</td>
<td>1.88</td>
</tr>
<tr>
<td>Cost of feed per day per steer</td>
<td>17.71</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>18.81</td>
</tr>
</tbody>
</table>

Lot No. II.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total live weight of 10 steers, December 15, 1912</td>
<td>23,495</td>
</tr>
<tr>
<td>Total live weight of 10 steers, March 15, 1913</td>
<td>26,520</td>
</tr>
<tr>
<td>Increase to March 15, 1913</td>
<td>4,025</td>
</tr>
<tr>
<td>Weight at finish of 24 steers, 23,520 pounds, at 67.5 cents per pound</td>
<td>1,992.50</td>
</tr>
<tr>
<td>Gross profit</td>
<td>1,992.50</td>
</tr>
<tr>
<td>Original weight of 24 steers, 25,495 pounds at 4-60 cents per pound</td>
<td>1,172.77</td>
</tr>
<tr>
<td>Cost of feed for lot, 90 days</td>
<td>382.50</td>
</tr>
<tr>
<td>Cost of meal consumed</td>
<td>312.10</td>
</tr>
<tr>
<td>Net profit</td>
<td>51.960</td>
</tr>
<tr>
<td>Daily rate of gain per day per steer</td>
<td>1.88</td>
</tr>
<tr>
<td>Cost of feed per day per steer</td>
<td>17.71</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>18.81</td>
</tr>
</tbody>
</table>

Deductions.—Here again no definite deductions should be drawn, yet the following facts are of interest and should be noted:—

1. Greater profits per steer in finishing are obtained by the use of a heavier meal ration. In other words, the short-keep steer is more profitable than the long-keep steer.

2. Roots are of great value in finishing, but should be used in greater proportion at the commencement of the finishing period than at the end, when the quantity of meal is greatest.

3. The most rapid gains in steer finishing accompany the heavier feeding, and are most economical. This is but natural as in either case the food required to supply internal heat and energy is proportionately the same; while the surplus nutrition is stored as bodily gain.

These and other phases of steer-feeding work will be continued during coming winters.
EXPERIMENTAL FARM, BRANDON, MAN.

REPORT OF THE SUPERINTENDENT—W. C. McKILLICAN, B.S.A.

STEER FEEDING EXPERIMENTS.

The feeding of steers out-of-doors as compared with stabling was again tested in the winter of 1911-12. A carload of steers was bought on November 30, 1911, at 41 cents per pound. They were not as good steers as have usually been used in the experimental work. They were divided into two lots. One lot of twelve was fed outdoors, with no shelter except native scrub oak trees. They were fed on straw, as the principal roughage, and with a small quantity of dry corn stalks and a little alfalfa, at the last of the feeding period. They also received a small quantity of frozen turnips, during the middle of the test. Their grain ration started at 2 pounds per day, and was gradually increased to 15 pounds per day.

The steers fed inside received a daily ration of 8 pounds of straw, 15 pounds of turnips and 35 pounds of corn silage. They also received a little alfalfa at the end of their feeding period. Their grain ration started at 2 pounds per day, and was gradually increased to 15 pounds per day.

The feed consumed was valued at the following rates:

<table>
<thead>
<tr>
<th>Material</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straw</td>
<td>$2.00 per ton</td>
</tr>
<tr>
<td>Oats and barley</td>
<td>20.00</td>
</tr>
<tr>
<td>Dry corn stalks</td>
<td>5.00</td>
</tr>
<tr>
<td>Corn silage</td>
<td>2.00</td>
</tr>
<tr>
<td>Roots</td>
<td>2.00</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>12.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
<th>Lot 1 Outside</th>
<th>Lot 2 Inside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steers in lot</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>First weight, gross, November 30, 1911</td>
<td>11,495</td>
<td>6,875</td>
</tr>
<tr>
<td>" average</td>
<td>368</td>
<td>976</td>
</tr>
<tr>
<td>Finished weight gross, May 13, 1912</td>
<td>14,310</td>
<td>8,050</td>
</tr>
<tr>
<td>" average</td>
<td>1,192</td>
<td>1,150</td>
</tr>
<tr>
<td>Total gain in 167 days</td>
<td>2,815</td>
<td>1,215</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>231.5</td>
<td>174</td>
</tr>
<tr>
<td>Daily gain per steer</td>
<td>1.4</td>
<td>1.04</td>
</tr>
<tr>
<td>First cost of steers at 41 cents per pound</td>
<td>488.54</td>
<td>290.49</td>
</tr>
<tr>
<td>Total cost of feed</td>
<td>281.49</td>
<td>164.92</td>
</tr>
<tr>
<td>Total cost</td>
<td>770.63</td>
<td>455.41</td>
</tr>
<tr>
<td>Receipts from sale at 65 cents per pound, 5 per cent shrinkage</td>
<td>957.63</td>
<td>546.29</td>
</tr>
<tr>
<td>Profit</td>
<td>217.60</td>
<td>90.79</td>
</tr>
<tr>
<td>Average cost per steer</td>
<td>40.71</td>
<td>41.50</td>
</tr>
<tr>
<td>Average cost feed per steer</td>
<td>23.46</td>
<td>23.56</td>
</tr>
<tr>
<td>Average selling price per steer</td>
<td>82.30</td>
<td>73.74</td>
</tr>
<tr>
<td>Average profit per steer</td>
<td>18.13</td>
<td>8.68</td>
</tr>
<tr>
<td>Average cost 100 pounds gain</td>
<td>10.00</td>
<td>13.57</td>
</tr>
</tbody>
</table>

Amounts of Feed used:

<table>
<thead>
<tr>
<th>Material</th>
<th>Lot 1 Outside</th>
<th>Lot 2 Inside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat and barley chop</td>
<td>19,732</td>
<td>9,762</td>
</tr>
<tr>
<td>Straw</td>
<td>32,000</td>
<td>9,296</td>
</tr>
<tr>
<td>Dry corn stalks</td>
<td>11,000</td>
<td>33,000</td>
</tr>
<tr>
<td>Corn silage</td>
<td>5,490</td>
<td>19,760</td>
</tr>
<tr>
<td>Roots</td>
<td>3,264</td>
<td>1,542</td>
</tr>
</tbody>
</table>
Summary of five years' Experiments in Outside versus Inside Feeding.

As this experiment has now been continued for five years, it would seem to be an opportune time to summarize the results and obtain the average for these years.

<table>
<thead>
<tr>
<th>Year</th>
<th>Profit per Steer</th>
<th>Average gain per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1908</td>
<td>7.05 cts.</td>
<td>5.52 cts.</td>
</tr>
<tr>
<td>1909</td>
<td>6.47 cts.</td>
<td>5.79 cts.</td>
</tr>
<tr>
<td>1910</td>
<td>(Loss) 1.81 cts.</td>
<td>13.77 cts.</td>
</tr>
<tr>
<td>1911</td>
<td>21.30 cts.</td>
<td>28.86 cts.</td>
</tr>
<tr>
<td>1912</td>
<td>18.13 cts.</td>
<td>8.63 cts.</td>
</tr>
<tr>
<td>Average for 5 years</td>
<td>9.14 cts.</td>
<td>11.52 cts.</td>
</tr>
</tbody>
</table>

Prices realized for Grain Fed.

The business of feeding cattle will appeal to more people as a possible means of realizing larger prices for their grain, than as a separate business undertaking. If grain had to be bought for feeding, most farmers would need to be assured of large and certain profits; but if it can be shown that the oats and barley on hand can be marketed at much better prices than otherwise obtainable, it is then a proposition that appeals to all, and especially to the man who is some miles from the elevator.

The following figures have been obtained by deducting the cost of roughage and purchased feeds and the first cost of the steers from the receipts of the sale and, from that, ascertaining what has been obtained from the grain used.

Prices obtained for Oats.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fed to Outside Steers</th>
<th>Fed to Inside Steers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1908</td>
<td>47 cents per bushel.</td>
<td>48 cents per bushel.</td>
</tr>
<tr>
<td>1909</td>
<td>35.5 cts.</td>
<td>50.5 cts.</td>
</tr>
<tr>
<td>1910</td>
<td>31 cts.</td>
<td>84 cts.</td>
</tr>
<tr>
<td>1911</td>
<td>95 cts.</td>
<td>118.5 cts.</td>
</tr>
<tr>
<td>1912</td>
<td>71.5 cts.</td>
<td>65 cts.</td>
</tr>
<tr>
<td>Average for 5 years</td>
<td>56</td>
<td>71</td>
</tr>
</tbody>
</table>

Prices obtained for Barley.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fed to Outside Steers</th>
<th>Fed to Inside Steers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1908</td>
<td>66 cents per bushel.</td>
<td>69 cents per bushel.</td>
</tr>
<tr>
<td>1909</td>
<td>50 cts.</td>
<td>75 cts.</td>
</tr>
<tr>
<td>1910</td>
<td>43.5 cts.</td>
<td>117 cts.</td>
</tr>
<tr>
<td>1911</td>
<td>141.5 cts.</td>
<td>198 cts.</td>
</tr>
<tr>
<td>1912</td>
<td>101 cts.</td>
<td>78 cts.</td>
</tr>
<tr>
<td>Average for 5 years</td>
<td>79</td>
<td>100</td>
</tr>
</tbody>
</table>
Steer Feeding. Experimental Station, Lethbridge, Alta. Showing: (1) Shelter for winter feeding; (2) Grain feeding table.

Steer Feeding. Experimental Station, Lethbridge, Alta. Showing type of Steers fed.

16-1914-p 336
In all the figures, labour has not been considered. Each reader must therefore estimate how much the labour would lessen the profits in his own particular case. Against labour, there must be balanced the value of the manure and the smaller cost of marketing cattle, as compared with grain. This will vary under different circumstances and in different locations. It is the opinion of the writer that on very many farms these figures need not be reduced at all. But, even after making a liberal allowance for the cost of labour, the prices realized for grain during these five years are very much greater, through feeding it to the steers, than could be obtained in the ordinary way.

The following conclusions would seem to be justified by the five years' experiments:

1. Steers may be fattened successfully and profitably outside, in the climate of Manitoba.

Greater gains at the cost of less feed, can be made where the steers can be stabled.

3. The increased gains from stabling are probably not sufficient to justify the expenditure necessary for building expensive stables.

4. The oats and barley grown on western farms could be marketed more profitably by feeding to steers than by selling at the prices usually obtainable.

STEER-FEEDING EXPERIMENT FOR 1912-13.

Twenty steers were bought in November, 1912, for a feeding experiment. This year they are all being fed out-of-doors. One lot receives nothing but straw and grain. The other lot receives less grain, but gets chopped alfalfa in its place. The experiment is not finished at the end of the fiscal year, and will have to wait for next year's report.

A bulletin has been written on 'Experiments in Steer Feeding at Brandon Experimental Farm'; this bulletin gives a report on the experimental work in steer feeding done on this Farm during the past twenty years, and summarizes and comments on the results.

It will be available to any person who applies for a copy.
EXPERIMENTAL FARM, INDIAN HEAD, SASK.

REPORT OF THE SUPERINTENDENT—ANGUS MACKAY.

Due to the loss of the barns during the early part of the last fiscal year, no new work with beef cattle was started.

The herd of Shorthorn breeding cattle is about as reported last year and numbers as follows: one bull 4 years old, 28 cows and heifers, 10 yearling heifers and calves, and 3 young bulls.

Upon the completion of the new barns, the best milkers of this herd will be treated as a Shorthorn dairy herd, numbers will be increased and experimental feeding work with breeders and steers will be dealt with along larger lines than formerly.
EXPERIMENTAL STATION, LACOMBE, ALTA.

REPORT OF THE SUPERINTENDENT—G. H. HUTTON, B.S.A.

BREEDING CATTLE.

A herd of Aberdeen Angus was established during the year, containing blood of many famous strains, as represented by good individuals: The herd numbers twenty head and is headed by 'Elm Park Ringleader 7th -2861, 117826,' This is an excellent foundation herd with which to conduct breeding work.

FEEDING FOR BEEF.

Three groups of steers have been on feed during the winter of 1912-13. Each group was made up equally, as far as possible, with reference to breed, age, weight and quality. The advantage in the matter of weight was given to the group intended for inside feeding. The cattle were two and three years old, and there were twelve in each of the three groups. A fourth group of thirteen head was also fed, but were handled in exactly the same manner as group No. 3. They were the poorest and smallest group to begin with and, since they represented the culls of the entire purchase, the results need not be considered except in so far as they have a bearing upon the gain made by average stock available for feeding. These were not up to the average and did not reach a standard of sufficient merit to bring the price secured for the better class of cattle. These cull cattle were sold at six cents per pound, straight weight, to the Swift Canadian Co., Ltd., who were also the buyers of the groups used in the experimental feeding, at seven and one-half cents, subject to a five per cent shrinkage. Delivery was made on March 15. The eight small steers from the bunch of culls made a loss of forty-four cents per head, but the average profit for the forty-nine head, after paying for all feed at market prices shown in the tables, was $10.56 per head. These figures show the advantage of feeding larger cattle and of better breeding to secure larger cattle at the same age. A number of young cattle were fed this year that made good profits, but they were of good type to begin with and of good size for their age. One steer was sold, which was less than two years old, that weighed 1,105 pounds, and brought $78.75, being considered good enough for coast trade. He was a good killer and showed the probability of a very small percentage of waste.

The three groups were fed on exactly the same feeds, but were given different accommodation. Group No. 1 was fed in the barn in box stalls, which were kept well bedded and cleaned at regular intervals. They were not let out at all except once each month, for the purpose of being weighed. They had water twice a day, though it was practically before them throughout the day. They were fed straw in their mangers, as well as green feed and hay during the last three weeks of the feeding period, as were also the other two groups.

Group No. 2 was fed in the corral, having but a very limited run, being confined near the buildings. These steers had water before them at all times and were fed their roughage in the feeding racks about the corral. They got their straw at the straw-stack. The water in the tank was kept free from ice by the use of a tank heater.
Group No. 3 was fed in the bluff toward the western boundary of the farm, were at liberty to run free practically over a half section of land and had access to the straw stacks, and were fed green feed on the ground. They watered at a small lake, through the ice.

The grain mixture used this year consisted of wheat, oats and barley, mixed in the proportion of one-fifth wheat, two-fifths oats and two-fifths barley, finely ground. The chop was charged at one cent per pound, the green feed at $10 per ton, hay at $10 per ton, salt at cost, and the straw consumed per head has been estimated at one ton per steer and charged at $2 per ton.

The labour cost has not been charged against the steers in the table nor are they credited with the manure produced. It has been found from a number of experiments conducted at this Station, that manure is well worth $1 per ton applied. It can be applied for 25 cents per ton. It would appear fair, therefore, to credit the steers with the manure produced at 75 cents per ton, in the yard. The manure produced by the cattle fed inside, weighed 140,400 pounds. In comparing the value of manure from the three groups, it would be well to remember, however, that the manure from group No. 1 can be more cheaply collected than that from those fed outside, where it has been deposited over a wider area; mostly about the stacks, it is true, but still a part of it will be lost. Group No. 1 required 261 hours 30 minutes labour to attend to them for 109 days; group No. 2 required 64 hours 15 minutes, while on group No. 3, 50 hours of labour were expended. Those who are not in a position to realize on the fertilizer value of farm-yard manure, should charge the labour against the cattle at current wages.

The following tables give further details in regard to this experiment:—

<table>
<thead>
<tr>
<th></th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Steers in lot</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>First weight November 25, 1912</td>
<td>13,225</td>
<td>12,765</td>
<td>12,560</td>
</tr>
<tr>
<td>" average</td>
<td>1,162</td>
<td>1,068</td>
<td>1,046</td>
</tr>
<tr>
<td>Finish-bed weight, 12 steers</td>
<td>15,232</td>
<td>13,118</td>
<td>13,904</td>
</tr>
<tr>
<td>" average</td>
<td>1,292</td>
<td>1,292</td>
<td>1,292</td>
</tr>
<tr>
<td>Total gain in 109 days</td>
<td>2,667</td>
<td>2,553</td>
<td>2,754</td>
</tr>
<tr>
<td>Average gain per steer</td>
<td>187</td>
<td>179</td>
<td>176</td>
</tr>
<tr>
<td>Average daily gain per steer</td>
<td>1.33</td>
<td>1.79</td>
<td>1.34</td>
</tr>
<tr>
<td>Gross cost of feed</td>
<td>$219.53</td>
<td>$224.35</td>
<td>$224.70</td>
</tr>
<tr>
<td>Cost of 100 pounds gain</td>
<td>$10.94</td>
<td>$9.53</td>
<td>$12.81</td>
</tr>
<tr>
<td>Selling price, 10 steers, 7½ cents per pound live weight, less 5 per cent</td>
<td>$223.85</td>
<td>$1,077.15</td>
<td>$1,019.17</td>
</tr>
<tr>
<td>Selling price, 2 steers, 6 cents per pound</td>
<td>$135.96</td>
<td>$168.60</td>
<td>$121.79</td>
</tr>
<tr>
<td>Profit per steer</td>
<td>$10.75</td>
<td>$14.05</td>
<td>$10.15</td>
</tr>
<tr>
<td>Average value of steer at start</td>
<td>$59.67</td>
<td>$57.61</td>
<td>$56.06</td>
</tr>
<tr>
<td>" selling price per steer</td>
<td>$88.32</td>
<td>$80.76</td>
<td>$84.93</td>
</tr>
<tr>
<td>" increase in value</td>
<td>$24.25</td>
<td>$22.75</td>
<td>$28.37</td>
</tr>
<tr>
<td>" cost of feed per steer</td>
<td>$18.30</td>
<td>$18.70</td>
<td>$18.72</td>
</tr>
<tr>
<td>Amount of meal eaten</td>
<td>12,244</td>
<td>12,383</td>
<td>13,382</td>
</tr>
<tr>
<td>" hay eaten</td>
<td>1,789</td>
<td>1,783</td>
<td>1,291</td>
</tr>
<tr>
<td>" green feed eaten</td>
<td>11,206</td>
<td>11,617</td>
<td>10,093</td>
</tr>
<tr>
<td>" straw eaten</td>
<td>24,000</td>
<td>24,900</td>
<td>24,000</td>
</tr>
<tr>
<td>" salt eaten</td>
<td>110</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, LETHBRIDGE, ALTA.

REPORT OF THE SUPERINTENDENT—W. H. FAIRFIELD, M.S.

STEER FEEDING.

Owing to the fact that the acreage of alfalfa is increasing so rapidly on the irrigated lands in the Lethbridge district, the question of disposing of the surplus by feeding on the farm rather than by baling and shipping out is becoming more important each season. The following experiment was carried out to ascertain just what can be obtained for good alfalfa hay when fed to steers.

Twelve 2-year-old steers were purchased from Mr. A. E. Ives, of Lethbridge. These were out of a bunch that he had shipped in from Manitoba during the summer. The price paid was 6½ cents per pound. They were dehorned the same day that they were received. The feeding was done in the open; the only shelter provided the cattle was a straw shed, open on the east side. The following values were put on the feeding stuffs used:

- Alfalfa, per ton: $12
- Rutabagas, per ton: 2
- Damaged oat hay, per ton: 5
- Grain, per ton: 20

The mixture of grain fed was: wheat 4 parts, barley 3 parts, and oats 3 parts. The steers were sold locally to Mr. R. Coultry, a Lethbridge butcher.

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Price per ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa, per ton</td>
<td></td>
<td>$12</td>
</tr>
<tr>
<td>Rutabagas, per ton</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Damaged oat hay, per ton</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Grain, per ton</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

The steers were sold locally to Mr. R. Coultry, a Lethbridge butcher.

Number of animals in group: 12
First weight, gross, December 26, 1912: 11,060 lb.
Average, lb: 916.7

Finished weight, gross, May 24, 1913: 14,100 lb.
Average, lb: 1,183

Number of days in experiment: 149
Total gain for period: 3,133.6 lb.
Average gain per animal: 23.3 lb.
Daily gain for group: 2.7 lb.

Quantity meal eaten by group for period: 14,917 lb.
Rutabagas for period: 3,064 lb.
Roughage alfalfa hay: 3,008.65 lb.
Rutabagas for period: 1,390 lb.

Total cost of feed: $32,974
Cost of feed per head: 26.73
Cost to produce 1 pound gain: 0.10
Original cost of animals at 6½ per lb.: 687.50
Plus cost of feed: 1,068.50

Net profit per group: $1,122.80
Net profit per animal: $10.37

Findings from experiment:

Nutritive ratio of total ration: 1.767
Meal: 17.63
Digestible matter: 10.36
Meal mixture, wheat 1 parts, to produce 1 pound gain: 8.25
Barley 3 parts, oats 3 parts: 4.72
Roughage, alfalfa to produce 1 pound gain: 5.69
Conclusions.—As the primal object of the experiment was to ascertain what could be realized by feeding prime alfalfa hay to steers, the following is given:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (per ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of grain fed, at $20</td>
<td>$49 17</td>
</tr>
<tr>
<td>Value of damaged oat hay, at $5</td>
<td>3 47</td>
</tr>
<tr>
<td>Value of turnips, at $3</td>
<td>59 96</td>
</tr>
<tr>
<td>Value of salt</td>
<td>1 50</td>
</tr>
</tbody>
</table>

$214.10
DAIRY CATTLE

CENTRAL EXPERIMENTAL FARM, OTTAWA, ONT.

REPORT OF THE DOMINION ANIMAL HUSBANDMAN—

E. S. ARCHIBALD, B.A., B.S.A.

DAIRY CATTLE.

There are in all 138 head of cattle in the stables, comprised of 113 pure-bred breeding cattle, 24 grade milch cows and one grade heifer. The pure-breds are kept for experimental breeding and feeding work.

Pure-Bred Breeding Cattle.

Ayrshires, 38, including 19 milch cows, 15 heifers and 4 males.

Canadians, 27, including 14 milch cows, 8 heifers and 5 males.

Guernseys, 22, including 9 milch cows, 9 heifers and 4 males.

Holsteins, 18, including 7 milch cows, 7 heifers and 4 males.

Jerseys, 8, including 4 milch cows, 2 heifers and 2 males.

Grade Milch Cows.

Grade Ayrshire cows, 12.

Grade Holstein cows, 12.

These cows are kept for several reasons, namely: (1) to supply milk for dairy experimental manufacture, (2) to test the high quality grade cow for economy of production, (3) to test the grade against the pure-bred cow, and (4) to obtain the female offspring from these cows and sired by the best obtainable pure-bred bulls of the breeds, (5) to show the advantage of continued and persistent upgrading of the grade herds. This latter experiment is well under way on several branch Farms. Data of such import cannot be acquired too rapidly.

The herds of dairy cattle, during the year 1912-13, included 77 milch cows, as follows:—

The Holstein herd, established in the years 1911 and 1912, is here reported upon for the first time. Although seven cows were milking during the year, only five are reported as having finished a lactation period previous to April 1, 1913.

The Ayrshire herd, established in 1901, remains with almost no changes since last reported, and contains 19 milch cows.

The Guernsey herd, also established in 1901, has made only the natural growth, and contains 9 milch cows.

The French Canadian herd remains practically unaltered, and contains 14 milch cows.

The Jersey herd, established in the years 1911 and 1912, is not reported on for production, as no cows have finished a full lactation period. Only 1 cow and heifers were milking during the year.

The grade Ayrshire and grade Holstein herds, including in each 12 milch cows, were established during the past year. None, as yet, has completed a full lactation period; hence are not reported.
FEEDING THE DAIRY COWS.

The year 1912-13 has been satisfactory for pasture. Grass started fairly early in the spring, but suffered considerably from drought during July and early August. The heavy rains of September, however, made exceedingly good pasture.

SUMMER FEEDING.

As in previous years, the dairy cattle were allowed only a small area for pasture, and were compelled to depend largely upon soiling crops and corn silage. As pasture, there was available only a little over 19 acres. This afforded forage for nearly a month, and was so charged.

In July and parts of August and September, soiling crops, consisting of clover, mixed peas and oats and green corn, were fed either in the stables or in pasture.

Corn ensilage for feeding in August had been provided in 1911.

Meal was fed during the entire summer, as needed by cows in milk, and dry cows and pregnant heifers in low condition.

As formerly, during the early part of summer, the cows were in the field during the daytime and stabled at night, but during the heat of midsummer, and as flies became more troublesome, they were housed during the day and kept in pasture at night.

WINTER FEEDING.

The winter feeding was carried on under quite as favourable conditions as the summer. Feed was plentiful and of good quality. Cattle entered the barns in good flesh and did well.

The winter ration was on the average about as follows:

- Hay .. 5 pounds.
- Corn ensilage 20 "
- Roots .. 10 "
- Straw ... 4 "
- Meal .. 7 "

The meal mixture consisted of a mixture of 600 pounds bran; 300 pounds gluten; 200 pounds dried brewers' grains; and 200 pounds cottonseed meal.

The hay was mixed red clover and timothy. The corn silage was of good quality, rich in grain and well preserved.

The roots were mangels, sugar mangels, sugar beets and turnips. They were usually pulped and mixed with the ensilage.

The straw was, of course, oat, and owing to rains during harvest was of poor feeding quality. It was cut and mixed with the pulped roots and ensilage.

The meal was scattered on the roughage mixture of roots, ensilage and cut straw, after it was before the cattle. The hay given was fed uncut, after the other material had been cleaned up.

Generally speaking, the milch cow is allowed all the roughage she will consume. Meal is given in proportion to milk produced. If a cow responds freely and profitably to an increase of meal, she is fed more liberally up to the point where profit ceases. Many cows, recently fresh, will profitably consume one pound of meal to every three pounds of milk produced. However, at average prices paid the farmer for dairy produce, this would leave but little profit. A fair standard, and one which is giving us good results is: 1 pound meal fed for every 4 pounds milk produced.

Aside from the milk produced, there are three great factors which must influence the amounts of meal fed, namely, its richness, palatability, and variety. The
Steers feeding out-doors in Winter, Brandon Experimental Farm.

Interior View, dairy Barn, Experimental Station, Lacombe, Alberta. Note: Light, hanging of windows and the comfort and cleanliness of cattle and barn.
above mixture illustrates a rich meal, having a sufficient diversity in its elements to give variety and palatability, thus maintaining the appetite of the animal.

Water is before the cows all the time. Salt is added to the roughage at the time of mixing.

DAIRY CATTLE EXPERIMENTS.

This work, including the conducting of the tests of foodstuffs for dairy cattle, the test of the milking machine and the compiling of results from the same, has been done by Mr. Rothwell, Assistant to the Animal Husbandman.

Testing Molasses as a Feed for Dairy Cows.

Beginning February 23, 1913, an experiment was conducted with the grade herd to ascertain the value of molasses as a substitute for meal in the regular meal mixture. During the test, each cow received the same number of pounds of meal or meal and molasses, in order to show the value of molasses in replacing meal, by a comparison of the average of Periods 1 and 3 with Period 2. Each period consisted of two weeks, the first week as a transitory stage, the second week as a basis of calculation. Throughout the tests, the cows were weighed each Monday at 11 a.m.

The following table is calculated on the feed and production of ten cows in the herd:

SUMMARY SHEET.—DAIRY COW FEEDING EXPERIMENT No. 11.

Object of Experiment.—To test value of molasses as a substitute in the meal ration.

Rations.—Period 2: Grain, no molasses.

Periods 1 and 3: Grain, plus 20 per cent molasses.

Value of feeds per ton.—Hay, $7; straw, $4; turnips and silage, $2; molasses, $3; meal, 14 cents per pound.

Grain mixture of.—Bran, 600 pounds; gluten meal, 300 pounds; oil cake, 200 pounds; cottonseed meal, 200 pounds; and dried brewers' grains, 200 pounds.

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 3</th>
<th>Period 1 and 3 average</th>
<th>Period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cows in test</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Pounds of milk produced by 10 cows</td>
<td>2,115.5</td>
<td>1,927</td>
<td>2,019.5</td>
<td>2,141.5</td>
</tr>
<tr>
<td>Average milk per cow per day</td>
<td>39.2</td>
<td>27.5</td>
<td>28.8</td>
<td>30.4</td>
</tr>
<tr>
<td>Average per cent fat in milk</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Total pounds fat produced by 10 cows</td>
<td>71.79</td>
<td>65.51</td>
<td>68.64</td>
<td>72.69</td>
</tr>
<tr>
<td>Average pounds fat per cow per day</td>
<td>10.2</td>
<td>8.4</td>
<td>9.8</td>
<td>10.4</td>
</tr>
<tr>
<td>Total meal consumed</td>
<td>571.2</td>
<td>571.2</td>
<td>571.2</td>
<td>571.2</td>
</tr>
<tr>
<td>Total molasses consumed</td>
<td>142.8</td>
<td>142.8</td>
<td>142.8</td>
<td>142.8</td>
</tr>
<tr>
<td>Mixture consumed per 100 pounds fat produced</td>
<td>99.4</td>
<td>1,008</td>
<td>1,040</td>
<td>978</td>
</tr>
<tr>
<td>Mixture consumed per 100 pounds milk produced</td>
<td>33.8</td>
<td>37.1</td>
<td>35.4</td>
<td>33.3</td>
</tr>
</tbody>
</table>

Findings from Experiment.

Cost of meal mixture fed	$8.78	8.78	8.78	8.92
Value of roughage fed	7.35	7.35	7.35	7.35
Cost to produce 100 pounds fat	22.47	24.60	23.49	22.32
1 pound fat. cts.	22.5	24.60	23.5	22.4
1 pound butter.	19.1	20.9	19.9	18.9
Profit on 1 pound butter at 30 cents per pound	10.9	9.1	10.7	11.1
Cost to produce 100 pounds milk	76.4	83.7	79	75.9
Profit on 100 pounds milk at $1.70 per cwt.	93.6	86.3	91	94.1

As a check on this experiment, a similar test was conducted with the cattle in the barn. The results as obtained from ten cows of this herd, are herewith given:

10—35
SUMMARY SHEET.—DAIRY COW FEEDING EXPERIMENT No. 1b.

Object of Experiment.—To test value of molasses as a substitute in the meal ration.

Rations.—Period 2: Grain, no molasses.
Periods 1 and 3: Grain, plus 20 per cent molasses.

Value of feeds per ton.—Hay, $7; straw, $1; turnips and silage, $2; molasses, $23; meal, 11 cents per pound.

Grain, mixture of: Bran, 600 pounds; gluten meal, 300 pounds; oil cake, 200 pounds; cotton-seed meal, 200 pounds; and dried brewers' grains, 200 pounds.

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
<th>Period 1 and 2 average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cows in test</td>
<td>16</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Pounds of milk produced by 10 cows</td>
<td>1,305</td>
<td>1,400</td>
<td>1,150</td>
<td>1,171</td>
</tr>
<tr>
<td>Average milk per cow per day</td>
<td>22.8</td>
<td>23.8</td>
<td>26.4</td>
<td>22.7</td>
</tr>
<tr>
<td>Average per cent. fat in milk</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Total pounds fat produced by 10 cows</td>
<td>67.3</td>
<td>55.18</td>
<td>63.79</td>
<td>56.6</td>
</tr>
<tr>
<td>Average pounds fat per cow per day</td>
<td>97</td>
<td>84</td>
<td>91</td>
<td>95</td>
</tr>
<tr>
<td>Total meal consumed</td>
<td>498.4</td>
<td>498.4</td>
<td>498.4</td>
<td>498.4</td>
</tr>
<tr>
<td>Total molasses consumed</td>
<td>124.6</td>
<td>124.6</td>
<td>124.6</td>
<td>124.6</td>
</tr>
<tr>
<td>Mixture consumed per 100 pounds fat produced</td>
<td>916</td>
<td>1,054</td>
<td>978</td>
<td>938</td>
</tr>
<tr>
<td>Mixture consumed per 100 pounds meal produced</td>
<td>39</td>
<td>43.4</td>
<td>49.3</td>
<td>39</td>
</tr>
</tbody>
</table>

Findings from Experiment.

- Cost of meal mixture fed: $7.65, $7.65, $7.65, $7.79
- Value of roughage fed: $5.51, $5.51, $5.51, $5.81
- Total cost of feed: $13.46, $13.46, $13.46, $13.69
- Cost to produce 100 pounds fat: $12.45, $22.76, $21.10, $20.48
- Profit on 1 pound fat: $21.10, $21.10, $21.10, $21.10
- Profit on 1 pound butter: $17, $19, $18, $17.5
- Profit on 1 pound butter at 30 cents per pound: $13, $11, $12, $11.5
- Cost to produce 100 pounds milk: $84, $93.5, $88, $88
- Profit on 100 pounds milk at $1.70 per cwt.

While the results, as shown, are not as conclusive as might be desired, certain facts are indicated. It may be mentioned that these experiments are but forerunners of a series of tests with the feeding of molasses, and that, until further data have been collected, these results cannot be regarded as conclusive. However, it would appear that while molasses may be substituted as part of a meal ration and slightly reduce its cost, its addition in any considerable quantity is not economical. While molasses is of no inconsiderable value as a food, its chief desirability is in its appetizing and tonic qualities, the benefits of which may be derived by its being incorporated with the meal in much lesser quantities than those tried. An addition of, say, 10 per cent of the meal fed allows of this, yet does not materially reduce the feeding value of the concentrates.

In order to ascertain whether or not increasing the molasses constituent might prove economical, the test was continued as Experiment 2a.
SESSIONAL PAPER No. 16

SUMMARY SHEET.—DAIRY COW FEEDING EXPERIMENT No. 2A.

Object of Experiment.—To test value of molasses as a substitute in the meal ration.

Rations.—Period 2: Grain, plus 30 per cent molasses.

Periods 1 and 3: Grain, plus 20 per cent molasses.

Value of feeds per ton.—Hay, $7; straw, $4; turnips and silage, $2; molasses, $23; meal, 1½ cents per pound.

Grain, mixture of.—Bran, 600 pounds; gluten meal, 300 pounds; oil cake, 200 pounds; cottonseed meal, 200 pounds; and dried brewers' grains, 200 pounds.

<table>
<thead>
<tr>
<th></th>
<th>Period 1.</th>
<th>Period 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cows in test</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Pounds of milk produced by 10 cows</td>
<td>1,327</td>
<td>1,642.5</td>
</tr>
<tr>
<td>Average of milk per cow per day</td>
<td>27.5</td>
<td>25.45</td>
</tr>
<tr>
<td>Average per cent fat in milk</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Total pounds fat produced by 10 cows</td>
<td>65.5</td>
<td>60.7</td>
</tr>
<tr>
<td>Average pounds fat per cow per day</td>
<td>3.93</td>
<td>55.8</td>
</tr>
<tr>
<td>Total meal consumed</td>
<td>571.2</td>
<td>490.8</td>
</tr>
<tr>
<td>Total molasses consumed</td>
<td>142.8</td>
<td>214.2</td>
</tr>
<tr>
<td>Mixture consumed per 100 pounds</td>
<td>1,090</td>
<td>1,220</td>
</tr>
<tr>
<td>Mixture consumed per 100 pounds milk produced</td>
<td>37</td>
<td>43.5</td>
</tr>
</tbody>
</table>

Findings from Experiment.

<table>
<thead>
<tr>
<th></th>
<th>Period 1.</th>
<th>Period 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of meal mixture fed</td>
<td>$8.78</td>
<td>8.78</td>
</tr>
<tr>
<td>Value of roughage fed</td>
<td>7.35</td>
<td>7.35</td>
</tr>
<tr>
<td>Total cost of feed</td>
<td>16.13</td>
<td>16.13</td>
</tr>
<tr>
<td>Cost to produce 100 pounds fat</td>
<td>24.47</td>
<td>28.61</td>
</tr>
<tr>
<td>" 1 pound fat</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>" 1 pound butter</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>Profit on 1 pound butter at 30 cents per pound.</td>
<td>3</td>
<td>4.9</td>
</tr>
<tr>
<td>Cost to produce 100 pounds milk</td>
<td>83.7</td>
<td>95.7</td>
</tr>
<tr>
<td>Profit on 100 pounds milk at $1.70 per cwt</td>
<td>86.5</td>
<td>72.3</td>
</tr>
</tbody>
</table>

Here the additional 10 per cent proved a detriment, as shown by a decrease in production and incidentally a decrease in weight as shown in the table of weights. This was, in all likelihood, due to the noticeably relaxed condition of the cows caused by the laxative nature of the molasses substitute, and to the fact that they were, at the same time, receiving a liberal allowance of succulent food in the form of roots.

As in the case of Experiment 1A, a duplicate test of Experiment 2A was made with the cattle in the main barn, data being compiled from the production of the same ten cows as in Experiment 1B.
SUMMARY SHEET.—DAIRY COW FEEDING EXPERIMENT No. 2B.

Object of Experiment.—To test value of molasses as a substitute in the meal ration.

Rations.—Period 2: Grain, plus 30 per cent molasses.

Periods 1 and 3: Grain, plus 20 per cent molasses.

Value of feeds per ton.—Hay, $7; straw, $4; turnips and silage, $2; molasses, $23; meal, 14 cents per pound.

Grain, mixture of.—Bran, 600 pounds; gluten meal, 300 pounds; oil cake, 200 pounds; cottonseed meal, 200 pounds; and dried brewers' grains, 200 pounds.

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 3</th>
<th>Periods 1 and 3, average</th>
<th>Period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cows in test</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Pounds of milk produced by 10 cows lb.</td>
<td>1,433</td>
<td>1,356</td>
<td>1,384</td>
<td>1,366.5</td>
</tr>
<tr>
<td>Average milk per cow per day</td>
<td>20.4</td>
<td>19.1</td>
<td>19.8</td>
<td>19.5</td>
</tr>
<tr>
<td>Average per cent fat in milk</td>
<td>4.2</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Total pounds fat produced by 10 cows</td>
<td>58.18</td>
<td>54.33</td>
<td>56.74</td>
<td>56.09</td>
</tr>
<tr>
<td>Average pounds fat per cow per day</td>
<td>8.4</td>
<td>7.8</td>
<td>8.1</td>
<td>8.9</td>
</tr>
<tr>
<td>Total meal consumed</td>
<td>488.4</td>
<td>488.4</td>
<td>488.4</td>
<td>488.4</td>
</tr>
<tr>
<td>Total molasses consumed</td>
<td>124.6</td>
<td>124.6</td>
<td>124.6</td>
<td>124.6</td>
</tr>
<tr>
<td>Mixture consumed per 100 pounds fat produced</td>
<td>1,054</td>
<td>1,147</td>
<td>1,068</td>
<td>1,133</td>
</tr>
</tbody>
</table>

Findings from Experiment.

Cost of meal mixture fed.................. $ 7.65
Value of roughage fed................... 5.81
Total cost of feed...................... 13.46
Cost to produce 100 pounds fat 22.76
 1 pound fat.......................... Cts. 11
 1 pound butter......................... 13
Profit on 1 pound butter at 30 cents per pound 11
Cost to produce 100 pounds milk.......... 94
Profit on 100 pounds milk at $1.70 per cwt... 76

DAIRY COW FEEDING EXPERIMENTS, Nos. 1A AND 1B.

Table of Weights.

<table>
<thead>
<tr>
<th></th>
<th>Weight at Commencement</th>
<th>At end of 1st period</th>
<th>At end of 2nd period</th>
<th>At end of 3rd period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pounds</td>
<td>Pounds</td>
<td>Pounds</td>
<td>Pounds</td>
</tr>
<tr>
<td>Experiment 1A. (20 per cent molasses)</td>
<td>10,670</td>
<td>10,886</td>
<td>10,870</td>
<td>10,930</td>
</tr>
<tr>
<td>Gain or loss.....................</td>
<td>216 gain</td>
<td>16 loss</td>
<td>60 gain</td>
<td></td>
</tr>
<tr>
<td>Experiment 1B. (30 per cent molasses)</td>
<td>10,930</td>
<td>10,933</td>
<td>10,903</td>
<td>10,764</td>
</tr>
<tr>
<td>Gain or loss.....................</td>
<td>3 gain</td>
<td>30 loss</td>
<td>139 loss</td>
<td></td>
</tr>
</tbody>
</table>
DIVISION OF ANIMAL HUSBANDRY

SESSIONAL PAPER No. 16

MILKING MACHINE.

In July, 1912, a Sharples Mechanical Milker was installed in the main barn with the idea of testing thoroughly this method of milking, and the machine in particular, as to commercial adaptation, economy of production, effect on cows, and on the quality of the milk produced.

The complete outfit consists of compressor, compression and vacuum tanks, piping and six milking units. A unit is made up of container, cover, four teat cups, pulsator and all rubber connections. The complete unit, which milks but one cow at a time, costs $110; compressor, tanks, piping, etc., $110 extra. Cost of total installation, including electric motor, fittings, labour and all incidentals, $1,043.

While this machine has been in continuous use, barring intervals approximating a month's duration in all when, for purposes of comparison, the use of the milker was discontinued—the data obtained are not as yet sufficiently complete to warrant a final report at this time. Nevertheless, certain general facts have so established themselves that their mention may not be out of place. In this connection, reference should be made to the following table which contains the results of hand versus machine milking in successive two-week periods, from January 26, 1912 to April 5, 1913.

TEN WEEKS' TEST, MACHINE vs. HAND MILKING ON A HERD OF 14 COWS.

<table>
<thead>
<tr>
<th></th>
<th>Machine</th>
<th>Hand</th>
<th>Machine</th>
<th>Hand</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan. 26</td>
<td>Feb. 8</td>
<td>Feb. 16</td>
<td>Feb. 22</td>
<td>Mar. 1</td>
</tr>
<tr>
<td>Lb.</td>
<td>2,281</td>
<td>2,216</td>
<td>2,148</td>
<td>2,079</td>
<td>1,926</td>
</tr>
<tr>
<td>Total milk produced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average per cent increase or decrease (weekly)</td>
<td>73% inc.</td>
<td>3.7% dec.</td>
<td>3.1% dec.</td>
<td>3.4% dec.</td>
<td>7.9% dec.</td>
</tr>
<tr>
<td>Per cent decrease or increase during two weeks</td>
<td>3.4% dec.</td>
<td>5.6% dec.</td>
<td>1.6% dec.</td>
<td>5.7% dec.</td>
<td></td>
</tr>
</tbody>
</table>

This test was initiated primarily to ascertain, if possible, the direct effect of the two methods on the quality of the milk as shown by bacterial content. While it is, then, chiefly of value from this standpoint, it also serves to show the comparative decrease in flow for the successive periods. To obtain exact figures on this point is difficult, as will be readily seen. Given two fairly balanced herds, the lactation periods of the individuals of which began at approximately the same time, the weekly decreases might be fairly compared. Such conditions, however, are difficult to obtain. While comparative figures from more detailed sources would go to show that mechanical milking exerts no marked influence on hastening the drying-off process, the figures from the table herewith given, favour hand milking, the percentage decrease being less during the weeks when the latter method was employed. Such indications, however, must be thoroughly substantiated by later findings, before being
regarded as conclusive. Incidentally, it might be mentioned that the cows in practically all cases show absolute indifference to the machine, responding well to its manipulation.

While the machine has shown an economy of labour in the stable of fully 50 per cent, this saving is considerably offset by the additional cost necessitated in the work of scrupulously cleaning and sterilizing the inflations, tubes, containers and all surfaces exposed directly to the milk. During the first six months, while the cleansing was given more than ordinary care, the bacterial count of the machine-produced milk averaged more than double that of clean hand milking. For the period during which the figures given were obtained, the cleansing and sterilizing operations were carried on with the aid of improved methods of washing, strictest attention to sterilizing and added precaution in the manipulation of the machine. Equal precautions were taken in hand milking. The figures indicate, however, a relatively high bacterial count in the case of the machine milk even under conditions as mentioned. While the counts in both cases were very low, it must be remembered that the test was conducted during cold weather under temperature conditions unfavourable to bacterial growth. Later tests taken during warm weather have shown marked increases in the bacterial content of the machine-produced milk.

It is the intention of this Division to publish a complete report of this test during the present fiscal year, as soon as sufficient data are at hand to warrant comprehensive treatment. For the present, however, the situation may be summed up as follows.

THE MECHANICAL METHOD OF MILKING.

1. Is mechanically feasible, the main cost of renewal being for the rubber lining of teat cups.
2. Apparently exerts some influence in hastening the end of the lactation period.
3. Is readily acceptable to the animal.
4. Offers difficulties in the way of proper cleansing of machine.
5. Makes difficult the production of low-count milk.
6. Materially reduces the labour of milking, but greatly increases the precautions and therefore the work necessary in the cleansing operations.

DAIRY HERD RECORDS.

The dairy cow milk records are reported upon by lactation periods rather than according to the fiscal year, as has been done previous to the year 1911-12. This change seemed advisable in that a cow's merits are usually calculated on a basis of her production per lactation period.

In the case of heifers with first calves, charges for feed include the consumption from a date two months previous to parturition, to the time of being dried. In the case of all following lactation periods the feed charges cover time from drying to drying.

In estimating the cost of feeding the following values were used:

<table>
<thead>
<tr>
<th>Material</th>
<th>Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture, per month</td>
<td>$1 per cow.</td>
</tr>
<tr>
<td>Meal mixture</td>
<td>25 per ton.</td>
</tr>
<tr>
<td>Clover hay</td>
<td>7 " "</td>
</tr>
<tr>
<td>Straw</td>
<td>4 " "</td>
</tr>
<tr>
<td>Roots and ensilage</td>
<td>2 " "</td>
</tr>
<tr>
<td>Green feed</td>
<td>3 " "</td>
</tr>
</tbody>
</table>
SESSIONAL PAPER No. 16

In calculating the value of the product, 30 cents per pound is allowed for the butter and 20 cents per 100 pounds for skim milk. In reality, a considerable quantity of milk conforming to the 'certified' standard was sold at $3 per 100 pounds, while the price of butter ranged from 28 cents to 35 cents per pound. The cream cheeses sold realized from $3.25 to $3.50 per 100 pounds milk, and Coulommier cheeses sold realized from $2.20 to $3.75 per 100 pounds milk.

However, the figures chosen for calculation were regular market values and form a fair basis for comparison of the individuals in the herds with each other, as well as with the individuals of other herds.

In computing these returns, the bedding and the labour in connection with caring for the cows and manufacturing the butter have not been taken into account, nor have they been credited with the manure made, nor the value of their calves at birth.

