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Communication in military environments: Influence of noise, hearing

protection and language proficiency
Ann Nakashima®, Sharon M. Abel, Ingrid Smith
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Military training and international operations require different nationalities to communicate in a common
language, where there are potential challenges with non-native (L2) speech communication. An experiment of
speech communication in military noise was conducted for co-located (face-to-face [F2F]) and distributed (using
communication headsets) talker-listener pairs. Half of the twenty-four participants were monolingual English
speakers (native group, NA) and the remaining half had obtained English fluency after the age of eight years
(non-native group, NN). Two tests of speech understanding were used: the Modified Rhyme Test (MRT) and the
Speech Perception in Noise test (SPIN). In the F2F condition, the participants wore a communication headset
(earmuff) with the power off for occluded listening. Three levels of armoured vehicle noise were used, 55, 60 and
65 dBA, for speech-to-noise ratios ranging from —10 to +5 dB. In the radio condition, the pairs were separated
by a visual barrier and used the communication headset for the tests in 80 dBA armoured vehicle noise. The
results showed that the NN group had difficulty with the SPIN test in the radio and F2F conditions. This result
was attributed to the open-response set of the SPIN. Headset occlusion likely contributed to the lower scores for
the NN listeners in the F2F condition. There was a main effect of talker for the MRT in the F2F and radio
conditions, and for the SPIN in the radio condition, suggesting that foreign accent reduced the intelligibility for
both the NA and NN groups. The results were surprising considering the high L2 proficiency of the NN group.

Training methods for improving L2 communication in operational settings should be further investigated.

1. Introduction

Although there has been extensive research on speech commu-
nication in laboratory, classroom and industrial settings, military op-
erational environments present a number of unique challenges that
remain unresolved. Continuous noise levels can be in excess of 100 dBA
in military aircraft [1,2] and armoured vehicles [3]. In high-noise en-
vironments where hearing protection devices (HPDs) are required,
communication by radio or face-to-face may be compromised. HPDs
must not only provide adequate protection from noise, but also allow
soldiers to communicate and maintain situational awareness. To further
complicate the problem, during international operations, there may be
a requirement to communicate with allied forces in a common language
where fluency or accent is problematic for one or more participants.

Speech communication in noise has historically been studied in the
context of (1) white or pink noise, (2) speech-shaped noise or (3) speech
babble. In addition, the noise levels tend to be relatively low to facil-
itate manageable speech-to-noise ratios (SNR) [4], providing little in-
sight into ways to enhance communication in noisy military operational

environments. For these scenarios, the use of communication headsets
must be considered. Communication headsets with integrated hearing
protection provide the advantage of attenuating ambient noise while
feeding radio traffic directly to the ear. This not only allows protection
from the ambient noise, but also facilitates the understanding of
radioed speech at lower at-ear presentation levels. A large study of
communication headset use in workplaces found that the preferred SNR
for at-ear speech to ambient noise level was about +12 to +15dB
when headsets with little or no attenuation were used. By contrast, the
preferred SNR was —5 to 0 dB when noise-reducing headsets were used
[5]. Military-specific devices, sometimes called Tactical Communica-
tions and Protection Systems (TCAPS) [6], have been used in recent
years for studies of speech understanding in noise [7-9]. As technology
evolves, TCAPS have the potential to improve both face-to-face and
radio communication in noise for many users. For example, the use of
signal processing algorithms to adaptively improve the SNR in com-
munication headsets has been explored by Brammer et al. [10].

When HPDs or TCAPS are worn in noisy environments, there may
still be a requirement to listen to face-to-face conversation or other
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speech that is not presented through the radio. Abel et al. [11-13]
conducted a series of studies looking at auditory overload in a simu-
lated mobile command post environment. In the command post, the
operator is required to attend to multiple radio channels and an in-
tercom system from an external loudspeaker. The experiments showed
that while the participants were able to respond correctly to messages
over the radio, they had difficulty with the messages coming from the
external loudspeaker. This was attributed to the spectrum of the
background noise (recorded armoured vehicle noise) and to the oc-
clusion effect of the headset. With these two factors combined, the
messages from the loudspeaker reaching the ear were lower than the
levels of background noise at speech frequencies [11]. The studies il-
lustrate that both the spectrum of the background noise and HPD oc-
clusion must be considered when studying speech communication in
noise.

