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Abstract. In this paper, we are proposing a new tool for reversing Java applica-

tions called SinJAR. SinJAR is a lightweight software written in Java aiming at

inspecting bytecode at compile time and producing the structure tree of a targeted

application. Besides, it is able to detect vulnerabilities and security weaknesses in-

side the Java code. SinJAR can be used for two purposes. The first one is sane and

consists in using it to verify whether or not an application is safe and compliant

with its specification. The second one is malicious and consists in spying applica-

tions through their bytecode and exploiting vulnerabilities that they may enclose.

In this paper, we will show how to detect SinJAR malicious actions after showing

the capabilities of the tool through few ad hoc attack scenarios conducted in a real

military context.

Keywords. Reverse engineering, java reflection, bytecode, vulnerability, anomaly

detection, security, SinJAR, Hidden Markov Model.

Introduction

Reverse engineering of software [1–4] is the art of extracting knowledge from an existing

software in order to rebuild it totally, partially, or to rebuild another knowledge based on

the gathered information [5]. It is used in many fields for learning purposes only, or to

reproduce the same product by avoiding copyright infringement [6], to improve docu-

mentation weaknesses when the original designers are no longer available, to understand

a legacy software to update it and fix bugs in it, to add a security layer above a legacy
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system, etc. It is also used for espionage purposes in order to figure out, and then find out,

what a competitor is carrying out. Reverse engineering gets another dimension when it

comes to the military field because the security of a whole nation could be compromised.

History tells us long about military software spy operations that had caused significant

damages for a given nation or had changed a military balance in armed conflicts as a

result of software cloning or reverse engineering.

The purpose behind the concept of reverse engineering is often to discover unavail-

able or incomplete information that could be for example program internal workings, op-

erating principle, source code or design philosophy, etc. They all depend upon the system

under study. Generally, the absence of this kind of information is for particular reasons;

either it is the owner choice to not share it or that this information has been decayed or

destroyed. In the two cases, reverser will be confronted with a poor or even non-existent

documentation.

Cyber-security is one of reverse engineering categories’ application beside software

development. Reverse engineering is indeed widely used to audit and improve the secu-

rity by searching: major vulnerabilities, poor coding practices and security flaws, reverse

engineer built-in for malware detection [7] and analysis, viruses’ studies and tests for

eradicating through an anti-virus development, a lost source code retrieving for enhance-

ment, cryptographic algorithms reversing and so forth. On the other hand, malicious re-

verse engineering attacks are widely increasing. Hackers use reverse engineering to lo-

cate software and programs weak points for malicious exploitation like piracy, crack and

application resale, etc. As prevention, developers try to impede reverse engineer through

obfuscation process [8], which aims to transform a program into an equivalent one that

is harder to reverse engineer.

Reverse engineering process is accomplished through a set of tools that could be

categorized on disassemblers, decompilers, debuggers, and monitoring. Disassembler is

a program that ensures the conversion of machine language into assembly language.

Disassembler output is more intelligible for human than its input, but differs from the

decompiler output, which produces a readable high-level language from the same input.

The existing tools [9–13] play of course a key role in increasing program under-

standing for the reverser. However, although their effectiveness, their use remains some-

what limited as they cannot be considered [14,15]. Thus, more effective tools for reverse

engineering process are always needed and welcome, especially, those that help the re-

verser shorten the time spent on well understanding the program under study. However,

it goes without saying that the tools’ usage must always be accompanied by a minimum

of skills, otherwise, whatever their effectiveness, they will not help a lot.

Vulnerability detection is the process of analyzing an existing software in order to

know about the weaknesses that it involves and discover the weak points or poorly con-

structed parts in. Learning about vulnerabilities is paramount to avoid attacks and build a

secure software. The process of finding out vulnerabilities is a very hard one seeing that

there is no standard way to do so and vulnerabilities are of varied sorts. For that reason,

tools for detecting vulnerabilities are continuously sought-after.

In this paper, we will introduce a new tool for reverse engineering and vulnerability

detection that can be used to inspect any Java application throughout its Java archive file

(JAR). We will see what API it implements, its architecture and the facilities it offers to

inspect Java applications. Then, we will perform a real experiment on an application in

a real military environment. We will show how powerful SinJAR was to extract sensitive



information from within the Java archive of the targeted application only. Then, we will

recommend a sophisticated category of tools to detect SinJAR malicious actions based on

stochastic models, in particular, the Hidden Markov Model. This is due to the difficulty

of detecting SinJAR actions using conventional tools because it is a silent and stealthy

tool.