All cows are reported upon that have finished a lactation period within the dates of the fiscal year 1912-13. This list does not, of course, include all cows that are at present in milk, as many are heifers not far advanced in their first lactation period.
EXPERIMENTAL FARMS

DAIRY COW

RECORD OF DAIRY HERD

<table>
<thead>
<tr>
<th>Names of Cows</th>
<th>Age at beginning of Location Period</th>
<th>Date of Dropping Calf</th>
<th>Total amount of Milk in Location Period</th>
<th>Daily average Yield of Milk</th>
<th>Average per cent Fat in Milk</th>
<th>Pounds of Butter produced in Period</th>
<th>Value of Butter at 20c. per pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre View Bessie Ann</td>
<td>3</td>
<td>Nov. 16, 1911</td>
<td>470</td>
<td>16,136</td>
<td>34.1</td>
<td>3.46</td>
<td>567.11</td>
</tr>
<tr>
<td>Flavia (Imp.)</td>
<td>9</td>
<td>Mar. 23, 1911</td>
<td>704</td>
<td>14,779</td>
<td>30.5</td>
<td>3.78</td>
<td>568.64</td>
</tr>
<tr>
<td>Boutsje De Boer Posch</td>
<td>3</td>
<td>Feb. 4, 1912</td>
<td>365</td>
<td>13,265</td>
<td>36.3</td>
<td>3.53</td>
<td>552.67</td>
</tr>
<tr>
<td>Evergreen March 3rd</td>
<td>2</td>
<td>Oct. 28, 1911</td>
<td>453</td>
<td>13,091</td>
<td>32.8</td>
<td>3.46</td>
<td>532.90</td>
</tr>
<tr>
<td>Inoquette 3rd</td>
<td>4</td>
<td>Feb. 29, 1912</td>
<td>396</td>
<td>7,810</td>
<td>19.7</td>
<td>3.40</td>
<td>395.74</td>
</tr>
<tr>
<td>Ottawa Kate</td>
<td>4</td>
<td>Nov. 29, 1911</td>
<td>367</td>
<td>16,451</td>
<td>36.4</td>
<td>3.75</td>
<td>488.35</td>
</tr>
<tr>
<td>Flavia 2nd of Ottawa</td>
<td>6</td>
<td>Jan. 29, 1912</td>
<td>352</td>
<td>10,319</td>
<td>31.9</td>
<td>3.90</td>
<td>474.74</td>
</tr>
<tr>
<td>Ottawa Itchen's Favor</td>
<td>2</td>
<td>April 24, 1911</td>
<td>546</td>
<td>8,570</td>
<td>15.3</td>
<td>5.14</td>
<td>157.00</td>
</tr>
<tr>
<td>Donny 4th of Ottawa</td>
<td>5</td>
<td>Feb. 5, 1912</td>
<td>269</td>
<td>8,699</td>
<td>32.3</td>
<td>4.66</td>
<td>415.92</td>
</tr>
<tr>
<td>Ottawa Itchen</td>
<td>5</td>
<td>Dec. 5, 1911</td>
<td>260</td>
<td>7,629</td>
<td>25.1</td>
<td>1.77</td>
<td>395.10</td>
</tr>
<tr>
<td>Donna Clatina</td>
<td>4</td>
<td>July 19, 1911</td>
<td>562</td>
<td>7,825</td>
<td>13.9</td>
<td>5.26</td>
<td>481.70</td>
</tr>
<tr>
<td>La Belle</td>
<td>4</td>
<td>May 26, 1911</td>
<td>336</td>
<td>6,815</td>
<td>20.2</td>
<td>4.63</td>
<td>371.64</td>
</tr>
<tr>
<td>Denny 3rd of Ottawa</td>
<td>5</td>
<td>June 14, 1911</td>
<td>335</td>
<td>7,635</td>
<td>22.8</td>
<td>4.12</td>
<td>370.09</td>
</tr>
<tr>
<td>Marjorie 2nd of Ottawa</td>
<td>5</td>
<td>Sept. 7, 1911</td>
<td>312</td>
<td>7,617</td>
<td>24.4</td>
<td>4.68</td>
<td>396.90</td>
</tr>
<tr>
<td>Marjorie 4th of Ottawa</td>
<td>5</td>
<td>Oct. 30, 1911</td>
<td>384</td>
<td>7,203</td>
<td>18.7</td>
<td>4.41</td>
<td>374.32</td>
</tr>
<tr>
<td>Beulah Clay</td>
<td>5</td>
<td>Jan. 11, 1912</td>
<td>353</td>
<td>9,178</td>
<td>23.9</td>
<td>3.32</td>
<td>359.41</td>
</tr>
<tr>
<td>Ottawa Kate 2nd</td>
<td>5</td>
<td>Feb. 4, 1911</td>
<td>371</td>
<td>6,623</td>
<td>17.9</td>
<td>4.44</td>
<td>346.23</td>
</tr>
<tr>
<td>Marjorie 4th of Ottawa</td>
<td>2</td>
<td>Oct. 7, 1911</td>
<td>268</td>
<td>6,840</td>
<td>21.7</td>
<td>4.26</td>
<td>325.24</td>
</tr>
<tr>
<td>Flavia 4th of Ottawa</td>
<td>2</td>
<td>Aug. 9, 1911</td>
<td>357</td>
<td>7,087</td>
<td>19.8</td>
<td>3.96</td>
<td>350.44</td>
</tr>
<tr>
<td>Ottawa Dennie</td>
<td>4</td>
<td>Oct. 9, 1911</td>
<td>335</td>
<td>7,780</td>
<td>14.2</td>
<td>5.65</td>
<td>367.76</td>
</tr>
<tr>
<td>Flavia 3rd of Ottawa</td>
<td>5</td>
<td>Jan. 23, 1912</td>
<td>325</td>
<td>7,942</td>
<td>22.4</td>
<td>3.79</td>
<td>314.69</td>
</tr>
<tr>
<td>Duchess Perdue</td>
<td>6</td>
<td>Feb. 22, 1912</td>
<td>335</td>
<td>5,815</td>
<td>23.2</td>
<td>4.53</td>
<td>308.85</td>
</tr>
<tr>
<td>Fortune Precocce</td>
<td>4</td>
<td>June 22, 1911</td>
<td>320</td>
<td>5,039</td>
<td>21.4</td>
<td>4.41</td>
<td>342.87</td>
</tr>
<tr>
<td>Maggie Pulchrae</td>
<td>5</td>
<td>July 25, 1911</td>
<td>304</td>
<td>6,319</td>
<td>20.7</td>
<td>4.19</td>
<td>311.68</td>
</tr>
<tr>
<td>Fortune 4th d'Ottawa</td>
<td>3</td>
<td>Apr. 25, 1912</td>
<td>303</td>
<td>7,258</td>
<td>23.3</td>
<td>3.74</td>
<td>320.13</td>
</tr>
<tr>
<td>Arroma</td>
<td>5</td>
<td>Sept. 30, 1911</td>
<td>366</td>
<td>6,614</td>
<td>21.6</td>
<td>4.41</td>
<td>358.97</td>
</tr>
<tr>
<td>Itchen's Favor</td>
<td>2</td>
<td>Sept. 39, 1911</td>
<td>244</td>
<td>4,996</td>
<td>20.5</td>
<td>4.94</td>
<td>290.29</td>
</tr>
<tr>
<td>Duchess 3unie</td>
<td>2</td>
<td>Oct. 28, 1911</td>
<td>339</td>
<td>5,785</td>
<td>12.2</td>
<td>5.45</td>
<td>307.29</td>
</tr>
<tr>
<td>Jessy E. of Ottawa</td>
<td>4</td>
<td>July 26, 1911</td>
<td>371</td>
<td>7,623</td>
<td>16.9</td>
<td>3.66</td>
<td>294.11</td>
</tr>
<tr>
<td>Fortune Cadette</td>
<td>2</td>
<td>Nov. 13, 1911</td>
<td>252</td>
<td>5,350</td>
<td>16.7</td>
<td>4.15</td>
<td>274.98</td>
</tr>
<tr>
<td>Denny 4th of Ottawa</td>
<td>3</td>
<td>Sept. 6, 1911</td>
<td>312</td>
<td>5,211</td>
<td>16.7</td>
<td>4.23</td>
<td>250.29</td>
</tr>
<tr>
<td>Soney 3rd of Ottawa</td>
<td>3</td>
<td>Aug. 7, 1911</td>
<td>359</td>
<td>6,148</td>
<td>17.1</td>
<td>3.83</td>
<td>278.12</td>
</tr>
<tr>
<td>Ruby's Pride</td>
<td>5</td>
<td>Jan. 30, 1912</td>
<td>365</td>
<td>5,414</td>
<td>14.1</td>
<td>5.26</td>
<td>269.09</td>
</tr>
<tr>
<td>Inoquette 4th</td>
<td>2</td>
<td>Sept. 4, 1911</td>
<td>362</td>
<td>4,866</td>
<td>13.4</td>
<td>4.59</td>
<td>282.47</td>
</tr>
<tr>
<td>Zaza Fille</td>
<td>2</td>
<td>Feb. 24, 1912</td>
<td>306</td>
<td>5,486</td>
<td>17.7</td>
<td>4.10</td>
<td>282.65</td>
</tr>
<tr>
<td>Inoquette</td>
<td>2</td>
<td>Jan. 30, 1912</td>
<td>425</td>
<td>5,772</td>
<td>13.8</td>
<td>4.59</td>
<td>311.64</td>
</tr>
<tr>
<td>Jessy D. of Ottawa</td>
<td>6</td>
<td>Mar. 30, 1912</td>
<td>297</td>
<td>5,415</td>
<td>18.8</td>
<td>4.09</td>
<td>266.70</td>
</tr>
<tr>
<td>Pearly's Maid</td>
<td>2</td>
<td>Oct. 20, 1911</td>
<td>391</td>
<td>4,061</td>
<td>11.9</td>
<td>5.10</td>
<td>279.83</td>
</tr>
<tr>
<td>Zaza Fille 2me</td>
<td>3</td>
<td>Sept. 12, 1911</td>
<td>374</td>
<td>3,025</td>
<td>8.1</td>
<td>5.10</td>
<td>187.64</td>
</tr>
</tbody>
</table>

| Average, 40 head | | 4 | 360 | 7,433 | 29.6 | 4.15 | 363.35 |

Total: 1914
DIVISION OF ANIMAL HUSBANDRY
SESSIONAL PAPER

RECORDS.

— Central
^

^
M

Faiin.

No. 16

553


HOLSTEINS.

<table>
<thead>
<tr>
<th>Name of Cows</th>
<th>Age at beginning of Lactation Period</th>
<th>Date of Dropping Calf</th>
<th>Number of days in Lactation Period</th>
<th>Total Pounds of Milk for Period</th>
<th>Daily average Yield of Milk</th>
<th>Average per cent Fat in Milk</th>
<th>Pounds of Butter produced in Period</th>
<th>Value of Butter at 32c. per pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre View Bessie Ann</td>
<td>3</td>
<td>Nov. 16, 1911</td>
<td>470</td>
<td>16,136</td>
<td>34:3</td>
<td>3:46</td>
<td>657:11</td>
<td>197:13</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>403</td>
<td>12,425</td>
<td>30:8</td>
<td>3:33</td>
<td>497:71</td>
<td>149:31</td>
</tr>
</tbody>
</table>

AYRSHIRES.

<table>
<thead>
<tr>
<th>Name of Cows</th>
<th>Age at beginning of Lactation Period</th>
<th>Date of Dropping Calf</th>
<th>Number of days in Lactation Period</th>
<th>Total Pounds of Milk for Period</th>
<th>Daily average Yield of Milk</th>
<th>Average per cent Fat in Milk</th>
<th>Pounds of Butter produced in Period</th>
<th>Value of Butter at 32c. per pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavia (Imp.)</td>
<td>9</td>
<td>Mar. 25, 1911</td>
<td>704</td>
<td>14,779</td>
<td>20:9</td>
<td>3:76</td>
<td>653:64</td>
<td>196:69</td>
</tr>
<tr>
<td>Ottawa Kate</td>
<td>4</td>
<td>Nov. 22, 1911</td>
<td>367</td>
<td>10,451</td>
<td>28:4</td>
<td>3:97</td>
<td>488:35</td>
<td>146:50</td>
</tr>
<tr>
<td>Flavia 2nd of Ottawa</td>
<td>6</td>
<td>Jan. 20, 1912</td>
<td>332</td>
<td>10,316</td>
<td>31:0</td>
<td>3:90</td>
<td>474:47</td>
<td>142:34</td>
</tr>
<tr>
<td>Dony 4th</td>
<td>5</td>
<td>Feb. 5, 1912</td>
<td>269</td>
<td>5,211</td>
<td>22:3</td>
<td>4:06</td>
<td>415:92</td>
<td>125:77</td>
</tr>
<tr>
<td>Dony 3rd</td>
<td>6</td>
<td>June 14, 1911</td>
<td>335</td>
<td>7,655</td>
<td>22:8</td>
<td>4:12</td>
<td>576:00</td>
<td>111:00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>401</td>
<td>9,679</td>
<td>27:1</td>
<td>3:96</td>
<td>480:47</td>
<td>144:14</td>
</tr>
</tbody>
</table>

GUERNSEYS.

<table>
<thead>
<tr>
<th>Name of Cows</th>
<th>Age at beginning of Lactation Period</th>
<th>Date of Dropping Calf</th>
<th>Number of days in Lactation Period</th>
<th>Total Pounds of Milk for Period</th>
<th>Daily average Yield of Milk</th>
<th>Average per cent Fat in Milk</th>
<th>Pounds of Butter produced in Period</th>
<th>Value of Butter at 32c. per pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa Itchen’s Favor</td>
<td>2</td>
<td>April 21, 1911</td>
<td>546</td>
<td>8,370</td>
<td>15:3</td>
<td>5:14</td>
<td>507:90</td>
<td>152:10</td>
</tr>
<tr>
<td>Ottawa Deanie</td>
<td>2</td>
<td>Oct. 9, 1911</td>
<td>335</td>
<td>4,790</td>
<td>14:2</td>
<td>5:63</td>
<td>317:76</td>
<td>95:32</td>
</tr>
<tr>
<td>Itchen’s Girl</td>
<td>2</td>
<td>Sept. 26, 1911</td>
<td>244</td>
<td>4,096</td>
<td>29:4</td>
<td>4:94</td>
<td>299:20</td>
<td>87:06</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>393</td>
<td>6,600</td>
<td>17:8</td>
<td>5:15</td>
<td>393:95</td>
<td>119:68</td>
</tr>
</tbody>
</table>

CANADIANS.

<table>
<thead>
<tr>
<th>Name of Cows</th>
<th>Age at beginning of Lactation Period</th>
<th>Date of Dropping Calf</th>
<th>Number of days in Lactation Period</th>
<th>Total Pounds of Milk for Period</th>
<th>Daily average Yield of Milk</th>
<th>Average per cent Fat in Milk</th>
<th>Pounds of Butter produced in Period</th>
<th>Value of Butter at 32c. per pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Belle</td>
<td>4</td>
<td>May 16, 1911</td>
<td>336</td>
<td>6,815</td>
<td>20:2</td>
<td>4:63</td>
<td>371:64</td>
<td>111:49</td>
</tr>
<tr>
<td>Fortune 4th d’Ottawa</td>
<td>4</td>
<td>Feb. 20, 1912</td>
<td>269</td>
<td>5,884</td>
<td>20:1</td>
<td>4:15</td>
<td>285:07</td>
<td>85:52</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>314</td>
<td>6,519</td>
<td>20:7</td>
<td>4:36</td>
<td>334:79</td>
<td>106:43</td>
</tr>
</tbody>
</table>
HOLSTEINS

<table>
<thead>
<tr>
<th>Value of Skim Milk at $2.50 per cwt.</th>
<th>Total Value of Product at 14¢ per pound</th>
<th>Amount of Meal Eaten at $2.50 per cwt.</th>
<th>Amount of Roots and Ensilages Eaten at $2 per cwt.</th>
<th>Amount of Hay Eaten at $1 per cwt.</th>
<th>Amount of Green Food at $3 per cwt.</th>
<th>Amount of Straw Eaten at 20¢ per cwt.</th>
<th>Monthly on Pasture at $1 per month.</th>
<th>Total cost of Feed between Calvings</th>
<th>Cost of Produce 1 pound of Milk</th>
<th>Cost of Produce 1 pound of Milk (skim milk neglected)</th>
<th>Profit on one pound of Milk</th>
<th>Profit on Cow between Calvings and Labour and Calves Neglected</th>
</tr>
</thead>
<tbody>
<tr>
<td>30:94</td>
<td>228.07</td>
<td>4,158</td>
<td>21,490</td>
<td>2,437</td>
<td>3,555</td>
<td>976</td>
<td>1</td>
<td>99.26</td>
<td>55.99</td>
<td>13.7</td>
<td>16.3</td>
<td>137.82</td>
</tr>
<tr>
<td>25:46</td>
<td>191.26</td>
<td>3,564</td>
<td>20,230</td>
<td>2,677</td>
<td>3,585</td>
<td>971</td>
<td>1</td>
<td>82.45</td>
<td>61.99</td>
<td>14.9</td>
<td>15.1</td>
<td>168.81</td>
</tr>
<tr>
<td>23:10</td>
<td>184.97</td>
<td>3,664</td>
<td>21,655</td>
<td>2,679</td>
<td>3,555</td>
<td>895</td>
<td>1</td>
<td>84.94</td>
<td>64.88</td>
<td>15.9</td>
<td>13.8</td>
<td>100.63</td>
</tr>
<tr>
<td>20:10</td>
<td>136.63</td>
<td>2,767</td>
<td>15,533</td>
<td>1,518</td>
<td>3,555</td>
<td>639</td>
<td>1</td>
<td>62.78</td>
<td>60.91</td>
<td>16.2</td>
<td>13.8</td>
<td>73.25</td>
</tr>
<tr>
<td>17:62</td>
<td>125.44</td>
<td>2,438</td>
<td>17,103</td>
<td>1,333</td>
<td>3,585</td>
<td>368</td>
<td>1</td>
<td>61.93</td>
<td>67.94</td>
<td>17.2</td>
<td>12.8</td>
<td>63.51</td>
</tr>
<tr>
<td>23:85</td>
<td>173.16</td>
<td>3,318</td>
<td>19,166</td>
<td>2,249</td>
<td>3,567</td>
<td>764</td>
<td>1</td>
<td>75.47</td>
<td>62.0</td>
<td>15.6</td>
<td>14.4</td>
<td>96.69</td>
</tr>
</tbody>
</table>

AYRSHIRES

28:24	224.33	4,289	29,747	3,515	5,760	1,645	1	105.63	71.4	16.1	13.9	118.68
19:97	166.79	2,894	16,310	2,185	3,880	682	1	67.58	64.6	13.8	16.2	98.89
19:69	162.83	2,668	17,720	2,341	3,880	787	1	66.96	64.8	14.1	15.9	95.13
15:56	142.33	2,240	12,030	1,551	3,380	591	1	32.70	60.5	12.7	17.3	89.63
14:53	125.53	2,110	15,620	1,483	2,570	1,055	1	34.90	70.7	14.5	15.5	71.92
19:79	163.93	2,840	18,173	2,315	3,654	958	1	69.33	66.4	14.2	15.8	91.77

GUERNSEYS

15:72	167.82	3,006	18,349	2,490	5,380	1,045	1	75.78	90.5	14.3	15.7	92.94
13:26	131.79	1,956	12,925	1,669	3,880	597	1	49.59	70.5	12.5	17.5	82.20
14:68	160.09	3,107	20,381	2,305	5,550	1,027	1	78.37	101.1	16.1	13.9	84.72
8:32	104.24	1,783	11,057	1,181	3,290	536	1	46.24	96.9	14.5	15.5	58.00
5:40	92.46	1,748	10,712	1,748	2,660	600	1	43.96	87.8	15.1	14.9	48.50
11:59	131.27	2,334	14,481	1,954	3,926	735	1	58.79	89.2	14.5	15.5	72.49

CANADIANS

14:83	163.95	2,477	17,155	2,158	3,340	891	1	63.52	81.3	15.0	14.0	100.06
12:88	124.37	2,047	13,162	1,116	2,920	910	1	51.65	74.9	13.7	16.3	73.32
11:60	163.95	1,650	12,070	1,623	3,470	615	1	46.79	80.4	15.1	14.0	57.16
12:90	105.50	1,983	12,517	1,617	3,350	641	1	50.21	79.3	16.1	13.0	55.28
11:68	96.60	1,783	11,447	1,441	3,270	512	1	45.73	78.3	16.0	14.0	50.87
12:35	118.78	1,988	13,471	1,715	3,150	721	1	51.46	78.8	15.4	11.6	67.32
An increasingly large number of dairy farmers have availed themselves of the offer made by this Division to supply, free of cost, forms wherein to keep records of the milk yields of the individual cows in their herds. This is a gratifying indication of the advanced methods being adopted by our farmers.

As there apparently are many farmers who, as yet, have not availed themselves of this offer, being in ignorance of this distribution, the week-long milk records here illustrated shows the simplicity and utility of same.

The forms for distribution are as follows:

Month long.—Daily milk records suitable for herds numbering up to twenty-two cows.

Week long.—Daily records for herds of sixteen cows.

Week long.—Daily records for herds of twenty-four cows.

Monthly summary records.

Yearly summary records.

Feed record forms.

DAILY MILK RECORD.

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Day's Total</th>
<th>Total for day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
<td>Morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>Morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>Morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td>Morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Week</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
1. The profitable dairy cow must give over 5,000 pounds of milk each year. To know the value of a cow her total annual yield of milk must be known. The only way to know this is to keep a record of her daily milk yield.

2. The form on the other side of this sheet is intended to help progressive dairy farmers by supplying them with a simple and convenient sheet for the keeping of the milk records of their individual cows. A study of such records will soon indicate which cows should go to the butcher. We should be pleased to receive a summary of your record. If you have no summary forms write us.

3. Such records are being kept by hundreds of successful dairymen to-day. Many of these men attribute their success to the keeping of such records. Why not give the thing a trial if you are a dairyman? It will increase your milk product. It will lighten your labour, since your interest will be increased in your work and 'interest lightens labour.' It will show you the unprofitable cow, the 'boarder.' You cannot get rid of her too quickly.

4. For weighing the milk a simple legal spring balance may be secured for from one and a half to four and a half dollars. If your local dealer cannot supply you write the undersigned for particulars. A small platform scale is fairly convenient, but we find the spring balance preferable.

5. Many farmers keep records of the amount of food fed to individual cows. If you would like to do so, sample forms would be sent free on writing E. S. Archibald, Dominion Animal Husbandman, Central Experimental Farm, Ottawa, Ont.

DISPOSAL OF MILK.

For a number of years the milk produced on the Central Experimental Farm was manufactured into butter and the skim milk fed to calves or pigs, this, of course, with the exception of the small amounts of milk and cream sold daily to people living on the Farm. Milk sold in this way has, during the past twelve years, netted an average price of about $1.65 per hundred pounds of milk. The average milk from our herd shows about 4½ per cent butter fat. Our butter has usually commanded a slightly higher price than the current market. During the past year, for example, it sold at an average price of 33 cents per pound, with a range of 28 cents to 35 cents. The skim milk is valued at 20 cents per hundred pounds when feeding to calves or pigs. The manufacture of butter and utilization of skim milk and buttermilk for feeding purposes is continued on about the same scale as previously. However, as the herd has grown, we have had to look for different methods of disposal of the surplus milk. Consequently, in the year 1911, experimental work along the lines of cheese making was commenced.

CHEESE MAKING.

During the past year, work was continued in the manufacture of soft cheeses as well as Canadian Cheddar cheese. For full particulars as to the manufacture of the same, I would refer those interested to the Report of the Dominion Agriculturist for the year 1911, as well as to special bulletins published by the Dairy and Cold Storage Commissioner, Department of Agriculture, Ottawa. However, a brief note on each of these, relative to the amounts of material required and the demand for produce, might be of interest.

Our Cream cheese are made daily, and are marketed 24 hours after manufacture. Twenty pounds of milk, testing 4½ per cent fat, to which is added 4 pounds of cream, testing 20 per cent fat, will make fourteen cheeses, each weighing about 6 ounces; hence, in present methods of manufacturing, 100 pounds of 4½ per cent milk will make thirty-five or thirty-six cheese. These cheeses sell at 15 cents retail and 11
cents each wholesale. The demand for this type of cheese is growing rapidly and far exceeds our possible output. Many private dairies, with ready railway transportation, could work up permanent and profitable markets in our large Canadian cities.

Coulommier cheese, too, is a very popular type of soft cheese which requires but little expenditure for equipment and is easily made and ripened. One hundred pounds of milk, testing 4¼ per cent butter fat, is making twenty Coulommier cheese of about one pound each. These also bring, on our local market, 15 cents each retail and 11 cents wholesale.

Only a small amount of Canadian Cheddar cheese was manufactured during the past year for the reasons that a suitable curing room in the old dairy building was not available, the surplus of milk was not sufficiently great, the opportunities for experimental work with our limited facilities were extremely small, and the returns per hundred pounds of milk were less than one-half that made by manufacturing milk into soft cheese. It is hoped that with the greater facilities of a proposed new dairy building, the experimental work in all branches of cheese manufacture may be extended.

CERTIFIED MILK.

This new line of dairy experimental work, together with many co-related experiments, has been started during the past year. Although considerable valuable data have been gathered, this is insufficient to give conclusive and detailed information.

Certified milk is milk which conforms to certain requirements as to health of the herd, health of the stablemen, light, ventilation, sanitation and cleanliness of stable, methods of handling, and finally the comparative freedom of the milk from bacteria. For Ontario, certified milk should not contain more than 5,000 bacteria per cubic centimeter during the winter months, and 10,000 per c.c., during the summer months.

This milk nets us $3 per hundred weight, in bulk. Many difficulties have been met, and in overcoming the same, valuable information has been gained as to the extra cost of production of this product, the most advantageous procedures and their feasibility for the Canadian dairyman.*

The bacteriological testing included in this work has been most ably conducted by Miss L. Dean, with the assistance of the Dominion Botanist, Mr. H. T. Güsow.

FINANCIAL STATEMENT OF DAIRY CATTLE.

Below are submitted inventory and returns from dairy cattle on the Central Farm under my charge during the year April 1, 1912 to March 31, 1913.

| Dairy cattle | April 1, 1912 | March 31, 1913 | Value | Value | Value | Gross returns
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>17,155 00</td>
<td>138 22,289 00</td>
<td>11,068 00</td>
<td>$16,142 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Detailed results of this work will appear during the coming year in a separate publication.
Summary of Live Stock Operations.

returns.

Gross returns .. $16,142.00
Manure, 800 tons at $1 per ton 800.00

$16,942.00

expenditures.

Value of foods consumed $ 6,880.00
Cost of labour 2,776.00
Cost of new stock purchased..................... 3,097.00

$12,753.00

Net balance from dairy cattle $4,189.00

NEW DAIRY BARN.

It was found necessary to build a small cow barn for the accommodation of 24 milch cows. The purpose of this barn was as follows:

1.—To provide accommodation for more cows than could be housed in the main breeding barn, the product from which to be used in the dairy manufacturing experimental work.

2.—To provide also a room to be fitted and used especially for the work on digestibility of food stuffs for cattle. This is a very important branch of Animal Husbandry work which will be conducted co-operatively with the Chemical Division.

3.—To stand as a good type of complete modern barn construction as to capacity, strength and lightness of structure, durability, capacity, convenience, light and ventilation, and in which both healthy cattle and pure milk may be produced.

4.—To contain specially constructed features such as the mangers, provided to give ideal conditions for the conducting of dairy cattle feeding experiments.

BARN PLAN.

The accompanying plans (Plates XXVII and XXVIII) together with the photos are, for the most part, self-explanatory. A few additional remarks may, however, help make some points more intelligible.

1. Foundation.

The foundation is of concrete. A concrete wall footing is 18 inches wide. The concrete wall, which extends 1 foot above the floor level, is 1 foot in thickness, and to which the sill is bolted. A 3-inch tile just below and outside the footing was installed to prevent heaving and cracking of foundation wall.

2. Superstructure.

The superstructure is of wood, hip roof, plank frame, and roof covered with metal shingles. The whole frame is made of 2 x 6-inch plank, excepting joists and girths, which are made with 2 x 10-inch planks. The sills, purlins and plates are made of 2 ply 2x6-inch plank. The hipped roof is made up of 2x6-inch rafters covered with inch boards, paper and best quality metal shingles. No posts are in the loft, as the roof and purlins are supported by the plank frame trusses, which too are made of 2x6-inch plank.

The walls, from the outside, are battens, 1-inch planed boards, building paper, posts built from 2 x 6-inch plank, a thick patent fibre wall paper called 'Linofoam' and on inside 3-inch matched lumber. The ceiling of barn is also sheathed with seven-eighths lumber.

Iron posts, 3½-inch, support the floor of loft.
3. Dimensions.

The barn is 41 by 78 feet, outside measure. The ceiling of stable is 10 feet in height. The wall post in loft is 9 feet in height.

The cattle stands from end to end are of different lengths, one varying from 5 feet to 4 feet 8 inches, the other from 4 feet 10 inches to 4 feet 6 inches. The stalls are 3 feet 6 inches in width. The feed passage is 6 feet 2 inches wide, while the manure passages vary in width from 7 feet to 7 feet 4 inches. The mangers are 21 inches wide, with rounded bottoms. The gutters are 18 inches wide, with sloping bottoms.

The one foot of cement wall above the floor, the milk- and wash-room floors, the mangers and gutters were finished perfectly plain and smooth.

Feed passages were given a smooth finish, and then rolled.

Cattle stands were given a rough wood floor finish.

Manure passages were given a rough finish, and then lightly cross-lined and rolled.

Although somewhat harder to keep clean than a finish without the cross lining, yet it is perfectly safe for cattle to walk on with no danger of slipping, even though the floor is wet.

5. Levels.

The floors, excepting feed room and digestion room, are of concrete. All passages, including the manure passages and feed passage, are on the same level. The stands are two and one-half inches higher than the manure passages. The manger bottoms are one and a half inches higher than the front of stands. The divisions between mangers and stands also are of concrete, cut down at throat of cattle to a height of 7 inches above front of stand and 5½ inches above manger bottom. The front of mangers is of concrete, 4 inches thick and having a height of 2 feet above feed passage. The gutters are 8 inches deep next the stand and 6 inches deep next the passage.

The stands have a slope of one and a half inches from front to rear.

The main feed passage is one inch higher in the centre than next the manger fronts. A graded groove next manger leads to traps in gutters to provide for floor washing.

The manure passages slope from walls to gutters, one inch in seven feet. The bottom of gutter is one-half inch higher next cattle than next passage and slopes from one end to the other at the rate of 1 inch in 18 feet. These slopes facilitate the cleaning out of liquid manure as well as keeping clean the tails of cows. The sides of gutters are vertical.

7. Light.

As much light as the strength of walls would permit was here installed. Windows in walls and doors were made as large as possible. The cattle barn will accommodate 24 cows and is lighted by 468 square feet of glass, or at the rate of 19½ square feet per head. Direct sunlight reaches every part of the Barn, which renders it most sanitary, bright and cheerful.

8. Ventilation.

A modified Rutherford system of ventilation is used in this barn, differing only in some minor details from the systems of the other barns.
Plate XXIII

New Dairy Cattle Barn. Central Experimental Farm, Ottawa.

Note: (1) Ventilation system; (2) Milk Room Annex; (3) Method of handling manure; (4) Style of windows; Counter-weighted hay door in loft.

New Dairy Cattle Barn. Central Experimental Farm, Ottawa. Interior View.

Note: (1) Lighting; (2) Ventilation, fresh air intake at floor; (3) Ventilation, foul air outlets at ceiling; (4) Cement passage and stands.
CENTRAL EXPERIMENTAL FARM
OTTAWA,
DAIRY BARN.

SALO

FEED & MIXING ROOM
(ROOT CELLAR BELOW)

DIGESTION ROOM
(Chemical Division)

GROUND PLAN
(1 in 200)

(Plate XXIV)
Fresh air is admitted through the walls at floor level and conducted to a height of one foot above floors. For this purpose, 6-inch sewer-pipe elbows were installed in the wall during construction. A cement casing guards this on the inside. Ventilator boxes on the outside of wall, extending 3 feet above pipe and with openings on sides at top prevent strong direct air currents, yet supply a uniform, adequate flow of fresh air to the barn.

The area of intake pipe per head is about 14 square inches. The outlets are three in number, two of which are from the cow barn and one from the root cellar and digestion room. Each outlet is 18 inches square, inside diameter, and is thoroughly insulated to prevent condensation of moisture. These outlets are not placed in the centre line of building but alternately on each side, extend from ceiling of stable to roof and follow the roof to peak of barn, thus straddling the hay track in loft. The total area of outlet for the cow stable is 648 square inches, or 27 square inches per cow.

Both incoming fresh air and outgoing foul air currents are controlled by dampers, thus giving uniformity to both air currents and temperature.

The windows of this barn throughout are in two sash, the upper of which is hinged to the lower and opens in from the top. They may be tilted in at any angle by means of a cord operating a small pulley on a worm spindle. This is easy to operate, is cheap, and prevents the slaming of windows. When warm weather necessitates more air current than admitted through the fresh air intakes, the windows are opened as needed.

The ventilation of the root cellar is on the same plan, although differing somewhat in construction. Fresh air is conducted through the walls at a height of 6 feet above the floor. Slatted flues conduct the air downward to slat sided floor ventilators, which in turn converge to the foul air outlet in centre. The latter is slatted to within 6 inches of the ceiling, from which it is insulated to the outlet on roof. Both the intakes and outlet are controlled by dampers. The roots in this cellar cool and dry very rapidly in the fall and have kept exceptionally well to date.

The cattle barn will accommodate 24 milch cows standing in all-steel stalls and tied by means of swinging steel stanchions.

The digestion experimental room will accommodate two animals and all necessary appliances.

A separate wash and locker room with well-equipped milk room adjoining, facilitates cleanliness of the barn, the stablemen and the milk.

A root cellar, under the feed and digestion rooms, accommodates 3,000 bushels of roots.

A meal room over feed room is fitted with bins. Meal chutes convey meal to the feed room below. A cut-straw chute also leads into feed room.

A silo, opening into feed room, has over 200 tons capacity. This will provide summer as well as winter silage.

A litter carrier is installed, which takes manure to a short line track outside of barn and drops it into a vehicle, in which manure is hauled direct to field.

An important feature in this barn is a dust proof hay chute which conveys the hay from loft to the floor of stable. Experiments already conducted have proven the great worth of this in eliminating the bulk of dust from the stable atmosphere, thus facilitating the keeping of barn clean, and the production of pure and certified milk.

The distribution of feed is done by means of two low, three-wheel trucks. The meal truck is fitted with bins, hence will accommodate several kinds of meal. Experience with these trucks, as well as the suspended feed carriers, has resulted most favourably to the former method.

16—36
Individual basins provide water for each cow. As the underfeed system was well illustrated in the main cattle barn, it was decided to install an overhead feed system in this building. Results to date have been quite satisfactory.

FARM BUILDING PLANS.

There is now at the Central Experimental Farm, probably the most complete, modern and perfect system of live stock barns which represent the best types that can be found in Canada. Inquiries as to details of these building plans are coming, in increasing numbers, from all parts of Canada. Consequently, this Division each year has been assisting an increasingly large number of farmers in planning either the erection of new, or the remodelling of their old buildings. Although this takes a large amount of time, yet, considering the most undesirable state of the average Canadian barn, it is felt that this work demands immediate attention. Farmers, anticipating the construction or remodelling of their farm buildings, may receive information along this line by writing the Division of Animal Husbandry, Central Experimental Farm, Ottawa.
EXPERIMENTAL STATION, CHARLOTTETOWN, P.E.I.

REPORT OF THE SUPERINTENDENT—J. A. CLARK, B.S.A.

Owing to the limited area of this farm, no dairy herd has as yet been established, but if the proposed farm extension materializes, a small dairy herd will be installed during the coming year.

At present the live stock work is limited to experimental feeding of beef-steers and lambs, together with the maintenance of necessary horses. One grade dairy cow only is kept as a milk supply to the farm houses. As an illustration of the possible profits from grade cows when well fed, the following record is detailed:

DAIRY COW.

The cow calved April 6. There was no pasture available, so that she was stabled throughout the year, except for a few days in July, when she was tethered. She met with an accident on tether that reduced her milk from 33 pounds per day to 11. She gradually came up on her milk again but never returned to her former flow.

The following data were recorded:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of days milking</td>
<td>319</td>
</tr>
<tr>
<td>Number of pounds of milk</td>
<td>8,290</td>
</tr>
<tr>
<td>Average per cent fat during June</td>
<td>4.25</td>
</tr>
<tr>
<td>Amount of hay fed, counted for 1 year</td>
<td>3,226 lb</td>
</tr>
<tr>
<td>Amount of oats fed, counted for 1 year</td>
<td>1.57</td>
</tr>
<tr>
<td>Amount of bran fed, counted for 1 year</td>
<td>2.687</td>
</tr>
<tr>
<td>Amount of roots fed, counted for 1 year</td>
<td>15.724</td>
</tr>
<tr>
<td>Ninety days feed on soiling crop</td>
<td>4,500</td>
</tr>
<tr>
<td>Cost of feed</td>
<td>$86 30</td>
</tr>
<tr>
<td>Value of milk, 3,316 quarts at 5 cents per quart</td>
<td>$165 80</td>
</tr>
<tr>
<td>Balance</td>
<td>$79 50</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARM, NAPPA, N.S.

REPORT OF THE SUPERINTENDENT—R. ROBERTSON.

DAIRY CATTLE GRADING EXPERIMENT.

OBJECT OF EXPERIMENT.

The object of this experiment is to discover the actual cash value of the pure-bred dairy sire in a herd of common and mixed breeding in the increased production of the progeny, as well as their proportionately greater market value.

OUTLINE OF EXPERIMENT.

Twelve heifers, born in 1909, were purchased in December, 1910, and bred at once to the pure-bred Ayrshire bull purchased at the same time. These heifers were of fair quality, but of common breeding, representing the average stock of this part of Nova Scotia.

Throughout the whole experiment the female progeny only shall be saved.

The first crop of calves are naturally half-bred Ayrshire grades, termed First Ayrshire Cross (A). All succeeding female progeny from these shall be bred to calve at two years of age, and only the best of pure-bred Ayrshire bulls to be used thereon. The first progeny from the First Ayrshire Cross (A) shall be termed 'Second Ayrshire Cross (A I)' and their progeny in turn 'Third Ayrshire Cross (A II),' and so on till the end of experiment.

A brief outline of the details of experiment would be as follows:

1. Prepare the 'Foundation Heifers' and all succeeding female progeny for their calving by being in good condition.
2. Prepare for each succeeding calving by a four to eight weeks' rest and good conditioning.
3. Breed all ages for fall calving.
4. Breed 'Foundation Heifers' in the winter of 1910-11 to pure-bred Ayrshire bull; 1911-12 to pure-bred Holstein bull; 1912-13 to pure-bred Guernsey bull; 1913-14 to pure-bred Ayrshire bull; 1914-15 to pure-bred Holstein bull; 1915-16 to pure-bred Guernsey bull.
5. Breed the progeny of each of the first cross heifers only to bulls of the same breed as their sires.
6. The following diagram will give an idea as to nomenclature of the different generations from each original cow.

In this nomenclature please note:

1. Each 'Foundation Heifer' will, in her heifers, originate a family. Hence her number should be incorporated into the number of all her progeny.
2. The year signifies the year of birth and, for ease in making diagram, is calculated as December of that year.
3. The diagram shows the possible progeny of each heifer in the six successive years of breeding, making no allowance for losses and figuring that all progeny are females.
4. All the original 'Foundation Heifers' should as much as possible be kept until the fall of 1917, in order to have complete comparative data.
5. This data includes the following:

(a) Cost of rearing to first calving.
(b) Cost of feeding for each lactation period.
(c) Character and quantity of feeds for each lactation period.
(d) Milk, fat and butter produced in each lactation period.
(e) Profit produced in each lactation period.
(f) Photographic records of each and the progeny of each 'Foundation Heifer,' showing heredity as to quality, size and type.

<table>
<thead>
<tr>
<th>Foundation Heifer, born 1909—No. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Ayrshire Cross 1 A.—1911.</td>
</tr>
<tr>
<td>Second Ayrshire Cross 1 A. 1—1913.</td>
</tr>
<tr>
<td>Second A.C. 1 A. 2—1914.</td>
</tr>
<tr>
<td>Second A.C. 1 A. 3—1915.</td>
</tr>
<tr>
<td>Second A.C. 1 A. 4—1916.</td>
</tr>
<tr>
<td>Second A.C. 1 A. 5—1917.</td>
</tr>
<tr>
<td>Second H.C. 1 H. 1—1914.</td>
</tr>
<tr>
<td>Second H.C. 1 H. 2—1915.</td>
</tr>
<tr>
<td>Second H.C. 1 H. 3—1916.</td>
</tr>
<tr>
<td>Second H.C. 1 H. 4—1917.</td>
</tr>
</tbody>
</table>

| **First Holstein Cross 1 H.—1912.** |
| **Second A.C.** 1 A. 1.1.—1915. |
| **Third A.C.** 1 A. 1.2.—1916. |
| **Third A.C.** 1 A. 1.3.—1917. |
| **Third H.C.** 1 H. 1.—1916. |
| **Third H.C.** 1 H. 2.—1917. |

| **First Guernsey Cross 1 G.—1913.** |
| **Second G.C.** 1 G. 1—1915. |
| **Second G.C.** 1 G. 2—1916. |
| **Second G.C.** 1 G. 3—1917. |

| **First Ayrshire Cross 1 A.S.—1914.** |
| **Second A.C.** 1 A.S. 1—1916. |

| **First Holstein Cross 1 H.S.—1915.** |
| **Second A.C.** 1 A.S. 2—1917. |

| **First Guernsey Cross 1 G.S.—1916.** |
| **Third A.C.** 1 A. 1.1.1.—1917. |
| **Fourth A.C.** 1 A. 1.1.1.1.—1917. |
RESULTS OF EXPERIMENTS TO DATE, APRIL 1, 1913.

The twelve heifers termed 'foundation heifers' have all dropped their first calves, and, with one exception (Jean), have completed their first lactation periods.

The first crop of calves (first cross Ayrshire), calved in the fall of 1911, yielded seven heifers. These are being bred to a pure-bred Ayrshire bull, to calve during the fall of 1913.

The second crop of calves (first cross Holstein), calved in the fall of 1912, yielded six heifers.

All these progeny of the 'foundation heifers' are developing with promise of superiority to their dams.

FEEDING THE DAIRY CATTLE.

Owing to the excessive drought of the summer of 1912, the limited available pasture afforded insufficient forage, which shortage affected the milk flow to a certain extent. A limited meal ration helped to correct this deficiency.

On estimating the cost of feeds consumed, data were calculated from two months previous to calving until drying off at the completion of first lactation period. In future calculations, feed will be recorded from drying off to drying off.
DAIRY HERD RECORDS.

In compiling the following tables, meal was calculated at market values and roughages at the actual cost of production as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hay</td>
<td>$ 7.00 per ton.</td>
</tr>
<tr>
<td>Meal mixture</td>
<td>30.00 " "</td>
</tr>
<tr>
<td>Roots</td>
<td>2.00 " "</td>
</tr>
<tr>
<td>Ensilage</td>
<td>2.00 " "</td>
</tr>
<tr>
<td>Pasture per month</td>
<td>1.00 per cow.</td>
</tr>
</tbody>
</table>

On calculating the value of the product, butter is valued at 26 cents per pound, and skim milk at 20 cents per cwt.

The value of bedding used and cost of labour have not been taken into account, but such are more than offset by the value of the manure and value of the calves.
<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Date last Calf</th>
<th>No. of days in Milk</th>
<th>Daily average Yield</th>
<th>Total Milk</th>
<th>Fat</th>
<th>Butter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vera</td>
<td>3 years</td>
<td>January 1, 1912</td>
<td>315</td>
<td>17</td>
<td>5,869</td>
<td>3.5</td>
<td>221.67</td>
</tr>
<tr>
<td>Myrtle</td>
<td>3</td>
<td>1, 1912</td>
<td>322</td>
<td>12.4</td>
<td>3,897</td>
<td>4.1</td>
<td>192.79</td>
</tr>
<tr>
<td>Georgie</td>
<td>3</td>
<td>Feb. 26, 1912</td>
<td>516</td>
<td>12.9</td>
<td>4,616</td>
<td>3.9</td>
<td>184.30</td>
</tr>
<tr>
<td>Spot</td>
<td>3</td>
<td>January 1, 1912</td>
<td>322</td>
<td>12.6</td>
<td>4,660</td>
<td>4.1</td>
<td>193.85</td>
</tr>
<tr>
<td>Maggie</td>
<td>3</td>
<td>1, 1912</td>
<td>398</td>
<td>16.17</td>
<td>4,481</td>
<td>3.9</td>
<td>228.54</td>
</tr>
<tr>
<td>Jessie</td>
<td>3</td>
<td>1, 1912</td>
<td>271</td>
<td>11.36</td>
<td>3,133</td>
<td>3.9</td>
<td>142.90</td>
</tr>
<tr>
<td>Mossy</td>
<td>3</td>
<td>9, 1912</td>
<td>282</td>
<td>10.65</td>
<td>3,004</td>
<td>4.85</td>
<td>178.40</td>
</tr>
<tr>
<td>Bell</td>
<td>3</td>
<td>13, 1912</td>
<td>330</td>
<td>16.56</td>
<td>5,455</td>
<td>3.9</td>
<td>256.74</td>
</tr>
<tr>
<td>Jean</td>
<td>3</td>
<td>March 11, 1912</td>
<td>335</td>
<td>19.03</td>
<td>6,615</td>
<td>3.65</td>
<td>234.51</td>
</tr>
<tr>
<td>Queen</td>
<td>3</td>
<td>January 4, 1912</td>
<td>394</td>
<td>14.14</td>
<td>4,505</td>
<td>3.9</td>
<td>197.43</td>
</tr>
<tr>
<td>Ella</td>
<td>3</td>
<td>Feb. 26, 1912</td>
<td>354</td>
<td>12.54</td>
<td>3,312</td>
<td>3.75</td>
<td>146.11</td>
</tr>
<tr>
<td>Molly</td>
<td>3</td>
<td>January 6, 1912</td>
<td>302</td>
<td>11.03</td>
<td>3,333</td>
<td>3.8</td>
<td>149.00</td>
</tr>
<tr>
<td>Average 12 head</td>
<td></td>
<td></td>
<td>392</td>
<td>13.9</td>
<td>4,222</td>
<td>3.93</td>
<td>193.46</td>
</tr>
</tbody>
</table>
SESSIONAL PAPER No. 16

Nappan Farm.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 57.47</td>
<td>$ 10.29</td>
<td>$ 67.76</td>
<td>1,728</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>55.22</td>
<td>102.8</td>
<td>24.9</td>
<td>1.1</td>
<td>12.54</td>
</tr>
<tr>
<td>$ 50.12</td>
<td>$ 7.60</td>
<td>$ 57.72</td>
<td>1,390</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>50.30</td>
<td>125.8</td>
<td>26.0</td>
<td>0.0</td>
<td>7.42</td>
</tr>
<tr>
<td>$ 47.90</td>
<td>$ 7.66</td>
<td>$ 55.56</td>
<td>1,390</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>50.17</td>
<td>124.9</td>
<td>27.2</td>
<td>-1.2</td>
<td>5.39</td>
</tr>
<tr>
<td>$ 50.91</td>
<td>$ 7.73</td>
<td>$ 58.64</td>
<td>1,415</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>50.55</td>
<td>124.5</td>
<td>25.8</td>
<td>2</td>
<td>8.09</td>
</tr>
<tr>
<td>$ 59.42</td>
<td>$ 9.30</td>
<td>$ 68.92</td>
<td>1,617</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>53.58</td>
<td>107.5</td>
<td>23.4</td>
<td>2.6</td>
<td>15.34</td>
</tr>
<tr>
<td>$ 37.15</td>
<td>$ 5.34</td>
<td>$ 43.10</td>
<td>1,082</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>45.55</td>
<td>146.3</td>
<td>32.0</td>
<td>-6.0</td>
<td>-2.46</td>
</tr>
<tr>
<td>$ 46.38</td>
<td>$ 5.63</td>
<td>$ 52.03</td>
<td>1,071</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>45.39</td>
<td>151.1</td>
<td>25.3</td>
<td>0.7</td>
<td>6.64</td>
</tr>
<tr>
<td>$ 65.18</td>
<td>$ 10.43</td>
<td>$ 75.61</td>
<td>1,782</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>56.65</td>
<td>102.6</td>
<td>22.4</td>
<td>3.6</td>
<td>16.56</td>
</tr>
<tr>
<td>$ 60.57</td>
<td>$ 10.76</td>
<td>$ 71.73</td>
<td>1,730</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>55.57</td>
<td>98.5</td>
<td>23.8</td>
<td>2.2</td>
<td>16.16</td>
</tr>
<tr>
<td>$ 51.33</td>
<td>$ 8.21</td>
<td>$ 59.54</td>
<td>1,140</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>50.92</td>
<td>118.3</td>
<td>25.7</td>
<td>0.3</td>
<td>8.62</td>
</tr>
<tr>
<td>$ 37.98</td>
<td>$ 6.33</td>
<td>$ 44.31</td>
<td>1,112</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>46.60</td>
<td>138.4</td>
<td>31.5</td>
<td>-5.5</td>
<td>-1.69</td>
</tr>
<tr>
<td>$ 38.74</td>
<td>$ 6.57</td>
<td>$ 45.31</td>
<td>1,193</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>47.22</td>
<td>141.3</td>
<td>31.7</td>
<td>-5.7</td>
<td>-1.91</td>
</tr>
<tr>
<td>$ 50.18</td>
<td>$ 8.41</td>
<td>$ 58.59</td>
<td>1,415</td>
<td>12,190</td>
<td>3,751</td>
<td>4</td>
<td>50.55</td>
<td>119.7</td>
<td>26.0</td>
<td>0.0</td>
<td>8.14</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, CAP ROUGE, P.Q.

REPORT OF THE SUPERINTENDENT—GUS. A. LANGELIER.

DAIRY CATTLE.

Although this herd is not yet two years old, there are now at the Station, 1 bull, 9 cows, 5 heifers, registered French Canadians; also ten cows, grades of the same breed, and four heifers from the grades and sired by a pure-bred bull.

The following table gives details as to milk production of the cows and heifers which had finished a lactation period when this report was made.