The challenges of speech communication in noisy conditions are
further exacerbated for those who are listening to a foreign language. A
comprehensive review has shown that understanding and learning of a
second language (L2) are influenced by factors including native lan-
guage (L1), age of acquisition, and amount of exposure to L2.
Furthermore, native-like proficiency is highly unlikely if L2 is learned
after childhood [4]. L2 candidates have to deal with limited L2 voca-
bulary, phonemic perception confusion and competing L1 words. This
causes more uncertainty at all levels of processing for the L2 listener. A
2002 survey found that 42% of Canadian Armed Forces (CAF) used both
official languages (French and English) [14]. It is therefore of interest to
study non-native communication not only for international operations,
but also for routine CAF training operations where communication can
occur in one or both official languages.

Mild-to-moderate hearing impairment is an additional challenge
that is of particular relevance to military populations. There are very
few published studies that combine any or all of hearing loss, HPDs,
radio communication and non-fluency. One study showed that the use
of HPDs put hearing-impaired listeners at a significant disadvantage
compared to normal-hearing participants when listening to ambient
speech (non-radioed). Participants who were both hearing-impaired
and non-fluent were at a further disadvantage [15]. Giguere et al. found
that hearing-impaired participants benefited from level-dependent
HPDs, which allowed the users to increase the volume of ambient
speech that was transmitted to the ear [9]. In a study of radio com-
munication using non-native and hearing-impaired participants, it was
found that hearing-impaired participants performed at a similar level as
normal-hearing participants. However, non-native participants ob-
tained lower scores than both the normal-hearing and hearing-impaired
groups [27].

The current study was designed to investigate communication in
noise between monolingual English-speaking participants and non-na-
tive English speakers with different L1s. Two tests of speech under-
standing were used for face-to-face (F2F) and radio communication
using a radio headset with integrated hearing protection in recorded
armoured vehicle noise. We hypothesize that (1) non-native partici-
pants will achieve lower speech understanding scores than native
speakers for all conditions, (2) all participants will have lower scores
when listening to a non-native talker compared with listening to a
native talker, and (3) higher background noise will cause lower scores,
especially for non-native speakers.

2. Materials and methods
2.1. Participants

Ethics approval was obtained from the Human Research Ethics
Committee (HREC) of Defence Research and Development Canada
(DRDC). Twenty-four men and women, military and civilian, vo-
lunteered as participants. Half of the participants (six males and six
females) were native monolingual English speakers (NA) and half (six

males and six females) were non-native speakers (NN) who acquired
fluency in English after the age of 8 years (self-reported). The NA group
was restricted to monolingual English speakers because it has been
shown that bilinguals may experience difficulty understanding speech
in noise due to interference from their second language, even if they
were bilingual from an early age. The NN group was restricted to
English language acquisition after early childhood because this has
been shown to adversely affect speech understanding in noise [16].
English language competency was not objectively tested, although all
participants were employed in English-language working environ-
ments. The average age was 34.0 + 9.3 years. Language background
was obtained from each participant using the Language Experience and
Proficiency Questionnaire (LEAP-Q) [17].

All participants were tested for normal hearing levels (20 dB HL or
less at 500, 1000, 2000 and 4000 Hz) by Bekesy audiometry. The use of
hearing-impaired participants would have been relevant to the targeted
CAF population. However, in order to limit the number of conditions,
selection was restricted to normal-hearing participants.

2.2. Experimental protocol

The experimental sessions were conducted in the Noise Simulation
Facility, a large, semi-reverberant room (10.55 X 6.10 x 3.05m?), lo-
cated at Defence Research and Development Canada, Toronto Research
Centre. Of the studies that were reviewed earlier, most used 0 dB SNR in
white and speech-shaped noise (energetic masking) or speech noise
background (informational masking) [4]. We chose to use a background
noise that was more relevant to the CAF environment. The background
noise was recorded inside a CAF light armoured vehicle (LAV III) at the
driver position [3]. The level of the noise was 97 dBA in situ, but it was
presented at lower levels for this study as described below.

An earmuff-style TCAPS device (3M" Peltor” LiteCom Plus [3M, St.
Paul, MN]) was used for this study. The insertion loss of the muff was
measured using a 45CB acoustic text fixture (GRAS Sound and
Vibration, Denmark) in 102 dBA pink noise, according to the American
National Standards Institute/Acoustical Society of America (ANSI/ASA)
§12.42-2010 passive insertion loss procedure [18].