1. Paper organization

This paper is organized as follows:

1. In section 2, we give an overview of the SinJAR tool. We point out in particular

the API that it implements and we briefly cover its modules;

2. In section 3, we exhibit a test scenario of the Sinjar tool. We show how it suc-

ceeds in reverse engineering a military application and in discovering a serious

vulnerability in;

3. In section 4, we show how to detect SinJAR malicious actions when it is malevo-

lently used. The proposed detector is based on Hidden Markov Model (HMM). We

give the steps to train and validate the HMM and then how to use it to detect the

malicious actions of the SinJAR tool over the traces captured by adequate tools.

We show how powerful the used HMM-based tool was to do so;

4. In section 5, we discuss the results that we obtain;

5. In section 6, we give a short conclusion and we introduce to a future extension of

our new tool.

2. SinJAR tool

2.1. What is SinJAR?

SinJAR is a tool for reverse engineering and vulnerability detection intended to inspect

Java applications by using the Java reflection mechanism. SinJAR accepts a Java archive

file of a target application and returns its object oriented architecture in both XML and

JSON format. This includes the class names used inside the application, attribute names,

attribute types, attribute default values, method names, their argument names and types,

their returned values and their types, class constructors, getters and setters, package

names, method and attribute modifiers (public, private, protected, static, final, abstract,

synchronized, etc.), inheritance between classes, implemented interfaces’ names, anno-

tations, etc.

2.2. What is SinJAR for?

Upon inspecting theses elements, SinJAR is able not only to understand the application

architecture but also to detect vulnerabilities like connection strings to servers, pass-

words, user names, and so on. SinJar helps the user find out these weaknesses and fix

them. Besides, it can be used to verify whether or not an application is compliant with its

specification, and if not, what the origin of the structural problem in a given component,

be it related to the design or the implementation.



2.3. Java reflection mechanism

Reflection is an advanced mechanism and a strong concept of Java core [16]. It is not

commonly used in conventional programming but it is the cornerstone in most of the

major Java and J2EE frameworks like JUnit, Spring, Hibernate, Eclipse and Tomcat.

By using Java reflection we can inspect classes, interfaces, enums, get their structure,

or get methods and fields information at runtime or compile time. Besides, we can use

reflection to instantiate objects, call methods or alter field values without even knowing

the names of the classes, methods, fields, etc. Moreover, and in spite of the common

visibility rules, by using reflection we can access private data, private methods or any

other private object in a given Java class. The API that offers reflection services is im-

plemented in the java.lang.reflect package. Hereafter, we give the main methods that can

be used in a reflection-based Java programming.

1. someObject.class.getMethods(): returns an array of method names in someObject;

2. someObject.class.getFields(): returns an array of field names in someObject;

3. someClass.getName(): returns the class name of someClass;

4. someClass.getModifiers(): returns the modifiers of someClass (i.e. public, pro-

tected, private);

5. someClass.getSuperclass(): returns the superclass of someClass;

6. someClass.getConstructors(): returns the constructors of someClass;

7. someClass.getInterfaces(): returns the interfaces implemented by someClass;

8. someClass.getPackage(): returns the package name of someClass;

9. someClass.getAnnotations(): returns the annotations of someClass;

10. Etc.

For the full reflection API documentation, please refer to [17].

2.4. SinJAR Modules

SinJAR consists of three modules:

1. The HELPER module of SinJAR is implemented in the package sinjar.reflection.helper.

This module provides services for reading class files through the JARs of the tar-

geted application;

2. The ATTACKER module of SinJAR is implemented in the package sinjar.reflection.attack.

This module provides services for penetrating a JAR file for a targeted application,

inspecting the application classes, reconstructing the application tree including its

packages, classes, methods, constructors, fields and their default values, modifiers,

etc. Finally, it provides the complete application architecture in XML and JSON

format;

3. The VIEWER module of SinJAR is implemented in the package sinjar.viewer.

This module allows to visualize the tree of an inspected application.



3. Testing SinJAR in a military environment

3.1. Targeted application

The targeted application is a simple GUI written in Java that executes ordinary CRDU op-

erations on a Pilot table in a MySql database 5.5 running on Ubuntu 14.04 LTS. Through

which, a user can insert a pilot record, delete it, update it or visualize it. The user launches

the application via its JAR file PilotApp.jar without having access to its source code. An

overview of this application is given by Figure 1.