<table>
<thead>
<tr>
<th>Name of cow</th>
<th>Age</th>
<th>M. for Mature</th>
<th>Date of dropping calf</th>
<th>No. of days in lactation period</th>
<th>Total pounds of milk in lactation period</th>
<th>Daily average yield of milk</th>
<th>Pounds of fat produced in period</th>
<th>Average per cent of fat in milk</th>
<th>Approximate weight of cow</th>
<th>Rank as milk producer</th>
<th>Rank as butter producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gipsy</td>
<td>G.F.C.</td>
<td>M. June 26, 1912</td>
<td>408</td>
<td>11,725</td>
<td>38.74</td>
<td>419.34</td>
<td>3.58</td>
<td>985</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Flora</td>
<td>G.F.C.</td>
<td>M. March 29, 1912</td>
<td>310</td>
<td>6,852</td>
<td>20.15</td>
<td>319.51</td>
<td>4.66</td>
<td>1,125</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Jeannette de St. Denis</td>
<td>F.C.</td>
<td>M. April 27, 1912</td>
<td>337</td>
<td>6,483</td>
<td>19.15</td>
<td>363.74</td>
<td>4.71</td>
<td>800</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bella</td>
<td>G.F.C.</td>
<td>M. May 6, 1912</td>
<td>329</td>
<td>5,673</td>
<td>17.24</td>
<td>254.68</td>
<td>4.49</td>
<td>1,060</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Amanda</td>
<td>G.F.C.</td>
<td>M. May 4, 1912</td>
<td>311</td>
<td>5,678</td>
<td>18.26</td>
<td>243.68</td>
<td>4.32</td>
<td>925</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Mlleuree, 142</td>
<td>F.C.</td>
<td>M. Feb. 22, 1912</td>
<td>319</td>
<td>5,642</td>
<td>17.69</td>
<td>234.33</td>
<td>4.15</td>
<td>875</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Excilee de Kamouraska</td>
<td>F.C.</td>
<td>2,414</td>
<td>358</td>
<td>4,265</td>
<td>11.91</td>
<td>215.92</td>
<td>5.06</td>
<td>625</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Finette 2eme, 218</td>
<td>F.C.</td>
<td>M. April 4, 1912</td>
<td>263</td>
<td>4,851</td>
<td>14.44</td>
<td>200.34</td>
<td>4.13</td>
<td>935</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Christine</td>
<td>G.F.C.</td>
<td>M. May 25, 1912</td>
<td>293</td>
<td>4,300</td>
<td>14.26</td>
<td>184.44</td>
<td>4.56</td>
<td>930</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Kate</td>
<td>G.F.C.</td>
<td>M. April 16, 1912</td>
<td>316</td>
<td>4,291</td>
<td>13.29</td>
<td>192.67</td>
<td>4.59</td>
<td>940</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Simonne, 2,230</td>
<td>F.C.</td>
<td>M. June 13, 1912</td>
<td>271</td>
<td>4,154</td>
<td>15.33</td>
<td>192.59</td>
<td>4.64</td>
<td>870</td>
<td>12</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Eva</td>
<td>G.F.C.</td>
<td>M. March 23, 1912</td>
<td>257</td>
<td>4,360</td>
<td>16.98</td>
<td>180.74</td>
<td>4.28</td>
<td>1,025</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Hilda</td>
<td>G.F.C.</td>
<td>M. April 25, 1912</td>
<td>243</td>
<td>4,000</td>
<td>16.48</td>
<td>183.24</td>
<td>4.58</td>
<td>1,050</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Frisée, 1,012</td>
<td>F.C.</td>
<td>M. April 27, 1912</td>
<td>362</td>
<td>3,644</td>
<td>10.35</td>
<td>180.40</td>
<td>4.95</td>
<td>885</td>
<td>16</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Irene</td>
<td>G.F.C.</td>
<td>3 May 12, 1912</td>
<td>266</td>
<td>3,688</td>
<td>13.86</td>
<td>175.80</td>
<td>4.77</td>
<td>1,130</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Gloire, 2,367</td>
<td>F.C.</td>
<td>M. April 21, 1912</td>
<td>266</td>
<td>3,774</td>
<td>14.18</td>
<td>168.40</td>
<td>4.46</td>
<td>1,025</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Totals and averages</td>
<td>4,921</td>
<td>83,344</td>
<td>16.93</td>
<td>3,671.17</td>
<td></td>
<td>4.41</td>
<td>932</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It will be seen that fourteen mature cows, one three-year-old and one two-year-old heifer, milked during 4,921 days, and gave during that time, 83,314 pounds of milk containing 3,671.17 pounds of butter fat, or 16.93 pounds of milk per day testing 4.41. The average weight of these cattle was 952 pounds. The average production was 5,207 pounds of milk containing 229.45 pounds of butter fat. It is interesting to note that only six cows went over this, and if the rest of the sixteen had averaged the same, viz., 7,003 pounds of milk containing 206.10 pounds of butter fat, the total production would have been 112,048 pounds of milk instead of 83,314 and 4,737.60 pounds of butter fat instead of 3,671.17, or a difference of 28,734 pounds of
milk and 1,068-43 pounds of butter fat. And this is what happens in nearly all the herds of the country, the robber cows dragging down the average, too often below the paying line. This would show that the farmer who weighs the milk and tests it can get rid of the bad cows, whilst the other continues to keep them instead of being kept by them.

For experimental purposes, these cows should be kept through another or perhaps two other lactation periods, to be able to make an average of their production of two or more years and also to get at least one heifer by a registered bull, out of each. As soon as a heifer is obtained from a 'robber' cow which has gone through two lactation periods, the latter can be discarded. It will be interesting to compare the milk yield, butter fat test, and weight of these heifers with that of their dams.

After Gipsy, the best milker was purchased and it was seen that she promised to be much above the average, both her dam and daughter were purchased. At the beginning of the lactation period, Gipsy was 7, her dam, Hilda, was 10, and her daughter, Irène, 3 years of age. The purchase of the dam and daughter did not prove a very profitable one as far as their producing capacity is concerned, for they are both below the average. This would tend to confirm Dr. Raymond Pearl's contention that the producing capacity is transmitted rather through a male out of a high producing dam, than through the high producing dam herself. However, it will be interesting to watch the production of these three cows.
EXPERIMENTAL FARM, BRANDON, MAN.

REPORT OF THE SUPERINTENDENT—W. C. McKILLCAN, B.S.A.

DAIRY CATTLE.

There are thirty-nine head of cattle on hand, on March 31, 1913, made up as follows:

- Shorthorn: 18 milch cows, 15 heifers and calves, 2 bulls;
- Ayrshire: 1 milch cow, 1 heifer;
- Grade: 1 milch cow, 1 heifer.

The Shorthorns are of the dual purpose type, having been bred for milk production as well as beef. The herd includes the descendants of cows selected from some of the best English dairy Shorthorn herds a number of years ago.

During the year the following animals were sold, to farmers of Manitoba and the other Prairie Provinces, to be used for breeding purposes: 8 young Shorthorn bulls, 7 Shorthorn heifers or cows, and one Ayrshire bull calf. There is a great demand for dual purpose Shorthorns, and a much larger number of sales could have been made, if the animals had been available.

The dairy milk records are given by lactation periods, instead of by the fiscal year, as formerly. This gives a fairer comparison of the milking qualities of the cows, and is the way in which milk yields are usually counted. The following are the cows that have completed a lactation period during the year. Several younger cows, that have dropped their first calf during the year and are still milking, are not reported. A number of the cows in this list have since been sold or slaughtered.

DAIRY RECORD—Brandon Farm.

<table>
<thead>
<tr>
<th>Name of Cow</th>
<th>Breed</th>
<th>Age at beginning of lactation period</th>
<th>Date of dropping calf</th>
<th>Number of days in lactation period</th>
<th>Total pounds of Milk for period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illuminata 3rd</td>
<td>Shorthorn</td>
<td>7</td>
<td>Nov. 23, 1911</td>
<td>143</td>
<td>10,287</td>
</tr>
<tr>
<td>Ottawa Marchioness 5th</td>
<td>Ayrshire 2</td>
<td>7</td>
<td>Aug. 30, 1911</td>
<td>431</td>
<td>8,322</td>
</tr>
<tr>
<td>Snowball</td>
<td></td>
<td>7</td>
<td>Mar. 21, 1911</td>
<td>460</td>
<td>6,719</td>
</tr>
<tr>
<td>Ottawa Molly 4th</td>
<td>Shorthorn</td>
<td>7</td>
<td>Aug. 15, 1911</td>
<td>438</td>
<td>6,201</td>
</tr>
<tr>
<td>Rose of Brandon</td>
<td>Shorthorn</td>
<td>7</td>
<td>Apr. 16, 1912</td>
<td>365</td>
<td>5,892</td>
</tr>
<tr>
<td>Ottawa Marchioness 2nd</td>
<td></td>
<td>7</td>
<td>Nov. 23, 1911</td>
<td>334</td>
<td>5,423</td>
</tr>
<tr>
<td>Ottawa Jane 2nd</td>
<td></td>
<td>7</td>
<td>Aug. 7, 1911</td>
<td>319</td>
<td>5,773</td>
</tr>
<tr>
<td>Daisy of Brandon</td>
<td></td>
<td>7</td>
<td>Aug. 31, 1911</td>
<td>271</td>
<td>5,594</td>
</tr>
<tr>
<td>Buttermilk</td>
<td>Grade</td>
<td>7</td>
<td>April 1, 1912</td>
<td>271</td>
<td>5,594</td>
</tr>
<tr>
<td>Illuminata 4th</td>
<td>Shorthorn</td>
<td>7</td>
<td>July 11, 1911</td>
<td>305</td>
<td>5,467</td>
</tr>
<tr>
<td>Ottawa Lass</td>
<td></td>
<td>7</td>
<td>Nov. 22, 1912</td>
<td>306</td>
<td>5,410</td>
</tr>
<tr>
<td>Jessica Eisenhower 3rd</td>
<td></td>
<td>7</td>
<td>Aug. 4, 1911</td>
<td>405</td>
<td>5,180</td>
</tr>
<tr>
<td>Jane of Brandon</td>
<td></td>
<td>7</td>
<td>July 31, 1911</td>
<td>324</td>
<td>4,924</td>
</tr>
<tr>
<td>Ottawa Marchioness 4th</td>
<td></td>
<td>7</td>
<td>Mar. 6, 1912</td>
<td>227</td>
<td>4,331</td>
</tr>
<tr>
<td>Molly 2nd</td>
<td></td>
<td>7</td>
<td>Dec. 23, 1911</td>
<td>372</td>
<td>4,353</td>
</tr>
<tr>
<td>Molly 3rd</td>
<td></td>
<td>7</td>
<td>Mar. 2, 1912</td>
<td>237</td>
<td>4,594</td>
</tr>
<tr>
<td>Duchess 3rd</td>
<td></td>
<td>7</td>
<td>Sept. 26, 1911</td>
<td>362</td>
<td>3,880</td>
</tr>
<tr>
<td>Molly 4th</td>
<td></td>
<td>7</td>
<td>Jan. 19, 1912</td>
<td>273</td>
<td>3,722</td>
</tr>
<tr>
<td>Brandon Beauty</td>
<td></td>
<td>7</td>
<td>May 16, 1912</td>
<td>227</td>
<td>2,938</td>
</tr>
<tr>
<td>Ottawa Marchioness</td>
<td></td>
<td>7</td>
<td>Jan. 23, 1912</td>
<td>325</td>
<td>2,848</td>
</tr>
</tbody>
</table>

Average......... 5,039
EXPERIMENTAL STATION, LACOMBE, ALTA.

REPORT OF THE SUPERINTENDENT—G. H. HUTTON, B.S.A.

DAIRY CATTLE.

A herd of Holstein Friesian cattle was established during the year. The Holstein herd consists of seventeen head, headed by 'Royalton Korndyke Count' (88884). The females in the herd are all young and out of heavy producing dams. 'Lawncroft Rosa Echo' (No. 15021), a heifer freshening at three years two months of age, has given 2,578 pounds of milk in seventy-seven days.

The Station owns four pure-bred Jersey females, one of which, freshening at twenty-three months of age, gave 8,200 pounds of milk in sixteen months.

The grade cows number seventeen, and are grades of Holsteins, Shorthorn and Ayrshire blood.

These grade cows will be divided into two herds, namely, Grade Holstein herd, Mixed blooded herd.

With each herd the dairy cattle grading experiment, as already under way at Nappan and other Farms, will be conducted, using the Holstein sires exclusively. The outline of this and data so far obtained will be reported next year.

The number of dairy cattle of all breeds and grades owned by this Station, is thirty-eight, all of which are in good condition.

BUILDINGS.

The following buildings were erected by day labour during 1912-13: Herdsman's cottage and woodshed, dairy barn, beef barn, storage barn, dairy and ice-house.

The herdsman's cottage is 26 by 28 feet, with a kitchen at the back, 16 by 20 feet. It has a concrete foundation and a concrete floor in the cellar, which is 16 by 20 by 7 feet. There are three bedrooms on the ground floor, while the attic will provide accommodation for two beds. This building cost $1,721.31, which is $223.67 less by day labour than a similar but smaller cottage cost in 1907, under contract.

The plan of the dairy barn, beef barn and storage barn is produced herewith. The total number of cattle, young and old, which may be accommodated in these buildings, is about one hundred head. The total cost of the buildings, including fixtures, which cost $926.93, was $11,700.75. Concrete foundations and floors contribute a large percentage of this cost. The dairy provides an engine room and a manufacturing room, a room for storing supplies, and an office on the ground floor. There are three bedrooms on the second floor and a room to be equipped as a bathroom. The building is 24 by 32 by 10, on a concrete foundation, with a full-size basement, concrete floored.

The ice-house is 16 by 20 by 12. The dimension material is 2 by 4, sheathed, papered and drop-sided. It is sheathed inside and the space is filled with sawdust. In the building, ice to the amount of about eighty tons has been stored.
EXPERIMENTAL FARM, AGASSIZ, B.C.

REPORT OF THE SUPERINTENDENT—P. H. MOORE, B.S.A.

DAIRY STOCK.

There have been some changes and improvements in the dairy stock since last year's report. Of the twenty-eight grades which were received just prior to the last report, twenty-four still remain. Two were killed for beef and two for tuberculosis, the latter reacting under the first and second tests which were made by Dr. S. Hadweu, Health of Animals Branch. Both of these animals might have easily been passed as they were in fine condition and showed very belated reactions, but post mortem examinations showed generalized cases of tuberculosis. There have since been made two more very thorough tests and the herd passed each time. Absolutely thorough testing and lack of compassion on the suspect have brought about this state of affairs in the herd, and by allowing nothing but tested stock therein, it is hoped by the above methods to keep free from tuberculosis.

The cows have improved in condition very much since the last report, and those, except the very oldest, which are freshening now, give promise of much better returns than they gave in the period which is now being reported. They were on pasture all summer and this was supplemented at short intervals by green feed. When they came in they were given a ration of hay, mangels and silage, mixed in proportions of three, five and twelve parts by weights, and they were fed all they would clean up (this ranged from thirty-five to seventy pounds each, depending on the cow). Grain was fed in amounts depending upon the individuality of the cow. However, the cows were not fed high at any time, although at first it took more to keep them in condition than when they became acclimatized. Bran, crushed oats, peas and barley (home-grown), and crushed oats and wheat (from the prairies), were fed as the regular mixture and, for a few months before freshening, cows received from one to two pounds of oil cake meal.

The above grains have been found more profitable for milk production than a mixture of bran, shorts and oil meal, a ration of the same approximate cost, based on tests of the whole herd.

For profitable feeding of the dairy herd either roots or ensilage are essential, but both are preferable.

In June, 1912, there were purchased from J. M. Steves, of Steveston, three pure-bred cows, namely, Aurora Mechthilde (9701), four years old, Lina of Lulu 2nd (12044) three years old; and Pietze Priscilla Mechthilde (14123) 2 1/4 years old.

These are all sired by Sir Canary Mechthilde (5318), and to date have all done good work. A heifer calf has been dropped by Aurora Mechthilde, but as yet the other two have not freshened.

The young bull, Sir Natoye Korndyke, although not a show bull, has developed into a large, vigorous animal. In November, 1912, there was purchased another young bull, Colony Sena Korndyke (14540), from the Provincial Government Farm at Mt. Coquitlam. This bull is very much the same blood line as the one we are now using, only he is several generations closer to Pontiac Korndyke, being sired by Ragapple Korndyke 7th. This youngster promises well.

The following table gives the results of all cows that have finished their first lactation period since coming to this Farm. Another year should see a big improvement in these results:
Dairy Records.—Agassiz Farm.

<table>
<thead>
<tr>
<th>Date of Calving</th>
<th>Calf</th>
<th>No. of Days Milked</th>
<th>Grain Fed</th>
<th>Silage Fed</th>
<th>Total Milk</th>
<th>Average Milk Daily</th>
<th>Average Fat</th>
<th>Total Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 4, 1911</td>
<td>Bull</td>
<td>305</td>
<td>1,368</td>
<td>7,260</td>
<td>6,418.42</td>
<td>21.94</td>
<td>3.42</td>
<td>219.54</td>
</tr>
<tr>
<td>January 28, 1912</td>
<td></td>
<td>290</td>
<td>1,120</td>
<td>9,020</td>
<td>7,678.84</td>
<td>26.47</td>
<td>4.03</td>
<td>306.45</td>
</tr>
<tr>
<td>April 13, 1912</td>
<td></td>
<td>331</td>
<td>1,672</td>
<td>13,820</td>
<td>8,888.37</td>
<td>26.87</td>
<td>3.97</td>
<td>334.74</td>
</tr>
<tr>
<td>February 26, 1912</td>
<td></td>
<td>325</td>
<td>1,558</td>
<td>11,500</td>
<td>9,996.97</td>
<td>28.02</td>
<td>3.43</td>
<td>322.21</td>
</tr>
<tr>
<td>March 1, 1912</td>
<td></td>
<td>234</td>
<td>836</td>
<td>4,650</td>
<td>5,145.52</td>
<td>22.07</td>
<td>3.72</td>
<td>214.41</td>
</tr>
<tr>
<td>February 23, 1912</td>
<td>Heifer</td>
<td>343</td>
<td>1,233</td>
<td>10,480</td>
<td>7,817.2</td>
<td>21.92</td>
<td>4.31</td>
<td>315.37</td>
</tr>
<tr>
<td>January 2, 1912</td>
<td>Bull</td>
<td>391</td>
<td>1,069</td>
<td>6,220</td>
<td>7,219.5</td>
<td>23.97</td>
<td>4.91</td>
<td>289.35</td>
</tr>
<tr>
<td>January 21, 1912</td>
<td></td>
<td>402</td>
<td>1,466</td>
<td>14,230</td>
<td>11,163.1</td>
<td>27.76</td>
<td>3.56</td>
<td>375.08</td>
</tr>
<tr>
<td>March 15, 1912</td>
<td>Heifer</td>
<td>302</td>
<td>1,411</td>
<td>9,830</td>
<td>7,123.84</td>
<td>23.58</td>
<td>3.42</td>
<td>243.63</td>
</tr>
<tr>
<td>April 2, 1912</td>
<td></td>
<td>330</td>
<td>1,533</td>
<td>19,560</td>
<td>7,025.84</td>
<td>21.28</td>
<td>4.33</td>
<td>334.20</td>
</tr>
<tr>
<td>April 4, 1912</td>
<td>Bull</td>
<td>323</td>
<td>1,436</td>
<td>11,500</td>
<td>7,757.92</td>
<td>23.99</td>
<td>3.65</td>
<td>288.07</td>
</tr>
<tr>
<td>February 13, 1912</td>
<td>Heifer</td>
<td>333</td>
<td>1,452</td>
<td>11,975</td>
<td>8,468.57</td>
<td>25.25</td>
<td>3.89</td>
<td>337.69</td>
</tr>
<tr>
<td>March 17, 1912</td>
<td>Bull</td>
<td>348</td>
<td>1,684</td>
<td>12,860</td>
<td>10,332.14</td>
<td>29.69</td>
<td>3.31</td>
<td>341.99</td>
</tr>
<tr>
<td>May 11, 1912</td>
<td>Heifer</td>
<td>290</td>
<td>1,434</td>
<td>10,800</td>
<td>7,410.66</td>
<td>25.57</td>
<td>3.15</td>
<td>233.43</td>
</tr>
<tr>
<td>May 5, 1912</td>
<td></td>
<td>301</td>
<td>1,241</td>
<td>8,125</td>
<td>7,229.7</td>
<td>23.82</td>
<td>3.51</td>
<td>233.44</td>
</tr>
<tr>
<td>May 11, 1912</td>
<td></td>
<td>301</td>
<td>1,452</td>
<td>14,940</td>
<td>6,665.69</td>
<td>22.12</td>
<td>2.99</td>
<td>199.39</td>
</tr>
<tr>
<td>March 27, 1912</td>
<td>Bull</td>
<td>317</td>
<td>1,464</td>
<td>11,160</td>
<td>7,881.8</td>
<td>24.86</td>
<td>3.05</td>
<td>240.39</td>
</tr>
<tr>
<td>March 19, 1912</td>
<td>Heifer</td>
<td>316</td>
<td>1,492</td>
<td>11,500</td>
<td>8,525.95</td>
<td>24.64</td>
<td>3.42</td>
<td>291.58</td>
</tr>
<tr>
<td>January 26, 1912</td>
<td></td>
<td>222</td>
<td>786</td>
<td>6,365</td>
<td>5,057.56</td>
<td>22.68</td>
<td>3.96</td>
<td>199.48</td>
</tr>
<tr>
<td>March 8, 1912</td>
<td></td>
<td>326</td>
<td>1,441</td>
<td>10,220</td>
<td>8,673.47</td>
<td>23.81</td>
<td>3.25</td>
<td>281.94</td>
</tr>
<tr>
<td>March 18, 1912</td>
<td>Bull</td>
<td>306</td>
<td>1,294</td>
<td>9,250</td>
<td>6,473.9</td>
<td>21.16</td>
<td>3.79</td>
<td>240.36</td>
</tr>
</tbody>
</table>

There are on hand nine heifers, all nearly a year old, which were born in the spring of 1912. These are of unknown breeding, except that something is now known of their dams. All are well-developed and very promising. This spring there was dropped a larger percentage of heifers, twelve of which are now on hand. This, although a little slow will be the best, safest and surest method of increasing the herd. The farm can carry a far greater number of stock than is on hand at the present time.

On page 424 of the 1912 report will be found a table of the production of the individual cows, from freshening to the date at which the report was written. Table No. 1 of the present report includes the performance given in the 1912 report and added to this is the performance of each individual cow to the end of her lactation period.

From the past year’s work, it has been learned that cows shipped from the East take considerable time to become acclimatized, and if put into good condition so that they will be profitable for the coming year, probably take more food for the return given than they otherwise would.

The results given in table No. 1 are of the first lactation period of the cows in this province. For the fiscal year just ended, twenty-three cows, which are still on the Farm, have been taken, and in table No. 2 is given the cost of production of one hundred pounds of milk and also of one pound of fat when the food is valued at the following rates:

- Oil cake meal: $45 per ton
- Bran: 23
- Mixed Grains: Oats, peas, barley: 10
- Roots: 3
- Silage: 3
- Green feed: 3
- Hay: 10
- Pasture: 3 per acre
The cows were fresh in the spring of 1912 and went dry in winter, freshening early in January, February and March. For the months of April and May it was not possible to obtain a record of the fat, but from the first of June a sample has been taken from every milking, and accurate records kept.

In the months of November and December, a small amount of milk was obtained in proportion to the amount of feed used, thus the cost of one hundred pounds of milk and of one pound of butter fat is somewhat high. At this stage, the cows were going dry or were dry and bodily flesh was being stored. If credit were given during the succeeding months and if products of such were averaged with the month of lowest production, the cost would be much more uniform than as shown in the following table:

Feed Cost of 100 Pounds of Milk and 1 Pound of Fat by Months.

<table>
<thead>
<tr>
<th>Month</th>
<th>100 pounds of Milk</th>
<th>1 pound of Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>$1.20</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>$0.68</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>$0.53</td>
<td>$0.10</td>
</tr>
<tr>
<td>July</td>
<td>$0.63</td>
<td>$0.17</td>
</tr>
<tr>
<td>August</td>
<td>$0.72</td>
<td>$0.20</td>
</tr>
<tr>
<td>September</td>
<td>$1.20</td>
<td>$0.32</td>
</tr>
<tr>
<td>October</td>
<td>$1.54</td>
<td>$0.42</td>
</tr>
<tr>
<td>November</td>
<td>$2.10</td>
<td>$0.54</td>
</tr>
<tr>
<td>December</td>
<td>$1.51</td>
<td>$0.40</td>
</tr>
<tr>
<td>January</td>
<td>$0.98</td>
<td>$0.37</td>
</tr>
<tr>
<td>February</td>
<td>$1.02</td>
<td>$0.38</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of cows—23.
Average weight of cows—1,183.6 pounds.
Average milk per cow—7,666.65 (12 months).
Average fat per cow—204.15 (10 months).

The above figures represent a total of the entire number of cows in the herd. From the herd, ten cows were selected, five of which appeared this year to be the most profitable and five of which appeared to be the least profitable. The milk was figured at 18 cents per gallon and the fat at 50 cents per pound. The difference in the two sets of cows is shown by the amount of fat produced. There is a difference in the amount of food consumed by each of these lots, since each cow was fed as nearly as possible according to her production. If they had all been given the same amount of food the results would vary greatly and the least profitable cows would have been many times less profitable.

The following table will illustrate this without further comment:

Comparative results of the five most profitable and the five least profitable cows.

<table>
<thead>
<tr>
<th></th>
<th>Number of Days Milked</th>
<th>Yield of Milk</th>
<th>Yield of Fat</th>
<th>Cost of Food and Profit over Food for 1 Cow, Average of 5 Cows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lbs.</td>
<td>Lbs.</td>
<td>$ cts.</td>
<td>$ cts.</td>
</tr>
<tr>
<td>Five most profitable cows</td>
<td>345</td>
<td>9,937.2</td>
<td>341.2</td>
<td>54.27</td>
</tr>
<tr>
<td>Five least profitable cows</td>
<td>270</td>
<td>6,136.2</td>
<td>263.6</td>
<td>36.03</td>
</tr>
</tbody>
</table>

117.83
67.68
The Barn, Experimental Station, Lacombe, Alberta.

Beef Barn to the left, dairy Barn to the right, and calf and storage Barn in background.
Duchess 3rd—Dual Purpose Shorthorn. Gave 1815.5 lb. milk from Dec. 19th, 1912 to Jan. 18th, 1913.

The Barns. Experimental Farm, Indian Head, Sask.
BUILDINGS.

The buildings which we erected, as reported on in our last report, have given us excellent satisfaction. As is the case with almost every one, after they are finished we can see some improvements which we would like to make but, on the whole, they are very satisfactory. The lighting is good and the ventilation thorough; the inward opening of the windows has given us perfect satisfaction in this climate.

The steel stall fittings which we installed have given excellent satisfaction, but we have discarded everything except that which was necessary to hold the cows in place. We tried the stalls with all the accessories and also stripped them to the bare stanchions and division hoops and find that when one uses the mangers the other material is superfluous and is detrimental, as a dust collector.

The system of watering from the cement feed trough in front of the cows has also proven very satisfactory, and, provided there is no contagious disease in the herd it is a cheap, sanitary and effective method of watering the cows. It has also a tendency to keep the mangers perfectly clean. The cows' stand we have been able to keep perfectly dry and warm, but unless a sufficient quantity of bedding is used the floor is somewhat hard on the cows' feet and knees.

The dairy, since our last report, has been completed and has been found to give satisfaction for a herd the size of the one which we are at present carrying. On the walls of this dairy, we made the experiment of finishing them with a good quality of white table oil-cloth and this has proven to be a cheap and efficient wall covering.

However it should not be brought down to the floor where it would be brought into constant contact with water; we have tried this and found that it had to be removed for a foot or two from the cement floor.
HORSES.
CENTRAL EXPERIMENTAL FARM, OTTAWA, ONT.

REPORT OF THE DOMINION ANIMAL HUSBANDMAN—
E. S. ARCHIBALD, B.A., B.S.A.

During past years, the horses were kept for labour purposes exclusively but, in 1912, a small start was made in breeding work.

The horses kept at present number eighteen, and are made up of: 14 heavy horses, mares and geldings of Clydesdale and Percheron blood, 3 heavy driving horses, 1 light driving horse.

The eighteen horses on the Farm are expected to do not only the labour on the 200-acre farm but, in addition, must supply necessary labour to the Horticultural, Cereal, and Botanical Divisions. In addition a large amount of hauling and cartage in connection with all the Divisions, as well as roadmaking and messenger service, take up much of their time.

Amongst the heavy draught horses, numbering 14, there are 6 pure-bred and grade Clydesdale mares. The three best mares have been bred in order to acquire data as to the cost of horse production, and the many other phases of horse breeding. A gradual extension in this work is anticipated.

Horse-breeding work has also been started on the branch Farms, and we look for much valuable and interesting information during the next few years.

HORSE LABOUR.

During the year from April 1, 1912, to March 31, 1913, the work done by the horses kept in the stables here was equivalent to $4,516.61, distributed as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live stock, hauling feed, milk delivery, etc.</td>
<td>238</td>
</tr>
<tr>
<td>Farm work (200-acre farm)</td>
<td>1,027.5</td>
</tr>
<tr>
<td>Manure on 200-acre farm</td>
<td>486.8</td>
</tr>
<tr>
<td>Horticultural Division</td>
<td>88.2</td>
</tr>
<tr>
<td>Cereal Division</td>
<td>64.4</td>
</tr>
<tr>
<td>Poultry Division</td>
<td>58.5</td>
</tr>
<tr>
<td>Bulletins to and from Farm offices</td>
<td>44.5</td>
</tr>
<tr>
<td>Lawns</td>
<td>11.5</td>
</tr>
<tr>
<td>Arboretum</td>
<td>143</td>
</tr>
<tr>
<td>Omnibus service and supervision & work</td>
<td>1,436</td>
</tr>
<tr>
<td>Care of woods</td>
<td>489.5</td>
</tr>
<tr>
<td>Various, including hauling freight, sidewalks, exhibits, etc.</td>
<td>363.5</td>
</tr>
</tbody>
</table>

Making a total of 6,452.5 days which, at 70 cents per day, gives a total valuation of $4,516.61.

THE HORSE STABLES.

In view of the fact that there is an increasing number of inquiries regarding stable construction, ventilation and concrete floors and stands in the horse stable, I would, for the benefit of the readers, refer them to the annual reports for the years 1908 and 1910, of the Dominion Agriculturist.

The Rutherford system of ventilation continues to give the best and most excellent results.
The cross-lined concrete passages are perfectly safe whether dry or wet in winter or summer. The graded, grooved, concrete stall floors still looked upon with suspicion by some horsemen, continue to prove their superiority over wood floors from the points of safety, sanitation and durability. No troubles, such as dry feet, quarter cracks, side bones, capped hocks, rheumatism and the like, so often attributed to concrete floors, have been encountered during the six years in use. The ease in cleaning stalls and maintaining an atmosphere free from unpleasant odours strongly recommends such construction.

FEEDING THE WORK Horses.

The feeding of the horses is conducted along the same lines as in former years. The stableman feeds all horses, and, under his supervision, each teamster is responsible for the washing and cleaning of his horses and harness.

The feeds used are mixed hay, fed long, oats and bran, generally in the proportion of 5 parts oats to 2 parts bran, mixed and fed dry. Warm bran mashes, 5 to 6 pounds per horse, are used on Saturday nights to replace the regular grain ration. When horses are on very heavy work, the proportion of bran is decreased to 1 part for 5 parts oats. These rations between bran and oats were decided best after much experimental work. Readers interested are referred to the annual reports of the Dominion Agriculturist, years 1904 and 1905.

A safe standard for feeding draught horses, and one commonly used here is that of giving from 1 to 1½ pounds of the above grain mixture and one pound of hay for each 100 pounds live weight; this, of course, subject to variation depending on the severity of work, condition of animal when fed, the health of animal, and other minor considerations.

The morning feed, about 5 a.m., consists of about three-eighths of the total grain mixture and one-quarter of the hay for that day. The noon ration is the same. The evening feed consists of one-quarter of the grain and about one-half the hay for the day.

Water is supplied after the morning feed and before the noon and evening feeds. During the winter, water is also supplied in the evenings, some three hours after the feed.

With the above treatment, the horses are maintained in good working condition, and with an almost entire absence of common stomach and intestinal ailments such as indigestion and colic. No condiments are used, but to horses somewhat low in flesh and requiring more feed, molasses mixed with the grain is used in small quantities as it stimulates the appetite by increasing the palatability of the food.

Experimental work as to the food value of molasses, and similar lines of work are anticipated.

FINANCIAL STATEMENT.

Returns.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 6,452½ days labour at 7½ cents</td>
<td>$4,516.61</td>
</tr>
<tr>
<td>To 150 tons manure at $1.90</td>
<td>150.00</td>
</tr>
</tbody>
</table>

Expenditures.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>By cost of feed</td>
<td>$2,285.00</td>
</tr>
<tr>
<td>By shoeing of horses</td>
<td>125.00</td>
</tr>
<tr>
<td>By stableman</td>
<td>638.00</td>
</tr>
<tr>
<td>By harness and repairs</td>
<td>113.35</td>
</tr>
</tbody>
</table>

Balance for horses | $1,565.26

3,101.33
EXPERIMENTAL STATION, CHARLOTTETOWN, P.E.I.

REPORT OF THE SUPERINTENDENT—J. A. CLARK, B.S.A.

The horses were kept for labour purposes. One carriage horse was purchased during the year. A draught horse and colt were sold in anticipation of buying a team of mares for breeding purposes. At present they are four in number, as follows: 1 heavy draught horse, 1 heavy draught mare, 1 express horse and 1 carriage horse.

The horses were fed during heavy work about 13 pounds oats and bran, mixed 1 part bran to 8 parts oats, and 20 pounds hay per day per 1,000 pounds live weight; and during light work about 9½ pounds oats and bran, mixed 1 part bran to 3½ parts oats, and 28 pounds of hay per day. Carrots were fed as required. They have been healthy and were always ready for any work required of them.

HORSE LABOUR.

During the year the work done by the horses was equivalent to 457 days' work, distributed as follows: Live Stock, hauling building material, etc., 85-6 days' work; Field Husbandry Division, 183 days' work; Horticultural Division, 28-6 days' work; Cereal Division, 7-5 days' work; Messenger service, exhibitions, hauling freight and express, etc., 16-4; one horse, general driving, supervision of work, etc., 136 days' work.
EXPERIMENTAL FARM, NAPPAN, N.S.

REPORT OF THE SUPERINTENDENT—R. ROBERTSON.

Nine horses are kept on the Farm. Six of them are draught and three for light purposes. All are in good condition.
HORSES.

There are now at the Station eight pure-bred French Canadian mares, also a two-year-old and a weanling filly of the same breed, besides two grade teams of from 2,600 to 2,900 pounds weight per team, and a driver of about 1,000 pounds. Four of the pure-bred mares are in foal to a stallion of the same breed.

The following table gives some idea of the total number of horses necessary for this farm and the number required for farm labour:

<table>
<thead>
<tr>
<th>Least number required to do farm work, on the basis of ten hard working hours practically every day from May 1 to November 1.</th>
<th>Total Number.</th>
<th>Number available for work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 stallion</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Out of these 16 mares, only half will be bred each year, leaving 8 for hard work.</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>The other 8 in-foal mares, one three-year-old and the stallion to average four hours of hard work or eight hours of easy work.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>The 8 mares bred each year, to produce five living foals, out of which a weanling would be sold each year, leaving.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>And a yearling to be also sold each year, leaving.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Also a two-year-old to be sold each year, leaving.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>And a three-year-old or a mare to be also disposed of each year leaving.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>12</td>
</tr>
</tbody>
</table>

It may seem exaggerated to put down 8 in-foal mares, 1 three-year-old stallion or filly, and an aged stallion, as only doing the work of four horses, but when 12 horses, or 6 teams, are required to do the work, it is meant that 6 heavy teams are needed. Though the French Canadian horse is a splendid animal, full of grit and endurance, the weight is not there, and grit cannot supplement weight for a very long time on heavy machines, which are required to work steadily 10 hours per day at their full capacity. By full capacity is meant that the lever on a disc harrow is to be at the last notch, the manure spreader filled, loads of hay, grain, silage, roots are not to be half loads; also that land requiring to be ploughed six inches is not ploughed four, that the team is not to stop and rest every half hour on the grain or corn binder. In fact, work and not half work is wanted, and to do good, steady, heavy work, ten hours every day (and sometimes 12 and 13 in the rush of the season), in-foal mares, colts and stallions, of a light breed, on an average, will not do more than is credited them in the above list.

Moreover, it should be understood that to do work with light horses throughout, and with in-foal mares, colts and stallions in particular, causes a waste of manual labour and is a costly proposition. An in-foal mare, for instance, that works ten hours a day ploughing four inches deep in light land, cannot stand more than five
hours on the big cut-away disc. Nor should she get these five hours all in a stretch, but half in the morning and half in the afternoon. This means that another has to be hitched and brought to the field to replace her, whilst she is taken to the barn. To do good work at making straight drills, or working the disc seeder the shortest way across the field, two quiet horses are needed and should be used nearly all the time by the same man. If two in-foal mares cannot stand ten hours a day of this, then two mares not in foal must be used, which takes them away from harder work where 4 or even 5 in-foal mares might have to be used to replace them.

Even if the farmers of Quebec, during the next 25 years, find that the ever-increasing wages of hired men compel them to use heavy horses, the work which will be done here with the French Canadian will not be lost, as we will be breeding horses about 200 pounds heavier than the common run of mares of this province, and by disseminating this blood, the breeding stock will be increased in size and better prepared to be advantageously topped with draught stallions than it now is.

FEED AND CARE OF BROOD MARES.

Timothy, clover, swedes, oats and bran were used. For details, I beg to give copy of the written instructions given to the horseman at the beginning of winter:

'Morning.—4 pounds timothy, 4 pounds clover.

'Noon.—5 pounds oats, 1½ pounds bran.

'Night.—(When the mares have worked more than five hours), 6 pounds timothy, 3 pounds clover, 5 pounds oats, 1½ pounds bran, 6 pounds swedes.

'When the mares have worked less than five hours, 9 pounds clover, 6 pounds swedes.

'N.B.—If there is constipation, cut down the oats and increase bran and swedes; if bowels are too loose, increase oats and cut down bran and swedes.

The mares were weighed every two weeks and when, in a very few cases, it was found that they had lost weight, they were kept during the next fortnight on the ration ‘when the mares have worked more than five hours,’ even if they worked less. At the same time, lighter work was given them, and every time, without a single exception, they regained the lost weight and more during this period.

There were two reasons for feeding only hay in the morning; the first was to give the mares more time to eat this roughage, as they received only grain at noon, having just one hour for their noon meal. Besides, if grain and meal had been fed in the morning, the horseman, not knowing at noon which of the mares were to work in the afternoon, would not have known if he again should feed grain or not.

A rigid rule was made that the in-foal mares had to go out of the stable every day except Sunday. When there was no work to do which was suitable for them, they were hitched on a sleigh and driven for at least half an hour. They had to get exercise and they got it, rain or shine. They were never asked to draw very heavy loads, nor to back even a small load, and they worked reasonably, without either doing too much or being coddled. It will be disappointing if they do not drop strong colts, though the raising four healthy colts from four in-foal mares is not anticipated.

RAISING COLTS.

The weanling filly weighed exactly 755 pounds the day she was one year old. Her dam’s weight is between 1,100 to 1,150 pounds. There seems no doubt that this filly will weigh over 1,250 pounds at maturity. She is as big as most yearlings which the writer has seen when visiting over twenty stables to buy French Canadian
mares. However, she did not make this growth on nothing, but because she received lots of good clover hay, and lots of oats and bran. There is not much 'secret' about these feeds. The only 'secret' about the farmers not getting size in their horses is 'not enough feed.' No colt has ever been ruined by giving too much of the above named feeds, when it gets lots of exercise. This is why the filly was turned out every day of the winter (except three or four very stormy ones) from about 8 in the morning until 5 in the afternoon in a paddock where there was from one to three feet of snow. There was a well-bedded shed, boarded on three sides, where she could go in when it was blowing hard. But it is wonderful how little she made use of it. Of course, if the filly had been fed as heavily as she was, and had remained in a box stall all winter, there are ten chances to one that her limbs could not have retained their good quality and condition.

EXPERIMENT—WINTERING A HORSE AT LOW COST.

The gelding which was used for this experiment in 1911-12 was in splendid shape for last season's work. There seems no doubt that the bulky ration and the roots had a very beneficial effect on the digestive tract of the animal.

The same experiment was made in 1912-13. A very nervous mare, about 15 years old, was used. She was chosen to see how a nervous animal would come through, the gelding of the previous year being of a rather quiet disposition. She gained 105 pounds weight between November 1 and March 31.

The ration fed both years was one pound of hay from mixed grasses, one pound of straw, and one pound of swedes per day per 100 pounds weight of the animal.

If the mare used in the experiment of 1912-13 goes through the season's work in good shape, it would seem advisable for farmers who own more horses than they can use in winter time, to try this way of feeding the idle animals.

This experiment should, in my opinion, be continued for a couple of years more, when a short bulletin or leaflet might be published.
EXPERIMENTAL FARM, BRANDON, MAN.

REPORT OF THE SUPERINTENDENT—W. C. McKILLICAN, B.S.A.

HORSES.

The horses on this Farm at present consist of the following: 12 heavy horses of grade Clydesdale and Percheron breeding, 2 light horses for driving, 1 heavy colt, grade Clydesdale.

The horses are kept for labour purposes almost exclusively, only one colt having been raised during the year.
EXPERIMENTAL STATION, LACOMBE, ALTA.

REPORT OF THE SUPERINTENDENT—G. H. HUTTON, B.S.A.

HORSES.

In order to secure power to handle the increased area of three hundred and eighty acres acquired by the Station in March of 1912, ten mares were purchased during the year. Pure-bred Clydesdale and Percheron mares are represented in the purchase, as well as grades of both breeds. A number of these mares were in foal at the time of purchase. 'Navel Ill' or 'Joint Ill' was responsible for a heavy mortality in the foals, only one of five being raised. Even foals born on pasture and treated immediately with disinfectants, were not immune.

The general health of the horses, which now number seventeen head, has been good throughout the year. All the horses, except those necessary for winter work, were wintered outside on the straw stacks, and have come through the winter in prime condition.
EXPERIMENTAL FARM, AGASSIZ, B.C.

REPORT OF THE SUPERINTENDENT—P. H. MOORE, B.S.A.

HORSES.

The horses on the Farm have been kept for working purposes only, no experimental work of any sort having been done with them, and the force numbers the same as last year. The four new ones purchased late last year have improved in usefulness as they became more acclimatized to the country.

Three of the older ones which have been on the Farm for many years are on the down grade and not as useful this year as they have been in the past; in the near future they will have to be replaced by younger and better individuals. Last winter being only moderately cold and the weather steady, a great deal of work was done with the teams, and at the time of writing they are in excellent working condition, although not fat.
SHEEP.

CENTRAL EXPERIMENTAL FARM, OTTAWA, ONT.

REPORT OF THE DOMINION ANIMAL HUSBANDMAN—E. S. ARCHIBALD, B.A., B.S.A.

BREEDING SHEEP.

There are now 57 pure-bred sheep in the pens. Two breeds only are kept, namely, Shropshires and Leicesters.

The Shropshires include 1 ram, 13 aged ewes, 3 shearling ewes, 8 spring ewe lambs, and 9 spring ram lambs.

The Leicesters include 9 aged ewes, 2 shearling ewes, 8 spring ewe lambs, and 4 spring ram lambs.

Only a fairly successful year can be reported so far as breeding operations with sheep are concerned.

The crop of lambs in the spring of 1912 was good (132 per cent), and until midsummer both ewes and lambs did particularly well. Limited as they were to the small area of two acres of pasture, this restriction proved their undoing. Although the six acres in the sheep rotation is in a three-year rotation and the sheep remain only one year on each field, yet it is so soon cropped close that intestinal parasites spread and multiply very rapidly.

The ewes and lambs, as in former years, became infested with both tape worms and stomach worms, and though treated promptly, they did not recover from the effects of the parasites until transferred to the less limited and the clean aftergrass pasture of the larger rotations on the Farm.

The treatment given for tapeworms, with such good results, was as follows:

Fast the animals for at least 24 hours. Drench mature sheep and shearling, with a mixture of 4 ounces of castor oil and 1 dram (¼ ounce) of ethereal extract of Male Fern. Lambs may have one-quarter to three-quarters of the above dose, depending on size and age. Confine sheep for 24 hours after drenching. Destroy worms given off in manure.

Follow the above drench with a laxative tonic such as: Common salt, 2 pounds; potassium nitrate, 4 ounces; Epsom salts, 1 pound; iron sulphate, 8 ounces; powdered gentian, 8 ounces. This mixture is sufficient for 100 mature sheep or 150 to 200 lambs, and also is best given in water solution as a drench.

Only one lamb was lost during, or as a result of, the whole treatment. By a post mortem it was discovered that the intestines had actually become congested with clots of worms which was the immediate cause of death.

Apparently very favourable results were obtained in the eradication of stomach worms by the use of a 1 per cent solution of coal tar creosote. Lambs were given 2 to 4 ounces, and mature sheep 3 to 5 ounces, varying with the size. This was administered as a drench, was preceded by a 24-hour fast, and succeeded by a 24-hour confinement and the laxative tonic as above.

Owing to limited accommodation, no lamb-feeding experimental work was undertaken on the Central Farm during the past year. With the erection of a lamb-feeding shed, anticipated, this work will be continued and extended.
Financial Statement

Below are submitted inventories and returns for the sheep on the Central Experimental Farm during the year April 1, 1912, to March 31, 1913:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1, 1912</td>
<td>April 1, 1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep all breeds and ages</td>
<td>50</td>
<td>$845.00</td>
<td>57</td>
<td>$1,028.00</td>
<td>$239.50</td>
</tr>
</tbody>
</table>

Returns

- Returns made up of increased value and sales: $482.50
- Manure, 50 tons at $1 per ton: 50.00
 - Total: $532.50

Expenditures

- Feed consumed: $426.33
- Total labour expended: 75.00
 - Total: $501.33

Net balance from sheep: $31.17
EXPERIMENTAL STATION, CHARLOTTETOWN, P.E.I.

REPORT OF THE SUPERINTENDENT—J. A. CLARK, B.S.A.

BREEDING SHEEP.

As this farm is small and allows for no pasturage, it is impossible to maintain a breeding flock. Nevertheless there are many problems in lamb breeding which demand immediate attention, and these are being investigated as time permits.

EXPERIMENT IN FATTENING LAMBS.

To determine the relative value of roughage for fattening lambs, a second experiment, similar in outline to the one conducted in 1912, has been carried on. Owing to increased facilities for housing and feeding, additional pens were added there being in all six lots of 12 lambs each and one lot of 11 lambs, a total of 83 lambs.

Wether and ewe lambs, as near uniform in weight as possible, were selected. They were medium-sized lambs, the average weight being 74.5 pounds. These lambs were purchased in Prince county, and represented grades of many breeds.

The lambs were allowed to run on rape and pasture for a short time previous to being put on feed.

After this preparatory period they were fed as follows:—Each lot received 2 pounds 8 ounces per diem at starting, and an increase of 8 ounces of a meal mixture per diem throughout the experiment. The meal mixture was made up as follows:—100 pounds oats, 100 pounds barley, 100 pounds peas and 300 pounds bran. The roughage fed the different lots was as follows: Lot I received alfalfa hay until January 14, when, owing to the supply of first quality alfalfa hay giving out, a second quality, containing about 30 per cent couch grass, was supplemented with 3 pounds of bran per diem per pen. Notwithstanding the addition of bran, this pen fell off in gains from that time.

Lot II was fed as much mixed hay (60 per cent timothy) and corn stover as they would eat. They began with equal parts of hay and stover. The stover was increased the first of January to 55 per cent of the roughage and continued so until the end of the experiment.

Lot III was fed what timothy hay and mangels they would eat.

Lot IV was fed oats and pea hay and what turnips they would eat.

Lot V was fed alfalfa hay and turnips. These lambs did not make nearly as good gains as lot I for the first two months, but later they came out ahead, when both lots were fed the poorer quality of alfalfa hay.

Lot VI was fed mixed hay (60 per cent timothy) and garden refuse (waste cabbage, tops of vegetables, etc.).

Lot VII was fed timothy hay and oats and pea hay mixed together.

The lambs were badly infested with ticks and lice. The ticks were destroyed in two dippings, but the lice continued to annoy the lambs throughout the period, the creolin dip having little effect upon these merciless vermin.

In calculating the cost of feeding, the following prices were charged:

Roots, ensilage and garden refuse.......................... $2.00 per ton.
Hay............................ 7.00 "
Meal mixture.......................... 23.60 "

LAMB FEEDING EXPERIMENT.

(Alfalfa hay vs. mixed hay, and corn stover vs. timothy hay, and roots vs. oat and pea hay, and roots vs. alfalfa hay, and roots vs. mixed hay, and garden refuse vs. timothy hay and oat and pea hay, as roughage in fattening lambs.)

<table>
<thead>
<tr>
<th>Lot.</th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
<th>V.</th>
<th>VI.</th>
<th>VII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lambs in lot</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Number of days in experiment</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>Total weight at beginning (lb.)</td>
<td>884 1/2</td>
</tr>
<tr>
<td>Total weight at end</td>
<td>901</td>
<td>904</td>
<td>900</td>
<td>1065</td>
<td>927</td>
<td>906</td>
<td></td>
</tr>
<tr>
<td>Gain during period</td>
<td>17 1/2</td>
<td>3 1/2</td>
<td>3 1/2</td>
<td>16 1/2</td>
<td>7 1/2</td>
<td>5 1/2</td>
<td></td>
</tr>
<tr>
<td>Gain per head</td>
<td>8 1/2</td>
<td>1 1/4</td>
<td>6 1/2</td>
<td>10 1/2</td>
<td>7 1/2</td>
<td>6 1/2</td>
<td></td>
</tr>
<tr>
<td>Gain per head per day</td>
<td>1 1/2</td>
<td>6 1/2</td>
<td>6 1/2</td>
<td>8 1/2</td>
<td>7 1/2</td>
<td>8 1/2</td>
<td></td>
</tr>
<tr>
<td>Quantity of meal eaten by lot during period</td>
<td>602 1/2</td>
</tr>
<tr>
<td>Quantity of alfalfa hay eaten by lot during period</td>
<td>714</td>
<td>714</td>
<td>714</td>
<td>714</td>
<td>714</td>
<td>714</td>
<td>714</td>
</tr>
<tr>
<td>Quantity of timothy hay eaten by lot during period</td>
<td>2137</td>
<td>2137</td>
<td>2137</td>
<td>2137</td>
<td>2137</td>
<td>2137</td>
<td>2137</td>
</tr>
<tr>
<td>Quantity of mixed hay eaten by lot during period</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
</tr>
<tr>
<td>Quantity of roots and ensilage eaten by lot during period</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
</tr>
<tr>
<td>Total cost of feed</td>
<td>$16 40</td>
<td>$13 90</td>
<td>$13 63</td>
<td>$15 77</td>
<td>$15 05</td>
<td>$13 80</td>
<td>$14 67</td>
</tr>
<tr>
<td>Cost of feed per lamb</td>
<td>1.37</td>
<td>1.17</td>
<td>1.13</td>
<td>1.31</td>
<td>1.25</td>
<td>1.15</td>
<td>1.33</td>
</tr>
<tr>
<td>Cost of feed per head per day</td>
<td>1.50</td>
<td>1.32</td>
<td>1.20</td>
<td>1.49</td>
<td>1.42</td>
<td>1.31</td>
<td>1.50</td>
</tr>
<tr>
<td>Cost to produce one pound gain</td>
<td>15 25</td>
<td>60 8</td>
<td>60 8</td>
<td>20</td>
<td>12 4</td>
<td>18 9</td>
<td>26</td>
</tr>
<tr>
<td>Original cost of lambs at 4% cents per pound live weight</td>
<td>$39 76</td>
<td>39 76</td>
<td>39 76</td>
<td>39 76</td>
<td>39 76</td>
<td>39 76</td>
<td>39 76</td>
</tr>
<tr>
<td>Selling price at 6% cent per pound</td>
<td>61 94</td>
<td>56 69</td>
<td>60 25</td>
<td>60 00</td>
<td>62 81</td>
<td>59 81</td>
<td>58 75</td>
</tr>
<tr>
<td>Net profit on lot</td>
<td>5 78</td>
<td>2 92</td>
<td>6 86</td>
<td>4 45</td>
<td>9 46</td>
<td>6 23</td>
<td>4 32</td>
</tr>
<tr>
<td>Net profit on lamb</td>
<td>48</td>
<td>24 3</td>
<td>57 2</td>
<td>37 1</td>
<td>79</td>
<td>52</td>
<td>39 2</td>
</tr>
</tbody>
</table>
LAMB FATTENING EXPERIMENT.