Each participant completed two experimental sessions in pairs, in
which they alternated as a talker and listener. The NA participants were
paired with another NA in one session and an NN in the other session.
Similarly, the NN participants were paired with an NN in one session
and an NA in the other. Thus there were four groups of talker-listener
pairs: NA-NA, NA-NN, NN-NA and NN-NN. The linguistic backgrounds
of the NN-NN pairs were mismatched to avoid a possible interlanguage
intelligibility benefit [19]. In addition, since conflicting results have
been reported in the literature for intelligibility of female versus male
speech [1,20], participant pairs were restricted to same-gender.

The twenty-four participants in the four talker-listener groups were
presented two tests of speech intelligibility: the Modified Rhyme Test
(MRT) [21] and the Speech Perception in Noise Test (SPIN) [22]. The
closed set MRT has been recommended for measuring speech intellig-
ibility over communication systems [23]. For each condition, the talker
read through a list of 50 words, with each preceded by the carrier
phrase “The word is __.” The listener circled the word they heard on
the response sheet, of a possible six answers for each word. There are
three different lists of 50 words for the MRT, with six possible answers,
making a total of 18 list variants by changing the target word that is
read by the talker. The open set SPIN assesses recognition of both high-
predictability (contextual cues provided) and low-predictability (no
contextual cues) final words in sentences. The talker read through a list
of 50 sentences for each condition, and the listener wrote the last word
of each sentence on the response sheet. There are eight different lists of
50 sentences for the SPIN test.

The MRT and SPIN tests were administered for two modes of
communication: F2F and radio. The F2F condition was used to re-
present co-located soldiers in the field, wearing hearing protection, in



moderate background noise (e.g., in the vicinity of an idling or tra-
velling armoured vehicle). The talker and listener were seated facing
each other at the ends of a two-meter long table. There was no visual
barrier between the pair, so lip-reading was possible. The headset was
worn by each participant with the radio transmission turned off.
Participants were instructed to maintain a “normal” voice level (i.e., not
raised) of 55-60 dBA; this was practiced during a training run held
prior to the experimental sessions. Background noise levels of 55, 60
and 65 dBA were used, giving SNR in the range of —10 to +5dB.

The radio condition was used to represent communication between
distributed soldiers in the field. A visual barrier was placed in the
middle of the table so that the participants could not lip-read. The
headset was turned on and the radio channel was used for commu-
nication. The background noise was presented at 80 dBA, high enough
to limit hearing of ambient speech, such that the talker could only be
heard through the radio channel. The talker used the push-to-talk mode
to transmit the MRT word and carrier phrase (“the word is __”) or the
SPIN sentence to the listener. Each participant pair alternated being a
talker and a listener for each of the four conditions (three F2F and one
radio), using a total of eight MRT and SPIN lists per session. None of the
MRT or SPIN list variants were used more than once per session. The
order of the conditions (F2F and radio) and background noise levels
(F2F condition) were counterbalanced across listeners. For all testing,
guessing was encouraged and no feedback was given about the cor-
rectness of responses.

2.3. Data analysis

LEAP-Q responses were used to confirm group assignment and
characterize the demographic of the participants. The dataset for each
of the twenty-four listeners consisted of the percentage correct on the
MRT and SPIN lists, for each of the F2F and radio conditions. Repeated
measures analyses of variance (ANOVA) were applied to the percentage
correct for each of the tests, to evaluate the significance of differences
due to talker-listener pairings between groups, gender within groups
and background noise level in the F2F condition. The effect of initial
versus final consonant contrast was assessed for the MRT and the effect
of high- and low-predictability sentences was assessed for the SPIN test.
Non-parametric analysis was used for gender subgroups within the NA
and NN groups.

3. Results
3.1. LEAP-Q results

The LEAP-Q responses for the NN group are summarized in Table 1.
The L1s reported by the NN group were French, Chinese, Mandarin,
Serbian, Spanish and Russian. Two participants who reported French as
their L1 reported living in Canada for 37 and 30 years, but with 7 and
14 years of school and/or work in English, respectively. Therefore, the
distinction between number of years in Canada and the years of school
and work (combined) in English is important. The possible self-ratings of
spoken, reading and writing fluency were from 0 to 10 with 10 being the
highest fluency. For the question about accent perceived by others, a
response of 0 corresponded to never and 10 to always. The average is not

Table 1
Summary of selected LEAP-Q responses for the NN participant group (n = 12).