Figure 1. Application inspected by SinJAR

3.2. Attack with SinJAR

The attack is launched through a Linux shell calling the ATTACKER module of Sin-

JAR on the Pilot application JAR file (i.e. PilotApp.jar) from within the same console

of the user who is allowed to execute the targeted application. The attacker is hence

assumed to be be a regular user with the devil intention to spy the application he is

using. Once launched, the ATTACKER module reproduces all the structure of the at-

tacked application and returns it in both XML format and JSON format. Figure 2 shows

the output of the attack returned by the ATTACKER module and visualized by the

VIEWER module of SinJAR . Please notice that beside the fact that the application

is completely reverse engineered, SinJAR succeeds to capture sensitive information in-

cluded in the application JAR file which consists in: the connection string to the database

(i.e. mysql://192.168.1.107:3306/testdb), a user name (i.e. scott) and his password (i.e.

iloveritta). This information is perilous since the intruder is now empowered to further

attack the database and acquire more sensitive information such as military maps, satel-

lite photos, technical drawings, research papers, and all that can be seen or done by the

user scott on the database.

4. Detecting SinJAR malicious actions

4.1. Hidden Markov Model-Based Detectors

A Hidden Markov Model (HMM) [18–22] is a stochastic model in which a system is

assumed to satisfy the Markov property [23]. The Markov property supposes that the



Figure 2. SinJAR reverses a military application and reports security vulnerabilities

conditional probability distribution of future states depends only upon the current state.

Formally, a HMM is a quadruplet < S,Σ,T,G > such that:

• S: is a set of N hidden states including two special states, start and end. The state

start launches the process and the state end terminates it;

• Σ: is a set of M symbols or alphabet;

• T : is a transition matrix that contains the probabilities of going from a state si de

S−{end} to a state s j of S−{start};

• G: is a matrix that contains the probabilities of emitting the symbol σi de Σ from

s j the state S−{start, end}.

A HMM is able to answer three questions:

1. Given an observable sequence (a string of Σ) of size T , what is the probability of

occurrence of that sequence according to the predefined HMM? This question is

answered by the forward-backward algorithm [24]. This algorithm is of a com-

plexity O(N2T ) where N is the number of states of the HMM;

2. Given an observable sequence of size T , what is the most probable sequence

of states that produces it according to the predefined HMM? This question is

answered by the Viterbi algorithm [25]. This algorithm is also of a complexity

O(N2T ) where N is the number of states of the HMM;



3. Given an observable sequence of size T , how to change a given HMM in a way

that the probability of that sequence be maximum? This question is answered by

the Baum-Welch algorithm [26] . This algorithm is also of a complexity O(N2T )
where N is the number of states of the HMM.

For HMM-based detectors, an HMM should be trained first and then validated on

normal sequences. The Baum-Welch algorithm is here used to perform a series of changes

on the transition matrix until the probabilities of occurrence of these sequences be max-

imum. As for the validation step, another set of sequences is delivered to the HMM so

that an acceptance threshold is fixed. The HMM knows so far how the normal sequences

look like and how to decide if a sequence is normal or not. To do so, the HMM calculates

the probability of occurrence of a new sequence using the forward-backward algorithm,

if it is above the acceptance threshold the sequence is deemed normal, otherwise, it is

deemed anomalous.

4.2. Environment

4.2.1. LTTng for recording traces

The Linux Trace Toolkit next generation (LTTng) [27] is an open source tracing frame-

work for Linux. It can be used to trace the Linux kernel, user applications, and user

libraries. It consists of:

1. Kernel modules to trace the Linux kernel;

2. Shared libraries to trace C or C++ applications;

3. A Java library to trace Java applications;

4. A Python library to trace Python applications;

5. Command-line tools to monitor the LTTng tracers.

LTTng is used to generate kernel traces [28] that consist of events (system calls) resulting

from the target application when it is normally executed and when it is attacked. These

traces are either in CTF or text format. The traces resulting from a normal execution

are deemed normal traces, and the ones resulting from the attack on that application are

deemed anomalous traces.

4.2.2. TotalADS and HMM implementation

TotalADS [29, 30] is a new open source framework for automated host-based anomaly

detection developed at Concordia University as a plug-in for Eclipse. It encompasses

varied anomaly detection techniques such as Hidden Markov Model (HMM), Kernel

State Modeling (KSM), and Sequence Matching (SQM). It accepts several traces and

logs formats such as the Common Trace Format (CTF) [31], XML and text format. It

supports live streaming as well as stored traces. It is thought and designed to closely

cooperate with the Trace Compass module [32], which is another Eclipse plug-in, that

offers a rich environment for visualizing traces and anomalies. Using TotalADS, one can

diagnose traces and detect anomalies. An anomaly is reported when a trace is distant
enough from a normal behavior in the logic of the used technique. In this paper, we will



Figure 3. HMM training and validation

focus on the HMM algorithm as our preferred technique because we think it is the most

suitable one to detect SinJAR anomalous traces.