(Average results of two years’ tests of alfalfa hay vs. mixed hay, and corn stover vs. timothy hay and roots as roughage in fattening lambs.)

<table>
<thead>
<tr>
<th>Class of feed.</th>
<th>Lot I.</th>
<th>Lot II.</th>
<th>Lot III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa hay</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Mixed hay and corn stover</td>
<td>200</td>
<td>1,884</td>
<td>1,933</td>
</tr>
<tr>
<td>Timothy hay and roots</td>
<td>268</td>
<td>101</td>
<td>104</td>
</tr>
<tr>
<td>Gain during period</td>
<td>12.2</td>
<td>4.6</td>
<td>7.76</td>
</tr>
<tr>
<td>Gain per head per day</td>
<td>1.37</td>
<td>.062</td>
<td>.067</td>
</tr>
<tr>
<td>Quantity of grain eaten by lot in period</td>
<td>1,311</td>
<td>1,188</td>
<td>1,082</td>
</tr>
<tr>
<td>Quantity of alfalfa</td>
<td>4,819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of timothy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of mixed hay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of roots and ensilage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost of feed</td>
<td>$33.50</td>
<td>$27.64</td>
<td>$26.70</td>
</tr>
<tr>
<td>Cost of feed per head</td>
<td>$1.51</td>
<td>$1.25</td>
<td>$1.21</td>
</tr>
<tr>
<td>Cost of feed per head per day</td>
<td>$1.7</td>
<td>$1.4</td>
<td>$1.6</td>
</tr>
<tr>
<td>Original cost of lambs</td>
<td>$78.38</td>
<td>$78.15</td>
<td>$75.28</td>
</tr>
<tr>
<td>Original cost of lambs plus cost of feed</td>
<td>$111.63</td>
<td>$105.79</td>
<td>$101.99</td>
</tr>
<tr>
<td>Selling price</td>
<td>$123.10</td>
<td>$112.44</td>
<td>$103.74</td>
</tr>
<tr>
<td>Net profit on lot</td>
<td>$11.47</td>
<td>$6.65</td>
<td>$7.75</td>
</tr>
<tr>
<td>Net profit on lamb</td>
<td>$52</td>
<td>$30.2</td>
<td>$68</td>
</tr>
<tr>
<td>Cost to produce a pound of gain</td>
<td>$124</td>
<td>$27.2</td>
<td>$16.6</td>
</tr>
</tbody>
</table>
Breeding flocks grazing on Roadside, Central Experimental Farm, Ottawa.

Sheep Barn, Charlottetown. Built in 1912.
Lamb Feeding Experiments.—Table of Weights and Gains.

<table>
<thead>
<tr>
<th>Tag Number</th>
<th>First Weight Lb.</th>
<th>Last Weight Lb.</th>
<th>Total Gain Lb.</th>
<th>Dressed Weight Lb.</th>
<th>Percent of dressed meat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen No. 1—No. 1</td>
<td>67</td>
<td>84</td>
<td>17</td>
<td>40</td>
<td>47-6</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>81</td>
<td>11</td>
<td>47</td>
<td>45-7</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>93</td>
<td>15-5</td>
<td>59</td>
<td>44-8</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>87</td>
<td>8</td>
<td>39</td>
<td>44-8</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>68</td>
<td>11</td>
<td>38</td>
<td>45-2</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>84</td>
<td>5</td>
<td>38</td>
<td>46-1</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>84</td>
<td>10</td>
<td>39</td>
<td>48-8</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>87</td>
<td>13</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>69</td>
<td>* 1</td>
<td>33</td>
<td>46-05</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>89</td>
<td>14</td>
<td>41</td>
<td>48-3</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>87</td>
<td>6</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>883-5</td>
<td>991</td>
<td>107-5</td>
<td>459</td>
<td></td>
</tr>
</tbody>
</table>

Pen No. 2—No. 48	74	70	* 7	32	47-7
	68	80	12	37	48-2
	65	68	3	30	44-1
	78	83	5	49	48-2
	77	76	* 1	36	47-3
	73-5	79	5-50	35	44-3
	71-5	70	* 1-5	37	52-8
	72	72	5	40	47
	89	85	* 9	32	49-2
	74	72	12	46	50
Total	884	907	23	433	

Pen No. 3—No. 29	68	74	6	34	46
	73	85	12	37	43-5
	74	74	3	34	48
	79	74	15	30	40-5
	73-5	87	* 7-5	45	51-7
	73	65	* 13	29	44-6
	63	71	8	34	48
	77-5	103	25-5	62	50-5
	82	80	* 2	39	48-7
	75	86	11	42	48-8
	78-5	79	5	39	49-3
	78	86	8	40	46-5
Total	883-5	964	80-5	455	

Pen No. 4—No. 12	97-5	112	14-5	58	51-8
	68	65	* 8	58	43-08
	73-5	75	1-5	38	56-7
	65	74	9	37	50
	75	75	7	36	48
	57	52	* 5	21	48-4
	10	98	11-5	50	51
	60	63	3	25	41-1
	48	79	12	38	48-1
	45	98	16	43	44
	42	92	12-5	42	45-6
	86	77	11	34	44-1
Total	884	960	76	451	

Pen No. 5—No. 55	72	91	19	42	46-2
	75	91	16	45	48-4
	82	86	4	44	51-1
	82	87	5	39	48-8
	82	84	2	33	48-2
	65	77	12	37	48
	62	82	13	39	47-5
	50	89	15-5	41	49-4
	60	89	23	39	43-8

| 16—38 |
Lamb Feeding Experiments.—Table of Weights and Gains—Continued.

<table>
<thead>
<tr>
<th>Tag Number</th>
<th>First Weight</th>
<th>Last Weight</th>
<th>Total Gain</th>
<th>Dressed Weight</th>
<th>Percent of Dressed Meat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen No. 5—Con.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 63</td>
<td>78</td>
<td>87</td>
<td>9</td>
<td>42</td>
<td>48.3</td>
</tr>
<tr>
<td>" 90</td>
<td>64.5</td>
<td>63</td>
<td>1.5</td>
<td>33</td>
<td>52.4</td>
</tr>
<tr>
<td>" 57</td>
<td>75</td>
<td>79</td>
<td>4</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>Total.</td>
<td>884</td>
<td>1005</td>
<td>121</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>Pen No. 6—No. 67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 78</td>
<td>65</td>
<td>67</td>
<td>2</td>
<td>31</td>
<td>46.3</td>
</tr>
<tr>
<td>" 68</td>
<td>62</td>
<td>78</td>
<td>12</td>
<td>35</td>
<td>44.8</td>
</tr>
<tr>
<td>" 70</td>
<td>63</td>
<td>77</td>
<td>8</td>
<td>36</td>
<td>46.7</td>
</tr>
<tr>
<td>" 79</td>
<td>91.5</td>
<td>96</td>
<td>4.5</td>
<td>44</td>
<td>45.8</td>
</tr>
<tr>
<td>" 37</td>
<td>87</td>
<td>95</td>
<td>8</td>
<td>46</td>
<td>48.4</td>
</tr>
<tr>
<td>" 74</td>
<td>80</td>
<td>74</td>
<td>6</td>
<td>34</td>
<td>46</td>
</tr>
<tr>
<td>" 51</td>
<td>71</td>
<td>88</td>
<td>14</td>
<td>46</td>
<td>52.3</td>
</tr>
<tr>
<td>" 73</td>
<td>67</td>
<td>71</td>
<td>7</td>
<td>43</td>
<td>45.7</td>
</tr>
<tr>
<td>" 76</td>
<td>67</td>
<td>73</td>
<td>6</td>
<td>33</td>
<td>45.2</td>
</tr>
<tr>
<td>" 72</td>
<td>68.5</td>
<td>74</td>
<td>5.5</td>
<td>34</td>
<td>45</td>
</tr>
<tr>
<td>" 71</td>
<td>66</td>
<td>70</td>
<td>4</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Total.</td>
<td>884</td>
<td>957</td>
<td>73</td>
<td>451</td>
<td></td>
</tr>
<tr>
<td>Pen No. 7—No. 83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 84</td>
<td>75</td>
<td>85</td>
<td>1</td>
<td>37</td>
<td>43.5</td>
</tr>
<tr>
<td>" 64</td>
<td>89</td>
<td>90</td>
<td>1</td>
<td>39</td>
<td>43.6</td>
</tr>
<tr>
<td>" 65</td>
<td>85</td>
<td>94</td>
<td>9</td>
<td>44</td>
<td>45.8</td>
</tr>
<tr>
<td>" 62</td>
<td>84</td>
<td>77.5</td>
<td>6.5</td>
<td>33</td>
<td>42.6</td>
</tr>
<tr>
<td>" 31</td>
<td>92</td>
<td>103</td>
<td>11</td>
<td>52</td>
<td>50.4</td>
</tr>
<tr>
<td>" 90</td>
<td>69.5</td>
<td>73</td>
<td>3.5</td>
<td>31</td>
<td>42.4</td>
</tr>
<tr>
<td>" 87</td>
<td>82.5</td>
<td>82</td>
<td>5</td>
<td>40</td>
<td>48.8</td>
</tr>
<tr>
<td>" 85</td>
<td>82</td>
<td>92</td>
<td>7.21</td>
<td>42</td>
<td>45.7</td>
</tr>
<tr>
<td>" 81</td>
<td>65</td>
<td>70</td>
<td>4</td>
<td>34</td>
<td>48.5</td>
</tr>
<tr>
<td>" 66</td>
<td>83</td>
<td>96</td>
<td>13</td>
<td>44</td>
<td>45.8</td>
</tr>
<tr>
<td>" 88</td>
<td>72</td>
<td>78</td>
<td>6</td>
<td>35</td>
<td>44.8</td>
</tr>
<tr>
<td>Total.</td>
<td>883</td>
<td>910.5</td>
<td>57.5</td>
<td>431</td>
<td></td>
</tr>
</tbody>
</table>

*Loss.

The last weight was taken after lambs had been pastured.

Deductions.—In a comparison of the results for 1913 with that of an average of the years 1912 and 1913, there is illustrated the possible error from drawing conclusions from a single year's experimental work. However, both of the foregoing tables contain valuable and interesting data which might be briefly summarized as follows:—

1. Alfalfa is a most economical feed for fattening lambs but is often excelled by mixtures of other less concentrated roughages which have the greater succulence.

2. Alfalfa and roots makes by far the most concentrated, best balanced and most profitable roughage for lamb feeding.

3. Timothy hay alone is a poor roughage for sheep, but when fed in conjunction with roots, or garden refuse, answers fairly well, and yields fair profits.

4. Corn stover is too coarse for lambs, but, when fed with roots, yields a small margin of profit.

5. Oat and pea hay did not rank as high as anticipated, but yielded a fair margin of profit.

6. The cost per pound gain was very high in all lots excepting where alfalfa was fed.

7. The great advantage of winter feeding lambs is to hold the same over until early spring when the market is good, at the same time marketing the farm grown roughage and grain at market values, making a profit over and above the food values and retaining a large amount of most valuable manure on the farm.
EXPERIMENTAL FARM, NAPAN, N. S.

REPORT OF THE SUPERINTENDENT—R. ROBERTSON.

BREEDING FLOCKS.

The breeding sheep on this Farm represent two classes of sheep, namely, the long and medium-wooled breeds. Two small flocks are maintained, namely, Leicesters (6 head) and Shropshires (9 head). Owing to lack of pasture, these flocks cannot be greatly enlarged until more land is purchased or different arrangement of present fields is made.

EXPERIMENT IN FATTENING LAMBS.

To determine the relative value of timothy and clover hay as a feed for fattening sheep, an experiment was conducted this past year.

Grade wethers of mixed breeding were used for this test. They were divided into four lots of ten each, lot I being fed timothy hay, roots and meal; lot II, timothy hay and meal; lot III, clover hay, roots and meal; lot IV, clover hay and meal.

The hay and meal ration was uniform throughout as to weight, lots I and III only being fed roots. Each lamb of each lot received 3/4 pound meal per day at the beginning of test, the meal ration being gradually increased until, at the end of the test, each one was getting 1 1/2 pounds of meal mixture (bran, oats, cotton seed or oil cake, equal parts).

The roughage ration fed to lots I and III was turnips, beginning with 2 1/2 pounds per lamb per day, and increasing to 4 pounds per lamb per day at the finish, and of hay each lamb received a uniform ration of 1 1/2 pounds per day.

For each lot the following valuations were used namely, hay, $8; grain mixture, $30; and roots, $2 per ton.

The following table shows results of this experiment:

<table>
<thead>
<tr>
<th>Kind of Feed</th>
<th>Lot I</th>
<th>Lot II</th>
<th>Lot III</th>
<th>Lot IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Timothy Hay</td>
<td>Timothy Hay</td>
<td>Clover Hay</td>
<td>Clover Hay</td>
</tr>
<tr>
<td>Number of lambs in lot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Number of days in experiment</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>Total weight at beginning of experiment lb.</td>
<td>722</td>
<td>715</td>
<td>728</td>
<td>739</td>
</tr>
<tr>
<td>Total weight at finish of experiment lb.</td>
<td>957</td>
<td>967</td>
<td>953</td>
<td>928</td>
</tr>
<tr>
<td>Gain during period lb.</td>
<td>235</td>
<td>192</td>
<td>238</td>
<td>208</td>
</tr>
<tr>
<td>Gain per head lb.</td>
<td>23.5</td>
<td>19.2</td>
<td>23.8</td>
<td>20.8</td>
</tr>
<tr>
<td>Gain per head per day lb.</td>
<td>0.90</td>
<td>0.75</td>
<td>0.93</td>
<td>0.79</td>
</tr>
<tr>
<td>Quantity of hay consumed</td>
<td>1,140</td>
<td>1,140</td>
<td>1,140</td>
<td>1,140</td>
</tr>
<tr>
<td>Quantity of meal consumed</td>
<td>930</td>
<td>930</td>
<td>930</td>
<td>930</td>
</tr>
<tr>
<td>Total cost of feed $</td>
<td>21.31</td>
<td>18.52</td>
<td>21.31</td>
<td>18.52</td>
</tr>
<tr>
<td>Cost of feed per head $</td>
<td>2.13</td>
<td>1.85</td>
<td>2.13</td>
<td>1.85</td>
</tr>
<tr>
<td>Cost of feed per head for day cts.</td>
<td>2.51</td>
<td>2.43</td>
<td>2.51</td>
<td>2.43</td>
</tr>
<tr>
<td>Cost of 1 pound gain</td>
<td>9.06</td>
<td>9.64</td>
<td>8.95</td>
<td>8.90</td>
</tr>
<tr>
<td>Original cost of sheep</td>
<td>36.10</td>
<td>35.75</td>
<td>36.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Original cost of sheet plus cost of feed</td>
<td>37.41</td>
<td>35.27</td>
<td>37.31</td>
<td>35.52</td>
</tr>
<tr>
<td>Selling price at $7.50 per 100 pounds</td>
<td>71.78</td>
<td>68.68</td>
<td>71.63</td>
<td>69.60</td>
</tr>
<tr>
<td>Net profit on lot</td>
<td>14.37</td>
<td>13.76</td>
<td>14.62</td>
<td>15.08</td>
</tr>
<tr>
<td>Net profit per lamb</td>
<td>1.43</td>
<td>1.37</td>
<td>1.43</td>
<td>1.50</td>
</tr>
</tbody>
</table>

16—384
Deductions.—No deductions can be drawn from a single year's experiment, and as this work is to be repeated during the coming year it would be unwise to lay too much stress on the above. There are, however, a few points which would demand interest, namely:

1. As might be expected, clover hay surpasses timothy hay in economy of gains produced.

2. As a rule roots add to the economy of production. This applied particularly to the timothy hay ration, but future experiments will give more conclusive evidence on this point.

3. Good profits, over and above the market value of food stuffs, may be made by winter feeding lambs in Nova Scotia.
EXPERIMENTAL FARM, BRANDON, MAN.

REPORT OF THE SUPERINTENDENT—W. C. McKILLCAN, B.S.A.

The flock of sheep on the Farm on March 31, 1913 consists of the following:—

Oxford Down: 1 ram, 2 breeding ewes, 1 yearling ewe;

Grade: 27 breeding ewes, 22 yearling ewes, 2 young lambs and 50 wethers.

The season has been a successful one with the breeding flock. Thirty ewes gave birth to forty-two lambs, thirty-eight of which were successfully raised. The only obstacle to success with sheep has been predatory dogs. Although the fence around the sheep pasture is supposed to be coyote-proof, dogs got in one day in July, probably through a gate not fitting tightly, killed two lambs and one ewe and worried some of the others.

FEEDING EXPERIMENT.

One hundred range lambs were bought in November, 1912, for the purpose of conducting a feeding experiment during the winter; thirteen wether lambs from our own flock were added. These were divided into three lots. One lot was fed hay of wild grasses and red top, one lot was fed alfalfa hay and the third lot was fed straw. Unfortunately the experiment was spoiled by dogs. On the night of January 28 two dogs broke into the enclosure where these sheep were kept and attacked the sheep so viciously that two were killed, twenty-two were injured so badly as to necessitate immediate slaughter, and nine more, not apparently so badly injured, died in the next few days, making a total death list of thirty-three. The remaining sheep were so badly frightened, and so many of them were suffering from injuries, that it took about six weeks before they were doing well again. The experiment was continued, and the remaining sheep, in each lot, are still getting the same feed, at the end of the fiscal year. But the results will scarcely be of any value, as the three lots did not suffer equally, and all were thrown off their feed for weeks.

Dogs are certainly the greatest obstacle to sheep raising in Western Canada. Such an experience as above described is sufficient to discourage even the most enthusiastic sheep owner. It would appear as though the country would have to choose between the dog and the sheep. Up to the present the dog has been the choice, and it seems an unfortunate one, as ninety-five per cent of the dogs in this country are wholly useless, while the sheep is invariably a useful and productive member of the farm-yard community.
EXPERIMENTAL STATION, LETHBRIDGE, ALTA.

REPORT OF THE SUPERINTENDENT—W. H. FAIRFIELD, M.S.

SHEEP FEEDING EXPERIMENT.

The investigations in connection with feeding sheep on alfalfa hay began last year with lambs, and was continued this winter. Unfortunately, the limited number of range lambs offered for sale in the autumn of 1912, together with the keen demand that existed for all kinds of live stock for feeding purposes, made the purchase of suitable lambs at a reasonable price extremely difficult.

In lieu of lambs, 250 head of yearling wethers were purchased. These were divided into five lots of 50 each, and were given the same combinations of feed as were used in the feeding experiment carried on during the winter of 1911-12. In addition to these 250 yearlings, we were able to get 50 lambs, which were fed on the same kinds of feed as were one of the lots, group II of yearlings.

PURCHASE AND DESCRIPTION OF SHEEP.

On November 26, 250 yearling wethers and 50 lambs were purchased from H. A. Suggitt, of Coaldale, Alberta. The yearlings were small, medium smooth. Merino grade wethers, quite fine in the bone. These were taken out of a bunch of Montana range sheep that Mr. Suggitt had recently purchased. The lambs, obtained from the same party, were good grades, showing a little stronger infusion of the mutton breeds on the Merino foundation than is usual with range sheep in this district.

The 250 yearlings cost $3.75 per head, and the lambs 5½ cents per pound.

TROUBLE WITH DOGS.

The experiment was begun on November 30. The yearlings were divided into five groups of 50 each. Considerable care was taken to see that the division was made evenly and that the lots were about equal in quality and weight. Group I consisted of the 50 lambs and groups II, III, IV, V and VI were yearlings. Four days after feeding began, or on the morning of December 3, dogs got into the pens and injured a large number by chasing and biting them on different parts of the body. None of the lots were spared, but they did the most damage to group V, where they killed five outright and injured twenty-five more or less severely. Twenty-eight more yearlings were purchased from Mr. Suggitt to replace those killed and seriously injured.

Although careful watch was kept, the pens were again visited by dogs on the early morning of December 21. This time fewer sheep were killed outright, but the dogs worried all the groups. Many were severely bitten, and it was several days before the lame ones all recovered.

The kind of fencing used for the corrals was an ordinary eight strand woven wire fence, 46 inches high. It is evident that this is not sufficient to protect sheep from the attack of dogs. After the second visitation, the openings in front of each shed were boarded up with 1 by 4 boards with a 3½-inch space left between each board.
SESSIONAL PAPER No. 16

The sheep thereafter were enclosed in the sheds at night, where they were safe from dogs.

As loss from dogs is something that can be prevented by enclosing the feeding lots with a dog-proof fence, we shall, in reporting this experiment, consider only the number of sheep remaining in each group after the last visit from the dogs. The gains made during the first month will, of course, be considerably smaller than would have been the case had the trouble not occurred, for a good many were lamed and injured generally.

GENERAL OUTLINES.

The primal object of the experiment was to obtain data regarding the possibility of marketing alfalfa hay profitably through the feeding of range sheep.

The plan followed was similar to the feeding test carried out last winter, except that yearling wethers were used instead of lambs in the five groups. One group of lambs was added and was fed the same as one of the groups of yearlings, i.e., alfalfa, meal and roots.

The yards are 100 by 25 feet, with a shed 12 by 25 at one end; this has an opening 8 feet wide in front, and it was this opening that had to be partially closed with 1 by 4 boards, placed 3 to 4 inches apart. At night the sheep were enclosed in these sheds on account of the danger from dogs mentioned above. The sheep would probably have been better off with a greater circulation of air than this allowed.

The different lots were fed as follows:

- **Group I.**—Alfalfa, mixed grains and roots (lambs).
- **Group II.**—Alfalfa, mixed grains and roots (yearlings).
- **Group III.**—Alfalfa and mixed grain (yearlings).
- **Group IV.** Alfalfa and screenings (yearlings).
- **Group V.**—Alfalfa alone (yearlings).
- **Group VI.**—Alfalfa and roots (yearlings).

In calculating the cost of feeding the following prices were charged:

- Alfalfa hay ... $12.00 per ton.
- Meal mixture (2 oats, 2 wheat, and 1 bran) 20.00 per ton.
- Screenings ... 5.00 per ton.
- Roots (turnips) 3.00 per ton.

Attention is called to the fact that we are charging $12 per ton for hay this year while $10 per ton was used in calculating the results of last year's experiment. We also made a change in the price of roots, charging $3 instead of $2.50 per ton, as was done last year.

The meal mixture was made up of two parts of oats, two parts of wheat and one part of bran.

The screenings were obtained from the Taylor Milling and Elevator Co. of Lethbridge. They were very light, indeed, but with them was mixed some badly damaged wheat. This wheat had heated in the bin and was in bad condition.

All the sheep except group VI were sold March 27. The Swift Canadian Company took 220, one double decked car; and a local firm, Geo. Delancy, took 14 head. A flat price of 6.50 cents per pound for both the lambs and the yearlings was obtained. Lot VI was held to be disposed of later, the idea being to shear them before selling.
In the following table, however, the results obtained from this group are given the same as if they had been sold. They were not given any grain until eighteen days before the close of the experiment. Group V, the one getting alfalfa alone, was started with grain 47 days before the close of the period.

<table>
<thead>
<tr>
<th>GENERAL STATEMENT.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lot I</th>
<th>Lot II</th>
<th>Lot III</th>
<th>Lot IV</th>
<th>Lot V</th>
<th>Lot VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lambs or yearlings in lot at beginning of period</td>
<td>41</td>
<td>49</td>
<td>50</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Number of lambs or yearlings in lot at end of period,</td>
<td>41</td>
<td>49</td>
<td>50</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Number of days in experiment,</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>117</td>
</tr>
<tr>
<td>Total weight at beginning of experiment, lb.</td>
<td>2,866</td>
<td>3,783</td>
<td>3,783</td>
<td>3,653</td>
<td>3,648</td>
<td>3,660</td>
</tr>
<tr>
<td>Average weight per head at beginning of experiment, lb.</td>
<td>69-9</td>
<td>75-66</td>
<td>75-66</td>
<td>76-1</td>
<td>76-0</td>
<td>75-0</td>
</tr>
<tr>
<td>Total weight at beginning of experiment after deducting weight of loss above</td>
<td>3,707</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total weight at end of experiment,</td>
<td>4,256</td>
<td>5,686</td>
<td>5,106</td>
<td>5,016</td>
<td>4,241</td>
<td>4,420</td>
</tr>
<tr>
<td>Gain per period</td>
<td>1,300</td>
<td>1,379</td>
<td>1,323</td>
<td>1,363</td>
<td>745</td>
<td>820</td>
</tr>
<tr>
<td>Gain per head per period</td>
<td>32-9</td>
<td>28-14</td>
<td>26-46</td>
<td>28-4</td>
<td>16-2</td>
<td>17-08</td>
</tr>
<tr>
<td>Gain per head per day</td>
<td>299</td>
<td>240</td>
<td>236</td>
<td>242</td>
<td>138</td>
<td>146</td>
</tr>
<tr>
<td>Quantity of meal eaten by lot for period</td>
<td>4,490</td>
<td>5,237</td>
<td>5,601</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of screenings eaten by lot for period</td>
<td></td>
<td></td>
<td></td>
<td>6,593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount of alfalfa hay eaten by lot for period</td>
<td>7,660</td>
<td>10,425</td>
<td>10,861</td>
<td>10,668</td>
<td>11,769</td>
<td>12,994</td>
</tr>
<tr>
<td>Quantity of roots eaten by lot for period</td>
<td>6,064</td>
<td>7,240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost of feed</td>
<td>99-94</td>
<td>125-78</td>
<td>121-17</td>
<td>79-76</td>
<td>93-79</td>
<td>99-45</td>
</tr>
<tr>
<td>Cost of feed eaten by the 41, 46, 48, 49 or 50 respectively</td>
<td>99-94</td>
<td>124-50</td>
<td>121-17</td>
<td>75-76</td>
<td>91-80</td>
<td>99-45</td>
</tr>
<tr>
<td>Cost of feed per head for period</td>
<td>2-44</td>
<td>2-34</td>
<td>2-42</td>
<td>1-66</td>
<td>2-00</td>
<td>2-07</td>
</tr>
<tr>
<td>Cost of feed per head per day, cts.</td>
<td>2-09</td>
<td>2-17</td>
<td>2-07</td>
<td>1-42</td>
<td>1-71</td>
<td>1-77</td>
</tr>
<tr>
<td>Cost to produce one pound gain</td>
<td>7-19</td>
<td>9-03</td>
<td>9-16</td>
<td>5-85</td>
<td>12-32</td>
<td>12-13</td>
</tr>
<tr>
<td>Original cost of yearling wethers at $3.75 per head</td>
<td>183-75</td>
<td>187-59</td>
<td>180-00</td>
<td>172-30</td>
<td>180-00</td>
<td></td>
</tr>
<tr>
<td>Original cost of lambs at 52 cents per pound</td>
<td>150-46</td>
<td>308-25</td>
<td>308-67</td>
<td>259-76</td>
<td>264-30</td>
<td>279-45</td>
</tr>
<tr>
<td>Original cost of sheep plus cost of feed</td>
<td>290-40</td>
<td>308-25</td>
<td>308-67</td>
<td>259-76</td>
<td>264-30</td>
<td>279-45</td>
</tr>
<tr>
<td>Sold at 6-50 cents per pound live weight</td>
<td>226-64</td>
<td>339-59</td>
<td>331-89</td>
<td>280-04</td>
<td>275-06</td>
<td>287-30</td>
</tr>
<tr>
<td>Net profit on lot</td>
<td>26-24</td>
<td>22-34</td>
<td>23-22</td>
<td>66-28</td>
<td>11-35</td>
<td>7-85</td>
</tr>
<tr>
<td>Net profit per lamb</td>
<td>0-64</td>
<td>0-46</td>
<td>0-46</td>
<td>1-38</td>
<td>1-25</td>
<td>1-16</td>
</tr>
</tbody>
</table>
Looking towards the Buildings. Experimental Station, Lacombe.

Sheep feeding Shed with sheep Barn in background. Experimental Farm, Indian Head, Sask.

15-1914—p. 600
SHEEP SHEDS.
EXPERIMENTAL FARM
INDIAN HEAD, SASK.
EXPERIMENTAL FARM, AGASSIZ, B.C.

REPORT OF THE SUPERINTENDENT—P. H. MOORE, B.S.A.

In the line of sheep we are keeping the Horned Dorset breed exclusively, and we have at present fifteen ewes (ages ranging from one to four years), one two-year-old ram and ten ewe lambs. We have had to do very severe culling in the flock in order to get rid of some of the old ewes which had proven non-breeders and also two young ewes which became excessively fat. We have only one ewe which has produced a double crop of lambs in the season. Number 41 gave birth to a ram lamb on February 18, 1912 (this lamb was sold to the butcher); on September 6, 1912, she gave birth to twin lambs (one ram and one ewe), and again on March 31, 1913, she gave birth to one ewe lamb. Many of the sheep have had twin lambs, and some of the best have been saved to sell as breeders, while the rest of them have been disposed of to the butcher. We have had just one fatality, and this was caused by maggot in the head (Oestrus ovis). We have had one case of pneumonia, which did not prove fatal, and are also pleased to be able to report that there have been no losses from wild animals; this, we think, is accounted for by the sheep having access to the lanes leading to the buildings and not being confined to the bush pastures close to the mountain. The sheep have been allowed to run in the same pastures with the cattle and have always kept in excellent condition without any extra assistance, with the exception of a short period while the snow was on the ground, at which time they received clover hay and turnips. At lambing time they received a mixture of oats and bran for a short period; this, at the local market price, would cost about $1 per sheep. The total outlay for food for the whole flock during the winter amounted to $2.90 per sheep. The rest of the year they got their living from the pastures, and have always kept in excellent condition.
SWINE.

CENTRAL EXPERIMENTAL FARM, OTTAWA, ONT.

REPORT OF THE DOMINION ANIMAL HUSBANDMAN.—
E. S. ARCHIBALD, B.A., B.S.A.

SWINE.

There are one hundred and fifty-one head of swine of all classes, which are either being fed experimentally or kept for breeding purposes. The breeds kept are Berkshire, Yorkshire and Tamworth.

The Yorkshires are 85 in number, including 31 breeding sows, 52 young pigs and 2 stock boars.

The Berkshires are 26 in number, including 11 breeding sows, 13 young pigs and 2 stock boars.

The Tamworths are 40 in number, including 17 breeding sows, 20 young pigs and 3 stock boars.

The main piggery, erected in 1910, continues to give satisfaction in all respects. The housing of brood sows during both winter and summer in the single board cabins has also continued to give excellent results.

The increasing sales and demand for young breeding pigs is a healthy indication of the increasing interest of farmers, both in the Experimental Farms and in their own herds.

The experimental feeding work, part of which may be found below, was conducted and compiled by Mr. Gray and has been quite satisfactory.

Pig Feeding Experiments.

1.—VALUE OF GREEN FEED IN REPLACING MEAL.

The object of this experiment was to discover the value of green feed for market hogs.

Fourteen uniformly good hogs, about three months of age, were divided into two lots of seven each.

Both lots were fed in a pen sufficiently large to give all exercise necessary.

The meal mixture was composed of equal parts of shorts and Schumacker feed. The green feed consisted of green clover. Green feed was cut and hauled to the pen daily.

The two lots were fed as follows:

Lot I.—Meal mixture, 5 pounds of skim milk per pig per day, and all the green clover they would clean up.

Lot II.—Meal mixture and 5 pounds of skim milk per pig per day.

In computing results, food stuffs were charged as follows:

<table>
<thead>
<tr>
<th>Food Stuff</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal mixture</td>
<td>$28.00 per ton.</td>
</tr>
<tr>
<td>Green feed</td>
<td>3.00 per ton.</td>
</tr>
<tr>
<td>Skim milk</td>
<td>.15 per cwt.</td>
</tr>
</tbody>
</table>
DIVISION OF ANIMAL HUSBANDRY

SESSIONAL PAPER No. 16

TEST 1.—Pig Feeding Experiment.

<table>
<thead>
<tr>
<th>Lot I.</th>
<th>Lot II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal, milk and green feed.</td>
<td>Meal and milk.</td>
</tr>
<tr>
<td>Number of animals in each lot</td>
<td>7</td>
</tr>
<tr>
<td>First weight, gross, lb.</td>
<td>526</td>
</tr>
<tr>
<td>First weight, average per pig.</td>
<td>65·7</td>
</tr>
<tr>
<td>Finished weight, gross, lb.</td>
<td>1,261</td>
</tr>
<tr>
<td>Finished weight, average per pig.</td>
<td>157·6</td>
</tr>
<tr>
<td>Number of days in experiment</td>
<td>84</td>
</tr>
<tr>
<td>Average gain per pig for period, lb.</td>
<td>91·9</td>
</tr>
<tr>
<td>Average gain per pig per day</td>
<td>1·09</td>
</tr>
<tr>
<td>Amount of meal consumed.</td>
<td>1,892·60</td>
</tr>
<tr>
<td>Amount of milk consumed.</td>
<td>3,300</td>
</tr>
<tr>
<td>Amount of green feed consumed.</td>
<td>3,600</td>
</tr>
<tr>
<td>Total cost of feed for period</td>
<td>$36·92</td>
</tr>
<tr>
<td>Cost of feed per pig for period, $</td>
<td>5·28</td>
</tr>
<tr>
<td>Cost of feed per pig per day, $</td>
<td>6·2</td>
</tr>
<tr>
<td>Cost to produce 1 pound gain live weight, $</td>
<td>4·1</td>
</tr>
</tbody>
</table>

Deductions from test.—Results, which were quite satisfactory, pointed to the following conclusions:

1. Greater daily gains may be made from the meal and milk ration but more economical gains are made by an addition to ration of green cut clover.
2. The pigs of lot I, receiving clover, were, at the conclusion of the experiment, not quite as well finished as those of lot II, but having greater bone and muscular development, were in splendid shape to take a short finish for market.
3. Pigs in lot I were at all times on feed while two pigs in lot 2 went off feed and others showed tendencies that way. This again shows the conditioning and regulating influences of green feed.
4. The 3,600 pounds green feed given lot I was replaced by 834 pounds meal mixture for lot II. Hence, for total gains, 3,600 pounds green feed is equivalent to 580 pounds meal mixture. In other words, when shorts and Schumacker are fed as above, and this meal mixture costs $28 per ton, then green cut clover may replace one-sixth of the meal ration and is then worth $4.51 per ton.

TEST 2.—Winter Feeding.

Object of Experiment.—To test comparative value of feed flour, middlings, milk and turnips, in rations for pork production.

Samples of the feeds were taken, and chemical analyses will be used as a check on future experimental work of this nature.

Plan of Experiment.—Fifty young pigs were divided into five lots of ten each. Each lot subdivided into two pens of five each.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.</td>
<td>Barley—ground. Oats— " Milk—(skim)</td>
<td>Equal parts. 3 pounds per pig per day.</td>
<td>A milk slop.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.</td>
<td>Barley—ground. Turnips</td>
<td>Equal parts. boiled.</td>
<td>Water added to mixed ration as needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.</td>
<td>Barley—ground. Oats— " Feed flour</td>
<td>Equal parts of each.</td>
<td>Water slop.</td>
</tr>
</tbody>
</table>

In computing results, the foodstuffs were charged at the following rates:

Barley
Oats
Middlings
Feed flour
Milk
Turnips

$25.00 per ton.
26.00 per ton.
28.00 per ton.
33.00 per ton.
.20 per cwt.
2.00 per ton.

The following tables give the details of the experiment:

Lot I.—Barley and Oats.

<table>
<thead>
<tr>
<th></th>
<th>Pen 1.</th>
<th>Pen 2.</th>
<th>Average for Lot I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>422</td>
<td>828</td>
<td>1250</td>
</tr>
<tr>
<td>844</td>
<td>1098</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>748</td>
<td>1157</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>1182</td>
<td>2274</td>
<td>1878</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>61.8</td>
<td>62.8</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>98.98</td>
<td>.99</td>
<td></td>
</tr>
<tr>
<td>1,148</td>
<td>1,473</td>
<td>2,623.00</td>
<td></td>
</tr>
</tbody>
</table>

N.B.—1. The heavier and older pigs of pen 2 made more costly and slower gains than pen 1, as would be expected.
Lot II. Barley, Oats and Milk.

<table>
<thead>
<tr>
<th></th>
<th>Lot II.</th>
<th>Average for Lot II.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pen 1</td>
<td>Pen 2</td>
</tr>
<tr>
<td>Number of animals</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>First weight, gross, December 12, 1912</td>
<td>346</td>
<td>458</td>
</tr>
<tr>
<td>First weight, average</td>
<td>69.2</td>
<td>91.6</td>
</tr>
<tr>
<td>Finished weight, gross, February 13, 1913</td>
<td>720</td>
<td>906</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>144</td>
<td>151.2</td>
</tr>
<tr>
<td>Number of days in experiment</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Average gain per pig for period</td>
<td>74.8</td>
<td>89.6</td>
</tr>
<tr>
<td>Average gain per pig per day</td>
<td>1.18</td>
<td>1.42</td>
</tr>
<tr>
<td>Amount of meal consumed</td>
<td>974</td>
<td>1,342</td>
</tr>
<tr>
<td>Amount of roots consumed</td>
<td>945</td>
<td>945</td>
</tr>
<tr>
<td>Total cost of feed for period</td>
<td>$14.56</td>
<td>19.52</td>
</tr>
<tr>
<td>Cost of feed per pig for period</td>
<td>2.91</td>
<td>3.90</td>
</tr>
<tr>
<td>Cost of feed per pig per day</td>
<td>4.6</td>
<td>6.2</td>
</tr>
<tr>
<td>Cost to produce 1 pound gain live weight</td>
<td>3.90</td>
<td>4.30</td>
</tr>
</tbody>
</table>

N.B.—Here again the younger and lighter pigs made more economical gains.

Lot III.—Barley, Oats and Cooked Turnips.

<table>
<thead>
<tr>
<th></th>
<th>Lot III.</th>
<th>Average for Lot III.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pen 1</td>
<td>Pen 2</td>
</tr>
<tr>
<td>Number of animals</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>First weight, gross, December 12, 1912</td>
<td>418</td>
<td>854</td>
</tr>
<tr>
<td>First weight, average</td>
<td>83.6</td>
<td>170.8</td>
</tr>
<tr>
<td>Finished weight, gross, February 13, 1913</td>
<td>727</td>
<td>1199</td>
</tr>
<tr>
<td>Finished weight, average</td>
<td>145.4</td>
<td>239.8</td>
</tr>
<tr>
<td>Number of days in experiment</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Average gain per pig for period</td>
<td>61.8</td>
<td>69.0</td>
</tr>
<tr>
<td>Average gain per pig per day</td>
<td>9.98</td>
<td>1.03</td>
</tr>
<tr>
<td>Amount of meal consumed</td>
<td>1072</td>
<td>1465</td>
</tr>
<tr>
<td>Amount of roots consumed</td>
<td>1072</td>
<td>1465</td>
</tr>
<tr>
<td>Total cost of feed for period</td>
<td>$15.54</td>
<td>21.23</td>
</tr>
<tr>
<td>Cost of feed per pig for period</td>
<td>3.11</td>
<td>4.25</td>
</tr>
<tr>
<td>Cost of feed per pig per day</td>
<td>4.93</td>
<td>6.74</td>
</tr>
<tr>
<td>Cost to produce 1 pound gain live weight</td>
<td>5.0</td>
<td>6.1</td>
</tr>
</tbody>
</table>

N.B.—Here again the younger and lighter pigs made more economical gains.
Lot IV.—Barley, Oats and Middlings.

<table>
<thead>
<tr>
<th>Lot IV.</th>
<th>Average for Lot IV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen 1.</td>
<td>Pen 2.</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>418</td>
<td>330</td>
</tr>
<tr>
<td>83.6</td>
<td>70</td>
</tr>
<tr>
<td>738</td>
<td>617</td>
</tr>
<tr>
<td>147.6</td>
<td>123.4</td>
</tr>
<tr>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>64</td>
<td>53.4</td>
</tr>
<tr>
<td>1.01</td>
<td>0.83</td>
</tr>
<tr>
<td>1,019</td>
<td>1,021</td>
</tr>
</tbody>
</table>

Number of animals. 5 5 10
First weight, gross, December 12, 1912. lb. 418 330 768
First weight, average. 83.6 70 76.8
Finished weight, gross, February 13, 1913. lb. 738 617 1,355
Finished weight, average. 147.6 123.4 135.5
Number of days in experiment. days 63 63 63
Average gain per pig for period. lb. 64 53.4 58.7
Average gain per pig per day. 1.01 0.83 0.92
Amount of meal consumed. 1,019 1,021 2,040
Amount of roots consumed. 1,019 1,021 2,040
Amount of milk consumed. 1,019 1,021 2,040
Total cost of feed for period. $ 14.29 14.29 14.29
Cost of feed per pig for period. $ 2.85 2.85 2.85
Cost of feed per pig per day. 2.85 2.85 2.85
Cost to produce 1 pound gain live weight. 4.40 5.30 4.85

N.B.—In this lot the heavier pigs made more economical gains.

Lot V.—Barley, Oats and Feed Flour.

<table>
<thead>
<tr>
<th>Lot V.</th>
<th>Average for Lot V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen 1.</td>
<td>Pen 2.</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>554</td>
<td>551</td>
</tr>
<tr>
<td>70.8</td>
<td>110.2</td>
</tr>
<tr>
<td>592</td>
<td>907</td>
</tr>
<tr>
<td>118.4</td>
<td>181.4</td>
</tr>
<tr>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>47.6</td>
<td>71.2</td>
</tr>
<tr>
<td>0.75</td>
<td>1.13</td>
</tr>
<tr>
<td>836</td>
<td>1,272</td>
</tr>
</tbody>
</table>

Number of animals. 5 5 10
First weight, gross, December 12, 1912. lb. 554 551 905
First weight, average. 70.8 110.2 90.5
Finished weight, gross, February 13, 1913. lb. 592 907 1,499
Finished weight, average. 118.4 181.4 149.9
Number of days in experiment. days 63 63 63
Average gain per pig for period. lb. 47.6 71.2 59.4
Average gain per pig per day. 0.75 1.13 0.94
Amount of meal consumed. 836 1,272 2,108
Amount of roots consumed. 836 1,272 2,108
Amount of milk consumed. 836 1,272 2,108
Total cost of feed for period. $ 14.29 14.29 14.29
Cost of feed per pig for period. $ 2.85 2.85 2.85
Cost of feed per pig per day. 2.85 2.85 2.85
Cost to produce 1 pound gain live weight. 4.40 5.30 4.85

N.B.—Here again the younger and lighter pigs made more economical gains.

Deductions from experiment are as follows:—

1. Skim milk is an outstandingly cheap pork producer. Comparing lot II with lot I we notice:—

 (1) One pound mixed barley and oatmeal equals 1.7 pounds milk. If meal is worth $27 per ton, then milk has a value of 79c. per cwt. when fed as above.
SESSIONAL PAPER No. 16

(2) For light hogs, 70 pounds and up, 400 pounds milk is as good as 100 pounds ground meal (oats and barley) which, when fed at 3 pounds per hog per day and above meal worth $27 per ton, makes milk worth about 34 cents per cwt.

(3) For heavier hogs in lot II vs. lot I, the skim milk was worth 28 cents per cwt.

2. Middlings was the next cheapest substitute for a part of the oats and barley meal. Comparing lot I with lot IV, we find that when oat and barley meal is worth $27 per ton, that middlings, when fed as one-third of meal ration may be worth $44 per ton, one pound middlings being worth 1.63 pounds oat and barley mixture.

3. Younger and light pigs did not take readily to feed flour nor would any of either pen in lot V take large quantities of this meal. Nevertheless, this lot stood third in order of economy of production. Comparing lots V and I, we find if the barley and oat meal is worth $27 per ton, then feed flour may replace one-third of said meal and have a value of $42.15 per ton, one pound feed flour being worth 1.56 pounds oat and barley mixture.

Probably if a smaller quantity had been used, in proportion to the oat and barley meal, the heavy, sticky nature of the meal would not have been so objectionable with these pigs.

4. Cooked turnips added to the meal ration economized but little over the meal (oat and barley) alone.

Comparing lot I and III, we notice that if oat and barley meal is worth $27 per ton, then cooked turnips are worth $2.30 per ton, one pound oat and barley mixture being worth 11.8 pounds cooked turnips. The cost of cooking the turnips was not here included. This would point to the inadvisability of cooking turnips for feeding hogs.

5. I should advise readers to compare the foregoing experiment with an experiment reported in the last annual report. By so doing there will be noticed similar results, namely:

First, as to the great value of skim milk.

Second, as to the but slightly more economical pork production by feeding cooked turnips rather than raw, the cost of cooking not considered.

Third, that meal (oats and barley) as a water slop is the most expensive food-stuff when fed alone.

FINANCIAL STATEMENT.

Below are submitted inventories and returns for the swine on the Central Experimental Farm during the year April 1, 1912, to March 31, 1913.

In spite of the expense incurred by the extra labour of experimental work, this branch has again shown a profit.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales during year</td>
<td>$2,603.89</td>
</tr>
<tr>
<td>Value of manure</td>
<td>200.00</td>
</tr>
<tr>
<td>Value of pigs on hand April 1, 1913</td>
<td>4,157.00</td>
</tr>
<tr>
<td>Total</td>
<td>$6,960.89</td>
</tr>
<tr>
<td>Cost of feed and bedding</td>
<td>$1,653.75</td>
</tr>
<tr>
<td>Cost of labour</td>
<td>940.00</td>
</tr>
<tr>
<td>Value of stock on hand April 1, 1912</td>
<td>4,107.25</td>
</tr>
<tr>
<td>Total</td>
<td>$6,701.00</td>
</tr>
<tr>
<td>Profit for year</td>
<td>$ 259.89</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARM, NAPAN, N.S.

REPORT OF THE SUPERINTENDENT—R. ROBERTSON.

BREEDING SWINE.

The herd of swine at present on the Farm consists of 1 Yorkshire boar, 2 Yorkshire sows, 1 Berkshire boar and 1 Berkshire sow.

EXPERIMENTS WITH SWINE.

To determine the value of feeding skim milk to swine, a test was made with two lots of five each, termed lot I and lot II. Both lots were fed a uniform meal ration throughout the test, lot I being fed 3 pounds skim milk per pig per day, and lot II being fed 6 pounds skim milk per pig per day. For the first six weeks of this test a small quantity of oil cake, averaging 1 pound per day for each lot, was fed dry, mixed with an equal weight of crushed oats, and during that period shorts only, were fed mixed with the milk. After the first six weeks the meal mixture consisted of equal parts, by weight, of crushed oats, crushed barley and shorts.

In computing results, food stuffs were charged for at the following rates:

<table>
<thead>
<tr>
<th>Food Stuff</th>
<th>Charge per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal mixture</td>
<td>$30.00 per ton.</td>
</tr>
<tr>
<td>Skim milk</td>
<td>.20 per cwt.</td>
</tr>
</tbody>
</table>

Pig Feeding Experiment.

<table>
<thead>
<tr>
<th>Lot I.</th>
<th>Lot II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pigs in lot:</td>
<td>5</td>
</tr>
<tr>
<td>Total weight at beginning of experiment: lb.</td>
<td>160</td>
</tr>
<tr>
<td>Average weight at beginning of experiment:</td>
<td>32</td>
</tr>
<tr>
<td>Total weight at end of experiment:</td>
<td>76</td>
</tr>
<tr>
<td>Average weight at end of experiment:</td>
<td>512</td>
</tr>
<tr>
<td>Gain per pen in 132 days:</td>
<td>108</td>
</tr>
<tr>
<td>Gain per pig in 132 days:</td>
<td>81</td>
</tr>
<tr>
<td>Average gain per pig per day:</td>
<td>1.83</td>
</tr>
<tr>
<td>Amount of meal consumed:</td>
<td>1,850</td>
</tr>
<tr>
<td>Amount of skim-milk consumed:</td>
<td>1,930</td>
</tr>
<tr>
<td>Total cost of feed for period: $</td>
<td>31.71</td>
</tr>
<tr>
<td>Cost of 1 pound gain live weight: cts.</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Deductions.—The following points of interest and value might be noted in the results of above experiment:

1. That profitable pork may be produced by winter feeding of young feeders.
2. The extra 1,080 pounds of skim milk produced an extra gain of 143 pounds pork. As the finished pork was worth 8 cents live weight, this extra milk was worth 37 cents per cwt.
Tamworth Sows (10 months of age) in Winter Quarters. Central Experimental Farm, Ottawa.
Note: (1) Uniformity of sows; (2) Good condition and comfort in these quarters.