Age began learning English 10.9 + 3.7 years
Age English fluency obtained 21.4 = 10.6 years
Number of years in country 17.7 * 9.3years
Years of school and/or work in English 13.7 * 6.7 years
Self-rating of fluency (spoken) 7.8 =+ 1.2
Self-rating of fluency (reading) 8.6 = 0.6
Self-rating of fluency (writing) 8.8 = 0.7

given in Table 1 due to the range of responses. Responses of 3, 5, 7 and 9
were given once each, with the remaining eight responses being 0 and 1.

3.2. Background noise and headset occlusion

Fig. 1 shows the room background noise in quiet and with vehicle
noise at 60 dBA, and sample female and male speech spectra that were
recorded in the room in quiet while reading a phonetically balanced
passage. The speech spectra are shown to estimate the SNR in vehicle
noise. The four participants were chosen because they were native
English speakers and represented a range of ages: 20 (male), 36 (fe-
male), 54 (female) and 61 (male). On average, the SNR in vehicle noise
were about +3dB, —15dB, —3dB and —4dB at 500 Hz, 1000 Hz,
2000 Hz and 4000 Hz, respectively.

The female and male speech spectra, this time averaged by gender,
are shown in Fig. 2 with the insertion loss of the headset. The insertion
loss values were subtracted from the speech spectra to estimate the
occluded speech spectra. The overall insertion loss of the earmuff
headset on the A-weighted background noise level was 24 dB. Occluded
speech frequencies above 800 Hz are reduced to less than 10 dB.

3.3. F2F results

All results are presented as the percentage correct obtained by lis-
teners. Main effects are reported as averages across all listeners and
talkers (NA and NN combined). Where there was a main effect of talker,
the average percentage correct obtained by the listeners are separated
for pairings with NA versus NN talkers.

An ANOVA on the F2F MRT results showed main effects of back-
ground noise level (81.1% at 55 dBA, 78.3% at 60 dBA and 72.8% at
65 dBA; p < .001), talker type (79.6% for NA talkers and 75.2% for
NN talkers; p < .04) and contrasting consonant position (82.8% for
initial consonant and 72.0% for final consonant; p < .03). The results
for percentage correct by background noise level are shown in Fig. 3,
separately for initial and final contrasting consonant words and
grouped by talker type. There was a significant interaction of talker by
consonant position (estimated marginal means 83.4% for initial and
75.8% for final consonant for NA talkers and 82.3% for initial and
68.2% for final consonant for NN talkers; p < .03) and background
noise level by gender (p < .02). For male listeners, the results were
78.5%, 79.8% and 70.9% for 55, 60 and 65 dBA, respectively, versus
83.8%, 76.7% and 74.8%, respectively, for the females.

For the F2F SPIN, an ANOVA showed main effects of background
noise level (68.4%, 63.5% and 55.7% at 55, 60 and 65 dBA, respec-
tively; p < .001) and predictability (72.6% for high predictability
sentences and 52.5% for low; p < .001). The results for percentage
correct by background noise level are shown in Fig. 4, separately for
high and low predictability sentences and grouped by talker type. There
was also a between-subjects effect of listener (70.9% for NA and 54.1%
for NN; p < .001). There was a significant interaction of talker by
listener gender (female listeners: 65.9% for NA and 68.9% for NN
talkers; male listeners: 66.3% for NA and 49.0% for NN talkers).

3.4. Radio results

The results of the MRT and SPIN for the radio condition are sum-
marized in Table 2. For the MRT, an ANOVA showed main effects of
talker (87.2% for NA and 77.5% for NN; p < .003) and contrasting
consonant position (87.1% for initial and 77.6% for final; p < .001).
There was a significant interaction of talker by gender (for males:
90.3% for NA and 74.0% for NN talkers; for females: 84.0% NA and
81.0% for NN talkers). An ANOVA on the SPIN results showed main
effects of talker (84.2% for NA and 76.0% for NN; p < .02) and pre-
dictability (88.7% for high predictability sentences and 71.5% for low;
p < .01). There was a between subjects effect of listener (86.4% for NA
and 73.8% for NN; p < .01).
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4. Discussion
4.1. F2F condition: signal-to-noise ratio and occlusion