4.2.3. Attack scenario

Before launching the attack, we generate the HMM that reflects the system normal be-

havior. We set the HMM state number to 5 and the sequence length to 1000. We launch

LTTng to record the kernel trace. Meanwhile, we execute the Pilot application as well

as a set of usual Linux commands that a normal user is entitled to run in his daily work.

Once done, the traces are stored in a directory. We then launch TotalADS to generate

the corresponding HMM. We use two thirds of the traces to train the HMM, and the

remaining third to validate it. TotalADS stores the constructed HMM in a JSON format

in a noSQL database. Once done, we launch the attack using the SinJAR tool. In the

meantime, we launch LTTng to record the anomalous traces of the Linux kernel. Once

the Pilot application is hacked and reverse engineered, we store them in a directory. As

for the analysis, we provide TotalADS with four long anomalous traces and one normal

trace to analyze. The expected ratio of anomalous traces is hence 80%.



5. Discussion

As for the SinJAR tool, as we can see in Figure 2, it was successful reversing the Pilot

application and returning its structure and all the expected packages, classes, methods,

constructors, attributes, modifiers, super classes, etc. This is thanks to the powerful Java

reflection API that it implements. SinJAR was particularly successful reporting a major

vulnerability consisting of sensitive information hardcoded in the application.

Concerning SinJAR malicious traces detection, as we can clearly see in Figure 4,

HMM succeeds in catching all the malicious traces resulting from the attack by SinJAR.

In the same vein, HMM succeeds in detecting the normal sequences as given in Figure

5. The ratio of 80% reflects the accurate ratio of malicious traces we were expecting.

We can conclude that HMMs are the most suitable techniques to detect stealthy actions

that can easily escape signature-based detection tools. That is because they base their

decision on the comparison between two states: a normal state resulting from a learning

phase and another state to analyze. The decision is made upon the probability for a given

trace to be generated by the HMM. If it is higher than the threshold set by the HMM

during the model validation step, it is said to be normal. If not it is reputed anomalous.

Figure 4. HMM detects SinJAR’s malicious traces

Nevertheless, the learning phase must be carefully led to reflect the real normal

behavior of the system which is not always an easy task.



Figure 5. HMM reports normal traces

In the state-of-the-art we find other tools comparable to the SinJAR tool such as:

1. DiStorm3: it is a tool that comes with Kali Linux [33] and used in embedded or

kernel modules to disassemble instructions in 16, 32 and 64-bit modes. It tightly

depends on the C library;

2. Dex2jar: it is an API to read the Dalvik Executable format and convert it to ASM

format. Some efforts are made to set about the deobfuscation of JAR files in Java

applications but they are still limited and controversial;

3. Apktool: it is a tool for debugging smali code, a common human readable format

of android applications written in Java;

4. InsDal [34]: it is a tool that inserts code in specific points of the Dalvik byte-code

depending on the need of the user. It arranges the registers in a way that it protects

the original code from illegal manipulation. It also optimizes the inserted code in

order to save memory and reduce overhead;

5. DynStruct [35]: it is an open source tool that instruments dynamic binary to get

sensitive information related to memory accesses. This information is then worked

out to reconstruct structures created and used in the binary code.

6. Javasnoop: it is an aspect security oriented tool. It comes with Kali Linux as well.

It is mainly used to validate web applications [36], but it can be also used for other

applications.



Compared to these tools and others such as Refine/C, Imagix4D, Sniff+, and Rigi

[4, 37], the SinJAR tool is a multidisciplinary and a multi-objective one. Indeed, it can

be used with any type of application and does not depend on any operating system. It is

also flexible, modular, extensible, lightweight and can be used either as a standalone tool

or attached to application debuggers.

6. Conclusion

In this paper, we have introduced a new tool for reverse engineering and detecting vulner-

ability inside Java applications, called SinJAR. This new tool was able to report serious

vulnerabilities when tested in a military environment. We have also given recommen-

dations about advanced detectors that should be used to trace the malicious actions of

that tool when it is malevolently used. In a future work, we will add new functionalities

to SinJAR so that it will be able to inspect applications dynamically. We also aspire to

integrate it with other validation tools such as debuggers, refactoring tools, and software

security checkers. Besides, we intend to use it for reinforcing security [38, 39] in legacy

programs by adding and altering code in, in order to conform to a given security policy.

Warning

It is strictly prohibited to use the SinJAR tool for malicious purposes.
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