Swine Cabins. Central Experimental Farm, Ottawa. Winter quarters for brood Sows.
Note: (1) Structure of cabins; (2) Exercising yards made of hurdle fences.
EXPERIMENTAL FARM, BRANDON, MAN.

REPORT OF THE SUPERINTENDENT—W. C. MCKILLCAN, B.S.A.

BREEDING SWINE.

There are nineteen swine on the Farm at present. These are divided between two breeds as follows:
Yorkshire: 3 sows, 1 boar and 9 young pigs.
Berkshire: 2 sows and 4 young pigs.
During the year the following young pigs were sold to farmers, for breeding purposes: 2 Yorkshire boars, 1 Yorkshire sow and 2 Berkshire boars. Thirty-one bacon pigs were sold to the butcher, at prices from 7½ to 8½ cents per pound.

FEEDING EXPERIMENTS.

BARLEY VS. SHORTS.

An experiment was conducted, in which chopped barley was compared with shorts as a feed for young pigs, averaging 70 to 75 pounds in weight, at the beginning of the test. The pigs used were from early fall litters, and had received no milk or any commercial substitute for it. Up to the start of the experiment, they had been fed on shorts, barley and feed flour.

They were divided, on December 14, 1912, into two lots, as nearly evenly as possible; there were three Berkshires and one Yorkshire in each lot. One lot received barley chop, and the other shorts; in addition, both lots received a small quantity of feed flour and some mangels. The quantities fed daily at the start were: Barley or shorts, 2¼ pounds per pig; feed flour, ½ pound per pig; mangels, 2 pounds per pig.

These quantities were increased as the pigs grew. It was found that the pigs on the barley could use more feed, and they were consequently given a little heavier ration. The quantities in each case were kept to what the pigs would clean up with relish. The grain feeds were purchased at the following rates: Barley, $15 per ton; shorts, $20 per ton; feed flour, $28 per ton. The mangels were grown on the Farm and are valued at $3 per ton. The results are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Lot I</th>
<th>Lot II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pigs in lot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight at start of test, December 14, 1912</td>
<td>292</td>
<td>708</td>
</tr>
<tr>
<td>Weight at end of test, February 14, 1913</td>
<td>432</td>
<td>248½</td>
</tr>
<tr>
<td>Gain in two months</td>
<td>260</td>
<td>488½</td>
</tr>
<tr>
<td>Gain per pig per day</td>
<td>81</td>
<td>38</td>
</tr>
<tr>
<td>Total amount of barley fed</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>Total amount of shorts fed</td>
<td></td>
<td>63½</td>
</tr>
<tr>
<td>Total amount of feed flour fed</td>
<td>248½</td>
<td>488½</td>
</tr>
<tr>
<td>Total amount of mangels fed</td>
<td>488½</td>
<td></td>
</tr>
<tr>
<td>Total cost of feed</td>
<td>9 52</td>
<td>10 58</td>
</tr>
<tr>
<td>Cost of feed per 100 pounds gain in weight</td>
<td>4 26</td>
<td>7 40</td>
</tr>
</tbody>
</table>

This is a decided victory for barley. Of course, it would not always be possible to buy barley at ½ cent per pound, but even if it were the same price as the shorts, the results would still be in its favour. It is possible that the similarity between the shorts and feed flour made the ration that contained both not so palatable and well balanced as the one that had barley and feed flour, and part of the failure of the shorts is due to that cause.

16—39
EXPERIMENTAL STATION, LACOMBE, ALTA.

REPORT OF THE SUPERINTENDENT—G. H. HUTTON, B.S.A.

SWINE.

The Animal Husbandry Division of the Central Experimental Farm sent this Station four pure-bred Yorkshire sows. These, with one Berkshire sow, constitute the stock of breeding hogs. A fall litter of six Yorkshire pigs are now being fed for market.
EXPERIMENTAL FARM, AGASSIZ, B.C.

REPORT OF THE SUPERINTENDENT—P. H. MOORE, B.S.A.

SWINE.

It is gratifying to be able to report a substantial increase in the number of hogs kept on the Farm, nearly all the increase coming from our own breeding. There has been a very great demand during the year for breeding stock, particularly the Yorkshire breed (which we are now keeping exclusively) and we have not been able to supply this demand within seventy per cent. The demand has come chiefly from the newer sections of the country, and from farmers who do not know of other places to locate stock. Our herd is still headed by Summerhill Jerry 21st, and there are now on hand eleven brood sows, ranging in age from nine months to four years.

Although this branch has been greatly handicapped by lack of adequate accommodation, we have come through the year with few losses, and the hog branch has proved one of the most remunerative on the Farm.

During the early winter we fitted up an old hen-house, and in this ran a bunch of hogs on experimental work. Although the conditions were not all that could be desired, some information has been collected, and while the progress of the work which we are reporting does not prove definitely the value of the food, we are publishing a summary of the work as carried on to date. The work is still being followed up under summer conditions with new hogs, and if we are fortunate enough to have the hogs next winter, we intend to finish up this work in good shape.

HOG-FEEDING EXPERIMENTS.

On account of the number of inquiries coming to the Farm regarding the food value of rice meal, we decided to make a few trials with it for hog feeding. This meal is a by-product from rice mills. It seems light, but fibrous, and contains some cracked rice. The analysis made by Mr. F. T. Shutt, Dominion Chemist, is as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>10.54</td>
</tr>
<tr>
<td>Protein</td>
<td>11.44</td>
</tr>
<tr>
<td>Fat</td>
<td>11.25</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>53.36</td>
</tr>
<tr>
<td>Fibre</td>
<td>6.13</td>
</tr>
<tr>
<td>Ash</td>
<td>7.28</td>
</tr>
</tbody>
</table>

SUMMER FEEDING.

We used for this experiment some half-bred Yorkshire pigs and several pure-breds which were not good enough in all points to register as breeders.

They had a moderate amount of exercise in the yards, and were run four to a pen. They were fed three times daily and kept well bedded, but the yards sometimes got quite dirty. The grain and milk was weighed at each meal, but clover, green peas and oats were fed *ad libitum*.

16—39½
<table>
<thead>
<tr>
<th>Ration</th>
<th>Average gain daily</th>
<th>Food for 100 Pounds Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat shorts, milk, and green food</td>
<td>1.16</td>
<td>210.2</td>
</tr>
<tr>
<td>Wheat shorts, one-third peas, oats, barley, one-third rice meal, one-third milk and green food</td>
<td>1.1</td>
<td>276.9</td>
</tr>
<tr>
<td>Oats, peas and barley (ground), milk and green food</td>
<td>1.42</td>
<td>211.7</td>
</tr>
</tbody>
</table>

WINTER FEEDING.

In the winter feeding trial, eight pigs were used, four pigs in each pen and eight pigs on each ration. The breeds consisted of nine pure-bred Yorkshires, grade Yorkshires and Yorkshire and Berkshire crosses. The ages ranged from six months to three months. The pigs were sorted to get equal weights in each pen, and a pen of large and one of small pigs were used in each trial, as it was impossible to get enough pigs all the same age, breeding and size. They were confined in pens, eight feet by nine feet, and not allowed outside. The pens were cleaned out every alternate day and kept well bedded with cut straw. They were in an old well-lighted building on a plank floor two feet above the ground. During cold weather they were too cold, but at all times they had sufficient fresh air. The food was weighed to them for each meal, and each pen got what it could eat up clean. The pens fed rice meal grew a very heavy coat of hair and looked rough throughout. Several times the pigs in these rice meal pens stiffened up and refused food, even when having less food at the time than their neighbours. They had to be dosed with Epsom salts. The other pens were always hungry and active throughout the trials. In contrast to the summer trials each pig received only two and one-half pounds of skim milk instead of fifteen pounds daily.

Rice meal vs. wheat shorts; fed in conjunction with skim milk and mangels:

<table>
<thead>
<tr>
<th>Ration</th>
<th>Average daily gain</th>
<th>Food for 100 Pounds Gain</th>
<th>Dressed meat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice meal, milk and mangels</td>
<td>7.075</td>
<td>365.335</td>
<td>785</td>
</tr>
<tr>
<td>Wheat shorts, milk, mangels</td>
<td>1.176</td>
<td>240.233</td>
<td>518</td>
</tr>
</tbody>
</table>
Rice meal and wheat shorts, equal parts by weight, vs. oats, peas, barley (home grown) and wheat shorts, equal parts fed with mangels or milk:

<table>
<thead>
<tr>
<th>Ration</th>
<th>Average daily gain</th>
<th>Food for 100 Pounds Gain</th>
<th>Dressed meat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lb.</td>
<td>Lb.</td>
<td>Lb.</td>
</tr>
<tr>
<td>Rice meal, wheat shorts, milk and mangels</td>
<td>925</td>
<td>248</td>
<td>263</td>
</tr>
<tr>
<td>Oats, peas and barley, wheat shorts, milk and mangels</td>
<td>1.04</td>
<td>247</td>
<td>243.5</td>
</tr>
</tbody>
</table>
REPORT

FROM

THE DIVISION OF FORAGE PLANTS

For the Year Ending March 31, 1913

PREPARED BY

The Dominion Agrostologist, Central Farm, Ottawa. - - - - - M. O. Malte, Ph.D.
Superintendent, Experimental Station, Charlottetown, P.E.I. - - J. A. Clark, B.S.A.
Superintendent, Experimental Farm, Napan, N.S. - - - - - R. Robertson.
Superintendent, Experimental Station, Cap Rouge, Que. - - - G. A. Langelier.
Superintendent, Experimental Farm, Brandon, Man. - - - - W. C. McKillican, B.S.A.
Superintendent, Experimental Farm, Indian Head, Sask. - - Angus Mackay.
Superintendent, Experimental Station, Rosthern, Sask. - - - W. A. Munro, B.S.A.
Superintendent, Experimental Station, Scott, Sask. - - - - - R. E. Everest, B.S.A.
Superintendent, Experimental Station, Lethbridge, Alta. - - W. H. Fairfield, M.S.
Superintendent, Experimental Station, Lacombe, Alta. - - - G. H. Hutton, B.S.A.
Superintendent, Experimental Farm, Agassiz, B.C. - - - - - P. H. Moore, B.S.A.
Experimentalist, Substation at Fort Vermilion, Alta. - - - - Robert Jones.
REPORT
FROM
DIVISION OF FORAGE PLANTS

J. H. Grisdale, Esq., B.Agr.
Director, Dominion Experimental Farms,
Ottawa, Ont.

Sir,—I have the honour to submit herewith the report of the Division of Forage Plants for the year ending March 31, 1913.

In the following pages are presented the results of the work with forage plants, including Indian corn, field roots, alfalfa, clovers and grasses, carried out at the Central Experimental Farm, as well as at the branch Farms and Stations.

To the experiments with forage plants which, before the Division of Forage Plants was established, consisted chiefly in testing of different varieties to ascertain their comparative value, has been added, during the year, breeding work with alfalfa, clovers, timothy and orchard grass.

In starting the breeding work, as well as in keeping the records for the experiments already under way when the Division was established, much valuable assistance has been given by Mr. F. S. Browne, B.S.A., who, from August 1, 1912, to March 31, 1913, acted as foreman in the most faithful and competent manner.

I have the honour to be, Sir,
Your obedient servant,

M. O. Malte,
Dominion Agrostologist.
CENTRAL EXPERIMENTAL FARM, OTTAWA, ONT.

REPORT OF THE DOMINION AGROSTOLOGIST—M. O. MALTE, Ph.D.

INDIAN CORN.

The whole season was rather unfavourable for experiments with Indian corn. The very wet weather during the first part of June and the appearance of the larve of the Click beetle (*Cryptohypnus abbreviatus*) necessitated re-sowing in the middle of June to such an extent that the results of the comparative tests can be used only approximately.

Date of sowing, June 15. Date of cutting, September 30. Planted in hills 36 inches apart each way.

INDIAN CORN.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Condition when cut</th>
<th>Weight per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tons.</td>
</tr>
<tr>
<td>1</td>
<td>Champion White Pearl</td>
<td>Grain very soft</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Early Mastodon</td>
<td>"</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Angel of Midnight</td>
<td>"</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Improved Learning</td>
<td>" beginning to harden</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Early Longfellow</td>
<td>"</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Early Compton</td>
<td>"</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Salzer's North Dakota</td>
<td>" half hard "</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>White Cap Yellow Dent.</td>
<td>" soft "</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Eureka</td>
<td>" very soft "</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>Woods Northern</td>
<td>"</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Salzer's All Gold</td>
<td>" soft "</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>Superior Podder</td>
<td>"</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Average.</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

FIELD ROOTS.

Four main groups of field roots were experimented with during the year 1912-13, viz. turnips (including swedes), mangels, carrots and sugar beets.

Of each of these groups, a number of varieties were grown in order to determine their yielding power. Each variety was grown in two rows, the length of the rows and the distance between them being calculated in such a way that each variety occupied 1/100 of an acre or thereabout. The yield per acre of the crop of each variety is calculated from the weight of the crop from 1/100 of an acre.

The advantage of late pulling having been definitely proven by experiments carried out during a number of years previous to 1910, all field roots were pulled as late as possible. The exact date for the pulling of each group of field roots is given in connection with the report of each group.

The soil on which the experiments with field roots were made varied from rather light and somewhat sandy loam to clay loam.

Before sowing the land was made up in drills two feet apart and rolled so as to make a good, firm seed bed.
TURNIPS (INCLUDING SWEDES).

Date of sowing, May 25. Date of pulling, October 23 and 24. Distance between the plants in the rows, 7 inches.

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hall's Westbury</td>
<td>34</td>
<td>992</td>
</tr>
<tr>
<td>2</td>
<td>Selected Purple Top Westbury</td>
<td>33</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>Magnum Bonum</td>
<td>37</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>Hartley's Bronze Top</td>
<td>30</td>
<td>1780</td>
</tr>
<tr>
<td>5</td>
<td>Halewood's Bronze Top</td>
<td>26</td>
<td>174</td>
</tr>
<tr>
<td>6</td>
<td>Perfection</td>
<td>30</td>
<td>1642</td>
</tr>
<tr>
<td>7</td>
<td>Good Luck</td>
<td>37</td>
<td>872</td>
</tr>
<tr>
<td>8</td>
<td>Jumbo</td>
<td>30</td>
<td>270</td>
</tr>
<tr>
<td>9</td>
<td>Elephant</td>
<td>28</td>
<td>810</td>
</tr>
<tr>
<td>10</td>
<td>Mammoth Clyde</td>
<td>25</td>
<td>960</td>
</tr>
<tr>
<td>11</td>
<td>2190 Bangholm</td>
<td>30</td>
<td>980</td>
</tr>
<tr>
<td>12</td>
<td>Bangholm</td>
<td>35</td>
<td>1348</td>
</tr>
<tr>
<td>13</td>
<td>Skirving's</td>
<td>36</td>
<td>226</td>
</tr>
<tr>
<td>14</td>
<td>Kangaroo</td>
<td>36</td>
<td>520</td>
</tr>
<tr>
<td>15</td>
<td>2196 Tankard</td>
<td>32</td>
<td>1678</td>
</tr>
<tr>
<td>16</td>
<td>2197 Fraen Bortfelder</td>
<td>32</td>
<td>464</td>
</tr>
<tr>
<td>17</td>
<td>Best of All</td>
<td>40</td>
<td>1634</td>
</tr>
<tr>
<td>18</td>
<td>Carter's Elephant</td>
<td>36</td>
<td>520</td>
</tr>
<tr>
<td>19</td>
<td>Carter's Prize Winner</td>
<td>30</td>
<td>812</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>33</td>
<td>144</td>
</tr>
</tbody>
</table>

Early in the season the young plants were attacked to quite an extent by cutworms. It is estimated that, with the plants growing about seven inches apart in the rows, about fifteen per cent were eaten by cutworms. The gaps in the rows thus established were re-sown immediately after the damage was observed, but, in spite of all care taken, the result of the attack of the cutworms was that the crop became somewhat uneven. It must be mentioned that, as soon as the first sign of the presence of cutworms was discovered, the experimental field was sprinkled with bran, treated with Paris green. This, no doubt, prevented the experiments from being more seriously affected.

The results of the tests were more seriously influenced by club-root disease, which appeared in practically all varieties. It is hoped, however, that this disease in following years will be checked by the liberal application of lime (at a rate of two tons to the acre) which was given to the infested field in the fall after the root crop had been harvested, and early in the spring of 1913.
MANGELS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per acre</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons.</td>
<td>Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Giant Yellow Globe</td>
<td>44</td>
<td>233</td>
</tr>
<tr>
<td>2</td>
<td>Selected Yellow Globe</td>
<td>42</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Selected Giant Yellow Globe</td>
<td>39</td>
<td>225</td>
</tr>
<tr>
<td>4</td>
<td>Windsor Yellow Globe</td>
<td>45</td>
<td>224</td>
</tr>
<tr>
<td>5</td>
<td>Golden Tankard</td>
<td>26</td>
<td>370</td>
</tr>
<tr>
<td>6</td>
<td>Gate Post</td>
<td>31</td>
<td>570</td>
</tr>
<tr>
<td>7</td>
<td>Selected Perfection</td>
<td>28</td>
<td>270</td>
</tr>
<tr>
<td>8</td>
<td>Prize Mammoth Long Red</td>
<td>28</td>
<td>426</td>
</tr>
<tr>
<td>9</td>
<td>Mammoth Long Red</td>
<td>23</td>
<td>1,727</td>
</tr>
<tr>
<td>10</td>
<td>2194 Mammoth Long Red</td>
<td>19</td>
<td>107</td>
</tr>
<tr>
<td>11</td>
<td>2496 Mammoth Long Red</td>
<td>28</td>
<td>1,575</td>
</tr>
<tr>
<td>12</td>
<td>2193 Barres Long Yellow</td>
<td>21</td>
<td>641</td>
</tr>
<tr>
<td>13</td>
<td>2192 Barres Yellow Half-Long</td>
<td>28</td>
<td>236</td>
</tr>
<tr>
<td>14</td>
<td>2193 Red Eckendorfer</td>
<td>27</td>
<td>172</td>
</tr>
<tr>
<td>15</td>
<td>Danish Sludstrup</td>
<td>27</td>
<td>639</td>
</tr>
<tr>
<td>16</td>
<td>Danish Taaroje</td>
<td>25</td>
<td>869</td>
</tr>
<tr>
<td>17</td>
<td>Giant Yellow Intermediate</td>
<td>19</td>
<td>1,288</td>
</tr>
<tr>
<td>18</td>
<td>Giant Yellow Intermediate</td>
<td>24</td>
<td>474</td>
</tr>
<tr>
<td>19</td>
<td>Giant Yellow Oval</td>
<td>26</td>
<td>304</td>
</tr>
<tr>
<td>20</td>
<td>Giant White Half Sugar</td>
<td>27</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>Giant White Half Sugar</td>
<td>23</td>
<td>1,254</td>
</tr>
<tr>
<td>22</td>
<td>Giant Intermediate Sugar</td>
<td>28</td>
<td>1,705</td>
</tr>
<tr>
<td>23</td>
<td>2845 Half Sugar</td>
<td>29</td>
<td>1,028</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>29</td>
<td>61</td>
</tr>
</tbody>
</table>

In connection with the yield of different varieties of mangel's it must be mentioned that the injurious effect of cutworms necessitated transplanting to quite a considerable extent, the result necessarily being that fair conclusions as to the comparative yielding powers of the different varieties were difficult to draw.

CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per acre</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons.</td>
<td>Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Ontario Champion</td>
<td>18</td>
<td>1,436</td>
</tr>
<tr>
<td>2</td>
<td>Chantenay</td>
<td>16</td>
<td>436</td>
</tr>
<tr>
<td>3</td>
<td>Half Long Chantenay</td>
<td>14</td>
<td>330</td>
</tr>
<tr>
<td>4</td>
<td>Mammoth White Intermediate</td>
<td>21</td>
<td>434</td>
</tr>
<tr>
<td>5</td>
<td>Giant White Vosges</td>
<td>17</td>
<td>818</td>
</tr>
<tr>
<td>6</td>
<td>White Belgian</td>
<td>21</td>
<td>1,218</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>18</td>
<td>545</td>
</tr>
</tbody>
</table>

Date of sowing, May 25. Date of pulling, October 20. Distance between the plants in the rows, 3 inches.
SUGAR BEETS.

Date of sowing, May 24. Date of pulling, October 19. Distance between the plants in the rows, 6 inches.

Sugar Beets,—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per acre</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vilmorin's Improved (A)</td>
<td>16</td>
<td>1,510</td>
</tr>
<tr>
<td>2</td>
<td>Vilmorin's Improved (B)</td>
<td>16</td>
<td>340</td>
</tr>
<tr>
<td>3</td>
<td>Klein Wanzleben</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>15</td>
<td>1,978</td>
</tr>
</tbody>
</table>

RED CLOVER.

Twenty plots of red clover of different origin were sown in 1911. Except for Nos. 1 and 2 only one cutting was taken for hay, the second being reserved for seed production. The following table gives the yield:

<table>
<thead>
<tr>
<th>Number</th>
<th>YIELD PER ACRE.</th>
<th>YIELD PER ACRE.</th>
<th>TOTAL YIELD PER ACRE.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FIRST CUT, JUNE 26.</td>
<td>SECOND CUT, AUG. 23.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>280</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>1,280</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>480</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>140</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1,840</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1,620</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1,440</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>480</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>420</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>1,120</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>560</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>560</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>1,200</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>880</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>120</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>560</td>
<td>1</td>
</tr>
</tbody>
</table>

The red clover seed produced from the above lots was generally of a rather inferior quality. This was due, not only to the season, which was far from suitable for seed production, but also to the presence of the Clover Seed Chalcis (Brachocophagus funebris) which infested the seed very seriously. The seed secured was saved with the intention of using it for breeding purposes in 1913.
DIVISION OF FORAGE PLANTS

SESSIONAL PAPER No. 16

In addition to the above-mentioned plot experiments with red clover, started in 1911, a new line of work was taken up, viz., breeding from individual plants.

A large number of samples of red clover seed were collected during the summer 1911, in different parts of Canada, principally from the provinces of Quebec and British Columbia. From these were selected, in 1912, thirty-seven samples, each of which came from one single plant. From each sample thus selected, twenty hills were planted, two feet apart each side. On account, however, of the weather conditions and other unfavourable factors, only a comparatively small number of the hills produced plants.

ALFALFA.

At the beginning of the fiscal year 1912-13, twenty plots of alfalfa, secured from different sources, were growing at the Central Experimental Farm. From these plots three cuttings were taken, the first June 22, the second July 24, the third October 3.

The yield is given in the following table:

Alfalfa.—Yield of Different Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>1ST CUT.</th>
<th>2ND CUT.</th>
<th>3RD CUT.</th>
<th>TOTAL YIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tons. Lb</td>
<td>Tons. Lb</td>
<td>Tons. Lb</td>
<td>Tons. Lb</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1,720</td>
<td>5</td>
<td>340</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>680</td>
<td>2</td>
<td>640</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1,130</td>
<td>2</td>
<td>960</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>320</td>
<td>2</td>
<td>680</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>920</td>
<td>2</td>
<td>800</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>1,560</td>
<td>2</td>
<td>280</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>760</td>
<td>1</td>
<td>1,940</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>320</td>
<td>1</td>
<td>1,600</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>630</td>
<td>1</td>
<td>900</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>800</td>
<td>1</td>
<td>630</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>1,680</td>
<td>2</td>
<td>800</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>160</td>
<td>2</td>
<td>890</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>1,310</td>
<td>1</td>
<td>1,320</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>840</td>
<td>2</td>
<td>1,280</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>1,040</td>
<td>2</td>
<td>1,920</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>1,840</td>
<td>2</td>
<td>280</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>1,940</td>
<td>2</td>
<td>960</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>560</td>
<td>1</td>
<td>1,760</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>640</td>
<td>2</td>
<td>160</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>920</td>
<td>2</td>
<td>1,280</td>
</tr>
<tr>
<td>Average</td>
<td>8</td>
<td>1,500</td>
<td>2</td>
<td>230</td>
</tr>
</tbody>
</table>

In order to ascertain the influence of self- and cross-fertilization of alfalfa on the production of seed, experiments were planned and started by Mr F. S. Browne, B.S.A. The results obtained so far seem to indicate that alfalfa plants can be readily fertilized by their own pollen. The experiments will, however, be continued during 1913 and the final results reported upon, when more data are available.

TIMOTHY.

During the summer of 1911, about 450 samples of timothy seed were collected from wild plants, the majority of which were from the province of Alberta. With a view of producing, by proper breeding, new and constant varieties of timothy of
superior quality, forty-two samples of seed were selected in 1913. Each of the samples thus selected was collected from one single plant. When selecting the samples, not only was the possibility of producing varieties superior as to yield kept in mind, but also the possibility of producing strains of a certain seed type. For this reason samples were selected, which on account of the vegetative characters of the mother plants could be expected to originate new strains of a superior quality. A few samples having certain striking seed characters were also used. The advantage of having a timothy strain, flowering at the same time as red clover was also borne in mind, and therefore, seed from early- and late-flowering mother plants was also selected.

From each of the forty-two samples a lot of seed was sown in flower pots and kept in cold frames. When the seedlings were firmly rooted, thirty young plants were picked out at random from each sample, transplanted into individual pots and later into the field three feet apart each side, making a total of 1,260 individual plants. At the close of the season these plants were doing very well.

ORCHARD GRASS.

Of this grass, which is comparatively little known in Canada, six seed samples were secured from the Plant Breeding Station at Svalof, Sweden. The seeds from these samples were sown in flower pots, and later transplanted into the field in the same way as stated above for timothy. The individual orchard grass plants thus growing in the field in 1912 entered the winter in very fine condition.

COLLECTION OF GRASSES AND GRASS SEEDS.

When visiting the Experimental Farms in the different provinces, a great number of wild grasses and grass seeds were collected. At present the wild grasses of Canada are comparatively but little known and many genera and species are what is technically termed 'critical.' With a view of gradually coming to a clear understanding of the systematic value of such critical genera and species, seed was collected from a great number of 'forms' of a doubtful systematic rank. Special attention was paid to species belonging to the genera *Agropyrum* and *Bromus*.

BROOM CORN.

During recent years quite an interest has been taken by farmers in different provinces of Eastern Canada in the growing of broom corn. The experiments with broom corn which were started at the Central Experimental Farm in 1911 by the Division of Botany have therefore been continued.

A total of twenty-three so-called varieties were sown on June 15 and 17 in row-three feet apart, but during the summer, on account of the unfavourable weather conditions, the plants made a slow growth, and only a comparatively very small number of individuals reached the proper stage for harvesting, when the first late-summer frost set in.

The results obtained from the different varieties are hardly worth recording.
Cutting Alfalfa, Experimental Station, Charlottetown, P. E. I.

Turnip Crop, 1912, on the Experimental Station, Lethbridge, Alberta.
EXPERIMENTAL STATION, CHARLOTTETOWN, P.E.I.

REPORT OF THE SUPERINTENDENT—J. A. CLARK, B.S.A.

INDIAN CORN.

The land where the test plots were sown was very weedy and the season such that it was almost impossible to destroy the couch grass. The season was, on the whole, very unfavourable for Indian corn.

Seven varieties were sown in drills on drained, as well as on undrained land. Two varieties were also tried in hills. The latter yielded much heavier, as will be seen from the table below, than the same varieties sown in drills. This is accounted for by the land being much warmer and cleaner in the case of the hills.

The corn in drills was sown with the grain drill, in rows 36 inches apart, on the 3rd of June, and cut green October 11. It was cured as corn stover and fed to stock.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Weight per acre in rows, drained.</th>
<th>Weight per acre in rows, undrained.</th>
<th>Weight per acre in hills.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angel of Midnight</td>
<td>7 1,387</td>
<td>8 1,084</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Canadian Yellow</td>
<td>9 1,403</td>
<td>8 1,197</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compton's Early</td>
<td>9 1,909</td>
<td>9 1,317</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Early Mastodon</td>
<td>8 1,084</td>
<td>6 1,124</td>
<td>16 246</td>
</tr>
<tr>
<td>5</td>
<td>Longfellow</td>
<td>10 1,699</td>
<td>9 1,799</td>
<td>13 1,968</td>
</tr>
<tr>
<td>6</td>
<td>Learning Selected</td>
<td>8 1,649</td>
<td>9 272</td>
<td>8 801</td>
</tr>
<tr>
<td>7</td>
<td>Superior Fodder</td>
<td>11 1,480</td>
<td>8 801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>9 1,169</td>
<td>8 1,375</td>
<td>14 1,667</td>
</tr>
</tbody>
</table>

FIELD ROOTS.

TURNIPS.

Fourteen varieties of swede turnips were sown on May 31, and pulled November 14, 1912. The soil was a sandy loam, fairly light in character. Twenty tons of manure was worked into the land, and the turnips sown in drills 30 inches apart, and the young plants thinned to about fourteen inches in the rows. The yields were computed from 1/60 acre plots.
<table>
<thead>
<tr>
<th>Number</th>
<th>Name of variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mill Pond</td>
<td>43</td>
<td>1,600</td>
</tr>
<tr>
<td>2</td>
<td>Good Luck</td>
<td>35</td>
<td>1,400</td>
</tr>
<tr>
<td>3</td>
<td>Webb</td>
<td>35</td>
<td>1,400</td>
</tr>
<tr>
<td>4</td>
<td>Perfection</td>
<td>35</td>
<td>1,400</td>
</tr>
<tr>
<td>5</td>
<td>Jumbo</td>
<td>35</td>
<td>1,400</td>
</tr>
<tr>
<td>6</td>
<td>New Century</td>
<td>33</td>
<td>1,400</td>
</tr>
<tr>
<td>7</td>
<td>Hall's Westbury</td>
<td>33</td>
<td>1,100</td>
</tr>
<tr>
<td>8</td>
<td>Bangholm Selected</td>
<td>32</td>
<td>1,650</td>
</tr>
<tr>
<td>9</td>
<td>Magnum Bonum</td>
<td>32</td>
<td>900</td>
</tr>
<tr>
<td>10</td>
<td>Hartley's Bronze</td>
<td>32</td>
<td>800</td>
</tr>
<tr>
<td>11</td>
<td>Carter's Elephant</td>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td>12</td>
<td>Mammoth Clyde</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>13</td>
<td>Hazards Improved</td>
<td>29</td>
<td>700</td>
</tr>
<tr>
<td>14</td>
<td>Halewood's Bronze Top</td>
<td>27</td>
<td>1,850</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>33</td>
<td>1,666</td>
</tr>
</tbody>
</table>

Turnips.—Different Dates of Seeding.

The following experiment was conducted with Bangholm Selected to determine the best date for seeding:

<table>
<thead>
<tr>
<th>Date</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot A</td>
<td>32 1650</td>
<td>1094 10</td>
</tr>
<tr>
<td>Plot B</td>
<td>23 1300</td>
<td>835 00</td>
</tr>
<tr>
<td>Plot C</td>
<td>24 950</td>
<td>815 50</td>
</tr>
<tr>
<td>Plot D</td>
<td>16 1900</td>
<td>565 00</td>
</tr>
<tr>
<td>Plot E</td>
<td>20 1150</td>
<td>685 50</td>
</tr>
</tbody>
</table>

Experiments with Club-root on Turnips.

The experiment outlined by the Division of Botany, Central Experimental Farm, in 1911, was continued in part. A section that had been treated in 1911 with lime was seeded with Hall's Westbury. The lime had been applied as shown in the following table:

<table>
<thead>
<tr>
<th>Plot</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
<th>Yield per Acre of Diseased Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 received no treatment.</td>
<td>4 580</td>
<td>143 00</td>
<td>4 580</td>
</tr>
<tr>
<td>2 received 150 bushels unslaked lime per acre in 1911.</td>
<td>19 808</td>
<td>646 48</td>
<td>1 640</td>
</tr>
<tr>
<td>3 received 100 bushels unslaked lime per acre in 1911.</td>
<td>17 188</td>
<td>569 28</td>
<td>2 820</td>
</tr>
<tr>
<td>4 received 75 bushels unslaked lime per acre in 1911.</td>
<td>17 1640</td>
<td>594 60</td>
<td>1 244</td>
</tr>
</tbody>
</table>
An experiment with coal ashes and chloride of lime was tried on land known to be affected with club-root. The chloride of lime was applied at the rate of 2,400 pounds per acre, and at the rate of 1,200 pounds per acre, fourteen days before seeding. The coal ashes were applied at the same time at the rate of one ton per acre. The land was thoroughly worked afterwards. The coal ashes reduced the number of roots affected by the disease slightly, the chloride of lime, on the other hand, appeared to increase the disease, as there were more roots affected on the plots treated than on the check.

MANGELS.

Nine varieties of mangels were sown on May 27, in drills 30 inches apart. The young plants were thinned to about 12 inches apart in the rows. The roots were pulled October 14.

MANGELS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Description of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prize Mammoth Long Red</td>
<td>Long Red</td>
<td>20</td>
<td>1712</td>
</tr>
<tr>
<td>2</td>
<td>Gate Post</td>
<td>"</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>Giant Yellow Globe</td>
<td>Globe</td>
<td>19</td>
<td>1402</td>
</tr>
<tr>
<td>4</td>
<td>Half Sugar White</td>
<td>Long White</td>
<td>18</td>
<td>1336</td>
</tr>
<tr>
<td>5</td>
<td>Selected Yellow Globe</td>
<td>Globe</td>
<td>18</td>
<td>564</td>
</tr>
<tr>
<td>6</td>
<td>Giant Yellow Intermediate</td>
<td>Intermediate</td>
<td>18</td>
<td>432</td>
</tr>
<tr>
<td>7</td>
<td>Perfection Mammoth Long Red</td>
<td>Long Red</td>
<td>17</td>
<td>1904</td>
</tr>
<tr>
<td>8</td>
<td>Yellow Intermediate</td>
<td>Intermediate</td>
<td>16</td>
<td>142</td>
</tr>
<tr>
<td>9</td>
<td>Dignity</td>
<td>Long Red</td>
<td>14</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>18</td>
<td>498</td>
</tr>
</tbody>
</table>

CARROTS.—TEST OF VARIETIES.

Five varieties of carrots were sown on May 27 in rows fifteen inches apart. The land was prepared in the same way as for the turnips. They were pulled November 4, 1912.

CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Description of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mammoth White Intermediate</td>
<td>Half Long</td>
<td>22</td>
<td>1144</td>
</tr>
<tr>
<td>2</td>
<td>Improved Short White</td>
<td>Short</td>
<td>22</td>
<td>748</td>
</tr>
<tr>
<td>3</td>
<td>White Belgian</td>
<td>Long</td>
<td>18</td>
<td>1290</td>
</tr>
<tr>
<td>4</td>
<td>Ontario Champion</td>
<td>Long</td>
<td>18</td>
<td>1224</td>
</tr>
<tr>
<td>5</td>
<td>Half Long Chantenay</td>
<td>Half Long</td>
<td>17</td>
<td>1442</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>19</td>
<td>1970</td>
</tr>
</tbody>
</table>

Average: 18 498 608 18
SUGAR BEETS.

Six plots of sugar beets were grown at Charlottetown. The seed for Nos. 4, 5, and 6 was sent from the Central Farm at Ottawa, the seed for Nos. 1, 2, and 3 was obtained locally.

The sugar beets were grown to ascertain their sugar-content which, from the analysis made by the Dominion Chemist and included in a table below, shows that the beets were of very fair quality and high in sugar, except No. 6. They were sown May 27, and pulled October 22, 1912.

Sugar Beets—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>French Very Rich</td>
<td>12 24</td>
<td>400 24</td>
</tr>
<tr>
<td>2</td>
<td>Klein Wanzleben B</td>
<td>11 308</td>
<td>371 48</td>
</tr>
<tr>
<td>3</td>
<td>Vilmorin's Improved C</td>
<td>10 1648</td>
<td>360 48</td>
</tr>
<tr>
<td>4</td>
<td>Klein Wanzleben A</td>
<td>10 1648</td>
<td>360 48</td>
</tr>
<tr>
<td>5</td>
<td>Vilmorin's Improved A</td>
<td>10 1516</td>
<td>358 36</td>
</tr>
<tr>
<td>6</td>
<td>Vilmorin's Improved B</td>
<td>10 460</td>
<td>341 00</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>10 1934</td>
<td>365 34</td>
</tr>
</tbody>
</table>

Particulars re Sugar-content.

<table>
<thead>
<tr>
<th>Vilmorin's Improved</th>
<th>Klein Wanzleben</th>
<th>Very Rich</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>B.</td>
<td>A.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>17-45%</td>
<td>11-49%</td>
<td>16-97%</td>
</tr>
</tbody>
</table>

ALFALFA, CLOVERS AND GRASSES.

Experiments have been conducted with grasses and clovers each year at the Station. The land available had formerly been what was left over after the other work was completed, but in 1911, however, a series of plots were carefully laid off. In the spring of 1912 further work on a larger scale was undertaken. These two series are here reported upon. Seed was obtained from local dealers, from the Dominion Agrostologist, and from the Svalof Station in Sweden.

Three varieties of alfalfa were sown in 1911, in duplicate. A low area ran across the middle of all these plots. Wherever it held the water all the plants were killed out. The following table gives the average of the results:
SESSIONAL PAPER No. 16

TEST OF VARIETIES OF ALFALFA.—Yield per Acre.

<table>
<thead>
<tr>
<th></th>
<th>First Cutting June 25.</th>
<th>Second Cutting August 3.</th>
<th>Third Cutting August 24.</th>
<th>Total Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkestan</td>
<td>1</td>
<td>485</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>Northern Michigan</td>
<td>1</td>
<td>425</td>
<td>2</td>
<td>102</td>
</tr>
<tr>
<td>Hungarian</td>
<td>5</td>
<td>639</td>
<td>1</td>
<td>1,081</td>
</tr>
<tr>
<td>Mixed alfalfa (one-fifth acre)</td>
<td>2</td>
<td>450</td>
<td>—</td>
<td>1,400</td>
</tr>
</tbody>
</table>

The accompanying photo was taken when the one-fifth acre of mixed alfalfa was being cut the first time.

In 1911 two varieties of Swedish red clover and one of Swedish alsike were sown in triplicate plots. The clover was cut June 29, 1912. The average yield was as follows:

TEST OF SWEDISH CLOVERS.

Common Swedish red clover . . . 3 tons 1,080 pounds per acre.
Late Swedish red clover 3 tons 1,200 pounds per acre.
Swedish alsike 3 tons 420 pounds per acre.

On June 19, 1912, eleven lots of clover, six lots of alfalfa, and thirteen lots of grasses were sown in duplicate plots and in rows near the front entrance to the Station. These, with the exception of Kentucky blue grass, which missed and had to be re-sown, made a splendid growth and, at the present time, seem to have wintered well.
EXPERIMENTAL FARM, NAPPA N, N.S.

REPORT OF THE SUPERINTENDENT—R. ROBERTSON.

FIELD CROPS OF INDIAN CORN.

Five acres of corn for ensilage were grown, but owing to the cool weather in June, and so much rain at harvest time, this crop was very much below the average of other years. The yield from the 5 acres was 25 tons.

FIELD ROOTS.

All the uniform test plots of roots were grown on a clay loam that had grown clover the previous year, and the aftermath turned under in the fall of 1911. This was well worked up in the spring, when manure at the rate of twenty tons per acre was spread on the surface and ploughed under, and the land again thoroughly cultivated. Complete fertilizer was then applied at the rate of 300 pounds per acre.

TURNIPS.

Nine varieties of turnips were sown in uniform test plots of one one-hundredth acre each in drills twenty-four inches apart, and the plants thinned out to one foot apart in the rows.

Sown June 4, and harvested October 16.

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Character of Soil</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Halewood's Bronze Top...</td>
<td>Clay loam...</td>
<td>31</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>Perfection Swede.........</td>
<td>"</td>
<td>31</td>
<td>700</td>
</tr>
<tr>
<td>3</td>
<td>Carter's Elephant........</td>
<td>"</td>
<td>29</td>
<td>1,650</td>
</tr>
<tr>
<td>4</td>
<td>Mammoth Clyde............</td>
<td>"</td>
<td>28</td>
<td>1,400</td>
</tr>
<tr>
<td>5</td>
<td>Hartley's Bronze Top....</td>
<td>"</td>
<td>27</td>
<td>1,800</td>
</tr>
<tr>
<td>6</td>
<td>Jumbo...................</td>
<td>"</td>
<td>27</td>
<td>1,500</td>
</tr>
<tr>
<td>7</td>
<td>Bangholm Selected........</td>
<td>"</td>
<td>25</td>
<td>1,200</td>
</tr>
<tr>
<td>8</td>
<td>Hall's Westbury..........</td>
<td>"</td>
<td>25</td>
<td>1,000</td>
</tr>
<tr>
<td>9</td>
<td>Magnum Bonum.............</td>
<td>"</td>
<td>25</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Average..................</td>
<td></td>
<td>28</td>
<td>333</td>
</tr>
</tbody>
</table>

MANGELS.

Six varieties of mangels were sown on June 3 in test plots of ¼ acre each, in drills twenty-four inches apart, and the plants thinned out to one foot apart in the rows. They were harvested October 14. The following are the results:—
MANGELS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Character of Soil</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Giant Yellow Intermediate</td>
<td>Clay loam</td>
<td>25</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>Giant Yellow Globe</td>
<td>"</td>
<td>23</td>
<td>410</td>
</tr>
<tr>
<td>3</td>
<td>Half Long Sugar White</td>
<td>"</td>
<td>22</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>Gate Post</td>
<td>"</td>
<td>16</td>
<td>1,750</td>
</tr>
<tr>
<td>5</td>
<td>Prize Mammoth Long Red</td>
<td>"</td>
<td>10</td>
<td>1,780</td>
</tr>
<tr>
<td>6</td>
<td>Perfection Long Red</td>
<td>"</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>18</td>
<td>197</td>
</tr>
</tbody>
</table>

CARROTS.

Five varieties of carrots were sown in uniform test plots of one one-hundredth acre each. Sown June 3 and pulled October 16. The following yields were obtained:

CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Character of Soil</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Improved Short White</td>
<td>Clay loam</td>
<td>16</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>Mammoth White Intermediate</td>
<td>"</td>
<td>15</td>
<td>700</td>
</tr>
<tr>
<td>3</td>
<td>White Belgian</td>
<td>"</td>
<td>15</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>Half-long Chantenay</td>
<td>"</td>
<td>14</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>Ontario Champion</td>
<td>"</td>
<td>12</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>14</td>
<td>1510</td>
</tr>
</tbody>
</table>

SUGAR BEETS.

Three varieties of sugar beets were grown in test plots of 1/100 acre each. Sown on June 3 in drills twenty-four inches apart, and the plants thinned out to one foot apart in the rows. They were pulled October 14, with the following results:

SUGAR BEETS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Character of Soil</th>
<th>Sown.</th>
<th>Pulled.</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klein Wanzeleben</td>
<td>Clay loam</td>
<td>June 3</td>
<td>Oct. 14</td>
<td>8</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>French Very Rich</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>6</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>Vilomorin's Improved</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>833</td>
</tr>
</tbody>
</table>
ALFALFA.

Alfalfa was again sown this season on a piece of clay loam, well underdrained. The catch was fairly good. Below are the results from that sown in 1910, termed lot I, and that sown in 1911, termed lot II. A plot of red clover, termed lot III, was cut at the same time. The yields per acre are given as follows:

<table>
<thead>
<tr>
<th>Lot</th>
<th>First cutting, July</th>
<th>Second cutting, September</th>
<th>Yield per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>1</td>
<td>1.540 Tons.</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td></td>
<td>1.540 Tons.</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>2</td>
<td>300 Tons.</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td></td>
<td>300 Tons.</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>3</td>
<td>600 Tons.</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td></td>
<td>600 Tons.</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, CAP ROUGE, QUE.

REPORT OF THE SUPERINTENDENT—G. A. LANGEHIER.

The season was this year a very bad one, continuous wet weather until June 15, keeping seeding back until the 22nd of the month. Then, a drought followed which only ended at the beginning of August.

A permanent location was chosen in 1912 for the test plots, and the whole area was divided into three equal parts, one for Indian corn and roots, one for cereals, and one for clover. A three-year rotation will thus be followed, and the hoed crops will come after sod, as they should, in the regular order of things, on a well-managed farm.

Besides the regular test plots, there is a small patch of more than a quarter of an acre in area for experiments with clovers and grasses.

The test plots of Indian corn were \(\frac{1}{2} \) acre, and those of the roots \(\frac{1}{4} \) acre.

INDIAN CORN FOR ENSILAGE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Cutting</th>
<th>Average Height</th>
<th>Condition when Cut</th>
<th>Weight per Acre grown in Hills</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angel of Midnight</td>
<td>June 24</td>
<td>October 2</td>
<td>66</td>
<td>Small ears, milk stage</td>
<td>1,175</td>
</tr>
<tr>
<td>2</td>
<td>Longfellow</td>
<td>" 21</td>
<td>" 2</td>
<td>60</td>
<td>Commencing to ear</td>
<td>625</td>
</tr>
<tr>
<td>3</td>
<td>Superior Fodder</td>
<td>" 24</td>
<td>" 2</td>
<td>48</td>
<td>No ears</td>
<td>375</td>
</tr>
</tbody>
</table>

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Falling</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hartley's Bronze</td>
<td>June 26</td>
<td>Oct. 11</td>
<td>Tons.</td>
<td>Lb.</td>
</tr>
<tr>
<td>2</td>
<td>Perfection Swede</td>
<td>" 26</td>
<td>" 11</td>
<td>15</td>
<td>835</td>
</tr>
<tr>
<td>3</td>
<td>Hall's Westbury</td>
<td>" 26</td>
<td>" 11</td>
<td>14</td>
<td>1,700</td>
</tr>
<tr>
<td>4</td>
<td>Jumbo</td>
<td>" 26</td>
<td>" 11</td>
<td>14</td>
<td>1,040</td>
</tr>
<tr>
<td>5</td>
<td>Bangholm Selected</td>
<td>" 26</td>
<td>" 11</td>
<td>14</td>
<td>875</td>
</tr>
<tr>
<td>6</td>
<td>Good Luck</td>
<td>" 26</td>
<td>" 11</td>
<td>12</td>
<td>585</td>
</tr>
<tr>
<td>7</td>
<td>Carter's Elephant</td>
<td>" 26</td>
<td>" 11</td>
<td>11</td>
<td>1,265</td>
</tr>
<tr>
<td>8</td>
<td>Mammoth Clyde</td>
<td>" 26</td>
<td>" 11</td>
<td>11</td>
<td>1,100</td>
</tr>
<tr>
<td>9</td>
<td>Magnum Bonum</td>
<td>" 26</td>
<td>" 11</td>
<td>9</td>
<td>1,965</td>
</tr>
<tr>
<td>10</td>
<td>Halewood's Bronze Top</td>
<td>" 26</td>
<td>" 11</td>
<td>6</td>
<td>514</td>
</tr>
</tbody>
</table>
MANGELS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Pulling</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yellow Intermediate</td>
<td>June 22</td>
<td>Oct. 11</td>
<td>2</td>
<td>1,527</td>
</tr>
<tr>
<td>2</td>
<td>Giant Yellow Intermediate</td>
<td>" 22</td>
<td>" 11</td>
<td>2</td>
<td>1,280</td>
</tr>
<tr>
<td>3</td>
<td>Selected Yellow Globe</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>1,960</td>
</tr>
<tr>
<td>4</td>
<td>Perfection Mammoth Long Red.</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>1,960</td>
</tr>
<tr>
<td>5</td>
<td>Half Sugar White</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>1,390</td>
</tr>
<tr>
<td>6</td>
<td>Prize Mammoth Long Red</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>1,315</td>
</tr>
<tr>
<td>7</td>
<td>Giant Yellow Globe</td>
<td>" 22</td>
<td>" 11</td>
<td>1,815</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Gate Post</td>
<td>" 22</td>
<td>" 11</td>
<td>1,485</td>
<td></td>
</tr>
</tbody>
</table>

CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Pulling</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Improved Short White</td>
<td>June 22</td>
<td>Oct. 11</td>
<td>2</td>
<td>1,197</td>
</tr>
<tr>
<td>2</td>
<td>Mammoth White Intermediate</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>1,547</td>
</tr>
<tr>
<td>3</td>
<td>Ontario Champion</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>1,300</td>
</tr>
<tr>
<td>4</td>
<td>Half Long Chantenay</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>1,652</td>
</tr>
<tr>
<td>5</td>
<td>White Belgian</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>887</td>
</tr>
</tbody>
</table>

SUGAR BEETS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Pulling</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klein Wanzleben</td>
<td>June 22</td>
<td>Oct. 11</td>
<td>1</td>
<td>1,465</td>
</tr>
<tr>
<td>2</td>
<td>Vilmorin's Improved A</td>
<td>" 22</td>
<td>" 11</td>
<td>1</td>
<td>1,692</td>
</tr>
<tr>
<td>3</td>
<td>" B</td>
<td>" 22</td>
<td>" 11</td>
<td>1,155</td>
<td></td>
</tr>
</tbody>
</table>

RED CLOVER.

Clover is certainly one of the most important crops, for forage, and also as a soil improver. It seems that everything possible should be done to find out with what kind of cereal, and probably with what variety of the same cereal, and with what quantity of grain per acre, it will catch best.

GRASSES.