In the F2F condition, there were main effects of background noise
level for both the MRT and SPIN. As expected, speech intelligibility
decreased as the background noise level increased. A significant be-
tween-subjects effect was found for NN listeners on the SPIN (54.1% vs.
74.9% for NA listeners). Headset occlusion should be considered in the
interpretation of this result. The communication headset provided
about 24 dB overall insertion loss. Importantly, across the speech fre-
quencies from 500 to 2000 Hz, the insertion loss values were about
27-35 dB, while the low frequency insertion loss was minimal (Fig. 2).
For ambient listening (F2F communication), the muff acts like a low-

pass filter to both the noise and speech. Fig. 2 illustrates that the muff
reduces speech frequencies down to 10 dB or less above 800 Hz, which
is close to threshold of hearing for a normal-hearing listener. Previous
studies have shown that wearing an HPD does not affect speech un-
derstanding for normal-hearing listeners because the overall SNR is
unchanged [24]. However, non-fluent listeners and those with hearing
loss can be at a disadvantage [15]. The results suggest that despite the
headset occlusion, NN listeners can perform at the level of NA listeners
when the response set is closed (MRT), but not with an open response
set (SPIN). This result was seen despite the high proficiency of the NN
group.

Interestingly, there was no between-subjects effect for the MRT, but
there was a main effect of talker (79.6% for NA vs. 75.2% for NN
talkers), suggesting a slight effect of foreign accent. The small, but



MRT Initial Contrasting Consonant
T

Percentage Correct

I NA talker
[_INN talker

Percentage Correct

55 dBA

MRT Final Contrasting Consonant
T

60 dBA

65 dBA

Background Noise Level

Fig. 3. Results for the F2F condition. Percentage correct for the MRT, presented separately for talker type (NA and NN) and background noise level. The error bars represent standard

deviation.

significant main effect of talker for the MRT suggests that foreign ac-
cent, however slight, affects speech intelligibility for both NA and NN
listeners. This is in agreement with a previous study of non-fluency,
hearing loss and communication headset type, which found that both
the English-fluent control and the hearing loss groups obtained higher
scores on the MRT when listening to fluent talkers than with non-fluent
talkers. Non-fluent listeners in the same study had lower MRT scores
than the hearing loss group [27].

4.2. Radio condition: confounding factors

There was a main effect of talker type for both the MRT (87.2% for
NA and 77.5% for NN) and SPIN (84.2% for NA and 76.0% for NN) tests

Table 2

Mean percentage correct and standard deviation for the MRT (by trials with initial and
final contrasting consonant) and SPIN (by trials with high and low predictability) for the
radio condition.

NA Talker NN Talker
MRT initial consonant 90.7 = 9.2 83.5 = 10.3
MRT final consonant 83.7 = 11.7 71.5 = 17.9
SPIN high predictability 92,5 = 10.2 84.8 = 17.6
SPIN low predictability 75.8 = 16.4 67.2 = 22,5

SPIN High Predictability Sentences

Percentage Correct

SPIN Low Predictability Sentences

T T

B NA talker
[ INN talker

Percentage Correct

55 dBA

T T

60 dBA 65 dBA

Background Noise Level

Fig. 4. Results for the F2F condition. Percentage correct for the SPIN, presented separately for talker type (NA and NN) and background noise level. The error bars represent standard

deviation.



in the radio condition. The between-subjects effect for listener on the
SPIN test (86.4% for NA and 73.8% for NN) suggests that the NN group
had difficulty with the open response set. The F2F results were not
compared with the radio results in the analysis because there are sev-
eral confounding factors: different SNRs, potential benefits of lip
reading in the F2F condition, headset occlusion in the F2F condition
and possible speech distortion in channel for the radio condition.
However, it was expected that the participants would achieve higher
scores with the radio than F2F because the SNR is higher when the
speech is fed directly to the ear. It is possible to estimate the SNR for
radioed speech by measuring the at-ear speech level with an acoustic
test fixture, but the calculation is complicated by the head-related
transfer function of the ear and differences in earmuff fit among the
participants [5]. We did not attempt to estimate the SNR, but tried to
control it by training the participants to maintain a constant voice level
(55-60 dBA) and fixing the headset volume at the maximum. A pre-
vious study that used an earlier model of the headset found the gain to
be about 10 dB at maximum volume [8].