A small quantity of seed of Rhodes grass, and of Sweet grass, received from the Dominion Botanist on March 27, 1912, was sown on a piece of light sandy loam.
Though the ground was well freed from weeds, and hand hoed, not a blade could be seen. The seed had been broadcasted, covered with a rake, and the soil compacted with a light roller.

Broom Corn.

Two varieties of Broom corn, Tennessee Evergreen and Austrian Hundred Days, were sown on June 24. This was about three weeks too late, but the continuous rains which lasted until the 15th kept back seeding operations. The drought which afterwards followed, and only ended at the beginning of August, delayed germination, so that none of the plants headed. The rows were three feet apart, and the seed was sown with a hand 'Planet Jr.' When the plants were about three inches high, they were thinned out to about three inches in the rows. Both varieties were cut on October 2, after they had been touched by frost.
EXPERIMENTAL FARM, BRANDON, MAN.

REPORT OF THE SUPERINTENDENT—W. C. McKILLICAN, B.S.A.

EXPERIMENTS WITH INDIAN CORN.

Ten varieties of field corn were grown in uniform test rows, 66 feet long and 42 inches apart. They were sown on May 30, in black loam, that had been summer-fallowed the previous year. The following results were obtained:

INDIAN CORN FOR ENSILAGE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Cutting</th>
<th>Average Height (in)</th>
<th>Condition when Cut</th>
<th>Weight per Acre Grown in Hills</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compton's Early</td>
<td>Sept. 18</td>
<td>8' 11"</td>
<td>Silk</td>
<td>25 Tons, 1,800</td>
</tr>
<tr>
<td>2</td>
<td>Early Eight-Rowed Canada</td>
<td>" 18</td>
<td>8' 5"</td>
<td>Silk</td>
<td>26 Tons, 400</td>
</tr>
<tr>
<td>3</td>
<td>Free Press</td>
<td>" 18</td>
<td>5' 11"</td>
<td>Firm Dough</td>
<td>17 Tons, 200</td>
</tr>
<tr>
<td>4</td>
<td>Gehu</td>
<td>" 18</td>
<td>5' 8"</td>
<td>Dough</td>
<td>19 Tons, 1,600</td>
</tr>
<tr>
<td>5</td>
<td>Improved White Squaw</td>
<td>" 18</td>
<td>3' 4"</td>
<td>Ripe</td>
<td>7 Tons, 200</td>
</tr>
<tr>
<td>6</td>
<td>Longfellow</td>
<td>" 18</td>
<td>7' 7"</td>
<td>Silk</td>
<td>20 Tons, 400</td>
</tr>
<tr>
<td>7</td>
<td>Minnesota King</td>
<td>" 18</td>
<td>7' 9"</td>
<td>Early Milk</td>
<td>17 Tons, 1,200</td>
</tr>
<tr>
<td>8</td>
<td>North Dakota White</td>
<td>" 18</td>
<td>8' 8"</td>
<td>Silk</td>
<td>23 Tons, 1,400</td>
</tr>
<tr>
<td>9</td>
<td>Northwestern Dent</td>
<td>" 18</td>
<td>7' 10"</td>
<td>Early Milk</td>
<td>20 Tons, 400</td>
</tr>
<tr>
<td>10</td>
<td>Quebec Yellow</td>
<td>" 18</td>
<td>7'</td>
<td>Late Milk</td>
<td>25 Tons, 00</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>20 Tons, 560</td>
</tr>
</tbody>
</table>

Quebec Yellow, a new variety originated by Professor L. S. Klinck, of Macdonald College, Que., seems very well suited to Manitoba conditions. It combines a good yield with earliness. It is not as yet available commercially, but deserves the attention of our seed merchants.

Northwestern Dent continues to combine earliness and a reasonably good yield. Compton's Early and Early Eight-rowed Canada excel in yield but are rather late for Manitoba conditions, especially for the making of ensilage.

FIVE YEAR AVERAGES.

Three of the above varieties have been grown for five years, and one other for three years. The following are the average results obtained:

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Average Stage of Development when Cut</th>
<th>Average Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compton's Early</td>
<td>Silk</td>
<td>20 Tons, 812</td>
</tr>
<tr>
<td>2</td>
<td>Longfellow</td>
<td>Silk</td>
<td>19 Tons, 1,780</td>
</tr>
<tr>
<td>3</td>
<td>Northwestern Dent</td>
<td>Late milk—Early dough</td>
<td>15 Tons, 850</td>
</tr>
<tr>
<td>4</td>
<td>Quebec Yellow</td>
<td>Dough</td>
<td>17 Tons, 1,608</td>
</tr>
</tbody>
</table>
BULLETIN ON CORN GROWING.

A bulletin has been written on ‘Corn Growing in Manitoba,’ which will be available to all who write asking for a copy.

EXPERIMENTS WITH FIELD ROOTS.

TURNIPS.

Fourteen varieties of turnips were grown in uniform test rows. They were planted on May 9, in clay loam which had been summer-fallowed the previous year. The cool, damp weather in the latter part of the season was favourable, and an excellent crop was harvested. The crop was dug on September 27 and the following yields were harvested:

Turnips.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Description of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tons.</td>
<td>Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Bangholm</td>
<td>Purple Top Swede</td>
<td>33</td>
<td>1980</td>
</tr>
<tr>
<td>2</td>
<td>Canadian Gem</td>
<td></td>
<td>30</td>
<td>1600</td>
</tr>
<tr>
<td>3</td>
<td>Carter’s Imperial</td>
<td></td>
<td>30</td>
<td>940</td>
</tr>
<tr>
<td>4</td>
<td>Garton’s Model</td>
<td>Yellow Turnip</td>
<td>18</td>
<td>390</td>
</tr>
<tr>
<td>5</td>
<td>Garton’s Superlative</td>
<td>Purple Top Swede</td>
<td>27</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>Good Luck</td>
<td></td>
<td>32</td>
<td>1780</td>
</tr>
<tr>
<td>7</td>
<td>Halewood’s Bronze Top</td>
<td>Bronze Top Swede</td>
<td>31</td>
<td>1390</td>
</tr>
<tr>
<td>8</td>
<td>Hall’s Westbury</td>
<td>Purple Top Swede</td>
<td>33</td>
<td>1540</td>
</tr>
<tr>
<td>9</td>
<td>Hartley’s Bronze Top</td>
<td>Bronze Top Swede</td>
<td>25</td>
<td>1920</td>
</tr>
<tr>
<td>10</td>
<td>Hazard’s Improved Bronze Top</td>
<td>Purple Top Swede</td>
<td>29</td>
<td>1620</td>
</tr>
<tr>
<td>11</td>
<td>Magnum Bonum</td>
<td>Purple Top Swede</td>
<td>29</td>
<td>1620</td>
</tr>
<tr>
<td>12</td>
<td>Northwestern Purple Top</td>
<td></td>
<td>45</td>
<td>290</td>
</tr>
<tr>
<td>13</td>
<td>Perfection Purple Top</td>
<td></td>
<td>33</td>
<td>1980</td>
</tr>
<tr>
<td>14</td>
<td>Prize Purple Top</td>
<td></td>
<td>33</td>
<td>1760</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>31</td>
<td>1879</td>
</tr>
</tbody>
</table>

Five Year Averages.

Six of these varieties have been grown for five years, and one more for four years. The following are the averages obtained:

| Number | Name of Variety | Average | Yield per Acre | |
|--------|----------------------------------|---------|----------------|
| | | Tons. | Lb. |
| 1 | Halewood’s Bronze Top | 27 | 1378 |
| 2 | Magnum Bonum | 26 | 743 |
| 3 | Hall’s Westbury | 26 | 418 |
| 4 | Hartley’s Bronze Top | 25 | 371 |
| 5 | Perfection Purple Top | 25 | 75 |
| 6 | Good Luck | 25 | 745 |
| 7 | Bangholm (average of 4 years) | 26 | 1333 |
MANGELS.

Eight varieties of mangels and seven varieties of sugar mangels, or feeding sugar beets, were grown in uniform test rows. They were sown on May 9, and were harvested on September 19. The yields are calculated from the yield of a row 66 feet long. The soil was clay loam summer-fallowed the previous year. The following yields were obtained:

MANGELS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Description of Variety</th>
<th>Yield per Acre.</th>
<th>Yield per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elwetham Long Red</td>
<td>Long Red</td>
<td>36</td>
<td>1920</td>
</tr>
<tr>
<td>2</td>
<td>Giant Long Red</td>
<td>Long Red</td>
<td>33</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>Giant Yellow Globe</td>
<td>Yellow Globe</td>
<td>41</td>
<td>1160</td>
</tr>
<tr>
<td>4</td>
<td>Giant Yellow Intermediate</td>
<td>Yellow half long</td>
<td>31</td>
<td>700</td>
</tr>
<tr>
<td>5</td>
<td>Golden Tankard</td>
<td>Dark yellow half long</td>
<td>36</td>
<td>1040</td>
</tr>
<tr>
<td>6</td>
<td>Manitoba Giant Yellow</td>
<td>Yellow half long</td>
<td>29</td>
<td>1180</td>
</tr>
<tr>
<td>7</td>
<td>Perfection Mammoth Long Red</td>
<td>Long Red</td>
<td>34</td>
<td>1300</td>
</tr>
<tr>
<td>8</td>
<td>Prize Mammoth Long Red</td>
<td>Long Red</td>
<td>39</td>
<td>1640</td>
</tr>
<tr>
<td>9</td>
<td>Danish Improved Sugar Beet</td>
<td>Long Pink</td>
<td>30</td>
<td>540</td>
</tr>
<tr>
<td>10</td>
<td>Giant Half Sugar</td>
<td>Long Pink</td>
<td>34</td>
<td>1520</td>
</tr>
<tr>
<td>11</td>
<td>Giant White</td>
<td>Long White</td>
<td>32</td>
<td>240</td>
</tr>
<tr>
<td>12</td>
<td>Jumbo</td>
<td>Long Greenish white</td>
<td>42</td>
<td>700</td>
</tr>
<tr>
<td>13</td>
<td>Leviathan</td>
<td>Long Red</td>
<td>35</td>
<td>1660</td>
</tr>
<tr>
<td>14</td>
<td>Monarch Half Sugar</td>
<td>Long Greenish white</td>
<td>33</td>
<td>880</td>
</tr>
<tr>
<td>15</td>
<td>Royal Giant</td>
<td>Long Pink</td>
<td>37</td>
<td>1460</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>35</td>
<td>1837</td>
</tr>
</tbody>
</table>

Five Year Averages.

Five of these varieties have been grown for five years with the following average returns:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prize Mammoth Long Red</td>
<td></td>
<td>29</td>
<td>1,915</td>
<td>998</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Giant Yellow Globe</td>
<td></td>
<td>29</td>
<td>740</td>
<td>979</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Giant White Sugar</td>
<td></td>
<td>26</td>
<td>1,458</td>
<td>893</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Perfection Mammoth Long Red</td>
<td></td>
<td>25</td>
<td>485</td>
<td>841</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Giant Yellow Intermediate.</td>
<td></td>
<td>21</td>
<td>1,966</td>
<td>732</td>
<td>46</td>
</tr>
</tbody>
</table>

FIELD CARROTS.

Six varieties of field carrots were tested in uniform test rows. They were planted on May 9, and harvested on October 4. The yield per acre is calculated from the yield of a row 66 feet long. The soil was clay loam, summer-fallowed the previous year.
Carrots.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Description of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooper's Yellow Intermediate</td>
<td>Yellow, medium short</td>
<td>10 1,560</td>
<td>339 20</td>
</tr>
<tr>
<td>2</td>
<td>Improved Giant White Belgian</td>
<td>White, very long and</td>
<td>8 69</td>
<td>267 40</td>
</tr>
<tr>
<td>3</td>
<td>" Mammoth Long</td>
<td>White, long</td>
<td>14 1,260</td>
<td>487 40</td>
</tr>
<tr>
<td>4</td>
<td>" Short White</td>
<td>White, medium long</td>
<td>11 1,540</td>
<td>392 20</td>
</tr>
<tr>
<td>5</td>
<td>Mammoth White Intermediate</td>
<td>White, long</td>
<td>12 200</td>
<td>403 20</td>
</tr>
<tr>
<td>6</td>
<td>Oxheart</td>
<td>Red, very short</td>
<td>7 1,829</td>
<td>290 20</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>10 1,707</td>
<td>361 47</td>
</tr>
</tbody>
</table>

Five Year Averages.

Three of these varieties have been grown for five years. The following average yields have been obtained during that period:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Average Yield per Acre</th>
<th>Average Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammoth White Intermediate</td>
<td>14 1,260</td>
<td>487 40</td>
</tr>
<tr>
<td>Improved Short White</td>
<td>14 435</td>
<td>473 55</td>
</tr>
<tr>
<td>Improved Giant White Belgian</td>
<td>12 1,911</td>
<td>431 51</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH ALFALFA, GRASSES AND CLOVERS.

In 1911 a series of plots of grasses, clovers, alfalfa and mixtures was sown. They were all sown without a nurse crop on fall-ploughed barley stubble. They were clipped off twice during that season. Crops were obtained from these plots in 1912. The month of June was extremely dry, and consequently the yield of the first cutting is a good indication of the drought resistant powers of the different crops. July was very wet and thus the second cutting shows what each crop can do under wet conditions. The year, as a whole, gives a very good test of these crops under the varying conditions that are likely to come.

ALFALFA.

The yielding capabilities of alfalfa are strikingly shown in the table on page 642. These are equally as well shown in the twenty-acre field. In the first week of July, after there had been six weeks of continued drought and all the other crops seemed parched, the alfalfa stood up as fresh and green as ever. Alfalfa is becoming increasingly popular in Manitoba, and while the area grown is still small, it is sure to increase greatly as soon as the land can be got ready and the crop put in. A few points on the growing of alfalfa in Manitoba may, therefore, not be out of place in this report.
Preparation of Land.

The first consideration in the growing of alfalfa is the preparation of the land. Alfalfa does best on a deep, rich, well-drained soil. It takes a plentiful supply of moisture, but cannot stand to have a stagnant flooded condition of the land. In fact, the average Manitoba farm provides soil conditions admirably suited to the growing of alfalfa. The land should be clean before alfalfa is sown. Alfalfa is hardly after it becomes established, but during the first year it needs every chance. It should therefore be sown where the land is reasonably free from weeds, and where the native grasses have been killed out. Following a crop of corn or roots, that has been kept clean, is an ideal place for alfalfa. After a summer-fallow is the best possible place, but as that means two years lost, it makes it rather an expensive crop to start. It can be sown following a grain crop, if the land is clean and in good fertility. In any case, the land should be well worked so that there is a fine, firm seed bed into which to put the alfalfa seed.

Inoculation.

On most of the land in Manitoba, it is found advisable to inoculate. In some of the scrub districts, where the wild pea vine is plentiful, inoculation does not seem to be required, but in most of the open prairie districts, decided benefits are obtained. The land that has never grown alfalfa seems to lack the bacteria that associate themselves with it. Inoculation will often gradually take place by itself, but in the meantime, there is a loss of time for the crop and of money for its owner. By artificial inoculation, it may be put on a productive basis from the start. There are two ways of inoculating, viz., by means of a bacterial culture, which may be obtained from some of the agricultural colleges, and by using soil from a field that is already growing alfalfa successfully. The latter means is most commonly used in Manitoba. Most farmers have now got a neighbour within driving distance who has an alfalfa patch from which they can get inoculating soil. Such soil may also be obtained in limited quantities from the Experimental Farm by paying the expenses for shipping.

It is supplied at the rate of 100 pounds per acre, with a limit of 500 pounds to any one farmer. As one of the railways refuses to accept this material for shipment except when the freight charges are prepaid, it has been decided to collect a uniform rate of 50c, per 100 pounds, which, when averaged up, will be about sufficient to pay all freight charges inside of Manitoba. For this sum the Experimental Farm will supply bags and pay freight charges to any point within the province.

Inoculating soil should not be exposed to the light more than is absolutely necessary, and should not be dried out. Either of these conditions kills the bacteria. It should be spread very thinly and evenly over the field and immediately harrowed in.

Seeding.

The last week in May or the first week in June is considered the best time to sow. The spring rains have started by that time, and the soil is in a moist, warm condition, suitable for the germination of small seeds. The earlier part of the season may be used in killing weeds on the land, so as to give the alfalfa a better chance. In countries farther south, later sowing is the rule, but that is not advisable here, because a strong vigorous growth is needed to prepare for winter. Twenty pounds of seed per acre is required. It seems a large quantity, but one must remember that alfalfa never thickens up like other forage crops.

It should always be sown without any nurse crop. There is not enough moisture in the average season to grow a crop of grain and, at the same time, to give the
The swath digestion is not always an immediate one, for even the Experimental Farm is to sow it in the ordinary grain drill. The seed is mixed with twice its quantity of broken grains of wheat, and then the mixture sown at the rate of one bushel per acre. The wheat is broken in an ordinary grain crusher set so open that it only breaks it enough to prevent it from growing. These broken seeds are found better than chop or bran or any other material tried, as they flow more evenly and smoothly. The floury particles are screened out. The drill should be set to place the seeds about an inch apart.

First Year.

No crop is to be expected from alfalfa the year it is sown. It is engaged in the work of establishing itself. During the first year it is growing down into the earth and establishing its roots rather than making a crop of hay. It should be clipped off once during the season. Clip when any weeds begin to come in flower, so as to prevent their seeding. The clippings may be left on the ground as a mulch. Alfalfa should not be pastured the first year, as animals are likely to injure it by biting off the crowns and by trampling.

Care of Alfalfa.

Once established, an alfalfa field needs practically no care except to harvest the crop. The practice of discing in the spring is recommended. The disc should be set with almost no angle, so as not to cut off the alfalfa. This loosens up a mulch on the surface of the earth, helps to keep down the weeds, and splits some of the alfalfa crowns, making them put forth more stems and, in that way, thickening the stand.

Harvesting.

Alfalfa should be cut in early bloom. It rapidly becomes more woody, and less digestible as it approaches maturity.

A better indication than the stage of blossoms is the starting of the new growth from the root. As soon as fresh young branches are seen sprouting from the crown, it is time to cut, as the new growth then is ready to come in. If the new growth is allowed to get high enough to be cut back it gets a set-back and the second crop will be lessened or at least delayed.

Alfalfa is rather hard to cure, and requires considerable attention after cutting. The things that make it hard to cure are: (1) It grows a heavy crop of a very succulent green character and is thus hard to dry; (2) it is rather open and thus suffers easily from rain; (3) the leaves are the most valuable part, but if the crop is dried too much, or handled much, they fall off and are lost. The method found most satisfactory at the Experimental Farm is as follows: The mowing machine is started as soon as the dew is off in the morning, and kept going till noon or in the middle of the afternoon. The tedder is started about an hour and a half or two hours after the mowing machine; it shakes up the swath, opening it to the air and turning up the lower side. This operation may be done by the side delivery rake nearly as well as by the tedder, and it saves labour by making later raking unnecessary. If a heavy crop of alfalfa is left in the swath without turning, the top will dry until the leaves fall off before the bottom has even wilted. If a man has only a small area, it can be turned by hand, but if growing it extensively it will pay to have either a side delivery rake or else a tedder. At the
Experimental Farm, everything cut in the morning is raked in the afternoon, with the aim of getting it all in coils the same evening. This is not always possible, but it is found that when it is not possible to get it coiled the same day, the quality is distinctly lowered by the effect of the dew and the sunshine of the next day. If the day on which the alfalfa is cut is dry and breezy, and the weather remains fine, these coils will remain untouched till dry. The coils should be made small so that the wind can go through. This makes ideal hay. If the weather is showery, the hay is injured much less in the coil than it would have been if left spread, but will have to be shaken out again before stacking.

Alfalfa is not good stacking material, as it is very open in texture and very absorbent of water. It keeps with less waste when stored under roof. It can, however, be stacked successfully and made to shed fairly well, though there is sure to be a little loss if rain comes soon after stacking.

Distribution of Inoculating Soil.

The amount of inoculation soil distributed to the Manitoba farmers during 1912 was 22,200 pounds, for alfalfa. No applications for soil for red clover were received.

ALFALFA, VARIETY TESTS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>First Cutting, July 4</th>
<th>Second Cutting, August 8</th>
<th>Total Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common alfalfa</td>
<td>3</td>
<td>730</td>
<td>1</td>
</tr>
<tr>
<td>Common alfalfa (Canadian seed)</td>
<td>3</td>
<td>1,720</td>
<td>2</td>
</tr>
<tr>
<td>Common alfalfa (Montana seed)</td>
<td>3</td>
<td>320</td>
<td>2</td>
</tr>
<tr>
<td>Grimm's alfalfa</td>
<td>3</td>
<td>320</td>
<td>2</td>
</tr>
<tr>
<td>Turkestan alfalfa</td>
<td>3</td>
<td>1,480</td>
<td>1</td>
</tr>
<tr>
<td>Average</td>
<td>3</td>
<td>914</td>
<td>2</td>
</tr>
</tbody>
</table>

GRASSES, VARIETY TESTS.

<table>
<thead>
<tr>
<th>Variety</th>
<th>First Cutting, July 4</th>
<th>Second Cutting, August 8</th>
<th>Total Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brome Grass</td>
<td>3</td>
<td>1,320</td>
<td>1</td>
</tr>
<tr>
<td>Kentucky Blue Grass</td>
<td>800</td>
<td>1,360</td>
<td>1</td>
</tr>
<tr>
<td>Orchard Grass</td>
<td>800</td>
<td>1,200</td>
<td>1</td>
</tr>
<tr>
<td>Red-Top</td>
<td>1</td>
<td>160</td>
<td>1</td>
</tr>
<tr>
<td>Timothy</td>
<td>1</td>
<td>760</td>
<td>1</td>
</tr>
<tr>
<td>Western Rye Grass</td>
<td>3</td>
<td>1,120</td>
<td>1</td>
</tr>
</tbody>
</table>
CLOVERS, VARIETY TESTS.

<table>
<thead>
<tr>
<th></th>
<th>First Cutting, July 4</th>
<th>Second Cutting, August 8</th>
<th>Total Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alsike</td>
<td>1</td>
<td>1,400</td>
<td>2</td>
</tr>
<tr>
<td>Common Red Clover</td>
<td>1</td>
<td>440</td>
<td>2</td>
</tr>
<tr>
<td>Mammoth Red Clover</td>
<td>1</td>
<td>1,120</td>
<td>2</td>
</tr>
<tr>
<td>White Dutch Clover</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

MIXTURES.

<table>
<thead>
<tr>
<th></th>
<th>First Cutting, July 4</th>
<th>Second Cutting, August 8</th>
<th>Total Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timothy and Red Clover</td>
<td>1</td>
<td>600</td>
<td>2</td>
</tr>
<tr>
<td>Timothy and Alsike</td>
<td>1</td>
<td>720</td>
<td>2</td>
</tr>
<tr>
<td>Timothy and Alfalfa</td>
<td>1</td>
<td>960</td>
<td>1</td>
</tr>
<tr>
<td>Western Rye grass and Red Clover</td>
<td>2</td>
<td>1,320</td>
<td>1</td>
</tr>
<tr>
<td>Western Rye grass and Alsike</td>
<td>2</td>
<td>1,960</td>
<td>1</td>
</tr>
<tr>
<td>Timothy, Western Rye grass and Red Clover</td>
<td>1</td>
<td>1,440</td>
<td>2</td>
</tr>
<tr>
<td>Timothy, Western Rye grass and Alsike</td>
<td>2</td>
<td>1,200</td>
<td>1</td>
</tr>
<tr>
<td>Timothy, Red Clover and Alsike</td>
<td>1</td>
<td>280</td>
<td>2</td>
</tr>
<tr>
<td>Western Rye grass, Red Clover and Alsike</td>
<td>2</td>
<td>320</td>
<td>1</td>
</tr>
<tr>
<td>Timothy, Red Top and Alsike</td>
<td>1</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Timothy, Western Rye grass, Red Clover and Alsike</td>
<td>1</td>
<td>1,680</td>
<td>1</td>
</tr>
<tr>
<td>Timothy, Western Rye grass, Red Clover and Alfalfa</td>
<td>2</td>
<td>360</td>
<td>2</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARM, INDIAN HEAD, SASK.

REPORT OF THE SUPERINTENDENT—ANGUS MACKAY.

EXPERIMENTS WITH INDIAN CORN AND ROOTS.

Indian corn and roots were satisfactory the past year. The land had been summer-fallowed the previous year, and twelve tons of well-rotted manure applied late in the fall, and disced under. In the spring, before sowing or planting, the land was double-diced or cultivated.

Corn was sown in rows three feet apart, and the yield was taken from two rows sixty feet long.

Roots were sown in rows thirty inches apart, on the flat, and the yield computed the same as corn.

Five and one-half acres of corn were grown and cut after three nights of frost; on the 14th, 15th and 16th of September. The ensilage was not injured in the least, so far as can be determined.

INDIAN CORN FOR ENSILAGE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Cutting</th>
<th>Average Height, Inch.</th>
<th>Condition when Cut</th>
<th>Weight per Acre grown in Rows, Tons.</th>
<th>Lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Longfellow</td>
<td>May 22</td>
<td>Sept. 16</td>
<td>78</td>
<td>Early milk</td>
<td>24</td>
<td>1,236</td>
</tr>
<tr>
<td>2</td>
<td>North Dakota White Flint</td>
<td>22</td>
<td>16</td>
<td>80</td>
<td>"</td>
<td>25</td>
<td>688</td>
</tr>
<tr>
<td>3</td>
<td>Compton's Early</td>
<td>22</td>
<td>16</td>
<td>84</td>
<td>"</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>Early Canada</td>
<td>22</td>
<td>16</td>
<td>87</td>
<td>"</td>
<td>23</td>
<td>790</td>
</tr>
<tr>
<td>5</td>
<td>Gehu</td>
<td>22</td>
<td>16</td>
<td>60</td>
<td>Late milk</td>
<td>23</td>
<td>860</td>
</tr>
<tr>
<td>6</td>
<td>Minnesota King</td>
<td>22</td>
<td>16</td>
<td>90</td>
<td>Early milk</td>
<td>23</td>
<td>464</td>
</tr>
<tr>
<td>7</td>
<td>Giant Prolific</td>
<td>22</td>
<td>16</td>
<td>84</td>
<td>"</td>
<td>19</td>
<td>1,732</td>
</tr>
<tr>
<td>8</td>
<td>North Western Dent</td>
<td>22</td>
<td>16</td>
<td>85</td>
<td>Late milk</td>
<td>22</td>
<td>332</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Character of Soil</th>
<th>Size of Plot</th>
<th>Character of Growth</th>
<th>Sown</th>
<th>Pulled</th>
<th>Yield per Acre, Tons.</th>
<th>Yield per Acre, Lb.</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prize Purple Top</td>
<td>Clay loam</td>
<td>1/132</td>
<td>Strong</td>
<td>May 22</td>
<td>Oct. 11</td>
<td>39</td>
<td>1,302</td>
<td>Large & smooth</td>
</tr>
<tr>
<td>2</td>
<td>Hartley's Bronze</td>
<td>"</td>
<td>1/132</td>
<td>"</td>
<td>22</td>
<td>11</td>
<td>36</td>
<td>1,207</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>Hall's Westbury</td>
<td>"</td>
<td>1/132</td>
<td>"</td>
<td>22</td>
<td>11</td>
<td>36</td>
<td>1,324</td>
<td>Large, very fine</td>
</tr>
<tr>
<td>4</td>
<td>Invicta</td>
<td>"</td>
<td>1/132</td>
<td>"</td>
<td>22</td>
<td>11</td>
<td>33</td>
<td>1,329</td>
<td>Medium, good</td>
</tr>
<tr>
<td>5</td>
<td>New Century</td>
<td>"</td>
<td>1/132</td>
<td>"</td>
<td>22</td>
<td>11</td>
<td>38</td>
<td>1,274</td>
<td>Large, very good</td>
</tr>
<tr>
<td>6</td>
<td>Magnum Bonum</td>
<td>"</td>
<td>1/132</td>
<td>"</td>
<td>22</td>
<td>11</td>
<td>38</td>
<td>1,267</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>Elephant</td>
<td>"</td>
<td>1/132</td>
<td>"</td>
<td>22</td>
<td>11</td>
<td>39</td>
<td>1,311</td>
<td>"</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>1,247</td>
<td>24</td>
</tr>
</tbody>
</table>
DIVISION OF FORAGE PLANTS

SESSIONAL PAPER No. 16

MANGELS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Character of Soil</th>
<th>Size of Plot</th>
<th>Character of Growth</th>
<th>Sown</th>
<th>Pulled</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Giant Yellow Globe</td>
<td>Clay loam</td>
<td>1/132</td>
<td>Strong.</td>
<td>May 21</td>
<td>Sept. 25</td>
<td>38 1,229</td>
<td>1,287 00</td>
<td>Large, very fine</td>
</tr>
<tr>
<td>2</td>
<td>Yellow Leviathan</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>23 1,300</td>
<td>1,153 00</td>
<td>Medium, good</td>
</tr>
<tr>
<td>3</td>
<td>Perfection Mam. Long Red</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>35 1,412</td>
<td>1,190 12</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>Giant Half Long Yellow</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>34 1,432</td>
<td>1,157 12</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>Jumbo</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>39 1,300</td>
<td>1,300 12</td>
<td>Large, extra fine</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36 1,073</td>
<td>1,217 55</td>
<td></td>
</tr>
</tbody>
</table>

FIELD CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Character of Soil</th>
<th>Size of Plot</th>
<th>Character of Growth</th>
<th>Sown</th>
<th>Pulled</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short White</td>
<td>Clay loam</td>
<td>1/132</td>
<td>Strong.</td>
<td>May 21</td>
<td>Oct. 14</td>
<td>14 1,304</td>
<td>488 24</td>
<td>Fair size, smooth</td>
</tr>
<tr>
<td>2</td>
<td>Chantenay</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>12 552</td>
<td>400 12</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 628</td>
<td>448 48</td>
<td></td>
</tr>
</tbody>
</table>

SUGAR BEETS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Character of Soil</th>
<th>Size of Plot</th>
<th>Character of Growth</th>
<th>Sown</th>
<th>Pulled</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vilmorin's Improved 'A'</td>
<td>Clay loam</td>
<td>1/132</td>
<td>Strong.</td>
<td>May 21</td>
<td>Oct. 14</td>
<td>15 624</td>
<td>510 24</td>
<td>Medium, very [rooty]</td>
</tr>
<tr>
<td>2</td>
<td>Vilmorin's Improved 'B'</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>14 1,232</td>
<td>387 12</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>Klein Wanzleben</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>12 288</td>
<td>404 48</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 48</td>
<td>434 8</td>
<td></td>
</tr>
</tbody>
</table>
Average samples of each variety were sent to Mr. F. T. Shutt, Dominion Chemist, Central Experimental Farm, for analysis. The results of the analysis are given below:

<table>
<thead>
<tr>
<th></th>
<th>Vilmorin's Improved.</th>
<th>Klein Wanzleben</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B</td>
<td>A B</td>
</tr>
<tr>
<td>Average weight of one root</td>
<td>14 1 65</td>
<td>14 14</td>
</tr>
<tr>
<td>Sugar in juice, per cent</td>
<td>15 52 16 69</td>
<td>15 14 18 63</td>
</tr>
<tr>
<td>Solids</td>
<td>18 89 19 57</td>
<td>18 63</td>
</tr>
<tr>
<td>Coefficient of purity</td>
<td>82 1 85 3</td>
<td>83 9</td>
</tr>
</tbody>
</table>

ALFALFA.

To what was said in the 1911 report respecting alfalfa growing, a few pointers may be added as to the most suitable land, cultivation, seeding, cutting, curing, etc. It was found from previous tests that a great deal depends on the first season's growth, whether alfalfa prove hardy or not. If it enters the winter with small roots, and the top has been eaten bare, it is sure to succumb. On the other hand, if the roots have taken a good hold, and a good growth has been left to protect the crowns, the crop is reasonably safe. If, added to this, the precaution is taken not to pasture too closely or too late in the fall, there is no reason to doubt of its entire success. The course pursued on this Farm which has given the best results is to plough stubble land late in May, four or five inches deep; then harrow once. After harrowing, ten to twelve pounds of seed per acre is sown with a wheelbarrow grass seeder. When sown, the land is harrowed, rolled and again harrowed. The rolling firms the soil, and leaves the surface in good condition for the mower, and the last harrowing prevents evaporation.

The seed is sown without a nurse crop, and when the plants are sufficiently high the mower is run close to the ground, to kill weeds and cause the roots to take a better hold. This is repeated up to the end of July, and after that all growth is left for winter protection.

It has been found, when a nurse crop has been grown, that the plants are weakly, even if not badly killed out with the grain using up all the moisture in August. If they survive after the grain is harvested, as a rule the weather is too dry for them to make satisfactory root or top growth, and they are not in a condition to stand the thaws and frosts of April and early May.

Cultivation, Seeding and Harvesting of Alfalfa.

Alfalfa can be sown on fallowed land, or on stubble land.

Fallow.—If fallow lands drift with the winds, plough four inches deep before seeding, to overcome the danger.

Stubble.—If stubble is heavy, burn in the spring, plough five inches deep, and harrow. If land was ploughed the preceding fall, cultivate before sowing.

Seeding.—Sow 12 pounds of seed per acre, from May 25 to 31. After seeding, cross harrow twice, then roll or pack soil; do not roll fallowed land, use packer instead.
SESSIONAL PAPER No. 16

Nurse Crop.—On fallowed land, grain can be sown; oats or barley is better than wheat, as they can be delayed in seeding. Alfalfa seed should not be sown too early. On stubble land, no nurse crop should be sown, as usually the moisture is not sufficient for both and the tender alfalfa plants die. When alfalfa is up about five inches, mow close to the ground, and repeat the first week in August. Leave the last growth for winter protection. The mowing kills the weeds and strengthens the roots, which is important the first winter.

Harvesting.— Alfalfa is usually ready for the first cutting early in July, and for the second cutting the same time in August of the second year. Cut when in early blossom. Cut early in the forenoon, and if the day is fine, rake into windrows in the afternoon, and put in small cocks the next day.

Allow the hay to cure in the cocks; turning and exposing to the air will hasten drying. Have the hay well dried before stacking, for fear of spoiling.

Alfalfa, sown in 1904.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety.</th>
<th>Remarks.</th>
<th>First Cutting</th>
<th>Second Cutting</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tons.</td>
<td>Lb.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Common Alfalfa</td>
<td>Medium growth.</td>
<td>1,180</td>
<td>1,090</td>
<td>1,270</td>
</tr>
<tr>
<td>2</td>
<td>Turkestans</td>
<td>"</td>
<td>1,790</td>
<td>1,450</td>
<td>1,150</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>1,440</td>
<td>1,270</td>
<td>1,710</td>
</tr>
</tbody>
</table>

Alfalfa, sown in 1905.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety.</th>
<th>Remarks.</th>
<th>First Cutting</th>
<th>Second Cutting</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tons.</td>
<td>Lb.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Grimm</td>
<td>Medium growth.</td>
<td>1,640</td>
<td>1,48</td>
<td>1,728</td>
</tr>
<tr>
<td>2</td>
<td>New York</td>
<td>"</td>
<td>1,149</td>
<td>1,528</td>
<td>1,668</td>
</tr>
<tr>
<td>3</td>
<td>Samarkand (Turkestans)</td>
<td>"</td>
<td>1,475</td>
<td>1,309</td>
<td>1,784</td>
</tr>
<tr>
<td>4</td>
<td>Nebraska</td>
<td>"</td>
<td>1,550</td>
<td>1,000</td>
<td>1,550</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>1,951</td>
<td>1,469</td>
<td>1,429</td>
</tr>
</tbody>
</table>

Alfalfa, sown in 1908.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety.</th>
<th>Remarks.</th>
<th>First Cutting</th>
<th>Second Cutting</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tons.</td>
<td>Lb.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Grimm (Lyman Co.)</td>
<td>Strong growth.</td>
<td>1,300</td>
<td>1,300</td>
<td>1,300</td>
</tr>
<tr>
<td>2</td>
<td>Idaho</td>
<td>"</td>
<td>1,850</td>
<td>1,550</td>
<td>3,350</td>
</tr>
<tr>
<td>3</td>
<td>Montana (Lyman Co.)</td>
<td>"</td>
<td>1,620</td>
<td>1,500</td>
<td>3,120</td>
</tr>
<tr>
<td>4</td>
<td>Dryland (Lyman Co.)</td>
<td>"</td>
<td>1,470</td>
<td>1,500</td>
<td>3,470</td>
</tr>
<tr>
<td>5</td>
<td>French Alfalfa</td>
<td>"</td>
<td>1,450</td>
<td>1,600</td>
<td>3,050</td>
</tr>
<tr>
<td>6</td>
<td>Turkestans (Lyman Co.)</td>
<td>"</td>
<td>1,195</td>
<td>1,555</td>
<td>2,750</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>1,791</td>
<td>631</td>
<td>2,422</td>
</tr>
</tbody>
</table>
Alfalfa, sown in 1909.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>Remarks</th>
<th>First Cutting</th>
<th>Second Cutting</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Canadian</td>
<td>2 1,404</td>
<td>1 790</td>
<td>4 194</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Licoq's</td>
<td>3 1,812</td>
<td>not cut.</td>
<td>3 1,812</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mongolian</td>
<td>2 1,404</td>
<td>1 860</td>
<td>4 1,364</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nephi Utah (dry land)</td>
<td>1 836</td>
<td>1 316</td>
<td>3 1,398</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Grimm</td>
<td>2 1,520</td>
<td>1 845</td>
<td>4 1,365</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sextorp, Neb.</td>
<td>1 838</td>
<td>1 1,281</td>
<td>3 1,119</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Alt. Deutsche Frankische</td>
<td>2 1,296</td>
<td>2 825</td>
<td>5 1,314</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Provence Aubignan</td>
<td>1 910</td>
<td>1,340</td>
<td>2 850</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Wessell, Duval Peruvian</td>
<td>1 866</td>
<td>1,750</td>
<td>2 1,550</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Baltic</td>
<td>1 899</td>
<td>1,750</td>
<td>2 1,390</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Wennyj (Turkestan)</td>
<td>2 1,790</td>
<td>2 825</td>
<td>5 1,615</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sand Lucerne (Darumstatt)</td>
<td>1 862</td>
<td>1,860</td>
<td>3 3,755</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Chinook (Montana)</td>
<td>1 1,281</td>
<td>1,281</td>
<td>3 592</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Liefman Sand Lucerne</td>
<td>2 246</td>
<td>not cut.</td>
<td>2 246</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sand Lucerne (Bromberg)</td>
<td>2 18</td>
<td>1 412</td>
<td>3 430</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Hungarian, Bouchan.</td>
<td>1 1,860</td>
<td>1 412</td>
<td>3 272</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Frasinet</td>
<td>1 1,211</td>
<td>1,377</td>
<td>4 578</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Bellefontaine</td>
<td>2 1,918</td>
<td>1 316</td>
<td>3 1,360</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Mixed seed</td>
<td>2 640</td>
<td>1 1,841</td>
<td>4 481</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Old Frankish Lucerne</td>
<td>2 1,485</td>
<td>1,704</td>
<td>4 1,189</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>W. A. Wheeler, No. 162</td>
<td>1 240</td>
<td>1 184</td>
<td>2 1,424</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>No. 240</td>
<td>1,500</td>
<td>1,580</td>
<td>3 330</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>No. 164</td>
<td>1 610</td>
<td>1,920</td>
<td>2 530</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>No. 167</td>
<td>2 640</td>
<td>1,024</td>
<td>3 1,664</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Montana, No. 23454</td>
<td>1 810</td>
<td>1,860</td>
<td>3 640</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>No. 23452</td>
<td>2 500</td>
<td>960</td>
<td>3 1,460</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Sand Lucerne</td>
<td>1 660</td>
<td>1,260</td>
<td>1,360</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Canadian (variegated)</td>
<td>1 1,520</td>
<td>1,544</td>
<td>3 2,964</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Canadian (purple flower)</td>
<td>1 489</td>
<td>1,516</td>
<td>1 1,996</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Turkestan</td>
<td>1 1,790</td>
<td>1,800</td>
<td>2 1,590</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Sanfoine, Spanish</td>
<td>1 1,640</td>
<td>1,800</td>
<td>2 1,400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>2 137</td>
<td>1 454</td>
<td>3 591</td>
<td></td>
</tr>
</tbody>
</table>

Alfalfa, sown in 1910.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Remarks</th>
<th>First Cutting</th>
<th>Second Cutting</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turkestan</td>
<td>Medium growth</td>
<td>1 640</td>
<td>1,930</td>
<td>2 570</td>
</tr>
<tr>
<td>2. Grimm</td>
<td>" "</td>
<td>1 1,820</td>
<td>1 320</td>
<td>3 140</td>
</tr>
<tr>
<td>Average</td>
<td>1 1,230</td>
<td>1 125</td>
<td>2 1,355</td>
<td></td>
</tr>
</tbody>
</table>
CLOVER AND GRASSES.

The crop of hay from clover and grasses was less than the previous year, chiefly from June being a very dry month.

Grasses and Red Clover.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Year Sown</th>
<th>First Cutting.</th>
<th>Second Cutting.</th>
<th>Total.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromegrass</td>
<td>1907</td>
<td>1 640</td>
<td>..</td>
<td>1 640</td>
</tr>
<tr>
<td>Red Clover</td>
<td>1905</td>
<td>1 1,266</td>
<td>..</td>
<td>1 1,266</td>
</tr>
<tr>
<td>Red Clover</td>
<td>1910</td>
<td>1 520</td>
<td>1,380</td>
<td>1 1,900</td>
</tr>
<tr>
<td>Red Top</td>
<td>1908</td>
<td>1,546</td>
<td>..</td>
<td>1,546</td>
</tr>
<tr>
<td>English Blue Grass</td>
<td>1918</td>
<td>1,506</td>
<td>..</td>
<td>1,506</td>
</tr>
<tr>
<td>Western Rye Grass</td>
<td>1910</td>
<td>1 792</td>
<td>..</td>
<td>1 792</td>
</tr>
</tbody>
</table>

Canary Grass.

Canary grass was sown on fallowed land, one-fourtieth acre plot, on May 15. The plot was cut on the 5th of August and used for exhibition purposes. The yield of straw was one and one-quarter tons per acre.

Cultivation of Grasses.

The cultivation for grasses that has given the best results, is to plough stubble land in the fall or spring, four or five inches deep, and sow the seed from the 20th to the last of May. When the land is ploughed in the fall, it should be disced or cultivated shallow before sowing, to kill the weeds that have germinated.

For hay, Western Rye grass, 12 pounds, and Timothy, 3 pounds, mixed and sown per acre, gives good returns. For pasture, Western Rye grass, 10 pounds, and English Blue grass, 6 pounds per acre is better.

A nurse crop should not be sown with the grass seed. Mow the crop close to the ground, about July 1, to keep weeds from going to seed. The crop can be pastured in the fall.
EXPERIMENTAL STATION, ROSTHERN, SASK.

REPORT OF THE SUPERINTENDENT—W. A. MUNRO, B.S.A.

FIELD ROOTS AND CORN.

Seed for field roots and corn was obtained from the A. E. McKenzie Co., Brandon, Man., and Steele, Briggs Seed Co., Winnipeg.

EXPERIMENTS WITH INDIAN CORN.

One two-acre plot of fodder corn yielded 30 tons 490 pounds, while ten plots of different varieties gave the following results. Yields are computed from weight of 2 rows, 78 feet long.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Varieties</th>
<th>Length</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inches</td>
<td>Tons Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Gehu</td>
<td>64</td>
<td>21 240</td>
</tr>
<tr>
<td>2</td>
<td>Eight-rowed Canada</td>
<td>80</td>
<td>19 280</td>
</tr>
<tr>
<td>3</td>
<td>Longfellow (Steele Briggs)</td>
<td>88</td>
<td>19 280</td>
</tr>
<tr>
<td>4</td>
<td>Minnesota King</td>
<td>86</td>
<td>18 260</td>
</tr>
<tr>
<td>5</td>
<td>Compton’s Early</td>
<td>96</td>
<td>17 320</td>
</tr>
<tr>
<td>6</td>
<td>Longfellow (A. E. McKenzie)</td>
<td>84</td>
<td>16 310</td>
</tr>
<tr>
<td>7</td>
<td>Canada</td>
<td>73</td>
<td>16 310</td>
</tr>
<tr>
<td>8</td>
<td>North Dakota</td>
<td>78</td>
<td>14 1,040</td>
</tr>
<tr>
<td>9</td>
<td>North Dakota (White Flint)</td>
<td>86</td>
<td>13 1,060</td>
</tr>
<tr>
<td>10</td>
<td>G. P. S. K.</td>
<td>80</td>
<td>10 1,780</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>16 1,264</td>
</tr>
</tbody>
</table>

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Varieties</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons Lb. Bush Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Hall’s Westbury</td>
<td>32 221 1,070 21</td>
</tr>
<tr>
<td>2</td>
<td>Green Top</td>
<td>31 1,104 1,051 44</td>
</tr>
<tr>
<td>3</td>
<td>Yellow Aberdeen (Green Top)</td>
<td>31 2,023</td>
</tr>
<tr>
<td>4</td>
<td>Cowhorn</td>
<td>30 591 1,069 51</td>
</tr>
<tr>
<td>5</td>
<td>Selected White Globe</td>
<td>29 78 967 58</td>
</tr>
<tr>
<td>6</td>
<td>Yellow Aberdeen (Purple Top)</td>
<td>29 78</td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td>27 1,845 930 45</td>
</tr>
<tr>
<td>8</td>
<td>Hartley’s Bronze Top</td>
<td>27 818</td>
</tr>
<tr>
<td>9</td>
<td>Imperial</td>
<td>24 1,143 819 3</td>
</tr>
<tr>
<td>10</td>
<td>Kangaroo</td>
<td>24 26 800 26</td>
</tr>
<tr>
<td>11</td>
<td>Elephant</td>
<td>22 676 744 36</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>27 1,900 931 40</td>
</tr>
</tbody>
</table>
Division of Forage Plants

Sessional Paper No. 16

Mangels.—Test of Varieties.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prize Mammoth</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Yellow Globe</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>Giant Yellow Oval</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Mammoth Long Red</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Giant Yellow Globe</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Golden Tankard, (A. E. McKenzie)</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Golden Tankard (Steele Briggs)</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Manitoba Giant Yellow</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>22</td>
</tr>
</tbody>
</table>

Carrots.—Test of Varieties.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Guerande or Ox Heart</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Large White Belgian</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Improved Short White</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Long Red Surrey</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Long Orange</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Long White Belgian</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Giant White Voges</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Cooper's Yellow Intermediate</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Long Orange</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>9</td>
</tr>
</tbody>
</table>

Kohl Rabl.—Test of Varieties.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons.</td>
</tr>
<tr>
<td>1</td>
<td>Early White Vienna</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Early Purple Vienna</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>16</td>
</tr>
</tbody>
</table>
Sugar Beets.—Test of Varieties.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variety</th>
<th>Yield per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Royal Giant</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>Monarch</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Danish Improved</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Danish</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Giant Half Sugar</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Vilmorin's Improved B</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Klein Wanzleben</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>23</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, SCOTT, SASK.

REPORT OF THE SUPERINTENDENT—R. E. EVEREST, B.S.A.

EXPERIMENTS WITH INDIAN CORN.

Three varieties of corn were planted from May 29 to 31, in hills thirty inches apart each way, on land which had been summer-fallowed the previous year. Growth was slow, and at the time of the first frost, September 15, the crop was in a backward condition. On the 17th, the corn was cut and bound in sheaves. The quality was good, as shown by the relish with which it was consumed by stock, later in the season.

INDIAN CORN FOR ENSILAGE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Cutting</th>
<th>Condition when Cut.</th>
<th>Weight per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Longfellow</td>
<td>May 29</td>
<td>Sept. 17</td>
<td>Immature, frosted</td>
<td>11 Tons, 1,430 Lb</td>
</tr>
<tr>
<td>2</td>
<td>Minnesota King</td>
<td>" 30</td>
<td>" 17</td>
<td>"</td>
<td>11 Tons, 1,100 Lb</td>
</tr>
<tr>
<td>3</td>
<td>Compton's Early</td>
<td>" 31</td>
<td>" 17</td>
<td>"</td>
<td>7 Tons, 1,108 Lb</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>10 Tons, 746 Lb</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH FIELD ROOTS.

Turnips, mangels, sugar beets and carrots were sown on fallowed land. Frequent cultivation was given. The turnips made satisfactory growth throughout the season, most varieties producing a fine crop, excellent in shape and quality.

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Pulling</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jumbo</td>
<td>May 30</td>
<td>Oct. 12</td>
<td>27 Tons, 1,440 Lb</td>
<td>924 Bush, 60 Lb</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Perfection</td>
<td>" 29</td>
<td>" 12</td>
<td>27 Tons, 1,242 Lb</td>
<td>920 Bush, 42 Lb</td>
<td>Very good</td>
</tr>
<tr>
<td>3</td>
<td>Good Luck</td>
<td>" 30</td>
<td>" 12</td>
<td>24 Tons, 1,830 Lb</td>
<td>830 Bush, 30 Lb</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Hartley's Bronze Top</td>
<td>" 29</td>
<td>" 12</td>
<td>20 Tons, 788 Lb</td>
<td>679 Bush, 48 Lb</td>
<td>Green</td>
</tr>
<tr>
<td>5</td>
<td>Canadian Gem.</td>
<td>" 29</td>
<td>" 12</td>
<td>19 Tons, 1,650 Lb</td>
<td>650 Bush, 20 Lb</td>
<td>Very good</td>
</tr>
<tr>
<td>6</td>
<td>Hall's Westbury</td>
<td>" 29</td>
<td>" 12</td>
<td>15 Tons, 1,384 Lb</td>
<td>521 Bush, 24 Lb</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td>22 Tons, 1,369 Lb</td>
<td>756 Bush, 9 Lb</td>
<td>Good</td>
</tr>
</tbody>
</table>
MANGLES.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Pulling</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Giant Yellow Globe</td>
<td>May 30</td>
<td>Oct. 14</td>
<td>10 1,120</td>
<td>32 20</td>
</tr>
<tr>
<td>2</td>
<td>Prize Mammoth Long Red</td>
<td>" 30</td>
<td>" 14</td>
<td>8 500</td>
<td>275 00</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td>9 810</td>
<td>313 30</td>
</tr>
</tbody>
</table>

CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Pulling</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxheart</td>
<td>May 31</td>
<td>Oct. 14</td>
<td>12 1,080</td>
<td>418 00</td>
</tr>
<tr>
<td>2</td>
<td>Improved Short White</td>
<td>" 31</td>
<td>" 14</td>
<td>11 1,760</td>
<td>396 00</td>
</tr>
<tr>
<td>3</td>
<td>Large White Belgian</td>
<td>" 31</td>
<td>" 14</td>
<td>7 1,180</td>
<td>253 00</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td>10 1,340</td>
<td>355 40</td>
</tr>
</tbody>
</table>

SUGAR BEETS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Pulling</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klein’s Wanzleben</td>
<td>May 30</td>
<td>Oct. 14</td>
<td>5 1,220</td>
<td>187</td>
</tr>
<tr>
<td>2</td>
<td>Vilmorin’s Improved</td>
<td>" 31</td>
<td>" 14</td>
<td>2 1,280</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td>4 250</td>
<td>137 30</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, LETHBRIDGE, ALTA.

REPORT OF THE SUPERINTENDENT—W. H. FAIRFIELD, M.S.

PART I—NON-IRRIGATED OR ‘DRY FARM.’

The season of 1912 resembled that of 1911 in that the rainfall during the early part was deficient, while during the latter part the usual amount was received.

The rainfall was very light indeed until the last few days in June; from then on, during July, August and September, it was above normal. On account of this light rainfall during the first part of the growing season, all early sown crops suffered acutely. Crops that looked extremely promising early in the season gave but low yields. Late-sown crops, on the other hand, did much better.

The yields of all the crops on the non-irrigated portion of the Station were rather low, with the exception of late-growing crops, such as turnips.

EXPERIMENTS WITH INDIAN CORN.

Five varieties of corn were planted May 11 on summer-fallowed land. Two rows of each variety were planted in hills and another two rows of each variety planted with the seed a few inches apart. All the plots were considerably damaged by wire worms. The size of the plots was one one-hundredth of an acre.

INDIAN CORN FOR ENSILAGE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Cutting</th>
<th>Average Height</th>
<th>Condition when Cut.</th>
<th>Weight per Acre Grown in Rows.</th>
<th>Weight per Acre Grown in Hills.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compton’s Early (Commercial seed)</td>
<td>May 11</td>
<td>Sept. 7</td>
<td>56</td>
<td>Tasselled, cobs forming</td>
<td>8</td>
<td>1,800</td>
</tr>
<tr>
<td>2</td>
<td>North Western Dent.</td>
<td>" 11"</td>
<td>" 7"</td>
<td>60</td>
<td>Tasselled, a few matured cobs...</td>
<td>7</td>
<td>1,100</td>
</tr>
<tr>
<td>3</td>
<td>North Dakota</td>
<td>" 11"</td>
<td>" 7"</td>
<td>59</td>
<td>Tasselled, cobs forming</td>
<td>6</td>
<td>1,000</td>
</tr>
<tr>
<td>4</td>
<td>Longfellow</td>
<td>" 11"</td>
<td>" 7"</td>
<td>58</td>
<td>"</td>
<td>6</td>
<td>700</td>
</tr>
<tr>
<td>5</td>
<td>Compton’s Early (Ontario seed)</td>
<td>" 11"</td>
<td>" 7"</td>
<td>60</td>
<td>"</td>
<td>5</td>
<td>1,400</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td></td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH TURNIPS.

Nine varieties of turnips were sown on summer-fallowed land on April 20 and pulled on October 17. The size of the plots was one-seventieth of an acre.

One variety (Kangaroo) failed completely. Two varieties out of the eight remaining ones, viz., Mammoth Greystone and Golden Ball, were rather uneven, and their yield estimated from 1/132 acre.
EXPERIMENTAL FARMS

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bangholm</td>
<td>23</td>
<td>1,510</td>
</tr>
<tr>
<td>2</td>
<td>Jumbo</td>
<td>21</td>
<td>980</td>
</tr>
<tr>
<td>3</td>
<td>Hartley's Bronze Top</td>
<td>23</td>
<td>920</td>
</tr>
<tr>
<td>4</td>
<td>Invicta</td>
<td>21</td>
<td>770</td>
</tr>
<tr>
<td>5</td>
<td>Mammoth Greystone</td>
<td>17</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>Hall's Westbury</td>
<td>15</td>
<td>1,680</td>
</tr>
<tr>
<td>7</td>
<td>Golden Ball</td>
<td>15</td>
<td>1,050</td>
</tr>
<tr>
<td>8</td>
<td>Halewood's Purple Top</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>20</td>
<td>1,624</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH MANGELS.

Six varieties of mangels were sown on summer-fallowed land in plots of onehundredth of an acre in size. They were sown on April 20 and pulled September 26.

MANGELS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selected Yellow Globe</td>
<td>22</td>
<td>1,800</td>
</tr>
<tr>
<td>2</td>
<td>Giant Yellow Globe</td>
<td>22</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td>Golden Tankard</td>
<td>21</td>
<td>1,900</td>
</tr>
<tr>
<td>4</td>
<td>Prize Mammoth Long Red</td>
<td>18</td>
<td>1,700</td>
</tr>
<tr>
<td>5</td>
<td>Giant Yellow Intermediate</td>
<td>17</td>
<td>1,600</td>
</tr>
<tr>
<td>6</td>
<td>Perfection Mammoth Long Red</td>
<td>17</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH CARROTS.

Four varieties of carrots were sown on summer-fallowed land in plots one hundred and fifth of an acre in size. They were sown April 20 and pulled October 14.

CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per Acre First Sowing</th>
<th>Yield per Acre First Sowing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Improved Short White</td>
<td>10</td>
<td>1,962</td>
</tr>
<tr>
<td>2</td>
<td>White Belgian</td>
<td>8</td>
<td>275</td>
</tr>
<tr>
<td>3</td>
<td>Mammoth White Intermediate</td>
<td>6</td>
<td>175</td>
</tr>
<tr>
<td>4</td>
<td>Chantenay</td>
<td>4</td>
<td>1,712</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>7</td>
<td>856</td>
</tr>
</tbody>
</table>
EXPERIMENTS WITH SUGAR BEETS.

Five varieties of sugar beets were sown on summer-fallowed land and the yield was computed from two rows, 125 feet long. They were sown on May 16 and pulled October 14.

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons</td>
<td>Lb.</td>
</tr>
<tr>
<td>1</td>
<td>Raymond 'B'</td>
<td>13</td>
<td>545</td>
</tr>
<tr>
<td>2</td>
<td>Vilmorin's Improved 'A'</td>
<td>13</td>
<td>228</td>
</tr>
<tr>
<td>3</td>
<td>Raymond 'A'</td>
<td>12</td>
<td>1,300</td>
</tr>
<tr>
<td>4</td>
<td>Klein Wanzleben</td>
<td>11</td>
<td>1,613</td>
</tr>
<tr>
<td>5</td>
<td>Vilmorin's Improved 'B'</td>
<td>10</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>12</td>
<td>541</td>
</tr>
</tbody>
</table>

Average specimens of the roots from each variety were sent to the Chemist of the Experimental Farms, Mr. Frank T. Shutt, for analysis, the results of which are given below:

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Sugar in Juice</th>
<th>Solids in Juice</th>
<th>Coefficient of Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Per cent.</td>
<td>Per cent.</td>
<td>Per cent.</td>
</tr>
<tr>
<td>1</td>
<td>Raymond 'B'</td>
<td>17.84</td>
<td>30.43</td>
<td>87.3</td>
</tr>
<tr>
<td>2</td>
<td>Vilmorin's Improved 'A'</td>
<td>17.26</td>
<td>29.69</td>
<td>83.4</td>
</tr>
<tr>
<td>3</td>
<td>Raymond 'A'</td>
<td>17.56</td>
<td>30.43</td>
<td>83.9</td>
</tr>
<tr>
<td>4</td>
<td>Klein Wanzleben</td>
<td>17.92</td>
<td>29.43</td>
<td>87.6</td>
</tr>
<tr>
<td>5</td>
<td>Vilmorin's Improved 'B'</td>
<td>17.83</td>
<td>29.63</td>
<td>88.9</td>
</tr>
</tbody>
</table>

ALFALFA.

The alfalfa on the non-irrigated land, except that planted in rows, was a practical failure. It did not get more than eight or ten inches high and was so short and fine that it was difficult to gather it with a horse rake after the cutting.

That planted in rows did better, although the plants appeared to be too thick in the rows except the fields in rotation 'F.' Most of the alfalfa planted in rows was allowed to ripen seed. Only a small piece was reserved for hay. This was cut on June 3, and yielded at the rate of 1 ton 1,522 pounds to the acre.
PART II.—THE IRRIGATED FARM.

On the irrigated portion of the Station, where water was applied in June, and in some cases even in May, the yields were much more satisfactory than on the non-irrigated Farm.

EXPERIMENTS WITH INDIAN CORN.

Five varieties of Indian corn were sown on land on which grain had been grown last year. They were all sown on May 10 and 11 in plots one-hundredth of an acre in size. They were irrigated twice, viz., on June 4 and August 7. They were all cut September 7.

INDIAN CORN FOR EN SILAGE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Cutting</th>
<th>Average Height</th>
<th>Condition when Cut</th>
<th>Weight per Acre grown in Rows</th>
<th>Weight per Acre grown in Hills</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compton’s Early (Commercial seed)</td>
<td>May 10</td>
<td>Sept. 7</td>
<td>78</td>
<td>Tasselled, cobs forming</td>
<td>21 lb.</td>
<td>14 Tons</td>
</tr>
<tr>
<td>2</td>
<td>North Dakota</td>
<td>May 11</td>
<td>Sept. 7</td>
<td>76</td>
<td>Tasselled, some cobs forming</td>
<td>20 lb.</td>
<td>15 Tons</td>
</tr>
<tr>
<td>3</td>
<td>Compton’s Early (Ontario seed)</td>
<td>May 10</td>
<td>Sept. 7</td>
<td>78</td>
<td>Tasselled, some cobs forming</td>
<td>16 lb.</td>
<td>13 Tons</td>
</tr>
<tr>
<td>4</td>
<td>Northwestern Deut</td>
<td>May 10</td>
<td>Sept. 7</td>
<td>72</td>
<td>Tasselled, some good cobs</td>
<td>16 lb.</td>
<td>15 Tons</td>
</tr>
<tr>
<td>5</td>
<td>Longfellow</td>
<td>May 11</td>
<td>Sept. 7</td>
<td>80</td>
<td>Tasselled, cobs forming</td>
<td>12 lb.</td>
<td>14 Tons</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 lb.</td>
<td>14 Tons</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH TURNIPS.

Eight varieties were tested. They were sown on May 7, and pulled on October 15. The crop received two irrigations, viz., on June 4 and August 7. The size of the plots was one hundredth of an acre.

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons</td>
</tr>
<tr>
<td>1</td>
<td>Early Milan</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>Mammoth Greystone</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Invicta</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Bangholm</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Hartley’s Bronze Top</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Jumbo</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Golden Ball</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Hall’s Westbury</td>
<td>14</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>
EXPERIMENTS WITH MANGELS.

Six varieties of mangels were sown on land on which grain was grown last year. A very poor stand was obtained in all the plots. Two seedings were made, viz., one on April 20 and the other on May 10. They received two irrigations, viz., on June 4 and August 7. The plots were one hundredth of an acre in size. They were all pulled on September 26.

MANGELS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per Acre 1st Sowing.</th>
<th>Yield per Acre 2nd Sowing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selected Yellow Globe</td>
<td>24 800</td>
<td>12 1,006</td>
</tr>
<tr>
<td>2</td>
<td>Giant Yellow Globe</td>
<td>15 1,000</td>
<td>11 00</td>
</tr>
<tr>
<td>3</td>
<td>Perfection Mammoth Long Red</td>
<td>12 1,000</td>
<td>11 00</td>
</tr>
<tr>
<td>4</td>
<td>Golden Tankard</td>
<td>10 1,000</td>
<td>10 00</td>
</tr>
<tr>
<td>5</td>
<td>Giant Yellow Intermediate</td>
<td>10 1,000</td>
<td>9 00</td>
</tr>
<tr>
<td>6</td>
<td>Giant Mammoth Long Red</td>
<td>8 1,000</td>
<td>7 00</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>13 1,300</td>
<td>11 333</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH CARROTS.

Four varieties of carrots were sown on land on which grain was grown last year. They were sown on April 20, in plots one hundredth of an acre in size. They received two irrigations on June 4 and August 7. They were pulled on October 14.

CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Variety</th>
<th>Yield per Acre 1st Sowing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White Belgian</td>
<td>12 400</td>
</tr>
<tr>
<td>2</td>
<td>Improved Short White</td>
<td>6 200</td>
</tr>
<tr>
<td>3</td>
<td>Chantenay</td>
<td>5 1,000</td>
</tr>
<tr>
<td>4</td>
<td>Mammoth White Intermediate</td>
<td>4 1,000</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>7 00</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH SUGAR BEETS.

Five varieties of sugar beets were sown on land on which grain was sown last year. They were sown on April 22, except Nos. 3 and 4, which were sown on May 16. The size of the plots was one hundredth of an acre. They received two irrigations, viz., on June 4 and August 7. They were all pulled on October 14.
Average specimens of the roots from each variety were sent to the Chemist of the Experimental Farms, Mr. Frank T. Shutt, for analysis, the results of which are given below:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klein Wanzleben</td>
<td>17:68</td>
<td>19:63</td>
<td>90:6</td>
</tr>
<tr>
<td>2</td>
<td>Raymond 'A'</td>
<td>15:84</td>
<td>19:00</td>
<td>88:3</td>
</tr>
<tr>
<td>3</td>
<td>Vilmorin's Improved 'A'</td>
<td>19:42</td>
<td>21:57</td>
<td>90:0</td>
</tr>
<tr>
<td>4</td>
<td>Vilmorin's Improved 'B'</td>
<td>17:85</td>
<td>20:03</td>
<td>84:9</td>
</tr>
<tr>
<td>5</td>
<td>Raymond 'B'</td>
<td>16:25</td>
<td>18:80</td>
<td>86:5</td>
</tr>
</tbody>
</table>

ALFALFA.

The dry weather during May and June reduced somewhat the first cutting of alfalfa. The unusual amount of rain during July and August, and the weather on account thereof being not as hot as usual, retarded the growth of the second and third cutting to a considerable extent. Consequently, the alfalfa fields did not produce as much as they ordinarily do. On account of the many showers during harvesting time the proper curing of the hay was also made difficult.

VARIETY TESTS.

In the spring of 1909, seed of fourteen varieties or strains of alfalfa were planted that were received from the United States Department of Agriculture, Washington, D.C. These were supplied by the courtesy of Mr. J. M. Westgate, Agronomist Division of Forage Crop Investigations. The following table gives the results for the past season. The first cutting was made June 20, the second August 5, and the third September 17.
DIVISION OF FORAGE PLANTS

SESSIONAL PAPER No. 16

Size of Plot. | Name and Number. | First Cutting Yield per Acre. | Second Cutting Yield per Acre. | Third Cutting Yield per Acre. | Total Yield per Acre.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres.</td>
<td>Tons Lb.</td>
<td>Tons Lb.</td>
<td>Tons Lb.</td>
<td>Tons Lb.</td>
<td>Tons Lb.</td>
</tr>
<tr>
<td>1-40</td>
<td>22,790 From Kiva, Turkestan.</td>
<td>3 1,200</td>
<td>2 150</td>
<td>1,500</td>
<td>6 900</td>
</tr>
<tr>
<td>1-10</td>
<td>21,857 Canadian (variegated).</td>
<td>2 1,450</td>
<td>2 760</td>
<td>1 250</td>
<td>6 400</td>
</tr>
<tr>
<td>1-10</td>
<td>23,434 Montana</td>
<td>2 1,700</td>
<td>2 100</td>
<td>1 139</td>
<td>6 350</td>
</tr>
<tr>
<td>1-10</td>
<td>From Ottawa (Turkestan).</td>
<td>3 550</td>
<td>2 350</td>
<td>1 500</td>
<td>6 300</td>
</tr>
<tr>
<td>1-10</td>
<td>24,850 Kansas Hardy.</td>
<td>2 1,300</td>
<td>2 300</td>
<td>1 650</td>
<td>6 250</td>
</tr>
<tr>
<td>1-40</td>
<td>22,788 From Aulie-ata, Turkestan.</td>
<td>3 400</td>
<td>2 480</td>
<td>1,200</td>
<td>6 80</td>
</tr>
<tr>
<td>1-10</td>
<td>23,394 Sand Lucerne</td>
<td>2 1,290</td>
<td>1 1,860</td>
<td>1 700</td>
<td>5 1,700</td>
</tr>
<tr>
<td>1-40</td>
<td>23,203 From Wernayj Turkestan</td>
<td>2 1,400</td>
<td>2 160</td>
<td>1 780</td>
<td>5 1,780</td>
</tr>
<tr>
<td>1-10</td>
<td>21,032 Turkestan</td>
<td>2 1,500</td>
<td>2 50</td>
<td>1 900</td>
<td>5 1,450</td>
</tr>
<tr>
<td>1-10</td>
<td>25,162 Grimm</td>
<td>2 1,000</td>
<td>2 200</td>
<td>1 150</td>
<td>5 1,350</td>
</tr>
<tr>
<td>1-10</td>
<td>24,436 Canadian (purple flower)</td>
<td>2 1,200</td>
<td>2 150</td>
<td>1 1,850</td>
<td>5 1,300</td>
</tr>
<tr>
<td>1-40</td>
<td>23,806 Sand Lucerne</td>
<td>2 850</td>
<td>1 1,650</td>
<td>1 500</td>
<td>5 1,800</td>
</tr>
<tr>
<td>1-40</td>
<td>25,622 Old Frankish Lucerne</td>
<td>2 1,650</td>
<td>2 400</td>
<td>800</td>
<td>5 800</td>
</tr>
<tr>
<td>1-40</td>
<td>22,791 From Tschimkent, Turkestan</td>
<td>1 400</td>
<td>1 1,520</td>
<td>1,200</td>
<td>5 1,200</td>
</tr>
<tr>
<td>Average</td>
<td>2 1,625</td>
<td>2 137</td>
<td>1,918</td>
<td>5 1,880</td>
<td></td>
</tr>
</tbody>
</table>

In addition to the above variety tests the yield of two alfalfa fields may be given. A field of 1.91 acres, seeded in 1909, yielded as follows:—

<table>
<thead>
<tr>
<th>Date Cut.</th>
<th>Yield per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tons Lb.</td>
</tr>
<tr>
<td>First cutting, June 20</td>
<td>2 1,435</td>
</tr>
<tr>
<td>Second cutting, August 3</td>
<td>2 305</td>
</tr>
<tr>
<td>Third cutting, September 17</td>
<td>1 100</td>
</tr>
<tr>
<td>Total</td>
<td>5 1,930</td>
</tr>
</tbody>
</table>

An irregular field of 5.58 acres gave three cuttings and yielded as follows:—

<table>
<thead>
<tr>
<th>Date Cut.</th>
<th>Yield per Acre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tons Lb.</td>
</tr>
<tr>
<td>First cutting, June 28</td>
<td>2 1,148</td>
</tr>
<tr>
<td>Second cutting, August 14</td>
<td>1 1,713</td>
</tr>
<tr>
<td>Third cutting, September 17</td>
<td>1,802</td>
</tr>
<tr>
<td>Total</td>
<td>5 683</td>
</tr>
</tbody>
</table>

DISCING EXPERIMENT.

An experiment was carried on with discing alfalfa on the irrigated land. The piece of alfalfa land used was sown in the spring of 1908. The first cutting was made June 28, the second August 8, and the third September 17.
The above table would seem to indicate that no results are gained from discing alfalfa.

RATES OF SEED PER ACRE.

The following fields were sown in the spring of 1911 on land on which grain was grown the year previous. They were irrigated once on June 13. Only two cuttings were made, viz., the first on July 3 and the second on August 15. Size of plots, $\frac{1}{2}$ acre.

<table>
<thead>
<tr>
<th>Rate per Acre</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
<th>Total Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Cutting</td>
<td>Second Cutting</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 780</td>
<td>1 60</td>
<td>2 840</td>
</tr>
<tr>
<td>10</td>
<td>1 990</td>
<td>1 90</td>
<td>2 1,080</td>
</tr>
<tr>
<td>15</td>
<td>1 1,010</td>
<td>1 250</td>
<td>2 1,360</td>
</tr>
<tr>
<td>20</td>
<td>1 1,130</td>
<td>1 550</td>
<td>2 1,680</td>
</tr>
<tr>
<td>25</td>
<td>1 1,100</td>
<td>1 600</td>
<td>2 1,900</td>
</tr>
</tbody>
</table>

GRASSES AND MIXTURES.

A plot of one-quarter acre of Timothy was cut July 18, and yielded at the rate of 1 ton 1,400 pounds per acre. A plot of one-half acre of Brome grass was cut July 18, and yielded at the rate of 3 tons 30 pounds per acre. A plot of one-half acre of Western Rye grass, cut July 18, yielded at the rate of 1 ton 1,400 pounds per acre. A plot of .92 acres of Clover and Timothy mixed, gave two cuttings, one on July 15 and the other September 16, the two cuttings giving a yield at the rate of 3 tons 1,413 pounds per acre.

IRRIGATION OF HAY.

It has been found that to get the best returns with hay under irrigation it should be irrigated thoroughly in the fall. The advantage of fall irrigation is that the land is in a moist condition in the spring, which gives the hay a good, vigorous start quite early; and if the water is not turned into the ditches until rather late in the season, as is often the case, the crop does not receive as serious a check as would otherwise be the case.

The advantage of fall irrigation applies to alfalfa, and still more particularly to the grasses. With fall irrigation a deep-rooted crop, like alfalfa, will, in an ordinary season, give a maximum yield at the first cutting without again being irrigated in the spring, but with such shallow-rooted crops as Timothy and Brome grass, etc., it is necessary to irrigate in May, and often two or three times before cutting time.
EXPERIMENTAL STATION, LACOMBE, ALTA.
REPORT OF THE SUPERINTENDENT—G. H. HUTTON, B.S.A.

EXPERIMENTS WITH INDIAN CORN.

The results of the test of varieties of Indian corn were unsatisfactory, and yields per acre were quite low. The heavy precipitation delayed growth, and no variety got much more than well tasselled. Seed was planted in hills, two and one-half feet apart each way, on May 24. The crop was cut on August 31. The land was ploughed out of sod in August, 1911, thoroughly fall worked and cultivated again in the spring, previous to planting time.

INDIAN CORN FOR ENSILAGE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Average Height</th>
<th>Weight per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inches</td>
<td>Tons</td>
</tr>
<tr>
<td>1</td>
<td>Canada Eight-row</td>
<td>59</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Compton's Early</td>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Longfellow (Steele Briggs)</td>
<td>51</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>North Dakota (Rennie)</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Longfellow (Rennie)</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>North Dakota (McKenzie)</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Longfellow (McKenzie)</td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>North-western Dent.</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH FIELD ROOTS.

The results of experiments with turnips, mangels and sugar beets, for the season of 1912, are far from satisfactory. The mangel and sugar beet crop was a failure. The yield of turnips and carrots is extremely small.

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons</td>
<td>Lb</td>
</tr>
<tr>
<td>1</td>
<td>Rennie’s Prize</td>
<td>6</td>
<td>210</td>
</tr>
<tr>
<td>2</td>
<td>Derby</td>
<td>5</td>
<td>1,946</td>
</tr>
<tr>
<td>3</td>
<td>Bangholm</td>
<td>5</td>
<td>877</td>
</tr>
<tr>
<td>4</td>
<td>N. W. Purple Top</td>
<td>4</td>
<td>1,570</td>
</tr>
<tr>
<td>5</td>
<td>Imperial</td>
<td>4</td>
<td>778</td>
</tr>
<tr>
<td>6</td>
<td>Perfection</td>
<td>4</td>
<td>250</td>
</tr>
<tr>
<td>7</td>
<td>Jumbo</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>4</td>
<td>1,377</td>
</tr>
</tbody>
</table>
Carrots.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Yield per Acre</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Improved Mammoth</td>
<td>9 348</td>
<td>395 48</td>
</tr>
<tr>
<td>2</td>
<td>Mammoth Short White</td>
<td>8 1,160</td>
<td>286 60</td>
</tr>
<tr>
<td>3</td>
<td>White Vuegos</td>
<td>8 962</td>
<td>282 42</td>
</tr>
<tr>
<td>6</td>
<td>Cooper's Intermediate</td>
<td>7 1,741</td>
<td>262 54</td>
</tr>
<tr>
<td>5</td>
<td>Oxheart</td>
<td>7 1,543</td>
<td>250 3</td>
</tr>
<tr>
<td>4</td>
<td>Improved Short White</td>
<td>7 1,246</td>
<td>254 6</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>8 596</td>
<td>275 6</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH ALFALFA.

In May, 1911, five varieties of alfalfa were seeded on land ploughed out of stubble and freely cultivated until the latter part of the month. These plots were only one one-hundred and twentieth of an acre in size, but since they were in one block, the yield can fairly be taken as but slightly greater than would have been secured from field areas. The same varieties were also sown in rows, forty-two inches apart.

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Yield of Hay per Acre sown in rows 42 inches apart</th>
<th>Yield per Acre broadcasted in plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Twentieth Century</td>
<td>1,697</td>
<td>2 200</td>
</tr>
<tr>
<td>2</td>
<td>Grimm (Minnesota)</td>
<td>2 525</td>
<td>2 1,699</td>
</tr>
<tr>
<td>3</td>
<td>Sand Lucerne</td>
<td>1,680</td>
<td>1 1,360</td>
</tr>
<tr>
<td>4</td>
<td>Hungarian</td>
<td>1 829</td>
<td>1 1,360</td>
</tr>
<tr>
<td>5</td>
<td>Grimm (Washington)</td>
<td>2 526</td>
<td>1 1,120</td>
</tr>
</tbody>
</table>
EXPERIMENTAL FARM, AGASSIZ, B.C.

REPORT OF THE SUPERINTENDENT—P. H. MOORE, B.S.A.

HOED CROPS.

During the season of 1912, tests of the following varieties of hoed crops were carried on at this Farm: Ensilage corn, eight varieties; turnips, ten varieties; mangels, nine varieties; carrots, five varieties; sugar beets, three varieties.

All of this material was planted on a pasture field which had been ploughed early the previous fall, worked occasionally to kill the weeds, ploughed deeper late in the fall and then manured during the late winter and spring with a light coat of about sixteen tons of barnyard manure.

Although all varieties are on comparable land this year, they do not compare with the results obtained in 1911, as they were on decidedly different land and had different treatment. A short note will be given with regard to the cultivation methods of each class of crop under the following headings:—

ENSILAGE CORN.

Six varieties of Indian corn and two varieties of Kafir corn were grown for ensilage. They were planted on land treated as that for the rest of the hoed crops. only no commercial fertilizer was added. The Longfellow, although not the heaviest yielder, gave us the best all round ensilage results.

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Planted</th>
<th>Cutting Date</th>
<th>Height</th>
<th>Condition when Cut</th>
<th>Weight per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angel of Midnight</td>
<td>May 27</td>
<td>Sept. 26</td>
<td>96</td>
<td>Glazed</td>
<td>17 320</td>
</tr>
<tr>
<td>2</td>
<td>Learning</td>
<td>" 27</td>
<td>" 26</td>
<td>80</td>
<td>Milk stage</td>
<td>16 120</td>
</tr>
<tr>
<td>3</td>
<td>Compton's Early</td>
<td>" 27</td>
<td>" 26</td>
<td>92</td>
<td>Uneven roasting stage</td>
<td>15 120</td>
</tr>
<tr>
<td>4</td>
<td>Wood's Northern Dent</td>
<td>" 27</td>
<td>" 26</td>
<td>84</td>
<td>No ears</td>
<td>15 140</td>
</tr>
<tr>
<td>5</td>
<td>Longfellow</td>
<td>" 27</td>
<td>" 26</td>
<td>86</td>
<td>Roasting stage</td>
<td>14 600</td>
</tr>
<tr>
<td>6</td>
<td>Early Mastodon</td>
<td>" 27</td>
<td>" 26</td>
<td>102</td>
<td>No ears</td>
<td>11 1450</td>
</tr>
<tr>
<td>7</td>
<td>Kafir Corn</td>
<td>" 27</td>
<td>" 26</td>
<td>52</td>
<td>Some seed</td>
<td>5 670</td>
</tr>
<tr>
<td>8</td>
<td>Kafir Corn (perennial)</td>
<td>" 27</td>
<td>" 26</td>
<td>42</td>
<td>No heads</td>
<td>4 1790</td>
</tr>
<tr>
<td>Average of the 6 first varieties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 159</td>
</tr>
</tbody>
</table>

TURNIPS.

The turnips were grown on the same sort of land as mangels, and with the same methods of cultivation, as near as could be applied, with the exception of not receiving any commercial fertilizer. In the under-noted table it will be seen that the Hall's Westbury is mentioned as being the heaviest yielder, but this is partly accounted for by having about two hundred pounds of commercial fertilizer added to the plot, and this does not make it comparable with other varieties.
MANGELS.

The mangels were planted on ridges; the first crop was sown on May 6 and the second on May 20. Three hundred and fifty pounds of 'B' fertilizer (Victoria Chemical Co.) was used per acre, and was sown in the drills as they were set up. Ten pounds of seed was used per acre. The mangels were cultivated with a single horse scuffle about the time they appeared above the ground, and this was continued until they were ready for thinning. They were hoed once by hand, and thinned, then hoed once by hand afterwards; the rest of the cultivation was done by horses until the crop began to close over the rows. It will be noted in the following table that the Selected Yellow Globe gave the largest yield, although not the most profitable crop, as they had to be left closer together in the rows and the roots were harder to handle.

The following table gives the results of the different plots; they were all pulled on November 5:

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety.</th>
<th>Yield per Acre. 1st Sowing.</th>
<th>Yield per Acre. 2nd Sowing.</th>
<th>Size of Plot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selected Yellow Globe</td>
<td>30 192</td>
<td>26 1,328</td>
<td>1/132 acre.</td>
</tr>
<tr>
<td>2</td>
<td>Giant Yellow Intermediate</td>
<td>28 1,024</td>
<td>30 1,904</td>
<td>1/132</td>
</tr>
<tr>
<td>3</td>
<td>Giant Yellow Globe</td>
<td>27 1,440</td>
<td>26 800</td>
<td>1/132</td>
</tr>
<tr>
<td>4</td>
<td>Yellow Intermediate</td>
<td>27 912</td>
<td>24 1,632</td>
<td>1/132</td>
</tr>
<tr>
<td>5</td>
<td>Giant Half Sugar White</td>
<td>23 1,520</td>
<td>22 1,936</td>
<td>1/132</td>
</tr>
<tr>
<td>6</td>
<td>Gate Post</td>
<td>21 1,085</td>
<td>15 694</td>
<td>1/132</td>
</tr>
<tr>
<td>7</td>
<td>Mammoth Yellow Intermediate</td>
<td>20 1,712</td>
<td>16 736</td>
<td>1/132</td>
</tr>
<tr>
<td>8</td>
<td>Perfection Mammoth Long Red</td>
<td>20 1,184</td>
<td>19 1,732</td>
<td>1/132</td>
</tr>
<tr>
<td>9</td>
<td>Prize Mammoth Long Red</td>
<td>17 1,901</td>
<td>22 1,936</td>
<td>1/132</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>24 444</td>
<td>22 1,845</td>
<td></td>
</tr>
</tbody>
</table>

Four fertilizer experiments were also carried on with the Giant Half Sugar White, results of which will be shown in the following table. The fertilizer was supplied by the German Potash Syndicate. The land on which this fertilizer was used was treated in exactly the same manner as described above for the planting of the other mangels. It was a very comparable piece of soil, and the plots were handled...
SESSIONAL PAPER No. 16

alike throughout the season with the exception of the check plot, which had to have an extra hoeing. Plot No. 1 received no commercial fertilizer at all, but had a dressing of sixteen tons of barnyard manure. Plot No. 2, in addition to the manure, had two hundred pounds of muriate of potash, one hundred and forty pounds of nitrate of soda and four hundred pounds of superphosphate applied per acre. Plot No. 3 had one hundred and forty pounds of nitrate of soda and four hundred pounds of superphosphate per acre.

<table>
<thead>
<tr>
<th>Plot Number</th>
<th>Planted</th>
<th>Harvested</th>
<th>Yield per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tons</td>
</tr>
<tr>
<td>1 (check)</td>
<td>May 6</td>
<td>Nov. 5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>" 6</td>
<td>" 5</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>" 6</td>
<td>" 5</td>
<td>28</td>
</tr>
</tbody>
</table>

CARROTS.

Of the five varieties sown, the Improved Short White has this season given the best results as it did last year under a similar treatment on very different soil. Following are the tabulated results:

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Yield per Acre 1st Sowing</th>
<th>Yield per Acre 2nd Sowing</th>
<th>Size of Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Improved Short White</td>
<td>26</td>
<td>1,064</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Mammoth Intermediate (White)</td>
<td>25</td>
<td>952</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>White Belgian</td>
<td>22</td>
<td>1,672</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Ontario Champion</td>
<td>21</td>
<td>108</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Half Long Chantenay</td>
<td>13</td>
<td>1,984</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>21</td>
<td>1,956</td>
<td>19</td>
</tr>
</tbody>
</table>

SUGAR BEETS.

The same cultivation methods were used with the sugar beets as with the mangels, with the following results:

<table>
<thead>
<tr>
<th>Number</th>
<th>Variety</th>
<th>Yield per Acre 1st Sowing</th>
<th>Yield per Acre 2nd Sowing</th>
<th>Size of Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klein Wanzleben</td>
<td>16</td>
<td>1,264</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>French Very Rich</td>
<td>15</td>
<td>96</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Vilmorin's Improved "B"</td>
<td>14</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Vilmorin's Improved "A"</td>
<td>13</td>
<td>604</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>14</td>
<td>1,634</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>
The result of the analysis of the sugar beets, which was made by Frank T. Shutt, Dominion Chemist, is reported on as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>"A"</td>
<td>"B"</td>
<td></td>
</tr>
<tr>
<td>Average weight of 1 root</td>
<td>1 6</td>
<td>1 7</td>
<td>1 8</td>
<td>1 5</td>
</tr>
<tr>
<td>Sugar in juice, per cent.</td>
<td>17.91</td>
<td>18.18</td>
<td>17.03</td>
<td>19.40</td>
</tr>
<tr>
<td>Solids in juice, per cent.</td>
<td>19.46</td>
<td>18.60</td>
<td>18.69</td>
<td>20.40</td>
</tr>
<tr>
<td>Coefficient of purity</td>
<td>92.3</td>
<td>97.7</td>
<td>95.1</td>
<td>95.1</td>
</tr>
</tbody>
</table>

'Both as regards richness and purity, these beets would be considered very satisfactory for factory purposes. The French Very Rich has given a good average, the three samples of Vilmorin's Improved are of decidedly superior quality, and Wanzleben data are of the highest order.'—F. T. Shutt.

SUBSTATION.

FORT VERMILION, ALBERTA.

INDIAN CORN FOR ENSILAGE.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Date of Sowing</th>
<th>Date of Cutting</th>
<th>Average Height</th>
<th>Condition when Cut</th>
<th>Weight per Acre grown in rows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inches.</td>
<td></td>
<td>Tons.</td>
</tr>
<tr>
<td>1</td>
<td>Longfellow</td>
<td>May 2</td>
<td>Sept. 6</td>
<td>34</td>
<td>Not tasseled</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Longfellow, Red Nose</td>
<td>" 2.</td>
<td>" 6.</td>
<td>44</td>
<td>In tassel Aug. 30, no silk.</td>
<td>12</td>
</tr>
</tbody>
</table>

TURNIPS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Sown.</th>
<th>Pulled.</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tons. Lb.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Good Luck</td>
<td>May 9</td>
<td>Sept. 20</td>
<td>21 1,200</td>
<td>Fine and large.</td>
</tr>
<tr>
<td>2</td>
<td>Perfection Swede</td>
<td>" 9.</td>
<td>" 20.</td>
<td>21 1,140</td>
<td>Large.</td>
</tr>
<tr>
<td>3</td>
<td>Magnesium Bomum</td>
<td>" 9.</td>
<td>" 20.</td>
<td>19 400</td>
<td>Medium.</td>
</tr>
<tr>
<td>4</td>
<td>Hartley's Bronze</td>
<td>" 9.</td>
<td>" 20.</td>
<td>16 1,600</td>
<td>Small.</td>
</tr>
</tbody>
</table>
DIVISION OF FORAGE PLANTS

SESSIONAL PAPER No. 16

MANGES.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Sown.</th>
<th>Pulled</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prize Mammoth Long Red</td>
<td>May 7</td>
<td>Aug. 31</td>
<td>14 800</td>
<td>Medium size.</td>
</tr>
<tr>
<td>2</td>
<td>Giant Yellow Intermediate</td>
<td>"</td>
<td>" 31</td>
<td>10 1,000</td>
<td>Small.</td>
</tr>
<tr>
<td>3</td>
<td>Giant Yellow Globe</td>
<td>"</td>
<td>" 31</td>
<td>16 1,600</td>
<td>Large.</td>
</tr>
<tr>
<td>4</td>
<td>Gate Post</td>
<td>"</td>
<td>" 31</td>
<td>24 00</td>
<td>Very large.</td>
</tr>
</tbody>
</table>

CARROTS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Sown.</th>
<th>Pulled.</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ontario Champion</td>
<td>May 9</td>
<td>Sept. 16</td>
<td>11 500</td>
<td>Medium size.</td>
</tr>
<tr>
<td>2</td>
<td>White Belgian</td>
<td>" 9</td>
<td>" 16</td>
<td>8 20</td>
<td>Small size.</td>
</tr>
<tr>
<td>3</td>
<td>M. W. Intermediate</td>
<td>" 9</td>
<td>" 18</td>
<td>12 560</td>
<td>Medium.</td>
</tr>
<tr>
<td>4</td>
<td>Chantenay Half Long</td>
<td>" 9</td>
<td>" 18</td>
<td>7 1,780</td>
<td>Small.</td>
</tr>
</tbody>
</table>

SUGAR BEETS.—Test of Varieties.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name of Variety</th>
<th>Sown.</th>
<th>Pulled.</th>
<th>Yield per Acre</th>
<th>Description of Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klein Wanzleben</td>
<td>May 7</td>
<td>Sept. 18</td>
<td>8 800</td>
<td>Small size.</td>
</tr>
<tr>
<td>2</td>
<td>Vilmorin's Improved</td>
<td>" 7</td>
<td>" 18</td>
<td>9 1,200</td>
<td>Medium size.</td>
</tr>
<tr>
<td>3</td>
<td>French Very Rich</td>
<td>" 7</td>
<td>" 18</td>
<td>18 00</td>
<td>Large size.</td>
</tr>
</tbody>
</table>

EXPERIMENTS WITH GRASSES.

Timothy, sown 1910, was very short, and yielded 1 1/2 tons to the acre.
Brome grass, plots sown 1910 and 1911, respectively, were very good. The yield was 2 1/2 tons to the acre.

On May 4, 1912, small plots of the following grasses were sown, viz., Timothy, Tall Fescue, Western Rye grass, and Awnless Brome grass. At the close of the season they were all very poor, on account of the drought in the early spring.

On May 10, 1912, one-thirtieth of an acre was seeded to Canary grass. This was cut on September 6, and yielded four tons to the acre.

On June 6 a small plot was sown with Sainfoin. It produced a strong growth, standing about two feet high when cut on September 6.
REPORT

FROM

THE POULTRY DIVISION

For the Year ending March 31, 1913

PREPARED BY

Superintendent, Experimental Station, Lacombe, Alta. G. H. Hutton, B.S.A.
Superintendent, Experimental Farm, Agassiz, B.C. P. H. Moore, B.S.A.

and including articles on

The Preservation of Eggs, by Frank T. Shutt, M.A., Dominion Chemist.

NOTE.

Owing to the illness of the Poultry Manager, Mr. A. G. Gilbert, during a great part of the year, he was unable to plan and supervise many of the lines of experimental work which otherwise would have been taken up.

The report of the Poultry Division, which follows, is therefore brief. It has been prepared, for the most part, by Mr. Victor Fortier, Assistant Poultry Manager, and Mr. Walter Scott, foreman, Poultry Division.
REPORT FROM THE POULTRY DIVISION.

Year by year the poultry branch of farm work is becoming more valuable to the farmers of the country and this, too frequently, in the face of indifference which is not displayed in other departments of the farm. In previous reports it has been clearly shown that, with judicious management and treatment of the stock—which includes the sale of eggs and chickens at the proper seasons of the year—each hen should make a profit of one dollar to one dollar and fifty cents per year, over and above the cost of feed and management. Indeed many farmers who successfully manage flocks of fowl clear a much larger margin of profit.

Some farmers keep the light breeds and depend upon eggs alone for the profit, while others prefer a general-purpose breed, thinking that what they may lack in eggs is more than made up in table poultry. It is quite possible that in the milder portions of Canada, such as southern Ontario and the Pacific coast, the egg breeds may be most satisfactory, but in the colder portions of Canada and, in this, Ottawa is included, the greater profit may be attained by the combined production of both eggs and meat, the latter in the shape of broilers and roasters. For this dual purpose, one of the utility breeds is to be preferred.

The question may be asked, ‘Can we have a really good layer and flesh former combined?’ And the query is warranted, for hitherto there has been an opinion on the part of many persons that it is necessary to have one of the Mediterranean varieties for layers and a larger fowl for a flesh-maker. This opinion has resulted in much of the confusion we find in the poultry business throughout the country to-day. A common but mistaken practice has been to mate a large male bird, one of the utility varieties, with small fowls, already very much mixed, with the object of increasing the size of the progeny, and improving their laying qualities. But such a procedure has only made matters worse, and was only a compromise at best. There are far too many mixed or non-script fowls throughout the country, which fact seriously militates against the interests of the farmers.

The unsuitability of type and lack of finish of much of the poultry marketed in Canada has been commented on frequently by some of the largest buyers.

It is a matter of very great importance, then, that our farmers should breed chickens of the correct type, and still more important to them if they can have in their fowls good layers and market types combined.

What, then, is the best variety for farmers to breed to-day? The question is frequently asked, ‘Can we have a good layer and market type combined?’ Undoubtedly. Take, for instance, Barred Plymouth Rocks. If we select and breed only from good layers and flesh types, we are likely to have birds of the same excellent description and this is said with no intent to belittle the great Mediterranean class.

Briefly summed up, the following varieties are recommended to the farmers of the country as best to breed:—If both eggs and flesh are desired: Plymouth Rocks, Wyandottes, Rhode Island Reds and Orpingtons. If eggs alone: The Mediterranean class, of which the White Leghorns are the most popular.

PROPER TREATMENT TO SECURE EGGS AND FLESH.

It is of paramount importance that, having first secured the proper type of chickens, whether for eggs alone, or flesh and eggs combined, they should be care-
fully fed and cared for from the time of hatching until they reach the saleable age of two and one-half, three, or four months. The practice, too common among farmers, of allowing their chickens to 'pick up their own living' cannot be too strongly condemned. True, there is on many farms feed wasted that could with profit be converted into eggs and flesh and, in some cases, all that growing chicks require is to be allowed this feed that would otherwise be lost, but care should be taken that, if plenty of food is not available, it is provided if best results are looked for. It is the production of the highest quality that should be aimed at, and the best quality cannot be produced but by the greatest care and attention. As a result, the highest quality in poultry will always command a high price. There is, unfortunately, always plenty of the second and third grades to suit those who prefer such to the higher quality. The chicken that reaches four pounds in three months is a very different article to the 'scraggy, lean and bony specimen' that has been allowed 'to pick up its own living.'

And in eggs, equal care and attention are necessary. A good market now prevails, all the year round, for strictly new-laid, non-fertilized eggs, laid by well and cleanly fed and lice-free hens. Fowls should be free from lice both day and night. When the expression 'both day and night' is used, it means that the poultry house should be entirely free from red mites, which hide away in the cracks and crevices of the house during the day and come out in countless thousands at night to suck the life blood of the hens.

A dust bath, into which a little dry sulphur or tobacco dust has been mixed, will usually keep healthy hens free of body lice, but nothing but absolute cleanliness, with an occasional spray, will keep the red mites out. When once allowed to get into a hen house, their eradication is extremely difficult, and most thorough means have to be employed.

HOW TO CLEAN AND DISINFECT A POULTRY HOUSE.

The best description of how to clean poultry houses that we have seen is given by Dr. Raymond Pearl, University of Maine, in 'Poultry Diseases and their Treatment; we should add to this, however, that where a hose is not available a good stiff broom might take its place.

Cleanliness.—The thing of paramount importance in the hygienic housing of poultry is cleanliness. By this is meant not merely plain ordinary cleaning up, in the housewife sense, but also bacteriological cleaning up; that is, disinfection. All buildings or structures of whatever kind in which poultry are housed during any part of their lives should be subjected to a most thorough and searching cleaning and disinfecting at least once every year. This cleaning-up should, naturally, come for different structure (i.e., laying, colony or brooder house, individual brooder, incubator, etc.) at a time which just precedes the putting of new stock into this structure.

Not every poultryman, of experience even, knows how really to clean-up a poultry house. The first thing to do is to remove all the litter and loose dirt which can be shovelled out. Then give the house—floor, walls and ceiling—a thorough sweeping and shovel out the accumulated debris. Then play a garden hose, with the maximum water pressure which can be obtained, upon floor, roosting boards, walls and ceiling, until all the dirt which washes down easily is disposed of. Then take a heavy hoe or roost board scraper and proceed to scrape the floor and roosting boards clean of the trampled and caked droppings and dirt. Then shovel out what has been accumulated and get the hose into action once more and wash the whole place down again thoroughly and follow this with another scraping. With a stiff-bristled broom thoroughly scrub walls, floors, nest boxes, roost boards, etc. Then, after another
rinsing down and cleaning out of accumulated dirt, let the house dry out for a day or two. Then make a searching inspection to see if any dirt can be discovered. If so apply the appropriate treatment as outlined above. If, however, everything appears to be clean, the time has come to make it really clean by disinfection. To do this it is necessary to spray or thoroughly wash with a scrub brush, wet in the solution used, all parts of the house, with a good disinfectant, at least twice, allowing time between for it to dry. For this purpose three per cent creosol solution is recommended. The chief thing is to use an effective disinfectant, and plenty of it, and apply it at least twice. To complete the cleaning of the house, after the second spraying of disinfectant is dry, apply a liquid lice-killer (made by putting one part crude carbolic acid or creosol with three parts kerosene) liberally to nests and roosts and nearby walls. After all this is done the house will be clean. With houses cleaned annually in this way, the first step has been taken towards hygienic poultry-keeping.

The same principles which have been here brought out should be applied in cleaning brooders, brooder houses, and other things on the plant with which the birds come in contact.

What has been said has reference primarily to the annual or semi-annual cleaning. It should not be understood by this that no cleaning is to be done at any other time. On the contrary, the rule should be to keep the poultry house clean at all times, never allowing filth of any kind to accumulate and using plenty of disinfectant.

THE OVER-PRODUCTION BUGBEAR.

There is little danger of over-production of the higher quality of poultry and eggs. Up to the present time, in the face of increased production, in all parts of the Dominion, and decreased export, there has been increased prices, thus showing the rapidly increasing value of the home market. As a matter of fact, Canada has, for the past two years, imported many hundreds of thousands of eggs, and this should not be in a country where conditions are particularly favourable to the production of the higher quality of poultry and eggs. There should be no alarm felt as to over-production.

SOME PRACTICES TO BE AVOIDED.

There are, however, practices on the part of many farmers which should be avoided if they ever intend to successfully cater to the high-quality trade. Some of the most common and injurious of these are noted as follows:

1. Keeping eggs until a sufficient quantity is collected 'to make it worth taking to market.' Meanwhile the eggs become stale and the purchaser, knowing this, offers a second-rate price.

2. The reprehensible practice on the part of too many farmers of keeping their laying stock in ill-constructed and unsanitary poultry houses. Very frequently both hens and houses are lice-infested or contain disease germs. A suitable poultry house should be cheaply and conveniently constructed. Plans will gladly be furnished on application to the Poultry Division of the Central Experimental Farm.

3. A lack of variety in the composition of the daily ration, which leads to egg-eating or to eggs being laid with soft shells or no shells at all; also to feather-eating. Overcrowding of the poultry house is also an incentive to the vices named.

4. The too common practice of hatching out chickens late in the season. As a result, the pullets, instead of laying in October or early November, are non-productive during the winter season of high prices.

5. The practice of allowing male birds to run with the flock the whole year, thereby having none but fertile eggs; this fact alone causes a large annual loss from decayed and spoiled eggs.