4.3. Gender effects

The significant interactions of listener gender by background noise
level (F2F MRT), and talker type (F2F SPIN and radio MRT) are difficult
to interpret due to the limited numbers in each gender subgroup (six in
each of the NA and NN groups). In addition, the participants were re-
stricted to same-gender pairs to limit the number of conditions. A
previous study showed a slight advantage for perception of final con-
sonant in female pairs compared to male pairs; however, the number of
participants was limited [8]. By contrast, male talker-listener pairs
obtained higher scores than female pairs when using certain devices in
a two-way radio communication study. It was suggested that the higher
frequencies of the female voice were poorly transmitted by the fre-
quency-limited microphone of the communication headset [27]. For
mixed-gender pairs, the results of previous studies suggest that female
talkers may be more intelligible that male talkers, but there was no
significance for gender of the listener [1,20]. The mixed results among
the previous studies underlines the need for further investigation of
gender differences for speech communication.

4.4. Limitations of study design

A distinction between L2 and foreign language (FL) has been made
for non-native communication [4]. An L2 is a language that is dom-
inantly present in one’s everyday life, whereas an FL is not. For the
current study, we can generalize the NN group as L2 based on the LEAP-
Q results for number of years of schooling or work in English. Fur-
thermore, the high self-ratings of English ability in reading, writing and
speaking indicate a high level of L2 proficiency. For the rest of the
discussion, NN will be used to refer to our specific experimental group,
and L2 will be used to refer to non-native English speakers in a general
sense.

In a comprehensive review of non-native communication studies, it
was indicated that one consistent limitation was the lack of realism [4].
Previous studies used carefully controlled laboratory conditions, de-
fined background noise spectra, recorded word lists and closed-re-
sponse set tests, which do not represent everyday life situations that are
faced by non-native communicators. The current study was designed
with a military operational environment in mind. The recorded LAV III
noise was presented at low levels to facilitate reasonable SNRs
(55-65 dBA for F2F and 80 dBA for the radio condition), but the
spectrum of the noise was maintained. Informational masking (i.e.,
speech babble) can also have a negative effect on speech perception in
noise [25,26]. However, it was not used here because previous work
has shown that combined vehicle and babble noise did not affect per-
formance compared to vehicle noise alone under diotic listening con-
ditions [11].

There were several limitations in this study. When using two-way
communication in the study of speech understanding, controlling the
speech volume of the talker is a challenge. This is especially true when
background noise is used because it is difficult to obtain accurate
measurements of the speech levels in low SNR conditions. Although the
participants were asked to keep their voice levels at 55-60 dB during
the training session, there was some variation in speech levels among
participants. Constraining the voice levels is artificial because humans
have a tendency to raise their voices in noisy situations (Lombard ef-
fect) and lower their voices when HPDs are worn [28]. For the radio
condition, other operational noises at more realistic levels could have
been used. Open-response set tests are more realistic than closed-set,
but they are more difficult to score. When scoring the written responses
for the SPIN, it was noted that participants wrote words that were si-
milar-sounding, homonyms, singular or plural versions of the target
word. These were marked as being correct. A speech understanding test
that uses military-specific language would have been useful for our
application. Despite the limitations, our results indicate that even
highly proficient L2 individuals may have difficulty communicating in
noise, both F2F and over radio, and this has implications for the success
of training and international operations.

5. Conclusions and future work

Our first hypothesis was partly confirmed. The NN group obtained
lower scores than the NA group on the open-response set test (SPIN),
but their scores were not significantly different on the closed-response
set test (MRT). There was a between-subjects effect of talker in both the
radio and F2F conditions, which confirmed our second hypothesis: all
participants had lower scores when listening to a NN talker compared
with listening to a NA talker. This result was attributed to foreign ac-
cent. Finally, our third hypothesis was partly confirmed: there was a
main effect of background noise level in the F2F condition, but it was
no worse for the NN group than the NA group.

Since L2 individuals are clearly at a disadvantage for speech com-
munication in noise, perhaps even more so than those with hearing loss
[27], it is of interest to investigate ways to improve communication. It
has been suggested that trainees should practice their L2 skills under
realistic workload conditions to better prepare for operations, and that
they should be exposed to English speakers from different regions to
increase exposure to linguistic diversity [29]. It has been shown that
speech understanding in noise can be improved for both L1 and L2
listeners using a cognitive training regime [30]. Different training
methods should be investigated to improve L2 communication in op-
erational settings.
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