16–43
Every person, which means no person, responsible for the poultry. Far better give to one of the boys or one of the girls the management of the poultry plant. Some one person should be responsible; this would mean a better-kept plant and more revenue. Try it.

EXPERIMENTS.

OPEN VERsus COTTON FRONT.

In the 1912 report, page 216, appears a photograph of an open-front poultry house which was being tried at the Central Experimental Farm. This house has a double roof, the lower part of which is to the front. The open space was 3 feet 4 inches high, and took in the whole front of the house. This open condition proved too cold for the Ottawa climate, so the front of one pen was covered with cotton on the first of February, 1913. The result, as shown in the following table, was that the pen with the cotton front had a considerably higher temperature and a better egg yield. Further improvements have been made to this house for this year, as will be seen in the cut, page 680 of this report. A 15-inch board has been placed along the floor, leaving about two feet opening over which cotton screens are hung. This board shows in the picture; also the cotton screens, several of which are down.

The hens in these pens were Barred Plymouth Rocks of the same strain and as evenly selected as possible. Pen 33, open front, was the east end of the house, and pen 36 the west end. Both pens had a large window towards the end, as shown in photograph. The ration fed in each pen was the same, and consisted of whole grain (wheat, oats and cracked corn) thrown in the litter in the morning and evening. Bone and beets were fed on alternate days at noon. After April the bone was replaced by meat scraps. Dry mash, consisting of equal parts gluten meal, shorts, ground oats and 10 per cent charcoal, was constantly before them, as was also grit and shell.

Table showing average temperature and egg yield from cotton and open-front pens.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Open...</td>
<td>33</td>
<td>5</td>
<td>38</td>
<td>88</td>
<td>145</td>
<td>293</td>
<td>300</td>
<td>155</td>
<td>97</td>
<td>1,118</td>
<td>14.45</td>
</tr>
<tr>
<td>Cotton</td>
<td>36</td>
<td>19</td>
<td>38</td>
<td>75</td>
<td>211</td>
<td>360</td>
<td>335</td>
<td>168</td>
<td>61</td>
<td>1,297</td>
<td>29.72</td>
</tr>
</tbody>
</table>

The minimum temperature registered during February and March was 20 below zero.

The minimum temperature of cotton front pen No. 36 was 6 degrees above.

The minimum temperature of open front pen No. 33, 10 degrees below.

EXPERIMENT ON FORCED MOLTING BY REDUCTION OF RATION.

On July 1, 28 White Leghorn hens were selected and divided into two even pens of 14 birds, numbered pen 3 and pen 4.
DIVISION OF POULTRY

SESSIONAL PAPER No. 16

Pen 3 hereafter called 'starved' pen.

Pen 4 hereafter called 'fed' pen.

The method attempted to force the moult on pen 3 by reducing the ration:

July 1 to 7 inclusive, full ration reduced 25 per cent or to three-fourths the usual quantity of feed required by 14 hens.

July 8 to 10, inclusive, ration reduced to one-half the amount of feed required by 14 hens.

July 11 to 13, inclusive, ration reduced 75 per cent, i.e., the pen only received one-fourth of the usual quantity required by 14 hens.

July 14 to 15, inclusive, starved. No feed of any kind, but plenty of fresh clean water kept before the birds all the time.

July 16 to 18, inclusive, one-fourth of the usual quantity fed to 14 hens.

July 19 to 21, inclusive one-half of the usual quantity fed to 14 hens.

July 22 to 27, inclusive, three-fourths of the usual quantity fed to 14 hens.

July 28, full ration, same as pen 4.

Table showing quantity fed Pen 3 during reduced ration period.

<table>
<thead>
<tr>
<th>Date</th>
<th>Morning</th>
<th>Noon</th>
<th>Evening</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 30</td>
<td>16 oz. oats or barley</td>
<td>28 oz. mash</td>
<td>24 oz. wheat</td>
</tr>
<tr>
<td>July 1-7</td>
<td>12 " "</td>
<td>21 "</td>
<td>18 "</td>
</tr>
<tr>
<td>" 8-10</td>
<td>8 " "</td>
<td>11 "</td>
<td>12 "</td>
</tr>
<tr>
<td>" 11-13</td>
<td>4 " "</td>
<td>7 "</td>
<td>6 "</td>
</tr>
<tr>
<td>" 14-15</td>
<td>Nil</td>
<td>Nil</td>
<td>6 oz. wheat</td>
</tr>
<tr>
<td>" 16-18</td>
<td>4 " oats or barley</td>
<td>7 oz. mash</td>
<td>6 oz. wheat</td>
</tr>
<tr>
<td>" 19-21</td>
<td>8 " "</td>
<td>14 "</td>
<td>12 "</td>
</tr>
<tr>
<td>" 22-27</td>
<td>12 " "</td>
<td>21 "</td>
<td>13 "</td>
</tr>
<tr>
<td>" 28</td>
<td>16 " "</td>
<td>Hopper</td>
<td>24 "</td>
</tr>
</tbody>
</table>

On reaching the 'full ration' period, pen 3 received the same quantity of whole grain, night and morning, as pen 4 had been fed all along, and were also given dry mash in hopper kept open all the time.

Hoppers contained dry mash composed of one part shorts, one part ground barley, one part gluten meal, 10 per cent charcoal, 10 per cent beef scraps; grit and oyster shells in proportion of two parts shell to one part grit.

Fresh clean water before both pens always.

Table showing falling off and advance in number of eggs laid by hens in 'starved' and 'fed' pens, before and after forced moulting:

<table>
<thead>
<tr>
<th>Month</th>
<th>Starved</th>
<th>Fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>154</td>
<td>146</td>
</tr>
<tr>
<td>July</td>
<td>43</td>
<td>58</td>
</tr>
<tr>
<td>Aug.</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>September</td>
<td>96</td>
<td>21</td>
</tr>
<tr>
<td>October</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>November</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>December</td>
<td>54</td>
<td>25</td>
</tr>
<tr>
<td>January</td>
<td>43</td>
<td>57</td>
</tr>
<tr>
<td>February</td>
<td>69</td>
<td>65</td>
</tr>
<tr>
<td>Total</td>
<td>543</td>
<td>411</td>
</tr>
</tbody>
</table>
The effect of the restricted ration on pen 3 was to entirely stop the egg yield by July 15, but the recovery from the moult was more rapid than in the instance of pen 4 and, consequently, the greater number of eggs were secured in the early fall, or the months of limited supplies.

Towards the end of the starvation period, or about July 25, the starved pen showed distinctly by the appearance of the birds and the number of moulted feathers in the pen and runs, that the method of forcing the moult by reduced ration and starvation had been successful.

It was also noted that about two weeks after the 'starved' pen had returned to full ration the hens were still ravenous for their feed, and cleaned it up quicker than those hens in 'fed' pen.

This was no doubt due to the fact that they were ahead of 'fed' pen in process of moulting and growing new feathers.

By August 29 fifty per cent of the hens in the 'starved' pen were again laying. Only 14.4 per cent in 'fed' pen were laying.

This experiment was discontinued after the months that high prices prevailed, as the pens were needed for other work.

The result shows a fair increase, and it is intended to carry on the experiment in the near future, giving careful consideration to the fertility of eggs in the spring, in 'starved' and 'fed' pens, and the stamina of the birds in both pens at the end of experiment.

FEEDING CAPONS AND COCKERELS.

On December 4, 1912, fourteen capons and fourteen cockerels were placed in two pens side by side and, though it was not intended as an experiment, the results are interesting.

None of the birds was first-class; they were too late to make breeders and, like most late birds, not as thrifty as the early hatched. They were Rocks, Orpingtons and Wyandottes.

The capons, as well as the cockerels, were allowed to run until shut in on December 4.

The feed was whole grain (wheat and oats) in the morning, bone and beets (alternately) at noon, and at night a wet mash composed of two parts corn meal, one part shorts, and one part ground oats. They were given all they would eat of this mash. No account was kept of the weight of the feed eaten. Both lots ate heartily, and did well on the feed. The gains, however, are by no means large, and the table is given to show the relative average gains, the capons gaining 50 per cent more than the cockerels.

Table showing the average gains of cockerels and capons fed in pens for two months and ten days.

<table>
<thead>
<tr>
<th>Number of Birds</th>
<th>Breeds.</th>
<th>Cockerels or Capons</th>
<th>Age.</th>
<th>Weight.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dec. 4, 1912</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Months</td>
<td>Days</td>
</tr>
<tr>
<td>14</td>
<td>B. Ply. Rocks, Orp. and Wy.</td>
<td>Cockerels</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Capons</td>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STATION, LACOMBE, ALTA.

A beginning has been made toward the establishment of a poultry plant. A number of colony houses were erected in March. Breeding pens have been mated of the following breeds of chickens: Barred Rock, White Wyandotte, Buff Orpington and Rhode Island Red.

Small flocks of Bronze turkeys and Toulouse geese have been purchased. The coming year should witness rapid development in the poultry department.
EXPERIMENTAL FARM, AGASSIZ, B.C.

At the present time we are keeping three breeds, Single Comb White Leghorns, Barred Plymouth Rocks and Single Comb Rhode Island Reds. The flock consists chiefly of the first two breeds.

As is probably the experience of almost everyone starting in the poultry business, we have found that the first year is rather expensive in buying all the equipment and getting houses and yards in proper shape.

When properly handled, the poultry business should be a profitable one, but unless attention is paid to every detail and the most returns collected from every source, the expenditure will out-balance the income.

During the season we raised some four hundred and fifty chicks in an enclosure containing plenty of shade and grass and sufficient run for the number of birds confined. However, these chicks did not do nearly as well as the portion of the flock which were allowed to run about the yards and that were not confined until they had arrived at the destructive age.

In order thoroughly to test out some incubators, chicks were hatched in June, but these proved decidedly unprofitable, which is quite a current idea, and this only adds one more item to the list of evidence that it does not pay to hatch late chickens.

The trap-nesting work, with sixteen Barred Plymouth Rocks for three hundred and sixty-five days, gave us some varied figures; the highest producing hen gave two hundred and thirty-one eggs, and the lowest seventy-one. The average of the sixteen hens was one hundred and fifty-six and one-half eggs each, and of the fifteen (dropping out the hen which only laid seventy-one eggs) was one hundred and eighty-two. These chickens were housed in a Tolman house and allowed free access to a good-sized grass plot.

During the season we had a small cellar dug, at spare moments, and before hatching time this spring we had a cement wall built around it and covered over for an incubator cellar, but the conditions were not conducive to the best results. Last season in this cellar we tested out, under these conditions, three incubators of small size, but the relative standing of the machines has been reversed this season under better conditions, so do not wish to make any report on the makes of incubators at present. We have this season purchased, in addition to the three mentioned, a Cyphers No. 3 four-hundred-egg machine. We will run these to their full capacity as long as the hatching season lasts in order to have a good supply of poultry to select from the coming fall, and in order to do more detailed and accurate work. At the time of writing, the machines tested out are showing eggs of not very strong fertility. Of the three houses which we have tested for two winters, the Tolman house has probably given us the best all-round satisfaction. The Gilbert house (plan supplied by Mr. A. G. Gilbert) is well adapted to this country, but it is not deep enough. The Woods open-front house, although deep enough to keep the fowls well away from the draft, is not so handy to work about, and does not warrant the extra expense in building it.

A large house has been built for laying purposes, one which contains four pens 18 by 20 feet, with the feed room in the centre. This is built somewhat after the style of the Gilbert house, only larger and, under the conditions which we have in this district, is probably more satisfactory. We are indebted to Mr. A. G. Gilbert, of the Central Experimental Farm, for his ideas regarding the construction of this house.

Our poultry department for this season has not received the attention which is due such an important industry in this province, but the work has been reorganized and, during the coming year, we will be in a position, financially and otherwise, to report a considerable advance in this line of work.
THE PRESERVATION OF EGGS.

BY

FRANK T. SHUTT, M.A., Dominion Chemist.

Experiments in egg preservation have been carried on by the Division of Chemistry during the past fifteen years, in order to obtain information for our numerous correspondents as to the best preservative for use in the home. In this long period a large number of fluids and preparations advertised as egg preservatives have been put under trial. These, for the most part, have proved utter failures, and, looking back over our records, we cannot find one of these numerous nostrums that can be unhesitatingly recommended.

The two best media are lime water and a solution of water glass (sodium silicate) and these two have been tested side by side, year after year, with the same result—that lime water has shown itself the more effective preservative.* Not infrequently eggs have been kept in this medium, quite sound and fit for cooking purposes, for more than a year. The three essentials to success are, absolute freshness of the eggs; when placed in the lime water, protection of the surface of the lime water from the atmosphere (or occasional renewal of the lime water) and the keeping of the vessel containing the eggs at a moderately low temperature—preferably 40° to 45° F.

COMBINE BARRAL.

This recently introduced preparation for the preservation of eggs is apparently made in France, but is sold to some extent in Canada and the United States. To furnish information to correspondents regarding its nature and merits we, last summer, submitted it to analysis and at the same time made a practical trial with it in the keeping of eggs.

It is put up in the form of small cakes (weighing about 3 ounces each), of a light yellowish tinge, hard and brittle, breaking with a somewhat glassy or conchoidal fracture. Each cake, it is stated, yields sufficient preservative fluid for 100 eggs. It is described in the circular advertising it, as a chemical combination, antiseptic and non-poisonous, and the statement is made that it will preserve eggs for nine months in the same condition as when laid. The directions are to dissolve one cake in seven pints of cold water, stirring four or five times during two days to hasten solution. A slight deposit settles out, but this is allowed to remain.

Analysis showed it to consist essentially of lime, a gum (probably gum arabic) and boric acid. It forms a thick solution or emulsion with water, leaving very little residue. It effervesces slightly on the addition of acid, showing that a portion of the lime had become carbonated.

Two dozen strictly fresh eggs were placed in the Barral preservative prepared according to directions on October the 4th, 1912, the vessel being kept in the cellar of the laboratory. The examination of the eggs was made on June the 4th, 1913, when the following notes were made:

On breaking, the yolks in the larger number were found to be fairly globular, but the retaining integument in some instances had materially softened, as shown by a slightly flattened appearance and a tenderness which made it somewhat difficult

* A circular describing the preparation of lime water and water-glass solution will be forwarded on application to the Central Experimental Farm, Ottawa.
to avoid breaking the yolk on opening the egg. The 'whites' were considerably discolored, and decidedly limpid. A markedly stale odour had developed. Though not in a condition fit for table use, the eggs were apparently sufficiently well preserved for cooking purposes.

An experiment was carried on concurrently with the above, using lime water, the object being to compare eggs kept with this well-tried and successful preservative with those from the Barral preparation. The eggs were put into lime water October 4, 1912, and examined June 4, 1913, the conditions as to temperature, etc., during that period being those to which the Barral eggs were subjected. On examination, the yolks were found to be globular and in good condition. It was not at all difficult to open the eggs without breaking the yolk. The 'whites' were slightly discolored, but otherwise they were normal in appearance. The odour of the opened eggs, though slightly 'stale,' was not so marked as in the case of the Barral eggs. Tested side by side the lime eggs were, in all features, distinctly superior to those which had been kept in Barral. A number of these lime-water eggs were distributed for a table test. The eggs were by some poached and by others boiled in the shell, and eaten. In all cases they were reported as being found in the best of condition and pleasant, though in the opinion of some with a slight flavour of staleness.

Our experiments have, therefore, once more proven the efficacy of lime water for egg preservation. It is useless to expect that any preservative will entirely arrest that 'stale' flavour which develops on the storage of eggs. The freshly-laid egg is in a category by itself. But lime water, under the conditions stipulated, will allow the householder to keep eggs over for 6 to 10 months in a sound and perfectly satisfactory condition, and quite suitable for culinary purposes, if not for table use.
BLACK-HEAD IN TURKEYS.
(Entero-Hepatitis.),

BY
C. H. HIGGINS, B.S., D.V.S., Chief Pathologist, Health of Animals Branch—
Department of Agriculture.

Entero-hepatitis, or black-head, in turkeys is a disease of fowl, infectious in its
nature, usually seen in its most aggravated and fatal form among turkeys. Other
fowl may be subject to the disease, but losses among them are small compared with
the loss among turkeys. The first investigations as to the nature and cause of the
malady were made by Dr. Theobald Smith, in Rhode Island, under the joint auspices
of the United States Department of Agriculture and the Rhode Island Agricultural
Experiment Station, during 1894 and 1895. Various investigators have since taken
up the study of the disease as it has become more widely distributed and a distinct
menace to the turkey-raising industry. Detailed information relative to the manner
in which the disease is transmitted from an affected to a healthy bird is lacking. It
is believed that this infection is direct from the droppings or from the ground on
which they have been deposited. There is still some difference of opinion as to the
exact organism responsible for the lesions produced, but it is generally conceded to
be a minute protozoan parasite. We anticipate conducting experiments and hope to
be able to arrive at some definite conclusions regarding these and other unsettled
points.

LOSSES.

The losses from this disease have been enormous, and I believe that it is a factor
responsible for the high price of turkeys. The extent of these losses is well indicated
from the fact that two decades ago a single small island (Block island) off the Rhode
island coast provided two tons of marketable birds each year, while
to-day but five hundred pounds are available from the same locality. State-
ments are also current that in localities in Ontario where ten carloads of birds were
available eight years ago it is now difficult to secure two carloads. The reason to be
ascribed for this falling off in production is the difficulty of rearing stock that can
withstand this affection.

In Canada the disease was first mentioned by Gilbert in the Experimental
Farra Report for 1900. It has since been repeatedly reported upon evidence obtained
at this laboratory and at the Bacteriological Laboratory of the Guelph Agricultural
College. From the information which we have obtained through communications
received at this laboratory, it is evident that there is not a province in Canada where
entero-hepatitis does not make its presence felt with more or less severity each
season. In some portions of the country the disease has made such inroads on the
turkey industry as to almost prohibit the raising of this class of fowl.

The usual history concerning losses is that an individual having a few fowl
desires to supplement his poultry operations by raising a few turkeys. He is an
unsuspecting buyer of parent stock or sittings of eggs until experience has made him
painfully aware of the fact that he has bought with the birds or eggs the infective
agent of this disease which later separates him from his original investment and the
time he has spent in caring for the young poults. The season is then too late for him to attempt another start, his premises are infected, and, discouraged at the result, he decides to relinquish further effort in this direction. It is quite common where entero-hepatitis makes its appearance to lose seventy per cent of the young stock before they are sufficiently mature for table purposes.

NATURE OF THE DISEASE.

The early symptoms presented by affected birds are not particularly characteristic. Affected birds, however, will separate from the remainder of the flock. This separation or lagging behind does not appear to be a desire for seclusion but the result of being unequal to the task of keeping up with the others, from physical exhaustion. The droppings are more fluid than normal, and may be streaked with yellow. Gas bubbles may be sufficiently numerous to give a frothy appearance. The head may be, and usually is, darker in colour than normal. This dark colouration may disappear and reappear at irregular intervals while the bird is at rest, but excitement usually causes a bright red colouration.

The best means of early diagnosis is the examination of the droppings for evidence of diarrhoea or a yellow colouration of the faeces. Feeding time may prove the most appropriate for such observation. Where this is not convenient, owners should provide some means of determining an infection at the earliest possible moment.

COURSE OF THE DISEASE.

Affected birds, if untreated, may die in a few days or may linger for a week or longer after the first appearance of symptoms, according to the virulence of the infecting agent. In some cases the onset is so rapid and free from outward manifestations as to be recognizable only by an autopsy. Without treatment, or a complete change in diet and surroundings, the course is usually fatal.

POST MORTEM FINDINGS.

The post mortem findings are characteristic. The lesions are confined to the liver and intestinal tract. The liver is the seat of lesions which appear on the surface as circular spots about the size of a five- or ten-cent piece, yellow or whitish yellow in colour and surrounded by what, to the naked eye, appears to be normal liver tissue. At the point between the lesion and the liver tissue, a ring, almost bright red in colour, is observed. These lesions in the liver if cut open may have a uniform colour throughout, or, in the more chronic cases, there may be a core in the centre. The intestines may be the seat of a chronic inflammation. The caeca or two blind guts which lie along the course of the intestine, and enter it about six inches from the vent, are usually inflamed and in either or both, a single or number of lesions the size of a walnut are usually present. These lesions are yellow in colour, have a thick wall and a degenerated centre. There may be in addition to the above in severe, acute or chronic cases, either a localized or general peritonitis (inflammation of the outside wall of the intestines) with adhesions and fluid in the cavity.

PREVENTION AND TREATMENT.

The placing of the poults on clean, sanded board floors in a dry well-lighted and well-ventilated building with a southern exposure, is considered a means of prevention. The continued contact with the floors, however, tends to weaken the poults. I believe it to be an advantage to see that they are quartered on sanded board floors at night and prevented from ranging in the early morning when the grass is wet.
When the birds are older, the roosting places should receive consideration. The free application of lime and sulphur wash (that used in spraying fruit trees is suitable) on the ground under the roosting places and the ground on which they are reared, two or three times during the season, will destroy any infection on the ground. We believe that persons raising turkeys should be very careful not to introduce the disease when making additions to improve their stock. A turkey tom may be a source of infection when he heads the flock of a neighbourhood, or the disease may be introduced with sittings of eggs. The greatest care should be exercised to prevent any possible source of infection reaching a flock or locality now free from disease.

The early diagnosis of the first case is an essential feature in connection with the prevention and treatment. As has already been indicated, it is the early diagnosis that will prove the most essential factor in successful prevention and treatment. The isolation of the first case may many times prevent further manifestations of the disease. From our experiments, however, it appears that there may be chronic carriers of the disease whose droppings are continually infected, notwithstanding the fact that they exhibit very slight if any symptoms. This suggests that isolation may not be as potent a factor in preventing losses as desired, but I believe that it should be enforced to such an extent as will prevent the old and young flocks intermingle after the first appearance of the disease.

Our experiments in the treatment of entero-hepatitis have been directed to the finding of some agent that will successfully carry affected birds over an acute attack and enable their being conditioned for market.

There is to my knowledge no known specific for controlling the ravages of this affection. The use of muriatic acid in the drinking water was found some six years ago to be followed by beneficial results on affected turkeys which I was trying to raise at my home. Later it was given a further trial and three years ago a single turkey at this laboratory made an apparent recovery. During the past two years we have recommended it as being the best medicinal agent which we know to assist in overcoming the affection. Last year five affected birds recovered after receiving liberal allowances of this acid. One of these which was later autopsied to determine the presence or absence of lesions, was found to be normal in every respect so far as we could determine.

Some apparently remarkable recoveries have followed the use of this acid, but one cannot hope to bring all affected birds through an attack. I was first prompted to use this acid as I found that the contents of the digestive tract in turkeys, dead of entero-hepatitis or black head, were alkaline in reaction.

The acid to be used is a teaspoonful of muriatic acid (Acid. Mur. Dil B.P.) in a quart of drinking water. This acidulated water should be placed in a porcelain or glass vessel, and is suggested in the hope that the birds may be carried over an acute attack. At the outset, when the birds show evidence of being severely affected, it may be of advantage to triple the amount of acid (using three teaspoonfuls to the quart of water) for the first three days. This amount will not injure the turkeys, and may assist them in more rapidly overcoming the infection.

They should be confined during this period on dry, sanded board floors in well-lighted and well-ventilated quarters and allowed access to no other liquid. If allowed to roam they may obtain sufficient water for their requirements from the dew laden grass or other sources and, therefore, will not drink the acidulated water. If confined, green food should be supplied in addition to the grain ration.

Other medicinal agents may give equally satisfactory results in the treatment of affected birds as that above outlined, in which case my advice would be to stick to the remedy that has proven the most effective. If such other medicinal agents are effective we will appreciate learning of them. We will also appreciate information as to the success or otherwise of the treatment herein recommended.
INSTRUCTIONS FOR SENDING MATERIAL FOR EXAMINATION.

Where it is desired to determine the nature of any condition causing losses among turkeys, an examination will be undertaken, provided suitable material is supplied. It is preferable to have affected turkeys forwarded alive by express in order that a thorough autopsy may be made. The express charges are paid by the Biological Laboratory. When the condition has been found at autopsy the tissues may be sent by mail, if properly packed and preserved. Tissues may be preserved in fine alcohol or a solution of one part of formaldehyde to nine parts of water. After an examination has been made, suggestions will be forwarded for the prevention of further loss. Specimens sent should be addressed to the Biological Laboratory, Ottawa, Canada.

Information concerning the losses which have been experienced should be sent with the material, in order that it may be properly identified. The name and address should be written plainly in order that the result of the examination may be forwarded to the sender with the least possible delay.
TUBERCULOSIS IN POULTRY.

By

C. H. Higgins, B.S., D.V.S.

Tuberculosis, or consumption, is a disease that affects fowl as well as human beings, cattle, hogs and other animals. It is caused by a bacillus or germ which is only distinguishable from the germ seen in other animals by elaborate laboratory methods. This affection among fowl was first identified in western Ontario by Prof. F. C. Harrison, in 1901, Prof. F. C. Elford, in 1903, and by the writer, in fowls received at the laboratory on May 30, 1904, from British Columbia, for an examination to determine the cause of death. Since 1904 the disease has been found by us to be the cause of losses to poultry owners in various parts of British Columbia, and also in Quebec, Ontario, Saskatchewan and Alberta. It may be and probably is the cause of losses in other provinces. The disease has also been frequently reported from the Bacteriological Laboratory of the Guelph Agricultural College.

Losses.

The losses from this disease have been large to poultry owners, but there is at present no means of arriving, even approximately, at an estimate with any degree of accuracy. Once the disease makes its appearance in a flock the aggregate losses are large, although a great number of birds do not usually die at one time.

The following, which is an extract from an inquiry made by a large poultry plant when sending an affected bird for examination, is quite the usual experience where tuberculosis makes its appearance in a flock:—

'We have lost as many as a hundred fowls with this disease during the past two years. They go light and gradually grow weaker, having a yellow or greenish diarrhoea; some eat to the last, others do not. We have fed mixed grains, also mash, but they have been eating a large quantity of wheat screenings. We find many of our chicks go the same as the older hens, dying at all ages. We are beginning to think that artificial hatching has something to do with it, and we are afraid it is tuberculosis caused by the overheated air of the incubator during the hatching season. We try to keep the conditions favourable around the houses and yards.'

In commenting on the above it is only necessary to state that tuberculosis being due to a definite infecting germ, the overheating of the incubator or other conditions surrounding the chicks or fowl will not induce the disease unless the infecting germ is present. The surrounding conditions may render the fowl more susceptible but cannot produce the disease.

Nature of the Disease.

Tuberculosis, or consumption, in fowls, as in other animals, is a contagious disease caused by a bacillus or germ. This germ gains entrance to the system, usually with the food, and finding a favourable location grows and extends to the various tissues. This growth of the germ induces symptoms of unthriftiness, and this unthriftiness is followed sooner or later by death. The detection of tuberculosis from
the symptoms is not always easy. Some may be observed to be 'going light,' yet they are seen to be good feeders. If picked up, it is found that the flesh has almost entirely disappeared from the breast bone and this should make one suspicious that something is wrong. A yellow or greenish diarrhoea is frequently present in affected birds, and where this is present the type of the disease is most dangerous to the remainder of the flock, as the germs are to be found in the droppings in immense numbers. One of the most frequent symptoms seen early in the course of the disease is lameness, a result of the infection involving a joint of the leg. Lameness is mentioned by persons forwarding fowls for diagnosis more frequently than any other symptom, where our subsequent examinations have proven the trouble to be due to tuberculosis. So frequently is lameness the principal symptom observed that I am at once suspicious of tuberculosis whenever it is mentioned.

Course of the Disease.

Fowl affected with tuberculosis may die in a few days from the first appearance of symptoms, or they may linger for weeks, gradually becoming more emaciated as the disease progresses, until they die from exhaustion. The progress is largely dependent on the strength of the invading germ and the natural resistance of the bird. Some outbreaks of the disease follow a more rapid course than others; usually, however, the course in an individual extends over weeks, and sometimes months may intervene before death takes place.

Post Mortem Findings.

The post mortem findings in fowl tuberculosis, when considered in relation to the symptoms and general history, are characteristic. The liver is usually the principal organ affected, and there are lesions, from the size of a pin point to that of a large pea, which are white or yellow in colour. The larger lesions, when cut into, give a gritty sensation as the knife passes through them. These lesions are distinct from the liver tissues and may be quite easily separated from the liver itself. In the more acute cases the liver may be greatly enlarged, even to twice its normal size. This enlargement in chronic cases is noticeable. The spleen is usually involved, the lesions having the same characteristics as mentioned for those in the liver. The enlargement of the spleen is usual, and it may be four times its normal size. The intestines may or may not be involved. When lesions are present we find nodules from the size of a small pea to that of a medium-sized nut. The minute dissection of these usually presents a free opening into the inside of the bowel, and at this point of entrance there is an ulceration. It is through this opening from the nodule on the intestine to the interior of the bowel that the bacilli gain access to and are so easily distributed by the droppings.

Other visceral organs are seldom involved. It is frequently observed that the joints, notably that of either or both hips, may be the seat of tubercular ulcerations. Such an ulceration is the cause of lameness during life.

Prevention and Treatment.

In the prevention of tuberculosis and other infectious diseases of fowl, sanitary surroundings, with plenty of sunlight and fresh air, are requisites of prime importance. In our opinion, these features are best obtained by the use of the modern cotton front house, a number of types having been described by various poultry authorities. Circular No. 7, prepared by Prof. A. G. Gilbert of the Experimental Farm staff, describes in detail the method of construction, and may be obtained on application.
SESSIONAL PAPER No. 16

The best means of preventing and treating tuberculosis in fowls is to destroy the entire flock if all have been running together, and to thoroughly cleanse and disinfect the quarters which they have occupied with any good disinfectant, one of which is a five per cent solution of crude carbolic acid. This may be made by adding two tea-cupfuls of crude carbolic acid to a pail of hot lime wash. This should be applied with a spray pump, brush or old broom to all parts of the house occupied by the fowl. This method of disinfection is suggested, owing to the fact that in tuberculosis or consumption in fowls, as has already been indicated, the bacilli or germs are found in the dropings in great numbers, and these should be destroyed. This action is further recommended as it has been shown that fowls dead of tuberculosis, if eaten by hogs, communicate the disease to them, and it is probable that the dropings would also communicate the disease in a similar manner.

When destroying the birds after it has been demonstrated that tuberculosis is present, some may be suitable for food if an examination of the livers shows no yellow or white spots from the size of a pin point to that of a pea, and there are no nodules or lumps on the intestines. When these lesions are present the flesh cannot be considered suitable for human food.

We have found that eggs from tuberculous fowls may contain the bacilli or germs in the white, and others have demonstrated that they are in sufficient numbers to infect small experimental animals. This suggests a possible source through which tuberculosis may be introduced into a flock, namely by the unsuspecting purchase of eggs from someone who has tuberculosis among his fowl.

The drastic measures above recommended should be followed in all cases when tuberculosis appears among fowl. These measures, while temporarily entailing a considerable loss, will in the end prove the most economical to the owner and the community.

INSTRUCTIONS FOR SENDING MATERIAL FOR EXAMINATION.

Where it is desired to determine the nature of any condition causing losses among fowl, an examination will be undertaken by the Biological Laboratory, Ottawa, providing suitable material is supplied. If possible, two live but affected birds should be forwarded by express in order that a thorough autopsy may be made. It is not necessary to prepay the express. When the condition has been found at autopsy the diseased tissues may be sent by mail, if properly packed and preserved. Tissues may be preserved in pure alcohol or a solution of one part of formaldehyde to nine parts of water. After an examination has been made suggestions will be forwarded for the prevention of further losses. Specimens sent by express or mail should be addressed to the Biological Laboratory, Ottawa, Canada.

Information concerning the losses which have been experienced should be sent with the material in order that it may be properly identified. The name and address of the sender should be written plainly so that the result of the examination may be forwarded with the least possible delay.
REPORT

FROM

THE TOBACCO DIVISION

For the Year ending March 31, 1913

PREPARED BY

Chief of the Tobacco Division F. Charlan.
REPORT FROM THE TOBACCO DIVISION.

OTTAWA, March 31, 1913.

J. H. GRISDALE, Esq., B.Agr.,
Director, Dominion Experimental Farms,
Ottawa.

Sir,—I have the honour to submit herewith the report of the Tobacco Division for the year ending March 31, 1913.

The work of the Tobacco Division, during the year 1912, was conducted on that part of the Experimental Farm at Ottawa devoted to tobacco experiments, and also on the Experimental Stations at St. Jacques l'Achigan, and at Farnham, Que., and Harrów, Ont.

The Experimental Station at St. Césaire was given up during the spring of 1912 on account of its small size and its lack of communication facilities. Its place has been taken by the Station at Farnham, some 74 arpents in size, situated on the outskirts of the town of that name, and near the railroad. This increase in area of the Tobacco Stations in the province of Quebec will permit us to grow a sufficient quantity of tobacco of each type, or of each variety, for the carrying on of the fermentation process in the most suitable way.

CENTRAL EXPERIMENTAL FARM.

The fermentation warehouse on the Central Experimental Farm, which should have been ready for use in September, 1911, was not finished until February, 1912. The sorting of the tobacco was immediately commenced, but the fermentation did not really begin until the 11th of April, the date of the building up of the first bulk.

The foreman, Mr. Richard Brault, engaged on the 12th of April, was put in charge, especially of this part of the work, as well as the work on the experimental field at the Central Farm.

It was rather difficult, on account of the delay occasioned by the warehouse not being finished in time, to keep the tobacco sufficiently moist for good fermentation. In reality, it was a little too dry when the formation of the first bulk was undertaken. However, maximum temperatures of 49 degrees Centigrade for the filler tobacco and 51 degrees Centigrade for the binder, were easily obtained. The bulk of binder, which was the larger, fermented more strongly and cooled off more slowly. The total duration was, for the filler, from the 11th of April to June 18, the bulk being turned over twice; the binder, from the 11th of May till the 23rd of September, also with two turnings over.

All the tobacco, therefore, was subjected to three fermentations in the pile. The fillers were baled up on June the 18th, while the binders remained in the bulk until the date of their baling up on the 23rd of September. The reason for leaving this tobacco in the bulk so long, before baling it up, was the late date upon which the third fermentation was practically finished. The great heat of the summer was past, and it was thought that the ripening process would take place better in a fairly large bulk than in cases of 250 to 300 pounds. All the fermentations were completed without accident. When taken from the fermentation heap the tobacco was found
rather light in colour, but fragrant, and without a green taste. The tobacco was sold in October to a Montreal manufacturer.

SEEDLINGS.

As in former years, these were grown in hotbeds. The hotbeds were treated with formalin, but instead of sprinkling the mould in a heap and working it up, it was sprinkled after the hotbeds had been prepared. The dry seeds were sown on the 24th of April, and the seedlings were of sufficient size for use on May 28, on which date transplantation was commenced.

The tobacco plantation on the Central Farm is becoming more and more devoted to the growing of seed intended for distribution and to the study of new varieties, or those newly introduced into Canada. Thus, in 1912, on an area of about one acre, the following varieties were grown: 3 Comstocks, 1 Wisconsin, 2 Canelles, 1 Bresil Lecese, 1 Big Havana, 1 Montnelian, 2 Moros di Cori, 2 Erbasantas.

Transplantation was finished on June 1 and replacements were made until the 5th of June. Showery weather was favourable to the transplanting and the replacements were very few, with the exception of Erbasanta, where the injuries of insects were considerable. It was necessary to replant this variety almost completely. Growth went on at a normal rate. No noticeable difference could be seen between the different Comstocks, although the seed of one of the latter had shown greater calliness in the hotbeds. The Montnelian turned out well, giving a product slightly thicker in texture than the Comstock. The Erbasantas, tried for the first time this year, seemed entirely acclimatized. The Big Havana furnished a tobacco of considerable development, which will be studied further. Unfortunately, the growing season of 1912 was marked by almost constant rain and by a summer comparatively cold, both conditions peculiarly unfavourable to growing tobacco of good texture.

Certain varieties, studied with a view to ascertaining their nicotine content, were particularly affected, the percentage of alkaloid not exceeding 75 per cent of that obtained the previous year, which was a normal one.

Speaking generally, the ripening process commenced late, and harvesting was prolonged from the 20th of August to September 13. In a normal year, on the Central Farm, harvesting is finished by September 5. These unfavourable conditions caused considerable anxiety as to the formation of the seed pods. These formed late, and it was necessary, in order to avoid crossing, to keep them longer than usual under the protecting bags, which was not without danger on account of the latter being constantly moist. The seed pods were harvested on October 7 and 8, after a light frost on September 29, which, however, did no damage. Seed from the tobacco plantation is carefully cleaned and sorted by means of a machine which takes out all the light seed and enables us to distribute choice samples only.

The curing process was carried on during the rainy period, which formed such a saturated atmosphere in the curing barn that part of the product fermented slightly while hanging up. The humidity was such, at a certain time, that the tobacco, already wilted, became fresh again with sap. The result was a small proportion of 'pole burn.'

STATION OF ST. JACQUES L'ACHIGAN, QUE.

This Station is carried on under a 3-year rotation, tobacco, cereals, clover, the last year of which rotation was reached for the first time in 1911, so that the tobacco plantation of 1912 was made on that part of the Station last planted in tobacco in 1909. The varieties grown at St. Jacques were the Cuban, Comstock Spanish and Aurora. The growing of seedlings was successful, with the exception of the bed of Aurora. The failure of this latter is attributed to the poor quality of the seed used.
SESSIONAL PAPER No. 16

DIVISION OF TOBACCO

For the first time since the establishment of this Station, hotbeds were not used. The sowing took place on April 12, the seed having first been swollen. The seedlings were ready for use on June 2. Unfortunately these had to be kept until June 15 for it was impossible, on account of the continual rain, which prevented the preparation of the soil, to commence sooner the work of transplantation. This work was difficult as the cutworms and wire worms did a great deal of destruction and it was necessary to replace some 30 per cent of the plants. The cultivation of the plantation was very laborious on account of the constant packing of the soil under the action of the rain. The ripening was imperfect, as it was necessary, owing to danger from frost, to harvest the crop from the 6th to the 8th September.

The greater part of the seed pods of Comstock had to be abandoned. The pods did not arrive at a sufficient degree of maturity to furnish seed of the first quality. Fortunately, the yield of seed from the tobacco plantation at Ottawa will permit us to meet all demands for samples. In spite of the unfavourable character of the season, the yield on the Station at St. Jacques was satisfactory, amounting to 1,242 pounds per arpent for the Comstock, 792 pounds per arpent for the Cuban, and 1,364 pounds per arpent for the Aurora. The last-named tobacco has particularly attracted the attention of some growers at the annual exhibition at St. Jacques, in January, 1913. The growing process took place normally, although a little slow in commencing. In order to hasten and complete the reduction of the main ribs, it was necessary, toward the end of the operation, to resort to artificial heat, which was obtained by placing small pots of wood charcoal in the lower part of the drying shed.

The tobacco from the St. Jacques Station was sent to Ottawa on February 8 to be sorted and fermented in the warehouse on the Central Farm.

TOBACCO STATION AT FARNHAM, QUE.

The greater part of the tobacco experiments for the province of Quebec, in 1912, were carried on at this Station. On account of the considerable size of the Station and of the delay in obtaining possession of it, which took place on May 28, a time when the seedlings were in good condition for transplanting, and on account of the almost complete state of neglect in which this property had been left for many years, the solution of the making of it, as rapidly as possible, into a model farm was not without many difficulties.

These difficulties were increased, at the beginning, by the unfavourable character of the season. Continual rains prevented work on the fields which were, in addition, flooded by lack of ditches and drains. The ploughing done the previous fall had to be done over again, as it had been performed so badly and so late that the sod turned under was still intact, not having even commenced to rot. In spite of much use of the disc harrow, one could not, on certain parts of the Station, cut up the sod sufficiently to enable one to use the machine planter, which clogged up as soon as the attempt was made to use it. As a result, of ten arpents planted to tobacco in 1912, three were planted entirely by hand.

For all of these reasons, the transplantation, commenced on June 15, was not completed until the 30th of that month, a very late date for this operation, especially in Quebec. In the meantime, the seedlings, which had been ready for use since the 23rd of May, grew spindling, or developed crooked roots in the baskets where we had tried to keep them in fit condition until transplanting time by placing the baskets in cellars or cool silos.

The ten arpents planted in tobacco were situated in such different parts of the farm as we had been able to clear, in order to give some idea of the nature of the soil.

The chemical analysis of the soil at the Farnham Station gives fairly encouraging results, in spite of certain admitted differences in the amount of nitrogen contained
in samples taken from different sections of it. It has been found that our first plantations of tobacco were made on that part of the Station which is the least fertile. A fairly heavy dressing of fertilizer in the late spring did not make up for the lack of preparation of the soil. The summer was rainy and cold, and the unfavourable conditions of the season were completed by a hail storm on the 14th of August. The tobacco plants had thrown out roots while covered with water, so to speak; their development was very feeble, and the terminal buds appeared before the usual number of leaves could form. It was necessary, then, to top the plant to a lesser number of leaves, especially in the case of the Bresil and the Rusticas, which lessened the yield considerably, in certain cases reducing it by almost one-half. The varieties tried were the following: Big Ohio x Sumatra, Yamaska, Havana Seed Leaf, 2 Bresils, Comstock Spanish, Bakoum, Blue Makhorka and Cuban.

SEEDLINGS.

The beds for these were got ready on the 12th and 13th of April on the farm of Mr. E. L. Lorquet, whose son was engaged on the Station as foreman. In spite of cold weather and the haste with which the material for the beds had been got together, the seedlings grew quite well. The semi-hotbed was used, made on a foundation of tobacco stems. Unfortunately, on account of the delay occasioned by the preparation of the land, the seed plants could not be used at the proper time. It was necessary, in some cases, to keep them in cellars from eight to ten days, having allowed them to remain in the beds as long as possible. Under such conditions, one could not expect the usual good results and a normal growth after transplanting. The plants from the weakened seedlings were the first to come to flower, and carried the fewest leaves. The destruction caused by insects was considerable. On these dirty lands, parts of which had not been cultivated for twenty years, the cutworms and the moths swarmed. During some two weeks three men were employed almost exclusively in replacing destroyed plants. One plot had to be harrowed up and replanted completely.

The Big Ohio x Sumatra, alone, presented in some degree a normal appearance. All the other varieties gave only half a crop.

The hanging of the tobacco in the curing barn took place during a rainy period, one might almost say between showers. It was finished on September 26, that is to say two weeks later than in a normal year.

The curing process took place in a normal way, although the humidity which prevailed at the time of the harvest had retarded the wilting and the yellowing of the leaves, and had exposed the product to dangerous fermentation.

After harvest, the plots which had been in tobacco were worked up, as well as the rest of the farm. Manure at the rate of 20 tons per arpent was applied to that part intended for tobacco in 1913. The necessary arrangements were made for carrying off the water in the spring. The levelling of the land was corrected, the ditches cleared out. As chemical analysis had shown, the soil on the Tobacco Station at Farnham is not exhausted; on the contrary, it presents all the indications of average fertility. It is a case of a farm left too long in fallow. It has become covered with an old and dirty sod, under which all microbe life seems to have disappeared. A better preparation of the land than that which we had time to make this spring, together with a light application of chemical fertilizer, along with a better and warmer season, will perhaps enable us to restore this soil. In any event the attempt will be made along the above lines.

BUILDINGS.

The buildings on the farm at the time of taking possession were in such a state of decay that they were hardly fit for use as a temporary shelter for machinery. It was necessary to build a curing barn at once. This is of capacity to hold, in a normal
Harvesting Tobacco on the St. Jacques l'Achigan Station.

Curing Barn in Course of Erection. Farnham Tobacco Station.
SESSIONAL PAPER No. 16

year, the harvest of 12 arpents. It was finished in time to receive the first harvest of tobacco on the Station.

During the winter, two other buildings were put up, one containing a stable, a storehouse for material, a small seed room and a stripping room. The other building will serve both for a storehouse and a curing barn. The upper part of it is fitted up for the latter use, and furnished with ventilators. This latter building is covered with galvanized iron, after a model which has already given satisfaction at the Tobacco Station at Harrow for curing Burley tobacco.

TOBACCO STATION AT HARROW, ONT.

The experiments at Harrow, during the year 1912, bore upon the different methods of making seed beds, the different formulae of fertilizers, and the method of applying the latter. The varieties chiefly used in tobacco growing in southern Ontario, namely, Burley and Yellow Virginia, were, so to speak, the only ones grown on the Tobacco Station at Harrow, rotation as follows, namely, cereal, tobacco and Indian corn. The clover sown with the grain is ploughed under in the spring on the land for tobacco planting. The severe winter of 1911-12 seriously injured the fall wheat sown and necessitated re-sowing the land to spring grain.

The Indian corn plantation was excellent. Certain parts of it yielded up to 145 bushels per acre. The average for the area sown to Indian corn was 115 bushels. The quality of the crop was first-class, and proportion of cobs discarded was very small.

The orchard belonging to the Station has, after two years of treatment, been cleared of San José scale, and the apple crop, although less abundant than that of 1911, contains none but sound fruit.

SEEDLINGS.

As in former years, while other growers in the neighbourhood were looking for tobacco plants, for which they offered up to $3 per thousand, our seedbeds furnished us with an abundant supply at the time desired.

While one can hardly recommend, in a special manner, either the hotbed or the coldbed, one can hardly insist too much upon the necessity of some shelter of glass and of the frequent renewal of the mould used. When the latter cannot be replaced, it is necessary, at least, to disinfect it. Speaking generally, the area devoted to growing seedlings is insufficient. It should be increased, sometimes even doubled, in order to be sure of having enough plants, under normal conditions, to meet the requirements of transplantation.

PLANTATION.

This was undertaken during the first days of June, the weather at the time being rather cool and dry for the season. The setting out was rather difficult on account of atmospheric conditions not being suitable for growth, and also from the destruction caused by cutworms. The latter, fortunately, were checked by the use of poisoned bran. Growth was rather slow. The harvest was commenced on the 21st of September, which is rather late, especially for yellow tobacco of Virginia type. In spite of the unfavourable character of the season, we were able to obtain an abundant supply of white Burley seed which will be quite sufficient for all applications for samples.

The experiments with chemical fertilizers enabled us to obtain, at a comparatively low cost, yields of about 1 ton per acre. These experiments with fertilizers will be systematized in order to enable us to establish the formula which will permit us to obtain, not the greatest yield per acre, but the greatest money returns. Considering the considerable number of formulae which one can use, and the great number of special fertilizers upon the market, it may be easily seen that the solution of the
question as to which is the best one to use, and to what amount, will not be arrived at for some time.

Experience has shown that nitrogenous fertilizers of all kinds should only be employed with great care in the growing of yellow tobacco. These will hardly ever succeed in our latitude, even on land best suited for their production, except during warm seasons, not too moist, especially towards the time of coming to maturity or yellowing in the field. The growth of the plant should be rapid at the first and should stop early in August. One should, therefore, stop cultivating work about the end of July, confining himself, after that, to suckering and ridding the plants of caterpillars according to the need.

The demand for tobaccos of the Virginia type, cured by the flue-curing process, becomes each year greater, and this in spite of the fact that the ideal colour is far from being reached. We hope to make a step in advance in 1913 in trying some varieties imported from a region where the climate is more similar to that of Ontario than of Virginia. The curing of the burleys at the Harrow Station was normal. These tobaccos were sold in December, 1912, at 12 cents a pound, the highest market price for the season.

FERMENTATION OF THE 1912 CROP.

Most of the tobaccos from the Station at St. Jacques l'Achigan and at Farnham were transported to Ottawa for fermentation. The Farnham tobacco was sorted at the Experimental Farm, Ottawa, by young girls paid according to the amount of work done by each. This has proven much more satisfactory than employing masculine labour for this purpose. The balks built up on February 28 and March 1 fermented naturally, higher temperatures being reached than those of the previous year. The first turning over was done on March 19 and March 26, showing tobaccos of a good texture, of colour relatively clear, and of good aroma. Had it not been for the hail which destroyed the greater part of the tobacco crop at Farnham we should have been able to provide the manufacturers with a very high-class leaf.

DISTRIBUTION OF SEEDS.

The samples of tobacco seed distributed by the Tobacco Division contain about one-fourth of an ounce of selected and cleaned seed. The number of samples furnished by the different Stations was as follows:

<table>
<thead>
<tr>
<th>Tobacco Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comstock Spanish (Experimental Farm)</td>
<td>3,354</td>
</tr>
<tr>
<td>Comstock Spanish (St. Jacques)</td>
<td>120</td>
</tr>
<tr>
<td>Canelle (Experimental Farm)</td>
<td>780</td>
</tr>
<tr>
<td>White Burley (Harrow)</td>
<td>731</td>
</tr>
<tr>
<td>Montmelian (Experimental Farm)</td>
<td>125</td>
</tr>
<tr>
<td>Big Havana (Experimental Farm)</td>
<td>12</td>
</tr>
<tr>
<td>Moro Petiole (Experimental Farm)</td>
<td>3</td>
</tr>
<tr>
<td>Moro Sessile (Experimental Farm)</td>
<td>2</td>
</tr>
</tbody>
</table>

The number of samples distributed amounted to:

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comstock Spanish</td>
<td>1,965</td>
</tr>
<tr>
<td>Canelle</td>
<td>777</td>
</tr>
<tr>
<td>White Burley</td>
<td>454</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>349</td>
</tr>
</tbody>
</table>

3,545

I have the honour to be, sir,

Your obedient servant,

F. CHARLAN.

Chief of the Tobacco Division.